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Abstract

Background: Non-pharmaceutical measures to control the spread of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) should be carefully tuned as they can impose a heavy social and economic burden. To quantify and
possibly tune the efficacy of these anti-SARS-CoV-2 measures, we have devised indicators based on the abundant
historic and current prevalence data from other respiratory viruses.

Methods: We obtained incidence data of 17 respiratory viruses from hospitalized patients and outpatients collected
by 37 clinics and laboratories between 2010-2020 in Germany. With a probabilistic model for Bayes inference we
quantified prevalence changes of the different viruses between months in the pre-pandemic period 2010-2019 and
the corresponding months in 2020, the year of the pandemic with noninvasive measures of various degrees of
stringency.

Results: We discovered remarkable reductions δ in rhinovirus (RV) prevalence by about 25% (95% highest density
interval (HDI) [−0.35,−0.15]) in the months after the measures against SARS-CoV-2 were introduced in Germany. In
the months after the measures began to ease, RV prevalence increased to low pre-pandemic levels, e.g. in August
2020 δ = −0.14 (95% HDI [−0.28, 0.12]).

Conclusions: RV prevalence is negatively correlated with the stringency of anti-SARS-CoV-2 measures with only a
short time delay. This result suggests that RV prevalence could possibly be an indicator for the efficiency for these
measures. As RV is ubiquitous at higher prevalence than SARS-CoV-2 or other emerging respiratory viruses, it could
reflect the efficacy of noninvasive measures better than such emerging viruses themselves with their unevenly
spreading clusters.
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Background
The Coronavirus Disease 2019 (COVID-19) pandemic is
caused by the severe acute respiratory syndrome coro-
navirus (SARS-CoV-2) [1]. SARS-CoV-2 is transmitted
person-to-person predominantly via respiratory droplets
and aerosols produced by breathing, coughing or sneez-
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ing. These particles are deposited directly on mucosal sur-
faces, or on fomites [2–4]. Recent evidence suggests that
SARS-CoV-2 is quite resilient and may remain infectious
in aerosols for hours and on surfaces for days [5]. With no
effective treatment or vaccine available, the containment
of SARS-CoV-2 depends on measures such as physical
distancing, restrictions on mobility, increased personal
hygiene, and use of face masks [6–9]. These measures
appear to be effective [10] but they also exert substan-
tial social and economic burden [11]. Therefore, govern-
ments should tune these measures to limit the spread of
SARS-CoV-2, while also allowing a maximum degree of
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normalcy. To this end, we need reliable indicators for the
efficacy of the measures against SARS-CoV-2.
Rigorous measures against SARS-CoV-2 will most likely

slow down the spread of the virus, as we have seen in
the first COVID-19 wave in different countries around the
world. Thus, for the weeks and months after the measures
are introduced we expect a reduction in the relative fre-
quency (prevalence) of individuals who test positive for
SARS-CoV-2. As the measures against SARS-CoV-2 begin
to be relaxed to a point where they are no longer effective
in containing the virus, we anticipate resurgence in the
prevalence of SARS-CoV-2. This implies that we may use
the information about changes in SARS-CoV-2 prevalence
over time to assess the efficacy of the measures.
With SARS-CoV-2 being a novel virus, the use of SARS-

CoV-2 prevalence as indicator for efficacy of the measures
comes with a number of caveats. For instance, due to lack
of comparable epidemiological data for this virus from the
previous years we have limited understanding of its sea-
sonal variation in transmission, which is likely to exert
a strong influence on the dynamics of the pandemic, as
we know from other respiratory viruses. An example is
provided by the influenza virus: in Europe we observe
high influenza prevalence between December and April
[12]. For the remaining months of the year, however, the
prevalence of influenza is negligible. The lack of historic
prevalence data for SARS-CoV-2 means that we cannot
disentangle effects of measures from potential seasonal
effects. Thus, by ignoring the seasonal variation in trans-
mission, we may under- or overestimate SARS-CoV-2
prevalence, and as a result misjudge the efficacy of mea-
sures. Moreover, accurate assessment of the SARS-CoV-2
prevalence depends on robust infrastructure (e.g. testing
laboratories, experts, kits, digital platforms for sharing of
SARS-CoV-2 data) for rapid detection and reporting of
SARS-CoV-2 infections, including widespread screening
for asymptomatic SARS-CoV-2 infections [13]. As of yet,
such infrastructure is lacking across many parts of the
globe, partially blinding us.
In the study presented here, we describe an indirect

yet more robust approach for quantifying the efficacy
of the measures against SARS-CoV-2. Our core assump-
tion is that efficient measures against SARS-CoV-2 will
also suppress the spread of other respiratory viruses that
have similar features as SARS-CoV-2, such as transmis-
sion routes, viability in different environments, etc. To
test this hypothesis, we obtained epidemiological data on
the incidences of 17 different respiratory viruses span-
ning the years 2010-2020. Using a probabilistic model,
we inferred the monthly prevalence of these viruses in
the pre-pandemic period 2010-2019, and then compared
this with the prevalence of the same virus in the months
of 2020, i.e., the period following the introduction of
the measures against SARS-CoV-2. Thus, we were able

to determine to which degree the prevalence of the dif-
ferent respiratory viruses is affected by the measures
against SARS-CoV-2, while properly accounting for sea-
sonal effects. Strong deviations in viral prevalence are
interpreted and discussed here in the context of the fea-
tures of the different viruses. A key finding of this study
is that rhinovirus prevalence is a suitable indicator for
the effectiveness of public health measures against SARS-
CoV-2.

Methods
Virus prevalence data
Incidence data on 17 different respiratory viruses in
hospitalized patients was obtained from the Respira-
tory Viruses Network (RespVir) [14]. The data was col-
lected from 37 clinics and laboratories across Germany
in the period from 2010 to 2020 (up to and including
October 2020) (Supplementary Section 1). From RespVir
we also obtained incidence data on SARS-CoV-2 col-
lected from 14 laboratories across Germany in the period
from 24.01.2020 to 27.10.2020 (Supplementary Section 1).
From this data we computed frequencies (counts) of pos-
itive tests for each virus that originate from a specific
laboratory in a given month and year, including the total
number of tests made.

Statistical modeling of monthly prevalence of 17
respiratory viruses
We used data from the years 2010 to 2020 to model the
monthly prevalence of different respiratory viruses. For
laboratory l ∈ {1, . . . , 37}, monthm ∈ {1, . . . , 12} and year
y ∈ {2010, . . . , 2020}, we observed Yv

lmy positive cases of
the virus v among Nv

lmy tested patients. We set the design
variable Xv

my 0 for months in the pre-pandemic period
(years 2010 to 2019) and 1 for months in 2020. That is,
the Xv

my are indicator variables for whether we are in the
pandemic year or in a prepandemic year.
We aimed at inferring from these data the mean preva-

lence of a given virus in each month of the year in the pre-
pandemic and pandemic period. Additionally, we aimed at
quantifying the effect of the anti-SARS-CoV-2 measures
on the prevalence in the different months of the year 2020.
For this purpose we designed a likelihood model M for
Bayesian inference.M describes the positive case count as
a binomial model:

p
(
Yv
lmy

∣∣∣M
)

= Binomial
(
πv
lmy,N

v
lmy

)
, (1)

where π is the probability of positive tests, defined as the
inverse-logit function of π̂ :

πv
lmy = logit−1

(
π̂v
lmy

)
, (2)

where logit−1(x) = 1/(1 + exp(−x)). The raw prevalence
varied substantially between individual laboratories. To
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account for this source of variation, the model treats the
corresponding coefficients π̂ as random samples drawn
from a normal distribution:

π̂v
lmy ∼ Normal

(
αv
my, τ v

)
, (3)

where the inverse-logit of αv
my is the mean prevalence of

virus v in monthm of year y, and τ v is the standard devia-
tion of virus v that accounts for the variance in prevalence
between the individual laboratories.
Empirically, we know that the prevalence of most res-

piratory viruses follows specific seasonal patterns. Hence,
the viral prevalence in a given month of the year is not
completely independent across the different years in the
period from 2010 to 2020. Hierarchical models, such asM,
enable sharing of information between parameters across
the different years by partial pooling [15]. For a specific
virus and month, the corresponding coefficients α are
treated as random samples drawn from a population of
parameters:

αv
my ∼ Normal

(
μv
m + βv

mX
v
my, σ v

m

)
(4)

With a Bayesian approach we can then infer shared
parameters formonthm and virus v, such as themean pre-
pandemic prevalence logit−1 (

μv
m

)
, the mean pandemic

prevalence logit−1 (
μv
m + βv

m
)
, where coefficient βv

m is the
effect of the anti-SARS-CoV-2 measures; and the stan-
dard deviation σ v

m, while simultaneously accounting for
the within-year variability. The weakly informative priors
assigned to β , μ and σ and τ are defined by:

βv
m ∼ Normal(μ = 0, σ = 10) (5)

μv
m ∼ Normal(μ = 0, σ = 10) (6)

σ v
m ∼ Cauchy+ (μ = 0, γ = 1) (7)
τ v ∼ Cauchy+ (μ = 0, γ = 1) (8)

For virus v and month m, we estimate the change in
mean prevalence (δ) between the pandemic and the pre-
pandemic period as:

δvm = logit−1 (
μv
m + βv

m
) − logit−1 (

μv
m

)
(9)

For months where δ<0 and the 95% Highest Density Inter-
vals (HDIs) of δ lie mostly or completely below 0 (0 = null
effect), we have strong evidence of reduced viral preva-
lence in the year 2020 compared to that in the years 2010
to 2019. On the other hand, for months where δ>0 and
the 95% HDI of δ lie mostly or completely above 0, we
have strong evidence of increased viral prevalence. Distri-
butions with the 95% HDIs more or less centered around
0 indicate that there is no evidence for a clear change in
the monthly viral prevalence in the year 2020. Note that
unclear evidence is not equivalent to no change, because
for a month with δ ≈0 we may also have a wide 95% HDI,
including possibilities for positive or negative change.

Notably, the inference of each coefficient β relies on
only one small data set (one value per contributing lab)
for each month of year 2020. Therefore, the β coeffi-
cients will be highly uncertain and have wide 95% HDIs.
Consequently, the coefficients δ will also be uncertain.
M was implemented in Stan [16]. Inference of the

parameters of M was executed with rstan using the No-
U-Turn sampler by running a Markov chain Monte Carlo
(MCMC) simulation with six chains of 10,000 iterations
each, including 3,000 warm-ups (R-package rstan, version
2.19.2). To test the validity of our model, we performed
posterior predictive checks. We used the potential scale
reduction factor (PSRF), the effective number of samples
(Neff ) and information provided by rstan on divergences
during the MCMC sampling to check for a successful
convergence. For each parameter we report its posterior
median and 95% HDI.

Statistical modeling of monthly SARS-CoV-2 prevalence
For laboratory l ∈ {1, . . . , 14} and month m ∈ {1, . . . , 10}
in 2020, we observe Ylm positive cases of SARS-CoV-
2 among Nlm tested patients. From this data we infer
the overall monthly prevalence of positive cases. To this
end we designed a likelihood model MSC2 for Bayesian
inference. With MSC2 we describe the count of positive
SARS-CoV-2 cases as a binomial model:

p(Ylm|MSC2) = Binomial(πlm,Nlm), (10)

where π is the probability of positive tests, defined as the
inverse-logit of α:

πlm = logit−1 (αlm) (11)

The SARS-CoV-2 prevalence varied substantially between
individual laboratories. To account for this source of vari-
ation, the model treats the corresponding coefficients α as
random samples drawn from a population of parameters:

αlm ∼ Normal(μm, σ), (12)

where μm is the mean SARS-CoV-2 prevalence for a spe-
cific monthm, and σ is the standard deviation. The weakly
informative priors assigned to μm and σ are defined by:

μm ∼ Normal(μ = 0, σ = 10) (13)
σ ∼ Cauchy+ (μ = 0, γ = 1) (14)

MSC2 was implemented in Stan and executed withMCMC
simulation settings identical to those introduced for
model M. For each parameter we report its posterior
median and 95% HDI.
With MSC2 we can also infer the mean SARS-CoV-2

prevalence in different weeks of the year based on the
RespVir data on SARS-CoV-2 frequencies in different lab-
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oratories and weeks of year 2020 (Supplementary Figure
S2). For this analysis we have to substitute the month-
specific index m ∈ {1, . . . , 10} with the week-specific
indexm ∈ {4, . . . , 43} inMSC2.

Results
SARS-CoV-2 prevalence in 2020
We evaluated the monthly SARS-CoV-2 prevalence in
2020 (Fig. 1A). For January 2020 our data does not con-
tain positive cases for SARS-CoV-2. Hence, the mean
SARS-CoV-2 prevalence was 0 [ 0, 0.009] (in the follow-
ing we give the 95% HDIs behind numbers in square
brackets to quantify uncertainty). In February 2020 a few
of our laboratories found SARS-CoV-2 (Supplementary
Figure S1), however, the overall mean SARS-CoV-2 preva-
lence remained low (0.005 [ 0.002, 0.013]). SARS-CoV-
2 prevalence reached its peak at 0.067 [ 0.035, 0.126]
in March 2020. Around mid-March 2020, the initial
set of measures against SARS-CoV-2 was introduced
in Germany [17]. This was followed by a drop in
mean SARS-CoV-2 prevalence to 0.032 [ 0.016, 0.066] in
April 2020 and to 0.009 [ 0.004, 0.018] in May 2020.
Between June 2020 and September 2020, the SARS-
CoV-2 prevalence remained approximately flat. In June,
July, August and September 2020, the mean SARS-CoV-
2 prevalence was 0.004 [ 0.002, 0.009], 0.007 [ 0.003, 0.016],
0.005 [ 0.002, 0.012] and 0.006 [ 0.003, 0.014], respectively.
In October 2020 new SARS-CoV-2 cases surged again
[18], increasing the mean SARS-CoV-2 prevalence to
0.016 [ 0.007, 0.035] (Fig. 1A).

Among 17 respiratory viruses, rhinovirus is most strongly
affected by anti-SARS-CoV-2 measures
As a result of the measures against SARS-CoV-2, we also

expect a reduction in the spread of other respiratory
viruses that have similar features as SARS-CoV-2. To test
this hypothesis, we compared the monthly prevalence of
17 different respiratory viruses between the years 2010-
2019 (pre-pandemic period) and 2020 (pandemic period)
in Germany (Supplementary Figure S3). For each month
of the year we report the change in mean prevalence (δ)
of each respiratory virus between the year 2020 and the
period 2010-2019 (Supplementary Figure S4). For almost
all respiratory viruses, δ values are predominantly neg-
ative, i.e. these viruses have lower prevalence in 2020
(Fig. 2A).
For rhinovirus (RV) we observed exceptionally

strong suppression of its prevalence during that period
(Fig. 2A/B). Other viruses, such as human respiratory
syncytial virus (HRSV), human parainfluenza virus 3
(HPIV-3), human adenovirus (HAdV) and enterovirus
(EV), decreased moderately from April 2020 to October
2020, compared to the respective months from 2010 to
2019 (Fig. 2A, Supplementary Figure S3). For several
other respiratory viruses (human bocavirus (HBoV)
to influenza A virus subtype H3N2 (FLUA(H3N2)) in
Fig. 2A) there was a small to negligible trend to lower δ,
and only 2 of the 17 viruses, human coronavirus HKU1
(HCoV-HKU1) and influenza A virus subtype H1N1
(FLUA(H1N1)), had a positive δ trend.
Virus seasonality is one determinant of the degree

to which the prevalence of different respiratory viruses
reflects themeasures against SARS-CoV-2. RV and several
of the other viruses (HAdV, HPIV-3) whose prevalence are
moderately suppressed by the measures, are continuously
present in the general population at a prevalence of a few
percent (Supplementary Figure S3). Only this high base-

Fig. 1Monthly prevalence of SARS-CoV-2 and RV. a Blue circles and bars: mean SARS-CoV-2 prevalence between January 2020 and October 2020
with the corresponding 95% HDIs. Orange circles and bars: mean pandemic RV prevalence between January 2020 and October 2020 with the
corresponding 95% HDIs. Colored rectangles along the x-axis at dates of specific measures, relaxations or other important events in 2020 [17]. 27.01:
first confirmed case of SARS-CoV-2 in Germany; 09.03: large events are canceled; 16.03: schools, child care, shops, churches, bars, etc. are closed;
23.03: contact ban; 20.04: shops (partially) reopen; 27.04: mandatory use of face masks; 30.04: museums, temples, zoos and playgrounds reopen;
04.05: schools (partially) reopen; 16.05: restaurants reopen; 15.06: European Union and Schengen countries reopen borders; 17.06: more than 1,000
meat-factory workers test positive for SARS-CoV-2. b Blue rectangles: 95% HDIs of the mean pre-pandemic RV prevalence in each month of the year.
Orange circles and bars refer to RV as in panel (a)
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Fig. 2 Change in mean monthly prevalence (δ) of different respiratory viruses between the pandemic (2020) and pre-pandemic (2010-2019) period.
a Colored circles: median coefficients δ for different months of the year (x-axis) and different respiratory viruses (y-axis). Random vertical jitter was
added to avoid overplotting. b Change in mean RV prevalence. Black circles and bars: median coefficients δ with the corresponding 95% HDIs.
Dashed lines at δ=0

line prevalence allowed us to detect moderate or strong
reduction in their prevalence in the period from April
2020 to October 2020. HRSV prevalence, on the other
hand, varies strongly between different seasons, i.e. during
winter and early spring we observe high HRSV prevalence
in Europe, and low prevalence during the rest of the year
[12]. Thus, we were able to detect moderate reduction
in HRSV prevalence from April 2020 to June 2020 when
HRSV prevalence was still sufficiently high, but not for
July to October 2020 when HRSV has a low prevalence
anyway.
The remaining respiratory viruses either have trans-

mission patterns that vary drastically between different
seasons, or have low prevalence throughout the year (Sup-
plementary Figure S5). In either case, these viruses were
barely present in Germany in the period from April 2020
to October 2020, so that changes in their prevalence in
that period due to anti-SARS-CoV-2 measures could not
be detected reliably.

Rhinovirus prevalence
In the above analysis, rhinovirus (RV) had particularly
strong changes in prevalence between April and October
2020, whichmade itmost promising as an indicator of effi-
cacy of anti-SARS-CoV-2 measures. Hence, we focus on
RV in the following.
First, in January 2020 and February 2020, the months

before the anti-SARS-CoV-2 measures were introduced
in Germany, the mean RV prevalence (orange circles and
bars in Fig. 1B) is consistent with the pre-pandemic mean
RV prevalence (blue rectangles in Fig. 1B). The mean RV
prevalence in March 2020 is slightly lower yet still has
large overlap with the mean pre-pandemic RV prevalence
(Fig. 1B).

Second, between April 2020 and June 2020, the mean
RV prevalence falls completely outside the 95% HDI of
the pre-pandemic mean RV prevalence for the respec-
tive months (Fig. 1B). The drastic reduction in mean
RV prevalence in April 2020 (δ = −0.2 [−0.26,−0.14]),
May 2020 (δ = −0.28 [−0.36,−0.2]) and June 2020
(δ = −0.29 [−0.37,−0.22]) may be attributed to the mea-
sures against SARS-CoV-2. In July 2020 (δ=−0.23 [−0.34,
−0.06]), August 2020 (δ = −0.14 [−0.28, 0.12]) and
September 2020 (δ = −0.29 [−0.46,−0.01]) we observed
a moderate resurgence in mean RV prevalence to
low pre-pandemic levels. In October 2020 (δ =
−0.32 [−0.44,−0.14]) the mean RV prevalence once
again falls completely outside the 95% HDI of the pre-
pandemic mean RV prevalence for the respective month
(Fig. 1B).
Third, while from 2010 to 2019 the RV prevalence

exhibited a clear seasonal upward trend from February
to June (upward shift of blue rectangles in Fig. 1B), the
data for 2020 shows an unbroken downward trend from
February to June (orange circles in Fig. 1A/B), contrary to
the seasonal trend. It seems that these dynamics in 2020
could have started even before the implementation of anti-
SARS-CoV-2 measures in mid-March, possibly because
many individuals, alerted by the intensive news coverage,
have changed their behavior.

Discussion
Transmission properties of RV and SARS-CoV-2 explain
their dynamics during the pandemic
To contain the spread of SARS-CoV-2 in Germany, a
package of diverse measures was introduced around
mid-March 2020 [17]. With SARS-CoV-2 presumed to
spread by both airborne and contact-based pathways, the
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measures were aimed at reducing the number of person-
to-person contacts by e.g. physical distancing and closure
of shops and schools, and by more rigorous personal
hygiene with e.g. more frequent hand washing, use of face
masks, and disinfecting surfaces. Soon after the measures
were enacted, we observed a reduction in SARS-CoV-
2 prevalence (Fig. 1A). As a byproduct of the measures
against SARS-CoV-2, the transmission of other respira-
tory viruses, such as RV, appears to have been diminished
as well (Fig. 2B, Supplementary Figure S4). Between mid-
April 2020 and mid-June 2020, gradual relaxation of the
measures took place, including partial re-opening of shops
and schools, lifting of travel restrictions and reopening of
playgrounds and churches [17]. Soon thereafter, namely
between July 2020 and September 2020, the RV preva-
lence increased to low pre-pandemic levels, while the
SARS-CoV-2 prevalence remained approximately flat. In
October 2020 the number of new SARS-CoV-2 cases
in Germany surged, and so did our estimated SARS-
CoV-2 prevalence. In contrast to this, the RV prevalence
decreased inOctober 2020, though with a still large uncer-
tainty (Fig. 1B). To better understand why SARS-CoV-2
and RV exhibit similar dynamics between April 2020 and
June 2020, and divergent dynamics between July 2020 and
October 2020, we examine some of their features more
closely.
RV is the most common respiratory pathogen of

humans and a major causative agent of the common cold
[19, 20]. RV is likely transmitted via respiratory aerosols
produced by coughing or sneezing, and by contact with
surfaces contaminated with nasal secretions [20]. Owing
to its stability, RV may remain infectious on surfaces
for days and in aerosols for hours [21, 22]. While the
assessment of SARS-CoV-2 transmission and resilience in
different environments is still an area of active research,
recent studies have reported similar transmission routes
and degree of resilience for different human coronaviruses
(HCoVs) including for SARS-CoV-2 [5, 22]. If we assume
that transmission routes of RV and SARS-CoV-2 have
a large overlap, then we can expect that the rigorous
anti-SARS-CoV-2 measures will affect the spread of both
viruses to a similar degree. This is a plausible explana-
tion for the consistent decrease in RV and SARS-CoV-2
prevalence between April 2020 and June 2020.
However, there are also differences between RV and

SARS-CoV-2 that have to be considered, namely differ-
ences in (1) seasonal patterns, and (2) the degree of
dissemination in the human population.
First, the introduction of anti-SARS-CoV-2 measures

have certainly lowered the prevalence of RV and SARS-
CoV-2 but even these lower levels are still modulated by
seasonal patterns. We know empirically that there is a
seasonal upwards trend in RV prevalence from February
to September (Fig. 1B). Conversely, there is a downward

trend in the prevalence of different HCoVs during sum-
mer and autumn [23] (Supplementary Figure S3). If we
assume that SARS-CoV-2 follows a seasonal trend that is
similar to that of other HCoVs, then the combined effect of
the season and of anti-SARS-CoV-2 measures is probably
responsible for the flat SARS-CoV-2 prevalence between
July and September 2020. In the same vein, the divergence
of RV and SARS-CoV-2 prevalence courses in summer
2020 could also be due to seasonal changes that modulate
the low level RV and SARS-CoV-2 prevalence still sup-
pressed by anti-SARS-CoV-2 measures. As the activity of
HCoVs peaks in the coming months of fall and winter and
the activity of RV declines (Fig. 1B), we expect to see a
rebound of SARS-CoV-2 prevalence to a level similar to
the RV prevalence and again a crossing of the two preva-
lence curves as observed between February and March
2020. Already in October 2020 we see evidence in support
of such dynamics between RV and SARS-CoV-2 (Fig. 1A).
As a result of the combined effect of the new anti-SARS-
CoV-2 measures introduced in Germany in November
2020 [17], and the seasonal suppression of RV being close
to its inflection point, we expect again a roughly parallel
decay of RV and SARS-CoV-2 prevalence if the measures
are effective.
Second, we know that RV is widespread in the human

population and environment [19]. Hence, rapid resur-
gence in RV prevalence might be possible in response
to the relaxations. With SARS-CoV-2 being less widely
disseminated within the European population, it is also
possible that it takes longer for SARS-CoV-2 to reemerge
in response to the relaxations.
In summary, generally low levels of RV prevalence

between January andOctober 2020 are consistent with the
effectiveness of anti-SARS-CoV-2 measures in Germany,
though we emphasize that seasonality of viral prevalence
cannot be neglected. These results are corroborated by
reports from the United Kingdom [24] and Australia [25,
26] where after lock-downs low RV prevalence values
were observed that then bounced back after the easing of
restrictions [27].

RV prevalence is the most suitable indicator of efficacy for
the anti-SARS-CoV-2 measures among all studied viruses
Our study reveals reduced prevalence of the respiratory
viruses HRSV, HPIV-3, HAdV and EV between April 2020
and October 2020. HRSV, HAdV and EV are transmitted
similarly to RV and SARS-CoV-2, namely via respira-
tory droplets and aerosols, and direct or indirect contact
[21, 28, 29], while limited experimental data for HPIV-
3 hints at fomites as its main route of transmission [21].
There are several arguments in favor of using the RV
prevalence over the prevalence of the other respiratory
viruses as indicator of efficacy for the measures against
SARS-CoV-2.
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First, RV is constantly circulating in the population and
is therefore subject to significantly lower seasonal fluc-
tuations than other respiratory viruses, such as HRSV
(Supplementary Figure S3). Second, the prevalence of RV
is typically higher throughout the year than the preva-
lence of HRSV, HPIV-3, HAdV and EV (Supplementary
Figure S3). Hence, larger decreases in prevalence, which
are also easier to detect by our approach, are possible for
RV as a result of the measures (Fig. 1B). Third, we see that
the prevalence of HRSV, HPIV-3, HAdV and EV increases
with a longer time delay in response to the relaxations
of the anti-SARS-CoV-2 measures in comparison to the
RV prevalence (Supplementary Figure S3). These features
favor RV prevalence as a quickly responding indicator of
anti-SARS-CoV-2 measure efficacy.
In other geographical regions where respiratory viruses

exhibit different seasonal patterns of transmission,
another respiratory virus might be a more appropri-
ate indicator of the anti-SARS-CoV-2 measure efficacy.
For instance, several studies of seasonal influenza virus
in Japan [30], South Korea [31], Singapore [32], Aus-
tralia, Chile, South Africa and the United States [33] have
reported suppressed influenza prevalence in the period
after the implementation of non-pharmaceutical mea-
sures against SARS-CoV-2. Owing to the low seasonal
prevalence of influenza in Germany in the period between
April 2020 and October 2020, our study shows only a neg-
ligible reduction in influenza prevalence (Supplementary
Figure S3).

Conclusions
Using one virus, such as RV, to monitor measures against
another virus, such as SARS-CoV-2, is seemingly para-
doxical. However, a mixture of factors such as the high
transmissibility of SARS-CoV-2, its initially complex dis-
semination pattern of exponential growth in many clus-
ters, and the limited testing capacities at the begin of the
pandemic, had left us partially blinded regarding the effi-
cacy of anti-viral measures in the first months. In such a
situation, the prevalence of RV, a ubiquitous respiratory
virus with a long historic record, moderate seasonality
and transmission routes similar to SARS-CoV-2, is likely a
better indicator of the efficacy of anti-SARS-CoV-2 mea-
sures than the prevalence of the latter virus itself. This
logic also applies to RV in relation to other respiratory
viruses that are candidates for causing future epidemics or
pandemics.
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