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Immunocompromised patients are at increased risk for a severe course of COVID-

19. Treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)

infectionwith anti-SARS-CoV-2monoclonal antibodies (mAbs) hasbecomewidely

accepted.However, the effects ofmAb treatmenton the long-termprimary cellular

response to SARS-CoV-2 are unknown. In the following study, we investigated the

long-term cellular immune responses to SARS-CoV-2 Spike S1, Membrane (M) and

Nucleocapsid (N) antigens using the ELISpot assay in unvaccinated, mAb-treated

immunocompromisedhigh-riskpatients.Anti-SARS-CoV-2mAbuntreated though

vaccinated COVID-19 immunocompromised patients, vaccinated SARS-CoV-2

immunocompromised patients without COVID-19 and vaccinated healthy

control subjects served as control groups. The cellular immune response was

determined at a median of 5 months after SARS-CoV-2 infection. Our data
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suggest that immunocompromised patients develop an endogenous long-term

cellular immune response after COVID-19, although at low levels. A better

understanding of the cellular immune response will help guide clinical decision

making for these vulnerable patient cohorts.
KEYWORDS

COVID-19, immunosuppression, SARS-CoV-2, monoclonal antibody treatment,
cellular immune response
Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) has caused a pandemic of coronavirus disease 2019

(COVID-19), resulting in more than 530 million infected people

and 6.3 million deaths (June 2022). Despite the availability of

vaccines, the pandemic remains a global health burden (1). Many

risk factors for the progression of COVID-19 to a severe and

critical stage have been identified, including age, underlying

comorbidities such as diabetes, obesity, chronic lung diseases,

and immunodeficiency (2–4). Primary SARS-CoV-2 infections as

well as breakthrough infections represent a potential risk for these

vulnerable groups (5) resulting in a high burden of morbidity and

mortality (6). During the early pandemic, COVID-19 patients

were treated with SARS-CoV-2 convalescent plasma. Numerous

studies were conducted, indicating that early onset of antiviral

treatment is necessary to improve the course of disease and

protect against a severe outcome (7–10). Later, monoclonal

antibodies (mAb) against SARS-CoV-2 became available (11).

Early treatment of SARS-CoV-2 infections with mAbs such as

bamlanivimab (12) or a combination of the monoclonal

antibodies casirivimab and imdevimab (11) has been shown to

markedly reduce the risk of hospitalization or death among high-

risk patients with COVID-19 (11, 12). However, the occurrence of

novel SARS-CoV-2 variants of concern (VOCs) such as Alpha

(Pango nomenclature B.1.1.7), Beta (B.1.351), Gamma (P1,

B.1.1.28), Delta (B.1.617.2) and Omicron (B.1.1.529) led to an

increase in the frequency of reinfection and vaccination

breakthrough SARS-CoV-2 infections (3, 13, 14). Some of the

mutations within the SARS-CoV-2 spike antigen are associated

with immune escape, and thus a reduced effectivity of monoclonal

antibodies against SARS-CoV-2 spike protein variants (15, 16).

However, a recent study suggests that monoclonal antibody

treatment, with respect to available antibody formulations and

circulating viral variants, may provide favorable outcomes for

mild to moderate COVID-19 in vulnerable patients, such as solid

organ recipients (17).

Although the role of antibodies induced by immunization or

additionally administrated early upon infection in those patients

was already described, less is known about the cellular immune
02
response in immunocompromised patients with primary or

breakthrough infections and antibody treatment (18).

In the present study, we investigated the long-term cellular

immune response in severely immunocompromised unvaccinated

patients suffering from a SARS-CoV-2 infection and treated with

the mAb bamlanivimab or a combination of the mAbs casirivimab

and imdevimab in the early phase of infection. We compared

the cellular immune response of these patients with those of

vaccinated immunocompromised patients with a SARS-CoV-2

infection but without antibody treatment as well as vaccinated

immunocompromised patients and immunocompetent

volunteers without SARS-CoV-2 infection.
Methods

Study subjects and sampling

In the present study, we investigate the long-term cellular

immune response against SARS-CoV-2 spike (S), Membrane

(M) and Nucleocapsid (N) antigens in immunocompromised

patients with primary SARS-CoV-2 infection after early mAb

treatment (group 1) up to 5 months after COVID-19.

Vaccinated immunocompromised patients with COVID-19

(group 2), as well as vaccinated immunocompromised patients

(group 3) and vaccinated healthy volunteers (group 4) without

COVID-19 served as controls. All immunocompromised

patients (group 1-3) had a medical condition associated with

secondary severe immunodeficiency. Patients suffering from a

primary SARS-CoV-2 infection (group 1) were treated early with

monoclonal antibodies (mAbs) bamlanivimab (LY-CoV555, Eli

Lilly) or casirivimab/imdevimab (Ronapreve, Roche and

Regeneron), which both bind to the SARS-CoV-2 spike

protein. Group 1 included 12 non-vaccinated patients. Of the

12 patients, 8 were treated with 700 mg bamlanivimab

(concentration 35 mg/ml) and 4 with a combination of 1200

mg casirivimab/imdevimab (concentration of 120 mg/ml each).

Antibodies were administrated intravenously. The group

consisted of 2 men and 10 women, and the median age was 57

years (range 31-78). The cellular immune response in the first
frontiersin.org
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group was examined at a median of 146 days (range 74-182)

after mAb therapy. One of the patients had breast cancer, three

had a kidney transplantation (median since transplantation 5.6

years, range 4 months – 10 years), seven had a lung

transplantation (median since transplantation 10.2 months,

range 4 - 25 months), one prostate cancer and one cachexia.

In this first group, the three kidney transplant patients had

concomitant arterial hypertension and an impaired renal

function. In the lung transplant recipient group, one patient

had coronary artery disease as an additional risk factor for a

severe COVID-19 course. Except for one patient, all solid organ

transplant patients had triple immunosuppressive therapy

containing prednisone, the calcineurin inhibitor (CNI)

tacrolimus, and mycophenolic acid (MMF) or the mTOR

inhibitor everolimus. One renal transplant patient had triple

immunosuppressive therapy containing prednisolone, MMF,

and belatacept.

Group 2 included 10 immunocompromised, vaccinated

patients with a SARS-CoV-2 infection. All patients were

vaccinated with an mRNA vaccine (BioNTech or Moderna).

The group was composed of seven men and three women and

the median age was 59 years (range 20-69) after hematopoietic

stem cell transplantation (HSCT). HSCT took place at a median

of 2.9 years (range 0.9-17) prior to blood collection and all

patients achieve complete remission of their underlying

hematologic malignancy. Three patients had coronary artery

disease as additional COVID-19 risk factor, one patient had

grade I obesity, and one had a history of chronic obstructive

pulmonary disease and splenectomy. 7 patients had developed

graft versus host disease (GVHD) after HSCT and were treated

immunosuppressive with steroids with or without CNI for this

purpose. One patient received an mTor inhibitor plus steroids.

The cellular immune response was explored at a median of 145

days (range 61-230) after infection.

Group 3 included 14 immunocompromised, vaccinated

patients without SARS-CoV-2 infection. All patients were

vaccinated with an mRNA vaccine (n=13 Comirnaty,

BioNTech/Pfizer; n=1 Spikevax, Moderna). The group

contained six men and eight women with a median age of 55

years (range 21-64). Of the 14 patients, four had a HSCT amedian

of 4.3 years (range 1.3-16.1) prior to testing and ten had a kidney

transplant at a median of 3.1 years (range 0.09-10.5) prior to blood

collection. The cellular immune response in this group was

examined at a median of 87 days (range 16-238) after

vaccination. 3 HSCT patients were on dual immunosuppressive

therapy (steroid, with CNI or MMF) because of persistent GVHD;

one patient had additional arterial hypertension and diabetes

mellitus as risk factors for severe COVID-19 progression. All

except one kidney transplant recipients had concomitant arterial

hypertension and impaired renal function and received triple

immunosuppressive therapy with prednisolone, MMF, and CNI.

One patient received triple immunosuppressive therapy with

prednisolone, MMF, and belatacept.
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Group 4 included 14 healthy volunteers after the third

SARS-CoV-2 vaccination with an mRNA SARS-CoV-2 vaccine

(n=3 Comirnaty, BioNTech/Pfizer; n=11 Spikevax, Moderna).

The group was composed of six men and eight women and the

median age was 50 years (range 29-65). They were tested at a

median of 47 days (range 30-72) after the third vaccination.

There were no significant differences between the different

cohorts with respect to the known COVID-19 related risk factors

being sex, age, and lymphocyte count (Table 1).

The study was conducted according to the Helsinki

principles and was approved by the local ethics committee of

the University Hospital Essen, Germany (20-9225-BO, 20-9254-

BO, and 20-9374-BO). All subjects provided informed consent

to participate in the study.
T cell ELISpot assays for S1-, M-, and
N-derived SARS-CoV-2 peptides

To analyze SARS-CoV-2 specific cellular immune responses,

we performed interferon gamma (IFN-g) enzyme-linked

immunospot (ELISpot) assays as previously described (19).

250,000 peripheral blood mononuclear cells (PBMC) were

cultured in the presence or absence of the PepTivator® SARS-

CoV-2 membrane (M) protein, nucleocapsid (N) protein (600

pmol/mL of each peptide, Miltenyi Biotec, Bergisch Gladbach,

Germany) or the S1 protein (4 µg/ml, Sino Biological, Wayne,

PA, USA) (each in single cell culture) in 150 µL of AIM-V®. The

peptide mixes corresponding to the M and N proteins cover the

complete sequence of the glycoproteins. The S1 protein is a

recombinant protein expressed in HEK293 cells and covers the

sequence of aa 1 to aa 692 of the spike protein subunit 1. The

peptide pools consisted of 15-mer sequences with an overlap of

11 amino acids. After 19 h of incubation at 37°C, IFN-g
production was measured as previously described (19). The

spot numbers were evaluated by an ELISpot reader (AID

Fluorospot; Autoimmun Diagnostika GmbH, Strassberg,

Germany). From duplicate cell cultures, the mean value was

considered. SARS-CoV-2 specific spots were determined as

stimulated minus non-stimulated values (spot increment). The

negative controls had an average of 0.21 spots (range 0-3) and

their three-fold standard deviation was 3 x 0.67 spots = 2.01

spots (which we considered as background for the negative

controls). As we used increment values, a three-fold higher

value versus background means 3 x 2.01 spots minus 1 x 2.01

spots, which is 4.02 spots increment. We therefore chose a cut-

off point of 4 as positivity.
Statistical analysis

Statistical analysis was performed using GraphPad Prism

9.3.1 software (San Diego, CA, USA). We used the Kruskal-
frontiersin.org
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Wallis-test and the Mann-Whitney U test for numerical

variables. Fisher’s exact test was used for categorical variables.

Two-sided p values < 0.05 were considered significant.
Results

In the present study, we examined the long-term cellular

immune response unvaccinated severely immunocompromised

patients suffering from a SARS-CoV-2 infection after treatment

with bamlanivimab or a combination of the monoclonal antibodies

casirivimab and imdevimab early after infection using ELISpot

assay. We also investigated the cellular immune response in

vaccinated immunocompromised patients after SARS-CoV-2

infection as well as in vaccinated immunocompromised patients

and immunocompetent volunteers without a history of SARS-CoV-

2 infection.

Unvaccinated immunocompromised patients with SARS-

CoV-2 infection and early mAb treatment (group 1) showed a

similar cellular immune response to all stimuli in the ELISpot

assay to vaccinated immunocompromised patients with a SARS-

CoV-2 infection (group 2) (Figures 1A–C). The measured mean

values of spots increment after stimulation with spike S1 protein

were 2.1 in group 1 and 2.8 in group 2 (p = 0.2) (Figure 1A), after
Frontiers in Immunology 04
stimulation with M protein 2.0 in group 1 and 7.9 in group 2 (p =

0.09) (Figure 1B) and after stimulation with N protein 6.1 in group

1 and 6.2 in group 2 (p = 0.2) (Figure 1C). In particular, the

cellular immune response in group 1 and 2 was higher than in

vaccinated immunocompromised patients (group 3) (Figures 1A–

C). Significant differences in spots increment were observed

between group 2 and 3 after stimulation with S1 protein (2.8 in

group 2 and 1.1 in group 3 (p = 0.04)) (Figure 1A) and N protein

(6.2 in group 2 and 0.6 in group 3 (p = 0.002)) (Figure 1C). As

expected, healthy immunocompetent vaccinated volunteers

(group 4) showed a higher cellular immune response than

vaccinated immunocompromised patients (group 3)

(Figure 1A). The spots increment after stimulation with the

spike S1 protein were 1.1 in group 3 and 3.8 in group 4 (p =

0.01) (Figure 1A). No significant differences between groups 3 and

4 could be observed after stimulation withM protein (3.7 in group

3 and 1.1 in group 4 (p = 0.5) or N protein (0.6 in group 3 and 0.9

in group 4 (p = 0.6) (Figures 1B, C).

Interestingly, after mAb treatment (group 1), the frequency

of single and combined positive cellular response to S1, M, or N

proteins was lower than in the vaccinated cohort with SARS-

CoV-2 infection (group2) (S1: 14% vs. 30%; M: 21% vs. 50%; N:

14% vs. 30%, combined: 33% vs. 60% statistically not significant

as calculated with the Fischer´s exact test). In the groups
TABLE 1 Overview of the study cohort.

group 1 2 3 4 p-
value

Antibody therapy?
(Y: yes, N: no)

Y N N N

Infected?
(Y: yes, N: no)

Y Y N N

Vaccinated?
(Y: yes, N: no)

N Y Y Y

Severely Immunocompromised?
(Y: yes, N: no)

Y Y Y N

Total number 12 10 14 14

number of women 10 3 8 8 p = 0.09

number of men 2 7 6 6

median age [years] (range) 57 (31-78) 59 (20-69) 55 (21-64) 50 (29-65) p = 0.23

Count of lymphocytes [x103/µl]
Mean (SD)

8.8 (6.4) 9.6 (13.0) 14.1 (5.8) 12.1 (5.0) p = 0.29

Interval infection/vaccination
– blood collection
Mean (range)

146 days (74-182) 145 days (61-230) 87 days (16-238) 47 days (30-72) p< 0.001

SARS-CoV-2 vairant or
SARS-CoV-2 vaccine

SARS-CoV- 2 D614G (wild
type)

SARS-CoV- 2 D614G
(wild type)
8x Comirnaty® (BioNTech/
Pfizer)
2x Spikevax® (Moderna)

13x Comirnaty® (BioNTech/
Pfizer)
1x Spikevax® (Moderna)

3x Comirnaty® (BioNTech/
Pfizer)
11x Spikevax® (Moderna)

Number of SARS-CoV-2
vaccinations

0 2 2 3
frontie
Characteristics of the four different study groups. Groups 1-3 include the different cohorts of patients in terms of monoclonal antibody treatment, SARS-CoV-2 infection, and SARS-CoV-2
vaccination; group 4 represents the healthy control group (SARS-CoV-2 vaccination, without SARS-CoV-2 infection). Comparison between COVID-19 related risk factors sex, age and
lymphocyte counts was performed using the Kruskal Wallis test. Statistical significance was set at the level of p < 0.05.
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vaccinated against SARS-CoV-2 without COVID-19, only one of

14 immunocompromised patients (group 3) developed a positive

response to S1 (7%), compared with 5 of 14 (35%) in the

volunteer group (group 4). Immune responses against the M

antigen could be detected in three volunteers from group 3 and

two from group 4 and against the N antigen in one volunteer

from group 3 and 4, respectively. All of these volunteers had no

documented SARS-CoV-2 infection.

Discussion

In this paper, we present the profiling of cellular immunity in a

cohort of immunocompromised, unvaccinated patients who

developed COVID-19 and thus were treated with bamlanivimab

or with the combination therapy casirivimab and indevimab. A

cohort of immunocompromised patients vaccinated against SARS-

CoV-2 who developed COVID-19, as well as immunized

immunocompromised patients or healthy participants without

COVID-19, served as controls. Our data suggest that

immunocompromised patients may develop an endogenous

long-term cellular immune response after COVID-19. The

observed T cell-mediated immunity against the spike protein in

unvaccinated immunocompromised patients after mAb therapy,

seems to be blunted compared to vaccinated and mAb untreated

immunocompromised patients with COVID-19. Consistent with

this finding, cellular immune responses in our patient cohort were

lower after mAb treatment compared with previously published

results from immunosuppressed cohorts after COVID-19 but

without mAb treatment (20–24).

Early treatment of SARS-CoV-2 infection in high-risk cohorts

with mAbs is widely accepted, and mAbs clinical trials have

reported overall reduced hospitalization rates in patients with
Frontiers in Immunology 05
mild to moderate COVID-19 (25–29). While many studies

focused on the clinical efficacy of the treatment, its effects on

long-term immunologic responses to the virus are largely

unknown (12, 17, 30–33). The optimal use of these therapeutic

options requires a sophisticated understanding of their effects on

both the virus and the host immune system. For a long time, anti-

SARS-CoV-2 T cell immunity was considered less important than

specific antibodies as a parameter for immune protection in

patients at risk of severe COVID-19 (34). However, the

humoral anti-SARS-CoV-2 response declines over time, whereas

SARS-CoV-2-specific T cell immunity appears to persist longer,

even in seronegative convalescents (35–38). To our knowledge, no

study has explored the effect of mAb treatment on cellular

immunity in severely immunocompromised patients at risk for

severe COVID-19 and only two studies explored the effect of

treatment on humoral immunity (39, 40). Both studies

demonstrated that passive immunization of COVID-19 patients

with anti-S monoclonal IgG preparations profoundly suppressed

the induction of the endogenous anti-S IgM response and, to a

lesser extent, the anti-N IgG response. It is noteworthy that not

only immunosuppressed patients were included in those analyses,

as these patients would likely exhibit a reduced immune

response due to immunosuppression (41–45). Anti-SARS-

CoV-2 mAb preparations are reportedly able to reduce viral

load (46, 47). Reduction of viral load in the early stage of

infection might be expected to result in reduced immune

responses. Additionally, stronger SARS-CoV-2 specific T cell

responses are well documented in patients who had recovered

from more severe symptoms of COVID-19 (48–51).

Therefore, it seems possible that after mAbs treatment, the

improvement in COVID-19 course is causative of the

decreased immunologic response.
A B C

FIGURE 1

Cellular immunity to SARS-CoV-2 antigens in vaccinated and/or recovered immunosuppressed individuals. Cellular immune responses towards
SARS-CoV-2 S1 (A), M (B) and N (C) antigens were determined by IFN-g ELISpot assay. Please note that the scales differ. Horizontal lines indicate
mean values, error bars indicate the standard deviation (SD). The dotted gray line represents the assay cut-off. Differences between the groups
were compared by Mann-Whitney U test (*p < 0.05).
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Conclusion

Most of the immunosuppressed, non-vaccinated COVID-19

patients treated with monoclonal antibodies within the present

study developed no SARS-CoV-2 specific T-cell response. The

adaptive immune response is an important factor in the clinical

course after SARS-CoV-2 infection and may protect from

r e i n f e c t i o n s . D e e p e r i mmu n o p h e n o t y p i n g o f

immunocompromised patients after mAb therapy will be

important in expanding knowledge about long-term immunity

to SARS-CoV-2. Its understanding is not only essential to

evaluate the potential effect of COVID-19 treatment on future

reinfection but also crucial for further risk assessment especially

in the high-risk cohort of immunocompromised patients.
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