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Background: Existing risk scores appear insufficient to assess the individual survival risk of patients with advanced
pancreatic ductal adenocarcinoma (PDAC) and do not take advantage of the variety of parameters that are collected
during clinical care.
Methods: In this retrospective study, we built a random survival forest model from clinical data of 203 patients with
advanced PDAC. The parameters were assessed before initiation of systemic treatment and included age, CA19-9, C-
reactive protein, metastatic status, neutrophil-to-lymphocyte ratio and total serum protein level. Separate models
including imaging and molecular parameters were built for subgroups.
Results: Over the entire cohort, a model based on clinical parameters achieved a c-index of 0.71. Our approach
outperformed the American Joint Committee on Cancer (AJCC) staging system and the modified Glasgow Prognostic
Score (mGPS) in the identification of high- and low-risk subgroups. Inclusion of the KRAS p.G12D mutational status
could further improve the prediction, whereas radiomics data of the primary tumor only showed little benefit. In an
external validation cohort of PDAC patients with liver metastases, our model achieved a c-index of 0.67 (mGPS: 0.59).
Conclusions: The combination of multimodal data and machine-learning algorithms holds potential for personalized
prognostication in advanced PDAC already at diagnosis.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a disease with
a very poor prognosis. Due to few symptoms of early-stage
tumors, >80% of the patients are diagnosed in an unre-
sectable stage including w50% diagnosed with metastatic
disease.1 With 90%, PDAC represents the most common
subtype of pancreatic cancer.2 While PDAC is projected to
be soon the third leading cause of cancer death in the
European Union, only little progress has been made in
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developing individual treatment strategies. The current
standard of care involves combination chemotherapy regi-
mens that were able to significantly prolong survival in
some patients with the downside of potentially severe side
effects.3,4 To allow for personalized treatment and identify
patients who will likely benefit from enrollment into clinical
trials, it is essential to assess the individual prognosis of
patients at the time of diagnosis. Until now, the most widely
used tool is the eighth edition of the American Joint Com-
mittee on Cancer (AJCC) Staging Manual.5 Given that most
of the patients are classified as stage III or IV at initial
diagnosis, this system does not allow for an appropriately
granular risk stratification. The Glasgow Prognostic Score
(GPS) and a modified variant (mGPS) are validated scores to
predict the patient survival risk based on the inflammatory
and nutritional status in unresectable pancreatic cancer and
additional cancer entities.6,7 Nevertheless, it seems likely
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that the two included parameters, C-reactive protein (CRP)
and albumin, are not sufficient to reflect the individual
disease biology. Several nomograms have been proposed to
predict the survival of patients with advanced pancreatic
cancer to address this issue.8-15 However, these studies
often only included limited clinical information, whereas the
integration of multimodal data such as clinical and imaging
data was shown to improve the survival prediction in
resectable pancreatic cancer as well as in unresectable
patients undergoing radiotherapy.16-22 This is becoming
increasingly relevant as novel methods in automatic image
segmentation provide the opportunity to exploit in-depth
information from standard-of-care radiological imaging.23

Also, existing Cox proportional hazard models assume a
linear combination between covariables. As machine-
learning algorithms become more accessible, methods like
random survival forest are proposed to model more com-
plex interactions in survival risk prediction.24,25

Due to the absence of suitable tools which include suf-
ficient clinical parameters, the decision on further treat-
ment currently is largely based on the experience of the
treating physician. Consequently, this study aims to develop
a model for survival risk prediction in patients with unre-
sectable PDAC at the time of diagnosis by combining
multimodal clinical data for training random survival forests.
METHODS

In this retrospective study, 708 patients with pancreatic
cancer treated at University Hospital Essen were enrolled.
After exclusion of patients due to tumor histology, curative
Enrolled patients fro
University Hospita

Overall cohort n

CT imaging availabAlbumin available n = 155

Radiomics data avail

Ex

Ex

Figure 1. Flowchart depicting the process of enrollment and subgroup formation
CT, computed tomography.
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treatment or missing data, 203 patients were included in the
final analysis (Figure 1). All patients were treated between
2011 and 2021, had a histologically confirmed diagnosis of
PDAC and were not eligible for curatively intended tumor
resection. The external validation cohort consisted of 22
PDAC patients with liver metastases who were palliatively
treated between 2014 and 2021 at the University Hospital
Hamburg-Eppendorf, Germany. All data were collected with a
maximum interval of 2 months to the date of initial diag-
nosis, and before the start of systemic treatment. When
necessary, missing values were substituted with data from
the next available record before treatment. We excluded
patients for whom no suitable data were available. The
overall survival was defined as the period from the docu-
mented date of initial diagnosis to the date of death from
any cause. Patients for whom no date of death was available
were censored at the time of the last follow-up. Seven
clinical parameters were selected for a baseline model based
on a Cox proportional hazards model and prognostic rele-
vance previously described in the literature: age at diagnosis,
metastatic status (no metastases, liver metastases), CRP,
neutrophil-to-lymphocyte ratio (NLR), CA19-9 level and total
serum protein level. For a total of 91 patients of the Essen
cohort, a computed tomography (CT) image was available
before the start of systemic treatment and the primary tu-
mor could be automatically segmented using the pretrained
nnU-Net architecture.23 Using an internal feature extraction
pipeline including PyRadiomics 3.0.1, 1688 image features
were extracted.26 From these, three features were selected
using permutation-based feature importance and the Boruta
package.27,28 For 67 patients of the Essen cohort, data from
m Essen
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Table 1. Characteristics of the internal and external cohorts with unre-
sectable PDAC

Internal cohort
(n [ 203)

External validation
cohort (n [ 22)

Age, years
Mean 64.2 61.4
Range 30-90 38-78

Sex, n (%)
Male 111 (54.7) 14 (63.6)
Female 92 (45.3) 8 (36.4)

AJCC stage, n (%)
II 7 (3.4) 0 (0)
III 28 (13.8) 0 (0)
IV 168 (82.8) 22 (100)

Liver metastasis, n (%)
Yes 131 (64.5) 22 (100)
No 72 (35.5) 0 (0)

Chemotherapy, n (%)
FOLFIRINOX 59 (29.1) 14 (63.6)
FOLFOXIRI 26 (12.8) 0 (0)
FOLFOX 14 (6.9) 1 (4.5)
Gemcitabine þ nab-paclitaxel 41 (20.2) 5 (22.7)
Gemcitabine 20 (9.9) 1 (4.5)
Gemcitabine þ oxaliplatin 13 (6.4) 0 (0)
Other 7 (3.4) 1 (4.5)
None at our institute 23 (11.3) 0 (0)
Median survival time,
months (95% CI)

6.7 (5.8-8.6) 8.4 (3.8-10.2)

Censored, n (%) 17 (8.4) 0 (0)

AJCC, American Joint Committee on Cancer; CI, confidence interval; PDAC, pancre-
atic ductal adenocarcinoma.

Table 2. Univariate and multivariate analysis of the parameters included
in the baseline model

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age 1.03 (1.01-1.04) <0.005 1.03 (1.02-1.05) <0.005
CA19-9 1.00 (1.00-1.00) 0.065 1.00 (1.00-1.00) 0.201
CRP 1.08 (1.06-1.11) <0.005 1.08 (1.05-1.11) <0.005
M0 0.53 (0.35-0.81) <0.005 0.56 (0.33-0.95) 0.030
M1 (HEP) 1.79 (1.31-2.44) <0.005 1.26 (0.86-1.87) 0.236
NLR 1.11 (1.08-1.51) <0.005 1.06 (1.03-1.10) <0.005
Total protein 0.80 (0.66-0.97) 0.024 0.78 (0.63-0.97) 0.024

CI, confidence interval; CRP, C-reactive protein; HR, hazard ratio; M0, no metastasis;
M1 (HEP), liver metastasis; NLR, neutrophil-to-lymphocyte ratio.
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genomic sequencing of macrodissected tissue samples were
available before the start of systemic treatment. Tissues were
collected either from the primary cancer site or metastasis.
Somatic mutations were confirmed by next-generation
sequencing of a focused gene panel. For survival risk pre-
diction, a random survival forest model was built using the
clinical parameters either alone or in combination with
radiomic or molecular features in the respective subgroups.
Our prediction model was compared against the AJCC eighth
edition staging system as well as the mGPS. Predictive
performance was assessed by calculating the average
concordance-index (c-index) from fivefold cross-validation
with a nested grid search for hyperparameters. The 10% of
patients with the highest and lowest risk scores predicted by
our model were defined as high- and low-risk groups,
respectively. To compare the survival between subgroups, we
created KaplaneMeier survival curves and calculated the
restricted mean survival time difference (DRMST). The given
DRMST is the average of a 10 � 2 cross-validation with
nested grid search for hyperparameters. Due to the limited
number, stage II patients were excluded from the test set in
the calculation of the DRMST. To analyze the impact of first-
line chemotherapy regimen on overall survival, we built two
balanced treatment groups using propensity score matching.
We used logistic regression and a nearest neighbor algorithm
to match patients receiving 5-fluorouracil (5-FU) and
gemcitabine-based combination chemotherapies. Model
explainability was achieved using SHapley Additive exPlana-
tions (SHAP).29 Statistical significance between models was
assessed using a two-tailed Student’s t-test and P values
<0.05 were considered statistically significant. All statistical
analyses were carried out using Python 3.8 and the packages
scikit-survival, lifelines, scipy and psmpy.27,30-32

RESULTS

Patient characteristics

The internal cohort included 203 patients treated at Uni-
versity Hospital Essen. The patient characteristics are sum-
marized in Table 1. The mean age was 64.2 years. The
median survival time (MST) was 6.7 months [95% confi-
dence interval (CI) 5.8-8.6 months; see Supplementary
Figure S1, available at https://doi.org/10.1016/j.esmoop.
2022.100555]. At the time of analysis, 186 patients had
died and 17 (8.4%) patients were censored. At the date of
initial diagnosis, 7 (3.4%) patients were in stage II, 28
(13.8%) in stage III and 168 (82.8%) patients were in stage
IV. In total, 131 (64.5%) patients presented with synchro-
nous liver metastases. One hundred and eighty patients
(88.7%) had received systemic treatment at University
Hospital Essen, and 23 (11.3%) patients received best sup-
portive care or palliative treatment at a different facility.
The external validation cohort consisted of 22 patients with
a mean age of 61.4 years and an MST of 8.4 months. All
patients in the external cohort were diagnosed at stage IV
with liver metastases and treated at University Hospital
Hamburg-Eppendorf.
Volume 7 - Issue 5 - 2022
Selected clinical parameters for a baseline model

To select parameters for our baseline model, we carried out
univariate and multivariate analyses on the Essen cohort
using a Cox proportional hazards model (Table 2). The uni-
variate Cox proportional hazards model identified the age at
initial diagnosis, CRP, the metastatic status, which is
composed of no metastases (M0) and liver metastases [M1
(HEP)], NLR and total serum protein level to be significantly
associated with the overall survival. Together with CA19-9,
these parameters were used to build a baseline model. A
detailed analysis is provided in Supplementary Table S1,
available at https://doi.org/10.1016/j.esmoop.2022.100555.
https://doi.org/10.1016/j.esmoop.2022.100555 3
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Internal validation of the baseline model

Over the entire Essen cohort (n ¼ 203), a survival model
based on the seven selected clinical parameters achieved a c-
index of 0.71 (95% CI 0.64-0.79) which was significantly
higher than survival risk prediction based on the AJCC system
(0.57, 95% CI 0.52-0.62, P < 0.006). In a subgroup of patients
for whom albumin levels were available (n ¼ 155),
we compared our prediction model with the established
mGPS. In this subgroup our proposed model achieved a
c-index of 0.72 (95% CI 0.68-0.76) and performed significantly
better than the mGPS (0.63, 95% CI 0.59-0.66, P < 0.005).
Identification of high- and low-risk subgroups

To describe the survival difference between different risk
groups, we calculated the DRMST which represents the
difference between the areas under two KaplaneMeier
survival curves. We compared the high- and low-risk
groups identified by our model with subgroups identified
by AJCC staging (stage III versus IV, n ¼ 203) or mGPS (score
0 versus 2, n ¼ 155). Calculating the average of a 10 � 2
cross-validation, we could achieve significantly higher sur-
vival differences calculated by DRMST between the identi-
fied subgroups using our model compared to AJCC staging
(366, 95% CI 342-390 versus 190, 95% CI 150-230, P <
0.005) or mGPS (434, 95% CI 397-471 versus 241, 95% CI
206-276, P < 0.005). Figure 2 shows representative folds of
the identified subgroups.
Model explainability

Using SHAP we could investigate the importance of
different parameters for the decision making of our model.
Figure 3 shows the feature importance of our baseline
model in the overall internal cohort (n ¼ 203). It could be
shown that a higher value for the features CRP, NLR, age
and CA19-9 as well as the presence of liver metastases are
associated with higher SHAP values and are therefore pre-
dictive of a shorter survival time. A higher value in total
serum protein level and an M0 status are associated with
lower SHAP values predicting a longer survival. Overall, the
inflammatory markers CRP and NLR have the greatest in-
fluence on the decision making of our model.
Influence of first-line chemotherapy regimen

In our internal cohort we investigated the influence of 5-FU
(n ¼ 99) or gemcitabine-based (n ¼ 54) first-line combi-
nation therapy and saw no difference in overall survival
using KaplaneMeier survival curves (P ¼ 0.318, see
Supplementary Figure S2, available at https://doi.org/10.
1016/j.esmoop.2022.100555). Also, when comparing pa-
tients with low and high risk according to our model, we
found no difference in overall survival depending on
chemotherapy regimen (Supplementary Figure S3, available
at https://doi.org/10.1016/j.esmoop.2022.100555). We
used propensity score matching to create two balanced
treatment cohorts (n ¼ 54) and found that age was a sig-
nificant predictor only in the 5-FU cohort (hazard ratio 1.04,
4 https://doi.org/10.1016/j.esmoop.2022.100555
95% CI 1.00-1.08, P ¼ 0.036 versus hazard ratio 1.02, 95% CI
0.99-1.05, P ¼ 0.215) and total serum protein only in the
gemcitabine cohort (0.52, 95% CI 0.32-0.85, P ¼ 0.009
versus 1.02, 95% CI 0.62-1.69, P ¼ 0.92). This relationship
was also evident in a SHAP analysis of prediction models
trained on each cohort (Supplementary Figure S4, available
at https://doi.org/10.1016/j.esmoop.2022.100555).
External validation of the baseline model

We validated the results of our clinical prediction model on
an external cohort of 22 palliatively treated PDAC patients
with synchronous liver metastases. The patient character-
istics are described in Table 1. The baseline model trained
on our internal cohort achieved a c-index of 0.67 compared
to a c-index of 0.59 by mGPS.
Inclusion of imaging data

In a subgroup of 91 patients of the internal cohort, imaging
data were available, and three radiomics features from the
primary tumor region were selected (first-order skewness,
first-order median, small-area low-gray-level emphasis).
Multivariate analysis revealed that tumor skewness and
median gray-level intensity were independently associated
with overall survival (Supplementary Table S2, available at
https://doi.org/10.1016/j.esmoop.2022.100555). To analyze
the impact of radiomics features on survival prediction, we
built a separate model which was based on the seven
clinical variables together with the three selected radiomics
features. By the addition of radiomics features, the survival
prediction in our internal cohort (0.73, 95% CI 0.61-0.84)
could not be significantly improved as compared to the
baseline model excluding radiomic features (0.70, 95% CI
0.61-0.78, P ¼ 0.2) in this subgroup.
Inclusion of molecular data

In a subgroup of 67 patients of the internal cohort, geno-
mics data were available. In 53 patients (79.1%), a KRAS
mutation was detected. As expected, the KRAS p.G12D
mutation was the most frequent subtype (24, 45.3%), fol-
lowed by p.G12V (20, 37.7%), p.G12R (4, 7.5%) and p.G12C
(2, 3.8%). The KRAS p.G12D mutation was an independent
predictor of prognosis (hazard ratio 2.79, 95% CI 1.49-5.22,
P < 0.005; see Supplementary Table S3, available at https://
doi.org/10.1016/j.esmoop.2022.100555). The addition of
the KRAS p.G12D mutation status to the clinical parameters
could significantly improve survival risk prediction in this
subgroup (0.76, 95% CI 0.65-0.86 versus 0.73, 95% CI 0.64-
0.83, P < 0.015).

DISCUSSION

To allow for optimal treatment planning in patients with
pancreatic ductal adenocarcinoma, it is important to assess
the patient’s individual prognosis at the time of diagnosis.
We demonstrated that survival risk prediction based on a
machine-learning approach incorporating routine clinical
parameters achieved a significantly better risk stratification
Volume 7 - Issue 5 - 2022
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Figure 2. KaplaneMeier survival curves showing: (A) high- and low-risk subgroups identified by the AJCC staging system, our baseline model (B, D), or the mGPS (C).
In the overall internal cohort (n ¼ 203), the AJCC staging system (A) was compared to our baseline model (B). In a subgroup where albumin was available (n ¼ 155) the
mGPS (C) was compared to our baseline model (D). Experiments show representatives of a 10 � 2 cross-validation.
AJCC, American Joint Committee on Cancer; mGPS, modified Glasgow Prognostic Score.
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as compared to the AJCC staging system or the mGPS. This
enabled us to identify high- and low-risk patients who have
substantially different survival outcomes under palliative
systemic therapy. We externally validated our risk predic-
tion model in an independent cohort confirming the
reproducibility of our findings. In the internal patient
cohort, we could further improve risk prediction by the
inclusion of the KRAS p.G12D mutational status. Further,
we observed a trend toward better risk prediction by the
inclusion of imaging data derived from the primary tumors.
We suggest our model as an alternative to existing risk
stratification tools in care planning of advanced pancreatic
cancer patients. In addition, our risk predictor may
improve patient stratification in studies of systemic treat-
ment of PDAC.

In contrast to previous prediction tools in unresectable
PDAC, our study incorporates a comprehensive set of pa-
rameters including clinical, imaging and molecular data and
reveals the decision making of our model by using an
explainable machine-learning approach.8-15 The combina-
tion of multimodal data provides a more precise
Volume 7 - Issue 5 - 2022
characterization of the individual patients and has already
shown promising results in resectable pancreatic cancer,
although not following a machine-learning approach.16 In
contrast to these studies, we used random survival forests,
which enables our model to predict non-linear relation-
ships. The parameters used for our baseline model were
largely reported in the literature to be associated with
survival of patients with solid tumors but, to our knowl-
edge, they have not been used in this combination as risk
predictors in advanced pancreatic cancer.11-13,33,34 The role
of inflammation in cancer evolution and progression is well
known, and previous studies have described the importance
of the inflammatory markers CRP and NLR in advanced
pancreatic cancer.35-38 Through SHAP, we were able to
conclude that our model also considers these two param-
eters to be crucial for the further course of therapy.

Albumin serves as a ‘negative’ acute-phase protein and
indicator of nutrient status of the patient. It could show its
potential in survival risk prediction as part of the mGPS.6

More than 80% of PDAC patients are affected by cancer
cachexia, which leads to hypoalbuminemia.39 In our study,
https://doi.org/10.1016/j.esmoop.2022.100555 5
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Figure 3. Explainability of the baseline model with SHAP in the overall internal cohort. Each dot represents one patient. The parameters are ranked from top to
bottom according to their impact on the model output. The color gradient represents the feature value while the x-axis shows the respective SHAP values. Positive or
negative SHAP values indicate the responsibility of parameters for a longer or shorter predicted overall survival, respectively.
CRP, C-reactive protein; M1 (HEP), liver metastasis; NLR, neutrophil-to-lymphocyte ratio; SHAP, SHapley Additive exPlanations.
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we have chosen total serum protein level instead of albu-
min because of the higher availability in our dataset and
could show that it was an independent predictor of survival
risk. CA19-9 is an established tumor marker in pancreatic
cancer and was also proven as an independent risk pre-
dictor at baseline in patients with unresectable PDAC.40,41

We also included the metastatic status in our model, but
in contrast to other studies we specified the metastatic
localization by using the presence of liver metastases as a
separate parameter. This allowed our model to include
three different metastatic scenarios (M0, M1 with liver
metastases, M1 other than liver). Oweira et al. have pre-
viously indicated the relevance of metastasis site on overall
survival.42 By using an explainable approach, we could infer
that our model uses the additional information in a
reasonable way and in line with the literature, even though
M0 is the least relevant parameter for the model’s decision
making.

The reproducibility of classification scores must be a
major concern in order to generalize the results to newly
presenting patients. While nested cross-validation is a
strong method toward this end, most studies have not
validated their scores on an external patient cohort. Our
results were validated on a cohort of 22 patients with
synchronous liver metastases treated at a different hospital,
showing that our model generalizes well to patients that are
potentially submitted to different treatments. As nearly
50% of PDAC patients are already metastasized at diagnosis
and thus classified as stage IV, further risk stratification by
the AJCC staging system is not possible in clinical practice.
Although the external patient cohort was different from the
internal cohort, our model generalized well and out-
performed the mGPS.

The addition of the KRAS p.G12D mutation status in our
internal cohort further improved the predictive power of
our model. KRAS mutations, which are observed in up to
90% of PDAC patients, have been extensively studied, and
particularly the KRAS p.G12D mutation was previously
6 https://doi.org/10.1016/j.esmoop.2022.100555
identified to be a negative predictor of survival in patients
with unresectable PDAC.43-46 It was shown that this subtype
plays a critical role in tumor metabolism and mainte-
nance.47 As the abundance of KRAS mutations in our study
is in line with previous studies, this strengthens our results
of the KRAS p.G12D mutation being an independent pre-
dictor and supports our approach to include cancer geno-
mics in a prediction model.

While several studies could show an association between
radiomics features of the primary tumor and overall survival
in patients with resectable PDAC,17,18,20-22,48-53 only few
studies have investigated this relationship for patients with
unresectable tumors.19,54-56 These studies suggested among
others tumor skewness as a predictor, which we also
included in our model.54,56 Using SHAP we could conclude
that while tumor skewness has a particularly strong influ-
ence on our model, the small-area low-gray-level emphasis
does not provide much benefit (Supplementary Figure S5,
available at https://doi.org/10.1016/j.esmoop.2022.
100555). Our results suggest a trend toward a benefit
from the addition of radiomics features, which, however,
did not significantly enhance risk prediction based on our
baseline model. In this study, we exclusively investigated
the impact of radiomics features from the primary tumor
region. Other studies in pancreatic as well as colorectal
cancer have shown that imaging information from liver
metastases allow survival prediction and improve the pre-
diction based on clinical parameters alone.57,58 The inte-
gration of imaging information on liver and other
metastases could potentially further improve the survival
prediction and should be investigated in further studies.

Patient management, including the selection of first-line
therapy, is a significant challenge in the treatment of
advanced pancreatic cancer. A prediction model for
chemotherapy selection is beyond the scope of this study
and requires prospective randomized data collection, which
we plan to conduct in the future. Based on the current
results, we conclude that overall survival is not markedly
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affected by treatment choice. Therefore, therapeutic de-
cisions should still be driven initially on the basis of clinical
criteria and in consultation with the patient. Nevertheless,
our results indicate that younger age is particularly prog-
nostically favorable for 5-FU-based chemotherapies and
higher total serum protein for gemcitabine-based therapies.
Since our prediction model works independently of the
chemotherapy regimen, we see substantial clinical benefit
by being able to recommend closer monitoring to patients
with poor prognosis and enabling early enrollment in clin-
ical trials of new therapeutic concepts.

Our study has limitations. Firstly, it is a retrospective
study and consists only of a medium sample size. We
decided not to use data imputation to avoid introducing
bias into our data and had to exclude patients with missing
data. While automatic image segmentation was carried out
to avoid bias due to manual segmentation, we had to
exclude patients in whom no primary tumor was visible. To
control for overfitting, we carried out cross-validation.
While the holdout data were unseen by the model during
fitting, it was included in the feature extraction process
which leads to potential information leakage. To rule this
out, we validated our results on an external dataset which
was previously unseen by our model. Since both datasets
were obtained from German university hospitals, it will be
important in the further course to also validate the model
with geographically different datasets as well as datasets
from patients treated by community oncologists.

In conclusion, we propose a novel prediction model based
on multimodal parameters and a machine-learning approach
for the prediction of overall survival risk in patients with
advanced PDAC. We could externally validate that our model
based on seven clinical parameters outperformed the exist-
ing staging system and an established clinical score.We could
demonstrate the relevance of cancer genomics data on sur-
vival prediction and suggest further studies to investigate the
potential of radiomics in pancreatic cancer.
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