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Abstract

Small and medium foundry industries strive to produce defect free parts and are plan-

ning to use the technological advancement to incorporate automation in their production

processes. These targets require online monitoring and control of a foundry process. In

case of an expected defect, the goal is to know about it in advance. If a monitoring

system is in place and informs about the problem before occurring, corrective measures

can be taken in time to prevent producing defected parts. This results in high produc-

tion quality, continuous running of these processes, and minimization of production time

and scrap rate. One of the possible ways is to capture the process related data and im-

plicitly learn the unknown hidden model using machine learning methods. Technological

advancement has enabled to produce the vast amount of data related to the processes

and many promising machine learning methods are available. Utilizing these resources

can help learn a data-driven model of the target process. This model can be used for

monitoring and control of the target process. Hence in the current work, a novel frame-

work based on data-driven machine learning model has been introduced and is applied

on the different datasets of the foundry industry. The proposed framework is composed

of three stages. In the first stage, a good data-driven machine learning model is obtained

which can be used to monitor the target process by predicting the label of the current

inputs. In the second stage, a knowledge-base is created using the model learnt to control

running process. In the third stage, the learnt model is used to predict the part quality.

If the quality meets the requirements, the production process continues and in case the

prediction shows faulty part, then changes are proposed using the knowledge-base. The

promising verification results obtained for the foundry industry datasets confirm that the

proposed unified framework can enable the production processes to run more efficiently by

reducing the manufacturing defects and down time. This can be achieved by preempting

a potential problem and proposing a cost effective solution.



Kurzfassung

Kleine und mittlere Gießereien streben danach, fehlerfreie Teile zu produzieren und pla-

nen, den technologischen Fortschritt zu nutzen, um Automatisierung in ihre Produktion-

sprozesse zu integrieren. Diese Ziele erfordern eine Online-Überwachung und -Kontrolle

des Gießereiprozesses. Das Ziel ist es, im Falle eines zu erwartenden Fehlers diesen im

Voraus zu erkennen. Wenn ein Überwachungssystem vorhanden ist und über das Problem

informiert, bevor es auftritt, können rechtzeitig Korrekturmaßnahmen ergriffen werden,

um die Produktion fehlerhafter Teile zu verhindern. Dies führt zu einer hohen Pro-

duktionsqualität, einem kontinuierlichen Ablauf der Prozesse und einer Minimierung der

Produktionszeit und Ausschussrate. Eine Möglichkeit besteht darin, die prozessbezo-

genen Daten zu erfassen und das unbekannte verborgene Modell mit Hilfe von Metho-

den des maschinellen Lernens implizit zu erlernen. Der technologische Fortschritt hat es

ermöglicht, große Mengen an prozessbezogenen Daten zu erzeugen, und es stehen viele

vielversprechende Methoden des maschinellen Lernens zur Verfügung. Die Nutzung dieser

Ressourcen kann helfen, ein datengesteuertes Modell des Zielprozesses zu erlernen. Dieses

Modell kann für die Überwachung und Steuerung des Zielprozesses verwendet werden. Da-

her wurde in der vorliegenden Arbeit ein neuartiges Framework auf der Grundlage eines

datengesteuerten maschinellen Lernmodells eingeführt und auf verschiedene Datensätze

der Gießereiindustrie angewandt. Das vorgeschlagene Framework besteht aus drei Stufen.

In der ersten Phase wird ein datengesteuertes maschinelles Lernmodell erlernt, das zur

Überwachung des Zielprozesses durch Vorhersage der abhängigen Variablen anhand der

aktuellen Eingaben verwendet werden kann. In der zweiten Phase wird mit Hilfe des

erlernten Modells eine Wissensdatenbank zur Steuerung des laufenden Prozesses erstellt.

In der dritten Stufe wird das gelernte Modell zur Vorhersage der Teilequalität verwendet.

Wenn die Qualität den Anforderungen entspricht, wird der Produktionsprozess fortge-

setzt, und wenn die Vorhersage ein fehlerhaftes Teil ergibt, werden anhand der Wissens-

datenbank Änderungen vorgeschlagen. Die vielversprechenden Verifizierungsergebnisse,

die anhand von Datensätzen aus der Gießereiindustrie erzielt wurden, bestätigen, dass

das vorgeschlagene einheitliche Framework einen effizienteren Ablauf der Produktion-

sprozesse ermöglichen kann, indem er die Herstellungsfehler und Ausfallzeiten reduziert.

Dies wird dadurch erreicht, dass ein potenzielles Problem bereits im Vorfeld erkannt und

eine kosteneffiziente Lösung vorgeschlagen wird.
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Chapter 1. Introduction 1

1 Introduction

1.1 Motivation

Nowadays, many companies strive to include optimized green and smart manufacturing

techniques into their production processes. The central target of green manufacturing is

to mitigate environmental damage and climate change by employing energy efficient tech-

niques, by recycling and reusing materials, and by controlling the exhaustion level of CO2

emissions [23]. Smart manufacturing, on the other hand, introduces various cutting-edge

information and communication technologies and combines them with existing production

techniques to provide real-time decision making support in engineering applications [56],

leading to improved adaptability of industrial processes as well as rapid design changes

[71].

The foundry industry, in particular, has long been striving to achieve these targets. The

production of a casting part consist of a complex process composed of several sub-processes

(core manufacturing, melting, molding, casting). These interdependent sub-processes

work in a sequence to produce the required casting. Due to growing global competition,

casting companies are seeking ways to automate this complex process and to achieve

high quality products with lowered production time, all while reducing the environmental

impact of the casting process. These high demands can only be met with well-controlled,

highly optimized process parameters which, in particular, need to ensure a sufficiently low

scrap rate.

In order to achieve these goals, a comprehensive understanding of materials and their

properties as well as extensive knowledge of process-related casting defects are required.

The casting process needs to be continuously monitored in order to detect deviations and,

ideally, to identify possible casting errors before they occur so that the process parameters

can be changed accordingly. To this end, it is necessary to employ a continuous prediction

of the outcome, i.e. of the casting part’s quality, throughout the process. This prediction

needs to be based on the current state of the process, including both the control variables

and measurable external parameters which might influence the result of the casting. Of

course, such a prediction needs to be highly reliable in recognizing defects or other quality

issues sufficiently early.

Two important types of models can be used to realize such a prediction function: Analyt-

ical and data-driven process models. Analytical process models, i.e. classical mathemat-

ical functions or numerical algorithms describing the process, are not always suitable for

online monitoring of complex processes because they do not allow for a holistic process de-

scription: While companies like the MAGMA Gießereitechnologie GmbH offer numerical
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simulations of foundry processes, such classical simulations are limited in their applica-

bility to real-world foundries due to the large number of (known or unknown) parameters

which influence the casting in a particular foundry environment and which, in practice,

cannot be fully reflected in a generic analytical simulation. On the other hand, data-

driven process models allow for a more holistic online process diagnosis. Such models are

obtained by applying machine learning techniques to a particular foundry’s actual process

data. Although detailed expert knowledge is not required to obtain these models, an ex-

pert can supervise and rate the trained model to assess its reliability. A major limitation

of data-driven methods is their dependence on sufficiently large amounts of data which

accurately represents the target process; in particular (cf. Section 2.3.1), the application

of supervised learning requires not only an extensive record of process parameters and the

quality of produced parts, but the latter needs to be assigned reliably to the former. In

practice, the lack of recorded data is therefore often a limiting factor for the applicability

of machine learning methods in industrial settings.

Fortunately, recent technological advancements have led to the automated capturing of

huge amounts of data from all aspects of life. Due to this recent development, data-driven

methods have become more prominent objects of research, as have combinations between

data-driven and analytical models. These novel methods have shown a tremendous suc-

cess in various industrial fields. While some advances have already been experienced in

foundry industry as well, data-driven techniques are not yet widely in use for the op-

timization of casting processes, leaving room for potential major improvements. The

German foundry industry, in particular, is facing major challenges related to employing

such smart methods: Since most German companies in this field are Small and Medium-

sized Enterprises (SMEs), they often do not have the expertise necessary for developing

their own machine learning solutions, or even lack a dedicated IT department all together.

These companies have often not incorporated extensive data collection techniques in their

processes yet; even in foundries where process data is measured systematically, there is

often no centralized data management available, with data often being stored manually

within local spreadsheets.

One way to provide German foundries with a cost effective way to incorporate data-driven

monitoring and control into their processes would be the development of a simple method-

ology and its software implementation, which should contain all the machine learning

functionality required for the task of continuous process monitoring and quality predic-

tion in a foundry, presented in a user-friendly way which allows for easily understanding

the implicit knowledge available in the data. In that case, extensive machine learning

expertise is no longer required from the foundries, which could instead focus on the task

of collecting sufficient amounts of data from the casting process.
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1.2 Problem specification

This research work intends to support online monitoring and control of complex processes

in the foundry industry using Machine Learning (ML) methods by providing a unified

framework that can easily be employed even by SMEs without extensive expertise in the

field of data science. Within this framework, data-driven predictive analytic methods are

employed which summarize the patterns and trends of a foundry process in the form of

a data-driven model in order to control the foundry process (or sub-processes) effectively

and to produce high quality casting parts efficiently. The proposed approach involves

analyzing data and extracting knowledge using different ML methods and predicting the

expected outcome of a casting process as well as advanced guidance in case the prediction

shows that the monitored qualitative property would leave an optimal range under current

process parameters.

In particular, we consider the following research questions:

� Is there a single ML method which can be considered fully suitable for foundry in-

dustry processes, or is a unique learning method required for different sub-processes?

� Can a unified approach be proposed which can be employed in any foundry to

monitor and control its work, without requiring extensive background knowledge

about data processing or machine learning?
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2 Theoretical background

In order to successfully apply machine learning techniques within the foundry industry,

it is important to understand the particular challenges which are presented by industrial

casting processes. Some of these challenges are due to the high complexity of the casting

process itself, while others arise from the operational context of the foundry industry,

such as the prevalence of SMEs among German foundry companies and the associated

lack of extensive digital infrastructure.

Of course, both the possibility of employing data-driven methods in industrial processes

and the necessity to do so in order to stay competitive are rather recent developments.

This rapid technological progress is often called the 4th industrial revolution.

2.1 Industry 4.0 and its key technologies

Figure 2.1 shows the major revolutionary developments of industrial processes throughout

history. During the 1st revolution (1784-1870), water and steam powered engines were

used for the production of mechanical systems. The 2nd revolution (1871-1969) brought

mass production and assembly lines due to electricity, whereas the 3rd revolution (1970-

2010) was the era of IT systems to further automate the production lines. In the current

4th revolution (2011-today), the so-called Internet of Things (IoT) and cloud technology

have provided further means to automate even more complex tasks.

Figure 2.1: Industrial revolutions [108]

The term “Industry 4.0”, which is also used for the current state of industrial develop-

ment, originated in Germany and originally described a strategic initiative presented by

the German government at the 2011 Hannover Fair, which aims to transform the industry

by digitizing and harnessing the potential offered by new technologies [36, 105]. With this

strategy, Germany intends to maintain its leading position as one of the most competitive
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countries in engineering, electronics and the automotive industry. It can be considered

one of the reasons Germany was ranked third in 2018 in the global competitiveness rank-

ings published by the World Economic Forum, which measures how a country uses its

resources to provide its residents with a high standard of well-being [146]. “Industry

4.0” describes a future industrial scenario, characterized by the real-time availability of

relevant information from the connection between people, objects and systems. The plat-

form seeks solutions to the problems associated with the future consequences of industrial

developments through standardization and the creation of a legal framework. Business,

science and politics work together to make Industry 4.0 a reality by digitizing manufac-

turing processes and creating new products and services [143]. Industry 4.0, in addition

to being a natural consequence of new technologies and digitization, provides a new way

of increasing industrial profits: companies which successfully adopt this approach are

expected to be able to cut their costs by up to 40% [37, 108].

Smart factory concepts have already been realized by major companies such as Deutsche

Telekom [19]. As shown in figure 2.2, processes are automated, secured and highly opti-

mized in smart factories, and predictive maintenance is being employed for their smooth

operation. At any point in time, the current state of such a production process and its

configuration can be checked and modified remotely. In order to achieve such a degree of

automation, a number of recent technological advances need to be fully utilized.

Figure 2.2: Smart factories concept from Deutsche Telekom using 5G [19]

Cloud computing is the provision of computing resources on demand over the Internet.

It arises from the need for companies to quickly obtain flexible and powerful computing
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services by paying only for what is used [77]. Cloud computing services can be divided

into three categories: Infrastructure-as-a-Service (IaaS) provides access to storage, servers

and networks for the users who use their own applications and platforms. Platform as

a Service (PaaS), in addition, provides a cloud environment for developing and testing

applications. Finally, Software as a Service (SaaS) consists of a cloud software subscription

from a vendor that is available over the Internet [45]. Due to cloud computing, extensive

IT infrastructure is no longer required even by larger companies; instead access to the

network space is leased from a cloud provider. The companies providing these services

take care of both data security and the maintenance of networks and equipment. Thereby,

it is possible to centralize data in the cloud, which is easily accessible from various devices,

and exchange information with third parties [103].

The term IoT describes a network of interconnected objects and devices that can receive

and transmit data over the Internet [72]. It is an important driver for customer-centric

innovation, data-driven automation and optimization, digital transformation and business

models across all industries. Thus, the IoT is considered the basic technology to realize

the ideas of Industry 4.0. The IoT is based on Radio Frequency IDentification (RFID)

technology, which allows each product or device to be assigned a code that serves as a

unique identifier [83]. Objects connected to the IoT typically carry sensors capable of

detecting real-world conditions and actuators with which they can perform actions. In

short, the IoT focuses information and decision making on each device, and then transmits

that data to the network over the internet.

While these technologies have been adapted in some industrial areas already, their appli-

cation in the foundry industry presents some additional challenges.

2.2 Manufacturing processes in the foundry industry

Metal casting is a primary forming process in which molten metal is poured into a mold

with a cavity to produce an object of the desired shape. Once the metal is solidified, the

mold is removed and the casting part is obtained. These castings can be processed to be

used, for example, in automotive, spacecraft, industrial and domestic components.

In Germany, SMEs play a particularly important role in the foundry industry. SMEs,

with employee numbers ranging from one to several hundred, are often considered to

be the backbone of the German economy. As of 2019, Germany was the world fifth

largest producer of metal castings (as shown in Figure 2.3), with an annual production of

approximately 5 million tons.
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Figure 2.3: Top 10 casting producers in 2019 [130]

Figure 2.4 shows an abstract representation of a very basic foundry process which takes

raw material as its input and passes it through multiple sub-processes, thereby trans-

forming the raw input into a finished product (the casting). For the sake of simplicity,

we assume that the whole casting process works in a sequence where sub-processes are

interdependent, with each of the sub-processes’ output becoming the input to the next

sub-process. As these processes are inter-related, the final casting quality depends on the

optimal operation of each individual sub-process. The operational conditions are influ-

enced not only by controllable parameters, but also by environmental factors, such as the

temperature and humidity, which can influence, for example, the chemical properties of

the casting.

Figure 2.4: Abstract foundry process
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In order to optimize the outcome of the casting process, each sub-process therefore needs

to be operated in a highly controlled manner, which requires continuous monitoring of

the whole process. Optimal process parameters need to be determined, and any deviation

from the acceptable range of parameters must be recognized sufficiently early to allow for

corrections. Due to the technological advancements of the 4th industrial revolution, it is

now indeed possible to continuously monitor casting processes in terms of load, acoustics,

temperature and other sensor data.

These sensors can not only be used to monitor and control the casting processes, but also

to extract and store operating information in the form of a relation between inputs and

outputs for each of the sub-processes as well as for the whole process.

Due to complex nature of the foundry process, such a recording of operations presents a

number of challenges. The variety of possible environmental factors which can influence

the process means that some relevant information might be missing from the recorded

data might or, vice versa, that a large amount of unnecessary information is recorded.

Similar information might also be recorded multiple times in the form of interrelated (e.g.

correlated) data, leading to additional redundancies.

In order to fully utilize the possibilities offered by Industry 4.0 technologies, obtaining

high-quality data representative of the actual process is an essential prerequisite. In

particular, the use of data-driven models in the casting industry – which is the central

subject of the present work – heavily relies on the availability of data which is sufficient

not only in quantity, but also in quality.

2.2.1 Categorization of casting processes

Casting processes can be classified according to the type of the target product. If the

target of the casting process is a semi-finished product for further processing, it is referred

to as semi-finished casting. Typical semi-finished castings are strands, tubes, profiles

and strips produced by the continuous casting process. Mold casting can be subdivided

based on whether molds are destroyed when the castings are removed (expendable mold

casting) or whether they can be used several times (permanent mold casting). Examples

of expendable mold casting include sand casting, investment casting and shell molding

[40]. In permanent mold casting, a reusable mold mostly made of metals is used. In these

castings, mold is mostly filled by gravity, but gas or vacuum can also be used. Types of

permanent mold casting include die-casting, low pressure casting and centrifugal casting.

An overview of the different casting categories described in the following is shown in

Figure 2.5.
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Figure 2.5: Casting process classification

Gravity casting

Gravity casting is a casting process in which the molten metal enters the mold under the

effect of gravity. It is considered the standard casting process and is therefore not usually

mentioned specifically. An exception is gravity die casting shown in Figure 2.6, which

needs to be distinguished from other high and low pressure die casting processes [24].

In gravity casting, the molds have an opening at the top to allow the air in the mold to

escape before casting. The melt can be poured directly into the mold from above or a

separate gating system is used in which the melt first falls down the gate and then flows

laterally into the cavity [141].
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Figure 2.6: Gravity die casting (adapted from [89])

High-pressure die casting

Die casting is a casting process for series or mass production. Casting alloys with a low

melting point are usually used for this purpose.

In high-pressure die casting, the liquid melt is forced into a die casting mold under high

pressure of approx. 10 to 200MPa and at a very high die filling speed of up to 20m/s,

where it then solidifies. The special feature of the die casting process is that it works

with a permanent mold, which means that for a series of identical components, mold

production is only required once, albeit at a much higher manufacturing cost [141].

The die casting process is further divided into hot-chamber and cold-chamber processes.

In cold chamber machines, the melt is supplied from an external furnace for each casting

cycle. This is suitable for Al, Zn and Cu alloys. In contrast, in hot-chamber machines,

the melt feed is integrated into the machine. However, only alloys with lower melting

temperature can be used in hot chamber machines, for example Mg alloys [141].



Chapter 2. Theoretical background 11

Figure 2.7: Hot/cold chamber die casting (adapted from [128])

The die casting process consists of three main phases. First, the liquid metals are advanced

into the casting chamber at low velocity. This is the preliminary phase. The velocity in

this phase is relatively low so that the air in the casting chamber can escape. In the

subsequent filling phase, the speed of the melt is accelerated. The final phase is the post-

compression: the liquid metals are pressed into the molds at a higher speed to compensate

for the effect of liquid shrinkage in order to reduce the pores and air pockets.

Low-pressure die casting

Low-pressure casting refers to casting arrangements in which the molten metal (primarily

aluminum, but also magnesium, copper, iron and steel) is forced from below into the mold

cavity of the attached casting mold, usually a permanent mold, but also a sand mold or

an investment casting mold (shell mold), usually by means of a riser tube. In this process,

the upward movement of the liquid metal against gravity is effected preferably according

to the gas pressure principle [141]. The structure of low-pressure casting is shown in

Figure 2.8. The basic process sequence is described as follows:
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Figure 2.8: Low-pressure casting process [62]

Using gas pressure, the metal rises and enters the mold cavity. After mold filling, gas

pressure is maintained during solidification to allow replenishment to compensate for the

volume deficit (blowholes) during the transition from the liquid to the solid state.

Centrifugal casting

Centrifugal casting is a casting process for the production of rotationally symmetrical

components (e.g. cast iron pipes for water and wastewater). For this purpose, as shown

in Figure 2.9, liquid metal is poured into a casting mold rotating about its central axis.

Friction-induced thrust forces cause the melt to also rotate, and centrifugal force presses

it against the mold wall. The outer contour of the component is determined by the inner

geometry of the mold. After the mold has been filled, it continues to rotate until the

component has solidified completely [141].
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Figure 2.9: Centrifugal casting [126]

Sand casting

Sand molding or sand casting is a casting process for metal and other materials that uses

molds made of sand. It works on the principle of lost molds, which means that the mold

is destroyed after being used once in order to remove the casting [141].

Figure 2.10: The process sequence of sand casting [90]

In sand casting, as shown in Figure 2.10, a model is used to create two separate mold

halves from a mixture of sand and binder. After the sand is compacted to its required
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strength, cores are placed on the lower half mold and the two halves are joined. The melt

is then poured into the mold cavity. After solidification, the molding sand is emptied, the

cores are removed and the casting is cleaned from any remaining sand. The gating and

feeder system is then removed and later remelted.

An important step in the sand-casting process is the creation of the cores. Two different

procedures can be used for this step: In the cold box process, the sand mixed with binder

and hardener fills the mold cavity. The core is gassed, and the gassing cures the flowable

core sand in the core box. In the Hot-box process, on the other hand, the core is cured

(as the name suggests) in a hot core box equipped with a heater. No gassing of the core

is necessary in this case [141].

Over time, there have been a number of advances of the sand casting process. In modern

manufacturing, the sand molds and cores can be Computer Numerical Control (CNC)-

milled directly from compacted sand blocks consolidated by means of resins. In some

cases, sand molds are even produced directly using a 3D printing process.

Investment casting

Investment casting is a process suitable for manufacturing small parts. It is classified as

a casting process from lost patterns and lost molds because both the pattern, which is

usually made of wax or plastic, and the mold are no longer available after casting [141].

Figure 2.11: The process sequence of investment casting [96]

As shown in Figure 2.11, the investment casting process begins with the production of

wax patterns, most commonly in metallic molds. The individual models are then attached

to a casting system, which is the complete model of the later casting. A solid ceramic

mold shell is then built around the model in several layers. Once the shell is completed,
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the model wax is melted out and the ceramic mold is fired in a furnace. The metal melt is

then poured into the preheated mold. Finally, after the melt solidifies, the mold is quickly

destroyed to avoid shrinkage cracks.

2.2.2 Casting alloys

Metallic casting materials are traditionally divided into the two groups of ferrous and non-

ferrous materials. Ferrous casting materials, i.e. iron-carbon alloys, are subdivided into

cast steel and cast iron materials based on their carbon content. Cast steel materials are

divided into two categories: low alloy steels which contain less than 8% alloying content

and high alloy steels which contain 8% or more alloying content. These alloys are produced

from different alloy grades like CF-8M, CA-15, HC, HD. For example ZG25MnNi and

ZG30Mn2 are two low-alloy steels. [88]. Important categories of cast iron (> 2% carbon)

include lamellar graphite cast iron (GJL), compacted graphite iron (CGI) and nodular

graphite cast iron (GJS). Non-ferrous metal casting materials include copper, lead, tin,

zinc and nickel as well as light metals such as aluminium, magnesium, titanium and their

alloys. Finally, non-metallic materials such as plastics, clay, ceramics or plaster can also

be produced by casting [141].

2.2.3 Casting defects

During a casting process, many different types of defects – including surface, internal or

dimensional ones – can negatively influence the quality of the casting part [40]. One of

the main goals of applying monitoring and control methods in the foundry industry is

the prevention of such defects. However, the high complexity of the casting process is

reflected by the wide variety of possible defects. Some of the most common defect types

are listed in Table 2.1.
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Table 2.1: Casting defects [12]

Defect Type Description

Gas porosity Dissolved gas in the liquid material forms Gas bubbles inside

the final casting.

Shrinkage Contraction in the volume of casting when molten metal sol-

difies.

Mold material

Pouring metal Misruns occur when the mold cavity is not filled completely.

Cold shut happens when two parts of liquid donot fuse well

and leave a weak spot. Inclusion is a metal contamination,

known as dross if it occurs in solid form and slag if it occurs

as a liquid.

Metallurgical While cooling down, hot metal can be affected by residual

stresses in the material, a defect known as called hot crack-

ing. Hot spots occur when parts of a casting cool down faster

than the rest of the melt.

In particular, defects induced by gas and shrinkage porosity formed during solidification,

misruns, a cold shut, inclusion, hot cracking and hot spots can make the tensile behaviour

of casting alloys unpredictable. Avoiding such defects is therefore vitally important in

order to control the quality of casting products in the foundry industry.

2.2.4 Process parameters and control

Of course, preventing significant defects is not the only objective in the casting process:

cost reduction as well as the precise and accurate production of parts play an equally

important role, with environmental concerns leading to an ever increasing focus on en-

ergy efficiency as an additional objective. In order to achieve these compound objectives,

different techniques of control are employed throughout the foundry industry, including

the methods of Statistical Process Control (SPC), Design of Experiments (DoE) and ac-

ceptance sampling [81].
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Figure 2.12: Inputs and outputs of the manufacturing processes [81]

Figure 2.12 shows a typical control chart used in SPC, with a distinction between control-

lable and uncontrollable inputs which can affect the quality characteristics of the produced

parts. These characteristics are monitored and controlled with a control chart (cf. Figure

2.13) which shows the average quality characteristics of the produced parts in relation to

the Upper Control Limit (UCL) and the Lower Control Limit (LCL). These quantities

can be particularly useful for diagnostic purposes in process monitoring.

Figure 2.13: A typical control chart [81]

DoE methods [145] are helpful in identifying the key controllable inputs influencing the
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quality characteristics of the produced parts. To this end, inputs are systematically

changed and the effect of the changes on the quality of the produced part is investigated.

Thereby, it is possible to find the relationship of these inputs with the quality character-

istics. Once the key input variables are identified, online SPC methods can be used to

monitor and control the production processes.

Other techniques for identifying and analysing parameters influencing a process were

proposed by Ishikawa, including fishbone diagrams, check sheets, histogram charts, Pareto

charts, scatter diagrams, control charts and stratification diagrams [82]. The fishbone

diagram, also known as Ishikawa diagram or cause-effect diagram, is still widely in use

today.

Figure 2.14: Ishikawa diagram: Complex influences in casting of copper-based alloys [111]

Figure 2.14 shows an Ishikawa diagram for the casting of copper-based alloys, which

demonstrates the complexity of the various influences of casting sub-processes on gas

porosity in cast copper-alloy components. For example, the casting quality depends on the

qualities of the core, the mold and the melt; the core itself is influenced by its geometry, the

molding material, the coating and the core-making process. Each of these processes are,
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in turn, dependent on multiple other parameters. Note that the diagram only shows the

influencing factors for gas-related defects – similar interdependencies are to be expected

for any other objective in the casting process as well.

Another class of techniques for controlling production processes and finding the relation-

ship measured variables is offered by the methods of machine learning. Such methods

have been employed for the monitoring and control of industrial processes for more than

thirty years. For example, knowledge-based systems have been used in the foundry indus-

try to understand and learn from measured data and to optimise production capacity, for

diagnosis and evaluation of the casting defects and for mold preparation and planning. An

early knowledge-based expert system called DEFCHAR [127] was developed by Sudesh

et al., while Sreenivas et al. proposed a knowledge based expert system called MODCAS

[124] for post-casting defect analysis. Kim et al. successfully applied the Artificial Neu-

ral Networks in metal forming processes using the back propagation algorithm to find

the initial billet size for axisymmetric rib-web products and to design the die geometry

for cylindrical pulleys [61]. A more extensive overview of prior applications of machine

learning to metal casting processes will be given in Section 3.

2.3 Machine learning and performance evaluation measures

A general definition of machine learning as a “Field of study that endows computers

with the ability to learn without being explicitly programmed” can be traced back to

Arthur Samuel in 1959. [112] Tom Mitchell, in 1997, defined machine learning as follows:

“A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E.” [80]

2.3.1 Classification of machine learning problems

Machine Learning problems can broadly be classified into a range between supervised,

unsupervised and reinforcement learning. In supervised learning, the measured data is

composed of inputs known as features and outputs known as labels. The task is to find

a suitable model that maps the feature vector to the corresponding label. Classification

and regression are the subtypes of supervised learning. In classification learning, the

dependent variable can take finitely many different values (called classes), whereas in

regression learning, the dependent variable is a real number. In unsupervised learning,

the measured data is not endowed with labels. This type of learning includes clustering,

where the task is to group similar data in the form of clusters. Finally, in reinforcement
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learning, an autonomous agent learns to act optimally by sensing its environment and

acting in it to achieve its goals. To this end, an efficient policy needs to be set up which

prescribes a sequence of actions.

In the last years, a great deal of research has been focused on developing tools which can

learn a system model without having an explicit mathematical function to describe it. The

implicit model identification techniques build a model for dynamic systems using only the

measured data by adjusting the parameters until the system output label coincides as

closely as possible with the measured one. Machine learning has the same goal, using

different algorithms to learn from data and find hidden insights. When machine learning

tools are exposed to new data, they are able to adapt independently. They learn from

previous computations to produce reliable, repeatable decisions and results.

2.3.2 Formal description of supervised learning

For some sample space Ω, letX : Ω → R, Y : Ω → R be measurable functions representing

random variables, where X(ω) = x ∈ R and Y (ω) = y ∈ R for ω ∈ Ω. In supervised

learning, we consider a vector X = (X1,X2, . . . ,XN) of N random input variables, also

known as features, as well as a vector Y = (Y 1,Y 2, ...,Y K) of K random ouput variables

known as labels. Note that X : Ω → RN and Y : Ω → RK are random vectors.

For a single outcome ωi ∈ Ω we obtain the observation

oi = (X(ωi),Y (ωi)) = (xi
1, x

i
2, . . . , x

i
N , y

i
1, y

i
2, . . . , y

i
K), (2.1)

which is the i-th row of the matrix of observations O. Assuming there areM observations,

then we get a (M × (N +K))-matrix

O = (oij)1≤i≤M,1≤j≤N+K = (Xi(ωj),Y
i(ωj)) = (xi,yi)1≤i≤M . (2.2)

Each row of this matrix is a realization of the random vector (X,Y ), whereas each column

of O consists of M realizations of a single random variable Xk,1≤k≤N or Y j,1≤j≤K . For

sufficiently large M ∈ N, the observation (xi,yi)1≤i≤M is assumed to be representative of

the given problem; one expects that when observations are generated again (e.g. if the

experiment is performed under similar circumstances), the obtained values will follow a

similar distribution.1 We will assume that the observed data are stochastically independent

of each other, i.e. that the values of the random quantities (X i,Y i) do not influence each

other during the observation. For example, if the X i correspond to several measured

1Note that this assumption is violated if one has made an arbitrary selection of training data based

on certain characteristics or if there has been any systematic influence on the measured values during the

measuring process.
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values over time (at time i = 1, ...,M), it must be ensured that values obtained closely

adjacent in time do not coincide more strongly than those that are far apart in time.

Overall, these assumptions mean that the values of X i are Independently and Identically

Distributed (IID).

An example of an observation matrix O is shown in table 2.2. Here, the feature variable

X1(wi) = (xi
1)1≤i≤M represents carbon (C) with values in the range 3.44 ≤ X1 ≤ 3.64.

The values of a feature lying outside the acceptable range are known as outliers.

In supervised machine learning, for a selected label variable Yj , j ∈ (N + 1, N + 2, ..., N +K),

the target is to find a deterministic prediction function f ∗
i : D ⊂ RN → R with

yj = f ∗
j (x1, x2, ..., xN) ,

where x1, x2, ..., xN feature variable values, yj is the corresponding j-th label variable

value and D is a subset of all the possible values for the features.

To find such a prediction function f ∗, observations (xi,yi)1≤i≤M are required which are

realisations of the random variables X,Y .

An exact computation of the prediction function f ∗ based on the observation matrix O is

in general not possible. Instead, we want to find a good estimation f̂O,j : D ⊂ RN → R
of f ∗. Such a function f̂O,j, which can be called a data-driven model, depends on the

observation data O. There are two major quality criteria for the evaluation of f̂O,j:

� Interpretability (qualitative): Can the results from f̂O,j be used to gain a deeper

understanding of the relationship between X and Yj?

� Predictability (quantitative): Does f̂O,j(X) predict the correct Yj for new observa-

tionsX, or how good is this prediction? The quality of the prediction f̂O,j : X → Yj

is obtained by means of a loss function L, which measures the distance between

f̂O,j(X) and Yj . An example of a loss function for regression learning is the Root

Mean Square Error (RMSE)

LRMSE,j =

√√√√ 1

M

M∑
i=1

(|yij − f̂O,j(x
i)|2) , (2.3)

where j ∈ {N + 1, N + 2, ..., N +K}.
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To get an overview of what such a matrix of observations looks like, let us consider the

dataset shown in Table 2.2. This sample dataset shows the chemical composition of an

alloy as the features and the resulting Tensile Strength (TS) as the label. Since it is,

in practice, too cumbersome or not possible to measure all the possible combination of

values for all the random variables, we assume that the selected sample follows the same

unknown hidden distribution as the actual population.

Table 2.2: Sample of measured chemical properties of a metal

Features (All in %) Labels

Count 1 2 3 4 5 6 1 2 3

C Si Mn Ni Cu Al TS (MPa) Is OK TS Class

1 3.64 2.15 0.097 0.011 0.051 0.022 400.4 0 2

2 3.6 2.53 0.205 0.007 0.35 0.018 576 0 4

3 3.46 2.38 0.249 0.014 0.766 0.016 739.1 1 3
...

M 3.54 2.41 0.283 0.297 0.821 0.017 851 1 1

As shown in Table 2.2, a number M of total observations is measured. There are N = 6

chemical properties of the metal – the features – and K = 3 TS measurements, i.e. the

labels. All features are real-valued, while the type of the three dependent variables are real,

binary and multiclass, respectively. We split the dataset into (xi, yi1)1≤i≤M , (xi, yi2)1≤i≤M

and (xi, yi3)1≤i≤M as shown in Tables 2.3, 2.4 and 2.5 respectively.

Table 2.3: Regression dataset

Features (All in %) Labels

Count 1 2 3 4 5 6 1

C Si Mn Ni Cu Al TS (MPa)

1 3.64 2.15 0.097 0.011 0.051 0.022 400.4

2 3.6 2.53 0.205 0.007 0.35 0.018 576

3 3.46 2.38 0.249 0.014 0.766 0.016 739.1
...

M 3.54 2.41 0.283 0.297 0.821 0.017 851

Table 2.3 shows a regression problem, since the dependent variable (TS) is real-valued.

In Table 2.4, the dependent variable (IsOK) is binary, i.e. can only take two values; this

type of machine learning problem is called (classical) classification. Finally, in Table 2.5,

the dependent variable (TS Class) takes (> 2) finitely many integer values. This type

of machine learning problem is known as multi-classification.
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Table 2.4: Classification dataset

Features (All in %) Labels

Count 1 2 3 4 5 6 2

C Si Mn Ni Cu Al Is OK

1 3.64 2.15 0.097 0.011 0.051 0.022 0

2 3.6 2.53 0.205 0.007 0.35 0.018 0

3 3.46 2.38 0.249 0.014 0.766 0.016 1
...

M 3.54 2.41 0.283 0.297 0.821 0.017 1

Table 2.5: Multiclassification dataset

Features (All in %) Labels

Count 1 2 3 4 5 6 3

C Si Mn Ni Cu Al TS Class

1 3.64 2.15 0.097 0.011 0.051 0.022 2

2 3.6 2.53 0.205 0.007 0.35 0.018 4

3 3.46 2.38 0.249 0.014 0.766 0.016 3
...

M 3.54 2.41 0.283 0.297 0.821 0.017 1

There are a lot of parametric and non-parametric machine learning algorithms available,

all of which have their respective weaknesses and strengths. To determine a suitable

model function f ∗ using ML methods, three selections must be made:

1. The ML algorithm A.

2. The loss function L.

3. Given hyperparameters (λi,1≤i≤P ) of the algorithm A, an optimization procedure

that finds λ∗ with minimal approximation error.

To this end, a model assumption is made for the relationship f * between X and Y [102].

This is done, for example, by making assumptions about the functional Structure of f *.

Such an assumption reduces the number of possible expressions of f * and thus enables

a systematic identification of f̂O by maximizing the predictability on the training data.

If a model assumption does not correspond to reality, the determined f̂O can deliver

arbitrarily bad results; conscientious selection is therefore of great importance. Over the
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last decades there has been a paradigm shift in the development of algorithms f̂O: In the

past, even before the algorithm was determined, experts spent a considerable amount of

time to extract the essential components of X for the prediction of Y (i.e. the so-called

feature extraction was performed with the help of expert knowledge). For the model

assumption and the calculation of the algorithm based on it, it could then be assumed

that all components of X i
1≤i≤M are highly important for the prediction of Y i

1≤i≤M . The

dimension of the vector X ∈ RN was only moderately large (often N < 20). The number

of training data M was generally much larger than N .

Nowadays, however, supervised learning problems are often highly dimensional, i.e. the

given X are vectors of high dimension. The preprocessing of X by means of expert

knowledge is either no longer available or results in an insufficient reduction of the com-

ponents of X. Accordingly, not every component of X is important for the prediction of

Y i. A machine learning algorithm must therefore recognize the components of X that

are important for Y i and then, based on this, make predictions for Y i.

Figure 2.15: Machine learning process [54]

As shown in Figure 2.15, the complete process of ML can be divided into two steps, Learn-

ing and Prediction. In the learning step, the observation matrix (xi, yi)1≤i≤M of features

(xi)1≤i≤M and labels (yi)1≤i≤M is passed to a Feature Engineering (FE) module. In the

FE module, the data is processed and transformed; missing values, outliers, categorical

data encoding and dimensionality reduction methods are applied to transform O. Then,

in the simple validation case, the data is split into 3 sets: Training (xi, yi)1≤i≤n, Validation

(x̄i, ȳi)1≤i≤m1 and Test (x̃i, ỹi)1≤i≤m2 , for example in the ratio n : m1 : m2 = 70 : 20 : 10.

For the selected machine learning algorithms, their respective model is trained on the

training set and the hyperparameters of the model are optimised using the validation set.
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Later, the unbiased evaluation of the trained models is performed on the test set. This

procedure can be summarized more formally as follows.

1. Select a machine learning algorithm A, limits ltr ≥ 0 and lval ≥ 0 for the training

and validation error, and algorithm specific hyper parameter values λk ∈ R.

2. Determine f̂n,λ for training data (xi, yi)1≤i≤n for different combinations of λk.

3. Determine f̂n := f̂
n,λ̂

std using the validation data, where

λ̂
std

∈ argmin
λ

L(ȳi, f̂n,λ(x̄
i)) and L(ȳi, f̂n,λ(x̄

i)) < lval . (2.4)

4. An estimate of the empirical loss L(f̂n) is calculated using the test error:

L(f̂n) = L(ỹi, f̂n(x̃
i)) . (2.5)

If the learning step is finished with good evaluation results, then the selected models are

used in the prediction step to predict the output for new input data.

Let us focus on simple validation for determining the hyperparameter values λ for any

selected ML algorithm in order to select a model f̂n,λ. In simple validation, training data

of size n is used for the calculation of f̂n = f̂n,λ̂ and validation data of size n1 is used for

the selection of the parameter vector λ. To find the algorithm f̂n with low generalization

error, the number of training data n is crucial. On the other hand, a good validation

data size n1 to find and select a good λ is very important as well. When the size of the

observed data is small, then dividing it further for training and validation can impede each

of these steps. There are other methods, including k-fold cross validation, leaveone-out

cross-validation and Akaike Information Criteria, which make use of complete training

and validation data to determine f̂n. Kohavi et al. [63] used cross-validation for model

selection and showed that 10-fold cross-validation can be a good choice in comparison to

more expensive leave-one-out cross-validation.

Since noise cannot be excluded from the measured data, following the principle of Occam’s

Razor, simpler models which approximate the data well should be favoured over more

complex models which fit the data perfectly. The target is to match the complexity of the

learnt model with the complexity of the true function from which the data was generated.

If the complexity of the learnt model is lower than that of the true function, underfitting

will occur; if the complexity of the learnt model is higher, the result will be an overfitting

to the data. This tradeoff is related to the so-called bias-variance dilemma: In parameter
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estimation for the models, lower bias results in higher variance and vice versa, which

makes it challenging to minimize both.

Note that the process described above and in Figure 2.15 shows the basic functionality

of learning using a single machine learning algorithm. However, there are many learning

algorithms available, each with their own “areas of expertise”, which can analyse and

learn from data in their own specialized way. Most importantly, there is no single machine

learning algorithm which is best for modeling all types of complex real world problems. In

Section 4, we will approach this issue by utilizing multiple learning algorithms, selecting

the well-performing ones and combining their outputs into a single result.

2.3.3 Performance evaluation measures

Performance evaluation is an important step for the selection of an optimal algorithm.

Depending on the type of the learning problem, different evaluation measures are used.

Performance evaluation measures for classification problems

For a classification learning problem, a confusion matrix stores the count of correct and

false classifications for each class. In case of a binary classification learning problem

with target classses, Positive(P) and Negative(N), the confusion matrix is shown in Fig.

2.16 (a). The correct classifications count for both classes are on main diagonal, and

summing them up results in the total count True Positive (TP) + True Negative (TN) of

correct classifications. The counts in the off diagonal places show the number of incorrect

classifications for each class. The sum of these numbers represents the total count of

incorrect classifications, False Positive (FP) + False Negative (FN). The confusion matrix

of an n-class learning problem is shown in Fig. 2.16 (b). In this matrix, main diagonal

again contains the correct classification count for each class (TP1, TP2, ..., TPn), and all

the off-diagonal entries represent incorrect classification counts; for example, the entry at

position (1, 2) is FP12, which is the count of misclassifications of class 1 as class 2.
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Figure 2.16: Confusion matrices for binary and n-class problems

For binary classification problems, based on the confusion matrix from Fig. 2.16 (a),

different performance measures can be calculated, as described in Table 2.6.

Table 2.6: Binary classification measures

Measure Formula Evaluation Focus

Accuracy tp+tn
tp+fn+fp+tn

Fraction of correct predictions by

the classifier.

Precision tp
tp+fp

Proportion of positive predictions

being correct.

Recall tp
tp+fn

Proportion of measured positives

predicted correctly.

F1-Score (β2+1)tp
(β2+1)tp+β2fn+fp

Consider precision and recall to-

gether.

Area Under Curve

(AUC)
1
2
( tp
tp+fp

+ tn
fp+tn

)
Measure how good classifier can

avoid incorrect classification.

Accuracy measures the overall effectiveness of a classifier and is calculated by dividing

the total number of correct predictions by the total number of measurements. Preci-

sion is computed by dividing the count of correctly predicted positive measurements by

the total count of the positive predictions. Recall measures the effectiveness of a clas-

sifier to predict positive class labels and is calculated by dividing the count of correctly

predicted positive measurements by the number of all positive measurements. The F1-

Score measures the relation between positive class measurements and the predictions by
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the classifier. It is calculated by computing the weighted harmonic mean of Precision and

Recall, with the coefficient β serving as a weighting factor. Finally, the Area Under the

Curve measures the area under the Receiver Operating Characteristic (ROC) curve from

(0, 0) to (1, 1) and is used to check the ability of a Classifier to avoid wrong classification.

For multi-class classification problems, based on the confusion matrix from Fig. 2.16 (b),

different performance measures can be calculated, as described in Table 2.7.

Table 2.7: Multi-class classification measures

Measure Formula Evaluation Focus

Average Accuracy

∑n
i=1

tpi+tni

tpi+fni+fpi+tni

n

The average per-class effective-

ness of a classifier

PrecisionM

∑n
i=1

tpi
tpi+fpi

n

An average per-class agreement of

the data class labels with those of

a classifiers

RecallM

∑n
i=1

tpi
tpi+fni

n

An average per-class effectiveness

of a classifier to identify class la-

bels

F1-scoreM
(β2 + 1)PrecisionMRecallM
β2PrecisionM +RecallM

Relations between data’s positive

labels and those given by a classi-

fier based on a per-class average

Matthews correlation coefficient (MCC) [157] and Cohens Kappa statistic (Kappa) [140]

can be used as unified performance quality measures of binary and multi-class problems.

Performance evaluation measures for regression problems

The performance of the regression learning problems can be measured using the RMSE,

the Relative Root Mean Square Error (RRMSE) or the Symmetric Mean Absolute Percent-

age Error (SMAPE), among others. The RRMSE and SMAPE are defined, respectively,

via

RRMSE =

√√√√( 1

n

n∑
i=1

(|Oi − Pi|2)
|Oi|2

)
, (2.6)

SMAPE =
1

n

n∑
i=1

|Oi − Pi|
(|Oi|+ |Pi|)/2

, (2.7)

where n is the total number of observations, Oi is the given (“true”) output and Pi is the

predicted output from the machine learning algorithm.
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Comparison between individual learning methods

Dietterich [27] compared learning algorithms using five approximate statistical tests to

determine if one algorithm performs better than the other: a test for the difference of two

proportions; two tests based on the paired-differences t-test using either several random

train-test splits or 10-fold cross-validation; a method based on McNemar’s test and, fi-

nally, a test based on 5 iterations of 2-fold cross validation. Other statistical algorithm

comparison methods include an Analysis of Variance (ANOVA) and the Kruskal-Wallis

test (H test). If the performance of each algorithm follows a normal distribution, then

ANOVA is the preferred choice; if no particular distribution is assumed, then the H test

is suitable.

To compare the performance of different ML methods on a single dataset, one-way

ANOVA method can be used to compare the SMAPE values of different learning methods

(single factor). For a given matrix X, where each column represents a learning method,

we can test the hypothesis that the values in the columns of X are drawn from popula-

tions with the same mean against the alternative hypothesis that the population means

are not the same. Since we have considered two factors (learning methods, datasets) in

our work, we use two-way ANOVA method in Section 5. It is used to determine effect of

the two factors in order to test the hypotheses that all the learning methods error have

same mean, all datasets used in this work result in same mean error and that learning

methods and dataset errors do not interact with each other. If the results from two-way

ANOVA method shows that the performance of algorithms is not same, then post hoc

tests can be used to perform one-to-one comparisons between groups; Tukey’s honesty

difference criterion, the Bonferroni method, Scheffe’s method and other pairwise compar-

ison methods can be used to determine which methods are not significantly similar to

each other.

2.4 Selected machine learning methods

In the following, some of the most common machine learning algorithms and methods

related to pre- and post-processing are briefly introduced.

2.4.1 Kernel Principal Component Analysis

The Kernel Principal Component Analysis (KPCA) is a nonlinear dimension reduction

method which maps data from the input space to a lower dimensional feature space while

retaining the maximum possible variance in the data [117, 150].
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Consider a function ϕ : RN → F,x 7→ X which maps the input data xk, k = 1, . . . , l,

xk ∈ RN non-linearly into a feature space F such that
∑l

k=1 ϕ(xk) = 0. The covariance

matrix C̄ is given by

C̄ =
1

l

l∑
j=1

ϕ(xj)ϕ(xj)
T . (2.8)

To perform a principal component analysis on C̄, the eigenvalues λ ≥ 0 and eigenvectors

v ∈ F \ {0} which satisfy λv = C̄v need to be determined. Since every eigenvector v lie

in the span of ϕ(x1), . . . , ϕ(xl), we can consider the equation

λ(ϕ(xk) · v) = (ϕ(xk) · C̄v) for all k = 1, . . . , l (2.9)

and assume there exists coefficients α1, . . . , αl such that

v =
l∑

i=1

αiϕ(xi). (2.10)

By substituting equations 2.8 and 2.10 in 2.9 and defining a matrix K ∈ Rl×l via Kij =

(ϕ(xi) · ϕ(xj)), we get an eigenvalue problem of the form

lλα = Kα , (2.11)

where α = (α1, . . . , αl)
T is column vector. Problem 2.11 is solved for nonzero eigenvalues

and the corresponding eigenvectors are normalized in F . By using equations 2.9 and 2.10,

we get

1 =
l∑

i,j=1

αk
i α

k
j (ϕ(xi) · ϕ(xj)) = (αk ·Kαk) = λk(α

k ·αk) . (2.12)

Then for any test point ϕ(x), its corresponding principal component is extracted by

projecting it onto the Eigenvectors vk in F :

(vk · ϕ(x)) =
l∑

i=1

αk
i (ϕ(xi) · ϕ(x)) , (2.13)

where k = 1, . . . , l..
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2.4.2 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a matrix decomposition method which can

be used to remove noise from the data or reduce the data size. Given a real matrix

A ∈ Rm×n with m rows and n columns, the SVD performs a factorization A = UΣV T ,

where U ∈ Rm×m and V ∈ Rn×n are real orthogonal matrices and Σ ∈ Rm×n is a diagonal

matrix. The diagonal entries σi = Σi,i are known as the singular values of A, and the

rank of the matrix A is equal to the number of non-zero values in Σ.

2.4.3 Fourier Transform

A physical process that can be described in time domain via a time-dependent function

f(t) can equivalently be expressed in the frequency domain with a function F (ω). These

two expressions are interrelated via the Fourier transformation:

F (ω) =

∫ +∞

−∞
f(t)eiωtdt , (2.14)

f(t) =
1

2π

∫ +∞

−∞
F (ω)eiωtdt . (2.15)

When a finite number of sample points is considered, then the discrete Fourier transform

of the N points denoted by Fn is given by

Fn =
N−1∑
k=0

fke
2πikn/N , (2.16)

fk =
1

N

N−1∑
n=0

Fne
−2πikn/N . (2.17)

A discrete Fourier transform of length N can be decomposed into even-numbered and odd-

numbered points. Then by using recursive computations, the complexity for computing

the discrete Fourier transform can be reduced from O(N2) to O(N logN) by an algorithm

known as Fast Fourier Transform (FFT).

2.4.4 Multiple Linear Regression

Consider a vector of features X i = (X i
1, X

i
2, ..., X

i
p) with the corresponding labels Y i.

Multiple Linear Regression (MLR) uses the following simple model to predict Y given a
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column vector2 X = (1, X1, . . . , Xp)
T :

Ŷ = (X)T β̂ , (2.18)

where β̂ = (β̂0, β̂1, ..., β̂p), a constant variable and 1 is included in X and is multiplied

with the bias β̂0. Let us suppose X is an N ×p–matrix with each row as a feature vector,

and y is the vector of the labels in the training set. The method of least squares is a

popular choice to fit the linear model to this data: the coefficients βk are selected to

minimize the residual sum of squares (RSS)

RSS(β) =
N∑
i=1

(yi − xT
i β)

2 . (2.19)

If XTX is non-singular, then the unique solution for β̂ is given by

β̂ = (XTX)−1(XTy) (2.20)

2.4.5 K-Nearest Neighbours

The k-Nearest Neighbours (KNN) method is an instance-based non-parametric machine

learning algorithm. For a given input vector, the output value is computed by averaging

or majority voting of the labels of its k nearest neighbours within the training data set.

More specifically, the KNN prediction Ŷ for a given input x is defined as

Ŷ (x) =
1

k

∑
xi∈Nk(x)

yi , (2.21)

where Nk(x) is the set of the k nearest neighbours x1 . . . , xk to the point x according to a

pre-selected distance metric. An optimised value for k is examined in the training phase

of the algorithm. For example, if k = 1, the input vector is simply assigned the label value

of its nearest neighbour within the training data. It is useful to use a weighted average,

giving more weight to closer neighbours. The response time of the naively implemented

algorithm depends linearly on the size of the training data: for each prediction, the

selected distance metric from the new input is computed for the entire training data set,

which is computationally very intensive for large amounts of data.

2Note that the constant value 1 is assumed to be included in the features, which allows for the constant

bias ˆbeta0 to be added to the prediction in (2.18).
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2.4.6 Support Vector Machine

The Support Vector Machine (SVM) is a supervised learning method [118] which com-

putes optimal hyperplanes in order to separate and thereby classify data. In cases where

the data is not linearly separable, a nonlinear transformation into a higher-dimensional

space can be used to achieve separability. However, instead of explicitly mapping the

data into the higher-dimensional space, the so-called kernel trick can be employed: using

kernel functions, the algorithm can operate directly in the higher-dimensional space using

dot products. During the training, the optimal hyperplanes are selected based on the

maximum margin of separation between any training point and the hyperplane deter-

mined by solving a corresponding optimization problem. For regression problems, these

hyperplanes are described by the coordinates of the support vectors.

In this work, for the regression problems ϵ-Support Vector Regression (SVR) and for the

classification problems ϵ-Support Vector Classification (SVC) algorithms, are used [15].

Following kernel functions are used for the learning process: The polynomial kernel

k(X, Y ) = (XTY + r)p , (2.22)

where p is the power of the polynomial and r is a shifting parameter; the Gaussian kernel

k(X, Y ) = e
(−(||X−Y ||)2)

(2σ2) , (2.23)

where σ is an adjustable parameter; and the sigmoid kernel

k(X, Y ) = tanh(ρXTY + r) , (2.24)

where ρ is the scaling parameter of the input data and r is the shifting parameter con-

trolling the threshold.

2.4.7 Artificial Neural Networks

Artificial Neural Networks (ANN) [104, 75] are a non-linear supervised learning method

based on a network of so-called neurons which are interconnected by weighted links. An

ANN “learns” by adjusting the weights to optimal values based on the given training and

validation data.

In this work, all ANNs are trained using a backpropagation learning algorithm for the

multilayer perceptron topology. The used feedforward ANNs consist of three layers: an

input layer, one hidden layer and an output layer. The number of neurons in the input

layer is equal to the total number of independent variables and the number of neurons
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in the output layer is equal to the number of dependent variables, whereas the hidden

layer contains eight neurons for all considered datasets. The input layer receives the input

from the independent variables and forwards it to all the neurons in the hidden layer. The

neurons in the hidden layer apply their activation function to the weighted sum of their

inputs and compute an output. The output layer then computes the predicted value for

the dependent variable(s).

The back propagation learning algorithm used here to train the multilayer network consists

of two passes. In the forward pass, with the current (initially randomly selected) weights

and the input given by the training data, the algorithm produces an output for the

dependent variables. An error is then calculated based on the difference between predicted

and actual output. In the backward pass, this error is propagated backwards through the

network from the output layer to the input layer and weights in the network are modified

using the so-called delta rule, with

∆wij(p) = β.∆wij(p− 1) + α.xi(p).δj(p) , (2.25)

∆wjk(p) = β.∆wjk(p− 1) + α.yj(p).δk(p) , (2.26)

where the indices i, j, k refer to input, hidden and output layers, α is the learning rate, β

is the momentum with a value between 0 and 1, xi(p) and yj(p) are the output of neuron

i in the input layer and j in the hidden layer at iteration p, ∆ωij(p),∆ωjk(p) are the error

gradients at the neuron j in the hidden layer and k in the output layer at iteration p.

The output for the test data is computed using the trained neural network as follows: the

original input value x(0) = x ∈ RN is used to compute x(l) = σ
(
v(1) +W (1).x(1)

)
, where

σ is the activation function (applied componentwise) and W (1), v(1) denote the matrix

of input weights and the displacement (or bias) vector between the input layer and the

hidden layer, respectively. Then the final output value is given by y = W (2)x(2), with

W (2), v(2) denoting the weights and biases between the hidden layer and the output layer.

2.4.8 Naive Bayesian Classifier

The naive Bayesian classifier provides a machine learning model based on the principles

of Bayesian statistics. The below description follows the introduction of the method by

Wu and Coggeshall [148].

For multiple classes yk, k = 1, 2, . . . , K, let P (y = yk|x) be the probability of the output y

being class yk for a given input x. The value P (y = yk|x) can be estimated using Bayes’

theorem:
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P (y|x) = P (x|y)P (y)

P (x)
if P (x) ̸= 0 . (2.27)

The probability P (x|y) = P (x1, x2, ..., xn|y) needs to be calculated; note that

P (x1, x2, ..., xn|y) = P (x1|y)P (x2, ..., xn|x1, y)

= P (x1|y)P (x2|x1, y)P (x3, ..., xn|x1, x2, y)

= P (x1|y)P (x2|x1, y)...P (xn|x1, x2, ..., xn − 1, y) .

(2.28)

The Naive Bayesian classifier now assumes that the distribution of each variable xi is

independent of others within the class y:

P (xi|x1, x2, ..., xi−1, y) = P (xi|y) for all i ∈ N .

Under this assumption,

P (x1, x2, ..., xn|y) =
n∏

i=1

P (xi|y)

and thus

P (y|x) = P (y)

P (x)

n∏
i=1

P (xi|y) .

Finally, for a given input x, the maximum a posteriori (MAP) decision rule is used to

pick the class with the largest probability:

ŷ = argmax
y

P (y|x) = argmax
y

P (y)

P (x)

n∏
i=1

P (xi|y) .

Different realizations of the naive Bayesian classifier employ different estimates for the

probability distributions P (xi|y) [148].

2.4.9 Gradient Boosting Decision Trees

Gradient Boosting Decision Trees (GBDT) generalize the ensemble method of boosting to

arbitrary differentiable loss functions and build an additive model in a forward stage-wise

fashion. In each stage, a chosen number of regression trees are fitted to the negative

gradient of the binomial or mutinomial logistic regression loss function. For binary clas-

sification, only a single regression tree is induced. The method can be used for both

regression and multi-class classification problems as well. The hyper-parameters include

the number of weak learners (for regression trees), the depth size of each tree, the maxi-

mum number of leaf nodes and the learning rate [93].
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2.4.10 Adaptive-Network-based Fuzzy Inference System

Adaptive-Network-based Fuzzy Inference System (ANFIS) combines ANN and Fuzzy Logic

principles to utilize the benefits of both in a single framework. Since its fuzzy inference

system is based on fuzzy rules and can learn approximate nonlinear functions, it is con-

sidered a universal estimator. Its architecture is composed of five layers. The first layer

is known as fuzzification layer. It takes the input values and computes the membership

degree of each function using the premise parameter set. The second layer is known as

rule layer. It generates the firing strengths for the rules. The third layer is called nor-

malization layer. It normalizes the computed firing strengths. The fourth layer is called

defuzzification layer. It takes the normalized values and consequent parameter set as

input and returns defuzzified values. These all values are passed to the last layer which

combines them to return the final output [51].

2.4.11 Logistic Regression

Logistic Regression (LR) is a supervised learning classification method which estimates the

parameters of a logistic model using maximum-likelihood estimation. When dependent

variable has binary values, we use binary LR and in case of multiple values, multinomial

LR is used [79].

2.5 Predictive analytics

In recent years, automated data generation tools (sensors, cameras, smart devices, medical

instruments etc.) are producing huge amounts of heterogeneous data. Technological

advancements make it possible to transmit, store, manage, process and visualize this

data, which contains inherent knowledge that can be learned using analytic methods.

The evolution of predictive and prescriptive analytics through time is shown in Fig. 2.17.

The development started in the 1980s, using descriptive analytics by examining the data

to determine what happened in processes and by showing the static and interactive report-

ing visually. Diagnostic analytics examines data to determine why something happened

using drill-down, data discovery, data mining and correlation techniques. Predictive an-

alytics aims to determine what will happen using machine learning algorithms on the

data. Finally, prescriptive analytics recommends actions by applying advanced statistical

techniques.
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Figure 2.17: Predictive analytics vs other analytics methods [142]

The CRoss Industry Standard Process for Data Mining (CRISP-DM) [120] is a European-

funded non-proprietary initiative that started in September 1996 with the aim that the

knowledge discovery process should be reliable and reproducible even for people with little

data mining experience.

Figure 2.18: Phases of CRISP-DM [47]
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It can be used as a guideline and provides analysis templates in the form of Experience

Collection, and it is neutral regarding application fields and applications. The life cycle

of CRISP-DM process model consists of six phases as shown in the Fig. 2.18.

� In the business understanding phase, business objectives and success criteria are

determined which are expected to be achieved using data mining. An inventory

of resources, requirements, assumptions and constraints is taken; risks, costs and

benefits are assessed. Based on this study, a project plan is made.

� In the data understanding phase, initial data is collected, described, explored and

its quality is verified.

� In the data preparation phase, data is collected, selected, cleaned, constructed, in-

tegrated and formatted. This phase needs most time and effort of the whole project

life cycle.

� In the modeling phase, a modeling method is selected based on the data mining

target and the collected data, and a test design is created. The model is then built

and assessed using varying parameter settings.

� In the evaluation phase, the data mining results are assessed with respect to the

business success criteria. The evaluation results are used to accept or reject the

model.

� In the deployment phase, an accepted model is deployed, a monitoring and mainte-

nance plan is made and the final report is produced.

2.5.1 Potential of predictive analytics in manufacturing

Predictive analytics can help to achieve a number of improvements in the manufacturing

industry [1]:

� fault Prediction and preventive maintenance,

� demand forecasting and inventory management,

� price forecasting and optimization,

� automation,

� computer Vision Applications,

� managing supply chain risk.
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2.5.2 Application of predictive analytics in different fields

As shown in Figure 2.19, predictive analytics has already been applied in a variety of fields.

In 2012, 51% of its overall application was in the financial services, business intelligence

and the marketing industry [32]. In power engineering, predictive analytics has been

used to determine the peak loads and electricity prices in order to determine the efficient

distribution of electric power from plants during day and night. It has also been applied in

the health sector and to predict the crime rates. The automotive sector is also intensively

making use of predictive analytics, with companies like Daimler AG and BMW Group

using it to reduce the waste and to perform predictive maintenance.

Figure 2.19: Fields of application [32]
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3 Literature review

Machine Learning can be effectively used in production environments. It promotes efficient

and reliable production and helps manufacturing industries bring greater efficiency to

many different areas. In preventive maintenance, for instance, ML algorithms can assess

the condition of machines or tools and predict the optimal time to service or replace them

[10, 135, 153].

In quality management, ML models can be used to monitor and predict product quality

based on process data, and thereby replace checking random samples [9, 57]. The use of

ML in process control can lead to greater adaptability in changing conditions, stabilization

of product quality and a simultaneous decrease in the level of rejects [103].

ML based object recognition and motion planning have recently led to important ad-

vances, especially in the field of robotics [13]. Other exemplary applications include shop

floor planning [33], fault diagnosis [66], and power management [16, 2].

As in the case of Industry 4.0, the potential of ML can be derived from technological

capabilities (“engine of opportunity”) or the existing need for optimization (“engine of

problems”) [11]. Since ML can only be applied if the identified manufacturing problem or

optimization opportunity is suited for it, choosing the right use case is critical. Techniques

such as value chain mapping, Ishikawa diagrams, process capability analysis, or expert

presentations can help identify areas appropriate for ML applications. The selected use

cases are also identified and analysed in terms of cost-benefit ratio.

For ML projects, the availability and quality of data greatly impacts this analysis; how-

ever, additional sensors, storage and processing capabilities require additional investment.

The availability and quality of data is a crucial prerequisite for using ML [91]. According

to RAMI 4.0, a reference framework for digitization, this includes data from product,

control and field devices, stations, work centers, the company itself to suppliers and cus-

tomers. Despite the ambitious implementation of the Industry 4.0 asset management shell

in OPC UA [73], aimed at standardizing data exchange, the ability to connect new and

old plants remains a serious problem [78, 132]. Unfortunately, it is often not known in ad-

vance what data is ultimately needed to train a model with sufficient accuracy [70]. When

choosing an algorithm, an important role is played by its reliability, that is, the reaction

to unexpected situations, as well as its interpretability [113]. Based on this, prioritizing

and choosing the most appropriate use cases, for example energy demand forecasting [94],

is critical.

For project execution, the CRISP-DM iteration cycle with its six phases is the most

common method [120, 64]. While CRISP-DM provides a rough guide to start ML projects,
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specific instructions and methods are still lacking. One approach is to combine CRISP-

DM with well-structured Six Sigma methods and tools [30]. Beyond project execution,

there is also a lack of a specific method that incorporates industry characteristics to

identify appropriate use cases. A more structured presentation of use cases would provide

an improved basis for aligning with manufacturing concerns.

The number of connected devices is growing exponentially. In 2015, the number of con-

nected devices was five billion; in 2017 it exceeded eight billion [67] and we currently have

a forecast of 29.4 billion for 2030 [125]. This gives us an insight into the large amount

of data that must be processed by these devices and the involvement of companies to

get the most out of them. The Internet of Things has evolved more in enterprises called

the Industrial Internet of Things (IIoT) compared to the consumer IoT that is evolv-

ing outside of them. IIoT is defined as the collaboration between machines, computers

and people that perform manufacturing operations using advanced data analytics for the

benefit of the business [49].

With the rapid technological advancement, the Industry 4.0 concept is becoming reality.

Production companies are utilizing these advancements to evolve into being smart and

interconnected by integrating information and communication technologies. Sensors are

being used widely to get real time production process data. This data is being used

to learn the intrinsic knowledge in this data using data-driven methods and to make

decisions based on it. In the following, we provide a brief chronological overview of prior

applications of Machine Learning techniques in industrial settings in general and, more

specifically, in the metal industry.

3.1 Machine learning methods applied in industrial settings

[1990] Hansen et. al. used cross-validation techniques to optimise neural network architec-

tures and parameters and employed ensembles of similar neural networks to improve

the performance of neural networks for classification problems [43].

[1992] Upadhyaya et al. [138] applied multiple-input multiple-output autoassociative back

propagation neural network for sensor and process monitoring in power plants to

estimate several process variables.

[1994] Alexander et al. [92] used an adaptive back propagation neural network algorithm

to develop a robust fault detection and identification system for incipient faults

occurring in process systems. The process investigated was composed of a direct

current motor with regulated speed using a proportional-integral type controller, a

centrifugal pump and an associated piping system. Boon [50] used artificial neural
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networks on synthetic data to train the microcontroller. Simulation results showed

that the learnt model could successfully control the operating characteristics of the

nuclear power plants.

[1995] Cortes et al. [20] proposed a method to estimate the performance limits based on

the data quality for any machine learning algorithm whose parameters can be var-

ied. They showed the similarity of the results by applying neural networks and

learning vector quantization on a dataset to predict failure in telecommunication

paths. Shukla [121] applied a generalized feedforward neural network model as well

as an algorithm based on adaptive optimisation to control a simplified aircraft turbo

engine simulation successfully. He showed that the algorithm based on adaptive op-

timisation worked comparatively better than the backpropogation method. Sjoberg

[122] showed the importance of regularization in optimization (minimization) for pa-

rameter estimation, related it to early stopping in neural networks using validation

dataset and explained its positive effects on the variance of the parameter estimates

and in keeping the variance error small for models with many parameters.

[1996] Sharkey [119] gave an overview of the methods used by the research community

to combine different neural nets, which includes ensemble methods like bagging,

boosting and modular based approaches, such as divide-and-conquer.

[1997] Sola et al. [123] used back propagation neural networks for estimation and identifi-

cation problems in nuclear power plants and showed that data normalization results

in improved prediction accuracy in fewer iterations.

[2010] Yang et al. [151] reviewed the ensemble learning methods with focus on their appli-

cation in bioinformatic problems. They identified and summarized the future trends

of the ensemble methods in this field.

[2011] Kalidindi [55] built efficient microstructure databases to add and capture knowledge

from datasets produced by multiple groups and demonstrated fast scale-bridging

modeling and simulation of material phenomena.

[2012] Gröger et al. [39] used indication-based and pattern-based approaches provided by

an Advanced Manufacturing Analytics Platform to overcome the limitations that

existed in analytics in manufacturing. They also demonstrated their usefulness

with examples and proposed suitable data mining techniques with implementation

guides.

[2013] Gröger et al. [38] presented an Operational Process Dashboard for Manufacturing

targeted at shop floor workers. It provided information on process context, perfor-

mance, knowledge and communication. Karimi et al. [46] developed a new expert
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system for statistical process control in the manufacturing industry. This system

recognises critical process and quality characteristics of the system. It also extracts

rules from different sources as the abstract knowledge in various domains. The effi-

ciency of the system was demonstrated by implementing it in several manufacturing

industry processes. Lieber et al. [68] presented a framework based on supervised

and unsupervised Machine Learning to identify operational patterns, quality related

features and production parameters, and to predict physical quality of intermediate

products in interlinked manufacturing processes in a rolling mill case study.

[2014] Zheng et al. [156] developed a data analytics platform Plasma Display Panel (PDP)

Miner for process optimisation in PDP manufacturing. This platform can automat-

ically configure and schedule analysis tasks, and balance heterogeneous computing

resources.

[2015] Chen et al. [17] used a Principal Component Analysis (PCA) Back Propagation

Network approach to estimate factory simulation workload in cloud manufacturing.

They tested and showed improved estimated accuracy using data from 90 simulation

models. Sahno et al. [110] introduced a framework which identifies the most critical

operations in the process influencing Key Performance Indicators (KPIs), which

allows engineers to define, measure and analyse failure with less effort and results

in decreased production lead time and increased product throughput.

[2016] Niesen et al. [84] presented an integrative big data analysis framework for data-

driven risk management in Industry 4.0 to efficiently manage business processes and

process risks. Ray et al. [99] used gray relational analysis associated with PCA to

optimize process parameters of green electrical discharge machining. Sata [116] used

ANN and multivariate regression together with PCA to predict investment casting

defects. Wuest et al. [149] presented an overview of machine learning techniques,

their advantages, challenges, and applications in manufacturing. Zhang et al. [154]

used evolutionary computation for feature selection and feature construction.

[2017] Duarte et al. [29] empirically compared cross-validation techniques and internal

metrics for tuning SVM hyperparameters. Liu et al. [69] used wavelet and support

vector machine to predict machinery condition. Nikolic et al. [86] gave an overview

of predictive manufacturing systems in Industry 4.0 and discussed their trends,

benefits and challenges. Preuveneers et al. [95] wrote a survey on emerging trends,

research challenges and opportunities in Industry 4.0.

[2018] Bai et al. [4] used two intelligent learning approaches, shallow learning and deep

learning, to predict manufacturing quality. For shallow learning, they used feed for-

ward neural networks and least squares support vector machines; for deep learning,
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they used a deep restricted Boltzmann machine and a stack autoencoder. They

concluded that deep learning outperformed shallow learning in terms of chosen per-

formance measures. Tao et al. [129] wrote about the role of big data to support

smart manufacturing. Zacarias et al. [152] proposed a framework to generate ana-

lytic solutions in manufacturing based on a systematic profiling so that users can

explore relevant alternatives for their specific scenario, and obtain recommendations

in terms of quality measures.

[2019] Bai et al. [5] compared three dimension reduction techniques, namely principal com-

ponent analysis, locally linear embedding and isometric mapping, and used support

vector machines for modeling multi-parameter manufacturing to predict manufac-

turing quality. Bashar [7] used intelligent big data analytics and cloud computing

to improve the manufacturing process. Carvalho et al. [13] presented a lterature re-

view of machine learning methods applied to predictive maintenance and presented

the performance of state-of-the-art machine learning methods. Cavalcante et al. [14]

developed a hybrid technique based on simulation and machine learning and applied

it to data-driven decision-making support in resilient supplier selection with on-time

delivery as the benchmark. Dai et al. [21] discussed the necessities and challenges

of big data analytics in IoT manufacturing and surveyed its enabling technologies.

Lahdhiri et al. [65] used the rank-reduced (RR) KPCA for fault detection in online

processes and proposed to use partial RR-KPCA to identify the variables correlated

to the fault occurred. Nzuva et al. [87] gave a comprehensive overview of the dif-

ferent ensemble classification methods like bagging and boosting and discussed how

base learning algorithms are combined together using these methods. Ren et al.

[100] used locally weighted partial least squares (LWPLS) for industrial soft sensor

modeling and proposed a two-phase bandwidth optimization strategy combining

particle swamp optimization and LWPLS. Ren et al. [101] wrote an comprehensive

review about - and combined the key technologies of - smart manufacturing. They

gave an overview of big data in smart manufacturing and proposed a conceptual

framework for product lifecycles. Tian et al. [134] introduced an incremental learn-

ing ensemble strategy which aggregates multiple sublearning machines with different

weights. When new dataset is collected from the automated industrial processes,

this strategy adds a new trained submachine and updates the weights of the ex-

isting submachines based on their performance on this data set. They showed its

superiority in comparison to other Extreme Learning Machine methods. Weichert

et al. [144] wrote a literature review about machine learning and optimization ap-

proaches carried out for process improvement in the manufacturing industry during

2008-2018. Wolf et al. [147], using a systematic mapping review, identified seven

application areas where huge improvements can be made along with the relevant
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advanced analytical techniques for each of them.

[2020] Dai et al. [48] presented a multi-model soft sensor to estimate the floating height of

the strip in an air cushion furnace based on state identification and soft transitions.

The KNN method and PCA were used for partitioning and a double-random forest

model was employed for the vibration state identification.

3.2 Machine learning methods applied in metal industry

[2007–2008] Khanzode et al. [59] investigated cluster analysis and path modeling to improve

foundry process control; in 2008, they extended their work by implementing a

Mahalanobis-Taguchi system to improve the casting quality in grey iron foundries

[60].

[2008] Rai et al. [97] developed and used a neural network based casting process model

on data generated by ProCast (an FEM-based flow simulation software) for a high

pressure die casting process and used four features, namely inlet melt temperature,

mold initial temperature, inlet first phase velocity and inlet second phase velocity, to

predict filling time, solidification time and porosity simultaneously. They demon-

strated an improved performance in comparison to other models available in the

literature. Tsoukalas [136] determined optimum conditions to minimize porosity in

AlSi9Cu3 aluminium alloy die castings by using multivariable linear regression and

genetic algorithms for model generation on data generated by three-stage experi-

ments by varying holding furnace temperature, die temperature, plunger velocities

in the first two stages and multiplied pressure in the third stage using L27 Taguchi

orthogonal arrays.

[2009–2010] Santos et al. [115] used machine-learning methods to predict mechanical properties

in foundry production processes and, in 2010

[114], used machine-learning methods to predict defects in high-precision foundry

production. Zheng et al. [155] proposed an evaluation system to quantify the surface

defects in high pressure die casting and used artificial neural networks to generalize

the correlation between die-casting parameters and surface defects. The trained

neural network was used to optimize the parameter values to achieve acceptable

surface quality.

[2011] Tsoukalas [137] created a tool based on an adaptive neuro-fuzzy inference system and

generated experimental data by performing selective experiments using orthogonal

arrays and casting parameters such as metal and die temperature, piston and die
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gate velocity, and solidification pressure to study the effect of these parameters on

porosity formation in AlSi9Cu3 pressure die castings.

[2012] Susanta et al. [25] used a neural network based expert system to compute the tensile

behaviour of tailor welded blanks made of dual-phase steel. Santos et al. [85] used

a combination of machine learning algorithms to predict faults in high-precision

foundries.

[2013] Hossam et al. [31] used soft computing techniques to model a hot rolling manufac-

turing process. Ransing et al. [98] used a coupled penalty matrix approach and a

principal component based co-linearity index technique to discover product-specific

foundry process knowledge from in-process data in order to reduce defects.

[2015] Batbooti et al. [8] used Principal Coomponent Analysis (PCA) to discover knowledge

from foundry data, defined optimal limits for factors and considered interactions

among them. Since this approach discovers factor tolerance limits contributing

most to the overall variance, process engineers can adjust system parameters with

better insight.

[2017] Chokshi et al. [18] successfully used artificial neural networks to train a phase

distribution prediction model to control localized microstructures for environment

friendly and safe 22MnB5 boron steel with the help of tailored temperature rates

for localized zones.

[2018] Dib et al. [26] used machine learning methods including multilayer perceptrons,

classification and regression trees, naive-bayes, random forest and support vector

machines to predict defects in sheet metal forming processes and compared their

performance. Hamouche et al. [42] used a deep convolutional neural network method

to identify a suitable manufacturing process in sheet metal forming.

[2019] Fragassa et al. [35] performed pattern recognition analysis using methods including

k-nearest neighbours, artificial neural networks and random forests to successfully

predict the tensile behaviour of metal cast alloys and discussed the application of

these techniques in material design and process quality control. Matos et al. [22]

proposed the use of waste foundry sand (WFS) in conventional concrete by WFS

calcination and in dry-mix concrete for the production of concrete blocks. They

showed that its use resulted in reduction of flow and compressive strength of the

mortars. He et al. [44] used neural networks to detect molten steel levels. They

learnt the features of the temperature gradients using neural networks and used the

convolution of neural networks to detect the flux-steel interface from the tempera-

ture gradient distribution. Kenkin et al. [58] used support vector machines, neural
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networks and logistic regression together with the dimension reduction techniques

of PCA and isometric feature mapping for fault prediction during the molding pro-

cess of a wheel rim manufacturer. Ruiz et al. [106] used the KNN method, random

forests and ANN together with undersampling, oversampling and Synthetic Minor-

ity Oversampling Technique (SMOTE) on unbalanced process data to optimize the

fabrication of cold drawn steel wire and successfully reduced the rejection rate.

[2020] Ruiz et al. [107] employed basic machine learning algorithms, namely MLR, KNN,

Classification and Regression Trees, ANN, as well as ensemble methods, namely

Random Forest, Gradient Boosting and Adaboost, in order to predict the strength of

steel rods. They identified the important features influencing the material strength

using the feature importance and permutation importance algorithms and visually

showed their results with partial dependence plots.
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4 A unified machine learning framework

In order to address some of the difficulties associated with using machine learning tech-

niques in the metal industry (as described in Sections 1 and 3), we propose a unified

framework for the application of different ML methods to monitoring and control prob-

lems in the foundry industry. This framework aims to simplify the application process

4.1 Overview of the framework

The proposed framework works in 3 three stages, as shown in Fig. 4.1. In stage 1, the

Meta Prediction Function (MPF) is learnt from the process data. In stage 2, knowledge

is generated from the learnt Meta Prediction function. In stage 3, the MPF is used to

monitor the running process by predicting the dependent variable values for the current

independent variable values in advance and suggesting changes when the results are not

in the acceptable range. In Sections 4.2–4.3, these individual stages will be explained in

more detail.

Figure 4.1: Overview of the proposed framework
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In the Learning stage, a data-driven non-linear model for the process under consideration

is learnt based on labeled data captured from the process. This dataset must be composed

of functionally independent variables (features or inputs to the process) and functional

dependent variables (features or outputs from the process being monitored as quality

characteristics). In the start of the learning stage, if the amount of data is too large, if

missing values or outliers exists, or if independent variables are interdependent or the data

is unbalanced, then feature mapping techniques are applied to improve the data quality.

Once the complete data is of good quality, it is divided into learning data (90%) and testing

data (10%). Learning data is used to train and validate the selected ML methods, while

the testing data is used to compute the unbiased3 evaluation of the learnt model. Thereby,

it is ensured that performance evaluation is based on test data which had no influence on

model selection. Each ML method is trained on z-score normalized data using k-fold cross

validation; the z-score normalization is performed to transform all the variables to the

same scale, while k-fold cross validation ensures that the complete set of learning data

is used for training as well as validation. An error threshold is selected beforehand to

consider only those ML methods which perform within an acceptable performance range.

Once the learning is complete and a ML method is selected, then its unbiased performance

is calculated using the test data.

In ML, there are many learning methods available which might provide good prediction

results for a given data set. In the proposed framework, a number of well-performing

algorithms are selected, and each of them gives a prediction for a given input. In order

to obtain a single prediction output value, these predictions are then combined using

ensemble methods. In a previous contribution [3], a novel method called Meta Prediction

Function (MPF) was proposed for this purpose. As shown in Fig. 4.7, the predictions of

different ML methods are considered as new features which are, in turn, the input for the

MPF, which combines them into a final, single prediction. A straight-forward approach to

achieve such a combination can be to take the average of the predicted labels from the ML

methods; however, experiments have shown that this method is generally less accurate

than the best-performing individual ML method. Note that, since all involved models

are attempting to predict the same unknown value, these variables must be expected

to be highly collinear. Therefore, PCA is applied to this data in order to first extract

the Principal Components, which are linear combinations of the generated input variables

(i.e. of the individual ML algorithms’ predictions). Since the dependent variable is already

known for the learning data, it is used as a dependent variable again and combined with

the calculated Principal Components to train the linear model using MLR. The resulting

composite model composed of individual ML methods with post processing by Principal

3Here, the term “unbiased” is used in the context of the bias-variance dilemma and is not to be

confused with the statistical notion of bias.
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Component Regression [53] is stored for later predictions. Using the original test data,

an unbiased evaluation of the composite learning method can then be determined.

Once the learning stage is completed and a data-driven non-linear model is set up, it can

be used for the Knowledge Generation stage as shown in the Fig. 4.1. In this stage, for each

independent variable a minimum and a maximum value is selected; by default, these values

are selected from the complete dataset, but they can also be modified based on domain

knowledge and expert recommendations. Then, for real-valued independent variables, a

number of steps is chosen for data generation, while for discrete variables, the original

values are retained. Based on all possible combinations of values for the independent

variables within the selected range, a large amount of input data is then generated. The

output values for these generated input values are predicted using the composite learning

method and the complete data, which represents the generated knowledge, is stored in a

database.

Finally, the Monitoring and Control Stage, as shown in the Fig. 4.1, is employed in the

actual industrial environment. The current state of the process is continuously monitored

via sensor data, which is used as new input data for the MPF. The quality characteristics

for the process are then predicted with the MPF and compared to a range of acceptable

values, which needs to be specified beforehand based on domain knowledge about the

process. If the predicted values lie within this optimal range, then no changes to the

process parameters are required. However, if the MPF predicts a quality characteristic

to lie outside the acceptable range, the generated knowledge database is searched for

the input values which are closest to the current process state, but result in an output

within the optimal range. In this way, if the prediction is sufficiently reliable, it can be

determined how the input parameters can be changed in order for the process to remain

in a proper working state.

4.2 Learning stage

The learning stage is subdivided into two stages, the first of which is shown in Fig. 4.2.

First, the data composed of inputs as well as outputs representing the process is loaded into

the system and preprocessed. In the next step, statistical and machine learning methods

are used to select optimal independent variables. Next, if the distribution of dependent

variable is unbalanced, it is balanced using suitable methods such as SMOTE. In the

next step, depending on the type of the problem, regression or classification methods are

applied and the corresponding learning and test errors are calculated. If the errors found

are below a predefined threshold, then the method is deployed; in case all the errors are

above the threshold, then the dataset is passed to stage T.
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Figure 4.2: Stage one of the learning step

The detailed Machine Learning process is shown in Fig. 4.3. There are two phases in

this process, the Learning phase and the Prediction phase. During the Learning phase,

the loaded raw data (including the dependent variable) are split into learning and test

data. On the learning data, preprocessing and feature engineering methods are applied.

The actual Machine Learning step is then applied to the resulting data in order to fit a

suitable model. The same transformations are applied to the test data and predictions

are made using the learnt model. The learning and test errors are then computed. During
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the prediction phase, the model is used to predict output values for new data.

Figure 4.3: Machine learning process during learning Step



Chapter 4. A unified machine learning framework 53

Figure 4.4: Preprocessing step of machine learning during learning step

In stage T of the learning process, data is transformed using SVD and KPCA; thereby,
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independent data is transformed into new features. These new transformed features and

dependent variables are given to Step 4 to train new models.

Figure 4.5: Data transformation step of machine learning during learning

4.2.1 Feature selection

The Feature Selection step from stage 1 is shown in Fig. 4.6. While applying machine

learning algorithms on data with a high number of variables, the so-called “curse of di-

mensionality” can lead to major setbacks; the term refers to the phenomenon of data

appearing much sparser in high-dimensional spaces, affecting the performance of algo-

rithms designed for computing operations in a lower-dimensional setting. A higher num-

ber of features may also lead to overfitting, which can effect the prediction performance

on unseen testing data.

Dimension reduction, which can be used to reduce the data size, is categorized into two

main approaches:

Feature Extraction converts high-dimensional data to a lower dimension. The features

of transformed data are usually linear or nonlinear combination of original data features
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based on the transformation method used. Some of the feature extraction methods used

are PCA, KPCA, Linear Discriminant Analysis (LDA) and SVD. [41].

Feature Selection is a process of selecting the most significant features out of given

feature space. This is done by analysing the features present in the dataset and creating a

subset of relevant features which represent the dataset most accurately. Feature selection

methods can be further categorized into three distinct categories:

Filter Methods are often used in pre-processing step. These methods are independent of

the learning algorithms and depend purely on data to determine the importance of fea-

tures [41]. They use statistical methods to score the variables based on their correlation to

the resulting variable. The variables with the highest scores are then selected and passed

to the learning model for training. Among the various correlation methods used are the

linear correlation coefficient of Pearson, χ2 statistics and a family of algorithms known as

Relief. These methods are very fast in computation and reduce the data volume signifi-

cantly, which may result in better performance, but they do not consider multicollinearity

between the independent variables [41].

Wrapper Methods work by evaluating the quality of selected features based on their per-

formance using a specific Machine Learning model. To this end, a subset of features is

selected and the model is trained and evaluated using only these features. This process

is repeated until the required performance or a minimum error is achieved, as shown in

the flow diagram shown in Fig. 4.6. The problem faced with wrapper methods is that

for n features, the required search space is 2n, which can require extensive computations

for higher values of n, increasing the complexity and the cost of the algorithm and thus

making it an inadequate option to be used for feature selection. The search space is

therefore often reduced by suitable methods. A commonly used approach is the so-called

Forward Search: Variables are added successively and, depending on the change of the

model’s performance, each variable is either selected or rejected from the main feature

set; once a predetermined criterion is reached, the resulting set of selected variables is

specified as the new input data set. An alternative approach is given by the Backward

Search method, which starts with the complete original dataset and succesively removes

features such that the impact on the model’s performance remains sufficiently small.

Embedded Methods include qualities of both, filter and wrapper methods: Like wrapper

methods, they embed the variable selection procedure using model training. However,

embedded methods do not evaluate the features iteratively, which eradicates the problem

of exponential search spaces. Commonly used embedded methods are based on regulariza-

tion models, which focus on minimising the fitting error while reducing feature coefficients

to zero, hence removing those features.
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Figure 4.6: Feature selection step during learning

4.2.2 Meta prediction function

The proposed Meta Prediction Function (MPF) is inspired by the principle of ensemble

methods [28], which provide an optimized prediction by combining the results obtained

from individual ML methods. The main component of our proposed MPF is the combina-

tion of KPCA and the accumulator module. This accumulator module is a combination

of several base ML algorithms. The learning algorithm for MPF can be summarized as

follows:

Step 1: Different ML methods are applied to the training data and every prediction MLk
i

corresponding to the k-th ML method and the i-th entry of the training data set is stored.

Step 2: The predictions from the selected ML methods are pre-processed and multi-

collinearity is removed by applying the KPCA to obtain the new intermediate features

PCk:

(PC1
i , PC2

i , . . . , PCn
i ) = KPCA(ML1

i ,ML2
i , . . . ,MLn

i ) . (4.1)
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Step 3: The computed Principal Components obtained from the KPCA are used as the

independent variables for a MLR, which is then fitted to the training labels Yi via

Yi ≈ β0 +
n∑

k=1

βk PCk
i (4.2)

to obtain the final prediction function.

Figure 4.7: Proposed Meta Prediction Function

In order to compute the performance of the MPF on the test data, independent variables

of the test data set must be normalized based on the respective mean and standard

deviation of training and validation data variables. Its kernel matrix is then determined

and its principal components are computed using the Eigenvectors of the training and

validation data. The same process is later used to evaluate the MPF on newly obtained

data.

4.3 Knowledge generation, monitoring and control

Suppose we have trained a ML algorithm to predict the hardness of a casting part based

on its chemical composition4 and that we want to create castings within a selected range

of hardness values. If, during the early stages of the casting process, we can take a

sample of the molten steel before solidification and measure its chemical composition),

4Note that in practice, the hardness of a casting part is not solely determined by its chemical compo-

sition, but that numerous additional process parameters should be monitored during the casting process.
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then the hardness resulting from the casting process under current conditions can be

predicted using the learnt prediction function. If the predicted hardness is not acceptable,

then measures can be taken to change the chemical composition such that the achieved

hardness is, accoding to the prediction, acceptable. This procedure keeps the process in

a running state since potential problems are detected before they occur.

In order to apply ML during the casting process in the way described above, according

to the unified framework proposed here, we first need to generate a knowledge database

using the trained prediction function (i.e. the MPF) as shown in Fig. 4.9. To this end, first

a large set of input data is created by varying the values of each chemical element between

a given minimum and maximum, with a specific number of steps for each variable. Then,

for all combinations of these generated chemical element values, the MPF is employed to

predict the dependent variable values (i.e. the hardness of the resulting casting part).5

This complete knowledge is then stored in the database for the later stages.

It should be noted again that the complexity of the created knowledge database depends

both on the number of input features and on the number of steps between minimum

and maximum for each of the independent variables. More specifically, the number of

predictions that need to be computed for k steps and n features is given by kn. For

example, in Section 5, we will consider two datasets (related to the plastic deformation

and elongation of steel) with 3 and 17 input features, respectively. For these two datasets,

the graph in Fig. 4.8 shows the number of required predictions to generate the knowledge

base for up to 20 steps. In particular, for the elongation dataset, 20 steps for each of

the 17 features requires predictions for 2017 = 1.31072 · 1022 combinations. To generate

this amount of combinations and then to predict and store them in dataset would require

millions of years on a regular personal computer. Therefore, the feature selection process

described in Section 4.2.1 plays a particularly important role for the proposed framework.

The number of input variables can also be further reduced by considering, for example,

a coraviance matrix and finding linear relationships between the features and the label.

Features with higher SHAP values can also be selected beforehand [74].

5Note that this approach is only necessary because the inverse of the MPF is not readily available:

there is no analytic way to simply find independent variable values which would result in a given dependent

variable value.
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Figure 4.8: Combinations count for plastic deformation and elongation dataset based on steps count

Once the important features are found and based on that the number of steps for each

feature are decided, then the knowledge-base is created by generation of each combination,

prediction of corresponding label and then storing all these predictions in the database.

Figure 4.9: Knowledge generation phase

After completing knowledge generation step, the algorithm can be employed for monitor-

ing and control: for each new set of input data observed during the casting, the quality

characteristics (e.g. the hardness) are predicted as shown in Figure 4.10, and it is checked

whether the predicted value lies within the optimal range. If this is not the case, the

knowledge base is searched for the input values closest to the currently observed process
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parameters (e.g. the current chemical composition) which, according to the prediction,

will result in the dependent variable lying within the optimal range. Once such a set of

input process parameters has been found, the changes are proposed accordingly.

Figure 4.10: Continuous monitoring and keeping process stable

4.4 Evaluation and comparison

For the evaluation in Section 5, the process data is divided into learning and test parts

using stratification. The model is learnt using k-fold cross validation which uses the

complete learning data as both training and validation data. The trained function’s

performance is then tested on the test data. To give statistically significant results,

the proposed framework was tested by following this procedure and computing the test

errors 30 times, followed by computing the mean and standard deviation of the errors

obtained. Analysis of Variance (ANOVA) and one-to-one statistical comparison tests

were performed using the performance results.
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5 Experiments and results

In order to evaluate our proposed framework, its performance is measured on several

regression as well as classification datasets related to the foundry industry.

All datasets used in this work except the benchmark dataset Plastic Deformation are

related to the foundry industry and have been obtained from companies which were part

of the EUREKA research project Intelligent Process Control in Foundry Manufactur-

ing (E!5092-IPRO) in cooperation with the University of Duisburg-Essen. During this

project, a machine learning software EIDOminer was developed to support an optimised

parameter selection for a production process through intelligent process data evaluation.

The partner companies of the project manufacture safety and precision components for

the automotive industry in machine molding casting. The market segments for which

these components are made include hydraulics, vehicle technology, general engineering,

drive technology and engine construction. For the manufactured foundry materials, some

important mechanical properties are inspected before selecting them for an engineering

application. These properties include, for example, strength, hardness, resilience, elastic-

ity, plasticity, brittleness, ductility and malleability, which need to satisfy specifications

according to customer requirements.

The dependent variables in the considered datasets are related to these quality charac-

teristics, which have been obtained experimentally by the project partners. For example,

to measure the elongation of a material as shown in Fig. 5.1, a strip or rod of the casting

material with a certain length and a uniform cross-sectional area is fixed at one end.

A tensile load is then applied along its axis. The load is increased incrementally and

elongation is observed until the material mechanically fractures [76].

For the evaluation of our proposed method, the following mechanical properties are pre-

dicted based on different independent variables:

(Ultimate) Elongation is a measure of deformation that occurs before a material even-

tually breaks when subjected to a tensile load. The ultimate elongation of a material

determines its possible use; for example, bumpers require high elongation values so that

they can absorb energy by plastic deformation [76].

Tensile Strength is the amount of load or stress that a material can handle until it

stretches or breaks down. The tensile strength of alloys is significantly influenced by its

chemical composition.
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Figure 5.1: Tensile strength test to measure material elongation due to axial force [76]

Yield Strength is the amount of stress beyond which the deformation of a material is no

longer elastic, but plastic, i.e. beyond which a body changes its shape permanently [76].

Compressive Strength is the ability of a material to withstand applied loads that

reduce its size. To test the compressive strength of a material, a force is applied to the

top and bottom of the body until it fractures or deforms [76].

Compressibility relates to the reduction in volume of sand bonded with clay and water

after undergoing compression applied by squeezing or compaction. Ideally, its value should

be in the range of 36-42 [133]. Compressibility is measured by applying three continuous

ramming strokes on a 100mm tube filler filled with a 100 g sand sample and later observing

the difference using the compressibility scale [139].

Wet Tensile Strength is the “strength of the saturated condensation zone of a bentonite-

bound mold material” [34].

Bulk weight represents the weight of foundry core sand and is measured in kg/m3. The

average value of bulk weight in foundries is around 1200 [131].

During the description of the results related to our experiments, for each variable of

a given dataset, we provide the mean, standard deviation (std), minimum (min), first

quartile (25%), second quartile (50%), third quartile (75%) and maximum (max) values.
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All variables are then min-max normalized using a 0-1 scale, with the spread of the values

and possible outliers shown in a boxplot. Note that if Q1 denotes the first quartile and Q3

is the third quartile, then the measurements which are outside 1.5 times the Inter Quartile

Range (IQR) above the upper quartile (Q3 + 1.5× IQR) or below the lower quartile (Q1

- 1.5× IQR) are considered outliers. Boxplots are also used to show the results of the

used machine learning methods. For each dataset, experiments are performed 30 times.

For each experiment, the input data is randomly divided into two parts, with 90% of the

input data used for learning by performing 5-fold cross validation on the selected machine

learning methods to select optimal parameter values and 10% used for unbiased testing.

The results of these methods for test data are shown in sections 5.1 and 5.2.

In the last part of section 5.1, performance results of individual learning methods are

compared against each other using statistical methods.

5.1 Results for regression problems

The following regression datasets were used for the evaluation.

The Flow stress dataset is related to the heat flow curve of C15 steel: For plastic

deformations, it is well known that the flow stress (kf) mainly depends on the temperature

(T) of the material and the strain (ϕ) as well as the strain rate (ϕ̇) of the deformation.

The dataset considered here contains 1248 measurements of these four quantities, which

have been obtained experimentally in the controlled environment of the metallurgy and

metal forming laboratory at the University of Duisburg-Essen. Although not directly

related to the foundry industry, this dataset is used as a benchmark due to its high data

quality: Since the dependent variable is well known to depend on the observed features

(almost) deterministically, the data can be used to establish a baseline for different ML

algorithms and demonstrate their suitability for “simple” applied regression problems.

The first foundry industry dataset investigated here describes the Elongation of the two

materials EN-GJS- 350-22-LT and 400-18-LT. While the ultimate elongation for these

materials should lie in the range of 15–22%, the exact value can differ depending on, for

instance, the chemical composition of a specimen. The dataset used here therefore relates

the content of 17 chemical elements in the material, which are used as the input features,

to the measured elongation. In total, the dataset contains 386 of these measurements.

Note, however, that the elongation of a specimen does not solely depend on its chemical

composition, but also on additional features such as the nodularity or the content of ferrite

and pearlite, which are not included in the dataset under consideration. In practice,

however, the latter properties can only be measured after the casting has solidified and

are therefore not available online in a production process. In situations where only the
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basic chemical analysis is available, a prediction of the elongation is still possible (as will

be shown in Section 5.1.2), although it needs to be expected that the results are not

optimal and could be further improved by performing additional measurements during

the production process.

Next, we consider a foundry industry dataset which indeed includes such additional in-

formation: here, the properties of Yield Strength (YS), Tensile Strength (TS) and

Elongation (Elong) of the materials EN-GJS- 350-22-LT, 400-18-LT, 400-18, 400-15,

500-7, 600-3, 700-2 and 800-2 are given in relation to 25 input features, which include

not only the chemical composition of the materials, but also the graphite content, the

particle number, the particle density and the proportion of spheres as well as the pearlite

and ferrite content and the nodularity index across 466 measurements.

The next dataset contains 180 measurements of, again, the Yield Strength, the Elon-

gation and the Tensile Strength properties as the dependent variables of the materials

EN-GJS- 350-22-LT, 400-18-LT, 400-18, 400-15, 500-7, 600-3, 700-2 and 800-2. However,

similar to the first foundry dataset listed above, only the results of the chemical analysis

– more specifically, the content of 11 elements in the material – are available as input

features.

The final three regression datasets we investigate are related to the compressive strength,

compressibility, wet tensile strength and bulk weight properties of green molding sand.

The molding material has a decisive influence on the quality of a casting part: A large

number of defect patterns on casting components are caused by properties of the mold-

ing material used, which in turn are determined by many influencing variables, including

the quantity and quality of the materials as well as the process parameters, both for the

preparation of the molding material and in the molding itself. In operational practice,

some of these influencing variables can be regarded as constant; for example, the basic

machinery and technology used for preparing the molding material do not change even

over long periods of time. In order to characterise the condition of the molding mate-

rial, some material parameters can be determined in the so-called sand laboratory. These

properties are intended to describe the molding material in terms of its behaviour during

molding and casting or after demolding. In practice, the properties of the molding mate-

rial are mainly controlled by the content of water, bentonite and lustrous carbon formers

as well as the particle size distribution of the silicon sand. Today, the basic qualitative

influences of these parameters on the molding sand properties are well known from a

large number of studies. There are also recommendations for suitable adjustments of the

sand system, albeit with large tolerance ranges. Nevertheless, in a foundry environment,

the quantitative dependency existing between all these parameters required for molding

material control is not available in the literature [6]. For a foundry with a specific product

range, it is therefore, on the one hand, still not a trivial task to determine ideal param-
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eter settings and to control them in a targeted manner. On the other hand, within the

scope of molding sand testing in the sand laboratory, a large number of parameters and

properties are recorded over long periods of time, which implicitly contain the knowledge

of their interrelationships. The application of ML methods to the control of molding sand

processes is therefore seems highly appropriate.

5.1.1 Flow stress benchmark dataset

We begin with a simple dataset in order to test our basic ML algorithms and demonstrate

their ability to predict quantities from input data in cases where the relationship between

the features and the labels is well known. Here, the functionally dependent variable is

the measured flow stress (Kf) during the plastic deformation of C15 steel, while the three

functionally independent variables are the temperature (T), the strain (ϕ) and the strain

rate (ϕ̇) during the plastic deformation.

The statistics of the dataset are shown in Table 5.1 and Fig. 5.2. The data is distributed

uniformly and there are no outliers present in the dataset.

Table 5.1: Flow stress statistics

ϕ̇ [s−1] ϕ [-] T [◦C] kf [N/mm2]

mean 32.902 0.372 593.942 394.442

std 41.162 0.196 384.406 227.454

min 0.100 0.040 20.000 43.725

25% 1.500 0.200 300.000 165.928

50% 1.500 0.375 600.000 412.845

75% 90.000 0.540 1000.000 605.893

max 100.000 0.700 1200.000 794.080
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Figure 5.2: Boxplot for plastic deformation dataset normalized variables distribution

According to the correlation matrix shown in Fig. 5.3, there is a strong negative cor-

relation between the temperature and the flow stress, whereas the strain and the force

are positively correlated. These relations are, of course, to be expected from well-known

physical principles.

Figure 5.3: Correlation matrix for plastic deformation dataset variables distribution

Learning Phase Learning results for the Plastic Deformation dataset are shown in

Fig. 5.4. During the learning phase, without and with preprocesssing methods, the indi-

vidual learning algorithms and their combinations using the MPF method were applied.
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It can be observed that ANFIS performed best among all the learning methods used.

Among the other algorithms, KNN individually as well as combinations of KNN with

other methods performed best.
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Figure 5.4: SMAPE error for plastic deformation test dataset

Among the eager learning methods, ANN performed best. Also, learning from unprocessed

and KPCA-preprocessed data produced almost identical results, while the performance

across all methods was significantly reduced by SVD-preprocessing.

It is interesting to note that the comparatively simple KNN algorithm seems to outperform
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the more sophisticated methods not only in this case, but (as will be demonstrated later

on) for many other datasets as well. However, there are some significant drawbacks to the

KNN method: First, as is generally the case for “lazy learners”, the prediction on very

large datasets is much less performant for KNN compared to other methods considered

here. Another important shortcoming, especially in view of the challenges faced by the

foundry industry as outlined in Section 2, is the algorithm’s susceptibility to redundant

input features: Whereas other algorithms are much more robust under the addition of

independent variables containing “pure noise”, i.e. features unrelated to the dependent

variable, the prediction quality exhibited by the KNN method deteriorates strongly in

such cases. In order to demonstrates this effect, we added 2 and 5 unrelated variables to

the dataset and re-trained all the algorithms. The results are shown in Fig. 5.5.
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Figure 5.5: SMAPE error for plastic deformation test dataset with added features

Knowledge generation phase The initial data records count in the dataset is 1248.

By selecting 100 steps for each of the three independent variables, an input set of size

1003 = 106 = 1,000,000 is generated. The corresponding output for each of these input

value vectors is predicted using the best learning model and the complete generated
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knowledge is stored in the database.

Monitoring and control phase The first step in this phase is to decide the optimal

range for the functional dependent variable. Here, we assume for example that, for the

process under consideration, the optimal range is as follows:

Optimal range: 500–600 [N/mm2]

As described in Section 4, during the running process, the value of the input variables is

continuously measured, and the corresponding expected output computed and compared

with the optimal range. We further assume there is a new input occurring during the

process and we predict the output using our composite learning method as follows:

Table 5.2: Output outside acceptable range for new input

ϕ̇ [s−1] ϕ [-] T [◦C] kf [N/mm2]

0.1 0.3 20 657.18

Since the expected output lies outside the optimal range, the system looks in the generated

knowledgebase to find the inputs closest to the current ones that results in an output value

within the optimal range. In Table 5.3 below, the closest inputs found are shown. One

can observe that if only the amount of ϕ is reduced, the kf value decreases to within the

acceptable range.

Table 5.3: Proposed changes

ϕ̇ [s−1] ϕ [-] T [◦C] kf [N/mm2]

0.1 0.2 20 599.2451

0.1 0.1933 20 593.4819

0.1 0.1867 20 587.4417

0.1 0.18 20 581.1079

0.1 0.1733 20 574.4604

5.1.2 Elongation of different materials

Next, we consider a dataset wich has been recorded directly from applications in the

foundry industry: In the Elongation dataset, both the chemical composition and the

elongation of multiple specimen from the materials EN-GJS- 350-22-LT and 400-18-LT

were recorded. The functionally dependent variable is the elongation property (as a
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measure of ductility), while the 17 independent variables represent the contents of different

elements in the tested material: carbon (C), silicon (Si), manganese (Mn), phosphorus

(P), sulphur (S), copper (Cu), magnesium (Mg), chromium (Cr), nickel (Ni), lead (Pb),

aluminium (Al), molybdenum (Mo), titanium (Ti), tin (Sn), vanadium (V), zinc (Zn) and

cerium (Ce).

Some basic statistics6 of the Elongation dataset are shown in Table 5.4 and Fig. 5.6. We

can observe that the measured data is not uniformly distributed and – for almost all

features except C – there are many values which can be considered outliers. These values

are either rarely measured or have not been recorded correctly.

Table 5.4: Elongation dataset statistics

mean std min 25% 50% 75% max

C [%] 3.524 0.114 3.190 3.440 3.530 3.610 3.880

Si [%] 2.799 0.107 2.350 2.740 2.800 2.850 3.990

Mn [%] 0.324 0.034 0.170 0.300 0.320 0.340 0.480

P [%] 0.013 0.002 0.010 0.012 0.013 0.013 0.021

S [%] 0.009 0.001 0.005 0.007 0.008 0.009 0.016

Cu [%] 0.059 0.018 0.030 0.050 0.060 0.070 0.150

Mg [%] 0.049 0.007 0.030 0.045 0.050 0.053 0.085

Cr [%] 0.045 0.010 0.025 0.039 0.044 0.050 0.103

Ni [%] 0.034 0.014 0.019 0.027 0.031 0.038 0.205

Pb [%] 0.193 0.111 0.001 0.097 0.193 0.289 0.385

Al [%] 0.008 0.001 0.005 0.007 0.008 0.009 0.014

Mo [%] 0.008 0.029 0.001 0.002 0.004 0.008 0.564

Ti [%] 0.007 0.002 0.004 0.006 0.007 0.008 0.017

Sn [%] 0.004 0.001 0.002 0.003 0.004 0.004 0.006

V [%] 0.004 0.001 0.002 0.003 0.004 0.004 0.015

Zn [%] 0.006 0.013 0.001 0.001 0.001 0.003 0.110

Ce [%] 0.005 0.002 0.001 0.004 0.005 0.007 0.011

Elong [%] 17.501 1.722 6.900 16.300 17.400 18.600 23.700

6Note that some of the values – particularly the lead content – are much higher than expected for

the considered materials. While the data presented here was obtained and conveyed to us by a partner

in the foundry industry, it is possible that some of the data has been rescaled and does not accurately

represent the elemental content in percentage by mass. However, due to the z-score normalization used in

our unified framework (cf. Section 4.1), such a rescaling would not influence any of the prediction results

presented in the following.
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Figure 5.6: Boxplot of elongation dataset normalized variables distribution

As the correlation matrix shown in Fig. 5.7 shows, the elongation property of the metal

has a strong negative correlation to the lead content (Pb), which is to be expected from

basic metallurgical considerations.

Figure 5.7: Correlation matrix for elongation dataset

The prediction results for the Elongation dataset are shown in Fig. 5.8. We can observe

that MLR and SVR worked best among the base algorithms. Among the combination
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methods, combinations of (KNN, SVR) and (MLR, SVR) performed best.
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Figure 5.8: SMAPE error for elongation dataset

In this case, SVD preprocessing also reduced the learning performance for all the learning

algorithms. With KPCA preprocessing, the performance of ANN improved and was

comparable to SVM; otherwise there is not much difference noted for other algorithms.

Applying FFT preprocessing reduces the variance of the ANFIS method.
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5.1.3 Yield strength, tensile strength and elongation of different GJS alloys

The second foundry industry dataset concerns the yield strength (YS), the tensile strength

(TS) and (again) the elongation (El) of specimen from the materials EN-GJS- 350-22-

LT, 400-18-LT, 400-18, 400-15, 500-7, 600-3, 700-2 and 800-2. Those three properties

represent the dependent variables, whereas the functionally independent variables are

the graphite content (Gr), particle number (PN), particle density (PD), proportion of

spheres (FS), pearlite (Pr), ferrite (Fr) and nodularity index (FN) as well as the contents

of carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulphur (S), copper (Cu),

magnesium (Mg), chromium (Cr), nickel (Ni), lead (Pb), aluminium (Al), molybdenum

(Mo), titanium (Ti), tin (Sn), vanadium (V), zinc (Zn), cerium (Ce) and scandium (Sc)

in the specimen.

The statistics of the dataset are shown in Table 5.5 and Fig. 5.9.

Table 5.5: Statistics of the dataset

mean std min 25% 50% 75% max

Gr [%] 10.219 2.666 2.100 8.400 10.300 12.200 17.700

PN [%] 140.118 56.888 23.000 106.000 133.000 163.000 636.000

PD [%] 488.052 287.552 47.000 283.750 441.000 658.000 3382.000

FS [%] 79.561 10.411 39.800 74.300 81.700 87.100 98.800

Pr [%] 15.402 26.228 0.400 2.000 4.000 9.000 98.000

Fr [%] 84.598 26.228 2.000 91.000 96.000 98.000 99.600

FN [%] 85.152 8.233 51.700 81.100 86.800 91.100 99.400

C [%] 3.588 0.124 3.000 3.520 3.610 3.670 3.960

Si [%] 2.758 0.183 2.000 2.723 2.790 2.870 3.890

Mn [%] 0.336 0.104 0.000 0.260 0.310 0.370 0.630

P [%] 0.017 0.003 0.000 0.015 0.017 0.019 0.026

S [%] 0.009 0.002 0.000 0.008 0.009 0.010 0.015

Cu [%] 0.110 0.142 0.000 0.050 0.060 0.080 0.800

Mg [%] 0.045 0.006 0.000 0.042 0.045 0.048 0.070

Cr [%] 0.046 0.011 0.000 0.040 0.044 0.050 0.104

Ni [%] 0.032 0.012 0.000 0.026 0.030 0.035 0.191

Pb [%] 0.001 0.000 0.000 0.001 0.001 0.001 0.005

Al [%] 0.008 0.001 0.000 0.007 0.008 0.009 0.012

Mo [%] 0.010 0.041 0.000 0.005 0.007 0.009 0.894

Ti [%] 0.009 0.002 0.000 0.007 0.009 0.010 0.016

Sn [%] 0.004 0.001 0.000 0.003 0.004 0.004 0.006
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V [%] 0.006 0.002 0.000 0.005 0.006 0.008 0.014

Zn [%] 0.003 0.005 0.000 0.001 0.001 0.001 0.057

Ce [%] 0.005 0.002 0.000 0.004 0.005 0.006 0.010

Sc [%] 1.064 0.050 0.921 1.034 1.077 1.099 1.249

YS [N/mm2] 347.805 42.916 257.000 323.000 335.000 351.000 535.000

TS [N/mm2] 517.762 104.648 411.000 464.000 478.000 498.750 911.000

El [%] 17.119 4.301 3.600 16.600 18.600 19.700 23.700

Fig. 5.9, in particular, shows that the measured data distribution for the independent

variables Fr, Fn, Cu, Mo, Zn and for three all dependent variables of this dataset includes

a large number of outliers.

Figure 5.9: Boxplot of normalized variables distribution

The correlation matrix of the dataset is shown in Fig. 5.10. From the matrix, we can

observe that Fr, C, Si, S and Sc are negatively correlated with yield strength and tensile

strength, with a particularly strong correlation between the dependent variables and the

Ferrite content (FR).

Prediction results for the yield strength property of the materials are shown in Fig. 5.11.

We can observe that the best results were achieved when we used original data without

preprocessing and with data preprocessed by KCPA. All the learning algorithms produced

good results, with the exception of ANFIS. However, the ANFIS results improved with

SVD preprocessing. The overall quality of the prediction demonstrates the high quality

of the dataset.



Chapter 5. Experiments and results 75

Figure 5.10: Correlation matrix of the dataset
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Figure 5.11: SMAPE errors for yield strength

The results for the tensile strength property of the materials are shown in Fig. 5.12.

For this property, altogether results were even better than for the yield strength. Again,

using no preprocessing provided the best results, although KPCA and FFT preprocessing

showed good results as well. Among the base algorithms, KNN performed best, both

as a stand-alone method and in combinations with other algorithms. The second best

base method was SVM, whereas ANFIS produced the worst results on the original data,

although its results improved and were comparable with other learning methods when

applying SVD preprocessing.
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Figure 5.12: SMAPE errors for tensile strength

Finally, the results for the elongation property of the materials are shown in Fig. 5.13.

Again, we can observe that prediction results are good overall, with considerably less

accuracy by the ANFIS method unless SVD preprocessing is performed. Like for tensile

strength, KNN and its combination method produced the best results. FFT preprocessing

slightly improved results.
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Figure 5.13: SMAPE errors for elongation

A comparison between the results for the elongation property and the results obtained in

the previous section, we can observe that there is not much improvement in the prediction

when we consider material properties in addition to the chemical composition; recall that

using only the chemical composition has already produced very good prediction results.
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5.1.4 Elongation, yield strength and tensile strength of different GJS alloys

We consider another dataset from the foundry industry, relating the functionally depen-

dent variables yield strength (YS), elongation (Elong) and tensile strength (TS)

with functionally independent variables representing the carbon (C), silicon (Si), man-

ganese (Mn), phosphorus (P), sulphur (S), magnesium (Mg), chromium (Cr), nickel (Ni),

molybdenum (Mo), copper (Cu) and aluminium (Al) content. The statistics of the dataset

are shown in Table 5.6 and Fig. 5.14.

Table 5.6: Statistics of elongation, yield strength and tensile strength properties of differ-

ent materials

mean std min 25% 50% 75% max

C [%] 3.577 0.074 3.440 3.520 3.575 3.620 3.820

Si [%] 2.320 0.174 2.040 2.130 2.355 2.460 2.730

Mn [%] 0.140 0.056 0.064 0.102 0.111 0.174 0.284

P [%] 0.028 0.002 0.025 0.028 0.028 0.029 0.045

S [%] 0.009 0.002 0.005 0.008 0.009 0.010 0.014

MG [%] 0.046 0.005 0.036 0.042 0.045 0.049 0.065

Cr [%] 0.022 0.007 0.000 0.019 0.023 0.026 0.033

Ni [%] 0.013 0.022 0.000 0.009 0.012 0.014 0.297

Mo [%] 0.001 0.001 0.000 0.001 0.001 0.001 0.004

Cu [%] 0.173 0.222 0.000 0.053 0.074 0.113 0.845

Al [%] 0.018 0.006 0.000 0.017 0.018 0.020 0.041

Elong [%] 19.272 6.385 3.600 14.300 22.250 24.025 26.500

YS [N/mm2] 313.744 52.707 258.400 280.875 296.450 343.500 475.800

TS [N/mm2] 489.174 117.174 400.400 417.825 429.300 565.575 851.000
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Figure 5.14: Boxplot of normalized variables distribution

This dataset is more uniformly distributed than the measured data in the previous section,

with only few features (namely P, S, Cu and Al) exhibiting some outlier values. We can

also observe from the correlation shown in Fig. 5.15 that the features Mn and Cu are

strongly negatively correlated with the elongation and positively related with the labels

YS and TS.
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Figure 5.15: Correlation matrix of the dataset

The learning results for the yield strength property of the casting are shown in Fig. 5.16.

The best performing base algorithms in this case are KNN and SVR. Among the combi-

nation methods, the methods involving KNN again performed best.
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Figure 5.16: SMAPE errors for yield strength

Applying SVD preprocessing did not improve the results; in fact, the performance de-

creased for all the learning algorithms when SVD was applied. A similar decline in the

prediction quality was observed when applying KPCA, although the results were better

than with SVD overall. Using FFT preprocessing reduced the variance of the ANFIS

predictions compared to other methods, but overall, the results were still worse than the

basic predictions with no preprocessing at all.

The learning results for the elongation property of the materials are shown in Fig. 5.17.

Here, the best performing base algorithms are KNN and ANN, whereas the best combi-
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nation methods are the ones involving the KNN algorithm as well as the combination of

MLR and ANN. Once again, applying SVD and KPCA preprocessing did not improve

the results, although using SVD reduces the variance of error for most of the prediction

methods.
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Figure 5.17: SMAPE errors for elongation

The learning results for the tensile strength property of the materials are shown in

Fig. 5.18. The base algorithms KNN and SVR performed well again, whereas ANN

led to a significantly higher prediction error in this case. Note that the ANN and ANFIS
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prediction was improved by KPCA preprocessing, although the other base methods still

performed better.
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Figure 5.18: SMAPE errors for tensile strength

5.1.5 Compressive Strength and Compressibility of green molding sand

The last three regression datasets we consider are related to properties of molding sand

used in metal casting. The first of these datasets consists of 1076 measurements and

relates the compressive strength (CS) and the compressibility (Compr) of green
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molding sand to its weight (W) and the content of water (H2O), carbon (C), active clay

(AcCley) and slack (Slk).

Some basic statistics of the dataset are shown in Table 5.7 and Fig. 5.19. From the

correlation matrix shown in Fig. 5.20, we can observe that the independent features

Weight, H2O, AcCley and Slk and the label CS are positively correlated. Furthermore,

the compressibility is correlated negatively with the weight and positively with the water

content.

Table 5.7: Statistics of green molding sand dataset for compressiveStrength (CS), com-

pressibility (Compr)

Weight H2O [%] C [%] AcCley [%] Slk [%] CS [kN/m] Compr [%]

mean 150.650 3.169 2.388 7.540 11.169 20.943 34.322

std 1.380 0.198 0.239 0.684 0.691 1.701 2.995

min 147.500 2.550 1.130 5.200 8.000 15.800 27.000

25% 150.000 3.040 2.230 7.100 10.720 19.800 32.000

50% 150.500 3.160 2.380 7.400 11.135 20.800 34.000

75% 151.500 3.300 2.540 7.900 11.610 22.000 36.000

max 155.000 3.850 3.100 11.680 14.400 27.500 48.000

Figure 5.19: Boxplot of green molding sand dataset normalized variables distribution
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Figure 5.20: Correlation matrix for the green molding sand dataset

As with the plastic deformation dataset discussed in Section 5.1.1, we will describe not

only the prediction results for the present dataset, but once more demonstrate how the

unified framework described in Chapter 4 could be applied in an industrial setting in

order to supervise the quality of molding sand with respect to its compressibility and

compressive strength.

Learning phase The prediction results for the compressive strenth and the compress-

ibility of the sand are shown in Figs. 5.21 and 5.22, respectively. In both cases, the

SVR method and combination methods which include SVR show the best results. No

significant improvement in the performance was observed after applying additional pre-

processing methods.
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Figure 5.21: SMAPE Errors for compressive strength
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Figure 5.22: SMAPE errors for compressibility

Knowledge generation phase Selecting 20 steps for each of the five independent vari-

ables, an input size of 205 = 3,200,000 is generated and the best selected learning model

is applied to predict the corresponding output values. The entire generated dataset is

stored in the database.

Monitoring and control phase For this process, we assume an optimal range of 24 –

26 kN/m for the compression strength.

Now, assume that during the continuous running of the process, the expected output of

each input is computed (using the best performing algorithm again) and compared with
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the optimal range. Assume further that there is a new input measurement during the

process, and that we predict the output shown in Table 5.8.

Table 5.8: Output outside acceptable range for a new input

Weight Water [%] Carbon [%] Bentonite [%] Clay [%] Compression strength [kN/m]

150.65 3.35 2.38 7.6 11.73 21.42

Since the expected output lies outside the optimal range, the system uses the knowledge-

base to find the closest inputs to the current ones that, according to the prediction, still

result in an optimal output value. In Table 5.9, the closest such inputs are listed. The

user can now select one of the recommendations; for example, a decrease in the water and

carbon content combined with an increase in bentonite and clay content is expected to

improve the compression strength to above the selected threshold.

Table 5.9: Proposed changes

Weight Water [%] Carbon [%] Bentonite [%] Clay [%] Compression strength [kN/m]

150.65 3.3026 2.063158 8.6105 12.0421 24.01943

150.65 3.2342 2.063158 8.6105 12.0421 24.00217

150.65 3.3710 1.959474 8.6105 12.0421 24.08666

150.65 3.3026 1.959474 8.6105 12.0421 24.12926

150.65 3.3026 1.855789 8.6105 11.7052 24.0067

5.1.6 Wet Tensile Strength of green molding sand dataset

The next dataset contains 183 measurements of the wet tensile strength (MTS) of

green molding sand – which is considered the dependent feature – as well as the grain

size (GrainSz), water content (H2O), carbon content (C), active clay content (AcCley)

and slack content (Slk) of the sand. The dataset’s statistics are shown in Table 5.10 and

Fig. 5.23; the measured data is evenly distributed for most of the variables and there are

few outliers. From the correlation matrix in Fig. 5.24, we can observe that AcCley and

the water content are positively correlated to the MTS.
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Table 5.10: Statistics of wet tensile strength of green molding sand

GrainSz [%] H20 [%] C [%] AcCley [%] Slk [%] MTS [N/cm2]

mean 0.270 3.153 2.377 7.533 11.162 0.333

std 0.005 0.184 0.215 0.636 0.643 0.019

min 0.254 2.730 1.750 5.800 9.790 0.299

25% 0.266 3.025 2.250 7.100 10.705 0.319

50% 0.270 3.160 2.340 7.400 11.130 0.332

75% 0.274 3.295 2.525 7.900 11.545 0.345

max 0.278 3.740 2.910 9.500 13.290 0.390

Figure 5.23: Boxplot of the green molding sand dataset normalized variables distribution



Chapter 5. Experiments and results 91

Figure 5.24: Correlation matrix for the green molding sand dataset

The prediction results for the tensile strength property of a material are shown in Fig. 5.25.

Clearly, ANN and ANFIS are performing worst, while KNN and MLR are the best per-

forming base algorithms. Again, the performance of the learning methods does not im-

prove with the preprocessing methods.
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Figure 5.25: SMAPE errors for tensile strength

5.1.7 Bulk Weight of the green molding sand

The final regression dataset we consider consists of 1072 measurements of the bulk weight

(BW) of green molding sand and the five independent variables weight (Weight), water

(H2O), carbon (C), active clay (AcCley) and slack (Slk) content. Basic properties of the

dataset are shown in Table 5.11 and Fig. 5.26. The correlation matrix in Fig. 5.27 shows

that weight and water content H2O are positively and negatively correlated with the bulk

weight, respectively.
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Table 5.11: Statistics of bulk weight of the green molding sand

Weight H20 [%] C [%] AcCley [%] Slk [%] BW [kg/m3]

mean 150.649 3.168 2.386 7.539 11.167 1023.748

std 1.376 0.198 0.238 0.682 0.691 49.573

min 147.500 2.550 1.130 5.200 8.000 815.000

25% 150.000 3.040 2.230 7.100 10.718 994.000

50% 150.500 3.160 2.380 7.400 11.130 1024.000

75% 151.500 3.300 2.540 7.900 11.602 1056.000

max 155.000 3.850 3.100 11.680 14.400 1223.000

Figure 5.26: Boxplot of green molding sand dataset normalized variables distribution
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Figure 5.27: Heatmap of the correlation matrix for green molding sand dataset

The prediction results for the bulk weight from the independent variables are shown in

Fig. 5.28. In this case, the best performing algorithms for this dataset are MLR, ANN

and SVR as well as the combinations (MLR, ANN), (MLR, SVR) and (ANN, SVR).
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Figure 5.28: SMAPE errors for bulk weight

5.1.8 Comparing performance of the used learning methods, datasets and

their interaction

To compare the performance of all the considered learning algorithms on all the datasets

described above – and to determine if there is any interdependence between them – the

two-way Analysis of Variance (ANOVA) method is applied, with the results shown in

Table 5.12. With p-values of zero up to four decimal places, it clearly follows from these

results that the ML algorithms do not perform equally well and that there is a significant
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difference in prediction quality across datasets.

Most interestingly, the p-value for the interaction between the ML algorithm and the

dataset is close to zero as well. Therefore, the results show (with a very high significance)

that the performance of specific ML methods and the dataset under consideration are

interdependent ; in other words, whether an ML algorithm performs well can differ from

dataset to dataset.

Source SS df MS F Prob>F

ML Algorithms 0.6400 15 0.0427 319.58 0

Datasets 0.8261 11 0.0751 562.52 0

Interaction 1.2242 165 0.00742 55.58 0

Error 0.7433 5568 0.00013

Total 3.4336 5759

Table 5.12: Two-way ANOVA results

In order to obtain further information about the performance of the different ML methods,

we use the Tukey, Bonnferroni and Scheffe tests to identify pairs of algorithms with dif-

ferences in performance. The results of this pairwise comparison are shown in Table 5.13.

For example, based on all three considered pairwise comparison tests, the performance

of KNN significantly differs from the performance of MLR, ANN, SVR, (MLR,ANN),

(MLR,SVR), (ANN,SVR), (MLR, ANN, SVR) and ANFIS across datasets.

Table 5.13: One-One comparison of learning methods using Tukey, Bonnferroni and Scheffe’s tests

One-One Comparison Methods

Learning Method Tukey Bonnferroni Scheffe

1 - KNN 2-4,8-10,14,16 2-4,8-10,14,16 2-4,8-10,14,16

2 - MLR 1,3-16 1,3-16 1,3-16

3 - ANN 1,2,4-16 1,2,4-16 1,2,4-16

4 - SVR 1-3,5-7,11-13,15,16 1-3,5-7,11-13,15,16 1-3,5-7,11-13,15,16

5 - (KNN,MLR) 2-4,8-10,14,16 2-4,8-10,14,16 2-4,8-10,14,16

6 - (KNN,ANN) 2-4,8-10,14,16 2-4,8-10,14,16 2-4,8-9,14,16

7 - (KNN,SVR) 2-4,8-10,14,16 2-4,8-10,14,16 2-4,8-10,14,16

8 - (MLR,ANN) 1-3,5-7,11-13,15,16 1-3,5-7,11-13,15,16 1-3,5-7,11-13,15,16

9 - (MLR,SVR) 1-3,5-7,11-13,15,16 1-3,5-7,11-13,15,16 1-3,5-7,11-13,15,16

10 - (ANN,SVR) 1-3,5-7,12-13,15,16 1-3,5-7,12-13,15,16 1-3,5,7,12-13,16

11 - (KNN,MLR,ANN) 2-4,8-10,14,16 2-4,8-10,14,16 2-4,8-9,14,16

12 - (KNN,MLR,SVR) 2-4,8-10,14,16 2-4,8-10,14,16 2-4,8-10,14,16

13 - (KNN,ANN,SVR) 2-4,8-10,14,16 2-4,8-10,14,16 2-4,8-10,14,16

14 - (MLR,ANN,SVR) 1-3,5-7,11-13,15,16 1-3,5-7,11-13,15,16 1-3,5-7,11-13,15,16

15 - (KNN,MLR,ANN,SVR) 2-4,8-10,14,16 2-4,8-10,14,16 2-4,8-9,14,16

16 - ANFIS 1-15 1-15 1-15
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5.2 Results for classification problems

In addition to the regression problems discussed above, we also consider two classification

datasets. For these datasets, the machine learning methods LR, SVC and GBDT are

used as the base learners. Their results are then combined using the Combination Method

Naive Bayes (CMNB).

5.2.1 Elongation classification dataset

The first classification dataset contains the chemical composition of a material as the in-

dependent features; more specifically, the contents of Carbon (C), Silicon (Si), Manganese

(Mn), Phosphorus(P), Sulfur(S), Copper(Cu), Magnesium (M), Gallium (G), Chromium

(Cr), Nickel (Ni), Lead (Pb), Aluminium (Al), Molybdenum (Mo), Titanium (Ti), Tin

(Sn), Vanadium (V), Zinc (Zn) and Cerium (Ce) are given. The two-class label (Elon-

gOK) represents the acceptability of the elongation according to requirements on the

mechanical properties of the material.

The results of each of the base learners as well as the final results from the CMNB are

shown in Table 5.14. From these results, it can be observed that all the methods including

the combined one are working very well on this dataset and that the obtained prediction

quality is indeed very high.

Table 5.14: Elongation: Precision and recall of base learners and naive bayes for raw data

LR SVC GBDT CMNB

precision recall f1-score precision recall f1-score precision recall f1-score precision recall f1-score support

0 1.00 0.91 0.95 1.00 0.91 0.95 0.98 0.91 0.95 0.98 0.91 0.95 57

1 0.89 1.00 0.94 0.89 1.00 0.94 0.89 0.97 0.93 0.89 0.97 0.93 40

Table 5.15: Elongation - Confusion matrix for naive Bayes method

Predicted

0 1

Measured
0 52 5

1 1 39

5.2.2 Internal mircoshrinkages in the production of callipers and anchors

Our final dataset, which contains 936 measurements in total, is related to internal mi-

croshrinkages that occur during the production of callipers and anchors for wind turbines.

In order to prevent such microshrinkages it is necessary to predict their occurence reliably
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based on the data available during the production process. In the present dataset, the

independent variables represent the chemical composition of the material as well as some

additional sand and melting parameters, whereas the resulting microshrinkages are distin-

guished into 5 different risk classes. The 23 independent features from which the risk class

is to be determined include the contents of Carbon (C), Silicon (Si), Magnesium (Mg),

Phosphorus (P), Sulfur(S), Copper (Cu),Chromium (Cr), Manganese (Mn), Aluminium

(Al), Cerium (Ce), Tin (Sn) and Zinc (Zn) as well as some additional properties related

to the molding sand and the casting temperature.

Table 5.16: Statistics of microshrinkages dataset

median mean std min 25% 50% 75% max

C 3.83 3.83 0.07 3.48 3.79 3.83 3.87 4.08

Si 2.27 2.28 0.09 2.00 2.21 2.27 2.33 2.69

Mg 0.04 0.04 0.00 0.03 0.03 0.04 0.04 0.05

P 0.02 0.02 0.00 0.01 0.02 0.02 0.02 0.02

S 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01

Cu 0.14 0.14 0.03 0.04 0.12 0.14 0.17 0.38

Cr 0.07 0.07 0.02 0.04 0.06 0.07 0.08 0.18

Mn 0.35 0.35 0.04 0.25 0.33 0.35 0.37 0.58

Al 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.04

Ce 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01

Sn 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01

Zn 0.09 0.09 0.02 0.01 0.07 0.09 0.10 0.17

Ceq 4.60 4.59 0.07 4.25 4.55 4.60 4.64 4.81

Tliq 1162.90 1164.36 11.67 1143.40 1154.40 1162.90 1170.50 1206.00

Te min 1148.30 1147.78 2.30 1136.10 1146.73 1148.30 1149.30 1153.40

Recal 1.20 1.31 1.05 0.00 0.70 1.20 1.70 12.00

K 0.85 0.84 0.04 0.54 0.83 0.85 0.86 0.91

MouldComp 27.90 28.00 1.87 18.40 26.50 27.90 29.50 34.60

Campos 2.00 2.49 1.45 1.00 1.00 2.00 4.00 4.00

Ppressing 53.00 51.72 4.74 25.00 50.00 53.00 53.00 90.00

Tblowing 1.00 1.04 0.37 0.80 1.00 1.00 1.00 3.50

Inoculant 95.00 97.03 12.18 75.00 85.00 95.00 105.00 130.00

Tpouring 7.60 7.60 0.47 6.40 7.30 7.60 7.90 10.50

Tapouring 1398.00 1396.60 11.12 1323.00 1391.00 1398.00 1404.00 1424.00
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Figure 5.29: Boxplot of data distribution in the mircroshrinkage dataset

The heatmap of the correlation matrix for the dataset is shown in Fig. 5.30. Note that

there is very little correlation between the risk and any of the independent variables,

which means that no immediate identification of a major cause for microshrinkages can

be identified without further analysis.
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From the class frequencies of the dependent variable, as shown in Table 5.17, it is imme-

diately clear that the dataset is heavily unbalanced (i.e. that the classes are not uniformly

distributed within the available data). In the following, we will therefore use this dataset

to investigate specific pre-processing methods for unbalanced classification data. Such

preprocessing methods can easily be integrated into the unified framework described in

Chapter 4, since an imbalance in the class distribution is easy to identify in an automated

fashion.

Table 5.17 lists the frequencies of each label in the dataset. We can observe that majority

of the samples are from class 0. In particular, 10% test data corresponds to only 3 samples

in the minority classes. Therefore, we perform the same experiment with 25% to ensure

slightly more significant results.

Table 5.17: Microshrinkages label frequencies

Class Complete Data Learning with 90% data Learning with 75% data

Original Undersampling SMOTE Test Data Original Undersampling SMOTE Test Data

0 682 614 27 614 68 512 22 512 171

1 90 81 27 614 9 68 22 512 22

2 68 61 27 614 7 51 22 512 17

3 35 31 27 614 4 26 22 512 9

4 30 27 27 614 3 22 22 512 7

5 31 28 27 614 3 23 22 512 8

When we apply our machine learning methods to 85% of the data from this unbalanced

dataset, we obtain the results shown in table 5.18. The values of macro average and

weighted average of f1-score shows that method CMNB performed best among all com-

pared methods. However, from the results, it is obvious that for this severely unbalanced

dataset, the prediction does not perform well on the minority classes.

Table 5.18: Microshrinkages: Classification results for original data using 10% test data

LR SVC GBDT CMNB

Classes Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Support

0 0.77 0.97 0.86 0.72 1.00 0.84 0.77 0.98 0.86 0.87 0.86 0.86 68

1 0.23 0.11 0.14 0.00 0.00 0.00 0.24 0.06 0.10 0.27 0.37 0.30 9

2 0.16 0.07 0.10 0.01 0.01 0.01 0.16 0.07 0.09 0.30 0.24 0.25 7

3 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.03 0.05 0.06 0.03 0.03 4

4 0.08 0.03 0.05 0.00 0.00 0.00 0.09 0.04 0.06 0.15 0.14 0.14 3

5 0.23 0.11 0.14 0.03 0.01 0.02 0.36 0.18 0.22 0.26 0.27 0.25 3

Macro average 0.24 0.22 0.21 0.13 0.17 0.15 0.28 0.23 0.23 0.32 0.32 0.30 94

Weighted average 0.60 0.72 0.65 0.53 0.72 0.61 0.61 0.72 0.65 0.69 0.69 0.68 94

Accuracy 0.72 0.72 0.72 0.69 94

We attempt to overcome this challenge of unbalancedness by applying under-over sampling

techniques to transform the dataset into a balanced one. When we apply the undersam-

pling technique, we randomly reduce the size of the majority classes to the size of the

class with minimum representation; for oversampling, we apply the SMOTE method to

synthetically increase the size of the minority classes until it equals the size of the majority

class. The resulting class frequencies are shown in Table 5.17.
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After balancing, the same machine learning methods as before were applied to the mod-

ified dataset. The results for the undersampling and the SMOTE-based oversampling

techniques are shown in Tables 5.19 and 5.20, respectively.

Table 5.19: Microshrinkages: Classification results for undersampled data using 10% test data

LR SVC GBDT CMNB

Classes Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Support

0 0.78 0.42 0.53 0.72 0.85 0.76 0.46 0.14 0.19 0.70 0.44 0.46 68

1 0.09 0.16 0.11 0.02 0.01 0.01 0.09 0.09 0.06 0.04 0.06 0.04 9

2 0.04 0.10 0.06 0.03 0.04 0.03 0.05 0.31 0.08 0.01 0.03 0.02 7

3 0.02 0.10 0.03 0.02 0.03 0.02 0.02 0.15 0.03 0.05 0.20 0.06 4

4 0.07 0.31 0.11 0.03 0.06 0.03 0.03 0.11 0.04 0.01 0.07 0.02 3

5 0.07 0.07 0.05 0.01 0.11 0.02 0.05 0.19 0.05 0.03 0.24 0.05 3

Macro average 0.18 0.19 0.15 0.14 0.18 0.15 0.12 0.17 0.08 0.14 0.18 0.11 94

Weighted average 0.58 0.34 0.40 0.52 0.62 0.56 0.35 0.15 0.15 0.52 0.35 0.34 94

Accuracy 0.34 0.62 0.15 0.35 94

Table 5.20: Classification results for SMOTE data using 10% test data

LR SVC GBDT CMNB

Classes Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Support

0 0.79 0.20 0.31 0.72 1.00 0.84 0.73 0.93 0.81 0.73 0.92 0.81 68

1 0.16 0.10 0.11 0.00 0.00 0.00 0.05 0.06 0.04 0.11 0.09 0.07 9

2 0.14 0.16 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 7

3 0.02 0.10 0.03 0.00 0.00 0.00 0.03 0.01 0.01 0.00 0.00 0.00 4

4 0.04 0.23 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3

5 0.04 0.23 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3

Macro average 0.20 0.17 0.12 0.12 0.17 0.14 0.13 0.17 0.15 0.14 0.17 0.15 94

Weighted average 0.60 0.18 0.25 0.52 0.72 0.61 0.53 0.68 0.59 0.54 0.68 0.59 94

Accuracy 0.18 0.72 0.68 0.68 94

From the results, we can observe that there is no performance improvement due to under-

over sampling. Precision and recall results from the learning algorithms show that both

for original as well as for the SMOTE augmented dataset, SVC always predicted the

majority class. It is interesting to note that in case of undersampling, SVC performance

improved.

Using 25% test data, we repeated the experiments on all three datasets. The results are

shown in Table 5.21 for the original data, in Table 5.22 for under-sampled data and in

Table 5.23 for over-sampled data using SMOTE.

Table 5.21: Classification results for original data using 25% test data

LR SVC GBDT CMNB

Classes Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Support

0 0.78 0.95 0.86 0.73 1.00 0.84 0.77 0.97 0.86 0.87 0.84 0.85 171

1 0.26 0.15 0.18 0.00 0.00 0.00 0.25 0.08 0.11 0.22 0.36 0.27 22

2 0.19 0.08 0.11 0.00 0.00 0.00 0.23 0.08 0.11 0.21 0.17 0.17 17

3 0.12 0.02 0.03 0.00 0.00 0.00 0.09 0.03 0.05 0.04 0.02 0.03 9

4 0.25 0.09 0.13 0.00 0.00 0.00 0.19 0.06 0.08 0.18 0.14 0.15 7

5 0.39 0.19 0.25 0.00 0.00 0.00 0.41 0.13 0.19 0.34 0.35 0.33 8

Macro average 0.33 0.25 0.26 0.12 0.17 0.14 0.32 0.22 0.23 0.31 0.31 0.30 234

Weighted average 0.64 0.73 0.67 0.53 0.73 0.61 0.62 0.73 0.65 0.69 0.68 0.68 234

Accuracy 0.73 0.73 0.73 0.68 234
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Table 5.22: Classification results for undersampled data using 25% test data

LR SVC GBDT CMNB

Classes Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Support

0 0.77 0.35 0.46 0.74 0.83 0.76 0.47 0.13 0.18 0.65 0.29 0.36 171

1 0.12 0.19 0.13 0.04 0.04 0.03 0.06 0.14 0.08 0.06 0.15 0.07 22

2 0.10 0.15 0.09 0.02 0.03 0.02 0.04 0.20 0.06 0.05 0.08 0.05 17

3 0.04 0.15 0.05 0.01 0.01 0.01 0.04 0.17 0.05 0.03 0.27 0.04 9

4 0.07 0.34 0.11 0.03 0.06 0.04 0.03 0.12 0.03 0.04 0.13 0.05 7

5 0.10 0.18 0.11 0.03 0.13 0.05 0.06 0.30 0.06 0.07 0.22 0.07 8

Macro average 0.20 0.23 0.16 0.14 0.19 0.15 0.12 0.18 0.07 0.15 0.19 0.10 234

Weighted average 0.59 0.31 0.36 0.55 0.62 0.56 0.36 0.14 0.15 0.49 0.25 0.28 234

Accuracy 0.31 0.62 0.14 0.25 234

Table 5.23: Classification results for SMOTE data using 25% test data

LR SVC GBDT CMNB

precision recall f1-score precision recall f1-score precision recall f1-score precision recall f1-score support

0 0.80 0.22 0.33 0.73 1.00 0.84 0.73 0.97 0.83 0.73 0.98 0.84 171

1 0.16 0.14 0.13 0.00 0.00 0.00 0.02 0.01 0.01 0.04 0.01 0.02 22

2 0.19 0.12 0.11 0.00 0.00 0.00 0.02 0.01 0.01 0.02 0.00 0.01 17

3 0.03 0.14 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9

4 0.05 0.29 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7

5 0.04 0.25 0.07 0.00 0.00 0.00 0.02 0.00 0.01 0.03 0.00 0.01 8

Macro average 0.21 0.20 0.13 0.12 0.17 0.14 0.13 0.17 0.14 0.13 0.17 0.14 234

Weighted average 0.62 0.21 0.27 0.53 0.73 0.61 0.54 0.71 0.61 0.54 0.72 0.61 234

Accuracy 0.21 0.73 0.71 0.72 234

Again, the results obtained from the original data are better than those for the under-

oversampled datasets. Among the learning methods, CMNB performance was better in

comparison to others. SVC showed a similar trend as before and performed better for

undersampled in comparison to original or oversampled data.

To summarize the results, we calculated the Kappa and MCC values to find which dataset

and algorithm performed best altogether. The Kappa scores are shown in Figures 5.31

and 5.32 whereas the MCC scores are shown in Figures 5.33 and 5.34 for 10% and 25%,

test data respectively. These measures can attain a maximum value of 1, which would

indicate a perfect prediction. In general, ML algorithms with higher values performed

better than others.

LR SV
C

GB
DT

CM
NB

Machine learning algorithms

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Ka
pp

a 
m

ea
su

re

Original Data

LR SV
C

GB
DT

CM
NB

Machine learning algorithms

Under sampling

LR SV
M

GB
DT

CM
NB

Machine learning algorithms

SMOTE

Figure 5.31: Kappa results for 10% test data
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Figure 5.32: Kappa results for 25% test data



Chapter 5. Experiments and results 103

LR SV
C

GB
DT

CM
NB

Machine learning algorithms

0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
CC

 m
ea

su
re

Original Data

LR SV
C

GB
DT

CM
NB

Machine learning algorithms

Under sampling

LR SV
C

GB
DT

CM
NB

Machine learning algorithms

SMOTE

Figure 5.33: MCC results for 10% test data
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Figure 5.34: MCC results for 25% test data

The results demonstrate again that learning algorithms performed best with the original

data and were not able to improve performance with balanced data using the selected

undersampling and oversampling methods. For the original dataset, CMNB performed

best in comparison to the base algorithms, followed by LR and GBDT.
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6 Practical application

EIDOminer is the data analysis and machine learning software that resulted from the

cooperation of a consortium working on the EU project IPRO. The consortium included a

joint cooperation of the University of Duisburg-Essen, the Kemtpen University of Applied

Sciences and multiple foundries. The software, which is designed to analyze and learn from

the measured data to optimize processes, improve quality and save costs, consists of four

main sub-parts, namely EIDOlearner, EIDOconsole, EIDOanalyser and EIDOpredictor,

as shown in Fig. 6.1 and 6.2.

Figure 6.1: Abstract overview Figure 6.2: EIDOminer: Main window

The Intelligent Analysis Manager (IAM) is the core module of the EIDOlearner. It consists

of 3 parts: the preprocessor, the function box and the postprocessor with the supervisor.

The preprocessor provides the filtering and data smoothing functionality. Individual

machine learning methods are then trained in the function box. Based on the performance

of the individual learning methods, well-trained algorithms are selected in the functon box

for the postprocessor. In this last stage, the supervisor combines the individual learning

methods using various combination methods such as weighted averaging and MPF (labeled

as PCAMR in EIDOminer) and evaluates which method offers the best solution. For

different processes, the supervisor thereby selects suitable method to solve the specific

problem at hand.

The EIDOminer provides access to the trained prediction function in the other sub-parts

EIDOanalyser and EIDOpredictor using the EIDOconsole. As the name suggests, this

module is a console application which, as input parameters, takes the name of the trained

process in the form of the Analysis History and the Analysis as well as new unlabeled
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input and returns a prediction of the output. A plugin to use the functionality of the

EIDOlearner directly in Microsoft Excel® is also part of the EIDOminer suite. Similarly,

the EIDOconsole can be used by other third party applications like Matlab® to make use

of the learnt prediction function.

The EIDOanalyser provides the functionality to analyse the data, to determine its quality

and to show how the input is related to the output. It can also be used to predict new data

based on the model trained in the EIDOlearner. We can observe the data distribution

by dividing the label values from minimum to maximum into pre-defined classes of equal

range.If we are not able to train a good prediction function, then one of the possible reasons

can be that some rows with significantly different label values are contained in the dataset

for which the input values are very close or even (almost) identical; note that such an

occurence would suggest multiple distinct label values to be predicted for (almost) the

same input, which cannot be expected from a (regular) ML algorithm.7 We can find such

rows using a Predictability function available inside the EIDOanalyser. We can also create

two dimensional charts in the EIDOanalyser using the original data, calculation data or

prediction data; here, “original data” refers to the values from the EIDOlearner, while

“calculation data” is newly predicted in the EIDOanalyser. Normally, we use calculation

data to observe the nonlinear relationship between a selected feature and a label. To

this end, we generate data by varying the selected feature value between a minimum

and maximum value, keeping all the other feature values constant, predicting the output

corresponding to this generated input and creating a two dimensional plot between this

feature and the label to observe the relationship.

The EIDOpredictor provides the functionality for prediction, knowledge generation and

backward analysis. It accepts the current input of the running process and passes it to

the EIDOminer console to obtain the prediction. For knowledge generation, the EIDO-

predictor creates a huge input, passes it to EIDOminer console for prediction and saves

both the generated input and the predicted output inside a database. Once the knowledge

generation phase is complete, the EIDOpredictor starts monitoring the running process

by checking the prediction for each input. As soon as a predicted label value lies outside

the permitted range, the backward analysis is performed to propose a possible change to

the input. The suggested minimal change to keep the process production within the ac-

ceptable range is based on the knowledge database. This application therefore implements

all three stages of the unified framework introduced in Section 4.

In the following, we consider the Elongation dataset described in Section 5.1.2 as an

example to demonstrate the use of this software.

7In fact, this phenomenon strongly suggests that parameters which influence the dependent variable

are missing from the dataset or, more generally, that the label is not fully determined by the input

features alone.
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6.1 Learning stage

In the learning stage, the dataset is loaded into the software EIDOlearner and is by

default split into two parts, for learning (90%) and testing (10%); the split ratio can

also be changed if so desired. Then preprocessing techniques are selected from the choice

of outlier removal, convolution, FFT, moving average, SVD and KPCA, which are then

applied to the learning data; of course, it is also possible to include the raw data means

without any preprocessing. Afterwards, each of the preprocessing techniques produces

a new representation of the dataset. Each of these datasets are then supplied to the

selected machine learning algorithms, which can include Bayesian networks, two variants

of decision trees (C4.5 and CART), KNN, MR, NN and SVM, as shown in Fig. 6.3.

Figure 6.3: EIDOlearner: Functionbox window

With z-score normalization, 10-fold cross validation and a predefined acceptance threshold

for each of the learning methods, all the base algorithms are trained as shown in Fig. 6.4.

Here, we can observe that more than one algorithm is trained successfully.
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Figure 6.4: EIDOlearner: Functionbox trained window

Since we would like to utilize the expertise of each of the trained algorithms, the su-

pervisor provides four combination methods: majority voting, average, weighted average

and PCAMR. The combination method with least error on the learning data is selected

as shown in Fig. 6.5. In this case, the combination method PCAMR produced the best

results and is therefore selected. Once the prediction function has been trained, it is saved

in the software to be used in the EIDOpredictor.
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Figure 6.5: EIDOlearner: Superviser window

6.2 Knowledge generation stage

Fig. 6.6 shows the main window of the EIDOpredictor. Analysis history Elongation and

analysis Ana01 are selected in the left pane and, on top, the tab Data table is active. The

original data is shown in the middle pane and the acceptable elongation limits (15–19)

are provided in the right pane.
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Figure 6.6: EIDOpredictor: Setting limits

To generate the knowledge for the selected analysis, we select the tab Knowledgebase as

shown in Fig. 6.7. Here, for each of the features, lower and upper limits as well as the

number of steps are selected. Based on these settings, knowledge is now generated. Since

there are 17 features in this dataset, choosing 10 steps for each feature will result in 1710

instances, which would by far exceed the available storage capacity. However, it is possible

that not all the features are important. In fact, changing some of the input values might

not have any significant influence on the value of the predicted output. Furthermore,

some features might be too expensive or practically not feasible to change. In such a

scenario, we need to determine which features are important to consider as controllable

parameters, which should be the only ones included in the variation for the knowledge

generation. There are some methods which can help us determine the important fea-

tures. For example, using a coraviance matrix, we can find linear relationships between

the features and the label. Features with higher SHAP values are also considered more

important. Wrapper methods such as forward selection, backward elimination or recur-

sive feature elimination using a good prediction function can also be used to determine

the most important independent variables. Once we have determined these features, the

number of steps can be adjusted accordingly, while the thresholds can be chosen by keep-

ing in mind their costs and othr practical limitations. In this case, since we observed from
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the covariance matrix that the feature Pb is strongly related to elongation, thus 10 steps

are selected for this particular feature and 2 steps are selected for the remaining ones to

generate the knowledge.

Figure 6.7: EIDOpredictor: Generating knowledge

6.3 Monitoring and control stage

In the monitoring and control stage, as soon the input leads to a predicted elongation value

outside the limit, possible changes to the inputs are suggested as shown in Fig. 6.8. Here,

we observe that the value of elongation is 18.45. Therefore, the optimization method is

called, which searches the top 5 inputs closest to the current input but generates elongation

values inside the acceptable range. We can then select one of these proposed changes to

our parameters in order to keep the elongation value between the acceptable thresholds.
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Figure 6.8: EIDOpredictor: Suggested changes
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7 Conclusion and outlook

The work outlined in this thesis contributes to the availability of advanced machine learn-

ing techniques for the foundry industry by providing a simple unified framework which

can directly be applied to the process monitoring and control of casting processes. The

proposed framework consists of an algorithm for automatically training a suitable predic-

tion function on a given dataset, a method for generating a knowledge database from the

trained prediction function and, finally, a monitoring and control technique which, based

on the prediction function, suggests changes to the control variables in order to improve

the outcome of the process.

Using multiple datasets obtained directly from foundry companies, it has been demon-

strated that among a variety of classical machine learning algorithms, it is not possible to

select a single method which is optimal for all possible applications related to the casting

process. The more extensive procedure employed in our framework – which consists of

training multiple algorithms with a number of pre- and postprocessing techniques and

combining the ones which performs best in a particular situation – therefore provides a

major advantage over more direct applications of a single pre-selected machine learning

method. It was also shown that for datasets of sufficient quality, an accurate prediction of

different characteristics of casting parts is indeed possible using the algorithm described

in the learning stage. The remaining two stages, i.e. the knowledge generation and the

monitoring and control, have been successfully implemented as well. While these imple-

mentations have not yet been validated in a production environment, their functionality

has been tested extensively in the context of teaching and research projects using the

EIDOminer software, which has been developed in parts by the author.

In particular, the application EIDOminer has been used and extended in two ZIM sup-

ported research projects, namely IPROguss and AUTOTemp, both of which were related

to applications in the foundry industry: While the IPROguss extended the IPRO project

that originally motivated the development of the EIDOminer software, the aim of the

project AUTOTemp was to automatically control a grid surface temperature on a metal

die casting using cooling channels to keep a homogeneous surface temperature. Here, the

data collected and used for model generation during the experiments included the initial

and final surface temperature, the time lapse and the cooling channel settings, namely

flow speed and temperature of the liquid flowing through the channel.

7.1 Future work

While the proposed framework has demonstrated its applicability on a number of datasets,

the availability of high-quality process data remains the foundation of any machine learn-
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ing technique. In order to implement our framework in an small and medium-sized enter-

prise, data collection needs to become an integral part of the foundry’s IT infrastructure.

Once comprehensive data is available for a casting process, our method could easily be im-

plemented, which would allow for a full validation of the proposed framework. Of course,

the availability of extensive process data would provide other benefits as well, such as a

digital overview of the production state with detailed real-time quantities of the materials

for improved process control.

The framework might also be adapted to include hybrid predictions based on analytical

as well as data driven modeling. Theoretical expertise could thereby be incorporated into

the model more directly, and thus foundry-specific knowledge of the production processes

could ensure that the impact of low data quality or sensor errors are minimized.

The Meta Prediction Function (MPF) in the EIDOlearner can also easily be extended

to include addtional machine learning methods like variants of decision trees [109] and

Bayesian networks [52]. Other feature selection techniques can be incorporated as well to

improve the quality of the dataset or to reduce its size. Deep learning techniques have

also shown very good results in datasets related to the identification and classification of

casting parts and can be included directly into the EIDOlearner. Furthermore, the usage

of the proposed MPF is not limited to the prediction of casting defects, but can also be

used for forecasting cost, expenditure or sales prices related to the production process as

well. Finally, the proposed framework is not limited to the foundry industry and can be

applied in other industrial settings as well.



REFERENCES 114

References

[1] ActiveWizards. Top 8 data science use cases in manufacturing. https://www.

kdnuggets.com/2019/03/top-8-data-science-use-cases-manufacturing.

html, 2019.

[2] T. Ahmad, H. Chen, R. Huang, G. Yabin, J. Wang, J. Shair, H. M. A. Akram,

S. A. H. Mohsan, and M. Kazim. Supervised based machine learning models for

short, medium and long-term energy prediction in distinct building environment.

Energy, 158:17–32, 2018.

[3] S. B. Alvi, R. Martin, and J. Gottschling. Efficient use of hybrid adaptive neuro-

fuzzy inference system combined with nonlinear dimension reduction method in

production processes. In Proceedings of the 4th International Conference on Infor-

mation Technology, Control, Chaos, Modeling and Applications, pages 29–43, 2017.

[4] Y. Bai, Z. Sun, J. Deng, L. Li, J. Long, and C. Li. Manufacturing quality prediction

using intelligent learning approaches: A comparative study. Sustainability, 10(1):85,

2018.

[5] Y. Bai, Z. Sun, B. Zeng, J. Long, L. Li, J. V. de Oliveira, and C. Li. A comparison

of dimension reduction techniques for support vector machine modeling of multi-

parameter manufacturing quality prediction. Journal of Intelligent Manufacturing,

30(5):2245–2256, 2019.

[6] C. Bartels and J. Gottschling. Anwendung intelligenter datenanalyse in gießereien.

Tagungsband Formstofftage, 2014.

[7] A. Bashar. Intelligent development of big data analytics for manufacturing industry

in cloud computing. Journal: Journal of Ubiquitous Computing and Communication

Technologies September, 2019(01):13–22, 2019.

[8] R. S. Batbooti and R. S. Ransing. Data mining and knowledge discovery approach

for manufacturing in process data optimization. In International Conference on

Innovative Techniques and Applications of Artificial Intelligence, pages 203–208.

Springer, 2015.

[9] J. Bell. Machine Learning: Hands-On for Developers and Technical Professionals.

Wiley, Indianapolis, IN, 2014.

[10] A. Binding, N. Dykeman, and S. Pang. Machine learning predictive maintenance

on data in the wild. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT),

pages 507–512, 2019.

https://www.kdnuggets.com/2019/03/top-8-data-science-use-cases-manufacturing.html
https://www.kdnuggets.com/2019/03/top-8-data-science-use-cases-manufacturing.html
https://www.kdnuggets.com/2019/03/top-8-data-science-use-cases-manufacturing.html


REFERENCES 115

[11] Z. Birkner. Industry 4.0 - opportunity or challenge? 2018.

[12] J. Campbell. Complete Casting Handbook: Metal Casting Processes, Techniques

and Design. Complete Casting Handbook: Metal Casting Processes, Metallurgy,

Techniques and Design. Elsevier Science, 2011.

[13] T. Carvalho, F. Soares, R. Vita, R. Francisco, J. P. Basto, and S. G. Alcalá. A sys-
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[39] C. Gröger, F. Niedermann, and B. Mitschang. Data mining-driven manufacturing

process optimization. In Proceedings of the world congress on engineering, volume 3,

pages 4–6, 2012.

[40] M. P. Groover. Fundamentals of Modern Manufacturing: Materials, Processes, and

Systems. John Wiley & Sons, New York, 5th edition edition, 2012.

[41] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh. Feature extraction: foundations

and applications, volume 207. Springer, 2008.

[42] E. Hamouche and E. G. Loukaides. Classification and selection of sheet forming

processes with machine learning. International Journal of Computer Integrated

Manufacturing, 31(9):921–932, 2018.

[43] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 12(10):993–1001, 1990.

[44] Q. He, H. Wu, H. Meng, Z. Hu, and Z. Xie. Molten steel level detection by temper-

ature gradients with a neural network. IEEE Access, PP:1–1, 05 2019.
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