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1 Introduction

This introduction serves the purpose to argue why all chapters of this thesis fit under
the umbrella of shrinkage estimators. To this end, the first part of this introduction
briefly motivates the usage of shrinkage estimators and illustrates the underlying key
ideas of such estimators. The second part of the introduction summarizes the content and
contribution of each chapter in this thesis and outlines the context in which shrinkage
methods are used in each chapter.

1.1 Motivation for Using Shrinkage Estimators

The history of shrinkage estimators is closely connected to Charles Stein (cf. Gruber
(2017) for a historical survey of shrinkage estimators). In 1956, Stein (1956) discovered
a class of estimators whose estimators can achieve a lower mean squared error (MSE)
than the maximum likelihood estimator, the least squares estimator, and even than the
uniformly minimum variance unbiased estimator (Fourdrinier, Strawderman and Wells,
2018). To be precise, he considered the situation where there is only one observation from
a multivariate normal distribution with unknown mean vector that is to be estimated and
known variance-covariance matrix equal to the identity matrix (without loss of generality).
In this case, it seems natural to use the value of the observation as an estimator of its
mean. However, Stein (1956) proved that this estimator, which corresponds to the sample
average, is not optimal in a mean squared error sense if the dimension of the multivariate
normal distribution exceeds two. By combining the components of the multivariate
observation in a specific way, we can improve the mean squared error (defined as the
sum of the MSE of each component). This seems paradox since the components of the
multivariate observation are independent in this example. It is astonishing and strikingly
contrary to generally held belief that we can increase estimation accuracy by incorporating
seemingly irrelevant information in each component of the multivariate observation (see,
e.g, Fourdrinier et al. (2018), Efron and Morris (1977) and Efron (2017)). Stein’s result
(i) surprised many (Gruber, 2017), (ii) is one of the most influencial, certaintly most
controversial results in statistics in the post-war period (Efron, 2017), and (iii), without
exaggeration, one of the most discussed in statistiscal theory (Hoffmann, 2000).

As noted by Stein (1956), a shortcoming of his result is that it does not allow for
immediate practical application. On the one hand, not all estimators in the discovered
class improve the MSE compared to the minimum variance unbiased estimator and, on
the other hand, there is no clear guidance on how to obtain those estimators, which
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actually have lower MSE, in practice. However, in 1961, Charles Stein and his student
Willard James (James and Stein, 1961) sharpened the result of Stein (1956) and derived
a class of estimators, whose estimators always have smaller MSE than the minimum
variance unbiased estimator, and, maybe even more importantly, the best estimator in
this class (in terms of MSE). This best estimator is referred to as James-Stein estimator
and shifts the estimate “closer” to the true mean vector, by shrinking each component of
the observation towards zero (Hoffmann, 2000). In this case and in most applications of
shrinkage estimators, zero is the shrinking target (Lehmann and Casella, 2006). If we
have prior knowledge that the parameter vector is close to some value other than zero,
we can use this value as shrinking target for the James-Stein estimator, without loosing
any of the theoretical advantages (Hoffmann, 2000).1

By proposing the James-Stein estimator, James and Stein (1961) introduced the first
classic shrinkage estimator (Hansen, 2016a). The James-Stein estimator and variations
have proved useful in different settings such as predicting cure rates for operations at
hospitals, outcomes of election nights, batting averages for baseball players, and fire alarm
probabilites (see, e.g., Gruber (2017), Efron (2017), and Efron and Morris (1977)) and
can reduce prediction errors by 50% and more in the aforementioned examples (Efron,
2017).

An important insight from the James-Stein estimator, which constitutes a biased
estimator, is that shrinkage has two opposing effects. First, shrinkage typically leads
to biased estimators. Second, it can lower the variance of the resulting estimator and,
thereby, the MSE compared to unbiased estimators (Draper and Van Nostrand, 1979).
By definition, the MSE of an estimator is equal to the the sum of the variance and the
squared bias of the estimator. By tolerating a (small) bias, we can decrease the variance
of an estimator to such an extent that the MSE decreases. That is, the James-Stein
estimator illustrates that there is a bias-variance tradeoff and that we may prefer biased
over unbiased estimates in some circumstances (Hoffmann, 2000).

To demonstrate that an unbiased estimator is not always desirable, Chernoff and
Moses (1959) give the following simplified but yet insightful example, which we present
in the slightly modified form of Jaynes (2003): A cable company wants to lay a telephone
cable across Francisco Bay. Unfortunately, they do not know how much cable they will
need and, therefore, they have to estimate the length of the cable. If they overestimate
the length of the cable, the financial loss will be proportional to the excess amount of
the cable length. However, if they underestimate the length of the cable, the cable end
falls into the water and they have to deal with a financial disaster. In this example, we
clearly want to overestimate the cable length and using an unbiased estimator could be
described as foolhardy, as Jaynes (2003) put it.2

1In regression analysis, a shrinkage target of zero means that an independent variable has no influence
on the dependent variable and, therefore, may be considered as the natural origin for a regression
coefficient (Copas, 1983).

2Furthermore, Jaynes (2003) note that unbiased estimators can even violate elementary logic. In
the following, we describe one of many possible examples where this undesirable feature of unbiased
estimators appears. Given a sample of size one and that we observe two events, an unbiased estimator
for the expected number of events λ of a Poisson distribution is two. Yet, an unbiased estimator for λ3
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A famous example for a shrinkage estimator, which illustrates the variance-bias
trade-off, is the estimation of the variance of a normal distribution from a random sample
of size n (Jaynes, 2003). Usually, the sample variance is calculated by one over n − 1
times the sum of the squared deviations of each observation from the sample mean. This
is an unbiased estimator of the population variance. However, using the scaling factor of
one over n+ 1 instead of one over n− 1 shrinks the estimate closer to zero and results in
an estimator for the population variance, which is biased but has more than 50% lower
MSE than the unbiased estimator. That is, it requires twice the amount of data for the
unbiased estimator to obtain the same MSE, highlighting the relative cost which may be
associated with an unbiased estimator.

The James-Stein estimator layes out the foundations for modern shrinkage estimation,
a major theme in current research (Efron, 2017). In a linear regression context, two
well-known shrinkage estimators are ridge regression (Hoerl and Kennard, 1970) and the
Least Absolute Shrinkage and Selection Operator (Tibshirani, 1996). Both methods
utilize the aforementioned variance-bias tradeoff and aim to reduce the MSE. Hoerl and
Kennard developed ridge regression to address the problematic behavior of the ordinary
least squares (OLS) estimator under multicollinearity, where OLS coefficients can have
wrong signs, can be sensitive to minor changes in the underlying data, and exhibit high
variance, leading to poor predictions (cf. Farrar and Glauber (1967), Vinod (1978),
and Hastie, Tibshirani and Friedman (2009)). By adding a penalty on the sum of the
squared coefficients to the OLS loss function, ridge regression shrinks the coefficients not
only towards zero but also towards each other (Hastie et al., 2009), i.e., it assigns the
same coefficients to highly (positively) correlated variables. Thereby, it stabilizes the
regression coefficients and improves the precision of the estimates under multicollinearity.
Similarly to ridge regression, LASSO adds a penalty to the OLS loss function. However,
it penalizes the sum of the absolute value of coefficients. In contrast to ridge regression,
which only shrinks coefficients towards zero, the LASSO can estimate certain coefficients
to be zero and, therefore, can select variables. Hence, LASSO allows to determine the
most important variables, which is helpful for the interpretation of a model.3 However,
the LASSO tends to randomly select only one out of a set of highly correlated variables
(Zou and Hastie, 2005). To combine the advantages of ridge regression and LASSO,
Zou and Hastie (2005) introduce the elastic net. On the one hand, elastic net can
simultaneously estimate and select variables like LASSO. On the other hand, it can
deal with highly correlated variables like ridge regression and can select groups of highly
correlated variables. Ridge regression, LASSO, elastic net, and extensions are the main
shrinkage estimators studied in this thesis.

is zero. That is, we observe two events and are still advised to estimate λ to be zero. This is absurd
since if λ were zero, it would be impossible to ever observe two events. The (biased) maximum likelihood
estimator is 23 and does not violate elementary logic.

3The James-Stein estimator can also be applied to linear regression models. However, it can neither
solve the problems of multicollinearity nor select variables (Hoerl, 2020). Draper and Van Nostrand
(1979) provide a review of the James-Stein estimator and ridge regression and Hansen (2016b) compares
the MSE of the James-Stein estimator and the LASSO.
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1.2 Overview of Thesis

This thesis consists of six chapters, including this introduction. The second and third
chapter deal with the estimation of unobserved heterogeneity in discrete choice models
while the fourth chapter studies the estimation of observed heterogeneity in discrete
choice models. The fifth chapter proposes a method to identify and efficiently estimate
structural vector autoregressions (SVARs). The sixth chapter concludes.

The second chapter, which is co-authored by Florian Heiss (Heinrich Heine University
Düsseldorf) and Maximilian Osterhaus (Heinrich Heine University Düsseldorf), aims to
model unobserved heterogeneity across agents in discrete choice models. In contrast to
observed heterogeneity, unobserved heterogeneity cannot be linked to observed character-
istics of the agents and arises due to different tastes and preferences of agents. To draw
valid conclusions from a model, it is crucial to capture unobserved heterogeneity present
in the population. A popular approach which takes this into account and allows the
coefficients of the economic model to vary across agents is a random coefficients model.
Our goal is to estimate the distribution of the random coefficients.

For that purpose, this chapter considers the simple and computationally fast non-
parametric estimator of Fox, Kim, Ryan and Bajari (2011), hereafter FKRB. Their
estimator approximates the distribution of random coefficients through a fixed number
of grid points, representing prespecified types of heterogenous agents. The probability
of each type occurring in the population is estimated by constrained least squares. To
obtain a valid distribution function, the weights are constrained to be nonnegative and
to sum up to one.

We show that these constraints induce unintended shrinkage of the estimated
probability weights towards zero. That is, they transform the estimation problem into
a special case of the nonnegative LASSO (Wu, Yang and Liu, 2014), explaining the
estimator’s sparse nature observed in many of its applications. In addition to its sparse
nature, the connection to nonnegative LASSO reveals that the estimator may randomly
select certain types of agents under strong correlation and, in consequence, that the
interpretation of the estimates may be misleading. This property is especially relevant
as Fox, Kim and Yang (2016) prove that their estimator identifies the true distribution
if sufficiently many types of agents are included in the estimation, i.e., the grid of
random coefficients becomes sufficiently dense. However, in practice, a sufficiently dense
grid of random coefficients is typically accompanied by high correlation among grid
points. Hence, the estimator’s sparsity and “random” selection behavior can lead to
inaccurate approximations of the true distribution function and have a drastic impact on
the identification of the model.

To mitigate the random selection behavior and to allow for more accurate approxi-
mations of the true distribution function, we extend the estimator to a special case of
the nonnegative elastic net (Wu and Yang, 2014). Since our estimator is a generalization
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of the FKRB estimator, approximation accuracy of our estimator is guaranteed to be
as least as high as the one of the FKRB estimator. Our theoretical results and Monte
Carlo simulations show that our generalized estimator improves the recovery of the
support of the random coefficients’ distribution of the random coefficients and achieves
a more accurate approximation. This chapter is published in the Journal of Econometrics.

Monte Carlo simulations conducted in Chapter 2 reveal that the generalized estimator
of the second chapter still tends to shrink the weights too much and yields solution which
are too sparse, especially if the grid of random coefficients becomes dense as required for
identification. Recognizing this property, Chapter 3, which is single-authored, proposes
to use a random elastic net estimator. The random elastic net estimator builds on
the generalized estimator of Chapter 2 and is based on the random LASSO estimator
developed by Wang, Nan, Rosset and Zhu (2011). It applies a bootstrap procedure which
is similar to that of the random forest (Breiman, 2001). More concretely, the random
elastic net estimator repeatedly estimates the nonnegative elatic net estimator of the
Chapter 2 using only a randomly selected subset of prespecified grid points. The final
estimates are obtained by averaging over the estimates across bootstrap repetitions. The
key idea is to break a substantial part of the correlation among grid points before each
estimation, by randomly selecting a subset of the grid points, and to average out the
“random” selection behavior of the nonnegative elatic net estimator by repeating the
estimation sufficiently often (with different subsets of the grid points).

Two Monte Carlo simulations presented in this chapter reveal that the random
elastic net estimator substantially improves the recovery of the true support of the
distribution function compared to FKRB estimator and, more importantly, also to the
nonnegative elatic net estimator. The improved recovery of the true distribution’s support
also translates to more accurate approximations of the true distribution function. The
application of the random elastic net estimator to the model developed by Blundell,
Gowrisankaran and Langer (2020), who study the gains from dynamic enforcement of air
pollution regulations, highlights that the elastic net and random elastic net estimator can
recover complicated distribution functions whereas the estimated distribution function
of the FKRB estimator does not seem very informative. It estimates only few positive
weights and, consequently, approximates a potentially continuous distribution through a
step function with only few steps.

The fourth chapter is joint work with Maximilian Osterhaus. In contrast to the
preceding two chapters, the fourth chapter aims to model observed heterogeneity in
discrete choice models. Observed heterogeneity refers to differences across agents which
can be linked to differences in their observed characteristics such as their age, gender, and
income. Typically, observed heterogeneity is modeled using parametric functional forms
(such as linear interactions). However, relying on such parametric approaches seems
restrictive in the era of ever growing data sets. Recently, Farrell, Liang and Misra (2021a)
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proposed to combine the structure imposed by economic models with the flexibility of
deep learning to estimate the expected value of heterogeneous quantities of interest.
These quantities of interest are functions of observed characteristics of the agents in the
population. The appealing feature of their approach is that, on the one hand, the results
remain interpretable and, on the other hand, flexible functional forms of heterogeneity
can be recovered. To conduct inference with the deep learning approach, Farrell et al.
(2021a) build on the influence function approach of Chernozhukov, Chetverikov, Demirer,
Duflo, Hansen, Newey and Robins (2018).

However, they do not analyze the impact of shrinkage, which is routinely applied
when tuning deep learning methods, on their method. In this chapter, we intend to
fill this gap and study the finite sample performance of the approach of Farrell et al.
(2021a) in the context of discrete choice models. To this end, we conduct several Monte
Carlo experiments. These experiments reveal that deep learning generally allows to
precisely approximate the expected value of heterogenous parameters and that regular
robust standard errors do not lead to valid inferential statements. When no shrinkage
is employed, the influence function approach can suffer from substantial bias and large
estimated standard errors driven by extreme outliers, resulting from overfitting. Shrinkage
reduces overfitting and stabilizes the estimation approach, at the expense of inducing a
regularization bias. The regularization bias invalidates the inferential statements obtained
from the influence function procedure in our experiments. Unlike shrinkage, repeated
sample splitting does not introduce additional bias while also stabilizing the estimation
procedure. Consequently, our simulations indicate that repeated sample splitting allows
the construction of valid inferential statements.

The fifth chapter, which is co-authored by Sascha Keweloh (Technical University of
Dortmund), deals with estimating the simultaneous interaction of multiple time series
variables. For that purpose, we consider SVARs which allow to assess how a shock to one
variable affects all considered variables simultaneously. For identification of an SVAR, an
a priori structure has to be imposed on the model. To this end, traditional approaches
restrict the interaction of the variables in specific ways (see, e.g., Sims, 1980). However,
oftentimes only some but not all of those restrictions are well-justified, e.g., by economic
theory. In contrast, modern data-driven approaches do not restrict the interactions of the
variables in the SVAR (see, e.g., Lanne, Meitz and Saikkonen, 2017 and Keweloh, 2021b).
Rather, they identify the SVAR by solely relying on stochastic properties of the shocks,
such as independence and non-Gaussianity. To be precise, the stochastic properties of
the shocks imply higher-order moment conditions which allow to identify the SVAR.
However, the imposed assumptions on the stochastic properties of the shocks – if correct –
may still place challenges on finite sample estimation. For instance, higher-order moment
conditions may be volatile in finite samples and lead to imprecise estimates.

We propose to combine block-recursive restrictions with higher-order moment condi-
tions. Our approach exploits only the restrictions on the interactions that are well-justified
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and relies only on those stochastic properties of the shocks that are additionally needed for
identification. That said, our proposed block-recursive SVAR nests both the traditional
approach based on restrictions for the interaction of the shocks and the data-driven ap-
proach based on non-Gaussian shocks as limiting cases. For a prespecified block-recursive
structure, we derive identifying and overidentifying moment conditions. We prove that
these overidentifying moment conditions can increase the asymptotic efficiency of the
SVAR estimator. However, the number of overidentifying moment conditions increases
quickly when the number of variables in the SVAR increases. As a result, many moment
conditions can cause problems for finite sample estimation. A further problem is that,
in practice, some moment conditions included in the estimation may be invalid, which
would lead to inconsistent estimates.

To exploit potential efficiency gains of overidentifying moment conditions in finite
samples and to safeguard against invalid moment conditions, we use a LASSO-type GMM
estimator (Cheng and Liao, 2015) which does not shrink coefficients – as usually done
by LASSO – but moment conditions to zero. Our LASSO-type SVAR GMM estimator
consistently selects only relevant and valid overidentifying moment conditions and refrains
from selecting invalid or redundant moment conditions. Furthermore, the LASSO-type
SVAR GMM estimator is asymptotically normal. A Monte Carlo experiment and an
application to oil market data illustrate the improved performance and the relevance of
the proposed LASSO-type GMM estimator.

In summary, each of the four main chapters applies modern shrinkage methods and
highlights that shrinkage estimators prove useful in various fields. In particular, while
Chapters 2 – 4 apply shrinkage estimators in discrete choice models, Chapter 5 applies
them in a time series context. In all chapters, we demonstrate the increased performance
of our estimators using simulation methods. In Chapters 2 and 5, the simulations support
the conclusions drawn from our theoretical analysis of the estimators. Readers will note
that some aspects are mentioned more than once. These repetitions ensure that each
chapter can be read independently.
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2 Nonparametric Estimation of the Random
Coefficients Model: An Elastic Net
Approach

Co-authored by Florian Heiß and Maximilian Osterhaus

Abstract

This paper investigates and extends the computationally attractive non-
parametric random coefficients estimator of Fox, Kim, Ryan and Bajari (2011).
We show that their estimator is a special case of the nonnegative LASSO,
explaining its sparse nature observed in many applications. Recognizing
this link, we extend the estimator, transforming it into a special case of the
nonnegative elastic net. The extension improves the estimator’s recovery
of the true support and allows for more accurate estimates of the random
coefficients’ distribution. Our estimator is a generalization of the original
estimator and therefore, is guaranteed to have a model fit at least as good
as the original one. A theoretical analysis of both estimators’ properties
shows that, under conditions, our generalized estimator approximates the
true distribution more accurately. Two Monte Carlo experiments and an
application to a travel mode data set illustrate the improved performance of
the generalized estimator.
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2.1 Introduction

Adequately modeling unobserved heterogeneity across agents is a common challenge in
many empirical economic studies. A popular approach to address unobserved heterogene-
ity is the random coefficients model, which allows the coefficients of the economic model
to vary across agents. The aim of the researcher is to estimate the distribution of the
random coefficients.

Fox et al. (2011), hereafter FKRB, propose a simple and computationally fast
estimator that can approximate distributions of any shape. The estimator uses a
fixed grid where every grid point is a prespecified vector of random coefficients. The
distribution function is obtained from the probability weights at the grid points, which
are estimated with constrained least squares. In principle, the approach can approximate
any distribution arbitrarily closely if the grid of random coefficients is sufficiently dense
(McFadden and Train, 2000).

Applications of the estimator indicate, however, that it tends to estimate only few
positive weights and, thus, sets the weights at many grid points to zero. As a consequence,
the estimator lacks the ability to estimate smooth distribution functions but instead
approximates potentially continuous distributions through step functions with only few
steps. Our first contribution is to show that the estimator of FKRB is Nonnegative
LASSO (Wu et al., 2014) (NNL) with a fixed tuning parameter to explain its sparse
nature.

NNL, which was first mentioned in the seminal work of Efron, Hastie, Johnstone,
Tibshirani and Others (2004) as positive LASSO, is a popular model selection method
typically used in applications with supposedly sparse models. It is applied in various
research fields, e.g., in vaccine design (Hu, Follmann and Miura, 2015), nuclear material
detection (Kump, Bai, Chan, Eichinger and Li, 2012), document classification (El-Arini,
Xu, Fox and Guestrin, 2013), and index tracking in stock markets (Wu et al., 2014). NNL
shares the property of LASSO (Tibshirani, 1996) that it regularizes the coefficients of the
model and shrinks some to zero. This property is observed for the FKRB estimator in
different Monte Carlo studies (e.g., Fox et al., 2011 and Fox et al., 2016) and applications
to real data (e.g., Nevo, Turner and Williams, 2016, Illanes and Padi, 2019, Blundell et al.,
2020 and Houde and Myers, 2019). Nevo et al. (2016) study the demand for residential
broadband and estimate that there are only 53 out of 8626 potentially heterogeneous
consumer types. Illanes and Padi (2019) use the approach to estimate the demand for
private pension plans in Chile and assign positive weights to only 194 of 83,251 grid
points. Blundell et al. (2020) analyze firms’ reaction to the regulation of air pollution
and recover no more than 12 of the 10,001 potential points.

In addition to its sparse nature, the connection of the FKRB estimator to NNL reveals
the estimator’s potentially incorrect selection of grid points under strong correlation.
The estimator “randomly” selects one out of a group of highly correlated points and sets
the remaining weights to zero (see Zou and Hastie, 2005, and Hastie et al., 2009, for the
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random behavior of LASSO).
The estimator’s sparsity and “random” selection behavior can cause inaccurate

approximations of the true distribution through non-smooth distributions with the
estimated support possibly deviating from the true distribution’s support. The latter
can lead to misleading conclusions with respect to the heterogeneity of agents in the
population. Fox et al. (2016) prove that the estimator identifies the true distribution
if the grid of random coefficients becomes sufficiently dense. However, in practice, the
correlation tends to increase with the density of the grid and can become so strong that
the optimization problem to the FKRB estimator cannot be solved due to singularity
(Nevo et al., 2016, Online Supplement). Therefore, the high correlation of a dense grid
in combination with the incorrect grid point selection of the estimator under strong
correlation can have a drastic impact on the identification of the model.

Our second contribution is to provide a generalization of the FKRB estimator that
is able to accurately approximate continuous distributions even under strong correlation.
Recognizing the link to NNL, we add a quadratic constraint on the probability weights.
The constraint transforms the estimator to a special case of nonnegative elastic net (Wu
and Yang, 2014). The extension mitigates the sparsity and improves the selection of
the grid points. Due to the additional flexibility that is introduced with the extension,
the estimator adjusts to the degree of correlation among grid points. Note that our
generalization always includes the FKRB estimator as a special case such that the model
fit cannot be worse for our estimator than the FKRB estimator.

We show theoretically, under conditions, that our estimator provides more accurate
estimates of the true underlying distribution. For that purpose, we derive the selection
consistency and an error bound on the estimated distributions. The analysis of the
selection consistency examines the estimator’s ability to estimate positive probability
weights at grid points that lie inside the true distributions support, and zero weights at
points outside the true support. The selection consistency is necessary to approximate
the true distribution as accurately as possible. Since the estimated distribution recovers
the existing heterogeneity in the population, i.e., agents’ varying preferences, recovering
the true support points is also important for the correct interpretation of the model.

The analysis reveals that our generalized estimator correctly selects the grid points
under less restrictive conditions than the FKRB estimator. The error bounds on the
estimated distribution functions illustrate the positive impact of our extension on the
overall approximation accuracy. Two Monte Carlo experiments in which we estimate
a random coefficients logit model confirm the superior properties of our generalized
estimator.

Other nonparametric estimators for the random coefficients model include Train
(2008), Train (2016), Burda, Harding and Hausman (2008) and Rossi, Allenby and
McCulloch (2012). Train (2008) introduces three estimators that are, in principle,
similar to the general approach of FKRB but employ a log-likelihood criterion instead of
constrained least squares. Train (2016) suggests approximating the random coefficients’
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distribution with polynomials, splines or step functions instead of with a fixed grid of
preference vectors. The approach substantially reduces the number of required grid
points if the researcher specifies overlapping splines and step functions. Due to the
lower number of required grid points, the approach reduces the curse of dimensionality,
which is a shortcoming of the fixed grid approach if the economic model includes a large
number of random coefficients. However, Train (2008) estimates the respective model
with the EM algorithm, which is sensitive to its starting values and is not guaranteed
to converge to a global optimum, and Train (2016) uses simulated log-likelihood for the
estimation. Burda et al. (2008) and Rossi et al. (2012) employ a Bayesian hierarchical
model to approximate the random coefficients’ distribution with a mixture of Normal
distributions. Even though the estimator potentially has better finite sample properties,
it uses a Markov Chain Monte Carlo technique with a multivariate Dirichlet Process
prior on the coefficients, which is computationally more demanding.

The remainder of the paper is organized as follows. Section 2.2 describes the FKRB
estimator and introduces our generalized version. Section 2.3 derives the condition on the
estimators’ sign consistency and an error bound on the estimated distribution functions.
Section 2.4 presents two Monte Carlo experiments that investigate the performance of
our generalized estimator in comparison to the FKRB estimator. Section 2.5 applies the
estimators to the Mode Canada data set from the R package mlogit (Croissant, 2019).
Section 2.6 concludes and provides an outlook.

2.2 Fixed Grid Estimators

To introduce our estimator, we consider the framework of a random coefficient discrete
choice model. The approach, however, is not restricted to discrete choice models but can
be applied to any model with unobserved heterogeneous parameters. Let there be an i.i.d.
sample of N observations, each confronted with a set of J mutually exclusive potential
outcomes. The researcher observes a K-dimensional real-valued vector of explanatory
variables xi,j for every observation unit i and potential outcome j, and a binary vector yi

whose entry yi,j is equal to one whenever she observes outcome j for the ith observation,
and zero otherwise. The goal is to estimate the unknown distribution of heterogeneous
parameters F0(β) in the model

Pi,j (x) =
�
g (xi,j , β) dF0 (β) (2.1)

where g (xi,j , β) denotes the probability of outcome j conditional on the random coeffi-
cients β and covariates xi,j . The researcher specifies the functional form of g (xi,j , β). A
prominent example of Equation (2.1) is the multinomial mixed logit model, the state-
of-the-art model for demand estimation. For a detailed description of the multinomial
mixed logit see Train (2009, pp. 134–150). In this model, consumer i realizes utility
ui,j = xT

i,jβi + ωi,j from alternative j, given product characteristics xi,j and unobserved
consumer-specific preferences βi. ωi,j denotes an additive, consumer- and choice-specific
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error term. Consumer i chooses alternative j of J alternatives (and an outside good with
utility ui,0 = ωi,0) if ui,j > ui,l for all l ̸= j. Under the assumption that ωi,j follows a
type I extreme value distribution, the unconditional choice probabilities, Pi,j(x), are of
the form

Pi,j(x) =

�
exp

(
xT

i,jβ
)

1 +∑J
l=1 exp

(
xT

i,lβ
)dF0 (β) . (2.2)

F0(β) represents the distribution of heterogeneous consumer preferences in the population
and is to be estimated.

2.2.1 Fixed Grid Estimator by FKRB

In most applications, researchers place restrictive assumptions on the functional form of
F0(β) in advance, and estimate its parameters from the data. FKRB propose a simple
and fast mixture approach to estimate the underlying random coefficients’ distribution
without restrictive assumptions on its shape. The estimator is a special case of sieve
estimators (Chen, 2007). It uses a finite and fixed grid of random coefficient vectors as
mixture components to construct the distribution from the estimated probability weight
of every component. The underlying idea of this fixed grid estimator is the transformation
of the unconditional choice probabilities in Equation (2.1) into a probability model in
which F0(β) enters linearly. FKRB derive the linear probability model in two steps:
they transform Equation (2.1) into a regression model with the random coefficients’
distribution as the only unknown term. Adding yi,j to both sides and moving Pi,j to the
right results in the probability model

yi,j =
�
g (xi,j , β) dF0 (β) + (yi,j − Pi,j (x)) . (2.3)

To exploit linearity in parameters, they use a sieve space approximation to the infinite-
dimensional parameter F0(β). The sieve space approximation divides the support of the
random coefficients β into R fixed vectors. Each vector has length K, the number of
random coefficients included in the model. The location of these vectors is specified by
the researcher. With the sieve space approximation, Equation (2.3) becomes a simple
linear probability model with unknown parameters θ = (θ1, . . . , θR)T

yi,j ≈
R∑

r=1
g (xi,j , βr) θr + (yi,j − Pi,j (x)) (2.4)

where g(xi,j , βr) denotes the conditional choice probability evaluated at grid point r.
Given the fixed grid of random coefficients, BR = (β1, . . . , βR), the researcher estimates
the probability weight θr at every point r = 1, . . . , R. The linear relationship between
the outcome variable and the unknown parameters θ allows to estimate the mixture
weights with the least squares estimator. The linear regression, which regresses the binary
dependent variable yi,j on the choice probabilities evaluated at BR, in total has NJ obser-
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vations, J “regression observations” for every statistical observation unit i = 1, . . . , N and
R covariates zi,j = (g(xi,j , β1), . . . , g(xi,j , βR)). By the definition of choice probabilities,
the expected value of the composite error term yi,j − Pi,j(xi,j) conditional on xi,j is
zero. Thus, the regression model satisfies the mean-independence assumption of the least
squares approach (Fox et al., 2011).

The estimator of the random coefficients’ joint distribution is constructed from the
estimated weights

F̂ (β) =
R∑

r=1
θ̂r 1 [βr ≤ β] ,

where β is an evaluation point chosen by the researcher and the indicator function
1[βr ≤ β] is equal to one whenever βr ≤ β, and zero otherwise.

To ensure that F̂ (β) is a valid distribution function, FKRB suggest estimating the
weights with the least squares estimator subject to the constraints that the weights are
nonnegative, and sum to one

θ̂F KRB = arg min
θ

1
2NJ

N∑
i=1

J∑
j=1

(
yi,j −

R∑
r=1

θrz
r
i,j

)2

s.t. θr ≥ 0, r = 1, . . . , R, and
R∑

r=1
θr = 1.

(2.5)

Key to an accurate approximation of F0(β) is the precise estimation of the probability
weights at every grid point. Basis to a precise estimation of the probability weights is
the consistent selection of the relevant grid points. This requires the constrained least
squares estimator to estimate positive weights at all grid points at which F0(β) has a
positive probability mass, and zero weights otherwise. While zero weights at grid points
inside F0(β)’s support cause inaccurate approximations through step functions with only
few steps, positive estimates at grid points outside F0(β)’s support lead to unreliable
estimates of the random coefficients’ distribution.

2.2.2 Nonnegative LASSO vs. Nonnegative Elastic Net

To provide a more accurate non-parametric estimator with similar computational advan-
tages, we suggest a simple generalization of the FKRB estimator. Our adjusted version
includes the baseline estimator as a special case but allows for smoother estimates of F0(β)
when necessary. To derive our estimator, we extend the optimization problem formulated
in Equation (2.5) by a constraint on the sum of the squared probability weights. This
additional constraint provides a straightforward way to mitigate the estimator’s sparse
nature. Our generalized estimator is still simple and computationally fast.
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2.2.2.1 Connection to Nonnegative LASSO

We first illustrate the source of the FKRB estimator’s sparsity, which helps to understand
its behavior and the intuition behind our extension.

One explanation of the potential sparsity of the estimates is the effect of the
nonnegativity constraint. Slawski and Hein (2013) show that nonnegative least squares
estimators exhibit a self-regularizing property that yields sparse solutions. The FKRB
estimator restricts the weights not only to be nonnegative but also to sum up to one.
Taking both constraints into account, we recognize that the FKRB estimator is a special
case of the nonnegative LASSO (NNL) (Wu et al., 2014).

To show the relation of the FKRB estimator to NNL, we transform the equality
constrained problem formulated in Equation (2.5) into its inequality constrained form.
The constraint that the probability weights sum to one allows us to reparametrize the
optimization problem in terms of R− 1 instead of R unknown parameters. Without loss
of generality, one can rewrite the Rth weight as θR = 1 −

∑R−1
r=1 θr. Substituting θR in

Equation (2.4) with 1 −
∑R−1

r=1 θr gives the inequality constrained optimization problem

θ̂FKRB = arg min
θ

1
2NJ

N∑
i=1

J∑
j=1

(
ỹi,j −

R−1∑
r=1

θrz̃
r
i,j

)2

s.t. θr ≥ 0, r = 1, . . . , R− 1, and
R−1∑
r=1

θr ≤ 1

(2.6)

where ỹi,j = yi,j − zR
i,j and z̃r

i,j = zr
i,j − zR

i,j for every r = 1, . . . , R− 1. Because Equation
(2.6) is an equivalent form of the optimization problem in Equation (2.5), the objective
functions are minimized by the same vector of probability weights. The only difference
in the inequality constrained problem is the estimation of the Rth weight, which is
calculated after optimization as θ̂R = 1 −

∑R−1
r=1 θ̂r, and is not explicitly part of the

optimization. By the constraints θr ≥ 0, r = 1, . . . , R − 1, and ∑R−1
r=1 θr ≤ 1, the Rth

weight satisfies the property of a probability weight, 1 ≥ θR ≥ 0.
Comparing the FKRB estimator’s transformed optimization problem with that of

the NNL applied to the linear probability model formulated in Equation (2.4),

θ̂NNL = arg min
θ

1
2NJ

N∑
i=1

J∑
j=1

(
ỹi,j −

R−1∑
r=1

θrz̃
r
i,j

)2

s.t. θr ≥ 0, r = 1, . . . , R− 1, and
R−1∑
r=1

θr ≤ c,

reveals that the baseline estimator is a special case of NNL with fixed tuning parameter
c = 1. The constraint that the probability weights sum to one resembles an ℓ1 penalty
that regularizes the parameter estimates and shrinks some weights to zero if the sum of
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unrestricted weights exceeds one.
The amount of regularization depends on the size of the unrestricted estimates. The

more the sum of the R − 1 unconstrained weights in Equation (2.6) exceeds one, the
stronger the shrinkage imposed by the constraint, and the larger the number of potential
zero weights (see, e.g., Hastie et al., 2009, p. 69, for the effect of the LASSO tuning
parameter). According to Wu et al. (2014), NNL can result in very sparse models if the
constraint is too restrictive. If the sum of the R− 1 unconstrained weights is less than or
equal to one, the constraint has no effect, and the estimated coefficients correspond to
the nonnegative least squares solution.

In addition to its sparse nature, the relation to NNL reveals that the FKRB estimator
exhibits a “random” selection behavior among grid points. Just like NNL, the estimator
has no unique solution when the correlation among choice probabilities evaluated at BR

is strong. It tends to select one out of a group of highly correlated grid points at random
and estimates the weights of the remaining grid points to zero (see Zou and Hastie, 2005,
and Hastie et al., 2009, for the random behavior of LASSO).

The correlation is particularly strong in a dense grid among neighboring grid points
which is why the random selection behavior becomes more severe if the number of grid
points increases. The reason for the strong correlation in dense grids can be explained
by the calculation of the regressor matrix Z̃ = (z̃1, . . . , z̃R−1): For every row in Z̃, the
column entries are calculated with the same vector of characteristics xi,j and the only term
that differs across columns is the vector of random coefficients βr. If the grid becomes
dense, the difference between the neighboring random coefficient vectors vanishes and
the corresponding column entries for every row in Z̃ are evaluated at almost exactly the
same point. As a consequence, Z̃T Z̃ is at best near-singular if the number of grid points
R approaches infinity. This contradicts the requirement of a dense grid for accurate
approximations of F0(β) (Fox et al., 2016).

2.2.2.2 Elastic Net Estimator

Extending the FKRB estimator’s optimization problem formulated in Equation (2.6) by
a quadratic constraint on the probability weights alleviates the sparse nature and random
selection behavior. The additional constraint is known from ridge regression (Hoerl and
Kennard, 1970) and transforms the FKRB estimator into the nonnegative elastic net (Wu
and Yang, 2014) with fixed constraint on the ℓ1-penalty. Thus, our adjusted estimator
minimizes

θ̂ENET = arg min
θ

1
2NJ

N∑
i=1

J∑
j=1

(
ỹi,j −

R−1∑
r=1

θrz̃
r
i,j

)2

s.t. θr ≥ 0, r = 1, . . . , R− 1, and
R−1∑
r=1

θr ≤ 1 and
R−1∑
r=1

θ 2
r ≤ t

(2.7)
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where t is a nonnegative tuning parameter specified by the researcher. Having a linear and
quadratic constraint on the probability weights ensures a more reliable selection of grid
points: the quadratic constraint encourages a grouping effect, which allows us to recover
highly correlated points inside the true support of F (β) together and, hence, reduces the
estimator’s sparsity. The linear constraint, in turn, retains the LASSO property, which
makes it possible to select weights inside the support of the true distribution and to
estimate zero weights at points outside the true support (Zou and Hastie, 2005).

In addition to the improved selection consistency, our theoretical findings in Section
2.3 show that the quadratic constraint has the desirable property that it allows the
specification of a substantially finer grid of random coefficients. While the FKRB
estimator runs into almost perfect collinearity problems if the grid becomes finer (Fox
et al., 2016), the quadratic constraint ensures that the optimization problem for our
adjusted estimator always has a solution. The non-sparse solutions together with the
possibility of a finer grid endow our estimator with the ability to provide more accurate
and reliable estimated distribution functions.

When implementing the estimator in common statistical software (e.g., R, MATLAB),
many quadratic optimization routines only allow for linear constraints. In order to
incorporate the constraint on the sum of squared probability weights into these routines,
consider the Lagrangian version of our generalized estimator in Equation (2.7)

θ̂ENET = arg min
θ

1
2NJ

N∑
i=1

J∑
j=1

(
ỹi,j −

R−1∑
r=1

θrz̃
r
i,j

)2
+ 1

2µ
R−1∑
r=1

θ 2
r + λ

(
R−1∑
r=1

θr − 1
)

−
R−1∑
r=1

νrθr.

(2.8)

The first term in Equation (2.8) is the least squares objective function that minimizes
the sum of squared residuals. The second term corresponds to the constraint on the sum
of squared probability weights where µ ≥ 0 is the equivalent counterpart to t in Equation
(2.7). The third and fourth terms with their nonnegative Lagrange multipliers λ and
νr, r = 1, . . . , R− 1, enforce the constraints that the estimated weights sum to one and
that they are nonnegative, respectively. λ and νr, r = 1, . . . , R − 1, are endogenously
determined by the system through the formulation of the linear constraints. In particular,
λ corresponds to an endogenous LASSO parameter. Adding the second term to the
first term in Equation (2.8) transforms the loss function such that we can use quadratic
optimization routines. The third and fourth terms can be supplied as linear constraints
as stated in Equation (2.7) to these routines.

The tuning parameter µ is specified by the researcher before the optimization com-
mences. It relates to t in opposite direction: large values of µ imply small values of t.
The larger the value of the tuning parameter µ, the stronger is the penalty on the sum
of squared probability weights, and, hence, the smaller is t. For every µ, there exists
a t such that the estimated weights in Equation (2.8) and Equation (2.7) are the same
(Hastie et al., 2009, p. 63).
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The specification of the tuning parameter µ allows adjusting the estimator to the
level of correlation among grid points. Larger (smaller) values of µ (t) give more weight to
the quadratic constraint, which enables the joint recovery of grid points if the correlation
is strong and, hence, reduces the sparsity of the estimator.

The specification of the tuning parameter µ allows adjusting the estimator to the
level of correlation among grid points. Larger (smaller) values of µ (t) give more weight to
the quadratic constraint, which enables the joint recovery of grid points if the correlation
is strong and, hence, reduces the sparsity of the estimator. For increasing (decreasing)
values of µ (t), the estimator shrinks the probability weights of highly correlated grid
points toward each other and induces an averaging of the estimated weights. For µ = 0
(any t ≥ 1), the quadratic constraint does not bind, such that the adjusted estimator
simplifies to the baseline estimator. Therefore, our estimator is a generalization of the
FKRB estimator given in Equation (2.6), including it as a special case.

Based on our Monte Carlo experiments, we recommend choosing the tuning parameter
µ with cross-validation and the one standard error rule based on the mean squared error
(MSE) criterion. This approach ensures that our estimator achieves a model fit that is
at least as high as the FKRB estimator’s. If the model fit is highest for µ = 0 (t ≥ 1),
the outcome of our generalized estimator is the same as that for the FKRB estimator,
while it performs better if the model fit is highest for some µ > 0 (t < 1). For decreasing
values of t, the estimator shrinks the probability weights of highly correlated grid points
toward each other and induces an averaging of the estimated weights.

The theoretical analysis in Section 2.3 and the Monte Carlo studies in Section 2.4
indicate that the improved selection property of our generalized estimator leads to more
precise estimates of the probability weights. If the linear constraint on the sum of
the probability weights is strictly binding, i.e., if the sum of unconstrained nonnegative
weights is larger than one, the FKRB estimator leads to biased estimates of the probability
weights. This follows from its equivalence to NNL (see, e.g., Hastie et al., 2009, p. 91). In
comparison to the unconstrained solution, the estimator shrinks the weights at some grid
points to zero despite the potential positive probability mass of F0(β) at these points.
Due to the constraint that the estimated weights sum to one, the incorrect zero weights
lead to downward biased estimates at points with positive weights. The FKRB estimator
reallocates the probability mass from the points with incorrect zero weights to other
points, which imposes an upward bias at these points.

The quadratic constraint potentially reduces the described distortions through its
improved selection consistency. As a result of more correct positive probability weights,
the quadratic constraint diminishes the reallocation of probability caused by the linear
constraint and, therefore, reduces the bias both at points with incorrect zero weights and
positive weights.
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Remark 2.1. Our generalized estimator can be extended to a generalized least-squares
and smooth basis densities version of our estimator analogous to Fox et al. (2011).1
Furthermore, the proposed elastic net version is not the only possible way to address the
sparse nature of the FKRB estimator. These extensions have to fit into the framework
that the estimated probability weights are nonnegative and sum to one, which, e.g.,
excludes the adaptive LASSO (Zou, 2006) and post selection estimators. Among the
suitable extensions, we considered the Factor-Adjusted Regularized Model Selection
(FarmSelect) (Fan, Ke and Wang, 2020) and the nonnegative version of the S-LASSO
(Hebiri and van de Geer, 2011).
FarmSelect is a LASSO extension that addresses highly correlated covariates. The
underlying idea of the approach is the decorrelation of covariates via a factor model with
few latent factors. In our context, Farm-Select requires the choice probabilities to follow
an approximate factor model. S-LASSO is a different variant of the elastic net that
uses a ℓ2-fusion penalty, λ∑R−1

r=1 θr + µ
∑R−1

r=2 (θr − θr−1)2, which penalizes the squared
difference of neighboring probability weights. The penalty helps to smooth the solution
which makes it particularly suitable for the estimation of continuous distributions.
Monte Carlo simulations suggest that S-LASSO is a promising alternative to the elastic
net estimator.2 Compared to the elastic net extension, the S-LASSO imposes additional
restrictions on the shape of the distribution. We believe that the elastic net extension
may be the most intuitive approach.

2.3 Theoretical Analysis of the Estimators’ Properties

The requirement of a sufficiently fine grid, which potentially includes points outside
the true support, transforms the fixed grid estimator into a high dimensional regression
problem with potentially sparse solutions and highly correlated covariates. Recall that in
such a context, an important element of an accurate estimation of F0(β) is the consistent
selection of grid points. It guarantees the correct recovery of F0(β)’s support, and
therefore, is crucial to accurate estimation of the probability weights. In Subsection 2.3.1,
we study both estimators’ ability to select the correct weights. To evaluate the overall
approximation accuracy of the estimators presented in Section 2.2, we derive an error
bound for the estimated probability weights and the estimated distribution functions in
Subsection 2.3.2.

We show that our generalized estimator is selection consistent under less restrictive
conditions on the design matrix. While the estimator of FKRB is less likely to be selection
consistent if the number of grid points becomes large (and hence, the correlation strong),

1The extensions adjust the calculation of the sum of squared residuals. For the generalized least-
squares version, each observation is weighted to address the heteroscedasticity. The smooth basis
densities estimator uses pre-specified parametric distributions instead of fixed random coefficient vectors
to simulate the choice probabilities. The estimated probability weights denote the weight of every
parametric distribution. For a more detailed description see Fox et al. (2011).

2The results are available from the authors on request.
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the generalized estimator can satisfy the condition through an appropriate choice of the
tuning parameter µ. Similarly, compared to the derived error bounds for the FKRB
estimator, the error bounds for the generalized estimator can be decreased through the
choice of the tuning parameter µ.

Due to the relation of the estimators to the NNL and nonnegative elastic net, re-
spectively, we build on the literature on regularized regression. Our proof of the selection
consistency mainly follows Jia and Yu (2010), who analyze selection consistency of the
elastic net under i.i.d. Gaussian errors. Similarly to Jia and Yu (2010), Wu et al. (2014)
and Wu and Yang (2014) derive selection consistency of the nonnegative LASSO and the
nonnegative elastic net for i.i.d. Gaussian errors. We extend their proof to sub-Gaussian
errors and allow for correlation among the J errors that belong to the same observation
unit i. Thereby, we additionally contribute to the literature on the nonnegative elastic
net. Neither Jia and Yu (2010) nor Wu and Yang (2014) calculate error bounds on the
deviation between the estimated and the true coefficients. Our proof of the error bound
on the estimated weights is drawn from Takada, Suzuki and Fujisawa (2017), who analyze
a generalization of the elastic net. We modify their proof such that it is in line with the
probability model in Section 2.2.

In line with Fox et al. (2016) and in addition to the tuning parameter µ, we also
treat the specification of the grid points as tuning parameters specified by the researcher.
In particular, we allow the number of grid points R(N) to depend on the sample size N .
That is, the larger N , the more grid points R(N) can be included into the grid. To keep
notation uncluttered, we drop the dependence on N and write R instead of R(N) where
not relevant in the subsequent analyses.

Suppose θ∗ = (θ∗
1, . . . , θ

∗
R−1)T specifies the vector of probability weights that

yields the most accurate discrete approximation, F ∗(β) = ∑R
r=1 θ

∗
r1[βr ≤ β] with

θ∗
R = 1 −

∑R−1
r=1 θ

∗
r , of F0(β) which can be obtained with the estimators for a given

grid BR.3 In the following, the introduction of F ∗(β) allows us to study the selection
consistency and the distance between θ̂ and θ∗ for any number of grid points R. In
addition, we use F ∗(β) as a benchmark to compare the estimated distribution function,
F̂ (β) = ∑R

r=1 θ̂r1[βr ≤ β] with θ̂R = 1 −
∑R−1

r=1 θ̂r, to the true underlying distribution
F0(β). Fox et al. (2016) show that, under some regularity conditions, it holds that
|F0(β) − F ∗(β)| = O(R−s̄/K) where s̄ ≥ 0 measures the degree of smoothness of F0(β)4

3For instance, the best discrete approximation θ∗ can be chosen such that it minimizes the MSE of
the true distribution and its best discrete approximation over all grid points. If the true distribution is
continuous with density f0(βr), θ∗

r can be calculated as the normalized weighted density at grid point
βr for r = 1, . . . , R − 1, i.e., θ∗

r = w(βr)f0(βr)/
(∑R−1

r=1 w(βr)f0(βr)
)
. E.g., the weights w(βr) can be

obtained by quadrature methods (cf. Fox et al., 2016, Lemma 1). If the true distribution is discrete
and the grid for the estimation includes the true mass points, θ∗ corresponds to the probability mass
of the true distribution at every point and the fixed grid estimator can, in principle, recover the true
distribution without approximation error. Our subsequent results do not rely on the way the weights θ∗

are calculated and hold for continuous and discrete true distributions.
4The density function of β is assumed to be s̄-times continuously differentiable.
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and K refers to the number of random coefficients. Thus, the difference of F0(β) and
F ∗(β) becomes negligibly small for R going to infinity.

In order to analyze the selection consistency and to derive the error bounds on the
estimated weights and distribution functions, we use the Lagrangian formulation of our
generalized estimator stated in Equation (2.8). We exploit the structure of our data and
make the following assumptions on the linear probability model corresponding to F ∗(β)

yi,j =
R∑

r=1
θ∗

rz
r
i,j + ϵi,j , (2.9)

where ϵi,j is the linear probability error and θ∗
R = 1−

∑R−1
r=1 θ

∗
r , and on the data generating

process.

Assumption 2.1.

(i)
(
ϵi = (ϵi,1, ..., ϵi,J)

)N

i=1
are independent.

(ii) ϵi,j is sub-Gaussian: E [exp (tϵi,j)] ≤ exp
(

σ2t2

2

)
(∀t ∈ R) for σ > 0.

(iii)
(
Z̃i
)N

i=1 are i.i.d. with a density bounded from above and each z̃r
i,j ∈ [−1, 1].

(iv) E
[
ϵi|Z̃1, ..., Z̃N

]
= 0.

Z̃ refers to the regressor matrix of the transformed model in Equation (2.6) and Z̃i to
the corresponding J ×R− 1 regressor matrix for observation unit i. Assumption 2.1(i)
imposes independence across the vectors of errors for each observation unit. It does
not assume independence of elements within each vector of errors. Assumption 2.1(ii)
assumes that the errors are sub-Gaussian with variance proxy σ. The variance proxy
σ serves as an upper bound of the variance of the errors and allows for (conditional)
heteroscedasticity. Note that the error term in the linear probability model in Equation
(2.9) is sub-Gaussian with variance proxy σ ≤ 1. This follows from the fact that the error
term in the linear probability model is bounded between −1 and 1 since yi,j is either 0
or 1, the weights θr are nonnegative and, by Assumption 2.1(iii), z̃r

i,j is also bounded
between −1 and 1. z̃r

i,j ∈ [−1, 1] is satisfied by the logit kernel in Equation (2.2) and
other examples such as the kernel of binary choice and of multinomial choice without
logit errors (see, e.g., Fox et al., 2016). Assumption 2.1(iv) holds by the definition of
linear probability models.

2.3.1 Selection Consistency

For our analysis of the selection consistency, we adapt the definition of Zhao and Yu
(2006). An estimator is defined as equal in sign if θ̂r and θ∗

r have the same sign for every
r = 1, . . . , R− 1. Due to the nonnegativity of the estimates, the definition implies that θ̂
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must be positive at all points in BR for which θ∗
r > 0, and zero at those where θ∗

r = 0.
Therefore, the estimation of the correct signs is equivalent to the correct selection of grid
points. If an estimate θ̂ of θ∗ is equal in sign, we write θ̂ =s θ

∗.
Our definition only includes R− 1 points of the transformed model in Equation (2.8).

That is, we only identify whether the R− 1 weights included in Equation (2.8) have the
correct sign but not whether the last weight θ̂R = 1 −

∑R−1
r=1 θ̂r has the correct sign.

Definition 2.1. An estimate θ̂ is sign consistent if
lim

N→∞
P
(
θ̂ =s θ

∗
)

= 1.

According to Definition 2.1, an estimator is sign consistent if it estimates a positive
weight at every grid point at which θ∗

r > 0, and zero weights otherwise with probability
approaching one as N goes to infinity.

To derive the condition under which our generalized estimator is sign consistent,
we assume that BR includes both grid points inside the support of F0(β), i.e., points
at which θ∗

r > 0, and points outside the true support, i.e., at which θ∗
r = 0. Let

S = {r ∈ {1, . . . , R − 1}|θ∗
r > 0} define the index set of grid points at which θ∗ > 0,

and let SC = {r ∈ {1, . . . , R − 1}|θ∗
r = 0} denote its complement. The corresponding

cardinalities are defined as s :− |S| and sC :− |SC |. We refer to grid points in S as active
grid points and to grid points in SC as inactive grid points. Z̃S and Z̃SC denote the
sub-matrices of all columns of Z̃ that are in S and SC , respectively.

Since we allow the number of grid points R(N) to increase with the sample size N ,
we typically expect the number of active points s(N) to increase with N as well if F0(β)
is sufficiently smooth. We again drop the dependence on N for ease of notation and
simply write s instead of s(N).

Let λ denote the endogenous LASSO parameter given in Equation (2.8), that follows
from the constraint c = 1 in Equation (2.7). µ is the exogenous tuning parameter that is
specified by the researcher.

For the analysis in this subsection, we assume that λ > 0. This holds if the inequal-
ity constraint on the sum of probability weights is strongly active.5 The assumption
implies that (i) the left-out probability weight, θR, is equal to zero, which can be easily
justified by the possibility to exclude a point that is located far outside the presumed
true support, and that (ii) the remaining R − 1 probability weights do not sum to ex-
actly one when estimated without the linear constraint on the sum of probability weights.6

5A strongly active constraint requires strict complementary slackness of the KKT condition for the
inequality constraint (cf. Nocedal and Wright, 2006, pp. 341–343).

6Note that for λ = 0, the generalized estimator simplifies to the nonnegative ridge estimator for µ > 0
and to the nonnegative least squares estimator for µ = 0. For the latter, we refer the interested reader to
Slawski and Hein (2013) who study the selection consistency of the nonnegative least squares estimator.
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Following Wu and Yang (2014), we then obtain the subsequent condition for the
sign consistency of the generalized estimator:

Nonnegative Elastic Irrepresentable Condition (NEIC). For λ > 0, there exists
a positive constant η > 0 (independent of N) such that

max
r∈SC

1
NJ

Z̃T
SC Z̃S

( 1
NJ

Z̃T
S Z̃S + µIS

)−1 (
ιS + µ

λ
θ∗

S

)
≤ 1 − η

where ιS is a vector of s ones and IS is the identity matrix.

The NEIC is a condition for the correct recovery of support points through our generalized
estimator.

The term Z̃T
SC Z̃S restricts the linear dependency between active and inactive grid

points. The term Z̃T
S Z̃S measures the linear dependency among active grid points. The

condition is less likely to be satisfied if the number of grid points R – and therefore,
the correlation – increases. Besides the linear dependence of the regressor matrix, the
condition takes into account the magnitude of the endogenously fixed LASSO parame-
ter λ and the tuning parameter µ. For µ = 0, the NEIC reverts to the Nonnegative
Irrepresentable Condition (NIC), the corresponding condition for selection consistency
of the FKRB estimator. In comparison to the NEIC, the NIC is more restrictive in
two ways: First, it requires the inverse of Z̃T

S Z̃S to exist, which is not necessary for the
NEIC. Note that this restricts the number of points R the researcher can include into
the grid for the FKRB estimator. Second, the researcher can ensure the NEIC to be met
through an appropriate choice of the tuning parameter µ, which is not possible for the NIC.

In addition to the NEIC, we restrict the rate at which the number of active grid
points s(N) and total grid points R(N) can increase with the sample size N . This
accommodates the fact that the number of grid points specified by the researcher should
diverge if F0(β) is continuous, which is necessary for the convergence of the estimated
distribution F̂ (β) to the true underlying distribution F0(β).

Rate Condition on Density of Grid (RCDG).

1. lim
N→∞

2 s(N)J exp
(

−NξS
min(µ,N)2

ρ(µ,N)2

2 s(N)

)
= 0.

2. lim
N→∞

2(R(N) − 1)J exp
(

−Nη2λ2
(

ξS
min(µ,N)

s(N)
√

s(N)+ξS
min(µ,N)

)2 /
2
)

= 0,

where ξS
min(µ,N) denotes the (unrestricted) minimal eigenvalue of 1/(NJ)Z̃T

S Z̃S + µIS

and ρ(µ,N) := min
i∈S

∣∣∣∣ (1/(NJ)Z̃T
S Z̃S + µIS

)−1 (
1/(NJ)Z̃T

S Z̃Sθ
∗
S − λιS

) ∣∣∣∣.
The RCDG can only be satisfied if ξS

min(µ,N) > 0.
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This is only restrictive for the FKRB estimator and always holds for the generalized
estimator as long as µ > 0 since 1/(NJ)Z̃T

S Z̃S + µIS is positive definite for µ > 0
and only positive semidefinite for µ = 0. The assumption ξS

min(µ,N) > 0 excludes the
possibility of perfect collinearity to ensure that the solution to the FKRB estimator exists.

Theorem 2.1. Suppose Assumption 2.1 holds. Suppose further that NEIC and RCDG
hold. Then

lim
N→∞

P
(
θ̂ =s θ

∗
)

= 1.

Proof. See Appendix 2.C.2.

Theorem 2.1 establishes the selection consistency of the generalized estimator, for which
µ ≥ 0, and for the FKRB estimator, for which µ = 0. The theorem relies on sufficient
conditions for the estimators to select the true weights. These conditions are more
restrictive for the FKRB estimator than for our generalization. That is, because the
minimal eigenvalue ξS

min(µ,N) = ξS
min(0, N) + µ is higher for the generalized than for the

FKRB estimator and moreover, the NEIC holds whenever the NIC is satisfied.
This implies that our estimator consistently selects the true support whenever the

FKRB estimator does. The converse is not true since the NEIC might hold even though
the NIC does not. Thus, Theorem 2.1 reveals that our estimator can select the true
weights in cases in which the FKRB estimator cannot.

Remark 2.2. Theorem 2.1 can also be applied to the smooth basis densities estimator
proposed by Fox et al. (2011). The estimator is an extension of the fixed grid version
for which the researcher specifies R parametric density functions ϕ(β|Ωr) with fixed
distribution parameters instead of a fixed grid of random coefficients.7 Regarding the
analysis of the selection consistency, the only difference to the fixed grid approach lies in
the calculation of the regressor matrix Z. For the smooth basis densities estimator, Fox
et al. (2011) suggest to calculate the columns in Z with D i.i.d. simulation draws from the
respective distribution function, i.e., zr

i,j = (1/D)∑D
d=1 g(xi,j , βr,d) where βr,d is drawn

from a parametric distribution, e.g., with parameters Ωr :− (µr,Σr), and g(xi,j , βr,d)
denotes the logit kernel as in Equation (2.2). Since Since Assumptions 2.1(i)-(iv) also hold
true for the smooth basis densities estimator, Theorem 2.1 also applies to the estimator
whereby the selection consistency relates to the correct recovery of active and inactive
basis densities.

7E.g., for fixed normal densities Ωr = (µr, Σr) where µr is k × 1 mean vector and Σr a k × k
variance–covariance matrix that are specified by the researcher before optimization. The probability
weight for every basis density is estimated from the data using the estimator in Equation (2.5). The
distribution function estimator for the smooth basis densities estimator is F̂ (β) =

∑R

r=1 θ̂rΦ(β|Ωr) where
Φ(·) is the distribution function corresponding to ϕ(·) (Fox et al., 2016).
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2.3.2 Error Bounds

A key requirement for an accurate estimation of F0(β) – in addition to the correct support
recovery discussed in Subsection 2.3.1 – is the precise estimation of the probability weights.
In this section, we derive an error bound for the euclidean distance between the estimated
probability weights and the weights that yield the best discrete approximation of F0(β).

Let H denote the set of vectors of length R− 1 in [−1, 1]R−1 for which the ℓ1-norm
is no greater than 2

H :=
{
x ∈ [−1, 1]R−1

∣∣∣ ∥∥x∥∥1 ≤ 2
}
.

The set H contains all possible values of ∆θ̂ :− θ̂−θ∗ since θ̂ and θ∗ are vectors of weights
which sum up to at most 1. Therefore, it is sufficient to consider elements in H when
analyzing the potential error ∆θ̂.

Define the restricted minimum eigenvalue of the real symmetric R− 1 ×R− 1 matrix
1/(NJ)Z̃T Z̃ + µIR−1 over the set of vectors H as

ξmin(µ) := inf
v∈H

vT
[ 1

NJ Z̃
T Z̃ + µIR−1

]
v∥∥v∥∥2

2

.

Because the restricted minimal eigenvalue is greater than or equal to the unrestricted
minimal eigenvalue, we use the restricted eigenvalue to derive a tighter error bound. We
still assume ξmin(µ) > 0, which rules out perfect collinearity. By the same arguments
as in Subsection 2.3.1, ξmin(µ) > 0 is always satisfied for our generalized estimator with
µ > 0 and ξmin(µ) > 0 is only restrictive for the FKRB estimator.

Following the proof in Takada et al. (2017), we obtain an error bound on the R− 1
estimated probability weights.

Theorem 2.2. Let 0 < δ ≤ 1. Define γ ≡ γ(N, δ) :=
√

2 log
(

2(R−1)J
δ

) /
N . Suppose

Assumption 2.1 holds, and that ξmin(µ) > 0 for µ ≥ 0. Then, it holds with probability
1 − δ that ∥∥θ̂ − θ∗∥∥

2 ≤
2
√
R− 1 γ + 2µ

√
s
∥∥θ∗

S

∥∥
∞

ξmin(µ) .

Proof. See Appendix 2.C.3.

Theorem 2.2 holds with probability approaching one as δ → 0. The estimation error for
the Rth weight, θR = 1 −

∑R−1
r=1 θr, which is not included in the bound, approaches zero

whenever
∥∥θ̂ − θ∗∥∥

2 is close to zero.
Because γ(N, δ) decreases in N , the error bound becomes tighter if the number

of observation units increases. The number of grid points leads to a direct increase of
the error bound, both through R and s, which is expected to increase with R, e.g., if
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the true distribution is continuous. The number of grid points also has an indirect
effect attributable to the stronger correlation typically associated with an increase in the
number of grid points. This effect is captured through the restricted minimum eigenvalue
ξmin(µ), which decreases if the correlation increases. Hence, an increase in the number
of grid points R typically leads to a wider error bound on the estimated weights (for a
given tuning parameter µ).

The researcher can affect the error bound on the estimated weights through the
choice of the tuning parameter µ. For µ = 0, the bound in Theorem 2.2 simplifies to the
error bound for the FKRB estimator. A comparison of the bound for µ = 0 and µ > 0
reveals that the extension has two opposing effects on the estimator’s precision. First, a
direct increasing effect that is captured through the tuning parameter in the numerator
of Theorem 2.2 and, second, an indirect decreasing effect via the restricted minimum
eigenvalue since ξmin(µ) = ξmin(0) + µ > ξmin(0) for µ > 0.

While the direct effect becomes stronger with the number of true support points
s, the indirect effect is especially relevant if the correlation among grid points is strong.
In that case, the extension leads to an increase of ξmin(µ) and hence, to a tighter error
bound. The indirect effect is most important if the design matrix Z̃ is almost singular,
i.e., if the grid is sufficiently dense. In that case, the restricted minimum eigenvalue
ξmin(0) of the FKRB estimator is close to zero. The appropriate choice of µ offsets this
effect and can lead to a tighter error bound.

Corollary 2.1 establishes the condition under which our extension provides a tighter
error bound on the estimated weights than the FKRB estimator.

Corollary 2.1. When
√
s
∥∥θ∗

S

∥∥
∞ξmin(0) <

√
R− 1 γ, then the error bound for

∥∥θ̂− θ∗∥∥
2

in Theorem 2.2 is tighter for the generalized estimator than for the FKRB estimator.

Proof. See Appendix 2.C.3.

Using the error bound on the estimated and true probability weights in Theorem 2.2, we
derive a bound on the error of the estimated distribution function F̂ (β) and the best
discrete distribution F ∗(β).
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Theorem 2.3. Under the assumptions and conditions in Theorem 2.2, it holds at any
point β ∈ RK with probability 1 − δ that

|F̂ (β) − F ∗ (β) | ≤
4(R− 1) γ + 4µ

√
(R− 1)s

∥∥θ∗
S

∥∥
∞

ξmin(µ) .

Proof. See Appendix 2.C.3.

The bound on the difference between the estimated distribution and the best discrete
approximation of F0(β) increases in R and decreases in ξmin(µ). Similarly to Theorem
2.2, the difference in the distributions decreases in N since k may decrease when N
increases.

Recall that the absolute difference |F0(β) − F ∗(β)| becomes negligibly small as R
increases (Fox et al., 2016). Therefore, the estimation error can be well captured by
|F̂ (β) − F ∗(β)| which explains the relevance of Theorem 2.3.

Remark 2.3. Theorem 2.3 can be extended in a straightforward way to an error bound
for the smooth basis densities estimator suggested by Fox et al. (2011) if the support of
β is bounded and D i.i.d. simulation draws. Following the argumentation in Fox et al.
(2016), the distribution function estimated with the smooth basis densities estimator,
F̂D(β) = ∑R

r=1 θ̂rΦ(β|Ωr), can be nested into the discrete approximation model by means
of the simulation approximated distribution F̃D(β) = ∑R

r=1 θ̂r(1/D)∑D
d=1 1[βr,d ≤ β]

where θ̂ is estimated with the smooth basis densities estimator. Using the simulation
approximated distribution, we obtain∣∣∣∣F̂D (β) − F ∗(β)

∣∣∣∣ ≤
∣∣∣∣F̃D(β) − F ∗(β)

∣∣∣∣+ ∣∣∣∣F̂D (β) − F̃D(β)
∣∣∣∣

≤
∣∣∣∣F̃D(β) − F ∗(β)

∣∣∣∣+ R∑
r=1

θ̂r,D

∣∣∣∣ 1
D

D∑
d=1

1[βr,d ≤ β] − Φ(β|Ωr)
∣∣∣∣

For D → ∞, F̃D(β) converges to F̂D(β) such that the second expression goes to zero for
any given r (by the Glivenko–Cantelli theorem) Fox et al. (2016). The first expression is the
absolute difference between the fixed grid estimator and the best possible approximation
that can be obtained with a mixture of smooth basis densities (Fox et al., 2016). The
expression can be bounded by the error bound presented in Theorem 2.3. Consequently,
the absolute difference between F̂ (β) and F ∗(β) can also be bounded by Theorem 2.3 if
D → ∞.
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2.4 Monte Carlo Simulation

We conduct two Monte Carlo experiments to examine the selection consistency and
the approximation accuracy of our generalized estimator. The Monte Carlo simulation
on the selection consistency uses a discrete distribution with a subset of grid points
as support points. The second experiment generates the random coefficients from a
mixture of two normal distributions. This allows us to study the estimators’ ability to
estimate smooth distributions. We use a random coefficients logit model as the true data
generating process to generate individual-level discrete choice data. Each observational
unit i chooses among J = 4 mutually exclusive alternatives and an outside option. For
every alternative j and observation unit i, we draw the two-dimensional covariate vector
xi,j = (xi,j,1, xi,j,2) from U (0, 5) and U (−3, 1), respectively. To study the effect of the
fixed grid and the number of observation units on the estimators’ performance, we run
every experiment for different sample sizes and numbers of grid points. We repeat the
experiment for every combination of R and N 200 times to compare the performance of
our estimator with the FKRB estimator in terms of selection consistency and accuracy
for every setup. All calculations are conducted with the statistical software R (R Core
Team, 2018).

2.4.1 Discrete Distribution

To study the estimators’ selection consistency, we generate the random coefficients β
from a discrete probability mass function. The estimator successfully recovers the true
support from the data if it estimates a positive weight at every support point of F0(β),
and zero weights at all points outside its support. For the support points of F0(β), we
select a subset of the grid points from the fixed grid we use for the estimation. The
grid covers the range [−4.5, 3.5] × [−4.5, 3.5] with R = {25, 81, 289} uniformly allocated
grid points. We specify the support of our discrete data generating distribution on
[−4.5,−0.5] × [−4.5, 0.5], and [−0.5, 3.5] × [−0.5, 3.5], whereby the number of support
points varies due to the varying number of grid points. That is, we draw the random
coefficients β from a discrete mass function with S = {17, 49, 161} support points, each
drawn with uniform probability weight θs = 1/S.

In this setup, the data generating process exactly matches the underlying probability
model of the fixed grid estimator. This way, we abstract from any approximation errors
that can arise from the sieve space approximation of the true underlying distribution.
Therefore, the experiment studies the estimators’ selection consistency in the most simple
framework possible. The two areas of the discrete distribution with positive probability
mass simulate two heterogeneous groups of preferences in the population. We estimate
every distribution for sample sizes N = {1000, 10, 000}.

Figure 2.1 illustrates the setup of the Monte Carlo experiment for the three data
generating distributions. The blue shaded area indicates the support of the discrete mass
functions, and the filled blue points inside this area the active grid points. The hollow
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Figure 2.1: Grid of Monte Carlo Study with Discrete Mass Points

(a) R = 25, S = 17 (b) R = 81, S = 49 (c) R = 289, S = 161

black points outside the blue shared areas are the inactive grid points that are not used
for data generation.

We choose the optimal tuning parameter µ for the generalized estimator with 10-fold
cross-validation from a sequence of 101 potential values. For 100 of these values, we use
the sequence suggested by the R package glmnet for ridge regression with nonnegative
coefficients. We also include µ = 0 in the range of possible values to allow our estimator
to simplify to the FKRB estimator if the model fit in the cross-validation is highest for
µ = 0. The selection of the optimal tuning parameter is based on the mean squared error
(MSE) criterion. In addition to the tuning parameter with the lowest MSE, we report
the tuning parameter that follows from the one-standard-error rule (OneSe).8

As robustness-checks, we consider the prediction accuracy of the predicted choice of
every observation and the log-likelihood as a measure of fit in the cross-validation. We
choose the µ based on the smallest average out-of-sample prediction error and based on
the highest log-likelihood, respectively. The results of the Monte Carlo study for the
log-likelihood and predicted choices as selection criteria can be found in Appendix 2.A.
They indicate that the MSE and the one-standard-error rule give the best results.

To evaluate the estimators’ selection consistency, we calculate the average share of
sign consistent estimates. An estimate is sign consistent if it is positive at active grid
points, and zero otherwise. A weight is defined as positive if it is greater than 10−3.
To illustrate the sparsity of the estimators’ solutions, we report the average number of
positive weights and the average share of true positive weights.

Beyond selection consistency, the discrete setup of the Monte Carlo experiment
allows us to study the bias of the estimated probability weights. Denote the estimated

8We observe that the curve of the MSE in dependency of µ tends to be flat and that the µ chosen by
OneSe often corresponds to the largest element of the sequence of tuning parameters suggested by the
glmnet package. Therefore, a possible strategy is to choose the largest µ given by the glmnet package to
obtain µ of OneSe if one wants to avoid cross-validation.
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weight at grid point r in Monte Carlo run m by θ̂r,m. We calculate the L1 norm

L1 = 1
M

M∑
m=1

1
R

R∑
r=1

∣∣∣θr − θ̂r,m

∣∣∣
to measure the average absolute bias of θ̂ in comparison to the true weights θ over all
Monte Carlo runs M . In addition, we adopt the root mean integrated squared error
(RMISE) from Fox et al. (2011) to provide a metric on the approximation accuracy of
the estimated distribution. The RMISE averages the squared difference between the true
and estimated distribution at a fixed set of grid points across all Monte Carlo runs

RMISE =

√√√√ 1
M

M∑
m=1

[
1
E

E∑
e=1

(
F̂m(βe) − F0(βe)

)2
]
,

where F̂m(βe) denotes the estimated distribution function in Monte Carlo run m evaluated
at βe. For the evaluation, we use E = 10,000 points uniformly distributed over the range
[−4.5, 3.5] × [−4.5, 3.5].

Table 2.1 summarizes the results of the Monte Carlo experiment. The first three
columns report the sample size N , the number of grid points R, and the number of true
support points S. The upper part of the table presents the measures on the accuracy

Table 2.1: Summary Statistics of 200 Monte Carlo Runs with Discrete Distribution.

RMISE L1 µ ρ

N R S FKRB MSE OneSe FKRB MSE OneSe MSE OneSe 3rd Qu.
1,000 25 17 0.069 0.041 0.035 0.035 0.017 0.015 55.89 67.90 0.808
1,000 81 49 0.082 0.052 0.038 0.019 0.009 0.007 53.91 69.93 0.819
1,000 289 161 0.088 0.057 0.045 0.006 0.004 0.003 55.89 71.29 0.822
10,000 25 17 0.041 0.024 0.022 0.020 0.012 0.011 61.34 66.90 0.808
10,000 81 49 0.050 0.030 0.027 0.015 0.008 0.007 60.40 68.96 0.819
10,000 289 161 0.059 0.037 0.034 0.006 0.004 0.003 61.73 70.48 0.822

Pos. % True Pos. % Sign
N R S FKRB MSE OneSe FKRB MSE OneSe FKRB MSE OneSe
1,000 25 17 13.10 20.77 22.25 67.32 95.23 99.79 71.18 78.44 78.70
1,000 81 49 15.29 46.56 54.44 26.88 77.39 89.81 53.15 75.65 80.95
1,000 289 161 16.00 103.37 123.63 8.38 54.58 65.56 48.10 69.34 74.56
10,000 25 17 17.38 19.46 19.77 91.56 98.71 99.88 87.02 88.38 88.74
10,000 81 49 23.32 45.22 48.02 42.07 82.00 87.14 61.62 82.89 85.65
10,000 289 161 24.34 96.81 105.33 13.24 54.79 59.62 50.62 71.83 74.27

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB
estimator (FKRB), and for our generalized estimator with tuning parameter µ from a 10-fold cross-
validation and the MSE criterion (MSE) and the one-standard-error rule (OneSe).
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of the estimated weights, and the lower part the shares of positive, true positive, and
sign consistent estimated weights. The final column in the upper part reports the third
quantile of the absolute values of the correlation ρ among grid points.9

The results show that our generalized estimator outperforms the FKRB estimator for
every combination of N and R, in particular when the tuning parameter µ is chosen based
on the one-standard-error rule. With respect to the selection consistency, the generalized
estimator recovers more true positive and sign consistent probability weights than the
FKRB estimator. While the decrease in these shares is moderate for the generalized
estimator when the discrete distribution becomes more complex, the correct recovery
through the FKRB estimator significantly worsens.

This is best illustrated by the small number of positive weights, which changes only
slightly alongside the increasing complexity. For N = 1000 (N = 10, 000) and in the
extreme case of R = 289, the FKRB estimator estimates positive weights at no more
than 16 (24) of the grid points (in comparison to 124 (105) for the generalized estimator
with OneSe).

In addition to its improved selection consistency, all measures on the estimated
weights indicate that our generalized version provides substantially more accurate esti-
mates of the probability weights than the FKRB estimator. The bias reduction persists
for small and large sample sizes.

The plot of the correlation matrix in Figure 2.2 and the third quantile of the values
of absolute correlation in Table 2.1 both illustrate that correlation among many grid
points is strong.

Figure 2.2: Correlation Matrix for N = 10, 000 and R = 81

9In addition, we also considered the mean and median to summarize the absolute correlation among
grid points. We focus on the third quantile since it best illustrates the strong correlation in this setup.
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2.4.2 Continuous Distribution

The second Monte Carlo experiment considers a mixture of two bivariate normal distrib-
utions for F0(β) to analyze how our generalized estimator accommodates more complex
continuous distributions. This way, we can assess its ability to recover distributions that
cannot be estimated with parametric techniques.

For the estimation, we use a fixed grid with points spread on [−4.5, 3.5] × [−4.5, 3.5].
The fixed grid covers the support of the true distribution with coverage probability close
to one (0.993). We keep the correlation among grid points as low as possible and generate
the grid points with a Halton sequence. To study the convergence of the estimated
distribution to F0(β) for an increasing number of grid points, we estimate the model
with R = {25, 50, 100, 250}. The number of observation units N varies between 1000 and
10,000. The variance–covariance matrices of the two normals are Σ1 = Σ2 =

[ 0.8 0.15
0.15 0.8

]
.

We generate the random coefficient vectors β from the following two-component bivariate
mixture

0.5 N
(

[−2.2,−2.2],Σ1

)
+ 0.5 N

(
[1.3, 1.3],Σ2

)
.

The left panel in Figure 2.3 displays the bimodal joint density of the mixture of two
normals, and the right panel the joint distribution function.

Figure 2.3: True Density and Distribution Function of Mixture of two Normals

(a) PDF (b) CDF

For the calculation of the RMISE, we use E = 10,000 evaluation points uniformly
distributed over the range of the fixed grid. In addition, we report the average number
of positive, true positive, and sign consistent estimated weights. For the number of true
positive and sign consistent weights, we calculate the true density at every grid point and
then normalize the density of each grid point by the sum of densities at all grid points.
We define a true weight as positive if its normalized density is greater 10−3.

Table 2.2 summarizes the average results over the M = 200 Monte Carlo replicates
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Table 2.2: Summary Statistics of 200 Monte Carlo Runs with Mixture of Two Bivariate
Normals.

RMISE Pos. µ ρ

N R S FKRB MSE OneSe FKRB MSE OneSe MSE OneSe 3rd Qu.
1,000 25 17 0.086 0.072 0.055 9.83 13.20 17.84 22.72 74.23 0.823
1,000 50 33 0.087 0.068 0.059 12.56 26.84 32.61 48.85 74.27 0.820
1,000 100 61 0.100 0.075 0.062 13.45 43.41 55.36 48.74 73.99 0.823
1,000 250 127 0.101 0.073 0.062 14.22 86.30 105.14 56.42 74.70 0.824
10,000 25 17 0.063 0.061 0.057 11.63 12.60 14.76 18.66 73.90 0.823
10,000 50 33 0.058 0.049 0.047 17.52 25.44 28.33 50.92 74.05 0.820
10,000 100 61 0.061 0.048 0.043 19.94 39.36 47.24 49.69 74.12 0.822
10,000 250 127 0.062 0.043 0.039 22.03 80.90 89.30 63.55 74.66 0.824

% True Pos. % Sign
N R S FKRB MSE OneSe FKRB MSE OneSe
1,000 25 17 49.59 66.82 88.38 60.12 70.06 80.84
1,000 50 33 33.26 70.65 85.44 52.78 73.58 81.55
1,000 100 61 18.82 62.11 79.35 48.51 71.37 80.45
1,000 250 127 7.93 55.58 68.09 51.57 71.15 76.33
10,000 25 17 58.15 64.09 76.91 64.56 68.74 77.58
10,000 50 33 47.15 69.59 77.73 61.21 74.98 79.95
10,000 100 61 28.31 58.41 70.46 53.61 70.90 77.72
10,000 250 127 13.26 55.26 61.13 53.87 72.98 75.59

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB
estimator (FKRB), and for our generalized estimator with tuning parameter µ from a 10-fold cross-
validation and the MSE criterion (MSE) and the one-standard-error rule (OneSe).

for the FKRB estimator and our generalized estimator when µ is chosen with 10-fold
cross-validation and the MSE and one-standard error rule, respectively. Results for the
prediction accuracy of the predicted choices and the log-likelihood as criteria are reported
in Appendix 2.A.

The RMISE shows that our generalized estimator provides more accurate estimates
of the true underlying random coefficients’ distribution than the FKRB estimator for
every combination of N and R. For N = 10,000 the generalized version becomes more
accurate with increasing number of grid points and approximates F0(β) quite well for
R = 250. However, the FKRB estimator does not result in a lower RMISE for N = 10,000
when R increases.

The improved performance of our estimator for every combination of N and R
can be explained with the larger number of true positive and sign consistent estimated
probability weights. Independently of the number of (relevant) grid points, the FKRB
estimator estimates only a small number of positive weights and, hence, recovers only
few relevant grid points. The share of true positive and sign consistent estimated weights
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is substantially higher for our estimator.
Figure 2.4 plots an example of the joint distribution functions estimated with the

FKRB estimator (Panel (a)) and our generalized estimator (Panel (b)). Figure 2.5
shows the corresponding estimated and true marginal distributions of β1 and β2. The
distribution functions are estimated for N = 10,000 and R = 250.

The plots illustrate the impact of the FKRB estimator’s sparse nature on the
estimated marginal and joint distribution functions. Visual inspection shows that it
approximates F0(β) through a step function with only few steps due to the small number
of positive weights. In contrast, our generalized estimator provides a smooth estimate
that is close to the true underlying distribution function.

Figure 2.4: Estimated Joint Distribution Functions for N = 10, 000 and R = 250

(a) FKRB (b) Generalized with OneSe

Figure 2.5: True and Estimated Marginal Distribution Functions for N = 10, 000 and
R = 250
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2.5 Empirical Application

To study the performance of our generalized estimator with real data, we apply it to the
ModeCanda data set from the R package mlogit. Originally, the Canadian National Rail
Carrier VIA Rail assembled the data in 1989 to analyze the demand for future intercity
travel in the Toronto–Montréal corridor. The data contains information on travelers
who can choose among the four intercity travel mode options car, bus, train, and air.
Due to the small number of bus users (18), we follow Bhat (1997a) and drop bus as
an alternative. Furthermore, we only consider travelers in our analysis that can choose
among all three options. Thus, the analyzed data consists of 3593 business travelers who
can choose among airplane, train, and car. In addition to the observed choices, the data
includes information on traveler’s income, the trip distance, the frequency of the service,
total travel cost, an indicator that is one if either the city of arrival or departure is a
big city and zero otherwise, and the in- and out-of-vehicle travel time. We construct the
travel time variable by summing up in-vehicle travel time and out-of-vehicle time. This
is done for two reasons: first, the data on out-of-vehicle time is always zero for car users
and would therefore only capture the preferences of airplane and train users. Second, we
think it is plausible that individuals care more about total travel time than the travel
time inside and outside of a vehicle separately.

A detailed description of the data can be found in Marwick and Koppelman (1990).
Among others, the data set has been studied by Bhat (1995,9,9,9), Koppelman and Wen
(2000), Wen and Koppelman (2001). The only paper that analyzes the data with a
random coefficients logit model is the study by Hess, Bierlaire and Polak (2005). However,
they only use the explanatory variables as input for a Monte Carlo study and simulate
travelers’ mode choices.

We estimate a mixed logit model with a random coefficient on the travel time and
fixed coefficient on all other variables to study the preferred travel mode of business
travelers. We include all the above variables into the utility specification along with
mode specific constants, where we specify car as the reference alternative. To apply
the fixed grid approach to a model with fixed and random coefficients, we follow the
recommendation of Fox et al. (2016) and Houde and Myers (2019) who suggest a two-step
estimator to estimate the model with fixed and random coefficients.10 In the first step,
all coefficients are estimated using a semiparametric mixed logit. We assume that the
random coefficient is normally distributed. In the second step, the fixed variables and
their estimated coefficients from the first stage are treated as data and only the random
coefficient of travel time is estimated with the FKRB and generalized estimator. Houde
and Myers (2019) justify the procedure with the argument that a mixed logit can recover
the means of a distribution fairly well despite the incorrect assumptions on the random
coefficients’ distribution. Thus, the fixed coefficients can be estimated consistently with

10We also provide an algorithm to update both the fixed and random coefficients in Appendix 2.B. The
algorithm is a modification of the flexible grid estimator in Train (2008). Unfortunately, the algorithm
seems to be very slow and we do not include its results in our comparison here.
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the semiparametric approach. They illustrate this property in a Monte Carlo study.
We center the grid of the random coefficient around the mean estimate of the travel

coefficient from the first step11 and add three standard deviations to each side. We
estimate the second step with different numbers of grid points. The preferred specification
uses R = 100 uniformly spread points on the range [−0.061, 0.027]. We choose the tuning
parameter with 10-fold Cross-Validation and the one standard error rule as criterion.
Figure 2.6 summarizes the mass and the distribution functions estimated with the FKRB
and the generalized estimator.

The generalized estimator estimates a smooth mass function whereas the FKRB
exhibits LASSO-type behavior. The FKRB estimator only selects five out of 100 grid
points whereas the generalized version selects 75 grid points.12 Furthermore, it can easily
be seen that the estimated mass function obtained by the generalized estimator does not
seem to be normally distributed but rather looks like a mixture of two normal distributions.
That is, specifying a normal or any other parametric distribution function does not seem
appropriate in this example. A quite unexpected result is that there are positive weights
at positive grid points implying that some people appreciate longer trips. Even though one
might argue that this might be the case if such travelers accept additional travel time for,
say, additional comfort when traveling, this might also be a sign of a misspecified model.
For the FKRB estimator these weights sum up 9.5% and for the generalized estimator
to 10.1%, which is lower than 12.6% for the mixed logit with a normal distribution.
The weighted mean of the coefficient of travel time for the FKRB estimator is −0.01593
and −0.01631 for the generalized estimator. This is roughly the same as −0.01682, the
mean coefficient obtained from the mixed logit model with normally distributed travel
time coefficient which is in line with the justification of Houde and Myers (2019) for the
two-step estimator. In addition to the estimated distributions, we report the mean (and
median) over individuals’ own- and cross-travel time elasticities for the FKRB estimator,
the generalized estimator and the semiparametric mixed logit with a normal distribution
in Appendix 2.A. We also calculate the ratio between elasticities estimated with the
FKRB estimator and the semiparametric estimator in comparison to the elasticities
estimated with the generalized estimator. The ratios show that most differences of the
estimated own- and cross-travel time elasticities do not seem to be too large. Yet, few
deviate from each other whereby the semiparametric estimator is up to 6.3 (= 1/0.16)
times smaller and the FKRB estimator is up to 1.8 times larger than the generalized
estimator. We also observe in the continuous Monte Carlo experiment that the estimated
elasticities are rather similar for the FKRB estimator and the generalized estimator.13

Therefore, it is not clear to what extent the generalized estimator outperforms the FKRB
estimator in terms of the estimated elasticities, while it is very clear in terms of the
estimated distribution.

11The estimated coefficients of the first stage are provided in Appendix 2.A.
12We again define a weight as positive if it is greater than 10−3.
13The results are available on request.

36



Figure 2.6: Estimated Distributions of Travel Time in Mode Canada Data with R = 100

(a) Mass Function for FKRB

(b) Mass Function for Generalized with OneSe

(c) CDFs for FKRB (red) and Generalized with OneSe (blue)
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2.6 Conclusion

We extend the simple and computationally attractive nonparametric estimator of Fox
et al. (2011). We illustrate that their estimator is a special case of NNL, explaining its
sparse solutions. The connection to NNL reveals that the estimator tends to randomly
select among highly correlated grid points. This behavior gives reason to doubt the
precise estimation of the true distribution through the estimator.

To mitigate its undesirable sparsity and random selection behavior, we add a
quadratic constraint on the probability weights to the optimization problem of the FKRB
estimator. This simple and straightforward extension transforms the estimator to a
special case of nonnegative elastic net. The combination of the linear and quadratic
constraint on the probability weights enables a more reliable selection of the relevant grid
points. As a consequence, our generalized estimator provides more accurate estimates
of the true underlying random coefficients’ distribution without substantially increasing
computation time and complexity. We derive conditions for selection consistency and an
error bound on the estimated distribution function to verify the improved properties of
our estimator.

Two Monte Carlo studies illustrate the attractive theoretical properties of our es-
timator. They show that our generalized version estimates considerably more positive
probability weights and recovers more grid points correctly. In addition to the im-
proved selection consistency, the estimator provides more accurate estimates of the true
underlying distributions.

Applying the FKRB and the generalized estimator to a data set of travel choices
made in the Toronto–Montréal corridor confirms the sparsity of the FKRB estimator. In
contrast, the generalized estimator selects substantially more grid points, resulting in a
smooth distribution function. This illustrates the fact that our generalized estimator is
able to approximate continuous distribution functions.

A challenging, but practically relevant topic is the development of an inference
procedure. To this end, one has to take into account the relation of the FKRB and our
generalized estimator to the nonnegative LASSO and nonnegative elastic net, respectively.
Assuming random regression coefficients, Pötscher and Leeb (2009) prove that estimators
of the distribution function of the LASSO, including resampling methods, cannot be
uniformly consistent. Assuming fixed regression coefficients, Dezeure, Bühlmann and
Zhang (2017) propose a de-biased LASSO estimator to conduct inference. However, it is
not straightforward how to construct such a de-biased estimator in our setting.14

In addition, it might be a promising venue for future research to attempt to weaken
14Our experiments for inference regarding the estimated joint CDF and estimated elasticities suggest

that the m-out-of-n-(block-)bootstrap might be a promising choice. Efron‘s (block-)bootstrap (Efron,
1979), in contrast, seems to have poor coverage. For the m-out-of-n-block-bootstrap, we base our
simulation on block length J to take the correlation structure of our data into account. In these
experiments, we followed the recommendation of Jentsch and Leucht (2016) for discrete data and chose
m = (NJ)2/3. The results are available on request.
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some of our regularity conditions, such as the rate condition on the density of the grid.
For a given number of observations, this would theoretically justify to increase the
number of grid points used for the estimation. Moreover, our derived error bounds are
non-asymptotic, so asymptotic results might provide further useful insights.
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Appendix 2.A Supplementary Tables

Table 2.A.1: Detailed Summary Statistics of 200 Monte Carlo Runs with Discrete Distribution.

RMISE L1 µ ρ

N R S FKRB MSE OneSe LL PredOut FKRB MSE OneSe LL PredOut MSE OneSe LL PredOut 3rd Qu.
1,000 25 17 0.069 0.041 0.035 0.059 0.047 0.035 0.017 0.015 0.028 0.022 55.89 67.90 11.32 31.04 0.808
1,000 81 49 0.082 0.052 0.038 0.067 0.056 0.019 0.009 0.007 0.014 0.011 53.91 69.93 17.93 31.70 0.819
1,000 289 161 0.088 0.057 0.045 0.070 0.061 0.006 0.004 0.003 0.005 0.004 55.89 71.29 25.75 35.59 0.822
10,000 25 17 0.041 0.024 0.022 0.035 0.031 0.020 0.012 0.011 0.017 0.015 61.34 66.90 16.23 29.40 0.808
10,000 81 49 0.050 0.030 0.027 0.044 0.037 0.015 0.008 0.007 0.013 0.011 60.40 68.96 13.95 31.39 0.819
10,000 289 161 0.059 0.037 0.034 0.051 0.046 0.006 0.004 0.003 0.005 0.005 61.73 70.48 17.69 26.40 0.822

Pos. % True Pos. % Sign
N R S FKRB MSE OneSe LL PredOut FKRB MSE OneSe LL PredOut FKRB MSE OneSe LL PredOut
1,000 25 17 13.10 20.77 22.25 15.93 18.84 67.32 95.23 99.79 79.62 90.35 71.18 78.44 78.70 76.56 79.52
1,000 81 49 15.29 46.56 54.44 29.14 38.95 26.88 77.39 89.81 50.46 66.22 53.15 75.65 80.95 64.58 71.55
1,000 289 161 16.00 103.37 123.63 62.08 83.70 8.38 54.58 65.56 33.01 44.46 48.10 69.34 74.56 59.59 64.87
10,000 25 17 17.38 19.46 19.77 18.11 18.73 91.56 98.71 99.88 94.62 96.88 87.02 88.38 88.74 88.24 88.86
10,000 81 49 23.32 45.22 48.02 29.57 37.70 42.07 82.00 87.14 53.94 68.73 61.62 82.89 85.65 68.26 76.12
10,000 289 161 24.34 96.81 105.33 50.80 63.70 13.24 54.79 59.62 28.49 35.99 50.62 71.83 74.27 58.46 62.35

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB estimator (FKRB), and for our
generalized estimator with tuning parameter µ from a 10-fold cross-validation and the MSE criterion (MSE), the one-standard-error rule
(OneSe), the log-likelihood criterion (LL) and the number of correctly predicted binary outcomes (PredOut). The predicted binary outcome
is set to one for the alternative with the highest estimated choice probability.
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Table 2.A.2: Detailed Summary Statistics of 200 Monte Carlo Runs with Mixture of Two Bivariate Normals.

RMISE Pos. µ ρ

N R S FKRB MSE OneSe LL PredOut FKRB MSE OneSe LL PredOut MSE OneSe LL PredOut 3rd Qu.
1,000 25 17 0.086 0.072 0.055 0.081 0.067 9.83 13.20 17.84 10.66 14.39 22.72 74.23 2.36 30.13 0.823
1,000 50 33 0.087 0.068 0.059 0.079 0.068 12.56 26.84 32.61 17.45 25.25 48.85 74.27 9.00 33.02 0.820
1,000 100 61 0.100 0.075 0.062 0.09 0.076 13.45 43.41 55.36 22.54 39.26 48.74 73.98 8.54 33.56 0.823
1,000 250 127 0.101 0.073 0.062 0.089 0.076 14.22 86.30 105.14 41.64 68.17 56.42 74.70 14.97 33.02 0.824
10,000 25 17 0.063 0.061 0.057 0.062 0.060 11.63 12.60 14.76 11.74 13.35 18.66 73.90 0.77 30.42 0.823
10,000 50 33 0.058 0.049 0.047 0.053 0.049 17.52 25.44 28.33 20.26 24.30 50.92 74.05 8.38 34.56 0.820
10,000 100 61 0.061 0.048 0.043 0.054 0.050 19.94 39.36 47.24 28.10 34.99 49.69 74.12 11.79 30.13 0.822
10,000 250 127 0.062 0.043 0.039 0.053 0.046 22.03 80.90 89.30 48.67 64.80 63.55 74.66 20.32 36.27 0.824

% True Pos. % Sign
N R S FKRB MSE OneSe LL PredOut FKRB MSE OneSe LL PredOut
1,000 25 17 49.59 66.82 88.38 54.03 73.18 60.12 70.06 80.84 62.82 73.94
1,000 50 33 33.26 70.65 85.44 46.83 67.44 52.78 73.58 81.55 60.92 72.51
1,000 100 61 18.82 62.11 79.35 32.71 57.00 48.51 71.37 80.45 56.36 69.28
1,000 250 127 7.93 55.58 68.09 26.34 44.06 51.57 71.15 76.33 59.31 66.70
10,000 25 17 58.15 64.09 76.91 58.79 68.38 64.56 68.74 77.58 64.98 71.62
10,000 50 33 47.15 69.59 77.73 55.27 66.59 61.21 74.98 79.95 66.44 73.30
10,000 100 61 28.31 58.41 70.46 41.07 51.80 53.61 70.90 77.72 61.00 67.21
10,000 250 127 13.26 55.26 61.13 32.33 43.95 53.87 72.98 75.59 62.58 67.94

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB estimator (FKRB), and for our
generalized estimator with tuning parameter µ from a 10-fold cross-validation and the MSE criterion (MSE), the one-standard-error rule
(OneSe), the log-likelihood criterion (LL) and the number of correctly predicted binary outcomes (PredOut). The predicted binary outcome
is set to one for the alternative with the highest estimated choice probability.
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Table 2.A.3: First Stage Output of Mode Canada Data: Semiparametric Estimation
with Normally Distributed Random Coefficient for the Total Travel Time.

Dependent variable:
Mode Choice

Intercept Train −1.641∗∗∗

(0.304)
Intercept Air −7.153∗∗∗

(0.913)
Frequency 0.077∗∗∗

(0.008)
Cost −0.009

(0.009)
Income Train −0.018∗∗∗

(0.003)
Income Air 0.040∗∗∗

(0.005)
Distance Train 0.002∗

(0.001)
Distance Air 0.003∗∗∗

(0.001)
Urban Train 1.722∗∗∗

(0.163)
Urban Air 1.261∗∗∗

(0.194)
Travel Time −0.017∗∗∗

(0.003)
sd.Travel Time 0.015∗∗∗

(0.002)
Observations 3,593
Mc Fadden R2 0.358
Log Likelihood -2,340.700
LR Test 2,615.034∗∗∗ (df = 12) (p = 0.000)

Note: The table reports the mean estimates and standard
errors (in brackets) obtained by the mlogit package for the
semiparametric mixed logit model with normally distrib-
uted travel time.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 2.A.4: Estimated Own- and Cross-Travel Time Elasticities in Mode Canada Data.

Elasticities estimated with FKRB:
Car Air Train

Car -0.8992 (-0.8444) 1.3982 (0.6692) 0.1164 (0.129)
Air 0.5895 (0.5943) -1.2267 (-0.5079) 0.2049 (0.1589)
Train -0.1622 (0.0346) 0.1840 (0.1352) -0.6712 (-0.8861)

Elasticities estimated with ENet:
Car Air Train

Car -0.8382 (-0.7731) 1.4082 (0.682) 0.1473 (0.1009)
Air 0.5312 (0.5034) -1.2581 (-0.5704) 0.1765 (0.1339)
Train -0.0887 (0.036) 0.1900 (0.1118) -0.6285 (-0.7691)

Elasticities estimated semiparametrically:
Car Air Train

Car -0.8567 (-0.7483) 1.4115 (0.7221) 0.2511 (0.1621)
Air 0.4938 (0.4481) -1.3251 (-0.6791) 0.1595 (0.1051)
Train 0.0138 (0.0466) 0.2322 (0.1004) -0.7057 (-0.8399)

Note: The table reports the mean and the median (in brackets) over individuals’
own- and cross-travel time elasticities for the FKRB estimator, the elastic net
estimator, and the semiparametric mixed logit with normal distribution. The
reported numbers correspond to the percentage change of the choice probability
of an alternative in a column after a one percent increase in the travel time of an
alternative in a row.
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Table 2.A.5: Ratio of Estimated Own- and Cross-Travel Time Elasticities in Mode
Canada Data.

Estimated Elasticities of FKRB divided by those of ENet:
Car Air Train

Car 1.0728 (1.0922) 0.9929 (0.9813) 0.7908 (1.2783)
Air 1.1099 (1.1804) 0.9750 (0.8905) 1.1605 (1.1864)
Train 1.8291 (0.9611) 0.9685 (1.2098) 1.0680 (1.1521)

Semiparametrically estimated Elasticities divided by those of ENet:
Car Air Train

Car 1.0221 (0.9679) 1.0023 (1.0589) 1.7054 (1.6064)
Air 0.9296 (0.8901) 1.0533 (1.1906) 0.9032 (0.7846)
Train -0.1559 (1.2961) 1.2221 (0.8984) 1.1230 (1.0920)

Note: The table reports the ratio of the mean and the median (in brackets) over individuals’
own- and cross-travel time elasticities reported in Table 2.A.4 for (1) the FKRB estimator
and elastic net estimator and (2) the semiparametric mixed logit with normal distribution
and the elastic net estimator.

Appendix 2.B Algorithm to Update Fixed and Random
Coefficients

The algorithm to update the fixed coefficients uses a modification of the flexible grid
estimator in Train (2008). Let F denote the set of indices corresponding to the fixed
coefficients and M to the set of indices corresponding to the random coefficients. The goal
is to maximize with respect to the fixed coefficients βF and the weights θ = (θ1, . . . , θR)
corresponding to βM . Therefore, define the vector which is to be maximized as π =
{βF , θ}. Then, rewrite zr

i,j more explicitly:

zr
i,j := zi,j(βF , βM

r ) = g(xi,j , β
F , βM

r ) =
exp

(
xF

i,jβ
F + xM

i,jβ
M
r

)
1 +

J∑
l=1

exp
(
xF

i,lβ
F + xM

i,lβ
M
r

) . (2.B.1)

The likelihood criterion given in Train (2008) is

LL(βF , βM ) = 1
N

N∑
i=1

log
(

R∑
r=1

θrz
r
i,yi

)
= 1
N

N∑
i=1

log
(

R∑
r=1

θrzi,yi(βF , βM
r )
)
.

The probability of agent i having coefficients π conditional on her observed choice yi
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and being type r is

hi,r (π) = θrzi,yi(βF , βM
r )

R∑
r=1

θrzi,yi(βF , βM
r )

. (2.B.2)

Based on Equation (2.B.2) one can derive the iterative EM update scheme which
updates πt+1 = {βF , θ}t+1 = {βF , (θ1, . . . , θR)}t+1 by using a previous estimated trial πt

to maximize
πt+1 = arg max

π
Q
(
π|πt

)

= arg max
π

N∑
i=1

R∑
r=1

hi,r

(
πt
)

log
(
θrzi,yi(βF , βM

r )
)
. (2.B.3)

Since log
(
θrzi,j(βF , βM

r )
)

= log(θr) + log(zi,yi(βF , βM
r )) one can maximize Equation

(2.B.3) separately for βF and θ. Since we use our generalized estimator given in Equation
(2.7), we only maximize Equation (2.B.3) over βF :

{βF }t+1 = arg max
βF

N∑
i=1

R∑
r=1

hi,r

(
πt
)

log
(
zi,yi(βF , βM

r )
)
. (2.B.4)

Plugging Equation (2.B.1) into Equation (2.B.4) gives

{βF }t+1 = arg max
βF

N∑
i=1

R∑
r=1

hi,r

(
πt
)

log

 exp
(
xF

i,yi
βF + xM

i,yi
βM

r

)
1 +

J∑
l=1

exp
(
xF

i,lβ
F + xM

i,lβ
M
r

)
 (2.B.5)

or equivalently

{βF }t+1 = arg max
βF

N∑
i=1

J∑
j=1

R∑
r=1

yi,jhi,r

(
πt
)

log

 exp
(
xF

i,jβ
F + xM

i,jβ
M
r

)
1 +

J∑
l=1

exp
(
xF

i,lβ
F + xM

i,lβ
M
r

)
 .(2.B.6)

This is is the formula of a weighted (standard) logit model where only the coefficients
βF are to be maximized and the coefficients βM are treated as constants. The weights
hi,r

(
πt
)
, calculated as given in Equation (2.B.2), do not depend on the product j, but

differ for different observations i and grid points r.
The whole update scheme is given by the following steps
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Generalized Estimator of Equation (2.7) with fixed and random
coefficients

1. Estimate semi-parametric model with all regressors and store the coefficients of
the fixed parameters βF

0 .
2. Choose the grid points βM

r , r = 1, ..., R.
3. Calculate the logit kernel, zi,j(βF

0 , β
M
r ), for each agent at each point.

4. Estimate θ0 using the Generalized Estimator in Equation (2.7).
5. Calculate weights for each agent at each point with π0 = {βF

0 , θ0} as

hi,r (π0) = θr0zi,yi(βF
0 , β

M
r )

R∑
r=1

θr0zi,yi(βF
0 , β

M
r )

.

6. Update the fixed coefficients βF
0 = βF

1 by estimating a weighted standard logit
as specified in Equation (2.B.6) .

7. Repeat steps 3 and 6 until convergence, using the updated coefficients π0 = π1,
where θ0 = θ1 is updated in step 4.

8. Use these estimated weights θ̂ to calculate the estimated distribution

F̂ (β) =
R∑

r=1
θ̂r 1 [βr ≤ β] .
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Appendix 2.C Proofs of Results in Section 2.3

Below, we provide the proofs of the results presented in Section 2.3. For that purpose, we
first introduce some additional notation. Let A be a m×n matrix and x be a n×1 vector.
In the following, the ∥A∥∞ norm refers to the matrix norm induced by the maximum
norm of vectors. Then

∥A∥∞ := max
||x||∞=1

∥Ax∥∞ = max
1≤i≤m

n∑
j=1

|aij |

denotes the maximum row sum of matrix A. ∥x∥∞ refers to the largest absolute element
of vector x. Similarly, ∥A∥2 is defined as the matrix norm induced by the euclidean
vector norm. That is,

∥A∥2 := max
||x||2=1

∥Ax∥2 ,

is called spectral norm. It can be shown that ∥A∥2 = max
1≤i≤n

√
ψi(ATA) where ψi(ATA)

denotes the eigenvalues of ATA.

2.C.1 Proof of Probability Bound

Lemma 2.C.1 uses Hoeffding’s inequality to derive a probability bound for sub-Gaussian
random variables. We use the lemma in the proofs of Theorems 2.1 - 2.3.

Lemma 2.C.1. Suppose Assumption 2.1 holds. Then, for γ ≥ 0

P
(∥∥∥∥ 1
NJ

Z̃T ϵ

∥∥∥∥
∞

≥ γ

)
≤ 2(R− 1)J exp

(
−Nγ2

2

)
.

Proof. Notice that

P
(∥∥∥∥ 1
NJ

Z̃T ϵ

∥∥∥∥
∞

≥ γ

)
= P

(
max

1≤r≤R−1

∣∣∣∣∣ 1
NJ

N∑
i=1

Z̃rT
i ϵi

∣∣∣∣∣ ≥ γ

)
(2.C.1)

where ϵi = (ϵi,1, . . . , ϵi,J) denotes a random vector of J dependent variables such that
Equation (2.C.1) can equivalently be written as

P

(
max

1≤r≤R−1

∣∣∣∣∣ 1
NJ

N∑
i=1

Z̃rT
i ϵi

∣∣∣∣∣ ≥ γ

)
= P

 max
1≤r≤R−1

∣∣∣∣∣∣ 1
NJ

N∑
i=1

J∑
j=1

z̃r
i,jϵi,j

∣∣∣∣∣∣ ≥ γ



= P

 ⋃
1≤r≤R−1


∣∣∣∣∣∣ 1
NJ

N∑
i=1

J∑
j=1

z̃r
i,jϵi,j

∣∣∣∣∣∣ ≥ γ


 .
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From ∑N
i=1

∑J
j=1 z̃

r
i,jϵi,j ≤ J max

1≤j≤J

∑N
i=1 z̃

r
i,jϵi,j , we obtain the upper bound

P

 ⋃
1≤r≤R−1


∣∣∣∣∣∣ 1
NJ

N∑
i=1

J∑
j=1

z̃r
i,jϵi,j

∣∣∣∣∣∣ ≥ γ


 ≤ P

 ⋃
1≤r≤R−1

{
J max

1≤j≤J

∣∣∣∣∣ 1
NJ

N∑
i=1

z̃r
i,jϵi,j

∣∣∣∣∣ ≥ γ

}

≤
R−1∑
r=1

P

(
max

1≤j≤J

∣∣∣∣∣ 1
N

N∑
i=1

z̃r
i,jϵi,j

∣∣∣∣∣ ≥ γ

)

=
R−1∑
r=1

P

 ⋃
1≤j≤J

{∣∣∣∣∣ 1
N

N∑
i=1

z̃r
i,jϵi,j

∣∣∣∣∣ ≥ γ

}

≤
R−1∑
r=1

J∑
j=1

P

(∣∣∣∣∣ 1
N

N∑
i=1

z̃r
i,jϵi,j

∣∣∣∣∣ ≥ γ

)

≤ (R− 1)J max
1≤r≤R−1
1≤j≤J

P

(∣∣∣∣∣ 1
N

N∑
i=1

z̃r
i,jϵi,j

∣∣∣∣∣ ≥ γ

)
.

Recall from Assumption 2.1(iii) and Equation (2.9) that −1 ≤ z̃r
i,j ≤ 1 and −1 ≤ ϵi,j ≤ 1.

Therefore, ξ := (z̃r
1,jϵ1,j , . . . , z̃

r
N,jϵN,j) is a vector of independent uniformly bounded

random variables since for every i = 1, . . . , N it holds that −1 ≤ z̃r
i,jϵi,j ≤ 1. It follows

from the assumption of conditional exogeneity (Assumption 2.1(iv)) that E[ξ] = 0. Due
to the boundedness of ξi, i = 1, . . . , N , its moment generating function satisfies

E [exp(sξi)] ≤ exp
(
σ2s2

2

)
.

For any s ∈ R, ξi is said to be sub-Gaussian with variance proxy σ2. Thus, using
Hoeffding’s inequality,

max
1≤r≤R−1
1≤j≤J

P

(∣∣∣∣∣ 1
N

N∑
i=1

z̃r
i,jϵi,j

∣∣∣∣∣ ≥ γ

)
≤ 2 exp

(
−Nγ2

2σ2

)
.

It follows from ξi ∈ [−1, 1] that σ2 = 1. Therefore,

P
(∥∥∥∥ 1
NJ

Z̃T ϵ

∥∥∥∥
∞

≥ γ

)
≤ (R− 1)J max

1≤r≤R−1
1≤j≤J

P

(∣∣∣∣∣ 1
N

N∑
i=1

z̃r
i,jϵi,j

∣∣∣∣∣ ≥ γ

)

≤ 2(R− 1)J exp
(

−Nγ2

2

)
.

48



2.C.2 Proof of Selection Consistency

In the following, we provide the proof of Theorem 2.1. We first derive two sufficient
conditions in Lemma 2.C.3 that ensure that the estimated weights are equal in sign,
i.e. θ̂ =s θ

∗. Lemma 2.C.4 provides a bound on the probability of the first sufficient
condition and Lemma 2.C.5 a bound on the probability of the second sufficient condition.
Finally, we use Lemma 2.C.4 and Lemma 2.C.5 to prove Theorem 2.1. Both Lemma
2.C.4 and Lemma 2.C.5 employ Lemma 2.C.2. To keep notation uncluttered, we drop the
dependence of R(N), s(N), ξS

min(µ,N) and ρ(µ,N) on N and write R, s, ξS
min(µ) and

ρ(µ) in the subsequent proofs.

Lemma 2.C.2. It holds that∥∥∥∥∥
( 1
NJ

Z̃T
S Z̃S + µIS

)−1
∥∥∥∥∥

∞

≤
√
s

1
ξS

min(µ)
.

Proof. Using Singular Value Decomposition (SVD), rewrite Z̃S as
1√
NJ

Z̃S = ADMT (2.C.2)

where A is a NJ × s matrix with orthogonal columns, i.e. ATA = IS .
M is a s× s orthogonal matrix satisfying MTM = MMT = IS . D is a diagonal s× s
matrix consisting of the singular values of (1/

√
NJ)Z̃S on its diagonal. We apply the

SVD in Equation (2.C.2) to rewrite( 1
NJ

Z̃T
S Z̃S + µIS

)−1
=
(
MDTATADMT + µIS

)−1
=
(
MD2MT + µMMT

)−1

= M
(
D2 + µIS

)−1
MT

Therefore,∥∥∥∥∥
( 1
NJ

Z̃T
S Z̃S + µIS

)−1
∥∥∥∥∥

∞

=
∥∥∥∥∥M (

D2 + µIS

)−1
MT

∥∥∥∥∥
∞

≤
√
s

∥∥∥∥∥M (
D2 + µIS

)−1
MT

∥∥∥∥∥
2

(2.C.3)

=
√
s

∥∥∥∥∥ (D2 + µIS

)−1
∥∥∥∥∥

2

=
√
smax

i∈S

√
ψi

=
√
smax

i∈S

1
d2

ii + µ
=

√
s

1
min
i∈S

d2
ii + µ

=
√
s

1
ξS

min(µ)
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where ψi denotes the eigenvalues of
((
D2 + µIS

)−1)T (
D2 + µIS

)−1 =
(
D2 + µIS

)−2.
Thus, ψi =

(
d2

ii + µ
)−2, as the eigenvalues of a diagonal matrix are its diagonal entries.

The (unrestricted) eigenvalues of 1/(NJ)Z̃T
S Z̃S + µIS are defined as ξS(µ). ξS

min(µ)
corresponds to the minimal eigenvalue of the matrix. The first inequality in Equation
(2.C.3) holds by the relation of the absolute row sum norm and the spectral norm. The
transformation from the first to the second line follows from the invariance of the spectral
norm to orthogonal transformations (Gentle, 2007, pp. 130-131). The equality in the
second line follows from the spectral norm. The last equality in Equation (2.C.3) holds
by the relation of singular values to eigenvalues.

Lemma 2.C.3. Sufficient conditions for θ̂ =s θ
∗ are

M(V ) :=
{

max
j∈SC

Vj ≤ λ

}
,

M(U) :=
{

max
i∈S

|Ui| < ρ(µ)
}

where

V := 1
NJ

Z̃T
SC

[
Z̃S

( 1
NJ

Z̃T
S Z̃S + µIS

)−1 (
λιS + µθ∗

S − 1
NJ

Z̃T
S ϵ

)
+ ϵ

]
,

U :=
( 1
NJ

Z̃T
S Z̃S + µIS

)−1 1
NJ

Z̃T
S ϵ,

ρ(µ) := min
i∈S

∣∣∣ ( 1
NJ

Z̃T
S Z̃S + µIS

)−1 ( 1
NJ

Z̃T
S Z̃Sθ

∗
S − λιS

) ∣∣∣.
Proof. The Lagrangian of our generalized estimator in Equation (2.8) formulated in
matrix notation is given by

L(θ) := 1
2NJ ||ỹ − Z̃θ||22 + λ

(
ιT θ − 1

)
+ 1

2µ θ
T θ − νT θ (2.C.4)

which is minimized with respect to θ, i.e. θ = arg min
θ

L(θ). λ and ν are Lagrangian
multipliers that enforce that the estimated weights sum to one and that they are non-
negative respectively. µ > 0 is an additional tuning parameter. Note that for µ = 0,
Equation (2.C.4) corresponds to the objective function of the estimator by Fox et al.
(2011).

To analyze the support recovery of our estimator, we follow the proof in Jia and Yu
(2010). The estimator recovers the true support of the distribution if every estimated
probability weight θ̂ has the same sign as the true weights θ∗, i.e. θ̂ =s θ

∗. This is
the case if the Karush-Kuhn-Tucker (KKT) conditions to the optimization problem in
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Equation (2.C.4) are satisfied. The KKT conditions are given by

− 1
NJ

Z̃T
(
ỹ − Z̃θ̂

)
+ λι+ µ θ̂ − ν = 0, (2.C.5)

λ
(
ιT θ̂ − 1

)
= 0,

νr θ̂r = 0,

λ ≥ 0, νr ≥ 0 ∀ r = 1, . . . , R− 1.

Denote the set of grid points where the true distribution has positive probability
mass by S = {r ∈ {1, . . . , R − 1}|θ∗

r > 0} and let SC = {r ∈ {1, . . . , R − 1}|θ∗
r = 0}

denote its complement set. The corresponding cardinalities are defined as s := |S| and
sC := |SC |. We refer to grid points in S as active grid points and to grid points in SC as
inactive grid points. Splitting θ̂, Z̃ and ν over S and SC into two blocks gives

− 1
NJ

[
Z̃S Z̃SC

]T (
ỹ −

[
Z̃S Z̃SC

]( θ̂S

θ̂SC

))
+ λι+ µ

(
θ̂S

θ̂SC

)
−
(

νS

νSC

)
= 0.

Recall that θ∗
r = 0 for all grid points outside S, so that Z̃θ∗ = Z̃Sθ

∗
S . In order to

recover the active grid points, it must hold that θ̂ =s θ
∗ which implies θ̂SC = 0. The two

conditions that follow from Equation (2.C.5) require

− 1
NJ

Z̃T
S

(
ỹ − Z̃S θ̂S

)
+ λιS + µθ̂S − νS = 0, (2.C.6)

− 1
NJ

Z̃T
SC

(
ỹ − Z̃S θ̂S

)
+ λιSC − νSC = 0.

Note that θ̂S > 0 and θ̂SC = 0 imply
νr = 0 ∀ r ∈ S, (2.C.7)

νr ≥ 0 ∀ r ̸∈ S. (2.C.8)

It follows from Condition (2.C.7) that Condition (2.C.6) simplifies to

− 1
NJ

Z̃T
S

(
ỹ − Z̃S θ̂S

)
+ λιS + µθ̂S = 0.

Substituting the true model ỹ = Z̃θ∗ + ϵ, we can re-express the required conditions as

− 1
NJ

Z̃T
S Z̃S

(
θ∗

S − θ̂S

)
− 1
NJ

Z̃T
S ϵ+ λιS + µθ̂S = 0 (2.C.9)

and
− 1
NJ

Z̃T
SC Z̃S

(
θ∗

S − θ̂S

)
− 1
NJ

Z̃T
SC ϵ+ λιSC − νSC = 0. (2.C.10)
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Reformulating Condition (2.C.9) gives

θ̂S =
( 1
NJ

Z̃T
S Z̃S + µIS

)−1( 1
NJ

Z̃T
S ϵ︸ ︷︷ ︸

=:U

+ 1
NJ

Z̃T
S Z̃Sθ

∗
S − λιS

)
> 0 (2.C.11)

where the positivity constraint follows from the KKT conditions and the definition of θ̂S .

Plugging Equation (2.C.11) into Equation (2.C.10) and using Condition (2.C.8)
yields

1
NJ

Z̃T
SC

[
Z̃S

( 1
NJ

Z̃T
S Z̃S + µIS

)−1 (
λιS + µθ∗

S − 1
NJ

Z̃T
S ϵ

)
+ ϵ

]
︸ ︷︷ ︸

=:V

≤ λιSC . (2.C.12)

U and V are defined in Equation (2.C.11) and Equation (2.C.12), respectively.
The vector U consists of s elements Ui, i ∈ S, and is constructed from the conditions

on the positive weights, and vector V from the condition on the zero weights. Therefore,
V has R− s elements Vj , j ∈ SC . Condition (2.C.12) is equivalent to the event

M(V ) :=
{

max
j∈SC

Vj ≤ λ

}
.

The event M(U) defines a condition for the positive weights

M(U) :=
{

max
i∈S

|Ui| < ρ(µ)
}

where ρ(µ) := min
i∈S

|gi| with gi :=
[ (

1
NJ Z̃

T
S Z̃S + µIS

)−1 ( 1
NJ Z̃

T
S Z̃Sθ

∗
S − λιS

) ]
i
. There-

fore, the event M(U) implies
0 < ρ(µ) − max

i∈S
|Ui| < ρ(µ) − |Ui| < |gi| − |Ui| < |gi + Ui| = |θ̂Si | = θ̂Si , ∀i ∈ S

where gi, Ui and θ̂Si denote the ith element of the respective vectors g, U and θ̂S . The
second last equality holds by definition of gi and Ui (see Equation (2.C.11)) and the
last inequality by the reverse triangle inequality. Because the weights are constrained to
be nonnegative by the KKT conditions, the absolute value |θ̂Si | can be omitted. Con-
sequently, M(U) is a sufficient condition for Equation (2.C.11) to hold and thus for θ̂S > 0.
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Lemma 2.C.4. Suppose Assumption 2.1 holds. Suppose further that the NEIC holds.
Let MC(V ) denote the complement of M(V ). Then,

P
(
MC(V )

)
≤ 2(R− 1)J exp

−
Nη2λ2

(
ξS

min(µ)
s
√

s+ξS
min(µ)

)2

2

 .

Proof. Vj is sub-Gaussian with mean

V := E(V ) = 1
NJ

Z̃T
SC Z̃S

( 1
NJ

Z̃T
S Z̃S + µIS

)−1
(λιS + µθ∗

S) .

Recall the Nonnegative Elastic Net Irrepresentable Condition (NEIC) is

max
r∈SC

1
NJ

Z̃T
SC Z̃S

( 1
NJ

Z̃T
S Z̃S + µIS

)−1 (
ιS + µ

λ
θ∗

S

)
≤ 1 − η.

Therefore, V j ≤ (1 − η)λ. Let Ṽ := 1
NJ Z̃

T
SC

[
− Z̃S

(
1

NJ Z̃
T
S Z̃S + µIS

)−1 1
NJ Z̃

T
S + INJ

]
ϵ

such that V = V + Ṽ . Consequently, it holds for the complement of M(V ) that
λ < max

j∈SC
Vj = max

j∈SC
(V j+Ṽj) ≤ max

j∈SC
V j+max

j∈SC
Ṽj ⇐⇒ max

j∈SC
Ṽj > λ−max

j∈SC
V j ≥ λ−(1−η)λ = ηλ.

We use the last inequality to derive an upper bound on MC(V ):

P
(
MC(V )

)
= P

(
max
j∈SC

Vj > λ

)
≤ P

(
max
j∈SC

Ṽj > ηλ

)
≤ P

(
max
j∈SC

|Ṽj | > ηλ

)

= P

(
max
j∈SC

∣∣∣∣∣ 1
NJ

Z̃T
SC

[
− Z̃S

( 1
NJ

Z̃T
S Z̃S + µIS

)−1 1
NJ

Z̃T
S + I

]
ϵ

∣∣∣∣∣ > ηλ

)

≤ P

(
max
j∈SC

∣∣∣∣∣ 1
NJ

Z̃T
SC Z̃S

( 1
NJ

Z̃T
S Z̃S + µIS

)−1 1
NJ

Z̃T
S ϵ

∣∣∣∣∣+ max
j∈SC

∣∣∣∣ 1
NJ

Z̃T
SC ϵ

∣∣∣∣ > ηλ

)

= P

∥∥∥∥∥ 1
NJ

Z̃T
SC Z̃S

( 1
NJ

Z̃T
S Z̃S + µIS

)−1 1
NJ

Z̃T
S ϵ

∥∥∥∥∥
∞

+ max
j∈SC

∣∣∣∣ 1
NJ

Z̃T
SC ϵ

∣∣∣∣ > ηλ



≤ P

∥∥∥∥∥ 1
NJ

Z̃T
SC Z̃S

∥∥∥∥∥
∞

∥∥∥∥∥
( 1
NJ

Z̃T
S Z̃S + µIS

)−1
∥∥∥∥∥

∞

∥∥∥∥∥ 1
NJ

Z̃T
S ϵ

∥∥∥∥∥
∞

+ max
j∈SC

∣∣∣∣ 1
NJ

Z̃T
SC ϵ

∣∣∣∣ > ηλ

 .
The last inequality holds due the property of the absolute row sum norm that ∥ABx∥∞ ≤
∥A∥∞ ∥B∥∞ ∥x∥∞ for arbitrary matrices A, B and a vector x.

By Lemma 2.C.2 and
∥∥∥ 1

NJ Z̃
T
SC Z̃S

∥∥∥
∞

≤ s (since every entry in Z̃ is at most 1 in
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absolute value, and thus the absolute row sum of 1
NJ Z̃

T
SC Z̃S at most 1

NJ sNJ = s), we
obtain

P
(
MC(V )

)
≤ P

(
s
√
s

1
ξS

min(µ)
max
j∈S

∣∣∣∣ 1
NJ

Z̃T
SC ϵ

∣∣∣∣+ max
j∈SC

∣∣∣∣ 1
NJ

Z̃T
SC ϵ

∣∣∣∣ > ηλ

)

≤ P

(
s
√
s

1
ξS

min(µ)
max
j∈R

∣∣∣∣ 1
NJ

Z̃T ϵ

∣∣∣∣+ max
j∈R

∣∣∣∣ 1
NJ

Z̃T ϵ

∣∣∣∣ > ηλ

)

= P

((
s
√
s

1
ξS

min(µ)
+ 1

)
max
j∈R

∣∣∣∣ 1
NJ

Z̃T ϵ

∣∣∣∣ > ηλ

)

≤ P

max
j∈R

∣∣∣∣ 1
NJ

Z̃T ϵ

∣∣∣∣ > ηλ
1

s
√
s 1

ξS
min(µ) + 1

 .
Applying Hoeffding’s inequality with γ = ηλ 1

s
√

s 1
ξS

min(µ)
+1 as outlined in Lemma 2.C.1

gives

P
(
MC(V )

)
≤ 2(R− 1)J exp

−
N

(
ηλ 1

s
√

s 1
ξS

min(µ)
+1

)2

2σ2



= 2(R− 1)J exp

−
N

(
ηλ

ξS
min(µ)

s
√

s+ξS
min(µ)

)2

2σ2



= 2(R− 1)J exp

−
Nη2λ2

(
ξS

min(µ)
s
√

s+ξS
min(µ)

)2

2

 .
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Remark 2.C.1. The above calculations can be simplified to for the baseline estimator,
i.e. if µ = 0. Assume that the NIC condition for LASSO holds (NEIC with µ = 0).
Additionally, note that it holds for µ ≥ 0 that( 1

NJ
Z̃T

S Z̃S + µIS

)−1
Z̃T

S = Z̃T
S

( 1
NJ

Z̃SZ̃
T
S + µIN

)−1
.

Using the above equality for µ = 0, we obtain

P

(
max
j∈SC

Vj > λ

)
≤ P

(
max
j∈SC

Ṽj > ηλ

)
≤ P

(
max
j∈SC

|Ṽj | > ηλ

)

= P

(
max
j∈SC

∣∣∣∣∣ 1
NJ

Z̃T
SC

[
− Z̃S

( 1
NJ

Z̃T
S Z̃S

)−1 1
NJ

Z̃T
S + IS

]
ϵ

∣∣∣∣∣ > ηλ

)

= P

(
max
j∈SC

∣∣∣∣∣ 1
NJ

Z̃T
SC

[
− 1
NJ

Z̃SZ̃
T
S

( 1
NJ

Z̃SZ̃
T
S

)−1
+ IS

]
ϵ

∣∣∣∣∣ > ηλ

)

= P

(
max
j∈SC

∣∣∣∣ 1
NJ

Z̃T
SC

[
− IS + IS

]
ϵ

∣∣∣∣ > ηλ

)

= P (0 > ηλ) = 0

since ηλ > 0.

Lemma 2.C.5. Suppose Assumption 2.1 holds. Let MC(U) denote the complement of
M(U). Then,

P
(
MC(U)

)
≤ 2sJ exp

(
−NξS

min(µ)2ρ(µ)2

2s

)
.

Proof. Because U is sub-Gaussian with mean 0, the probability of the complement of
M(U) corresponds to

P
(
MC(U)

)
= P

(
max
i∈S

|Ui| ≥ ρ(µ)
)

= P

(
max
i∈S

( 1
NJ

Z̃T
S Z̃S + µIS

)−1 1
NJ

Z̃T
S ϵ ≥ ρ(µ)

)

≤ P

∥∥∥∥∥
( 1
NJ

Z̃T
S Z̃S + µIS

)−1
∥∥∥∥∥

∞

∥∥∥∥∥ 1
NJ

Z̃T
S ϵ

∥∥∥∥∥
∞

≥ ρ(µ)

 .
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In the next step Lemma 2.C.2 is applied again.

P
(
MC(U)

)
≤ P

√
s

1
ξS

min(µ)

∥∥∥∥∥ 1
NJ

Z̃T
S ϵ

∥∥∥∥∥
∞

≥ ρ(µ)



≤ P

∥∥∥∥∥ 1
NJ

Z̃T
S ϵ

∥∥∥∥∥
∞

≥ ξS
min(µ) 1√

s
ρ(µ)



≤ 2sJ exp

−
N
(
ξS

min(µ) 1√
s
ρ(µ)

)2

2σ2

 = 2sJ exp
(

−NξS
min(µ)2ρ(µ)2

2sσ2

)

= 2sJ exp
(

−NξS
min(µ)2ρ(µ)2

2s

)

where the last inequality follows from Hoeffding’s inequality in Lemma 2.C.1 with
γ = ξS

min(µ) 1√
s
ρ(µ).

We use the above lemmata to prove Theorem 2.1.

Proof of Theorem 2.1.

It holds that
P
(
θ̂ =s θ

)
≥ P

(
M(V ) ∩ M(U)

)
since M(U) is a sufficient condition for the selection of the true weights according to
Lemma 2.C.3.

Under the condition that RCDG holds, applying Lemma 2.C.4 and Lemma 2.C.5
gives lim

N→∞
P
(
MC(V )

)
= 0 and lim

N→∞
P
(
MC(U)

)
= 0.

Thus,
lim

N→∞
P
(
θ̂ =s θ

)
≥ lim

N→∞
P
(
M(V ) ∩ M(U)

)
≥ lim

N→∞

{
1 − P

(
MC(V )

)
− P

(
MC(U)

)}
= 1.
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2.C.3 Proof of Error Bounds

In the following, we first provide the proof of the error bound of the estimated weights
presented in Theorem 2.2 and the proof of Corollary 2.1. We then use the derived bound
to proof the error bound of the estimated random coefficients’ distribution in Theorem
2.3. In the proofs of Theorem 2.2 and Theorem 2.3, we apply Lemma 2.C.1.

Proof of Theorem 2.2.

Note that if θ̂ is the solution to the Lagrangian in Equation (2.C.4), it must hold that it
minimizes (2.C.4), i.e. L(θ̂) ≤ L(θ) for any θ. Thus, it holds that L(θ̂) ≤ L(θ∗) where θ∗

are the true weights. Applying this to the objective function in (2.C.4), we obtain

1
2NJ

∥∥∥ỹ − Z̃θ̂
∥∥∥2

2
+ λ

(
ιT θ̂ − 1

)
+ µ

2 θ̂
T θ̂ ≤ 1

2NJ
∥∥∥ỹ − Z̃θ∗

∥∥∥2

2
+ λ

(
ιT θ∗ − 1

)
+ µ

2 θ
∗T θ∗.

Substituting the true model ỹ = Z̃θ∗ + ϵ into the above condition and simplifying
gives

1
2NJ

∥∥∥Z̃ (θ∗ − θ̂
)

+ ϵ
∥∥∥2

2
+ λ

(
ιT θ̂ − 1

)
+ µ

2 θ̂
T θ̂ ≤ 1

2NJ ∥ϵ∥2
2 + λ

(
ιT θ∗ − 1

)
+ µ

2 θ
∗T θ∗.

Taking into account that

∥∥∥Z̃(θ∗ − θ̂) + ϵ
∥∥∥2

2
=
∥∥∥Z̃(θ∗ − θ̂)

∥∥∥2

2
+ ∥ϵ∥2

2 + 2ϵT (Z̃(θ∗ − θ̂))

we obtain

1
2NJ

∥∥∥Z̃ (θ∗ − θ̂
)∥∥∥2

2
+ λ

(
ιT θ̂ − 1

)
+ µ

2 θ̂
T θ̂ ≤

1
NJ

ϵT Z̃
(
θ̂ − θ∗

)
+ λ

(
ιT θ∗ − 1

)
+ µ

2 θ
∗T θ∗. (2.C.13)

Note that ϵT Z̃(θ̂ − θ∗) ≤
∥∥∥Z̃T ϵ

∥∥∥
∞

∥∥∥θ̂ − θ∗
∥∥∥

1
.

Applying Lemma 2.C.1 with γ ≡ γ(N, δ) :=
√

2 log
(

2(R−1)J
δ

)/
N we obtain
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P
(∥∥∥∥ 1
NJ

Z̃T ϵ

∥∥∥∥
∞

≥ γ

)
≤ 2(R− 1)J exp

−N


√√√√2 log

(
2(R−1)J

δ

)
N


2/

2



= 2(R− 1)J exp
(

log
((2(R− 1)J

δ

)−1))

= δ. (2.C.14)

In the following, we assume that {(1/(NJ))||Z̃T ϵ||∞ ≤ γ}, which happens with
probability at least 1 − δ according to Equation (2.C.14). Therefore, the rest of the proof
holds with probability 1 − δ. Using that the event {(1/(NJ))||Z̃T ϵ||∞ ≤ γ} occurs, we
can bound the the right hand side in Equation (2.C.13) from above by

1
2NJ

∥∥∥Z̃ (θ∗ − θ̂
)∥∥∥2

+ λ
(
ιT θ̂ − 1

)
+ µ

2 θ̂
T θ̂ ≤ γ

∥∥∥θ̂ − θ∗
∥∥∥

1
+ λ

(
ιT θ∗ − 1

)
+ µ

2 θ
∗T θ∗.

(2.C.15)
We split θ̂, Z̃ and ν over S and SC into two blocks, whereby S again denotes the

set of relevant grid points for which the true weights θ∗ > 0 and SC the set of points for
which θ∗ = 0. It follows that

ιT θ = ιTSθS + ιTSCθSC = ||θS ||1 + ||θSC ||1

and

θT θ = θT
S θS + θT

SCθSC .

Thus, we can reformulate Equation (2.C.15) as

1
2NJ

∥∥∥Z̃ (θ∗ − θ̂
)∥∥∥2

2
+ λ

(∥∥∥θ̂S

∥∥∥
1

+
∥∥∥θ̂SC

∥∥∥
1

− 1
)

+ µ

2
(
θ̂T

S θ̂S + θ∗T
SCθ

∗
SC

)
≤

γ
∥∥∥θ̂ − θ∗

∥∥∥
1

+ λ

(∥∥∥θ∗
S

∥∥∥
1

+
∥∥∥θ∗

SC

∥∥∥
1

− 1
)

+ µ

2
(
θ∗T

S θ∗ + θ∗T
SCθ

∗
SC

)
.

It follows from θ∗
SC = 0 that ||θ̂ − θ∗||1 = ||θ̂S − θ∗

S ||1 + ||θ̂SC ||1 such that after some
simple manipulations we obtain

1
2NJ

∥∥∥Z̃ (θ∗ − θ̂
)∥∥∥2

2
+ λ

(∥∥∥θ̂S

∥∥∥
1

+
∥∥∥θ̂SC

∥∥∥
1

− 1
)

+ µ

2
(
θ̂T

S θ̂S − θ∗T
S θ∗

S + θ̂T
SC θ̂SC

)
≤
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γ
∥∥∥θ̂ − θ∗

∥∥∥
1

+ λ

(∥∥∥θ∗
S

∥∥∥
1

− 1
)
. (2.C.16)

Note that the terms in (2.C.16) that are multiplied by the Langrangian parameter
λ drop out. Recall that by the definition of a linear probability model, ||θ∗

S ||1 − 1 = 0.
With respect to the second term, λ(||θ̂S ||1 + ||θ̂SC ||1 − 1), there are two different cases
to be considered due to the inequality constraint ∑R−1

r=1 θr ≤ 1: (1) the estimated
probability weights sum to one (the constraint is binding), and (2) the sum of the
estimated probability weights is less than one (the constraint is not binding). In the
former case, ||θ̂S ||1 + ||θ̂SC ||1 − 1 = 0. In the latter case, the KKT conditions require
λ = 0. Thus, Condition (2.C.16) simplifies to

1
2NJ

∥∥∥Z̃ (θ∗ − θ̂
)∥∥∥2

2
+ µ

2
(
θ̂T

S θ̂S − θ∗T
S θ∗

S + θ̂T
SC θ̂SC

)
≤ γ

∥∥∥θ̂ − θ∗
∥∥∥

1
. (2.C.17)

It follows from ||θ̂S − θ∗
S ||22 = θ̂T

S θ̂S − 2θ∗T
S θ̂S + θ∗T

S θ∗
S that

θ̂T
S θ̂S − θ∗T

S θ∗
S + θ̂T

SC θ̂SC =
∥∥∥θ̂S − θ∗

S

∥∥∥2

2
+ 2θ∗T

S θ̂S − 2θ∗T
S θ∗ +

∥∥∥θ̂SC

∥∥∥2

2

and from θ∗
SC = 0 that ||θ̂SC ||p = ||θ̂SC − θ∗

SC ||p for p = 1, 2.

Consequently, we can collect the terms over the index sets S and SC to ||θ̂S − θ∗
S ||1 +

||θ̂SC ||1 = ||θ̂ − θ∗||1 and ||θ̂S − θ∗
S ||22 + ||θ̂SC ||22 = ||θ̂ − θ∗||22.

This yields

θ̂T
S θ̂S − θ∗T

S θ∗
S + θ̂T

SC θ̂SC =
∥∥∥θ̂ − θ∗

∥∥∥2

2
+ 2θ∗T

S θ̂S − 2θ∗T
S θ∗.

Therefore, Equation (2.C.17) can be equivalently expressed as

1
2NJ

∥∥∥Z̃(θ∗ − θ̂
)∥∥∥2

2
+ µ

2
∥∥∥θ̂ − θ∗

∥∥∥2

2
≤

γ
∥∥∥θ̂ − θ∗

∥∥∥
1

+ µ

2

(
2θ∗T

S θ∗
S − 2θ∗T

S θ̂S

)
. (2.C.18)

Next, because θ∗
S > 0 and ||θ̂S − θ∗

S ||1 ≤
√
s||θ̂S − θ∗

S ||2 it holds that

θ∗T
S

(
θ∗

S − θ̂S

)
≤ θ∗T

S

∣∣∣θ̂S − θ∗
S

∣∣∣ ≤
∥∥∥θ∗

S

∥∥∥
∞

∥∥∥θ̂S − θ∗
S

∥∥∥
1

≤
√
s
∥∥∥θ∗

S

∥∥∥
∞

∥∥∥θ̂S − θ∗
S

∥∥∥
2
(2.C.19)

where |θ̂S − θ∗
S | takes the absolute value of each element of the vector θ̂S − θ∗

S .
Substituting Condition (2.C.19) back into the error bound in Equation (2.C.18) and
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using the fact that ||θ̂− θ∗||1 ≤
√

(R− 1) ||θ̂− θ∗||2, we can rewrite Equation (2.C.18) as

1
2NJ

∥∥∥Z̃(θ∗ − θ̂
)∥∥∥2

2
+ µ

2
∥∥∥θ̂ − θ∗

∥∥∥2

2
≤ γ

√
(R− 1)

∥∥∥θ̂ − θ∗
∥∥∥

2
+ µ

√
s
∥∥∥θ∗

S

∥∥∥
∞

∥∥∥θ̂S − θ∗
S

∥∥∥
2
.(2.C.20)

Recall that ∥∥∥Z̃(θ̂ − θ∗)∥∥∥2

2
=
(
θ̂ − θ∗)T Z̃T Z̃

(
θ̂ − θ∗)

and that the left-hand-side in Condition (2.C.20) can be summarized as

1
2
(
θ̂ − θ∗)T [ 1

NJ
Z̃T Z̃ + µI

](
θ̂ − θ∗) ≤

(
γ
√

(R− 1) + µ
√
s
∥∥∥θ∗

S

∥∥∥
∞

)∥∥∥θ̂ − θ∗
∥∥∥

2
.(2.C.21)

Recall that ξmin(µ) defines the minimum eigenvalue of the real symmetric matrix
1/(NJ)Z̃T Z̃ + µI over the set of vectors H (see Subsection (2.3.2)).

It holds that ξmin(µ) > 0 if µ > 0 and that ξmin ≥ 0 if µ = 0. In the following, we
assume ξmin(µ) > 0.

Thus, multiplying the left-hand-side in Condition (2.C.21) by ||θ̂ − θ∗||22/||θ̂ − θ∗||22
and using the restricted minimum eigenvalue definition gives the upper ℓ2-error bound
between the estimated and true probability weights:

ξmin(µ)
2

∥∥∥θ̂ − θ∗
∥∥∥2

2
≤
(
γ
√

(R− 1) + µ
√
s ∥θ∗

S∥∞

)∥∥∥θ̂ − θ∗
∥∥∥

2

⇒
∥∥∥θ̂ − θ∗

∥∥∥
2

≤
2
√

(R− 1) γ + 2µ
√
s ∥θ∗

S∥∞
ξmin(µ) .
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Proof of Corollary 2.1.

By assumption, it holds that(√
(R− 1) γ + µ

√
s ∥θ∗

S∥∞

)
ξmin(0) ≤

√
(R− 1) γξmin(0) + µ

√
(R− 1) γ

=
√

(R− 1) γ(ξmin(0) + µ).

Using ξmin(µ) = ξmin(0) + µ gives(√
(R− 1) γ + µ

√
s ∥θ∗

S∥∞

)
ξmin(0) ≤

√
(R− 1) γξmin(µ)

which is equivalent to
2
√

(R− 1) γ + 2µ
√
s ∥θ∗

S∥∞
ξmin(µ) ≤ 2

√
(R− 1) γ
ξmin(0) .

Proof of Theorem 2.3.

It holds that the difference of F̂ (β) and F ∗(β) in any point β ∈ RK can be bounded by∣∣∣F̂ (β) − F ∗(β)
∣∣∣ =

∣∣∣∣∣
R∑

r=1
θ̂r 1 [βr ≤ β] −

R∑
r=1

θ∗
r 1 [βr ≤ β]

∣∣∣∣∣
≤ sup

β

∣∣∣∣∣
R∑

r=1

(
θ̂r − θ∗

r

)
1 [βr ≤ β]

∣∣∣∣∣
≤

R∑
r=1

∣∣∣θ̂r − θ∗
r

∣∣∣ =
R−1∑
r=1

∣∣∣θ̂r − θ∗
r

∣∣∣+ ∣∣∣θ̂R − θ∗
R

∣∣∣
where the last inequality holds by the triangle inequality.

Then, ∣∣∣F̂ (β) − F ∗(β)
∣∣∣ ≤

R−1∑
r=1

∣∣∣θ̂r − θ∗
r

∣∣∣+ ∣∣∣1 −
R−1∑
r=1

θ̂r − 1 +
R−1∑
r=1

θ∗
r

∣∣∣

=
R−1∑
r=1

∣∣∣θ̂r − θ∗
r

∣∣∣+ ∣∣∣R−1∑
r=1

(
θ∗

r − θ̂r

) ∣∣∣ ≤ 2
R−1∑
r=1

∣∣∣θ̂r − θ∗
r

∣∣∣
= 2

∥∥∥θ̂ − θ∗
∥∥∥

1
≤ 2

√
(R− 1)

∥∥∥θ̂ − θ∗
∥∥∥

2
,
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which, by Theorem 2.2, can be bounded by

|F̂ (β) − F ∗(β)| ≤ 2
√

(R− 1) 2
√

(R− 1) γ + 2µ
√
s ∥θ∗

S∥∞
ξmin(µ) .
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3 Nonparametric Estimation of the Random
Coefficients Model: A Random Elastic
Net Approach

Abstract

This paper extends the computationally attractive nonparametric random
coefficients estimator of Heiss, Hetzenecker and Osterhaus (2021), which
includes the nonnegative LASSO estimator of Fox, Kim, Ryan and Bajari
(2011) as a special case, to a random elastic net estimator. The random
elastic net estimator is a bootstrap method. It repeatedly estimates the
estimator of Heiss et al. (2021), varying the potential support of the random
coefficients’ distribution across repetitions. Subsequently, it averages the
results of the repetitions to obtain final estimates. The random elastic net
estimator improves the estimator’s recovery of the true support and allows
for more accurate estimates of the random coefficients’ distribution. Two
Monte Carlo experiments and an application to the regulation of air pollution
(Blundell et al., 2020) illustrate the improved performance of the random
elastic net estimator.

JEL codes: C14, C25, L.
Keywords: Random Coefficients, Mixed Logit, Nonparametric
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3.1 Introduction

A popular approach for modeling unobserved heterogeneity, which is a common challenge
in many empirical studies, are random coefficient models. Random coefficient models
allow the coefficients of the economic model to vary across agents according to an unknown
distribution function, which the researcher aims to estimate.

For this purpose, Fox, Kim, Ryan and Bajari (2011), hereafter FKRB, introduce a
simple and computationally fast nonparametric estimator for the random coefficients’
distribution. The estimator approximates the distribution function using a fixed grid
of random coefficients. Every grid point in the grid is a prespecified vector of random
coefficients and represents a certain type of heterogenous agent. The distribution function
is obtained from the estimated probability weights at the grid points, which are estimated
with constrained least squares. In principle, the true distribution function can be
approximated arbitrarily closely if the grid of random coefficients is sufficiently dense
(McFadden and Train, 2000).

Monte Carlo studies (e.g., Fox et al., 2011 and Fox et al., 2016) and applications to
real data (e.g., Nevo et al., 2016, Illanes and Padi, 2019, Blundell, Gowrisankaran and
Langer, 2020 and Houde and Myers, 2019) indicate, however, that the estimator tends
to estimate only few positive weights and that it sets the weights at many grid points
to zero. For instance, Nevo et al. (2016) study the demand for residential broadband
and estimate only 53 out of 8, 626 potentially heterogeneous consumer types. Illanes
and Padi (2019) use the approach to estimate the demand for private pension plans
in Chile and assign positive weights to only 194 of 83, 251 grid points. Blundell et al.
(2020) develop a model to study firms’ reactions to dynamic enforcement of air pollution
regulations and recover no more than 12 out of 10, 001 grid points. These applications
illustrate the sparse nature of the estimator of FKRB due to which it lacks the ability to
estimate smooth distribution functions and instead approximates potentially continuous
distributions through step functions with only few steps.

Heiss, Hetzenecker and Osterhaus (2021) explain the sparse nature by showing that
the estimator of FKRB is a nonnegative LASSO (Wu et al., 2014) (NNL) estimator with
a fixed tuning parameter. NNL was first mentioned in the seminal work of Efron et al.
(2004) as positive LASSO. It shares the property of LASSO (Tibshirani, 1996), which is
a popular model selection method typically used in applications with supposedly sparse
models, that it regularizes the coefficients of the model and shrinks some to zero.

Besides its sparse nature, the connection of the FKRB estimator to NNL implies
that the estimator potentially selects grid points incorrectly under strong correlation.
This is due to the fact that the estimator “randomly” chooses one out of a group of
highly correlated grid points and sets the remaining weights to zero (see Zou and Hastie,
2005, and Hastie et al., 2009, for the random behavior of LASSO).

A consequence of the estimator’s sparsity and “random” selection behavior can be an
inaccurate approximation of the true distribution through a non-smooth distribution. The
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estimated support can deviate from the true distribution’s support and, hence, conclusions
with respect to the heterogeneity of agents in the population be misleading. Fox et al.
(2016) show that identification of the true distribution requires a sufficiently dense grid
of random coefficients. Yet, in practice, a more dense grid tends to be accompanied with
higher correlation among grid points, leading to the incorrect grid point selection, and
correlation can become so strong that the optimization problem to the FKRB estimator
cannot be solved due to singularity (Nevo et al., 2016, Online Supplement). Thus, the
high correlation associated with a dense grid in combination with the incorrect grid
point selection of the estimator under strong correlation can cause problems for the
identification of the model.

In order to address these shortcomings, Heiss et al. (2021) generalize the FKRB
estimator to an elastic net estimator, which includes the FKRB estimator as a special
case. They show that their proposed estimator is able to select the correct support of the
distribution in cases where the FKRB estimator fails to do so. Furthermore, they prove
that the elastic net estimator, under conditions, approximates the random coefficients’
distribution more accurately than the FKRB estimator.

Even though the extension mitigates the sparsity and improves the selection of the
grid points, the solutions still tend to be too sparse. Therefore, we propose an estimator
based on the random LASSO estimator devoloped by Wang et al. (2011). The key
idea of the random LASSO estimator is similar to that of the random forest (Breiman,
2001). By repeatedly sampling a random subset of regressors and estimating the model
with these subsets, the random LASSO estimator aims to substantially decrease the
correlation among the regressors within each repetition. The coefficients for the regressors
not drawn in a repetition are set to zero. The final coefficients are the averages over
the coefficients of all repetitions. Due to the random selection of the regressors in each
repetition, the subset of regressors used for the estimation may only include some of the
highly correlated regressors. This diminishes the random selection behavior of the LASSO
and improves the chance that it selects all regressors correctly. Hence, the union of the
selected regressors over all repetitions might provide the correct set of variables, including
all of the highly correlated variables. To account for correlations within the subset of
regressors in a repetition, we replace LASSO estimation with elastic net estimation and
refer to the estimator as random elastic net estimator.

So far, the random LASSO estimator and random elastic estimator net prove most
useful in computational biology and medical sciences where researchers often encounter
high-dimensional problems with highly correlated variables – e.g., when aiming to identify
cancer driver genes (see, e.g., Björn, Badam, Spalinskas, Brandén, Koyi, Lewensohn,
De Petris, Lubovac-Pilav, Sahlén, Lundeberg et al., 2020, Kim, Hao, Gautam, Mersha and
Kang, 2018, and Park, Imoto and Miyano, 2015 for applications of the random LASSO
estimator and Park, Niida, Imoto and Miyano, 2017 and Yu, Cen, Chen, Markowitz,
Shaw, Tsai, Conejo-Garcia and Wang, 2022 for applications of the random elastic net
estimator).

More broadly, the random LASSO and random elastic net are related to model
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averaging techniques (see Moral-Benito (2015) for an overview). Model averaging methods
do not select a single model among a set of candidate models like model selection methods,
such as the LASSO, but rather combine candidate models (Liu, Okui and Yoshimura,
2016). This strategy can be viewed as a type of insurance against selecting a single
poor model (Leung and Barron, 2006). Furthermore, Hansen (2008) points out that
model averaging methods balance specification error (bias) against overparameterization
(variance) and are useful when we have a well defined goal such as minimizing the mean
squared error of the estimation. A concrete example of a model averaging technique,
which is similar to random LASSO, is random subset regression (Boot and Nibbering,
2019). Random subset regression randomly draws regressors, which is referred to as
“feature bagging”, to approximate the original model by combining many low-dimensional
models. Boot and Nibbering (2019) apply random subset regression to lower the mean
squared forecast error.

In high-dimensional settings with more variables than observations, the random
LASSO estimator and random elastic net estimator solve a further limitation of the
LASSO estimator in addition to the correlation problem. In these settings, the LASSO
can select at most as many variables as there are observations. In contrast, the random
LASSO estimator and random elastic net estimator can still select all variables in this
case. In our discrete choice framework, this implies that the number of grid points is
not limited by the sample size. Importantly, this allows us to specify a dense grid which
is required for an accurate approximation of the underlying distribution – even if we
increase the number of random coefficients included into the model. Hence, the curse of
dimensionality, which is a shortcoming of the FKRB estimator if the model consists of a
large number of random coefficients, is mitigated.

To study the finite sample performance of the random elastic net estimator, we
conduct two Monte Carlo experiments in which we estimate a random coefficients logit
model. The first Monte Carlo experiment uses a discrete distribution to study the
estimators’ ability to correctly recover the true distribution’s support. The results
demonstrate that our proposed random elastic net substantially improves the recovery
of the true support of the distribution function compared to the FKRB estimator and
the elastic net estimator – especially when the number of grid points is large relative
to the sample size. The second Monte Carlo experiment considers a mixture of two
bivariate normal distributions for the true distribution. The results highlight that the
random elastic net estimator can recover smooth and possibly complex distribution
functions. The estimator approximates these distribution functions more accurately than
the FKRB estimator and the elastic net estimator. The application of the random elastic
net estimator to the study of Blundell et al. (2020) confirms the property of the random
elastic net estimator that it is able to estimate smooth and possibly complex distribution
functions. More concretely, while Blundell et al. (2020) rely on the FKRB estimator
and approximate a 5-dimensional distribution with only 12 out of 10, 0001 grid points,
the random elastic net estimator recovers 154 grid points, which makes it easier to draw
conclusions with respect to the shape of the underlying distribution.
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The nonparametric estimators for the random coefficients model of Train (2008),
Train (2016), and Bansal, Daziano and Achtnicht (2018) constitute alternatives to the
FKRB estimator and the elastic net estimator of Heiss et al. (2021). Train (2008) proposes
three estimators that use a log-likelihood criterion instead of constrained least squares
but are, other than that, similar to the general approach of FKRB. To substantially
reduce the number of required grid points, Train (2016) suggests approximating the
random coefficients’ distribution with (possibly overlapping) polynomials, splines or step
functions instead of with a fixed grid of random coefficients’ vectors. The approach lowers
the number of required grid points and, thereby, constitutes another way to reduce the
curse of dimensionality, arising for models with a large number of random coefficients.
Bansal et al. (2018) extend the approach of Train (2016) to allow for fixed coefficients
in addition to random coefficients. However, for the estimation of the respective model,
Train (2008) relies on the EM algorithm, which is sensitive to its starting values and is
not guaranteed to converge to a global optimum. While both Train (2016) and Bansal
et al. (2018) uses simulated maximum likelihood for the estimation, the computation time
for the latter approach increase up to 40 times compared to the former approach. Heiss
et al. (2021) also note that their estimation procedure tends to be slow when including
both random and fixed coefficients. To circumvent the computational burden, they follow
the recommendation of Fox et al. (2016) and Houde and Myers (2019) who suggest a
two-step estimator to estimate the model with fixed and random coefficients.

The remainder of the paper is organized as follows. Section 3.2 describes the FKRB
estimator and the elastic net estimator and introduces the random elastic net estimator.
In Section 3.3, we present the two Monte Carlo experiments that study the performance
of the random elastic net estimator in comparison to the FKRB estimator and the elastic
net estimator. Section 3.4 applies the proposed estimator to the study of Blundell et al.
(2020). Section 3.5 concludes.

3.2 Fixed Grid Estimators

For the introduction of our estimator, we consider the framework of a random coefficient
discrete choice model.1 The approach, however, is not restricted to discrete choice
models, but can be applied to any model with unobserved heterogeneous parameters.
Let there be an i.i.d. sample of N observations, each confronted with a set of J mutually
exclusive potential outcomes. The researcher observes a K-dimensional real-valued vector
of explanatory variables xi,j for every observation unit i and potential outcome j, and a
binary vector yi whose entries are equal to one whenever she observes outcome j for the
ith observation, and zero otherwise. The goal is to estimate the unknown distribution of
heterogeneous parameters F0(β) in the model

1Note that the framework of this chapter is the same as in Chapter 1 and included to ensure that
this Chapter can be read independently of Chapter 1. Readers, who want to avoid repetitions to Chapter
1, can skip these parts and continue with Subsection 3.2.2.
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P (xi,j) =
�
g (xi,j , β) dF0 (β) (3.1)

where g (xi,j , β) denotes the probability of outcome j conditional on the random coeffi-
cients β and covariates xi,j . The researcher specifies the functional form of g (xi,j , β). A
prominent example of Equation (3.1) is the multinomial mixed logit model, the state-
of-the-art model for demand estimation. For a detailed description of the multinomial
mixed logit see Train (2009, pp. 134-150). In this model, consumer i realizes utility
ui,j = xT

i,jβi + ωi,j from alternative j, given product characteristics xi,j and unobserved
consumer-specific preferences βi. ωi,j denotes an additive, consumer- and choice-specific
error term. Consumer i chooses alternative j of J alternatives (and an outside good with
utility ui,0 = ωi,0) if ui,j > ui,l for all l ̸= j. Under the assumption that ωi,j follows a
type I extreme value distribution, the unconditional choice probabilities, Pi,j(x), are of
the form

Pi,j(x) =

�
exp

(
xT

i,jβ
)

1 +
J∑

l=1
exp

(
xT

i,lβ
)dF0 (β) .

F0(β) represents the distribution of heterogeneous consumer preferences in the population
and is to be estimated. In most applications, researchers place restrictive assumptions on
the functional form of F0(β) in advance, and estimate its parameters from the data.

3.2.1 Fixed Grid Elastic Net Estimator of Heiss et al. (2021)

FKRB propose a simple and fast mixture approach to estimate the underlying random
coefficients’ distribution without restrictive assumptions on its shape. The estimator
is a special case of sieve estimators (Chen, 2007). It uses a finite and fixed grid of
random coefficient vectors as mixture components to construct the distribution from
the estimated probability weight of every component. The underlying idea of this fixed
grid estimator is the transformation of the unconditional choice probabilities in Equation
(3.1) into a probability model in which F0(β) enters linearly. FKRB derive the linear
probability model in two steps: they transform Equation (3.1) into a regression model
with the random coefficients’ distribution as the only unknown term. Adding yi,j to both
sides and moving Pi,j to the right results in the probability model

yi,j =
�
g (xi,j , β) dF0 (β) + (yi,j − Pi,j (x)) . (3.2)

To exploit linearity in parameters, they use a sieve space approximation to the
infinite-dimensional parameter F0(β). The sieve space approximation divides the support
of the random coefficients β into R fixed vectors, resulting in a fixed grid of random
coefficients BR = (β1, . . . , βR). Each vector βr, r = 1, . . . , R, has length K, the number
of random coefficients included in the model. The location and values of these vectors are
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specified by the researcher. With the sieve space approximation, Equation (3.2) becomes
a simple linear probability model with unknown parameters θ = (θ1, . . . , θR)T

yi,j ≈
R∑

r=1
g (xi,j , βr) θr + (yi,j − Pi,j (x)) (3.3)

where g(xi,j , βr) denotes the conditional choice probability evaluated at grid point r.
Given the fixed grid of random coefficients BR, the researcher estimates the probability
weight θr at every point r = 1, . . . , R. The linear relationship between the outcome
variable and the unknown parameters θ allows to estimate the mixture weights with
the least squares estimator. The linear regression, which regresses the binary dependent
variable yi,j on the choice probabilities evaluated at BR, in total has NJ observations, J
“regression observations” for every statistical observation unit i = 1, . . . , N and R covari-
ates zi,j =

(
z1

i,j , . . . , z
R
i,j

)T
= (g(xi,j , β1), . . . , g(xi,j , βR))T . By the definition of choice

probabilities, the expected value of the composite error term yi,j − Pi,j(x) conditional on
xi,j is zero. Thus, the regression model satisfies the mean-independence assumption of
the least squares approach (Fox et al., 2011).

The estimator of the random coefficients’ joint distribution is constructed from the
estimated weights

F̂ (β) =
R∑

r=1
θ̂r 1 [βr ≤ β] (3.4)

where β is an evaluation point chosen by the researcher and the indicator function
1[βr ≤ β] is equal to one whenever βr ≤ β, and zero otherwise.

To ensure that F̂ (β) is a valid distribution function, FKRB suggest to estimate
the weights with the least squares estimator subject to the constraints that the weights
are greater than or equal to zero, and sum to one. Heiss et al. (2021) show that the
corresponding estimator is a special case of nonnegative LASSO, explaining its sparse
solutions. To mitigate the sparsity, Heiss et al. (2021) add a constraint on the sum of the
squared weights. Their extension results in the following estimator

θ̂ENet = arg min
θ

1
NJ

N∑
i=1

J∑
j=1

(
yi,j −

R∑
r=1

θrz
r
i,j

)2

s.t. θr ≥ 0 ∀r and
R∑

r=1
θr = 1 and

R∑
r=1

θ 2
r ≤ t

(3.5)

where t ≥ 1/R is a nonnegative tuning parameter specified by the researcher.2

2Note that, for technical reasons only, Heiss et al. (2021) penalize R − 1 weights in the quadratic
constraint whereas here all R weights are penalized. In applications, the difference between both
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Heiss et al. (2021) show that the estimator in Equation (3.5) is a special case of an elastic
net estimator. To be precise, the tuning parameter t is the ridge penalty and determines
the impact of the quadratic constraint. The LASSO tuning parameter is fixed since the
weights are constrained to be nonnegative and to sum up to one.

For any t ≥ 1, the quadratic constraint on the probability weights has no effect and,
hence, the elastic net estimator reduces to the FKRB estimator. Thus, the elastic net
estimator is a generalization of the FKRB estimator and includes the FKRB estimator
as a special case.

The smallest possible value for t is 1/R since, for t < 1/R, the constraint that
the weights sum up to one can not be fullfilled anymore. Given 1/R ≤ t < 1, the
quadratic constraint shrinks the probability weights of highly correlated grid points
towards each other in order to meet the quadratic constraint. That is, the quadratic
constraint encourages a grouping effect which allows to recover highly correlated points
inside the true support of F (β) together. This reduces the estimator’s sparsity. The
linear constraint, in turn, retains the LASSO property, which makes it possible to select
weights inside the support of the true distribution and to estimate zero weights for points
outside the true support.

In particular, the specification of the tuning parameter t allows adjusting the
estimator to the level of correlation among grid points and thus, controls the sparsity
of the results. Smaller values of t put more weight on the the quadratic constraint and
yield less sparse results. Heiss et al. (2021) recommend choosing the tuning parameter
with cross-validation and the one standard error rule based on the mean squared error
(MSE) criterion.

The quadratic constraint has the desirable property that it allows for the specification
of a substantially finer grid of random coefficients which is necessary for accurate
estimation of F0(β). While the FKRB estimator runs into almost perfect collinearity
problems if the grid becomes finer (Fox et al., 2016), the quadratic constraint ensures
that the optimization problem for the elastic net estimator always has a solution.

Key to an accurate approximation of F0(β) is the precise estimation of the probability
weight at every grid point. Basis to a precise estimation of the probability weights is the
consistent selection of the relevant grid points. This requires the elastic net estimator
to estimate positive weights at all grid points at which F0(β) has a positive probability
mass, and zero weights otherwise. While zero weights at grid points inside F0(β)’s
support cause inaccurate approximations through step functions with only few steps,
positive estimates at grid points outside F0(β)’s support lead to unreliable estimates of
the random coefficients’ distribution.

Heiss et al. (2021) illustrate in two Monte Carlo studies that the elastic net estimator
substantially improves the approximation accuracy and the selection consistency compared
to the FKRB estimator, i.e., the share of estimated weights with correct sign increases.

approaches turned out to have no substantial impact on the results of the estimator.

70



However, the selection consistency of the elastic net estimator seems to depend on the
density of the grid used for estimation. If the grid becomes more dense, the results of
Heiss et al. (2021) indicate that the share of correctly selected grid points decreases. In
particular, the results of the elastic net estimator are still too sparse. This is due to the
fact that the correlation among grid points becomes stronger when the grid becomes
more dense and it becomes more challenging to correctly select the true weights.

3.2.2 Random Elastic Net Estimator

The sparsity of the elastic net estimator in a dense grid motivates us to propose an
estimator based on the random LASSO procedure developed by Wang et al. (2011). The
new estimator is called random elastic net estimator and incorporates the fixed grid
random coefficient framework. The random elastic net estimator improves the selection
consistency of the elastic net approach and is also effective for accurate estimation of
the random coefficients’ distribution if the number of grid points is large relative to the
number of observations. In principle, the proposed method can even be used when the
number of grid points is greater than the number of observations.

The key idea of the random LASSO estimator of Wang et al. (2011) is similar to that
of the random forest (Breiman, 2001). The random forest draws B bootstrap samples
of the data and fits a tree in every sample using only a randomly selected subset of all
variables. The predictions of the random forest are obtained by averaging the predictions
of all B trees. Using only a randomly selected subset of regressors instead of all regressors
to fit each tree lowers the correlation between the trees. Therefore, the variance of the
final prediction decreases (Hastie et al., 2009).

Random LASSO, like the random forest, draws B bootstrap samples from the data,
consisting of the dependent variable y and the regressor matrix Z. Furthermore, each
bootstrap sample includes only a randomly selected subset of regressors from Z. In each
bootstrap sample, the drawn regressors are then used to fit a LASSO regression instead
of a tree. The coefficients of the regressors which are not drawn in a bootstrap sample are
set to zero. Finally, the estimated coefficients are obtained by averaging the coefficients
over all bootstrap samples.

Intuitively, this strategy diminishes the random selection behavior of the LASSO
when variables are highly correlated. That is, Wang et al. (2011) stress that “baseline”
LASSO tends to randomly select only a few of a set of highly correlated variables. This
implies that if one repeatedly draws data from the same distribution and estimates
LASSO each time, one would expect LASSO to select different subsets of the highly
correlated variables. Yet, the union of the selected regressors over all repetitions might
provide the correct set of variables, including all of the highly correlated variables.

However, dealing with only one given data set, this strategy is not feasible and
splitting the data set might not be desirable due to loss in efficiency, depending on the
sample size.
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Instead of using a subset of observations and repeatedly estimating the model, random
LASSO instead aims to substantially decrease the correlations among the regressors before
estimation of the model. This is achieved by randomly drawing a subset of regressors
in each bootstrap sample. Consequently, each bootstrap sample may be expected to
only include some of the highly correlated regressors and thus, the chance that those
variables are selected by LASSO increases. Repeating this process sufficiently often, we
expect that the union of the selected variables of all bootstrap samples includes all of the
relevant highly correlated variables.

The random LASSO consists of two steps in total, which are outlined in the following.
The previously described approach corresponds to the first step. The second step of
random LASSO differs from the first step only in the probability with which the regressors
are drawn in each bootstrap sample. In the first step, each regressor is drawn randomly,
i.e., it is equally likely for each regressor to be included in the regression in a given
bootstrap sample. In the second step, the probability of drawing a regressor is adjusted
to be proportional to its coefficient obtained in the first step. Thereby, we focus on the
important regressors in the second step and can estimate them more precisely.

For the random elastic net estimator, we replace the LASSO regression in each
bootstrap sample by an elastic net regression. Hence, the random elastic net estimator
includes the random LASSO estimator as a special case.

Algorithm 1 summarizes our random elastic net estimator. The estimator uses
the same number of grid points R, the vector of observed choices y and the matrix of
choice probabilities Z as the FKRB and the elastic net estimator. Further inputs to the
algorithm are the number of variables q and h drawn in step 1 and step 2. We refer to
step 1 as the bootstrap (BS) step and to step 2 as the bootstrap update (BSU) step.

In each bootstrap sample b in the BS step, we first set the weight at each grid point
to zero and then randomly draw q out of R grid points. We denote the corresponding
index set of grid points in bootstrap sample b by Qb. We allow the ridge tuning parameter
µb for the elastic net estimation to vary for each b. This allows us to adjust µb to the
correlation among the columns of ZQb

where ZQb
includes only those columns which

are in the index set Qb. Choosing µb = 0 for each b = 1, . . . , B yields the random
LASSO estimator. However, we recommend to choose µb based on the sequence of tuning
parameters suggested by, e.g., the glmnet package (Friedman, Hastie and Tibshirani,
2010) - for ridge regression with nonnegative coefficients given y and ZQb

.

Using y, ZQb
and µb, we estimate the weights θ̂(b)

Qb
with an elastic net regression

whereby the θ̂
(b)
Qb

correspond to the estimated weights of the selected grid points in
bootstrap sample b. Finally, we obtain the estimated bootstrap weights θ̂BS by averaging
the weights over all bootstrap samples.

In the subsequent BSU step, the number of variables drawn is h, which may differ
from q in the BS step. In contrast to the BS step, the variables are chosen with probability
corresponding to θ̂BS in this step. The remaining setup of the BSU step is the same as
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Algorithm 1 Random Elastic Net
1: Choose the number of grid points R and compute y and Z.
2: Choose the number of grid points q and h.
3: Draw B bootstrap samples of size N without replacement from y and Z.

Step 1 – Bootstrap (BS)

4: for each bootstrap sample b ∈ {1, 2, . . . , B} do
5: Set θ̂(b)

r = 0, r = 1, . . . , R.
6: Randomly select q grid points with probability proportional to 1/R. Let Qb

denote the index set of the selected variables.
7: Choose µb for Elastic Net estimation.
8: By applying the Elastic Net estimator with y, µb and the selected grid points

ZQb
, obtain

θ̂
(b)
Qb

= arg min
θ

1
NJ

N∑
i=1

J∑
j=1

(
yi,j −

∑
r∈Qb

θrz
r
i,j

)2
+ µb

∑
r∈Qb

θ 2
r

s.t. θr ≥ 0 ∀r ∈ Qb and
∑

r∈Qb

θr = 1.

(3.6)

9: end for
10: Compute the BS estimator θ̂BS

r , r = 1, . . . , R, by averaging over all bootstrap runs

θ̂BS
r = 1

B

B∑
b=1

θ̂(b)
r

Step 2 – Bootstrap Update (BSU)

11: for each bootstrap sample u ∈ {1, 2, . . . , B} do
12: Set θ̂(u)

r = 0, r = 1, . . . , R.
13: Randomly select h grid points with selection probability of each grid point Zj

proportional to its weight θ̂BS
j , j = 1, . . . , R, obtained in Step 1. Let Hu denote

the index set of the selected variables.
14: Choose µu for Elastic Net estimation.
15: By applying the Elastic Net estimator with y, µu and the selected grid points

ZHu , obtain

θ̂
(u)
Hu

= arg min
θ

1
NJ

N∑
i=1

J∑
j=1

(
yi,j −

∑
r∈Hu

θrz
r
i,j

)2
+ µu

∑
r∈Hu

θ 2
r

s.t. θr ≥ 0 ∀r ∈ Hu and
∑

r∈Hu

θr = 1.

(3.7)

16: end for
17: Compute the BSU estimator θ̂BSU

r , r = 1, . . . , R, by averaging over all bootstrap
runs

θ̂BSU
r = 1

B

B∑
u=1

θ̂(u)
r .

Note: This algorithm describes the random elastic net estimator. Step 1 corresponds to the BS
estimator and Step 2 to the BSU estimator. Inserting the weights θ̂BS and θ̂BSU into Equation
(3.4), we get F̂BS (β) and F̂BSU (β), respectively.
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in the BS step.
The probabilities used to draw each grid point in the BS step and the BSU step,

respectively, can be viewed as a Bayesian prior on the distribution of the weights. In
the BS step, one does not have any prior information on the importance of each grid
point and therefore, assumes that each grid point is equally important. That is, each
grid point is drawn with equal probability. The BSU step incorporates information about
the weights at every grid point obtained in the BS step and draws each grid point with
probability proportionally to its importance estimated in the BS step.

Note that grid points not drawn in a bootstrap sample are set to zero. Therefore,
drawing grid points with high weights with higher probability implies that these grid
points are estimated in more bootstrap samples. In turn, their final estimated weight in
the BSU step, which is calculated as the average of all bootstrap samples, can increase.
Furthermore, it seems reasonable to focus on the important grid points in the second step
and to drop the unimportant grid points, which are estimated to be zero in the BS step,
in the estimation of the BSU step. However, by including grid points with higher weights
more often, it becomes more likely that the selected grid points are more correlated on
average. Therefore, there is a trade-off between including relevant grid points more often
and breaking the correlation among grid points in each bootstrap sample.

Remark 3.1. As an alternative specification of the random elastic net estimator, we
could place less weight on the estimated BS weights, θ̂BS , to draw each grid point in the
BSU step. For instance, one could use a prior defined as the mixture of the probability
θ̂BS

j , j = 1, . . . , R, and the uniform probability 1/R to draw each grid point in the second
step, i.e., use θ̂∗

j := mθ̂BS
j + (1 − m) 1/R, j = 1, . . . , R, where m ∈ (0, 1] controls the

weight put on the uninformative uniform prior relative to the prior using the bootstrap
weights of step 1.3 However, we observe in our Monte Carlo studies that for m = 0.5 the
results are worse compared to those where we use θ̂BS , which corresponds to m = 1.

Remark 3.2. Another choice of prior in the BSU step is to select only among grid
points which have a positive weight in the BS step and to draw each of those grid points
proportional to 1/S where S denotes the number of positive weights in θ̂BS . Applying
this prior would mean loosing information on the importance of each weight in the BS
step which does not seem to be useful according to our simulations, which we do not
report for brevity.

Remark 3.3. A further refinement of the random elastic net estimator, which we consider
as a robustness check in our subsequent Monte Carlo studies, is to relax the constraint
in Equation (3.6) and in Equation (3.7) that the weights in each estimation of each
bootstrap sample have to sum up to 1, i.e., ∑r∈Qb

θr = 1 and ∑r∈Hu
θr = 1. That is,

we require that the weights only have to be smaller or equal to one, i.e., ∑r∈Qb
θr ≤ 1

3We exclude m = 0 since this would correspond to the BS step, i.e., we would get the same results in
the BSU step as in the BS step.
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and ∑r∈Hu
θr ≤ 1. The refinement allows to estimate zero weights at every grid point if

only unimportant variables happen to be drawn in a given bootstrap sample. This is
not possible in the random elastic net estimator presented in Algorithm 1. To ensure
that the final weights θ̂BS

j , j = 1, . . . , R, and θ̂BSU
j , j = 1, . . . , R, sum up to one, we

calculate them as a weighted average given by θ̂BS
j = ∑B

b=1 θ̂
(b)
j /

(∑R
j=1

∑B
b=1 θ̂

(b)
j

)
and

θ̂BSU
j = ∑B

u=1 θ̂
(u)
j /

(∑R
j=1

∑B
u=1 θ̂

(u)
j

)
. In our Monte Carlo studies, this modification and

the baseline algorithm of the random elastic net estimator yield very similar results.

The choice of q and h plays an important role for the performance of the random
elastic net estimator. Wang et al. (2011) recommend to consider a sequence of values for
q and h and to find the optimal q and h with MSE-based cross-validation. Note that
the sequences used for q and h do not have to be the same. Instead of performing the
cross-validation across each combination of q and h, we first run a cross-validation to
find the optimal q in the BS step and, subsequently, another cross-validation to find the
optimal h in the BSU step. The second cross-validation uses the weights θ̂BS obtained by
the optimal q found in the first cross-validation. Running the cross-validation for q and
h in successive order substantially reduces the computational cost of the tuning process.

Wang et al. (2011) observe that the choice of the number of bootstrap samples B does
not substantially influence the results of their algorithm when B is large, e.g., B = 500
or B = 1, 000. Intuitively, choosing B sufficiently large ensures that each regressor is
drawn in sufficiently many bootstrap samples and therefore, that their coefficients, which
are an average of their estimated coefficients in all bootstrap samples b, are reliable.

A disadvantage of the random elastic net estimator is that its estimation can be
time consuming - in particular, when the sample size is large - since one has to estimate
B bootstrap models. However, if the number of grid points R is large, it might be
faster to estimate several models which only include very few grid points repeatedly than
estimating one big model.

3.3 Monte Carlo Simulation

We conduct two Monte Carlo experiments to examine the selection consistency and the
approximation accuracy of the random elastic net estimator. The first Monte Carlo
simulation uses a discrete distribution with a subset of grid points as support points.
This allows us to study the estimators’ ability to estimate discrete distributions and in
particular, the selection consistency of the estimator.

The second experiment generates the random coefficients from a mixture of two
normal distributions. Thereby, we aim to study the estimators’ ability to estimate smooth
distributions.

For both Monte Carlo simulations, we use a random coefficients logit model as the
true data generating process to generate individual-level discrete choice data. Each
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observational unit i chooses among J = 4 mutually exclusive alternatives and an outside
option. For every alternative j and observation unit i, we draw the two-dimensional
covariate vector xi,j = (xi,j,1, xi,j,2) from U (0, 5) and U (−3, 1), respectively. To study the
effect of the fixed grid and the number of observation units on the estimators’ performance,
we run every experiment for different sample sizes, and numbers of grid points. We repeat
the experiment for every combination of R and N 100 times to compare the performance
of our random elastic net estimator with the elastic net and the FKRB estimator in terms
of selection consistency and accuracy for every setup. All calculations are conducted with
the statistical software R (R Core Team, 2018).

3.3.1 Discrete Distribution

To study the estimators’ selection consistency, we generate the random coefficients β
from a discrete probability mass function. The estimator successfully recovers the true
support from the data if it estimates a positive weight at every support point of F0(β),
and zero weights at all points outside its support.

For the support points of F0(β), we select a subset of the grid points from the
fixed grid we use for the estimation. The grid covers the range [−4.5, 3.5] × [−4.5, 3.5]
with R = {81, 289, 1, 089} uniformly allocated grid points. We specify the support of
our discrete data generating distribution on [−4.5,−0.5] × [−4.5, 0.5], and [−0.5, 3.5] ×
[−0.5, 3.5], whereby the number of support points varies due to the varying number of
grid points. That is, we draw the random coefficients β from a discrete mass function
with S = {49, 161, 577} support points, each drawn with uniform probability weight
θs = 1/S. By considering these specifications, we can infer the effect of different number
of grid and support points on the estimation of the distribution function. In particular, it
allows to inspect the behavior of the estimators when the number of grid points increases.
When the number of grid points is large, the grid becomes dense and the correlation
among grid points becomes strong. Therefore, we analyze how this increase in correlation
affects the considered estimators.

In this discrete setup, the data generating process exactly matches the underlying
probability model of the fixed grid estimator since Equation (3.2) and Equation (3.3)
coincide in this case. This way, we abstract from any approximation errors that can arise
from the sieve space approximation of the true underlying distribution. Therefore, the
experiment studies the estimators’ selection consistency in the most simple framework
possible.

The two areas of the discrete distribution with positive probability mass simulate two
heterogeneous groups of preferences in the population. We estimate every distribution
for sample sizes N = {1, 000, 10, 000}.

Figure 3.1 illustrates the setup of the Monte Carlo experiment for the three data
generating distributions corresponding to the three values of R. The gray shaded area
indicates the support of the discrete mass functions, and the filled blue points inside this
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Figure 3.1: Grid of Monte Carlo Study with Discrete Mass Points

(a) R = 81, S = 49 (b) R = 289, S = 161 (c) R = 1, 089, S = 577

area the active grid points. The hollow black points outside the gray shaded areas are
the inactive grid points that are not used for data generation.

We choose the optimal tuning parameter µ for the elastic net estimator to be the
maximum value of the sequence of 100 tuning parameteres suggested by the glmnet
package (Friedman et al., 2010) for ridge regression with nonnegative coefficients. Heiss
et al. (2021) note that this heuristic approach gives very similar results compared to the
selection of µb by cross-validation and the one standard error rule based on the MSE as
criterion. Thereby, we avoid performing a potentially time-consuming cross-validation
when R is large.

The random elastic net estimator is estimated using B = 1, 000 bootstrap samples.
We consider the same sequence of variables C := {5+3k| k = 0, . . . , 15} for q and h in the
cross-validation, i.e., q ∈ C and h ∈ C. As described in Subsection 3.2.2, we sequentially
apply 10-fold cross validation based on the MSE criterion to find the optimal number
of grid points q and h drawn in the BS step and BSU step of the random elastic net
estimator.

The sequential execution of the cross-validation reduces the evaluations from 152 =
225 to 15 + 15 = 30 combinations of tuning parameters q and h. Finally, both the BS
estimator and the BSU estimator are calculated with the optimal q and h, respectively.

In the BS step, we choose the ridge tuning parameter µb in each bootstrap sample
b such that it can adapt to the correlation among the chosen grid points ZQb

in each
bootstrap sample b. Concretely, we specify µb as the maximum value of the sequence of
tuning parameters suggested by the glmnet package (Friedman et al., 2010) for a given
y and ZQb

. The ridge tuning parameter µu in the BSU step of the random elastic net
estimator is chosen analogously.

To evaluate the estimators’ selection consistency, we calculate the average share of
sign consistent estimates. An estimate is sign consistent if it is positive at active grid
points, and zero otherwise. A weight is defined as positive if it is greater than 10−3.4

4Due to the optimization method which we use, we do not get estimates which are exactly zero like
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To illustrate the sparsity of the estimators’ solutions, we report the average number of
positive weights and the average share of true positive weights.

Beyond selection consistency, the discrete setup of the Monte Carlo experiment
allows us to study the bias of the estimated probability weights. Denote the estimated
weight at grid point βr in Monte Carlo run m by θ̂r,m. We calculate the L1 norm

L1 = 1
M

M∑
m=1

1
R

R∑
r=1

∣∣∣θr − θ̂r,m

∣∣∣
to measure the average absolute bias of θ̂ in comparison to the true weights θ over all
Monte Carlo runs M . In addition, we adopt the root mean integrated squared error
(RMISE) from Fox et al. (2011) to provide a metric on the approximation accuracy of
the estimated distribution. The RMISE averages the squared difference between the true
and estimated distribution at a fixed set of grid points across all Monte Carlo runs

RMISE =

√√√√ 1
M

M∑
m=1

[
1
E

E∑
e=1

(
F̂m(βe) − F0(βe)

)2
]
,

where F̂m(βe) denotes the estimated distribution function in Monte Carlo run m evaluated
at grid point βe. For the evaluation, we use E = 10, 000 points uniformly distributed
over the range [−4.5, 3.5] × [−4.5, 3.5].

Table 3.1 summarizes the results of the Monte Carlo experiment. The first three
columns report the sample size N , the number of grid points R, and the number of true
support points S. The upper part of the table presents the measures on the accuracy of
the estimated weights along with the average number of positively estimated weights.
The lower part of the table reports the average shares of true positive, and sign consistent
estimated weights. The final three columns in the lower part report the average number
of grid points q and h selected via the cross-validation in the BS step and BSU step of
the random elastic net estimator and the third quantile of the absolute values of the
correlation ρ among all grid points.5

The results show that the random elastic net estimator outperforms the FKRB and
the elastic net estimator for almost every combination of N and R.6 All measures indicate

with other LASSO-type optimizers. We use 10−3 as a threshold to define a weight to be positive as this
is roughly 1/1, 089, i.e., one over the maximum number of grid points R included in the Monte Carlo
simulation. Using 10−4 as a threshold, we obtain qualitatively similar results.

5In addition, we also considered the mean and median to summarize the absolute correlation among
grid points. We focus on the third quantile since it best illustrates the strong correlation in this setup.

6Only for R = 81 and N = 10, 000, the RMISE of the BSU estimator is 0.028 which is slightly larger
than the RMISE of 0.027 of the elastic net estimator. However, even in this case the corresponding
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Table 3.1: Summary Statistics of 100 Monte Carlo Runs with Discrete Distribution.

RMISE 100 × L1 Pos.
N R S FKRB ENet BS BSU FKRB ENet BS BSU FKRB ENet BS BSU
1,000 81 49 0.078 0.034 0.026 0.028 1.857 0.700 0.499 0.563 15.63 55.21 70.00 67.53
1,000 289 161 0.087 0.043 0.025 0.027 0.636 0.308 0.149 0.172 15.85 122.91 202.93 187.59
1,000 1,089 577 0.088 0.052 0.024 0.028 0.179 0.115 0.041 0.052 16.32 240.11 470.12 413.27
10,000 81 49 0.050 0.027 0.019 0.028 1.546 0.739 0.441 0.575 23.41 47.64 64.48 59.49
10,000 289 161 0.059 0.035 0.019 0.029 0.602 0.332 0.133 0.176 24.70 106.45 186.10 171.50
10,000 1,089 577 0.062 0.040 0.017 0.027 0.177 0.122 0.038 0.051 24.73 205.29 466.02 400.52

% True Pos. % Sign q h ρ

N R S FKRB ENet BS BSU FKRB ENet BS BSU BS BSU 3rd Qu.
1,000 81 49 27.00 90.61 99.35 98.96 52.88 80.98 73.28 75.86 32.66 7.61 0.819
1,000 289 161 8.32 65.21 97.43 95.23 48.07 74.42 82.63 85.48 37.55 8.12 0.822
1,000 1,089 577 2.34 36.74 78.10 67.85 48.00 63.90 86.60 80.96 37.28 7.58 0.824
10,000 81 49 42.51 87.31 99.80 99.61 62.04 86.32 80.64 86.58 32.99 16.01 0.819
10,000 289 161 13.42 60.14 98.98 96.42 50.69 74.46 90.18 92.38 37.28 17.75 0.822
10,000 1,089 577 3.73 33.01 78.88 67.68 48.70 63.15 87.81 81.95 40.01 18.62 0.824

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB
estimator (FKRB), for the elastic net estimator with tuning parameter µ from the maximum value of
the sequence of tuning parameters suggested by glmnet (ENet) and for the random elastic net estimator
with 10-fold cross-validation for the BS step (BS) and for the BSU step (BSU) based on the MSE as
criterion.

that our random elastic net estimator provides substantially more accurate estimates of
the probability weights than the FKRB estimator. The bias reduction persists for small
and large sample sizes.

Additionally, the results for N = 1, 000 and R = 1, 089 illustrate that the random
elastic net estimator yields good approximations of the true distribution function even if,
first, the sample size is rather small and, second, the number of grid points R is large
relative to the sample size N and thus, to the number of regression observations NJ . This
property is particularly relevant for applications with many random coefficients which
require a large number of grid points to accurately approximate the joint distribution of
the random coefficients.

Surprisingly, the BSU estimator seems to perform worse than the BS estimator. This
might be due to the fact that all active grid points have the same weight 1/S in this
Monte Carlo setup and therefore, the uniform prior used in the BS step of the random
elastic net estimator is already a decent choice, even though it also draws the inactive
grid points with the same probability as the active grid points in each bootstrap sample.

estimated average absolute bias is still lower for the BSU than for the elastic net estimator.
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Consequently, updating the prior in the BSU step of the random elastic net estimator
might not be of great help here. The results of a discrete Monte Carlo study using
different values for the positive weights, which we report in Table 3.A.1, support the
argument that the BSU estimator seems to perform better than the BS estimator when
the positive weights differ from each other.

With respect to selection consistency, the random elastic net estimator recovers
more true positive and sign consistent probability weights from the data than the FKRB
and the elastic net estimator. For instance, the BS and the BSU estimator select almost
all positive grid points correctly for R = 81 and R = 289 and still select at least 67%
for R = 1, 089. The share of correctly selected grid points for the FKRB and for the
elastic net estimator decreases substantially if R increases from R = 81 to R = 1, 089.
Especially in the extreme case of R = 1, 089, the FKRB estimator selects no more than
4% of grid points with positive probability weights correctly, illustrating its LASSO-type
behavior. This can also be seen in the small number of positive estimated weights, which
does not increase for the FKRB estimator when R increases. In contrast, the number of
positive estimated weights increases considerably for the elastic net estimator and even
more substantially for the random elastic net estimator.

Figure 3.2 illustrates the improved selection consistency of the random elastic net
estimator compared to the FKRB and elastic net estimator. It plots an example of
the positive grid points estimated with the FKRB estimator (Panel (a)), the elastic net
estimator (Panel (b)), the BS estimator of the random elastic net (Panel (c)) and the
BSU estimator of the random elastic net (Panel (d)). The estimated positive grid points
are displayed in red and should only lie inside the gray shaded area which highlights the
support of the discrete mass function.7

The values for q and h reported in Table 1 indicate that the number of grid points
sampled in the BS step of the random elastic net estimator is at least two times higher
than the number of grid points sampled in the BSU step. While the BS estimator samples
out of the full set of R grid points, for the BSU estimator this set reduces to those grid
points with a positive estimated weight in the BS step. However, drawing less grid points
might be sufficient to approximate the lower total number of grid points in the BSU
step compared to the BS step. Furthermore, our results on the share of sign consistent
(positive) weights indicate that the random elastic estimator tends to select the correct
grid points in the BS step. Therefore, we expect the average correlation among grid
points included in the BSU step to be higher than the average correlation among all R
grid points since the positive grid points are neighbors to each other in our specification
of the Monte Carlo study, as can be seen in Figure 3.1.8 In turn, the optimal number of
grid points h used in the BSU step has to decrease compared to q in order to be able to

7The two and six positive grid points in the upper left of the plotted grid for the FKRB and the
elastic net estimator may indicate that they wrongly select grid points close to the border of the grid.
The weights of these grid points sum up to 0.0178 and 0.0172 for the FKRB and the elastic net estimator,
respectively.

8Note that if the true distribution function was continuous one would also expect the majority of
neighboring grid points to share the same sign.
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Figure 3.2: Estimated Positive Grid Points for N = 10, 000 and R = 289

(a) FKRB (b) Elastic Net with OneSe

(c) BS of Random Elastic Net (d) BSU of Random Elastic Net

break down the increased average correlation among grid points.

Additionally, the plot of the correlation matrix in Figure 3.3 and the third quantile
of the values of absolute correlation in Table 3.1 both illustrate that the correlation
among many grid points is strong.

We report two robustness checks in Appendix 5.B. The first robustness check considers
the modification of the random elastic net estimator described in Remark 3.3, which only
requires the sum of the weights to be smaller or equal to one in each bootstrap sample.
Subsequently, the final weights θ̂BS and θ̂BSU are normalized at the end of the BS step
and the BSU step to ensure that they sum up to 1. The results of this modification of
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Figure 3.3: Correlation Matrix for N = 10, 000 and R = 81

the random elastic net are very similar to those of Table 3.1.
The second robustness check applies the FKRB estimator within each bootstrap

sample instead of the elastic net estimator, i.e., µb = 0, b = 1, . . . , B and µu = 0, u =
1, . . . , B. We refer to this estimator as random LASSO estimator. However, the summary
statistics of the random LASSO estimator are worse than those of the random elastic net
estimator. This indicates that taking the correlations among the grid points into account
is important for the estimation within each bootstrap sample.

3.3.2 Continuous Distribution

The second Monte Carlo experiment considers a mixture of two bivariate normal distrib-
utions for F0(β) to analyze how our generalized estimator accommodates more complex
continuous distributions. This way, we can assess its ability to recover distributions that
cannot be estimated with parametric techniques (unless the mixture structure, e.g., the
number of mixture components and the family of each mixing distribution, was known).

For the estimation, we use a fixed grid with points spread on [−4.5, 3.5] × [−4.5, 3.5].
The fixed grid covers the support of the true distribution with probability close to one
(0.993). We keep the correlation among grid points as low as possible and generate
the grid points with a Halton sequence. To study the convergence of the estimated
distribution to F0(β) for an increasing number of grid points, we estimate the model with
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R = {100, 300, 500}. The number of observation units N varies from 1,000 to 10,000.

The variance-covariance matrices of the two normals are Σ1 = Σ2 =
[ 0.3 0.1

0.1 0.3
]
. We

generate the random coefficient vectors β from the following two-component bivariate
mixture

0.5 N
(

[−2.2,−2.2],Σ1

)
+ 0.5 N

(
[1.3, 1.3],Σ2

)
The left panel in Figure 3.4 displays the bimodal joint density of the mixture of the

two normals, and the right panel the joint distribution function.

Figure 3.4: True Density and Distribution Function of Mixture of two Normals

(a) PDF (b) CDF

For the calculation of the RMISE, we use E = 10, 000 evaluation points uniformly
distributed over the range of the fixed grid. Instead of the L1 norm, we report the
maximum difference between the true and estimated distribution at the evaluation points

Max Dif = 1
M

M∑
m=1

max
e=1,...,E

∣∣∣F̂m(βe) − F0(βe)
∣∣∣ ,

averaged over all Monte Carlo runs M .9

In addition, we track the average number of positive, true positive, and sign consis-
tent estimated weights. For the number of true positive and sign consistent weights, we
calculate the true density at every grid point and then normalize the density of each grid
point by the sum of densities at all grid points. We define a true weight as positive if its

9We do not report the L1 norm since the true weight θr at every fixed grid point βr is not known
for the continuous distribution and, hence, the value of the L1 norm would depend on the way we
approximate the true weights θr, r = 1, . . . , R.
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normalized density is greater 10−3.10

Table 3.2 summarizes the average results over the M = 100 Monte Carlo replicates
for the FKRB estimator, the elastic net estimator with µ equal to the maximum value of
the sequence of tuning parameters suggested by the glmnet package (Friedman et al.,
2010), and the random elastic net estimator with B = 1, 000 bootstrap samples. The
optimal number of draws q and h drawn in the BS step and BSU step of the random
elastic net estimator is determined by 10-fold cross-validation and the MSE as criterion.
We consider the same sequence of variables C := {5 + 3k|k = 0, ..., 15} for q and h in the
cross-validation, i.e., q, h ∈ C.

Table 3.2: Summary Statistics of 100 Monte Carlo Runs with Mixture of Two Bivariate
Normals.

RMISE Max. Dif. Pos.
N R S FKRB ENet BS BSU FKRB ENet BS BSU FKRB ENet BS BSU
1,000 100 59 0.095 0.057 0.052 0.047 0.276 0.177 0.168 0.144 13.56 54.02 66.68 63.56
1,000 300 149 0.103 0.062 0.050 0.045 0.285 0.163 0.137 0.114 14.37 117.73 179.35 165.55
1,000 500 203 0.106 0.066 0.051 0.046 0.286 0.168 0.132 0.111 14.77 158.57 265.69 243.32
10,000 100 59 0.058 0.040 0.037 0.029 0.187 0.129 0.126 0.107 19.68 46.15 61.93 55.50
10,000 300 149 0.064 0.040 0.033 0.023 0.194 0.109 0.089 0.068 21.75 99.96 163.84 143.86
10,000 500 203 0.066 0.042 0.035 0.024 0.197 0.113 0.083 0.064 21.77 134.32 241.85 209.16

% True Pos. % Sign q h ρ

N R S FKRB ENet BS BSU FKRB ENet BS BSU BS BSU 3rd Qu.
1,000 100 59 19.36 79.08 92.93 90.98 50.28 80.30 83.98 84.80 44.93 6.62 0.824
1,000 300 149 6.66 64.89 94.17 91.54 52.16 75.55 84.09 86.08 43.91 6.95 0.824
1,000 500 203 3.66 57.63 93.93 90.38 59.42 74.48 82.53 84.13 44.87 6.80 0.825
10,000 100 59 28.47 69.95 91.58 86.59 54.92 77.39 87.13 87.68 43.37 12.44 0.823
10,000 300 149 10.52 57.21 93.65 87.32 53.54 73.85 88.75 89.12 40.82 13.10 0.824
10,000 500 203 6.15 51.66 93.15 85.95 60.04 74.48 86.67 87.36 41.27 12.92 0.825

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB
estimator (FKRB), for the elastic net estimator with tuning parameter µ from the maximum value of
the sequence of tuning parameters suggested by glmnet (ENet) and for the random elastic net estimator
with 10-fold cross-validation for the BS step (BS) and for the BSU step (BSU) based on the MSE as
criterion.

10Using 10−4 as a threshold, we obtain qualitatively similar results.
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The RMISE shows that the random elastic net estimator provides more accurate
estimates of the true underlying random coefficients’ distribution than the FKRB and the
elastic net estimator for every combination of N and R. For every R, the RMISE of the
random elastic net estimator for N = 1, 000 is even lower than the RMISE of the FKRB
estimator for N = 10, 000. That is, the random elastic net estimator seems to perform
well for small sample sizes. Nevertheless, as expected, the RMISE of all estimators
decreases when the sample size increases from N = 1, 000 to N = 10, 000. Comparing the
estimators, the maximum absolute difference between the true and estimated distribution
shows a qualitatively similar pattern.

Furthermore, the BSU estimator has a lower RMISE than the BS estimator. This is in
contrast to the results obtained in the discrete Monte Carlo study where the BS estimator
performed better than the BSU estimator. A possible explanation of this observation
might lie in the different distributions we use in the discrete and continuous Monte Carlo
study. In the discrete Monte Carlo study, the probability weights of the discrete mass
function are all 1/S. In the continuous Monte Carlo study, there is substantial variation
in the magnitude of the probability weights at every grid point (loosely speaking, some
are more important than others). Due to this variation, updating the uniform prior of
the BS step in the BSU step might have a bigger effect than in the discrete Monte Carlo
experiment.11

In any case, in both Monte Carlo studies the BS as well as the BSU estimator
perform better than the FKRB and elastic net estimator. Thus, both versions of the
random elastic net estimator improve the considered benchmarks. It might be sufficient
to calculate just the BS estimator in situations when it is computationally demanding to
estimate the BSU step of the random elastic net estimator.

Even though no clear rule emerges when to use the BS or the BSU estimator, we tend
to recommend to use the BSU estimator since it approximates the underlying distribution
better than the BS if the distribution function is not uniform or close to it.

The improved performance of the random elastic net estimator for every combination
of N and R can be explained with the larger number of true positive and sign consistent
estimated probability weights. Independently of the number of (relevant) grid points,
the FKRB estimator estimates only a small number of positive weights and, hence,
recovers only few relevant grid points. While the share of true positive and sign consistent
estimated weights is notably higher for the elastic net estimator, it is highest for the
random elastic net estimator. For R = 300 and N = 10, 000, the FKRB estimator
estimates the sign of about 11% of the positive weights and 54% of all weights correctly.
These numbers increase to 57% and 89% for the elastic net estimator and to at least 87%
and 89% for the random elastic net estimator.

Figure 3.5 plots an example of the joint distribution functions estimated with the

11The results of a discrete Monte Carlo study using nonuniform positive weights (cf. Table 3.A.1) also
suggest that the BSU estimator achieves a better fit than the BS estimator when there is variation in the
magnitude of the positive weights.
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Figure 3.5: Estimated Joint Distribution Functions for N = 10, 000 and R = 500

(a) FKRB (b) Elastic Net with OneSe

(c) BS of Random Elastic Net (d) BSU of Random Elastic Net

FKRB estimator (Panel (a)), the elastic net estimator (Panel (b)), the BS estimator
of the random elastic net (Panel (c)) and the BSU estimator of the random elastic net
(Panel (d)). Figure 3.6 shows the corresponding estimated and true marginal distributions
of β1 and β2. The distribution functions are estimated for N = 10, 000 and R = 500.

The plots illustrate the impact of the FKRB estimator’s sparse nature on the
estimated marginal and joint distribution functions. Visual inspection shows that it
approximates F0(β) through a step function with only few steps due to the small number
of positive weights. In contrast, the elastic net and the random elastic net estimator
provide smooth estimates that are close to the true underlying distribution function (cf.
Figure 3.4 (b)). In particular, the BSU estimator of the random elastic net achieves
the best fit. Figure 3.A.2, where we plot the error between estimated estimated joint
distribution function and the true distribution function for each estimator, confirms this
impression.
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Figure 3.6: True and Estimated Marginal Distribution Functions for N = 10, 000 and
R = 500

For the continuous Monte Carlo study, we conducted the same two robustness checks
as for the discrete experiment. The results are again summarized in Appendix 5.B. The
first robustness check, which only requires the sum of the weights to be smaller or equal
to one in each bootstrap sample and normalizes the final weights afterwards, yields very
similar results to the random elastic net estimates reported in Table 3.2.

The second robustness check uses the random LASSO estimator. The results show
that the random LASSO estimator performs better in the BS step and worse in the
BSU step than the random elastic net estimator. However, we obtain the best overall
result of all considered estimators with the BSU step of the random elastic net estimator.
Thus, the BSU step of the random elastic net estimator in Table 3.2 gives the best
approximation of the true distribution function.

3.4 Application

To study the performance of our random elastic net estimator with real data, we apply
it to the model developed by Blundell et al. (2020).12 We compare the results of the
random elastic net estimator to the results of Blundell et al. (2020) which they obtain by
applying the FKRB estimator.

12We would like to thank Blundell et al. (2020) for sharing their data and code online.
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3.4.1 Empirical Framework

Blundell et al. (2020) study the gains from dynamic enforcement of air pollution regula-
tions. The U.S. Environmental Protection Agency (EPA) uses dynamic enforcement of
air pollution regulations to enforce the Clean Air Act Amendments (CAAA).

If a plant is not in compliance with the regulations, the EPA can classify the plant
either as regular violator or as high priority violator (HPV). A plant is designated as HPV
if a violation is particularly severe or, more importantly, if violations occur repeatedly.

While regular violators are more likely to be inspected and to violate regulations
than plants that are in compliance, HPVs are even more likely to be inspected and to
violate regulations than regular violators.

The EPA determines fines for violations based on the gravity of the violation and
the economic benefit that the plant received from the violation. Additionally, fines also
escalate with the the regulatory state of the plant. That is, fines for violations increase
dramatically for plants in HPV status compared to those in regular violator status (cf.
Blundell et al. (2020), Figure 1).

The dependence of fines on the violator status is a key element of dynamic enforce-
ment. First, dynamic enforcement underpenalizes small violations and gives plants time
to fix their violations. Second, it uses the threat of high fines for repeated violations,
i.e., for plans in HPV status, as incentive for plants to invest in pollution abatement.
Dynamic enforcement might not only be beneficial for plants but also for the regulator,
e.g., if the imposition of fines is costly to the regulator or when the regulator cannot infer
plants’ compliance costs with its regulatory policies.

Besides issued fines, HPVs face costs from the increased level of regulatory oversight.
According to Blundell et al. (2020), plants in HPV status receive concrete deadlines for
EPA and plant actions to resolve outstanding violations. Also, more frequent inspections
might be costly since plants might have to shut down production lines to allow for an
inspection. HPVs might face additional costs from potential loss of reputation. Using a
watchlist, HPVs that fail to resolve all of their violations on time are publicly disclosed
by the EPA.13

To exit HPV status, plants have to resolve all outstanding violations and to invest
in pollution abatement technologies. Without an investment, plants cannot leave HPV
status. Even though some regular violators transition without investment to compliance,
this is not the case for most of them. More precisely, most regular violators also need
to make an investment to return to compliance. That being said, the probability of
returning to compliance after an investment is lower than 50% for both regular violators
and HPVs.

Blundell et al. (2020) build and estimate a dynamic model of plants and a regulator.
In each period t, the actions of the regulator are assumed to depend only on the regulatory

13The watchlist was eliminated after the sample period analyzed by Blundell et al. (2020).
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state Ωt and a predictor of compliance issues et. The regulatory state Ωt consists of the
following six components: EPA regions, two-digit NAICS industrial sector14, expected
gravity of potential violations, which differs across counties and industries, depreciated
accumulated violations, regular violator or high priority violator status and two quarterly
lags of investment. The states of EPA region, industry, and gravity do not change
over time. The states of compliance, lagged depreciated accumulated violation status,
violation status, and lagged investment can change from period t to t+ 1.

Conditional on the regulatory state and an i.i.d. private information shock, the
regulator first decides whether or not to inspect a plant. If a plant is inspected, the
regulator finds out whether there is a violation or not. If violations occur, the regulator
determines the fines for these violations. Furthermore, the compliance status of a plant
can change due to an inspection, e.g., a plant may transition to regular violator or to
HPV status or back to compliance.

Blundell et al. (2020) model the actions of the regulator using conditional choice
probabilities, i.e., they estimate plants’ expectations of regulatory actions conditional
on the state Ωt and the environmental compliance signal et. This avoids making an
assumption on the utility function of the regulator.

Subsequent to the regulator actions, plants not in compliance can decide whether or
not to invest in pollution abatement. Regular or high priority violators will only invest
in pollution abatement if the expected regulatory costs from inspections, fines, violations,
and designation as a high priority violator exceed the investment costs. Therefore, it is
necessary to accurately recover the regulatory and investment costs to estimate the value
of dynamic enforcement of the CAAA.

3.4.2 Estimation of the Model

Regulatory costs and investment costs may be heterogeneous. For instance, plants with
low investment costs may have incentives to invest in pollution abatement when they
are regular violators and fines are still low while plants with high investment costs will
wait until they become HPV and fines are higher. Additionally to costs from inspections,
violations, fines, and investments, plants are assumed to bear costs from being HPV but
not from being regular violator.

Blundell et al. (2020) account for the potential heterogeneity of plants in regulatory
and investment costs by modeling these costs as random coefficients. To be precise, they
allow costs from inspection, βI , violations, βV , fines, βF , investments, βX , and HPV
status, βH to vary across plants, i.e., β = (βI , βV , βF , βX , βH)′ is the vector of 5 random
coefficients. For each plant, its own utility parameters, which are fully described by β,
are assumed to be constant over time.

In order to estimate the joint distribution of β, Blundell et al. (2020) apply the
14The data of Blundell et al. (2020) includes the seven most polluting North American Industry

Classification System(NAICS) industrial sectors.
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FKRB estimator. More precisely, they generate a fixed grid for β consisting of 10, 001 5-
dimensional grid points.15 The way Blundell et al. (2020) construct the dependent variable
y and the regressors Z in the FKRB estimator in Equation (3.5)16 differs substantially
from the approach outlined in Section 3.2. The dependent variable y is not discrete
anymore and Z is not calculated using a logit kernel. Instead, the dependent variable y
represents a empirical moments observed in the data and the regressors zr are structural
moments implied by the dynamic model for given fixed grid points βr, r = 1, . . . , 10, 001.
In the FKRB and elastic net estimator in Equation (3.5), the number of products J
becomes one and the number of observations N equals the number of moments K, i.e.,
J = 1 and N = K. This approach closely follows the GMM framework proposed by
Nevo et al. (2016) which also adopts the FKRB estimator to match structural moments
to observed moments, in order to estimate the distribution of random coefficients. We
present the elastic net version of the estimator employed by Blundell et al. (2020):

θ̂ENet-BGL = arg min
θ

(
md −

R∑
r=1

θrm(βr)
)′

W

(
md −

R∑
r=1

θrm(βr)
)

s.t. θr ≥ 0 ∀r and
R∑

r=1
θr = 1 and

R∑
r=1

θ 2
r ≤ t

(3.8)

where md is a K-dimensional vector of empirical moments and m(βr) is a K-dimensional
vector of structural moments of the model calculated at βr. We use the same weighting
matrix W as Blundell et al. (2020) in the first step.17 It is updated in a second step
to increase efficiency of the GMM estimation.18 The tuning parameter t ≥ 0 is again
chosen by the researcher as in Equation (3.5), e.g., by using cross-validation. For t = 1,
the estimator simplifies to the FKRB estimator used by Blundell et al. (2020).

For each βr, m(βr) is recovered from the model using the Bellman equation, i.e., the
dynamic model is solved by dynamic optimization for each grid point βr, r = 1, . . . , R,
before the estimation of θ commences. Blundell et al. (2020) use K = 14, 374 moments.
The first 5, 000 moments represent the equilibrium share of plants in a particular time-
varying state conditional on the non-time-varying states. The next 4, 687 moments, i.e.,
the second set of moments, multiply the first moments by the the conditional share of
plants having an investment at that state.19 The last 4, 687 moments are referred to as
the third set of moments. They multiply the moments in the second set by the average

15They construct the first 10, 000 grid points using a Halton sequence. Additionally, they include the
estimate of a quasi-likelihood model as a grid point.

16Recall that the elastic net estimator in Equation (3.5) reduces to the FKRB estimator for t = 1.
17In the first step, they calculate the weighting matrix as the inverse of the variance-covariance matrix

of the moments m (βQL) at the quasi-likelihood estimate βQL.
18We follow Blundell et al. (2020) and calculate W in the same manner as they do in the second step.

We refer the interested reader to Blundell et al. (2020) for the details.
19313 of the 5000 moments in the first set are excluded in the second set of moments since they

represent states in compliance and therefore, there is no investment in these states. For the same reason,
those moments are also excluded in the third moments.
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number of investments in the following six periods, corresponding to plants that invest
at that state. The second and third set of moments should capture the important role of
investment in order to return to compliance.

We estimate the elastic net estimator in Equation (3.8) by cross-validation where we
use the sequence of tuning parameters generated by the glmnet package (Friedman et al.,
2010).20 For the random elastic net estimator, we use B = 2, 000 bootstrap repetitions.
In the cross-validation, we consider the sequence q ∈ {15k | k = 1, . . . , 50} for the BS
step and h ∈ {5k | k = 1, . . . , 50} for the BSU step.21 In contrast to the Monte Carlo
simulations, we choose the minimum value of the sequence suggested by glmnet for µb.
In this application, we observe that the maximum value of the sequence suggested by
glmnet penalizes the weights too heavily such that they are all equal. However, using
the optimal q from the cross-validation of the BS step, we repeat the BS step where we
tune µb by cross-validation. In this procedure, also the smallest µb is selected most of
the times. Furthermore, note that selecting the smallest instead of the largest element of
the sequence for µb might give similar results as the random LASSO which also performs
decently in the Monte Carlo studies presented in Section 3.3.

In line with Blundell et al. (2020), we define a weight to be positive if it is greater
than 10−5. The FKRB estimator only estimates 12 out of the 10, 001 weights to be
positive, i.e., the result is sparse due to the LASSO property of the FKRB estimator.
The elastic net estimator estimates 439 positive weights. For the random elastic net
estimator, the BS step estimates 772 positive weights, which are subsequently used in
the BSU step. The BSU step estimates 154 positive weights.22 For the random elastic
net estimator, we focus on the BSU step in the presentation of the subsequent results.

Figure 3.7 displays two-dimensional contour plots of the five dimensional random
coefficients’ distribution estimated with the FKRB, elastic net, and random elastic net
estimator. Using heat maps, the figure highlights the correlation between the dimensions
of the random coefficients’ distribution. The plots for the elastic net and random elastic
net estimator look similar and their estimated distribution functions suggest rather
sophisticated correlation patterns between the random coefficients. Most plants seem to
face costs from investment and from being in HPV status, as indicated by the negative
range of values. However, a substantial share of plants finds inspections beneficial (36%
for the FKRB estimator, 44% for the elastic net estimator, and 42% for the random
elastic net estimator). For the FKRB estimator, the estimated contour plots do not
seem very informative since there are only 12 positive weights. We provide the heat
maps of the dimensions of the other random coefficients in Figure 3.A.7 and 3.A.8 in the
Appendix.

20To prevent data leakage, we sample those moments in the cross-validation together which are
included in all of the three sets of moments.

21In the cross-validation, q = 750, which is the highest value included in the sequence, and h = 130
are selected. That said, the results of the BS step for, e.g., q = 500 and q = 1, 000 seem similar.

22If we used a threshold of 10−3 to define a positive weight, the FKRB, elastic net and random elastic
estimator would estimate 9, 275, and 75 positive weights, respectively. Using 10−5 as a threshold, we try
to avoid omitting mass at any grid point in the subsequent counterfactuals.

91



Additionally, we plot the estimated marginal CDFs, mass functions and corresponding
histograms in Figure 3.A.3 – 3.A.5 in the Appendix. The estimated marginal CDFs of
the random elastic net estimator lie between those of the FKRB and the elastic net
estimator. Regarding the estimated histograms, the FKRB estimator does not allow to
infer the underlying distribution function which is only possible for the histograms of the
elastic net and of the random elastic net estimator (cf. Figure 3.A.5). Their histograms
appear similar for most random coefficients. We interpret this as a sign of robustness
of the results for these estimators. Furthermore, the weighted means of the random
coefficients in Figure 3.A.4 do not deviate substantially for the FKRB, elastic net, and
random elastic net estimator, suggesting that the means of the random coefficients can
be recovered by each of these estimators.

Figure 3.7: Estimated Heat Maps for Blundell et al. (2020).

Given that the random coefficients represent utility parameters, it is difficult to
interpret them. Therefore, Blundell et al. (2020) consider the ratios of the coefficients
relative to fines. More precisely, βX/βF indicates how costly investments are for plants
expressed in $1 million fine per quarter. Similarly, βV /βF is the equivalent of an
additional violation, βI/βF the equivalent of an inspection, and βH/βF the equivalent
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Figure 3.8: Estimated Heat Maps for Equivalent in Fines for Blundell et al. (2020)

of HPV status to a $1 million fine per quarter. Figure 3.8 shows the heat maps for those
ratios, i.e., we plot βX/βF and βI/βF against βH/βF . Thereby, the figure visualizes the
estimated distributions for three random coefficients in each heat map.

As expected, most plants find it costly to be in HPV status and to invest, i.e.,
they have a positive value for βH/βF and βX/βF .23 However, the negative values of
inspection, expressed in $1 million fine per quarter, indicate that some plants find it
beneficial to be inspected. An explanation of this surprising observation might be that
those plants want to be inspected in order to leave regular or HPV status. Leaving
violator status is only possible after an additional inspection, confirming all violations
have been resolved. The weights of the random coefficients in $1 million fine per quarter
can also be inspected in the histograms in Figure 3.A.6 in the Appendix and in the heat
maps for the remaining ratios in Figure 3.A.9 in the Appendix.

23The signs of the ratios βX/βF , βI/βF , and βH/βF are determined by the signs of βX , βI , and βX ,
which can be positive or negative (cf. Figure 3.7), since βF is negative for all grid points, i.e., fines are
costly to plants. Hence, we expect a positive value for βH/βF and βX/βF since this implies negative
values for βH and βX , i.e., plants dislike being in HPV status and face costs from investments and fines.
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Figure 3.9 illustrates the model fit of the FKRB, elastic net, and random elastic
net estimators in terms of further investments after an initial investment. Recall that
investment is a key variable for plants since plants can only return to compliance if they
invest. Yet, the success of investments is stochastic and therefore, repeated investments
are necessary. All three estimators match the investment patterns in the data quite well.
According to the MSE between the model fit and the data, the elastic net estimator is
closest to the data and the random elastic net estimator is closer to the data than the
FKRB estimator. Blundell et al. (2020) note that if the investments were i.i.d., we would
expect only 2.3% of additional investments compared to the 30% observed in the data.
A random coefficients model can capture this stylized fact which might not be possible
for models without random coefficients.

Figure 3.9: Further Investments in the Six Periods After Initial Investment for
Blundell et al. (2020)

3.4.3 Counterfactuals

We estimate three counterfactuals presented in Blundell et al. (2020) using our estimates
from the elastic net, and random elastic net estimator and compare them to the results of
Blundell et al. (2020).The first counterfactual examines the value of dynamic enforcement.
To this end, the cost of being in HPV status is removed and the regulator fines all plants
in regular and HPV status identically for a given region, industry, and gravity state.
However, the total assessed fines are kept the same as in the baseline model for each
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region, industry, and gravity state. The second counterfactual is the same as the first
one, except that pollution damages are kept the same as in the baseline model across
region, industry, and gravity state instead of total fines.

The third counterfactual changes the escalation mechanism of fines. For plants in
HPV status, fines are doubled compared to the baseline model.

Table 3.3 reports the results for these counterfactuals. The baseline column for each
model shows long run mean values implied by the estimated structural parameters. The
baseline estimates of each model are very similar and replicate the data quite well.

Table 3.3: Results of Counterfactuals
Same fines for all

Baseline violators; fines constant
Data FKRB ENet RENet FKRB ENet RENet

Compliance (%) 95.62 95.11 95.17 95.17 66.72 57.14 65.16
Regular violator (%) 2.88 3.47 3.48 3.45 2.53 2.05 2.37
HPV (%) 1.50 1.42 1.35 1.37 30.75 40.82 32.47
Investment rate (%) 0.40 0.54 0.54 0.55 0.47 0.43 0.46
Inspection rate (%) 9.65 9.41 9.40 9.39 20.54 24.06 21.05
Fines (thousands $) 0.18 0.32 0.32 0.31 0.32 0.32 0.31
Violations (%) 0.55 0.54 0.54 0.53 5.00 6.05 4.85
Plant utility — 0.006 0.020 0.022 0.077 0.171 0.117
Pollution damages (mil. $) 1.65 1.53 1.51 1.52 4.04 4.84 4.18

Same fines for all Fines for HPVs
violators; pollution doubled relative
damages constant to baseline

Data FKRB ENet RENet FKRB ENet RENet
Compliance (%) 95.62 94.49 94.73 94.93 95.52 95.57 95.57
Regular violator (%) 2.88 2.72 1.91 2.06 3.47 3.49 3.46
HPV (%) 1.50 2.79 3.36 3.01 1.01 0.95 0.97
Investment rate (%) 0.40 0.65 0.76 0.75 0.55 0.54 0.55
Inspection rate (%) 9.65 9.88 10.03 9.93 9.28 9.26 9.26
Fines (thousands $) 0.18 1.98 4.90 3.70 0.36 0.36 0.35
Violations (%) 0.55 0.74 0.80 0.76 0.49 0.48 0.48
Plant utility — 0.001 0.006 0.010 0.005 0.019 0.021
Pollution damages (mil. $) 1.65 1.53 1.51 1.52 1.48 1.47 1.48

Note: The table reports summary statistics of the values in the data, the values predicted by the model
estimates (baseline), and three counterfactuals for the FKRB, elastic net, and random elastic net estimator.
Each summary statistic is per plant / quarter and calculated in the same way as in Blundell et al. (2020).
The counterfactuals of FKRB correspond to those given in Blundell et al. (2020).
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For the first counterfactual, the estimates of the FKRB and random elastic net
estimator deviate only slightly from each other. In contrast, the elastic net estimator
predicts a more drastic reaction if fines for HPVs are the same as for regular violators.
For instance, the share of plants in HPV status rises from 1.35% to 41% for the elastic net
estimator compared to a rise from 1.42% (1.37%) to 31% (33%) for the FKRB (random
elastic net) estimator. For the elastic net estimator, pollution damages increase from
$1.51 to $4.84 million per plant / quarter instead of $1.53 to $4.04 and 1.52 to $4.18
million per plant / quarter for the FKRB and random elastic net estimator.

For the second counterfactual, the values of most estimated summary statistics of
the three models are close to each other when pollution damages are held constant, but
fines do not escalate with regulatory state. However, mean fines increase substantially
with this regulatory policy. That is, the FKRB estimates imply that mean fines increase
from $320 to $1, 980 per plan / quarter and even to $4, 900 and $3, 700 per plan / quarter
for the elastic net and random elastic net estimates. Therefore, mean fines are 2.5 and
1.9 times higher for the elastic net and random elastic net estimator compared to the
FKRB estimator. Thus, the elastic net and random elastic net estimates imply that it
may be more costly to keep the pollution damages constant if additional fines for HPVs
are removed.

For the third counterfactual, the results of the elastic net and random elastic net
estimator are in line with those of the FKRB estimator. All of the three models predict
more or less the same shares for each variable when fines for HPVs are doubled relative
to the baseline. In particular, mean fines increase slightly, pollution damages drop
slightly and also the shares of plants in HPV status drops from 1.4% to 1% for the
three estimators. For the FKRB estimator, Blundell et al. (2020) argue that the result
of the third counterfactual shows that there is only limited benefit from increasing the
escalation rate of fines. This conclusion is supported by the elastic net and random
elastic net estimates.

Overall, the implications of the results of the estimators for the counterfactuals
largely coincide. Therefore, it is not clear to what extent the more accurate estimation of
the distribution functions translates to different conclusions for counterfactual policies.

3.5 Conclusion

We extend the simple and computationally attractive nonparametric elastic net estimator
of Heiss et al. (2021), which includes the nonnegative LASSO estimator of Fox et al.
(2011) as a special case. To this end, we propose a random elastic net estimator which
mitigates the sparsity of the solutions and allows to estimate the random coefficients’
distribution more accurately. The key idea is to repeatedly estimate the model by only
using a subset of the regressors and to average these estimates in the end. Thereby,
a substantial part of the correlation among the regressors is broken down before the
estimation.
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Two Monte Carlo studies illustrate the improved performance of the random elastic
net estimator compared to the FKRB and the elastic net estimator. They show that the
random elastic net estimator estimates considerably more positive probability weights
and recovers more grid points correctly. In addition to the improved selection consistency,
the estimator provides more accurate estimates of the true underlying distributions. Both
steps of the random elastic net estimator, the BS step and the BSU step, perform better
than the FKRB and elastic net estimator. While the BS estimator achieves the best fit
in the discrete Monte Carlo study, the BSU yields the best approximation of the random
coefficients’ distribution in the continuous Monte Carlo study. We recommend to use
the BSU estimator since the setup of the continuous Monte Carlo study might be more
realistic, as it allows for a more diverse range of consumer types than the discrete Monte
Carlo study.

We apply the random elastic net estimator to the study of Blundell et al. (2020)
who analyze the gains from dynamic enforcement of air pollution regulations. The
results highlight that the elastic net and random elastic net estimator can estimate
rather complicated distribution functions. The estimated distribution functions of the
elastic net and random elastic net estimator seem similar, suggesting that the results are
robust. In contrast, the distribution function estimated with FKRB estimator is not very
informative due to its sparse solution. Yet, the results of three conducted counterfactuals
seem to qualitatively coincide for the FKRB, elastic net, and random elastic net estimator.
Therefore, it is not clear how the more accurate estimation of the random coefficients’
distribution function translates to different conclusions for counterfactual policies.

We do not discuss the development of an inference procedure for the random elastic
net estimator, which is a practically relevant topic. Since we average all estimates of
the bootstrap repetitions to calculate our final random elastic net estimate, we need to
account for the uncertainty in each bootstrap sample to obtain a valid inference procedure.
This is challenging since each bootstrap estimate is obtained using a nonnegative elastic
net estimator. More precisely, for valid inference it is necessary to de-bias the nonnegative
elastic net estimates of each bootstrap sample (cf. Dezeure et al. (2017) for a de-biasing
procedure for LASSO). However, it is not straightforward how to construct such a
de-biased estimator in our setting.
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Appendix 3.A Supplementary Tables and Figures

Table 3.A.1: Summary Statistics of 100 Monte Carlo Runs with Discrete Distribution as
given in Figure 3.A.1.

RMISE 100 × L1 Pos.
N R S FKRB ENet BS BSU FKRB ENet BS BSU FKRB ENet BS BSU
1,000 81 49 0.106 0.075 0.071 0.067 1.778 1.072 0.978 0.983 14.10 47.54 64.32 61.54
1,000 289 161 0.107 0.063 0.050 0.046 0.630 0.321 0.229 0.226 14.81 120.94 223.26 209.33
1,000 1,089 577 0.111 0.069 0.044 0.041 0.179 0.107 0.058 0.061 15.15 279.38 712.94 646.43
10,000 81 49 0.069 0.062 0.059 0.048 1.359 1.058 0.901 0.889 19.96 40.89 65.09 60.45
10,000 289 161 0.067 0.042 0.035 0.028 0.591 0.313 0.188 0.188 22.32 100.22 212.85 191.70
10,000 1,089 577 0.072 0.047 0.031 0.026 0.176 0.107 0.048 0.050 22.70 231.23 675.74 596.40

% True Pos. % Sign q h ρ

N R S FKRB ENet BS BSU FKRB ENet BS BSU BS BSU 3rd Qu.
1,000 81 49 25.73 84.45 98.20 97.10 53.23 82.99 78.91 81.01 43.61 6.17 0.819
1,000 289 161 7.99 65.80 98.93 97.54 48.07 75.75 77.26 80.54 44.87 6.08 0.822
1,000 1,089 577 2.28 44.01 97.21 93.11 48.04 68.00 84.56 86.32 46.79 6.86 0.824
10,000 81 49 36.12 75.47 99.49 98.47 58.57 80.33 79.52 84.01 39.44 12.98 0.819
10,000 289 161 12.26 57.88 99.68 98.19 50.23 74.10 81.70 87.36 40.64 16.55 0.822
10,000 1,089 577 3.46 37.82 98.29 92.99 48.60 65.86 89.12 90.80 40.73 15.98 0.824

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB
estimator (FKRB), for the elastic net estimator with tuning parameter µ from the maximum value of
the sequence of tuning parameters suggested by glmnet (ENet) and for the random elastic net estimator
with 10-fold cross-validation for the BS step (BS) and for the BSU step (BSU) based on the MSE as
criterion. Weights outside the gray shaded area in Figure 3.A.1 are zero. In each shaded area, the
weights are calculated by θ̃i = 1/(1 + di)3 where di is the Manhattan distance to the center for βi. We
normalize the weights such that they sum up to one, i.e., θi = θ̃i/

(∑R

r=1 θ̃r

)
. Weights are defined to

be positive if they are greater than 10−4.
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Figure 3.A.1: Grid of Monte Carlo Study with Discrete Mass Points But Different
Weights

(a) R = 81, S = 49

(b) R = 289, S = 161

(c) R = 1, 089, S = 577
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Table 3.A.2: Summary Statistics of 100 Monte Carlo Runs with Discrete Distribution
and Normalized Weights of Random Elastic Net.

RMISE 100 × L1 Pos.
N R S FKRB ENet BS BSU FKRB ENet BS BSU FKRB ENet BS BSU
1,000 81 49 0.078 0.034 0.026 0.028 1.857 0.700 0.473 0.552 15.63 55.21 70.43 64.47
1,000 289 161 0.087 0.043 0.024 0.027 0.636 0.308 0.143 0.171 15.85 122.91 198.65 176.48
1,000 1,089 577 0.088 0.052 0.023 0.025 0.179 0.115 0.041 0.053 16.32 240.11 470.89 404.04
10,000 81 49 0.050 0.027 0.019 0.028 1.546 0.739 0.427 0.577 23.41 47.64 65.14 58.55
10,000 289 161 0.059 0.035 0.019 0.028 0.602 0.332 0.131 0.178 24.70 106.45 185.69 168.57
10,000 1,089 577 0.062 0.040 0.017 0.025 0.177 0.122 0.038 0.052 24.73 205.29 466.13 397.61

% True Pos. % Sign q h ρ

N R S FKRB ENet BS BSU FKRB ENet BS BSU BS BSU 3rd Qu.
1,000 81 49 27.00 90.61 99.43 99.08 52.88 80.98 72.85 79.79 27.56 5.27 0.819
1,000 289 161 8.32 65.21 97.86 95.11 48.07 74.42 84.59 89.20 32.75 5.48 0.822
1,000 1,089 577 2.34 36.74 78.36 66.99 48.00 63.90 86.82 80.90 32.12 5.48 0.824
10,000 81 49 42.51 87.31 99.90 99.51 62.04 86.32 79.95 87.62 29.90 19.16 0.819
10,000 289 161 13.42 60.14 99.02 95.79 50.69 74.46 90.37 92.69 34.61 22.04 0.822
10,000 1,089 577 3.73 33.01 79.01 67.32 48.70 63.15 87.93 81.84 37.70 23.60 0.824

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB
estimator (FKRB), for the elastic net estimator with tuning parameter µ from the maximum value of the
sequence of tuning parameters suggested by glmnet (ENet) and for the random elastic net estimator with
10-fold cross-validation for the BS step (BS) and for the BSU step (BSU) based on the MSE as criterion.
The weights in each bootstrap sample have only to be smaller or equal to one, i.e.,

∑
r∈Qb

θr ≤ 1 and∑
r∈Hu

θr ≤ 1. At the end of step 1 and step 2, the weights θ̂BS
j , j = 1, . . . , R, and θ̂BSU

j , j = 1, . . . , R,

are normalized by θ̂BS
j =

∑B

b=1 θ̂
(b)
j /

(∑R

j=1

∑B

b=1 θ̂
(b)
j

)
and θ̂BSU

j =
∑B

u=1 θ̂
(u)
j /

(∑R

j=1

∑B

u=1 θ̂
(u)
j

)
.
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Table 3.A.3: Summary Statistics of 100 Monte Carlo Runs with Discrete Distribution
using Random LASSO instead of Random Elastic Net.

RMISE 100 × L1 Pos.
N R S FKRB ENet BS BSU FKRB ENet BS BSU FKRB ENet BS BSU
1,000 81 49 0.078 0.034 0.036 0.050 1.857 0.700 0.702 0.868 15.63 55.21 69.83 63.75
1,000 289 161 0.087 0.043 0.035 0.050 0.636 0.308 0.213 0.260 15.85 122.91 188.05 165.16
1,000 1,089 577 0.088 0.052 0.035 0.052 0.179 0.115 0.059 0.076 16.32 240.11 377.64 315.91
10,000 81 49 0.050 0.027 0.025 0.039 1.546 0.739 0.544 0.732 23.41 47.64 65.11 59.01
10,000 289 161 0.059 0.035 0.024 0.037 0.602 0.332 0.165 0.221 24.70 106.45 183.25 163.56
10,000 1,089 577 0.062 0.040 0.022 0.035 0.177 0.122 0.048 0.064 24.73 205.29 415.44 342.32

% True Pos. % Sign q h ρ

N R S FKRB ENet BS BSU FKRB ENet BS BSU BS BSU 3rd Qu.
1,000 81 49 27.00 90.61 98.27 97.31 52.88 80.98 72.19 78.53 20.27 6.98 0.819
1,000 289 161 8.32 65.21 93.20 87.32 48.07 74.42 83.07 84.43 23.81 6.38 0.822
1,000 1,089 577 2.34 36.74 62.00 51.50 48.00 63.90 78.04 72.58 23.60 6.44 0.824
10,000 81 49 42.51 87.31 99.76 99.04 62.04 86.32 79.81 86.48 28.31 14.69 0.819
10,000 289 161 13.42 60.14 98.18 92.96 50.69 74.46 90.27 91.27 32.81 15.53 0.822
10,000 1,089 577 3.73 33.01 70.33 57.88 48.70 63.15 83.39 76.92 34.70 16.88 0.824

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB
estimator (FKRB), for the elastic net estimator with tuning parameter µ from the maximum value of
the sequence of tuning parameters suggested by glmnet (ENet) and for the random elastic net estimator
with µb = 0 , b = 1, . . . B, for the BS step (BS) and µu = 0 , u = 1, . . . B, for the BSU step (BSU).
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Table 3.A.4: Summary Statistics of 100 Monte Carlo Runs with Mixture of Two
Bivariate Normals and Normalized Weights of Random Elastic Net.

RMISE Max. Dif. Pos.
N R S FKRB ENet BS BSU FKRB ENet BS BSU FKRB ENet BS BSU
1,000 100 59 0.095 0.057 0.052 0.049 0.276 0.177 0.169 0.154 13.56 54.02 66.12 60.91
1,000 300 149 0.103 0.062 0.050 0.047 0.285 0.163 0.137 0.120 14.37 117.73 178.54 159.57
1,000 500 203 0.106 0.066 0.051 0.048 0.286 0.168 0.133 0.116 14.77 158.57 265.2 235.71
10,000 100 59 0.058 0.040 0.037 0.030 0.187 0.129 0.127 0.109 19.68 46.15 61.77 54.96
10,000 300 149 0.064 0.040 0.033 0.024 0.194 0.109 0.091 0.070 21.75 99.96 163.58 143.24
10,000 500 203 0.066 0.042 0.035 0.025 0.197 0.113 0.084 0.066 21.77 134.32 241.88 208.57

% True Pos. % Sign q h ρ

N R S FKRB ENet BS BSU FKRB ENet BS BSU BS BSU 3rd Qu.
1,000 100 59 19.36 79.08 93.29 90.81 50.28 80.30 84.96 87.25 41.75 5.12 0.824
1,000 300 149 6.66 64.89 94.58 91.27 52.16 75.55 84.77 87.80 40.79 5.18 0.824
1,000 500 203 3.66 57.63 94.23 89.70 59.42 74.48 82.88 85.09 42.29 5.18 0.825
10,000 100 59 28.47 69.95 91.95 86.31 54.92 77.39 87.73 87.88 41.69 12.35 0.823
10,000 300 149 10.52 57.21 93.84 86.77 53.54 73.85 89.02 88.77 39.53 12.53 0.824
10,000 500 203 6.15 51.66 93.28 85.15 60.04 74.48 86.76 86.83 40.40 11.12 0.825

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB
estimator (FKRB), for the elastic net estimator with tuning parameter µ from the maximum value of the
sequence of tuning parameters suggested by glmnet (ENet) and for the random elastic net estimator with
10-fold cross-validation for the BS step (BS) and for the BSU step (BSU) based on the MSE as criterion.
The weights in each bootstrap sample have only to be smaller or equal to one, i.e.,

∑
r∈Qb

θr ≤ 1 and∑
r∈Hu

θr ≤ 1. At the end of step 1 and step 2, the weights θ̂BS
j , j = 1, . . . , R, and θ̂BSU

j , j = 1, . . . , R,

are normalized by θ̂BS
j =

∑B

b=1 θ̂
(b)
j /

(∑R

j=1

∑B

b=1 θ̂
(b)
j

)
and θ̂BSU

j =
∑B

u=1 θ̂
(u)
j /

(∑R

j=1

∑B

u=1 θ̂
(u)
j

)
.
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Table 3.A.5: Summary Statistics of 100 Monte Carlo Runs with Mixture of Two
Bivariate Normals using Random LASSO instead of Random Elastic Net.

RMISE Max. Dif. Pos.
N R S FKRB ENet BS BSU FKRB ENet BS BSU FKRB ENet BS BSU
1,000 100 59 0.095 0.057 0.052 0.050 0.276 0.177 0.159 0.151 13.56 54.02 65.10 57.09
1,000 300 149 0.103 0.062 0.046 0.045 0.285 0.163 0.124 0.121 14.37 117.73 164.01 140.21
1,000 500 203 0.106 0.066 0.047 0.044 0.286 0.168 0.119 0.114 14.77 158.57 231.04 192.80
10,000 100 59 0.058 0.040 0.033 0.035 0.187 0.129 0.119 0.138 19.68 46.15 62.10 53.22
10,000 300 149 0.064 0.040 0.027 0.029 0.194 0.109 0.078 0.095 21.75 99.96 161.38 133.09
10,000 500 203 0.066 0.042 0.027 0.028 0.197 0.113 0.072 0.084 21.77 134.32 230.92 184.37

% True Pos. % Sign q h ρ

N R S FKRB ENet BS BSU FKRB ENet BS BSU BS BSU 3rd Qu.
1,000 100 59 19.36 79.08 89.75 84.49 50.28 80.30 81.80 83.61 27.74 5.51 0.824
1,000 300 149 6.66 64.89 88.40 80.92 52.16 75.55 83.47 83.98 26.45 5.33 0.824
1,000 500 203 3.66 57.63 85.01 75.89 59.42 74.48 82.22 82.46 27.05 5.51 0.825
10,000 100 59 28.47 69.95 90.69 83.00 54.92 77.39 85.92 85.72 37.49 11.90 0.823
10,000 300 149 10.52 57.21 92.23 81.66 53.54 73.85 88.16 87.09 34.67 12.83 0.824
10,000 500 203 6.15 51.66 90.00 78.22 60.04 74.48 86.3 86.04 35.30 12.68 0.825

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB
estimator (FKRB), for the elastic net estimator with tuning parameter µ from the maximum value of
the sequence of tuning parameters suggested by glmnet (ENet) and for the random elastic net estimator
with µb = 0 , b = 1, . . . B, for the BS step (BS) and µu = 0 , u = 1, . . . B, for the BSU step (BSU).
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Figure 3.A.2: Error of True Joint Distribution Function Minus Estimated Joint
Distribution Functions for N = 10, 000 and R = 500

(a) FKRB (b) Elastic Net with OneSe

(c) BS of Random Elastic Net (d) BSU of Random Elastic Net

104



Figure 3.A.3: Estimated Marginal Distribution Functions for the FKRB, Elastic Net, and Random Elastic Net Estimator.

Note: The figure shows the marginal distribution functions estimated with the FKRB estimator, elastic net estimator, and random elastic net estimator. The
random elastic net estimator is the BSU estimator. For each estimator, we use the same weighting matrix W as Blundell et al. (2020) in the first step. Subsequently,
we update W for each estimator in the same manner as Blundell et al. (2020) do in the second step. The marginal distribution function of the FKRB estimator
correspond to the results of Blundell et al. (2020).
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Figure 3.A.4: Estimated Mass Points for the FKRB, Elastic Net, and Random Elastic Net Estimator.

Note: The figure shows the weights at each random coefficient estimated with the FKRB estimator, elastic net estimator, and random elastic net estimator. The
random elastic net estimator is the BSU estimator. The vertical blue line is drawn at the weighted mean of each random coefficient. Additionally, we report the
weighted mean (Mean) and weighted standard deviation (Std) in the top right corner. For each estimator, we use the same weighting matrix W as Blundell et al.
(2020) in the first step. Subsequently, we update W for each estimator in the same manner as Blundell et al. (2020) do in the second step. A weight is defined to
be positive if it is greater than 10−5. The weights of the FKRB estimator correspond to those given in Blundell et al. (2020).
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Figure 3.A.5: Estimated Histograms for the FKRB, Elastic Net, and Random Elastic Net Estimator.

Note: The figure shows histograms (green bars) for the weights in Figure 3.A.4 at each random coefficient. The weights are estimated with the FKRB estimator,
elastic net estimator, and random elastic net estimator. The random elastic net estimator is the BSU estimator. The vertical blue line is drawn at the weighted
mean of each random coefficient. Additionally, we report the weighted mean (Mean) and weighted standard deviation (Std) in the top right corner. For each
estimator, we use the same weighting matrix W as Blundell et al. (2020) in the first step. Subsequently, we update W for each estimator in the same manner as
Blundell et al. (2020) do in the second step. The histograms of the FKRB estimator correspond to the resulst of Blundell et al. (2020).
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Figure 3.A.6: Estimated Histograms with Random Coefficients in Fine Equivalent for the FKRB, Elastic Net, and
Random Elastic Net Estimator.

Note: The figure shows histograms (green bars) for the weights in Figure 3.A.4 at the equivalent of each random coefficient to a $1 million fine per quarter. The
weights are estimated with the FKRB estimator, elastic net estimator, and random elastic net estimator. The random elastic net estimator is the BSU estimator.
To calculate the equivalent of each random coefficient to a $1 million fine per quarter, we divide each random coefficient by the the random coefficient of fine, i.e.,
βi/βF , where i ∈ {X, I, V, H}. The vertical blue line is drawn at the weighted mean of each random coefficient. Additionally, we report the weighted mean (Mean)
and weighted standard deviation (Std) in the top right corner. For each estimator, we use the same weighting matrix W as Blundell et al. (2020) in the first
step. Subsequently, we update W for each estimator in the same manner as Blundell et al. (2020) do in the second step. The histograms of the FKRB estimator
correspond to the resulst of Blundell et al. (2020).
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Table 3.A.6: Counterfactual Results Including the FKRB, Elastic Net, and the BS and
BSU step of the Random Elastic Net estimator.

Same fines for all violators;
Baseline fines constant

Data FKRB ENet BS BSU FKRB ENet BS BSU
Compliance (%) 95.62 95.11 95.17 95.23 95.17 66.72 57.14 59.65 65.16
Regular violator (%) 2.88 3.47 3.48 3.49 3.45 2.53 2.05 2.15 2.37
HPV (%) 1.50 1.42 1.35 1.28 1.37 30.75 40.82 38.20 32.47
Investment rate (%) 0.40 0.54 0.54 0.54 0.55 0.47 0.43 0.44 0.46
Inspection rate (%) 9.65 9.41 9.40 9.37 9.39 20.54 24.06 23.09 21.05
Fines (thousands $) 0.18 0.32 0.32 0.30 0.31 0.32 0.32 0.30 0.31
Violations (%) 0.55 0.54 0.54 0.53 0.53 5.00 6.05 5.68 4.85
Plant utility — 0.006 0.020 0.016 0.022 0.077 0.171 0.147 0.117
Pollution damages (mil. $) 1.65 1.53 1.51 1.51 1.52 4.04 4.84 4.63 4.18

Same fines for all violators; Fines for HPVs doubled
pollution damages constant relative to baseline

Data FKRB ENet BS BSU FKRB ENet BS BSU
Compliance (%) 95.62 94.49 94.73 94.85 94.93 95.52 95.57 95.59 95.57
Regular violator (%) 2.88 2.72 1.91 1.97 2.06 3.47 3.49 3.49 3.46
HPV (%) 1.50 2.79 3.36 3.18 3.01 1.01 0.95 0.92 0.97
Investment rate (%) 0.40 0.65 0.76 0.75 0.75 0.55 0.54 0.54 0.55
Inspection rate (%) 9.65 9.88 10.03 9.97 9.93 9.28 9.26 9.25 9.26
Fines (thousands $) 0.18 1.98 4.90 4.61 3.70 0.36 0.36 0.34 0.35
Violations (%) 0.55 0.74 0.80 0.78 0.76 0.49 0.48 0.48 0.48
Plant utility — 0.001 0.006 0.000 0.010 0.005 0.019 0.015 0.021
Pollution damages (mil. $) 1.65 1.53 1.51 1.51 1.52 1.48 1.47 1.47 1.48

Note: The table reports summary statistics of the values in the data, the values predicted by the model
estimates (baseline), and three counterfactuals for the FKRB, elastic net, the BS step and the BSU
step of the random elastic net estimator. Each summary statistic is per plant / quarter and calculated
in the same way as in Blundell et al. (2020). The counterfactuals of FKRB correspond to those given
in Blundell et al. (2020).
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Figure 3.A.7: Estimated Heat Maps for Blundell et al. (2020).
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Figure 3.A.8: Estimated Heat Maps for Blundell et al. (2020).
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Figure 3.A.9: Estimated Heat Maps with Random Coefficients in Fine Equivalent for
Blundell et al. (2020).
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4 Deep Learning for the Estimation of
Heterogeneous Parameters in Discrete
Choice Models

Co-authored by Maximilian Osterhaus

Abstract

This paper studies the finite sample performance of the flexible estimation
approach of Farrell et al. (2021a), who propose to use deep learning for the
estimation of heterogeneous parameters in economic models, in the context
of discrete choice models. The approach combines the structure imposed
by economic models with the flexibility of deep learning, which assures the
interpretebility of results on the one hand, and allows estimating flexible
functional forms of observed heterogeneity on the other hand. For inference
after the estimation with deep learning, Farrell et al. (2021a) derive an
influence function that can be applied to many quantities of interest. Focusing
on discrete choice models, we conduct a series of Monte Carlo experiments
that investigate the impact of regularization on the proposed estimation
and inference procedure. The results of these experiments show that deep
learning for the estimation of heterogeneous parameters generally leads to
precise estimates of the true average parameters and that regular robust
standard errors lead to invalid inference results. Without regularization, the
influence function approach can lead to substantial bias and large estimated
standard errors caused by extreme outliers. Regularization reduces this
property and stabilizes the estimation procedure, but at the expense of
inducing an additional bias. The bias in combination with decreasing variance
associated with increasing regularization leads to the construction of invalid
inferential statements in our experiments. Repeated sample splitting, unlike
regularization, stabilizes the estimation approach without introducing an
additional bias, thereby allowing for the construction of valid inferential
statements.

JEL codes: C14, C25, C45
Keywords: Deep Learning, Conditional Logit Model, Observed

Heterogeneity, Inference.
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4.1 Introduction

Appropriately modeling heterogeneity across economic agents is a key challenge in
many empirical economic studies. Often, the heterogeneity can be linked to observed
characteristics of agents. This is typically achieved using parametric specifications in
the form of linear interactions of only few observed characteristics with the variables of
interest. Even restrictive functional forms like linear functions rapidly lead to a large
number of parameters, especially if the heterogeneity is modeled as a function of multiple
characteristics (Cranenburgh, Wang, Vij, Pereira and Walker, 2021). Furthermore,
limiting the heterogeneity to linear functions of only few characteristics can lead to
misspecification of the true shape and extent of heterogeneity, and to potentially incorrect
results for quantities of interest, such as elasticities or willingness-to-pay measures.

The increasing availability of large data sets makes it possible to reduce the reliance
on parametric methods and to apply more flexible approaches to study heterogeneity. A
promising tool for this task is deep learning, which is known for its ability to flexibly
model functional forms and to handle large amounts of data. While deep learning so
far has been applied with great success for pure prediction tasks (LeCun, Bengio and
Hinton, 2015), Farrell et al. (2021a) propose to employ deep learning for the estimation
of heterogeneous parameters. They incorporate the heterogeneity across economic agents
into the economic model specified by the researcher through coefficients that are functions
of agents’ observed characteristics. The approach combines parametric approaches –
which impose structure on the model grounded in economic principles and reasoning –
with deep learning – which lets the data speak for itself with its flexibility.

To derive theoretically valid inferential statements after estimating the coefficient
functions with deep learning, Farrell et al. (2021a) extend the deep learning theory
for generic regression approaches developed by Farrell, Liang and Misra (2021b) to
M-estimators. Building on Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey
and Robins (2018), they derive an influence function that makes inference feasible in
a wide range of settings – the provided inferential statements cover any parameter of
interest that is a function of the heterogeneous coefficient functions. Farrell et al. (2021a)
show that the inference procedure allows to construct valid inferential statements under
fairly weak conditions. However, they leave the role of regularization and its consequences
for estimation and subsequent inference for future research.

Conducting a series of Monte Carlo experiments, we intend to fill this gap and
study the finite sample properties of the proposed inference procedure in the context
of discrete choice models. The results of these experiments show that deep learning
generally is well suited for the estimation of heterogeneous parameters, especially if the
sample size is sufficiently large, and that naive inference after estimating the parameters
with deep learning leads to invalid inference. Further, the proposed estimation procedure
is sensitive to overfitting when no regularization is used. We observe that estimation
without regularization can results in substantial bias and large estimated standard errors.
The sensitivity to overfitting is more pronounced in small samples but does not completely
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disappear with increasing sample size. Regularization in form of l2-penalties on the
weights tuned in the network reduces the sensitivity to overfitting and rapidly decreases
the average estimated standard errors. However, it also appears to introduce a new source
of bias which in combination with the decreasing variance explains the poor coverage of
the estimated confidence intervals observed in our experiments. Finally, the experiments
show that substantially better results are obtained when repeated sample splitting is
used. Unlike regularization, repeated sample splitting substantially reduces the bias
arising from overfitting without inducing a new bias, this way leading to valid inferential
results in out experiments.

Our paper contributes to a growing literature on the combination of deep learning
and structural modeling in discrete choice models.1 Among others, Sifringer, Lurkin
and Alahi (2020) and Wong and Farooq (2021) apply deep learning to estimate demand
for travel modes in a logit framework. To avoid model misspecification in discrete
choice models, Sifringer et al. (2020) propose to decompose the utility into two parts:
a knowledge-driven part which includes the variables of interest and is specified by the
researcher, and a data-driven part, which is estimated with deep learning using the
remaining explanatory variables that are not of primary interest. Separating those two
parts of the utility assures that the parameters of interest can be interpreted. However, as
the knowledge-driven part needs to be fully specified, its coefficients are constant across
agents. Therefore, this approach seems more restrictive than the approach of Farrell et al.
(2021a) which allows for heterogeneous coefficients. In contrast, Wong and Farooq (2021)
allow for a knowledge-driven part of the utility and an additional random component
of the utility which can depend on the characteristics of all alternatives. That is, their
approach captures unobserved heterogeneity and cross-effects of non-linear utilities across
all alternatives. Thus, their model relaxes the IIA property. Both have in common that
they do not provide a theoretically valid inference procedure for parameters of interest but
rely on approximations of the confidence intervals based on the Hessian of the estimated
model, which are not guaranteed to have the correct size. Wang, Wang and Zhao (2020)
focus on estimating economic quantities of interest, e.g., market shares, elasticities and
changes in social welfare, with deep learning using a completely unstructured utility.
Similarly to Sifringer et al. (2020) and Wong and Farooq (2021), they do not present a
valid approach for inference on the quantities of interest.2 They rely on the predicted
choice probabilities and the gradient of the estimated model and do not take into account
that the considered quantities are accompanied with additional uncertainty when no
structure is imposed on the utility.

The remainder of this paper is organized as follows. Section 4.2 illustrates how deep
learning can be employed to estimate heterogeneous parameters in economic models
and outlines the inference and estimation procedure. Section 4.3 presents Monte Carlo

1For recent surveys of the application of machine learning and deep learning for the estimation of
discrete choice models, see, e.g., Karlaftis and Vlahogianni (2011), Wang, Mo, Hess and Zhao (2021), and
Cranenburgh et al. (2021).

2For example, they calculate the standard deviation of the average elasticity as the standard deviation
of the elasticity of each individual.
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experiments that study the inference procedure and Section 4.4 applies the influence
function approach to real data. Section 4.5 concludes.

4.2 Deep Learning for Heterogeneity

This section introduces the methodical framework of Farrell et al. (2021a) who propose
to estimate heterogeneous parameters in econometric models using deep learning in
the form of multi-layer feed-forward neural networks. The flexibility of deep neural
networks (DNNs) makes them ideally suited for the estimation of economic models with
individual heterogeneity. Subsection 4.2.1 explains the design of the network which
directly integrates the economic model specified by the researcher into the network
architecture. Subsection 4.2.2 explains the inference approach which is based on the
concept of influence functions, and Subsection 4.2.3 lays out the estimation procedure.
While the estimation and inference procedure is applicable to a wide range of models, we
focus on multinomial discrete choice models when introducing the estimation procedure.

4.2.1 Deep Learning

Starting point of the estimation approach is the economic model specified by the researcher.
The model relates the outcome Y to the variables of interest X, and to socio-demographic
characteristics W that are included to capture the heterogeneity across individuals.3
We are interested in analyzing consumers’ preferences. For that purpose, we consider a
conditional logit model to model individuals’ choices over a set of J mutually exclusive
alternatives. In this context, let xi,j denote a K-dimensional real-valued vector of
observed product characteristics for consumer i = 1, . . . , N and alternative j = 1, . . . , J ,
wi a D-dimensional vector of observed socio-demographics of consumer i, and yi a J-
dimensional vector with entry 1 if alternative j is chosen by consumer i and zero otherwise.
Consumers choose the alternative that maximizes their utility. Given the unobserved
individual parameters αj(wi), j = 1, . . . , J , and β(wi) = (β1(wi), . . . , βK(wi))′ consumer
i realizes utility ui,j = αj(wi) + x′

i,jβ(wi) + ωi,j from alternative j, where ωi,j denotes
an idiosyncratic, consumer- and choice-specific error term. Thus, consumer i chooses
alternative j if ui,j > ui,l for all j ≠ l. Under the assumption that ωi,j is independently
and identically distributed type I extreme value, the probability that consumer i chooses
alternative j conditional on the observed product characteristics and socio-demographics
is

P (yi,j = 1|xi,wi) =
exp

(
αj (wi) + x′

i,jβ (wi)
)

∑J
m=1 exp

(
αm (wi) + x′

i,mβ (wi)
) . (4.1)

3Notation: The variables written in capital letters denote random variables and small letters observa-
tional units. All vectors and matrices are written in bold.
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The goal of the researcher is to estimate the unknown heterogeneous coefficient functions
α(wi) = (α1(wi), . . . , αJ(wi))′ and β(wi), which are functions of consumers’ socio-
demographic characteristics that capture the observed heterogeneity across consumers.
Thus, the functions capture no unobserved heterogeneity, i.e., there are no random
coefficients.4

For the estimation of α(·) and β(·), Farrell et al. (2021a) advocate deep neural net-
works. The proposed network architecture allows to combine a standard fully-connected
feedforward neural network – which is used to estimate the coefficient functions α(·) and
β(·) – with the economic structure imposed by the conditional logit model. The key idea
of the network architecture is to be fully flexible in modeling the individual heterogeneity
while retaining the structure which assures the interpretability of the results. Figure
4.1 illustrates such an architecture. Given consumers’ observed socio-demographics, wi,
i = 1, . . . , N , in the input layer, the feedforward network learns the coefficient functions
α(·) and β(·) using two hidden layers, a parameter layer, and a model layer. The first
part of the network, the input layer and the hidden layers, corresponds to the structure
of a standard feedforward neural network. The number of hidden layers and the number
of units per hidden layer determine the flexibility of the approach regarding the shape of
the estimated coefficient functions. The coefficient functions α(·) and β(·) returned in
the parameter layer are then forwarded to the model layer, where they are combined with
the variables of interest, xi, and the observed choices, yi, to minimize the individual loss
function, ℓ (yi,xi,α (wi) ,β (wi)). To be clear, the variables of interest, xi, are additional
inputs provided only to the model layer but are not used as inputs to the coefficient
functions α(·) and β(·). The novelty of this network architecture is the model layer,
which ensures that the coefficient functions α(·) and β(·) are learned within the structure
imposed by the specified model. This way, the estimated results have an economically
meaningful interpretation, which typically is not the case for regular machine learning
applications in economics (Farrell et al., 2021a).

The number of hidden layers (the depth of the network), and the number of units per
layer (the width of each layer) are specified by the researcher. According to the universal
approximation theorem (Hornik, Stinchcombe and White, 1989 and Cybenko, 1989), a
feedforward network with only one hidden layer might be already sufficient to represent
any function if the number of hidden units is sufficiently large. Networks with multiple
hidden layers typically require less units per hidden layer – and hence total parameters –
to represent the desired function, and in many circumstances generalize well in terms
of out-of-sample performance. However, such networks tend to be harder to optimize
(Goodfellow, Bengio and Courville, 2016). In Theorem 1, Farrell et al. (2021a) derive
error bounds for the estimated coefficient functions α̂(·) and β̂(·), where they allow the
depth of the network to increase with the sample size, and the width of the network
with the sample size and the number of continuous input variables, respectively. Beyond

4The parameters β(wi) and α(wi) can be considered as the best approximations to some unobserved
individual parameters αi and βi that lie in an assumed function class.
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Figure 4.1: Feedforward Neural Network for the Estimation of the Heterogeneous
Parameters α(wi) and β(wi)
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the number of hidden layers and units, the researcher needs to specify the activation
function at every layer. The design of hidden layers is an active area of research which
does not provide definite guidelines for the choice of activation functions yet. According
to Goodfellow et al. (2016), rectified linear units are an excellent default choice, which are
also recommended by Farrell et al. (2021a). Overall, specifying the network architecture
is a trial-and-error process where the final architecture can be selected based on the best
out-of-sample fit (Goodfellow et al., 2016).

When estimating the model, the coefficient functions α(wi) and β(wi) are learned
jointly. To simplify the notation, we write δ(wi) := (α(wi)′,β(wi)′)′ and L := J +K in
the following. In our case, the individual loss function, ℓ (yi,xi, δ(wi)), following from
the economic model of interest, is the empirical log-likelihood for individual i,

ℓ (yi,xi, δ(wi)) =
J∑

j=1
yi,j log (P (yi,j = 1|xi,wi)) ,

where P (yi,j = 1|xi,wi) is the conditional logit choice probability given in Equation (4.1).
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Then, δ̂(wi) := (α̂(wi)′, β̂(wi)′)′ are determined such that they simultaneously maximize
the log-likelihood

δ̂(wi) = arg max
δ

N∑
i=1

ℓ (yi,xi, δ(wi)) ,

where we optimize over the class of DNNs which use the type of architecture described
in Figure 4.1. The log-likelihood loss function forces the DNN to learn the coefficient
functions within the structure imposed by the conditional logit model. This has two
advantages in comparison to naively applied prediction-focused machine learning methods,
which predict the choice probabilities P̂ (yi,j = 1|xi,wi) using a completely unstructured
nonparametric utility û(yi,wi,xi): First, it assures that the network provides econom-
ically meaningful results. For the unstructured approach, in contrast, it is not clear
how estimates of α(wi) and β(wi) can be separately recovered from û(yi,wi,xi), which,
however, is often necessary for interpretation. And second, even if α(wi) and β(wi)
could be separately recovered in the unstructured approach, Farrell et al. (2021a) show
that the additional structure of the model enables a faster rate of convergence for the
estimated coefficient functions (given the model is correctly specified). For the structured
approach, the rate of convergence only depends on the dimension of the socio-demographic
characteristics, dim(wi), whereas for the naive prediction focused machine learning with
unstructured û(yi,wi,xi), it depends on both the dimension of the socio-demographic
characteristics and the dimension of the variables of interest, i.e., dim(wi) + dim(xi).
While the convergence rate in the structured network is fast enough for inference, the
convergence rate of the unstructured model would often be too slow for inference (Farrell
et al., 2021a).

4.2.2 Inference

Inference for machine learning methods for the estimation of economic models is challeng-
ing. For that reason, Farrell et al. (2021a) adopt the semiparametric inference procedure
suggested by Chernozhukov et al. (2018) which allows to perform inference on expected
values of heterogeneous quantities using an influence function approach. Due to the
structure imposed by the economic model, the proposed procedure can be applied to any
quantity of interest (e.g., expected value of coefficients, elasticticties, or measures for
the willingness-to-pay) which are functions of the heterogeneous coefficient functions δ(·)
(and a fixed vector x∗ containing arbitrary values of the variables of interest).

Let the real-valued function H(·) specified by the researcher denote the function
of interest. Then, the inference procedure described in the following allows to conduct
inference on the expected value of H(·) given some x∗,

θ0 = E [H (W , δ (W ) ; x∗)] .

Note that H(·) directly depends on the coefficient functions δ(·), making inference on θ0
depend on how well δ̂(·) approximates its true counterpart δ(·). Because the empirical
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plug-in estimator of θ0,

θ̂P I = 1
N

N∑
i=1

H
(
wi, δ̂ (wi) ; x∗

)
,

is only valid under strong conditions on δ̂(·), which are unlikely to be satisfied if the
functions are estimated with deep-neural networks, Farrell et al. (2021a) propose to use
the concept of influence functions for inference. The approach builds on the seminal work
of Newey (1994) and has the advantage that it provides results for valid inference under
less restrictive conditions on the distributional approximations of δ(·). These assumptions
are known to hold for many machine learning methods (Farrell et al., 2021a).

The influence function for θ0 involves the gradient and Hessian corresponding to
the loss function ℓ (yi,xi, δ(wi)) with respect to δ(wi). Let ℓδ (yi,xi, δ(wi)) denote the
L-dimensional vector of first derivatives of ℓ (yi,xi, δ(wi)) w.r.t. δ(wi),

ℓδ (yi,xi, δ(wi)) = ∂ℓ (yi,xi, b)
∂b

∣∣∣∣
b=δ(wi)

,

and ℓδ,δ (yi,xi, δ(wi)) the L× L-matrix of second order derivatives with entries {k1, k2}
defined as

[ℓδ,δ (yi,xi, δ(wi))]k1,k2
= ∂2ℓ (yi,xi, b)

∂bk1∂bk2

∣∣∣∣
b=δ(wi)

.

DefineHδ(wi, δ(wi); x∗) as the L-dimensional vector of first derivatives ofH(wi, δ(wi); x∗)
w.r.t. δ(wi). Further, define

Λ(wi) := E[ℓδ,δ(Y ,X, δ(W ))|W = wi],

corresponding to the expected individual Hessian for individual i conditional on her
socio-demographic characteristics wi. Then, a valid and Neyman orthogonal score for
the parameter of inferential interest, θ0, is ψ(wi, δ(wi),Λ(wi)) − θ0, where
ψ (wi, δ(wi),Λ(wi)) = H (wi, δ (wi) ; x∗)−Hδ (wi, δ (wi) ; x∗)′ Λ (wi)−1 ℓδ (yi,xi, δ(wi))

(4.2)
is the influence function when centered at θ0. Hence, θ0 can be identified from the
condition E [ψ (W , δ (W ) ,Λ (W )) − θ0] = 0. In case of the conditional logit model
stated in Equation (4.1), the gradient vector ℓδ(yi,xi, δ(wi)) for individual i is

ℓδ(yi,xi, δ(wi)) = (ci,1, . . . , ci,J , c̃i,1, . . . , c̃i,K)′

with jth element ci,j = yj − P(yi,j = 1|xi,wi) and (J + k)th element c̃i,k = ∑J
j=1(yi,j −

P(yi,j = 1|xi,wi))xi,j,k. The matrix ℓδ,δ (yi,xi, δ(wi)) can be written as
ℓδ,δ (yi,xi, δ(wi)) = Ġix̃ix̃

′
i

with Ġi being the derivative of the conditional logit choice probabilities with respect
to the linear index x̃′

iδ(wi), and x̃i = [e1, . . . , eJ ,xi] where ej is a unit vector with L
elements where the jth element is equal to one and zero otherwise. Thus, the L × L
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matrix Ġi for individual i has entries ġkk = P (yi,j = 1|xi,wi) (1 − P (yi,j = 1|xi,wi)) on
the main diagonal and ġk,l = −P (yi,j = 1|xi,wi)P (yi,m = 1|xi,wi) for all k ̸= l on the
off-diagonal. A detailed derivation of the influence function for the conditional logit
model presented in Equation (4.1) is given in Farrell et al. (2021a, v1 on arXiv.org).

The plug-in estimator θ̂P I takes only one source of uncertainty in H(wi, δ̂(wi); x∗)
into account: the direct effect of perturbations in the data on H(wi, δ̂(wi); x∗) for a
given δ̂(wi) estimated with the sample. In contrast, the influence function approach
additionally accounts for the uncertainty in the estimated coefficient functions due to
perturbations in the data when estimating θ0 with machine learning. For illustrative
purposes, assume there are estimates δ̂(wi) and Λ̂(wi) for a given sample. Using δ̂(wi)
and Λ̂(wi) to calculate the influence function, ψ(wi, δ̂(wi), Λ̂(wi)), presented in Equation
(4.2), the sample analogue of E

[
ψ
(
W , δ̂ (W ) , Λ̂ (W )

)]
is

θ̂IF = 1
N

N∑
i=1

ψ
(
wi, δ̂(wi), Λ̂(wi)

)

= 1
N

N∑
i=1

H
(
wi, δ̂ (wi) ; x∗

)
(4.3a)

− 1
N

N∑
i=1

Hδ̂

(
wi, δ̂ (wi) ; x∗

)′
Λ̂ (wi)−1 ℓδ̂

(
yi,xi, δ̂(wi)

)
. (4.3b)

Similarly to θ̂P I , the term in Equation (4.3a) captures the changes in the function
H(wi, δ̂(wi); x∗) in response to perturbations in the data, treating the coefficient functions
δ̂(wi) as if they were known. This way, the term accounts for the uncertainty in the
parameter of inferential interest due to changes in H(wi, δ̂(wi); x∗). The term in Equation
(4.3b) is an additional correction term that includes an estimate of the nuisance function
Λ(wi) and, thereby, accounts for the uncertainty in the functional forms of the coefficient
functions δ(wi) arising from perturbations in the data. The correction term isolates
the impact of the nonparametric estimation on the estimated parameters of inferential
interest, which is enabled through the imposed structure of the economic model relating
the outcome Y to the covariates X in a known way.

The correction terms Hδ(wi), ℓδ (yi,xi, δ(wi)) and ℓδ,δ (yi,xi, δ(wi)) can be cal-
culated analytically and do not need to be estimated. In contrast, the matrix Λ(wi)
consists of regression-type objects which must be estimated, i.e., the individual Hessian
ℓδ,δ(Y ,X, δ(W )) is projected on W . For this projection, DNNs can be used as well.
Further, note that the product Λ(wi)−1ℓδ(wi, δ(wi)) does not depend on the function
H(·), which simplifies calculations if multiple parameters are of inferential interest.
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An important assumption of the inference procedure is that the matrix Λ(wi) is
invertible with bounded inverse. With respect to the conditional logit model in Equation
(4.1), the assumption implies that the choice probabilities are bounded away from zero
and one.5

4.2.3 Estimation

With the influence function in Equation (4.2), the estimator θ̂ of θ0 and an corresponding
estimator Ψ̂ of its asymptotic variance can be formed using the semiparametric inference
procedure of Chernozhukov et al. (2018). For the estimation, the influence function
ψ(wi, δ(wi),Λ(wi)) needs to be evaluated at every data point in the sample. In order to
obtain a properly centered limiting distribution under weaker conditions on the first stage
estimates δ̂(wi), the estimation procedure for θ0 is based on sample splitting (Farrell
et al., 2021a).

For the conditional expected individual Hessian of the conditional logit model, Λ(wi),
the dependent variable Z := ĠXX ′ is regressed on the socio-demographic characteristics
W . Because Ġ, and hence Z, depend on the coefficient functions δ(W ), the estimation
of the influence function requires three-way splitting of the sample. The first sub-sample
is used to estimate the heterogeneous parameter functions δ̂(wi). These are subsequently
treated as the inputs to calculate the “observed” matrix zi of Z, using wi and xi of
the second sub-sample. Using zi as the dependent variable and wi as the independent
variable, Λ̂(wi) is estimated with the second sub-sample. The influence function is then
calculated with the third sub-sample (Farrell et al., 2021a). The procedure thus consists
of the following steps:

1. Split the observation units {1, . . . , n} into S subsets, denoted by Ss ⊂ {1, . . . , n},
s = 1, . . . , S.

2. For each s = 1, . . . , S, let Sc
s denote the complement of Ss. For nonlinear models

like the conditional logit model, the functions δs(wi) and Λs(wi), corresponding to
split s, cannot be estimated simultaneously. Instead, the complement Sc

s is split
into two pieces to first estimate δ̂s(wi) using the first piece, and then Λ̂s(wi) using
the second piece together with the fixed functions δ̂s(wi).

3. The final estimator of θ0 is then

θ̂ = 1
S

∑
θ̂s, θ̂s = 1

|Ss|
∑
i∈Ss

ψ
(
wi, δ̂s(wi), Λ̂s(wi)

)
, (4.4)

where |Ss| is the cardinality of Ss and is assumed to be proportional to the sample
size.
Furthermore, an estimator Ψ̂ of the asymptotic variance of θ̂ is given by the

5In order to assure the numerical stability of the approach, Farrell et al. (2021a) propose trimming or
regularization of Λ(wi) by adding a positive constant to the main diagonal, e.g., Λ(wi) + I.
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variance-analogue of Equation (4.4)

Ψ̂ = 1
S

S∑
s=1

Ψ̂s, Ψ̂s = 1
|Ss|

∑
i∈Ss

(
ψ
(
wi, δ̂s(wi), Λ̂s(wi)

)
− θ̂

)2
. (4.5)

For θ̂ and Ψ̂, Farrell et al. (2021a) provide inference results that establish asymptotic
normality and validity of standard errors,

√
nΨ̂−1/2

(
θ̂ − θ

)
→d N (0, 1) . (4.6)

This allows a simple construction of confidence intervals for θ. Chernozhukov et al. (2018)
prove that these are uniformly valid but not necessarily semi-parametrically efficient.6

A central input to the influence function, and hence to the estimated inference
results, is the conditional expected individual Hessian Λ(wi) which is a nuisance function
as it is required only for the calculation of the influence functions but not of interest
per se. Estimating Λ(wi) is a prediction problem for which different machine learning
methods can be used. In the Monte Carlo experiments and application presented below,
we estimate Λ(wi) by another neural network using the mean squared error (MSE)
as loss function. Because the matrix Λ(wi) is symmetric, we only need to estimate
L(L+ 1)/2 entries. To keep the estimation procedure as simple as possible, we estimate
the entries of Λ(wi) using a single network with L(L+ 1)/2 output units. Alternatively,
one could estimate each entry with a separate network, which is more flexible but has
the disadvantage that it is computationally more expensive.

The estimation procedure described above has some potential weaknesses that can
lead to misleading results. The first one is potential overfitting when predicting the choice
probability for each alternative, which can lead to estimated probabilities close to zero
and one, respectively. As a consequence, the matrix Λ̂(wi) might not be invertible (or
close to not being invertible, leading to extremely large entries of the inverse) if the entries
are estimated precisely. Related to the overfitting problem, a practical disadvantage
of the sample splitting – beyond the computational cost – is that small sub-samples
potentially provide imprecise estimates, which is particularly relevant for applications
with small sample sizes (Farrell et al., 2021a).7

Remark 4.1. To increase finite sample precision, Chernozhukov et al. (2018) suggest to
repeat the sample splitting procedure outlined above R times. To this end, let θ̂r and
Ψ̂r denote the estimators shown in Equation (4.4) and (4.5) for repetition r = 1, . . . , R.

6However, the constructed standard confidence intervals for θ can be semi-parametrically efficient
and Farrell et al. (2021a) also conjecture that they are semi-parametrically efficient but do not prove it.

7For the asymptotic results of the sample splitting procedure, Farrell et al. (2021a) treat S as fixed
and therefore, the sample splitting is asymptotically negligible.
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Then, the final estimator is the median over the repetitions,8 i.e,

θ̂med = median
{
θ̂r

}R

r=1
, and Ψ̂med = median

{
Ψ̂r +

(
θ̂r − θ̂med

)2
}R

r=1
.

Chernozhukov et al. (2018) note that the choice of R ≥ 1 does not affect the asymptotic
distribution of θ̂med. By Equation (4.6), each θ̂k is asymptotically normal and therefore,
θ̂med is asymptotically normal, too. In our simulations, we set R = 5 and find that
repeated sample splitting substantially improves the precision of the estimates.

4.3 Monte Carlo Experiments

This section presents different Monte Carlo experiments that study the performance of the
deep learning estimation procedure and, in particular, the inference procedure presented
in Section 4.2. To study the performance in a realistic setup, we use semi-synthentic data
for the experiments. The data is taken from the Swissmetro dataset (Bierlaire, Axhausen
and Abay, 2001), which is an openly available dataset collected in Switzerland during
March 1998.9 The data consists of survey data from 1, 191 car and train travelers. It was
collected to analyze the impact of a new innovative transportation mode, represented
by the Swissmetro, against usual transportation modes, namely car and regular train
connections.10 For every respondent, nine stated choice situations were generated in
which the respondents could choose between three travel mode alternatives: Swissmetro
(abbreviated as sm), train, and car (only for car owners). In total, the data consists
of 10, 719 choice situations (Antonini, Gioia and Frejinger, 2007). When preparing the
data, we follow the instructions of Sifringer et al. (2020) and remove all observations for
which not all three alternatives – Swissmetro, train, car – are available. This reduces the
number of travelers to 1, 683 and thus, the final data set to 9, 036 observations.11

For the data generation, we consider an individual-level discrete choice demand
model of the form presented in Equation 4.1. The variables of interest in our Monte
Carlo experiments are the travel cost (cost), the travel time (time), and the frequency
(freq) of the train and Swissmetro connections (frequency is zero for car).12 Each traveler
chooses the travel mode among the three alternatives car, Swissmetro, and train that

8Chernozhukov et al. (2018) also consider taking the average across repetitions instead of the median.
However, they recommend to use the median since it is less dependent on the outcome of a single
repetition.

9We downloaded the test and training data from the github repository
github.com/BSifringer/EnhancedDCM.

10The Swissmetro is a revolutionary mag-lev underground system operating at speeds up to 500 km/h
in partial vacuum.

11For the estimation, we follow Sifringer et al. (2020) and ignore the panel structure of the data.
12The travel cost, travel time, and frequency variables are scaled downwards by factor one hundred

(Sifringer et al., 2020). For those travelers that have an annual season pass, we set the travel cost of the
train and Swissmetro to zero.

124



provides her with the highest utility,
ui,j = αj (wi) + costi,jβ

cost (wi) + timei,jβ
time (wi) + freqi,jβ

freq (wi) + ωi,j ,

for j = {car, train, sm}. We specify the true coefficients as functions of travelers’ yearly
income (income), age (age), gender (male), and a variable indicating who payed for
the ticket (who). Income and age are categorical variables that assign travelers’ income
and age into four and six groups, respectively. The gender variable is equal to one
if the traveler is male and zero otherwise. The variable who is a categorical variable
that takes four values (0 if it is unknown who pays, 1 if the traveler payed herself, 2
if the employer pays, and 3 if the traveler and employer split half-half). In order to
make the information represented by the categorical variable more easily accessible for
the network, we transform who into three dummy variables denoted by who1, who2,
and who3, leaving out the category 0 as reference category.13 We specify the observed
consumer socio-demographics as wi := (agei, incomei, malei, who

1
i , who

2
i , who

3
i )′. The

intercept functions for each alternative are
αtrain (wi) = −1 + 1 · incomei,

αsm (wi) = −3 + 1 · agei,

and αcar (wi) = 0, i.e., the alternative car serves as reference. The coefficient functions
for the covariates of interest are specified as

βcost (wi) = −6 + incomei − 0.8 · who1
i − 1 · who2

i − 1.2 · who3
i

βfreq (wi) = −5 + incomei + 0.9 · malei

βtime (wi) = −6 + 1 · agei.

To study the finite sample performance of the proposed inference procedure, we
consider the expected value of the heterogeneous coefficients βcost (wi), βfreq (wi), and
βtime (wi) as the parameters of inferential interest, i.e., θk

0 = E[βk(wi)], k ∈ {cost, freq, time}.
Accordingly, the function H(·) corresponds to

H(wi, δ(wi); x∗) = βk(wi),

where δ(wi) =
(
αtrain (wi) , αsm (wi) , βcost (wi) , βfreq (wi) , βtime (wi)

)′
. Thus, the gra-

dient vector Hδ (wi, δ(wi); x∗) is equal to one for the element corresponding to the
derivative with respect to βk, and zero for all other entries.

13A detailed description of the data and summary statistics can be found here.
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4.3.1 Small Data Set

We conduct 1000 Monte Carlo repetitions. In every repetition, we use the individual
coefficients, the covariates, and an idiosyncratic error term ωi,j to calculate the utility
for each alternative and each individual. For that purpose, we draw ωi,j from a Type I
extreme value distribution for every traveler and alternative in every replicate and select
the alternative that provides the largest utility.

To simulate deviations between the sample and the population values of the covariates,
we split the data into two sets. We use all observations to calculate the true values, θk

0 ,
k ∈ {cost, freq, time}, but use only three quarter of the data for the estimation. This
way, we can test whether the proposed inference procedure adequately accounts for the
uncertainty related to H(·), and for the uncertainty related to the functional form of
the heterogeneous coefficient functions δ(wi) which arises due to deviations between
observations in the sample and the population.

We use the same network architecture to estimate the heterogeneous coefficient
functions and to estimate the conditional expected individual Hessian Λ(wi) – except for
the number of output units in both networks. More precisely, we choose one hidden layer
with 100 units and rectified linear activation functions. For the units in the output layer,
we use linear activation functions. The number of output units are five in the network for
the heterogeneous coefficient functions, and 15 in the network for Λ(wi). Both networks
use travelers’ income, age, gender, and the dummy variables indicating who is paying for
the ticket as inputs. When estimating the coefficient functions, we set the dropout rate to
0.2. For the network used to estimate Λ(wi), we test different regularizers to account for
the difficulty of projecting Λ(wi). We consider the l2-regularizers λ = 0, 10−5, 10−4, 2·10−3

which we use to avoid overfitting zi and, thereby, to ensure that the predicted individual
Hessian Λ̂(wi) does not become collinear for any individual i. While using a l2-regularizer
λ > 0 ensures that we can invert Λ̂(wi), we note that λ > 0 potentially introduces a
bias in the estimation and is not covered by the inference results of Farrell et al. (2021a).
When training the networks, we set the maximum number of epochs to 20, 000, and
the batch size to 50. During the training, we track the in-sample log-likelihood and the
in-sample mean squared error, respectively, and stop the training if the change in the
loss function does not exceed 10−8 across epochs (with a patience of 100 epochs). We
select the network with the best in-sample fits. For the estimation with the influence
function approach, we split the training data into S = 5 folds. Furthermore, we split Sc

s

into two equally sized pieces, using the first one to estimate δs(wi), and the second one
to estimate Λs(wi).

As a benchmark, we estimate the model with maximum likelihood using the true
specification. We refer to this estimator as oracle logit estimator. In addition, we also
estimate a conditional logit model where we do not account for any type of heterogeneity
but instead include only two alternative-specific intercepts and the slope coefficients for
cost, freq, and time. This allows us to study the potential consequences when one does not
account for heterogeneity across travelers even though it is present in the data. Finally,
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we also use a neural network to estimate the heterogeneous coefficient functions without
the outlined inference procedure of Farrell et al. (2021a). Instead, we conduct naive
inference using the average heterogeneous coefficient functions and the corresponding
estimated Fisher information matrix to calculate robust standard errors. This allows us
to assess the importance of an appropriate inference procedure after the estimation of
the model parameters with machine learning.

Table 4.1 reports the coverage of the estimated 95% confidence intervals, the average
estimated standard errors, and estimated bias across Monte Carlo replicates for all three
covariates of interest. Furthermore, we present the share of Monte Carlo replicates in
which the false null hypotheses that the coefficients are zero are correctly rejected at
a significance level of 0.05. This is supposed to serve as an indicator for the power of
the hypothesis tests when calculated with the different inference procedures. For the
influence function approach, we additionally calculate the in-sample and out-of-sample
MSE of the neural network for Λs(wi), and track the share of outliers across Monte Carlo
replicates. We calculate the in-sample MSE with the part of Sc

s used for the estimation
of Λs(wi), and the out-of-sample MSE with the left out fold. We treat a Monte Carlo
replicate as outlier if the estimated standard error is larger than 5 for at least one of the
three estimated parameters.

The reported average results for the oracle logit estimator across Monte Carlo
replicates reveal that accounting for the correct (functional) form of heterogeneity
provides precise estimates of the true average coefficients, and correct coverage of the
true average coefficients through the estimated 95% confidence intervals. In addition, the
hypotheses tests with the nulls that the average coefficients are zero have high power
when calculated with the oracle logit estimator, as the null hypotheses are correctly
rejected in every Monte Carlo replicate. In contrast, the basic logit estimator, which
does not account for any heterogeneity across consumers, performs poorly both in terms
of the estimated coefficients and in terms of the coverage of the confidence intervals. The
estimated standard errors of the oracle logit and the basic logit seem similar but the
confidence intervals do not cover the true values of interest in any of the Monte Carlo
replicates when estimated with the basic logit. The poor coverage can be explained by
the bias of the estimated coefficients, which implies confidence intervals centered around
biased estimates.

The results for the influence function approach depend on the regularization parame-
ter λ used for the estimation of Λ(wi). For λ = 0, the confidence intervals for all three
parameters have a coverage of 93%, giving the impression that the influence function
approach is a valid inference procedure when the heterogeneous coefficient functions are
estimated with deep learning and without regularization in the network used to estimate
Λ(wi). However, the estimated average coefficients deviate quite substantially from the
true values – especially for the travel cost and travel time coefficients –, and the estimated
standard errors are substantially larger than in the oracle logit estimator. The large
estimated standard errors explain the correct coverage of the confidence intervals despite
of the biased average coefficient estimates. Even though the confidence intervals are
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Table 4.1: Average Summary Statistics of 1000 Monte Carlo Replicates for Small Data
and without Repeated Sample Splitting

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.95 0.00 0.93 0.92 0.83 0.40 0.99
θfreq ∈ ĈIfreq 0.95 0.00 0.93 0.92 0.89 0.68 1.00
θtime ∈ ĈItime 0.94 0.00 0.93 0.94 0.88 0.54 1.00
ŝecost 0.07 0.05 6.85 3.67 1.70 0.75 0.61
ŝefreq 0.10 0.07 5.25 8.19 2.26 1.24 3.56
ŝetime 0.07 0.06 5.52 4.91 1.53 1.05 3.08
Biascost -0.01 0.65 -4.95 0.07 -0.09 -0.51 -0.17
Biasfreq -0.00 0.59 0.61 -4.45 -0.77 -0.61 -0.18
Biastime -0.01 0.80 -2.58 -1.49 -0.27 -0.57 -0.17
Rej. θcost = 0 1.00 1.00 0.47 0.56 0.78 0.93 1.00
Rej. θfreq = 0 1.00 1.00 0.27 0.35 0.50 0.79 0.00
Rej. θtime = 0 1.00 1.00 0.60 0.69 0.84 0.93 0.03
MSE(Λ)T rain . . 5.04 5.18 5.41 5.99 .
MSE(Λ)T est . . 5.30 5.38 5.51 6.04 .
Share Outlier 0.00 0.00 0.26 0.18 0.11 0.04 0.12

Note: The table reports the average summary statistics over all Monte Carlo replicates
for the conditional logit using the true specification (Oracle), the conditional logit using
the three variables of interest for the estimation (Basic), the influence function approach
using five different values for λ for the estimation of Λs(wi), and the neural network
(NN), which uses robust standard erros and does not rely on the influence function
approach.

centered around biased estimates, they are so large that they cover the true parameters
in about 93% of the replicates for all three variables of interest. Moreover, the large
estimated standard errors lead to low power of the hypotheses tests with the nulls that the
true coefficients are zero as shown by the small share of rejections of the null hypotheses
– at most in only about 60% of the Monte Carlo replicates.

Overall, choosing λ > 0 leads to more precise estimates of the true average coefficients
(considering all three coefficients together, the estimates are most precise for λ = 10−4),
and to smaller estimated standard errors. However, the bias of the estimated average
coefficients remains relatively large, so that the coverage of the confidence intervals
gradually declines with increasing λ due to the smaller estimated standard errors with
increasing λ. For instance for λ = 2 · 10−3, the confidence intervals have a coverage of
only about 68% or less. The fact that the estimated coefficients tend to become more
precise and the share of outliers decreases with increasing λ indicates that the large
deviation of the estimated coefficients from the true values for λ = 0 are driven by
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outliers. This is illustrated by the boxplot of θ̂freq in Panel (a) of Figure 4.2. The mean
(red point) and median (horizontal line inside the colored boxes) values deviate quite
substantially, which is due to the high minimum and maximum values of θ̂freq across
Monte Carlo replicates. The median biases and estimated standard errors across Monte
Carlo replicates reported in Table 4.A.1 in Appendix 4.A confirm this impression. The
results show that the median of the estimated coefficients across Monte Carlo replicates
are closer to the true values for λ = 0 and become less precise with increasing λ. More
importantly, the median of the estimated standard errors are substantially smaller than
the mean values across Monte Carlo replicates for each λ value. Overall, the median
results for different values of λ are in line with the expected effect of regularization: The
bias increases and the estimated standard errors decrease with increasing λ. The average
of the MSEs of the neural network for Λs(wi) in the training and test sample are lowest
for λ = 0 and therefore, the MSE may be used to choose an appropriate λ value.14

Estimating the average heterogeneous coefficients with a neural network without
the influence function approach provides more accurate estimates than the influence
function approach. However, the confidence intervals are too wide (the coverage is at
least 99% for all three variables), implying that the naive inference procedure with the
regular robust standard errors is not valid. This is also indicated by the poor power of
the hypotheses tests with the nulls that the average travel time and frequency coefficients
are zero, which are rejected in only 3% and 0% of the Monte Carlo replicates, respectively.
The results on the share of outliers reveal that the issue is not unique to the influence
function approach but also appears when the parameters are estimated with a neural
network and without sample splitting. However, the share is substantially smaller in
comparison to the influence function approach with λ = 0, indicating that the smaller
samples used for the estimation of the networks due to sample splitting might be one of
the reasons causing the issue. The Monte Carlo experiment in Subsection 4.3.2 studies
the performance of the influence function approach for a larger sample size.

To resolve the sensitivity of the estimated results to potential outliers, we apply
the repeated sample splitting procedure outlined in Remark 4.1. Table 4.2 reports
the results for the sample splitting procedure with R = 5 repetitions.15 The repeated
sample splitting reduces the share of outliers substantially in comparison to the approach
without repeated sample splitting. In fact, for λ ≥ 10−4, there are no outliers anymore.
Comparing Panel (a) and (b) in Figure 4.2 illustrates that the estimates vary less across
Monte Carlo replicates when estimated with repeated sample splitting. Furthermore,
the less extreme minimum and maximum values indicate that the extreme outliers are
removed. Accordingly, the mean and median values are closer to each other when the
coefficient functions are estimated with repeated sample splitting. The reduced share of
outliers leads to more precise estimates of the average coefficients and to smaller estimated

14Note that the MSE in the test sample is also available to the researcher since it is calculated with
the left out fold.

15To reduce computation time, we only employ repeated sample splitting if we observe an outlier in
the first repetition of each Monte Carlo run.
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Table 4.2: Average Summary Statistics of 1000 Monte Carlo Replicates for Small Data
and Repeated Sample Splitting with R = 5

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.94 0.00 0.94 0.93 0.82 0.42 0.99
θfreq ∈ ĈIfreq 0.96 0.00 0.94 0.92 0.90 0.66 1.00
θtime ∈ ĈItime 0.96 0.00 0.95 0.95 0.87 0.59 1.00
ŝecost 0.07 0.05 1.61 1.34 0.72 0.32 0.61
ŝefreq 0.10 0.07 1.91 1.64 1.10 0.58 3.65
ŝetime 0.07 0.06 1.59 1.19 0.68 0.43 3.13
Biascost -0.01 0.65 -0.29 -0.30 -0.32 -0.41 -0.18
Biasfreq -0.00 0.59 -0.26 -0.32 -0.28 -0.39 -0.19
Biastime -0.00 0.81 -0.02 -0.16 -0.23 -0.36 -0.17
Rej. θcost = 0 1.00 1.00 0.48 0.61 0.84 0.96 0.99
Rej. θfreq = 0 1.00 1.00 0.25 0.32 0.54 0.81 0.00
Rej. θtime = 0 1.00 1.00 0.64 0.78 0.92 0.96 0.02
MSE(Λ)T rain . . 5.07 5.23 5.46 6.04 .
MSE(Λ)T est . . 5.30 5.37 5.51 6.03 .
Share Outlier 0.00 0.00 0.05 0.02 0.00 0.00 0.12

Note: The table reports the average summary statistics over all Monte Carlo replicates
for the conditional logit using the true specification (Oracle), the conditional logit
using the three variables of interest for the estimation (Basic), the influence function
approach, using five different values of λ for the estimation of Λs(wi), and the neural
network (NN), which uses robust standard erros and does not rely on the influence
function approach.

standard errors. In contrast to the influence function approach without repeated sample
splitting, the overall average bias of the estimated average coefficients is smallest for
λ = 0 and increases with increasing λ. With respect to the confidence intervals, the
coverage for λ = 0 is 94% for the travel cost and frequency coefficients, and 95% for
the travel time coefficient. The coverage of the confidence intervals gradually decreases
with λ. While for λ = 10−5 the coverage is below but still close to 95% (for the travel
time it is exactly 95%), the coverage for λ = 2 · 10−3 is at most 66% (for the travel
cost coefficient, the coverage of the confidence interval is just 42%). Thus, the influence
function approach with repeated sample splitting and regularizer λ = 0 allows to precisely
estimate average effects across travelers and provides a valid inference procedure. Using
a regularizer λ > 0 increases the average bias and decreases the estimated variance of
the coefficients. The combination of increasing bias and decreasing magnitude of the
estimated standard errors with increasing λ leads to inappropriately small confidence
intervals centered around biased estimates and, hence, to a poor coverage of the true
values. Based on these results, we do not recommend using regularization in the form of
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Figure 4.2: Boxplots of θ̂freq across Monte Carlo Replicates for Small Data and Different
λ-values

(a) No repeated sample splitting (R = 1)

(b) Repeated sample splitting (R = 5)
Note: Panel (a) and (b) show boxplots for the influence function approach, using four different values
of λ. The colored region within each boxplots highlights the interquartile range (IQR), the horizontal
line within the IQR corresponds to the median, and the whiskers indicate the 0.05 and 0.95 quantile,
respectively. The red dot is the mean across Monte Carlo replicates.

a l2-penalty with λ > 0 in the network used to estimate Λ(wi) to stabilize the inference
procedure but to rather rely on repeated sample splitting. However, even for the repeated
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sample splitting, the estimated standard errors are substantially larger than those in the
oracle logit model. This leads to a poor power as indicated by the rare rejection of the
false null hypotheses that the true average coefficients are zero, which are rejected in only
about 48%, 25%, and 64% of the Monte Carlo replicates for the travel cost parameter,
the frequency parameter, and the travel time parameter, respectively, for λ = 0.

Figure 4.3 shows the estimated densities of (θ̂cost − θ)/ŝe(θ̂cost) for the oracle logit
estimator, the basic logit estimator, and the influence function approach for different
values of λ. The limiting distribution of the influence function approach is the standard
normal as stated in Equation (4.6). First, the figure illustrates the bias of the basic logit
estimator and illustrates that the estimated t-statistics of the oracle logit estimator are
well approximated by a standard normal distribution. Second, comparing Panel (a) and
Panel (b) reveals that the estimates obtained with the influence function approach only
seem to be close to the standard normal distribution when repeated sample splitting is
used and λ = 0 or λ = 10−5.

Remark 4.2. Beyond repeated sample splitting, we conduct several other adjustments
of the estimation procedure that are intended to reduce outliers observed in some Monte
Carlo replicates. We considered taking the median instead of the average in Equation
(4.4) and (4.5), i.e., replacing θ̂ = 1

S

∑
θ̂s by θ̂ = median

{
θ̂s

}S

s=1
and Ψ̂ = 1

S

S∑
s=1

Ψ̂s by

Ψ̂ = median
{

Ψ̂s

}S

s=1
. This leads to smaller estimated standard errors but also to a

lower average coverage across Monte Carlo replicates ( < 0.85), indicating that the bias
remains large. Furthermore, we also apply the modification suggested by Farrell et al.
(2021a) and add a constant c to the diagonal elements of Λ̂s(wi). For c = 1, the coverage
is quite poor, and c = 10−5 seems to have no impact on the results. That is, the choice
of the constant c seems to require further tuning which we did not investigate further.

4.3.2 Large Data Set

The following Monte Carlo experiment aims to analyze whether the results of the
previous experiment persist for larger sample sizes. For that purpose, we revisit the
Swissmetro data set and use the same specification as before. However, we now sample
the socio-demographic characteristics and the covariates of interest with replacement
from the original data set such that we obtain 50, 000 travelers choosing among the
three alternatives. With respect to the socio-demographic characteristics, we randomly
generate new travelers by drawing from the values of income, age, gender, and who.
Because we sample independently across characteristics, we create new types of travelers
characterized through new combinations of socio-demographic variables.
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Figure 4.3: Density of Estimated t-Statistic of θ̂cost for Different Estimators and Small
Data

(a) No repeated sample splitting (R = 1)

(b) Repeated sample splitting (R = 5)
Note: The plot shows kernel density estimates of the estimated t-statistic for the conditional logit using
the true specification (Oracle), the conditional logit using the three variables of interest for the estimation
(Basic), the influence function approach, using four different values for λ for the estimation of Λs(wi).
Additionally, the standard normal distribution is included.

With respect to the covariates of interest, we make sure that we randomly draw the
travel time, travel cost, and frequency for a specific alternative only from the the values
for the specific alternative existing in the data (e.g., the cost variable for alternative car
can only take values of existing values of the cost variable for cars). However, for a given
alternative, we draw the covariates independently across variables from different choice
situations. Otherwise, the Monte Carlo study is the same as the one presented above.
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Table 4.3 reports the average Monte Carlo results for N = 50, 000 and when the
influence function approach is estimated with repeated sample splitting. The results for
the oracle logit and the basic logit are similar to those obtained for the small sample size.
For the oracle logit, the average estimated bias across Monte Carlo replicates is (almost)
zero and the confidence intervals cover the true frequency and travel time coefficients in
95% of the Monte Carlo replicates, and the true travel cost coefficient in 94%. For the
basic logit model, the standard errors of the estimated coefficients are similar to those
of the oracle logit. Nevertheless, the confidence intervals have zero coverage due to the
substantial bias of the estimated average coefficients.

For the influence function approach with repeated sample splitting, the estimated
coefficients are almost as precise as those estimated with the oracle logit model, inde-
pendent of λ (i.e., the average values vary only slightly across different values for λ),
and the estimated standard errors are substantially smaller in comparison to the results

Table 4.3: Average Summary Statistics of 1000 Monte Carlo Replicates for Large Data
and Repeated Sample Splitting with R = 5

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.95 0.00 0.94 0.92 0.91 0.76 1.00
θfreq ∈ ĈIfreq 0.95 0.00 0.95 0.93 0.90 0.83 1.00
θtime ∈ ĈItime 0.94 0.00 0.95 0.94 0.92 0.86 1.00
ŝecost 0.02 0.02 0.50 0.41 0.35 0.12 0.49
ŝefreq 0.04 0.04 0.80 0.59 0.44 0.14 1.72
ŝetime 0.03 0.02 0.45 0.36 0.29 0.14 1.27
Biascost 0.00 0.60 -0.05 -0.02 -0.05 -0.05 -0.03
Biasfreq 0.00 0.53 -0.09 -0.07 -0.06 -0.05 -0.03
Biastime 0.00 0.78 0.01 0.02 -0.03 -0.04 -0.02
Rej. θcost = 0 1.00 1.00 0.89 0.91 0.93 0.98 1.00
Rej. θfreq = 0 1.00 1.00 0.62 0.75 0.84 0.96 0.00
Rej. θtime = 0 1.00 1.00 0.95 0.96 0.97 0.99 0.94
MSE(Λ)T rain . . 8.80 8.84 8.90 9.23 .
MSE(Λ)T est . . 8.88 8.87 8.91 9.23 .
Share Outlier 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: The table reports the average summary statistics over all Monte Carlo replicates
for the conditional logit using the true specification (Oracle), the conditional logit
using the three variables of interest for the estimation (Basic), the influence function
approach, using five different values for λ for the estimation of Λs(wi), and the neural
network (NN), which uses robust standard erros and does not rely on the influence
function approach.
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for the small sample size. However, they are still larger than those estimated with the
oracle logit estimator. For λ = 0, the confidence intervals have the correct coverage
(they cover the true travel cost parameter in 94%, and the true frequency and travel
time parameters in 95% of the Monte Carlo replicates). For λ > 0, the coverage of the
confidence intervals decreases below 95%, which is the result of the declining estimated
standard errors with increasing λ. However, the coverage declines not as rapidly with
increasing λ as observed for the small sample size. With respect to the power of the
hypotheses tests with the nulls that the coefficients are zero, the percentage of rejections
of the incorrect null hypothesis are substantially larger for λ = 0 than for the small
sample size – in 89% of the Monte Carlo replicates for the travel time coefficient, 62% for
the frequency coefficient, and 95% for the travel time coefficient. Even though the share
of outliers for the influence function approach decreases substantially compared to the
Monte Carlo experiment with the small sample size, repeated sample splitting seems still
necessary as the mean deviates substantially from the median when no repeated sample
splitting is used (cf. Table 4.A.3 and Table 4.A.4 and Figure 4.4).
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Figure 4.4: Boxplots of θ̂freq across Monte Carlo Replicates for Large Data and Different
λ-values

(a) No repeated sample splitting (R = 1)

(b) Repeated sample splitting (R = 5)
Note: Panel (a) and (b) show boxplots for the influence function approach, using four different values
of λ. The colored region within each boxplots highlights the interquartile range (IQR), the horizontal
line within the IQR corresponds to the median, and the whiskers indicate the 0.05 and 0.95 quantile,
respectively. The red dot is the mean across Monte Carlo replicates.

With respect to the estimation of the coefficient functions with a deep neural network
and naive inference, we observe a similar improvement when increasing the sample size

136



as for the influence function approach. The estimated average coefficients become more
precise – they are similarly precise as those obtained with the oracle logit – and the
estimated standard errors become smaller. A potential explanation for the more precise
coefficient estimates and the smaller standard errors might be the fact that the issue
with the outlier disappears completely, both for the influence function approach with
repeated sample splitting (even for λ = 0) and when only the coefficient functions are
estimated with the neural network. However, the confidence intervals remain too wide,
confirming the impression from the experiments with the small sample size that regular
robust standard errors calculated with parameters estimated with deep learning are not
a valid inference procedure.

4.4 Application

This sections applies the estimation procedure presented in Section 4.2 to the Swissmetro
dataset. We consider the same utility specification as in the Monte Carlo experiments.
That is, we include alternative-specific constants (car remains the reference category)
along with the travel cost, frequency, and travel time, i.e,

δ(wi) =
(
αtrain (wi) , αsm (wi) , βcost (wi) , βfreq (wi) , βtime (wi)

)′
.

We estimate the model with the influence function approach using
wi := (agei, incomei, who

1
i , who

2
i , who

3
i , luggagei)′

as the set of input variables to the network. The variable luggage is an ordinal variable
with information on the pieces of luggage a traveler carries on her trip. It is zero if the
traveler carries no luggage, 1 if she carries one piece, and 3 if she carries several pieces.

As a benchmark, we estimate a conditional logit model and a nested logit model.
In comparison to the conditional logit model, the nested logit allows for more realistic
substitution patterns across alternatives (it does not exhibit the IIA property with respect
to alternatives across nests). For the nested logit model, we follow Bierlaire et al. (2001)
and group the alternatives car and train in one nest (representing existing alternatives),
and Swissmetro in another nest (representing the newly introduced alternative).16 For
both models, we use the same utility specification as for the influence function approach,
except that we model the coefficients as linear functions of the the input variables wi.
More precisely, in addition to alternative-specific constants and the variables travel cost,
frequency, and travel time, we include interactions of the alternative-specific constants
and the variables of interest with each of the variables in wi.17 Similarly to the Monte
Carlo experiments, we also include a neural network estimated with the full training
sample as a benchmark. For the neural network, we conduct naive inference using
robust standard errors for the estimated coefficient functions. For the influence function

16Since the nest including the alternative Swissmetro is a degenerate nest, we estimate an unscaled
version of the nested logit in order to make the identification of the dissimilarity parameter feasible (see,
e.g., Heiss, 2002).

17Interacting the alternative-specific constants with wi yields multinomial coefficients for each variable
in wi.
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approach and for the neural network approach with naive inference, we use the same
network architectures as in the Monte Carlo experiment. In line with the results from the
Monte Carlo experiments, we use repeated sample splitting with R = 5 repetitions and
set λ = 0 in the network for the estimation of Λ(wi) when estimating the model with
the influence function approach, as λ > 0 provides incorrect coverage of the confidence
intervals in the Monte Carlo experiments.

For the estimation, we follow Sifringer et al. (2020) and split the 9, 036 observations
into a training and a test set which consist of three and one quarter of the total
observations, respectively. We use the test set to compare the out-of-sample performance
of the influence function approach to the benchmark models. Table 4.4 reports the
average heterogeneous coefficient functions for the travel cost, frequency, and travel
time and their corresponding estimated standard errors. Additionally, we calculate the

Table 4.4: Estimated Average Travel Cost, Frequency and TRavel Time Parameters and
Corresponding Estimated Standard Errors

CL NL IFA NN

θ̂cost −1.144 −1.418 −1.849 −1.943
θ̂freq −0.891 −0.966 −1.040 −1.106
θ̂time −1.368 −1.728 −1.797 −2.172
ŝecost 0.061 0.078 0.954 1.343
ŝefreq 0.129 0.154 2.440 2.476
ŝetime 0.085 0.099 2.119 1.375
LLT rain −0.763 −0.762 −0.655 −0.638
LLT est −0.777 −0.772 −0.753 −0.695

Note: The table reports the estimated average coefficients and the standard errors
three variables of interest, and the in- and out-of-sample log-likelihood for the
conditional logit (CL), the nested logit (NL), the influence function approach with
λ = 0 and repeated sample splitting with R = 5 (IFA), and the neural network with
naive inference using robust standard errors (NN).

in- and out-of-sample log-likelihood per observation. Both the in- and out-of-sample
log-likelihood increases with increasing flexibility of the estimation approach. While there
is only a slight improvement when going from the conditional logit to the nested logit
model, the influence function approach has a substantially higher in-sample as well as
out-of-sample log-likelihood. With respected to the estimated average coefficients, all
four estimators estimate the same sign. Travelers find alternatives with higher travel
cost, frequency, and travel time less attractive.18 The estimated average coefficients are
smallest in magnitude when the model is estimated with the conditional logit model and
increase in magnitude with increasing out-of-sample log-likelihood, which is especially the

18Frequency is calculated as average minutes of waiting time for a given transportation mode, i.e., a
higher frequency variable implies less frequent connections.
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case for the travel cost coefficient. The results for the estimated standard errors are in
line with the results from the Monte Carlo experiments, as the estimated standard errors
of the influence function approach are substantially lager than those of the conditional
and nested logit model. In fact, for the influence function approach, none of the estimated
average coefficients is significantly different from zero, highlighting that larger samples
might be needed for the influence function approach than for traditional logit models.

Figure 4.5 plots the histograms of the estimated coefficient functions predicted by
the influence function approach (blue bars) and the nested logit model (green bars)
using the test set. First, the plots reveal that there is substantial heterogeneity across
travelers. Second, the heterogeneity in the intercept for Swissmetro and in the coefficient
for travel cost across travelers appears to be similar when estimated with the influence
function approach and the nested logit model, implying that the heterogeneity can be well
captured by the linear approximation employed by the nested logit model. In contrast,
the heterogeneity in the intercept for train and the coefficients for frequency and travel
time predicted by the more flexible influence function approach deviates to a larger extent
from the heterogeneity predicted by the nested logit model.

One advantage of the influence function approach is that it can be easily applied to
any parameter of inferential interest that is a function of the heterogeneous coefficient
functions. In addition to the estimated average coefficient for the travel time, travel
cost, and frequency, we are interested in estimating mean elasticities. More precisely, we
focus on the expected own- and cross-travel time elasticities with respect to changes in
the travel time evaluated at the mean values of travel cost, frequency, and travel time
of every alternative. Thus, the parameters of inferential interest calculated with the
influence function approach are

θl,m
0 = E

[
H l,m(wi, δ(wi); x∗)

]
where x∗ is a matrix with row entries x̄′

j which contain the average travel time, travel
cost and frequency for alternative j ∈ {car, train, sm}, and

H l,m(wi, δ(wi); x∗) = βtime (wi) x̄m,time (Im,l − P (yi,m = 1|x∗,wi))

where Il,m is an indicator that is equal to one when l is equal to m and zero otherwise
for l,m ∈ {car, train, sm}.

Hence, H l,m(wi, δ(wi); x∗) is the individual own- and cross-travel time elasticity
calculated at the average travel cost, frequency, and travel time of every alternative,
indicating the percentage change of choosing alternative l after a one percentage increase
in the average travel time of alternative m. Consequently, θl,m

0 corresponds to the
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Figure 4.5: Histograms of Estimated Coefficient Functions for Influence Function
Approach and Nested Logit Model

(a) Cost (IFA) (b) Cost (Nested Logit)

(c) Frequency (IFA) (d) Frequency (Nested Logit)

(e) Travel Time (IFA) (f) Travel Time (Nested Logit)

(g) Intercept Train (IFA) (h) Intercept Train (Nested Logit)

(i) Intercept SM (IFA) (j) Intercept SM (Nested Logit)
Note: The green bars represent the heterogeneous coefficients in the test set predicted with the nested
logit model, and the blue bars the heterogeneous coefficients in the test set predicted with the influence
function approach (IFA) with repeated sample splitting with R = 5.
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expected own- and cross-travel time elasticity across individuals.
For the conditional logit, nested logit, and naive neural network approach, we use

Efron’s Bootstrap (Efron, 1979) with 1000 bootstraps iterations to calculate the estimated
standard errors of the own- and cross-travel time elasticities evaluated at the means.19

Table 4.5: Estimated Own- & Cross-Travel Time Elasticities

Influence Function: Neural Network:

Car SM Train Car SM Train
Car -2.385 (0.274) 1.338 (0.167) 0.143 (0.105) -2.313 (0.172) 1.315 (0.098) 0.237 (0.039)

SM 0.605 (0.274) -0.463 (0.167) 0.143 (0.105) 0.876 (0.066) -0.670 (0.054) 0.237 (0.039)

Train 0.605 (0.274) 1.338 (0.167) -3.466 (0.107) 0.876 (0.066) 1.315 (0.098) -3.526 (0.231)

Conditional Logit: Nested Logit:

Car SM Train Car SM Train
Car -1.71 (0.388) 0.791 (0.127) 0.211 (0.265) -0.936 (0.051) 0.715 (0.061) 0.145 (0.02)
SM 0.559 (0.327) -0.46 (0.126) 0.211 (0.265) 0.398 (0.023) -0.45 (0.032) 0.075 (0.01)
Train 0.559 (0.327) 0.791 (0.127) -1.83 (0.254) 1.097 (0.288) 0.715 (0.061) -1.255 (0.068)

Note: The table reports estimated mean and the standard errors (in brackets) over individuals’ own-
and cross-travel time elasticities evaluated at the mean for the influence function approach, the neural
network, the conditional logit, and the nested logit model. The reported numbers correspond to the
percentage change of the choice probability of an alternative in a row after a one percent increase in the
travel time of an alternative in a column.

Overall, the own- and cross-travel time elasticities estimated with the influence
function approach and the neural network are quite similar. With respect to the own-
travel time elasticities, both the influence function approach and the neural network
predict that travelers respond more sensitively to an increase in the travel time than
predicted by the conditional and nested logit model.

A disadvantage of the influence function approach, the neural network, and the
conditional logit model is the restriction of the cross-elasticities through the IIA property
imposed by the conditional logit model and the model specified in Equation (4.1), which
restricts the cross-elasticities to be identical across alternatives. In contrast, the nested
logit model, which allows for different cross-elasticities across alternatives in different
nests, predicts that travelers are substantially more likely to substitute from car to train
and vice versa in response to an increase in the travel time of either of the alternatives.

Moreover, the standard errors of the own- and cross-travel time elasticities estimated
with the influence function approach remain larger than those of the nested logit model
estimated with Efron’s bootstrap – though the difference is not as large as for the

19For the nested logit model, we estimate the own- and cross-travel time elasticities at the mean using
numerical derivatives of the choice probabilities with respect to the travel time.
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estimated average coefficients – and are only slightly larger than in the conditional logit
model and even smaller for some own- and cross-elasticities.

4.5 Conclusion

This paper investigates the finite sample performance of the estimation approach of
Farrell et al. (2021a) in the context of discrete choice models, who propose deep learning
for the estimation of heterogeneous parameters in econometric models. For the con-
struction of valid second-stage inferential statements after the first-stage estimation of
the heterogeneous parameters with deep learning, they provide an influence function
approach that builds on Neyman orthogonal scores in combination with sample splitting.

To study the proposed estimation and inference procedure, we conduct several Monte
Carlo experiments. First, the experiments reveal that deep learning generally allows to
recover precise estimates of the true average heterogeneous parameters – especially if
the number of observations is sufficiently large – and that naive inference with robust
standard errors leads to incorrect inferential statements. Second, we observe that the
influence function approach proposed for the construction of valid inferential statements
is sensitive to overfitting when no l2-regularization is employed. Overfitting results in
substantial average estimated bias and extremely large average estimated standard errors
across Monte Carlo replicates. The sensitivity to overfitting is more pronounced for small
samples but does not disappear with increasing sample size in our experiments. Using l2-
regularization appears to stabilize the estimation as it reduces the number of Monte Carlo
replicates with extreme outliers, but leads to poor coverage of the confidence intervals.
This is a consequence of the decreasing magnitude of the estimated standard errors and
the increasing bias induced with increasing regularization, which in combination lead
to tighter confidence intervals that are centered around biased estimates. A tool that
achieves substantially better results in our Monte Carlo experiments than regularization
is repeated sample splitting. Unlike l2-regularization, it substantially reduces the number
of outliers across Monte Carlo replicates without inducing additional bias, enabling the
construction of valid inferential statements. However, repeated sample splitting appears
to have a less drastic effect on the estimated variance than l2-regularization, which causes
relatively large estimated standard errors.

Due to the complexity of neural networks, we restrict our Monte Carlo experiments
to the impact of l2-regularization on the inference procedure. An interesting avenue for
future research is to consider different forms of regularization, such as dropout rates, and
varying complexities of the network architecture used to estimate the influence function
approach (e.g., to vary the number of neurons and hidden layers). In addition, both
the influence function approach and the neural network combined with naive inference
exploit that the variables of interest enter the utility linearly. An interesting comparison,
however, is the estimation with a completely unstructured network (e.g., with Efron’s
bootstrap for inference) which could potentially further illustrate the advantage of the
influence function approach.
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Appendix 4.A Additional Tables

Table 4.A.1: Median Summary Statistics of 1000 Monte Carlo Replicates for Small Data
and without Repeated Sample Splitting

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.95 0.00 0.93 0.92 0.83 0.40 0.99
θfreq ∈ ĈIfreq 0.95 0.00 0.93 0.92 0.89 0.68 1.00
θtime ∈ ĈItime 0.94 0.00 0.93 0.94 0.88 0.54 1.00
ŝecost 0.07 0.05 1.36 1.02 0.53 0.18 0.60
ŝefreq 0.10 0.07 1.62 1.34 0.84 0.34 3.29
ŝetime 0.07 0.06 1.28 0.96 0.46 0.24 2.98
Biascost -0.01 0.65 -0.23 -0.21 -0.31 -0.44 -0.16
Biasfreq -0.00 0.59 -0.28 -0.32 -0.35 -0.40 -0.19
Biastime -0.01 0.80 -0.09 -0.09 -0.23 -0.41 -0.17
Rej. θcost = 0 1.00 1.00 0.47 0.56 0.78 0.93 1.00
Rej. θfreq = 0 1.00 1.00 0.27 0.35 0.50 0.79 0.00
Rej. θtime = 0 1.00 1.00 0.60 0.69 0.84 0.93 0.03
MSE(Λ)T rain . . 4.99 5.13 5.35 5.93 .
MSE(Λ)T est . . 5.20 5.28 5.40 5.93 .
Share Outlier 0.00 0.00 0.26 0.18 0.11 0.04 0.12

Note: The table reports the median of the variables ŝei, BIASi, MSE(Λ)T rain, and
MSE(Λ)T est and the average of the variables θi ∈ ĈIi, Rej. θi = 0, and Share Outlier,
i ∈ {cost, freq, time}, over all Monte Carlo replicates for the conditional logit using
the true specification (Oracle), the conditional logit using the three variables of interest
for the estimation (Basic), the influence function approach, using five different values of
λ for the estimation of Λs(w), and the neural network (NN), which uses robust standard
erros and does not rely on the influence function approach.
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Table 4.A.2: Median Summary Statistics of 1000 Monte Carlo Replicates for Small Data
and Repeated Sample Splitting with R = 5

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.94 0.00 0.94 0.93 0.82 0.42 0.99
θfreq ∈ ĈIfreq 0.96 0.00 0.94 0.92 0.90 0.66 1.00
θtime ∈ ĈItime 0.96 0.00 0.95 0.95 0.87 0.59 1.00
ŝecost 0.07 0.05 1.20 0.96 0.46 0.18 0.60
ŝefreq 0.10 0.07 1.48 1.16 0.73 0.33 3.45
ŝetime 0.07 0.06 1.21 0.85 0.42 0.24 3.04
Biascost -0.01 0.65 -0.26 -0.29 -0.33 -0.41 -0.18
Biasfreq -0.00 0.59 -0.28 -0.31 -0.28 -0.40 -0.18
Biastime -0.00 0.81 -0.03 -0.13 -0.24 -0.38 -0.17
Rej. θcost = 0 1.00 1.00 0.48 0.61 0.84 0.96 0.99
Rej. θfreq = 0 1.00 1.00 0.25 0.32 0.54 0.81 0.00
Rej. θtime = 0 1.00 1.00 0.64 0.78 0.92 0.96 0.02
MSE(Λ)T rain . . 5.01 5.15 5.37 5.94 .
MSE(Λ)T est . . 5.22 5.30 5.43 5.95 .
Share Outlier 0.00 0.00 0.05 0.02 0.00 0.00 0.12

Note: The table reports the median of the variables ŝei, BIASi, MSE(Λ)T rain, and
MSE(Λ)T est and the average of the variables θi ∈ ĈIi, Rej. θi = 0, and Share Outlier,
i ∈ {cost, freq, time}, over all Monte Carlo replicates for the conditional logit using
the true specification (Oracle), the conditional logit using the three variables of interest
for the estimation (Basic), the influence function approach, using five different values of
λ for the estimation of Λs(w), and the neural network (NN), which uses robust standard
erros and does not rely on the influence function approach.
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Table 4.A.3: Average Summary Statistics of 1000 Monte Carlo Replicates for Large Data
and without Repeated Sample Splitting

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.95 0.00 0.94 0.93 0.90 0.75 1.00
θfreq ∈ ĈIfreq 0.95 0.00 0.92 0.94 0.91 0.83 1.00
θtime ∈ ĈItime 0.95 0.00 0.94 0.94 0.92 0.85 1.00
ŝecost 0.02 0.02 3.43 1.45 1.15 0.24 0.49
ŝefreq 0.04 0.04 8.24 2.03 1.60 0.30 1.73
ŝetime 0.03 0.02 3.02 3.24 0.98 0.26 1.28
Biascost -0.00 0.60 1.38 0.87 0.05 -0.24 -0.03
Biasfreq -0.00 0.53 3.82 1.08 0.24 -0.32 -0.03
Biastime -0.00 0.78 0.67 3.13 -0.01 -0.24 -0.02
Rej. θcost = 0 1.00 1.00 0.83 0.88 0.89 0.98 1.00
Rej. θfreq = 0 1.00 1.00 0.58 0.69 0.81 0.97 0.00
Rej. θtime = 0 1.00 1.00 0.90 0.93 0.94 0.98 0.93
MSE(Λ)T rain . . 8.81 8.85 8.90 9.23 .
MSE(Λ)T est . . 8.89 8.88 8.92 9.24 .
Share Outlier 0.00 0.00 0.07 0.05 0.04 0.01 0.00

Note: The table reports the average summary statistics over all Monte Carlo replicates
for the conditional logit using the true specification (Oracle), the conditional logit
using the three variables of interest for the estimation (Basic), the influence function
approach, using five different values of λ for the estimation of Λs(w), and the neural
network (NN), which uses robust standard erros and does not rely on the influence
function approach.
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Table 4.A.4: Median Summary Statistics of 1000 Monte Carlo Replicates for Large Data
and without Repeated Sample Splitting

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.95 0.00 0.94 0.93 0.90 0.75 1.00
θfreq ∈ ĈIfreq 0.95 0.00 0.92 0.94 0.91 0.83 1.00
θtime ∈ ĈItime 0.95 0.00 0.94 0.94 0.92 0.85 1.00
ŝecost 0.02 0.02 0.35 0.25 0.19 0.04 0.49
ŝefreq 0.04 0.04 0.58 0.37 0.23 0.06 1.72
ŝetime 0.03 0.02 0.27 0.19 0.16 0.05 1.27
Biascost -0.00 0.60 -0.05 -0.01 -0.07 -0.05 -0.03
Biasfreq -0.00 0.53 -0.09 -0.04 -0.08 -0.06 -0.03
Biastime -0.00 0.78 -0.00 0.00 -0.04 -0.03 -0.02
Rej. θcost = 0 1.00 1.00 0.83 0.88 0.89 0.98 1.00
Rej. θfreq = 0 1.00 1.00 0.58 0.69 0.81 0.97 0.00
Rej. θtime = 0 1.00 1.00 0.90 0.93 0.94 0.98 0.93
MSE(Λ)T rain . . 8.81 8.85 8.90 9.24 .
MSE(Λ)T est . . 8.89 8.88 8.91 9.24 .
Share Outlier 0.00 0.00 0.07 0.05 0.04 0.01 0.00

Note: The table reports the median of the variables ŝei, BIASi, MSE(Λ)T rain, and
MSE(Λ)T est and the average of the variables θi ∈ ĈIi, Rej. θi = 0, and Share Outlier,
i ∈ {cost, freq, time}, over all Monte Carlo replicates for the conditional logit using
the true specification (Oracle), the conditional logit using the three variables of interest
for the estimation (Basic), the influence function approach, using five different values of
λ for the estimation of Λs(w), and the neural network (NN), which uses robust standard
erros and does not rely on the influence function approach.
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Table 4.A.5: Median Summary Statistics of 1000 Monte Carlo Replicates for Large Data
and Repeated Sample Splitting with R = 5

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.95 0.00 0.94 0.92 0.91 0.76 1.00
θfreq ∈ ĈIfreq 0.95 0.00 0.95 0.93 0.90 0.83 1.00
θtime ∈ ĈItime 0.94 0.00 0.95 0.94 0.92 0.86 1.00
ŝecost 0.02 0.02 0.30 0.23 0.17 0.04 0.49
ŝefreq 0.04 0.04 0.51 0.33 0.22 0.06 1.72
ŝetime 0.03 0.02 0.26 0.18 0.14 0.05 1.26
Biascost -0.00 0.60 -0.04 -0.03 -0.06 -0.04 -0.03
Biasfreq 0.00 0.53 -0.08 -0.06 -0.08 -0.05 -0.02
Biastime -0.00 0.78 -0.01 -0.00 -0.03 -0.03 -0.02
Rej. θcost = 0 1.00 1.00 0.89 0.91 0.93 0.98 1.00
Rej. θfreq = 0 1.00 1.00 0.62 0.75 0.84 0.96 0.00
Rej. θtime = 0 1.00 1.00 0.95 0.96 0.97 0.99 0.94
MSE(Λ)T rain . . 8.80 8.83 8.89 9.22 .
MSE(Λ)T est . . 8.87 8.87 8.90 9.23 .
Share Outlier 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: The table reports the median of the variables ŝei, BIASi, MSE(Λ)T rain, and
MSE(Λ)T est and the average of the variables θi ∈ ĈIi, Rej. θi = 0, and Share Outlier,
i ∈ {cost, freq, time}, over all Monte Carlo replicates for the conditional logit using
the true specification (Oracle), the conditional logit using the three variables of interest
for the estimation (Basic), the influence function approach, using five different values of
λ for the estimation of Λs(w), and the neural network (NN), which uses robust standard
erros and does not rely on the influence function approach.
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Figure 4.A.1: Density of Estimated t-Statistic of θ̂cost for Different Estimators and Large
Data

(a) No repeated sample splitting (R = 1)

(b) Repeated sample splitting (R = 5)
Note: The plot shows kernel density estimates of the estimated t-statistic for the conditional logit using
the true specification (Oracle), the conditional logit using the three variables of interest for the estimation
(Basic), the influence function approach, using four different values for λ for the estimation of Λs(w).
Additionally, the standard normal distribution is included.
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Figure 4.A.2: Histograms of Estimated Coefficient Functions for Influence Function
Approach and Neural Network

(a) Cost (IFA) (b) Cost (NN)

(c) Frequency (IFA) (d) Frequency (NN)

(e) Travel Time (IFA) (f) Travel Time (NN)

(g) Intercept Train (IFA) (h) Intercept Train (NN)

(i) Intercept SM (IFA) (j) Intercept SM (NN)
Note: The orange bars represent the heterogeneous coefficients in the test set predicted with the neural
network (NN) model (without the influence function approach), and the blue bars the heterogeneous
coefficients in the test set predicted with the influence function approach (IFA) with repeated sample
splitting with R = 5.
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Table 4.A.6

Conditional Logit: Nested Logit:
(1) (2) (1) (2)

Const SM 1.248∗∗∗ (0.183) 0.721∗ (0.424) 1.490∗∗∗ (0.225) 1.109∗∗ (0.548)
Const Train −1.110∗∗∗ (0.417) −0.191 (0.748) −1.013∗∗ (0.411) −0.007 (0.971)
Cost −0.878∗∗∗ (0.042) −0.984∗∗ (0.429) −0.976∗∗∗ (0.046) −1.258∗∗ (0.500)
Freq −0.735∗∗∗ (0.115) −2.307∗ (1.190) −0.778∗∗∗ (0.122) −2.603 (1.918)
Time −1.216∗∗∗ (0.051) −2.710∗∗∗ (0.586) −1.449∗∗∗ (0.048) −3.138∗∗∗ (0.657)
Agesm −0.234∗∗∗ (0.030) −0.198∗∗∗ (0.045) −0.262∗∗∗ (0.036) −0.262∗∗∗ (0.059)
AGEtrain 0.040 (0.047) 0.020 (0.087) 0.035 (0.046) 0.003 (0.088)
Incomesm 0.015 (0.030) −0.009 (0.043) 0.036 (0.034) 0.006 (0.051)
Incometrain −0.279∗∗∗ (0.041) −0.150∗ (0.079) −0.288∗∗∗ (0.043) −0.164∗ (0.087)
Who1sm −0.347∗∗ (0.161) −0.012 (0.408) −0.430∗∗ (0.197) −0.198 (0.530)
Who1train 1.305∗∗∗ (0.390) 0.029 (0.714) 1.317∗∗∗ (0.402) −0.030 (0.957)
Who2sm 0.047 (0.166) 0.497 (0.415) 0.024 (0.200) 0.448 (0.536)
Who2train 1.160∗∗∗ (0.398) 0.080 (0.730) 1.175∗∗∗ (0.411) 0.062 (0.971)
Who3sm −0.072 (0.181) 0.904∗∗ (0.426) −0.128 (0.214) 0.875 (0.547)
Who3train 1.199∗∗∗ (0.418) −0.437 (0.762) 1.184∗∗∗ (0.431) −0.644 (0.998)
Malesm −0.322∗∗∗ (0.077) −0.302∗∗∗ (0.111) −0.327∗∗∗ (0.084) −0.354∗∗∗ (0.137)
Maletrain −0.428∗∗∗ (0.115) −0.206 (0.213) −0.423∗∗∗ (0.114) −0.133 (0.219)
Luggagesm 0.132∗∗ (0.052) 0.211∗∗∗ (0.076) 0.129∗∗ (0.058) 0.214∗∗ (0.102)
Luggagetrain 0.541∗∗∗ (0.079) 0.350∗∗ (0.144) 0.562∗∗∗ (0.088) 0.346∗∗ (0.165)
Cost*Age −0.429∗∗∗ (0.050) −0.531∗∗∗ (0.047)
Freq*Age 0.088 (0.113) 0.089 (0.115)
Time*Age −0.065 (0.055) −0.127∗∗ (0.050)
Cost*Income 0.098∗∗ (0.042) 0.098∗ (0.052)
Freq*Income −0.153 (0.098) −0.134 (0.109)
Time*Income −0.085 (0.054) −0.116∗ (0.070)
Cost*Who1 1.018∗∗ (0.419) 1.362∗∗∗ (0.494)
Freq*Who1 1.747 (1.154) 1.961 (1.905)
Time*Who1 1.739∗∗∗ (0.568) 2.156∗∗∗ (0.661)
Cost*Who2 1.028∗∗ (0.420) 1.327∗∗∗ (0.495)
Freq*Who2 1.543 (1.171) 1.740 (1.916)
Time*Who2 1.768∗∗∗ (0.574) 2.141∗∗∗ (0.671)
Cost*Who3 1.234∗∗∗ (0.433) 1.582∗∗∗ (0.519)
Freq*Who3 1.779 (1.208) 2.060 (1.939)
Time*Who3 3.099∗∗∗ (0.574) 3.837∗∗∗ (0.673)
Cost*MALE −0.536∗∗∗ (0.097) −0.644∗∗∗ (0.119)
Freq*Male −0.053 (0.277) −0.124 (0.285)
Time*Male −0.394∗∗∗ (0.139) −0.601∗∗∗ (0.156)
Cost*Luggage 0.399∗∗∗ (0.075) 0.525∗∗∗ (0.096)
Freq*Luggage 0.081 (0.189) 0.095 (0.230)
Time*Luggage 0.459∗∗∗ (0.093) 0.611∗∗∗ (0.121)
iv:train 0.805∗∗∗ (0.039) 0.738∗∗∗ (0.048)
iv:car 0.872∗∗∗ (0.039) 0.761∗∗∗ (0.048)
Observations 7,234 7,234 7,234 7,234
R2 0.123 0.148 0.124 0.150
Log Likelihood −5,683.250 −5,520.814 −5,676.610 −5,512.196
LR Test 1,599.627∗∗∗ (df = 19) 1,924.500∗∗∗ (df = 40) 1,612.908∗∗∗ (df = 21) 1,941.736∗∗∗ (df = 42)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5 Block-Recursive Non-Gaussian Structural
Vector Autoregressions: Identification,
Efficiency, and Moment Selection
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Abstract

We combine block-recursive restrictions with higher-order moment condi-
tions to identify and estimate non-Gaussian structural vector autoregressions.
For a given block-recursive structure, we derive a set of identifying moment
conditions based on the assumption of uncorrelated shocks across blocks and
mean independent shocks within the blocks. We then obtain overidentifying
moment conditions from the assumption of independent shocks and show that
these conditions can decrease the asymptotic variance of the estimator. In
particular, we derive conditions under which the frequently applied estimator
based on the Cholesky decomposition is inefficient. We use a LASSO-type
GMM estimator to select the relevant and valid overidentifying moment
conditions in a data-driven way. A Monte Carlo experiment illustrates the
improved performance of the proposed estimator. In the empirical illustration,
we take advantage of the block-recursive framework to analyze the impact of
speculative shocks in the oil market.
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5.1 Introduction

Identification of a structural vector autoregression (SVAR) requires to assume an a priori
structure of the model. Traditionally, identification is based on imposing structure on the
interaction of the variables, ideally derived from macroeconomic theory (e.g., short-run
restrictions Sims (1980) or long-run restrictions Blanchard and Quah (1989)). However,
uncontroversial theoretical restrictions are rare. More recently, data-driven approaches
allow to identify the SVAR without imposing any restrictions on the interaction. Instead,
identification is achieved by imposing structure on the stochastic properties of the
shocks (e.g., time-varying volatility as discussed in Rigobon (2003), Lanne, Lütkepohl
and Maciejowska (2010), Lütkepohl and Netšunajev (2017), and Lewis (2021) or non-
Gaussian and independent shocks as discussed in Gouriéroux, Monfort and Renne (2017),
Lanne et al. (2017), Lanne and Luoto (2021), Keweloh (2021b), and Guay (2021)).

Traditional identification approaches may appear unnecessarily restrictive compared
to novel data-driven approaches. However, Olea, Luis, Plagborg-Møller and Qian (2022)
stress that these data-driven approaches rely on information in higher moments, while
traditional approaches only rely on second moments. The data-driven approaches are
sensitive to the imposed statistical properties on the higher moments, while the traditional
approaches are not and hence, are robust to these statistical properties. Additionally,
they argue that using economic theory for identification is a feature and not a handicap
and conclude that traditional identification approaches remain relevant.

We agree with their reasoning and recognize the advantages of identification ap-
proaches based on economic theory. However, in many applications we can derive some,
but not sufficiently many convincing restrictions from economic theory to ensure iden-
tification. Therefore, with a traditional purely restriction based approach, even the
most plausible restrictions are worthless if there are not sufficiently many. We propose
a Generalized Method of Moments (GMM) estimator that combines the traditional
identification approach based on restrictions with the more recent data-driven approach
based on non-Gaussianity. Our approach allows to impose a block-recursive structure,
meaning that shocks in a given block only influence variables in the same block or
blocks ordered below. The block-recursive structure seems plausible in many macro-
economic applications. Examples include applications analyzing (i) the interaction of
macroeconomic and financial variables, where the former respond sluggishly while the
latter respond quickly, or (ii) the interaction of small and large open economies, where
large economies may have an immediate impact on small economics but not vice versa.
Additionally, the block-recursive structure nests two important special cases: a recursive
and an unrestricted SVAR.

Identification based on higher moments and non-Gaussian shocks oftentimes relies
on the assumption of independent shocks which is criticized as too restrictive (see, e.g.,
Kilian and Lütkepohl (2017, Chapter 14)). Importantly, our identification result does
not rely on independent shocks but is robust in the sense that it allows for various
kinds of dependencies of the shocks. In particular, for a given block-recursive structure
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identification of the shocks within a given block is based on a small (subset) of cokurtosis
conditions derived from mean independence of the shocks in the corresponding block.1
Therefore, identification within a block follows from Lanne and Luoto (2021). Moreover,
the impact of the shocks in one block on variables in another block is identified based
only on covariance conditions and not on higher-order moment conditions and requires
only uncorrelated shocks. Therefore, imposing a finer block-recursive structure reduces
the dependency of identification on higher-order moment conditions.

However, if the shocks are independent, using only the set of identifying conditions,
which are derived from mean independent shocks within blocks and uncorrelated shocks
across blocks, can be inefficient. To demonstrate this, we prove that in a recursive SVAR
with independent shocks the set of overidentifying higher-order moment conditions can
contain additional information and allows to decrease the asymptotic variance of the
GMM estimator.2 Efficient estimation requires to detect and select the valid and relevant
overidentifying conditions. To this end, Lanne and Luoto (2021) suggest to calculate the
information and moment selection criteria proposed by Andrews (1999) and Hall, Inoue,
Jana and Shin (2007) for all possible combinations of moment conditions. However, they
note that this approach becomes infeasible in higher-dimensional SVARs.

In a general GMM setup, Cheng and Liao (2015) propose a LASSO-type GMM esti-
mator, hereafter referred to as the penalized GMM estimator (pGMM), which consistently
selects only relevant and valid overidentifying conditions in a data-driven way. We apply
the pGMM estimator to the block-recursive SVAR to exploit potential efficiency gains
from overidentifying moment conditions. Our block-recursive SVAR pGMM estimator is
consistent, asymptotically normal and as efficient as the asymptotically efficient block-
recursive SVAR GMM estimator, including all valid and relevant overidentifying moment
conditions. Importantly, these properties also hold if there are invalid overidentifying
moment condition which could arise due to dependent structural shocks. Additionally, the
pGMM estimator refrains from selecting valid but redundant overidentifying conditions
which would neither increase nor decrease the asymptotic variance of the estimator but
lead to imprecise estimates in small samples due to a many moments problem.

Guay (2021) also proposes to combine restrictions with non-Gaussian identification.
In particular, he tests which shocks of the SVAR are identified based on non-Gaussianity
and subsequently, his approach only uses restrictions to identify the remaining part of the
SVAR. In this approach, if all shocks are non-Gaussian, no restrictions have to be used
and the SVAR can be estimated solely by higher-order moment conditions. Consequently,
the identification approach relies as heavily on non-Gaussianity as possible and as little

1A common critique to the assumption of independent shocks is that it does not allow for multiple
shocks to be driven by the same volatility process. Thereby, it rules out a case which may be encountered
for some macroeconomic shocks. However, mean independent shocks and, in particular, the set of
cokurtosis conditions used for identification allow for these kinds of dependencies.

2Note that this is not trivial. For example, in a linear regression model yt = β1xt + ϵt the GMM esti-
mator with the moment condition E[xtϵt] = 0 is identified and efficient under (conditional) homoscedastic
errors. Therefore, including additional higher-order moment conditions like E[x2

t ϵt] = 0 does not decrease
the asymptotic variance of the GMM estimator even if the shocks or variables are non-Gaussian.
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on restrictions as necessary. In contrast to that, our identification approach relies as
much as possible on economically justified restrictions and on non-Gaussianity only when
needed.To be precise, the more block-recursiveness restrictions the researcher imposes,
the less identification depends on higher order-moment conditions.

We conduct two Monte Carlo experiments. In the first one, we demonstrate that
the performance of a purely data-driven estimator based on non-Gaussianity deteriorates
substantially with both a decreasing sample size and an increasing model size. However,
exploiting the block-recursive order can mitigate this performance decline. In the second
Monte Carlo experiment, we illustrate that the pGMM estimator successfully selects
relevant moment conditions and increases the finite sample performance compared to
other block-recursive SVAR estimators for a given block-recursive structure.

We use the block-recursive SVAR pGMM estimator to analyze the impact of oil
supply and oil demand shocks, including speculative oil supply and demand shocks, on the
oil price. In his seminal work, Kilian (2009) highlights that it is necessary to distinguish
between oil supply and demand shocks rather than including solely an oil price shock
in the SVAR for the oil market. However, oil prices are not only affected by supply
and demand shocks, but also by speculative shocks causing shifts in the expectations
of forward-looking traders (see, e.g., Baumeister and Kilian (2016)). In particular, new
oil production technologies, anticipated wars, or news about oil discoveries or about the
(future) state of the economy can shift expectations of future oil supply and future oil
demand. The studies of Kilian and Murphy (2014), Juvenal and Petrella (2015), Byrne,
Lorusso and Xu (2019), and Moussa and Thomas (2021) extend the original oil market
SVAR from Kilian (2009) to include speculative shocks. We contribute to this literature
by explicitly distinguishing between speculative supply and speculative demand shocks.

The remainder of the paper is organized as follows: Section 5.2 reviews the SVAR
and different identification schemes. Section 5.3 introduces the block-recursive SVAR.
Section 5.4 derives identifying and overidentifying moment conditions in a block-recursive
SVAR, analyzes which of the overidentifying conditions are redundant or relevant in a
recursive SVAR, and describes the block-recursive SVAR GMM estimator and the pGMM
estimator. In Section 5.5, we present the Monte Carlo experiments. In Section 5.6, we
use the proposed block-recursive estimator to analyze the impact of flow and speculative
supply and demand shocks in the oil market. Section 5.7 concludes.
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5.2 Overview SVAR

This section briefly recalls the identification problem and common identification ap-
proaches for SVAR models. A detailed overview can be found in Kilian and Lütkepohl
(2017). Consider the SVAR

yt = ν +A1yt−1 + ...+Apyt−p +B0εt,

with parameter matrices A1, ..., Ap ∈ Rn×n, an intercept term ν ∈ Rn, an invertible matrix
B0 ∈ Rn×n, an n-dimensional vector of time series yt = [y1,t, ..., yn,t]′ and an n-dimensional
vector of serially uncorrelated structural shocks εt = [ε1,t, ..., εn,t]′ with mean zero and unit
variance. The parameter matrices A1, ..., Ap need to satisfy det(I −A1c− ...−Apc

p) ̸= 0
for c ≤ 1 to ensure a stable process.

W.l.o.g. we focus on the simultaneous interaction of the SVAR given by
ut = B0εt,

with the reduced form shocks ut = yt − A1yt−1 − ...− Apyt−p, which can be estimated
consistently by OLS. The reduced form shocks are an unknown mixture B0 of the unknown
structural shocks εt. So far, neither the mixing matrix B0 nor the structural shocks εt are
identified. To see this, define the unmixed innovations e(B) as the innovations obtained
by unmixing the reduced form shocks with some matrix B

et(B) := B−1ut.

Note that for B = B0, the unmixed innovations are equal to the structural shocks, i.e.,
et(B0) = εt. Additionally, given an estimate B̂ of B0 we refer to et(B̂) as the estimated
structural shocks. The true structural shocks εt and the true mixing matrix B0 are
unknown and without imposing further structure, we cannot verify whether the mixing
matrix B and the unmixed innovations et(B) are equal to the true mixing matrix B0
and the true structural shocks εt.

To identify B0 and the shocks εt, the researcher has to impose structure on the
SVAR. The structure can be specified in two ways: We may

(i) impose more structure on the interaction of the shocks (see Sims (1980) for short-run
restrictions, Blanchard (1989) for long-run restrictions, and Uhlig (2005) for sign
restrictions),

(ii) impose more structure on the stochastic properties of the structural shock (see
Lanne et al. (2010) for time-varying volatility or Gouriéroux et al. (2017), Lanne
et al. (2017), Lanne and Luoto (2021) Keweloh (2021b), and Guay (2021) for
non-Gaussian shocks).

Imposing structure on the stochastic properties of the shocks can be used to derive
conditions for the unmixed innovations, while imposing structure on the interaction
narrows the space of possible mixing matrices used to unmix the reduced form shocks.
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In applied work, the probably most frequently imposed structure are uncorrelated
structural shocks (meaning εi,t is restricted to be uncorrelated with εj,t for i ≠ j) and a
recursive interaction (meaning restricting B0 such that bij = 0 for i < j where bij denotes
the element at row i and column j of B0). Uncorrelated shocks with unit variance can be
used to derive (n+ 1)n/2 (co-)variance conditions from I = E [εtε

′
t]

!= E [et(B)et(B)′]. A
recursive interaction implies that n(n− 1)/2 parameters of B0 are known a priori, leaving
only (n+ 1)n/2 unknown parameters in the mixing matrix B. It is then straightforward
to show that, if the remaining (n+ 1)n/2 parameters of the restricted B matrix generate
unmixed innovations et(B) which satisfy the (n + 1)n/2 (co-)variance conditions, the
matrix B has to be equal to B0 and, hence, the unmixed innovations are equal to the
structural shocks, meaning the SVAR is identified.3

However, economic theory rarely allows to derive the required n(n− 1)/2 parameter
restrictions to ensure identification. More recently, identification methods based on non-
Gaussian and independent shocks have been put forward in the literature (see Gouriéroux
et al. (2017), Lanne et al. (2017), Lanne and Luoto (2021), Keweloh (2021b), or Guay
(2021)). These identification schemes do not require to impose any restrictions on the
impact of the shocks, in particular on the matrix B0. Instead, the researcher has to impose
structure on the stochastic properties of the shocks. If the structural shocks are not
only mutually uncorrelated but mutually independent, we can derive additional moment
conditions. For example, independent and mean zero shocks imply that all entries of
coskewness matrices E [εtε

′
tεi,t] for i = 1, . . . , n are zero except for the ith diagonal element,

which contains the (unknown) skewness of the shock εi,t. Hence, we can exploit that
the mixing matrix B has to generate unmixed innovations, which satisfy the coskewness
moment conditions derived from E [εtε

′
tεi,t]

!= E [et(B)et(B)′ei,t(B)]. Similarly, we can
use that the mixing matrix B has to generate unmixed innovations which satisfy the
cokurtosis moment conditions derived from E [εtε

′
tεi,tεj,t]

!= E [et(B)et(B)′ei,t(B)ej,t(B)].

5.3 Imposing structure in a SVAR

This section introduces the framework of the block-recursive SVAR. First, we discuss
various structures of the interaction of the shocks allowed in this framework and then,
assumptions on the stochastic properties of the shocks.

5.3.1 Imposing structure on the interaction of shocks

Traditionally, identification of a SVAR is based on the structure imposed on the interaction
of the shocks (see Section 5.2). These restriction based approaches require restrictions
on the interaction of the shocks to ensure identification, e.g., a recursive structure. The

3Note that this GMM approach is equivalent to the the frequently used estimator obtained by applying
the Cholesky decomposition to the variance-covariance matrix of the reduced form shocks.
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reasoning behind a recursive structure is oftentimes the prejudice that some variables, e.g.,
some macroeconomic variables like inflation, tend to move slowly, while other variables,
e.g. financial variables like stock prices, react faster. However, in practice this intuitive
reasoning oftentimes allows to order only some, but not all variables recursively. This
motivates us to consider the block-recursive SVAR, meaning that the structural shocks
are ordered in blocks of consecutive shocks and each structural shock can simultaneously
affect all variables in the same block and in blocks ordered below but not variables in
blocks ordered above.4 Figure 5.1 shows different block-recursive structures in a SVAR
with four variables. The examples show that a block-recursive structure generalizes the

Figure 5.1: Examples of Different Block-Recursive SVAR Models.

Note: The figure illustrate how the the block structure can be defined by the structural shocks and our
definition of ε̃pi and ũpi , i = 1, . . . , m.

unrestricted SVAR and the fully-recursive SVAR and includes both as extreme cases.
We now introduce the notation for the block-recursive SVAR. Suppose that the

structural shocks can be ordered into m ≤ n blocks of consecutive shocks. Let the indices
p1 = 1 < p2 < . . . < pm ≤ n denote the beginning of a new block and for a given block
pi let ε̃pi,t and ũpi,t denote the vectors of all structural and reduced form shocks in the
ith block, such that

ε̃pi,t :=
[
εpi,t, εpi+1,t, . . . , εpi+1−1,t

]′ and ũpi,t :=
[
upi,t, upi+1,t, . . . , upi+1−1,t

]′
,

where pm+1 := n+ 1 for ease of notation. Moreover, let li denote the number of shocks
in block i for i = 1, ...,m. The vector of all structural shocks εt can then be decomposed
into the m blocks εt = [ε̃′

p1,t, . . . , ε̃
′
pm,t]′ and the reduced form shocks can be decomposed

4Zha (1999) derives identifying restrictions for the block-recursive SVAR. The author restricts not
only the simultaneous interaction, but also the lagged interaction. Our proposed block-recursive structure
affects only the simultaneous interaction, while the lagged interaction remains unrestricted.
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analogously into ut = [ũ′
p1,t, . . . , ũ

′
pm,t]′. The SVAR is block-recursive with m ≤ n blocks

with p1 = 1 < p2 < . . . < pm ≤ n, if shocks in the ith block have no simultaneous impact
on reduced form shocks in blocks j with j < i such that for i = 1, . . . ,m

bql = 0, for l ≥ pi and q < pi.

Any block-recursive structure can be described by the following assumption.

Assumption 5.1. (Block-recursive interaction.)
For m ≤ n blocks with p1 = 1 < p2 < . . . < pm ≤ n and q, l = 1, ..., n let
B0 ∈ Bbrec ≡ Bbrec(p1, . . . , pm) := {B ∈ Rn×n| det(B) ̸= 0 and bql = 0

if ∃pi ∈ {p1, ..., pm} with l ≥ pi and q < pi}.

5.3.2 Imposing structure on the stochastic properties of shocks

Imposing structure according to Assumption 5.1 on the interaction is not sufficient to
ensure identification and further assumptions on the dependence and potential non-
Gaussianity of the shocks are required. In the following, we discuss different structures
imposed on the mutual dependencies of the shocks.

Almost all identification approaches at least assume uncorrelated structural shocks
such that E [εi,tεj,t] = E [εi,t]E [εj,t] for i ̸= j.5 Uncorrelated shocks are justified by the
idea that a given structural shock contains no information on other structural shocks,
e.g., a structural monetary policy shock should not depend on other structural shocks.
In general, imposing uncorrelated structural shocks does not rule out that the structural
shocks are dependent. If they are dependent, the interpretation of the estimated SVAR
via impulse response functions can be misleading. For example, consider the two random
variables ε1 ∼ N (0, 1) and ε2 = ε2

1 − 1 such that both random variables are uncorrelated,
but dependent. Policy analysis based on impulse response functions typically uses the
ceteris paribus assumption that only a single shock varies, while the other shocks remain
unchanged. In the example above, both shocks are uncorrelated, but nevertheless always
move simultaneously. Therefore, uncorrelated structural shocks are not sufficient to
guarantee that the ceteris paribus assumption holds.

A more rigorous implementation of the idea that a given shock contains no infor-
mation on other shocks is to assume independent shocks such that E [h(εi,t)g(εj,t)] =
E [h(εi,t)]E [g(εj,t)] for i ̸= j and any bounded, measurable functions g(·) and h(·). If
shocks are independent, a structural shock cannot contain any information on any other
structural shock. Therefore, independent structural shocks justify the ceteris paribus
interpretation used in policy analysis based on impulse response functions. However,
several authors argue that the assumption of independent structural shocks is too strong

5Proxy-variable identification approaches are different and instead assume that structural shocks are
uncorrelated with an external proxy variable (see, e.g., Stock and Watson (2012), or Mertens and Ravn
(2013)).
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(cf. Kilian and Lütkepohl (2017, Chapter 14), Lanne and Luoto (2021), Lanne, Liu
and Luoto (2021), or Olea et al. (2022)). In particular, independence of the shocks
implies that also the volatility processes of the shocks are independent, which may be
too restrictive for some macroeconomic applications. For example, suppose that ε̃1,t

and ε̃2,t are drawn independently of each other and represent unscaled structural shocks.
Moreover, in each period an additional volatility shock vt is drawn independently of
the other shocks and the structural shocks are given by ε1,t = ε̃1,tvt and ε2,t = ε̃2,tvt.
These structural shocks are uncorrelated, but dependent since the variance of one shock
contains information on the variance of the other shock.

A compromise between the two extreme cases of uncorrelated and independent shocks
is the assumption of mean independent shocks, such that E [εi,tg(εj,t)] = E [εi,t]E [g(εj,t)]
for i ̸= j with a bounded, measurable function g(·). If shocks are mean independent,
a structural shock cannot contain any information about the mean of other structural
shocks. Mean independent shocks can justify the ceteris paribus assumption used in
impulse response analysis and at the same time allow for dependent volatility processes.
In particular, the two shocks ε1,t = ε̃1,tvt and ε2,t = ε̃2,tvt defined above are mean
independent since a given shock contains no information on the mean of the other shock.

Imposing structure on the dependence of the structural shocks allows to derive
moment conditions (see, e.g., Lanne and Luoto (2021), Keweloh (2021b), or Guay (2021)).
For i, j, k, l = 1, ..., n we define the following moment conditions:

Variance: E[e(B)2
i,t] − 1 = 0 (5.1)

Covariance: E[e(B)i,te(B)j,t] = 0, for i < j (5.2)

Coskewness: E[e(B)2
i,te(B)j,t] = 0, for i ̸= j (5.3)

E[e(B)i,te(B)j,te(B)k,t] = 0, for i < j < k (5.4)

Cokurtosis: E[e(B)3
i,te(B)j,t] = 0, for i ̸= j (5.5)

E[e(B)2
i,te(B)j,te(B)k,t] = 0, for i ̸= j, i ̸= k, j < k(5.6)

E[e(B)i,te(B)j,te(B)k,te(B)l,t] = 0, for i < j < k < l (5.7)

E[e(B)2
i,te(B)2

j,t] − 1 = 0, for i < j (5.8)

The variance conditions in Equation (5.1) follow from the unit variance normalization.
The remaining conditions are derived from different assumptions on the dependence
of the structural shocks. In particular, uncorrelated structural shocks only imply the
covariance conditions in Equation (5.2). Mean independent shocks additionally imply
the coskewness conditions in Equation (5.3) and (5.4) and the cokurtosis conditions in
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Equation (5.5)-(5.7). In addition, the symmetric cokurtosis conditions in Equation (5.8)
follow from independent shocks.

Moreover, note that if all structural shocks are Gaussian, the conditions in Equation
(5.3)-(5.8) do not contain information beyond the information contained in the variance
and covariance conditions.

5.4 Estimation of a block-recursive SVAR

In this section, we combine identification based on block-recursiveness restrictions and
non-Gaussian shocks. First, for a given block-recursive structure we derive corresponding
identifying asymmetric cokurtosis conditions based on mean independent shocks within
the blocks. Importantly, identification is achieved without many higher-order moment
conditions and holds under fairly general conditions on the dependencies of the shocks.
Second, we show that additional overidentifying higher-order moment conditions – some of
these conditions additionally require the assumption of independent shocks – can decrease
the asymptotic variance of the estimator if the overidentifying conditions are valid.
Third, we propose to use a LASSO-type GMM estimator to select the valid and relevant
overidentifying higher-order moment conditions in a data-driven way. Consistency of the
estimator only relies on the identifying moment conditions and, thus, is robust to various
kinds of dependencies of the shocks. Furthermore, it can exploit efficiency gains from
valid and relevant overidentifying conditions and ignore noise from valid but redundant
overidentifying conditions.

5.4.1 Identification

In this section, we show that identification of a block-recursive SVAR can be achieved by
the variance and covariance conditions in Equation (5.1) and (5.2) and the asymmetric
cokurtosis conditions in Equation (5.5) corresponding to innovations in the same block.
The identification result is robust in the sense that it allows for various sorts of depen-
dencies of the shocks. To be clear, shocks in different blocks only need to be uncorrelated
and shocks in the same block only need to fulfill the asymmetric cokurtosis conditions.

Let E[f2(B, ut)] = 0 contain all variance and covariance conditions in Equation
(5.1) and (5.2) and let E[f4pk

(B, ut)] = 0 contain all asymmetric cokurtosis conditions
from Equation (5.5) corresponding to shocks in block k, e.g., E[e(B)3

i,te(B)j,t] = 0 for
i, j = pk, ..., pk+1 − 1 and i ̸= j. We define the identifying moment conditions as

E[fN(B, ut)] := E


f2(B, ut)
f4p1

(B, ut)
...

f4pm (B, ut)

 = 0.
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In the following, we simplify the notation for moment conditions, e.g., we write E[fN(B, ut)]
instead of E[fN(B, ut)] = 0. Note that the identifying moment conditions do not contain
asymmetric cokurtosis conditions of shocks in different blocks, e.g., the moment conditions
E[e(B)3

i,te(B)j,t] for shocks e(B)i,t and e(B)j,t in different blocks are not contained in
E[fN(B, ut)]. The conditions E[fN(B, ut)] can be justified by the following assumption.

Assumption 5.2. (Block-recursive mean independence.)
For m ≤ n blocks with p1 = 1 < p2 < . . . < pm ≤ n,
(i) all shocks are uncorrelated, i.e., E [εi,tεj,t] = 0 for i ̸= j.

(ii) all shocks within the same block are mean independent, i.e., E [εi,t|ε−i,t] = 0 for
i ∈ {pk, pk + 1, ..., pk+1 − 1} and −i = {pk, pk + 1, ..., pk+1 − 1}\i for k = 1, . . . ,m.

The identifying moment conditions contain n variance conditions, n(n − 1)/2 co-
variance conditions and ∑m

k=1 lk(lk − 1)/2 asymmetric cokurtosis conditions, where
lk := pk+1 − pk denotes the number of shocks in block k. Therefore, each additional
specified block refines the identifying moment conditions E[fN(B, ut)] such that they
contain fewer higher-order moment conditions. In the extreme case when the SVAR
is specified recursively, meaning each block contains only one variable, the identifying
moment conditions contain no higher-order moment conditions. In the other extreme
case of a single block containing all variables, the identifying moment conditions contain
all n(n− 1) asymmetric cokurtosis conditions and are similar to the conditions proposed
in Lanne and Luoto (2021).6

The following proposition shows that the identifying moment conditions are sufficient
to locally identify the block-recursive SVAR.

Proposition 5.1. (Identification in the block-recursive SVAR.)
Let ut = B0εt with m ≤ n blocks and B0 ∈ Bbrec ≡ Bbrec(p1, . . . , pm) such that Assumption
5.1 holds. Moreover, suppose that Assumption 5.2 holds. If at most one structural shock
in each block has zero excess kurtosis, the identifying moment conditions E[fN(B, ut)] = 0
locally identify B = B0 for B ∈ Bbrec.

Proof. The proof recursively applies the identification result from Lanne and Luoto (2021)
and can be found in Appendix 5.A.3.

6Lanne and Luoto (2021) propose to select n(n − 1)/2 asymmetric cokurtosis conditions, which is
sufficient for local identification if none of the asymmetric conditions does include the third power of a
Gaussian shock. They advocate to rely on a moment selection criterion to avoid including redundant
conditions or conditions of Gaussian shocks. Additionally, Lanne and Luoto (2021) note that including
all n(n − 1) asymmetric cokurtosis conditions ensures local identification even if conditions related to
Gaussian shocks are included. We argue that the degree of overidentification remains reasonably small
even if we include all asymmetric cokurtosis conditions and therefore, including redundant conditions can
be expected to be rather harmless. For example, in a SVAR with four variables and no restrictions the
identifying moment conditions consists of 22 conditions to identify 16 parameters. Thus, we suggest to
use all asymmetric cokurtosis conditions in order to avoid the cumbersome process of selecting a subset
of the conditions.
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In Proposition 5.1 the impact of shocks on variables in different blocks is identified
based on covariance conditions. The interaction of shocks on variables within the same
block is identified based on asymmetric cokurtosis conditions and the local identification
result of Lanne and Luoto (2021). Local identification means that the moment conditions
E[fN(B, ut)] identify B0 in a small neighborhood of B0 (see Hall (2005)). Importantly, the
proposition also holds for different higher-order moment conditions ensuring identification
within the blocks. For example, the identifying conditions E[fN(B, ut)] could contain
all variance-covariance, coskewness and cokurtosis conditions implied by independent
structural shocks for each block. In this case, global identification up to sign and
permutation within each block follows from Keweloh (2021b).

Without further restrictions, data-driven approaches relying on non-Gaussian and
independent shocks can only ensure identification up to sign and permutation. This means
that the order and sign of the shocks in the impulse response functions is not identified.
In practice, the researcher has to manually assign labels to the shocks. Restricting
the solution to a given block-recursive structure simplifies the permutation or labeling
problem. In particular, shocks can only be permuted inside blocks. For instance, in
example (b) in Figure 5.1 shocks from the second block cannot be permuted into the
first block since this violates the block-recursive structure. Therefore, specifying a finer
block-recursive structure simplifies the labeling of the shocks.

Define the block-recursive SVAR GMM estimator which minimizes the variance,
covariance and the asymmetric cokurtosis conditions over the set of block-recursive
matrices as

B̂N := arg min
B∈Bbrec

gN(B)′WNgN(B), (5.9)

with a suitable weighting matrix WN and gN(B) := 1/T ∑T
t=1 fN(B, ut). Consistency

and asymptotic normality follow from the identification result in Proposition 5.1 and
standard assumptions including valid moment conditions implied by the dependence
structure imposed in Assumption 5.2. That is,

B̂N
p→ B0

√
T
(
(vec

(
B̂N

)
− vec (B0)

)
d→ N (0, VN) ,

where the formula for the asymptotic variance, VN, is standard but lengthy and, therefore,
deferred to Appendix 5.A.1. Moreover, under standard assumptions the weighting matrix
W ∗

N := S−1
N with SN := limT →∞E[gN(B)gN(B)′] leads to the estimator B̂∗

N with lowest
possible asymptotic variance (see, e.g., Hall (2005)).

In many applications, the researcher is only interested in some structural shocks.
For this case, we derive a partial identification result under weaker assumptions.
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Proposition 5.2. (Partial identification in the block-recursive SVAR.)
Let ut = B0εt with m ≤ n blocks and B0 ∈ Bbrec ≡ Bbrec(p1, . . . , pm) such that Assumption
5.1 holds. Moreover, let Bi,0 denote the columns of B0 representing impact of the structural
shocks in the ith block. Let B̃brec := Bbrec(p̃1, . . . , p̃m̃) denote a potentially different block-
recursive interaction. Assume that there exists a block p̃j of B̃brec which contains the
shocks of block pi, i.e., there exits a j, 1 ≤ j ≤ m̃, such that p̃j = pi and p̃j+1 = pi+1.

The moment conditions E
[
f2(B, ut)
f4p̃j

(B, ut)

]
= 0 locally identify Bi,0 for B ∈ B̃brec if the

following conditions hold:

1. The shocks εt are uncorrelated.
2. The asymmetric cokurtosis conditions of block p̃j hold.
3. At most one shock in block p̃j has zero excess kurtosis.

Proof. The proof can be found in Appendix 5.A.3.

Proposition 5.2 reveals that we can identify a specific block of shocks by using
only the second moments of all shocks and the asymmetric cokurtosis conditions of the
shocks in the block of interest as long as the block of interest is specified correctly and
contains at most one Gaussian shock. To see the advantages of the partial identification
result, consider that we are only interested in the last two structural shocks in Figure 5.1
(b). In this example, Proposition 5.2 implies that the impact of the last two shocks is
identified even if (i) the first and second shock are both Gaussian, (ii) the first and second
shock do not satisfy the asymmetric cokurtosis conditions but are only uncorrelated, or
(iii) the block-recursive structure is misspecified as the one displayed in Figure 5.1 (c).
Additionally, Proposition 5.2 implies that the moment conditions used in Proposition
5.1 identify the shocks in a block of interest if the block of interest is specified correctly,
contains at most one Gaussian shock, and there exists a B such that the moment
conditions are fulfilled. However, the B matrix can differ from B0, except for the columns
corresponding to the block of interest.

5.4.2 Overidentification and efficiency gains

In the previous section, we proposed a block-recursive SVAR GMM estimator, which uses
only a (small) subset of asymmetric cokurtosis conditions, and provide an identification
result which does not require independent shocks. However, the excluded set of coskewness
and cokurtosis conditions can decrease the asymptotic variance of the estimator and
hence, increase the efficiency of the estimator. In this section, we define the overidentified
block-recursive SVAR GMM estimator which contains all coskewness and cokurtosis
conditions implied by independent shocks. Additionally, we derive conditions for the
redundancy and relevance of the overidentifying coskewness and cokurtosis conditions in
a recursive SVAR with independent structural shocks.
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Assumption 5.3. (Independent shocks.)
All shocks are independent, i.e., εi,t is independent of εj,t for i ̸= j.

For a given block-recursive SVAR, define the overidentifying moment conditions as

E[fD(B, ut)] = E

[
f3\N(B, ut)
f4\N(B, ut)

]
,

where E[f3\N(B, ut)] contains all coskewness conditions from Equation (5.3)-(5.4), and
E[f4\N(B, ut)] contains all cokurtosis conditions from Equation (5.5)-(5.8), implied by
independent shocks and not included in the identifying moment conditions E[fN(B, ut)].

The overidentified block-recursive SVAR GMM estimator is defined as

B̂N+D := arg min
B∈Bbrec

[
gN(B)
gD(B)

]′

WN+D

[
gN(B)
gD(B)

]
, (5.10)

with a suitable weighting matrix WN+D and gD(B) := 1/T ∑T
t=1 fD(B, ut). Note that

the overidentified block-recursive SVAR GMM estimator uses all coskewness and cokur-
tosis conditions implied by independent shocks. That is, the moment conditions used
for estimation are the same as in the SVAR GMM estimator proposed by Keweloh
(2021b). However, the latter estimator neither uses restrictions nor distinguishes be-
tween identifying and overidentifying moment conditions. In contrast to that, we allow
for block-recursive restrictions. These restrictions allow to transform identifying into
overidentifying moment conditions.

Consistency and asymptotic normality of the overidentified block-recursive SVAR
GMM estimator in Equation (5.10) require that not only the identifying but also the
overidentifying moment conditions are valid, which holds if the shocks are independent
as assumed in Assumption 5.3. That is,

B̂N+D
p→ B0

√
T
(
(vec

(
B̂N+D

)
− vec (B0)

)
d→ N (0, VN+D) ,

where the formula for the asymptotic variance, VN+D, is standard and can be found in Ap-
pendix 5.A.1. Again, under standard assumptions the weighting matrix W ∗

N+D := S−1
N+D

with SN+D := limT →∞E[gN+D(B0)gN+D(B0)′], where gN+D(B0) := [gN(B0)′, gD(B0)′]′,
leads to the estimator B̂∗

N+D with lowest possible asymptotic variance (see, e.g., Hall
(2005)).

Adding additional valid moment conditions can never increase the asymptotic
variance of the GMM estimator (see, e.g., Breusch, Qian, Schmidt and Wyhowski (1999)).
Therefore, if the structural shocks are independent such that the overidentifying conditions
hold, the asymptotic variance of B̂∗

N+D is equal to or smaller than the asymptotic variance
of B̂∗

N. If including an additional moment condition decreases the asymptotic variance of
the estimator, the moment condition is called relevant, otherwise the moment condition
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is called redundant. A moment condition is called partially relevant for a subset of
parameters if it decreases the asymptotic variance of a subset of parameters. If this is
not the case, the moment condition is called partially redundant.

In the following proposition, we show that overidentifying higher-order moment
conditions in E[fD(B, ut)] can decrease the asymptotic variance of the estimator. To this
end, we consider the special case of a recursive SVAR with independent shocks. In this
case, the SVAR is identified solely by second-order moment conditions and all coskewness
and cokurtosis moment conditions are overidentifying. The proposition highlights that
some coskewness and cokurtosis conditions are always (partially) redundant, while other
conditions are relevant if certain conditions for the skewness, excess kurtosis, and elements
of the inverse of B0 are fulfilled. The proposition also implies that if at least one shock
has a non-zero skewness, at least one higher-order moment condition will be relevant and
consequently, the recursive SVAR GMM estimator based solely on second-order moment
conditions, which is equal to frequently used estimator obtained by applying the Cholesky
decomposition, is inefficient.

Proposition 5.3. (Redundant and relevant moment conditions in the recursive SVAR.)
Let A := B−1

0 and let aql denote the element at row q and column l of A. Additionally
let i, j, k, l ∈ {1, ..., n} and i ≠ j ̸= k ̸= l. The impact of a shock ϵq,t is equal to the
unrestricted elements in the q-th row of B0. In a recursive SVAR with independent
structural shocks the following redundancy statements hold w.r.t. the identifying second-
order moment conditions E[f2(B, ut)].

Coskewness condition:

1. E[e(B0)ie(B0)je(B0)k] is redundant.
2. E[e(B0)2

i e(B0)j ] is partially redundant for the impact of the shock ϵq,t with q ̸= j.
3. E[e(B0)2

i e(B0)j ] is partially redundant for the impact of the shock ϵj,t if and only if
for i < j for i > j

2E[ϵ3
j,t]

E[ϵ4
j,t]−1ajj = 0. 2E[ϵ3

j,t]
E[ϵ4

j,t]−1ajj + E[ϵ3i,t]aij = 0,
E[ϵ3i,t]ai,z = 0, z = j + 1, . . . , i.

Cokurtosis condition:

1. E[e(B0)ie(B0)je(B0)ke(B0)l] and E[e(B0)2
i e(B0)je(B0)k] are redundant.

2. E[e(B0)3
i e(B0)j ] is partially redundant for the impact of the shock ϵq,t with q ̸= j.

3. E[e(B0)3
i e(B0)j ] is partially redundant for the impact of the shock ϵj,t if and only if

for i < j for i > j

2E[ϵ3
j,t]E[ϵ3

i,t]
E[ϵ4

j,t]−1 ajj = 0. 2E[ϵ3
j,t]E[ϵ3

i,t]
E[ϵ4

j,t]−1 ajj + (E[ϵ4i,t] − 3)aij = 0,
(E[ϵ4i,t] − 3)ai,z = 0, z = j + 1, . . . , i.
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4. E[e(B0)2
i e(B0)2

j − 1] is partially redundant for the impact of the shock ϵq,t with q ̸= i
and i < j.

5. E[e(B0)2
i e(B0)2

j − 1] is partially redundant for the impact of the shock ϵi,t with i < j
if and only if

E[ϵ3j,t]E[ϵ3i,t]ajz = 0, z = i, . . . , j.

Proof. The proof can be found in Appendix 5.A.4.

In practice, the conditions in Proposition 5.3 cannot be verified since the matrix B0,
the skewness, and the kurtosis of the structural shocks are unknown a priori. Furthermore,
Proposition 5.3 only covers a recursive SVAR with independent shocks, i.e., if the shocks
are only mean independent or the SVAR has a different block-recursive structure, we do
not have a theoretical result on which moment conditions are relevant and which are not.

5.4.3 Data-driven moment selection

Section 5.4.1 provides an identification result for block-recursive SVARs only requiring
a (small) subset of cokurtosis conditions which is robust in the sense that it allows
for various kinds of dependencies of the shocks. Section 5.4.2 stresses that there is a
trade-off between robustness and efficiency of the estimator. For robustness, we leave out
overidentifying conditions, which has the downside that some of these conditions may
be valid and relevant, i.e., decrease the asymptotic variance of the estimator. However,
an advantage is that one does not include potentially invalid overidentifying conditions,
which could lead to an inconsistent overidentified block-recursive SVAR GMM estimator
in Equation (5.10). Additionally, valid but redundant overidentifying conditions can lead
to a many moment problem and a poor finite sample performance of the overidentified
block-recursive SVAR GMM estimator, compare Cheng and Liao (2015), Hall (2005), and
Hall (2015). Therefore, we propose to use the pGMM estimator of Cheng and Liao (2015)
to detect and include only the relevant and valid overidentifying moment conditions in a
data-driven way. By including valid and relevant moment conditions in the estimation,
we exploit the asymptotic efficiency gains of relevant moments. By leaving out invalid or
redundant moment conditions, we can avoid inconsistent estimates and issues related to
many moment conditions.

In general, the overidentifying higher-order moment conditions E[fD(B, ut)] can be
separated into three sets: E[fA(B, ut)] contains valid and relevant moment conditions,
E[fR(B, ut)] contains valid but redundant conditions, and E[fI(B, ut)] contains invalid
moment conditions. The goal is to select the moments E[fA(B, ut)] and to leave out
the moments E[fR(B, ut)] and E[fI(B, ut)]. However, in practice the researcher does
not know whether a given moment condition is invalid, redundant, or valid and relevant.
Therefore, we propose to detect and select the relevant and valid overidentifying moment
conditions in a data-driven way. Based on Cheng and Liao (2015), we define the block-
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recursive SVAR pGMM estimator

{B̂pGMM
N+D , β̂} := arg min

{B,β}∈Λ

[
gN(B)

gD(B) − β

]′

WN+D

[
gN(B)

gD(B) − β

]
+ λ

∑
j∈D̃

ωj |βj |, (5.11)

where λ ≥ 0 is a tuning parameter specified by the researcher, β ∈ RkD is the vector of
slackness parameters, Λ := {Bbrec,R1×kD} is the parameter space of {B, β}, ω ∈ RkD is
a vector of weights used in the penalty term, and D̃ := {1, . . . , kD} with kD denoting
the number of conditions in E[fD(B, ut)].

The vector of slackness parameters β allows the moment conditions E[fD(B, ut)]
to deviate from zero without increasing the first part of the loss function and therefore,
to decrease their impact on the estimation. However, each element of β gets penalized
in the second part of the loss function and consequently, giving slack to overidentifying
moments adds a cost, i.e., increases the loss function. The vector of weights ω and the
tuning parameter λ govern the cost of giving slack to moment conditions. In particular,
a smaller λ makes it cheaper to give slack to all overidentifying moments and a smaller
ωj makes it less costly to give slack to a specific overidentifying moment j.

The pGMM estimator in Equation (5.11) has two special cases. First, if λ = 0,
adding slack to the overidentifying moments is not penalized. Therefore, the solution
of the pGMM estimator is B̂pGMM

N+D = B̂N and β̂ = gD
(
B̂N

)
, where B̂N is the solution

of the the block-recursive SVAR GMM estimator in Equation (5.9) using only the
identifying moments E[fN(B, ut)] and the weighting matrix WN, equal to the block of
the weighting matrix WN+D corresponding to the identifying conditions E[fN(B, ut)].
Second, if λ = ∞, deviations of β̂ from zero become infinitely costly for overidentifying
moments with ωj > 0. Assuming ω > 0, the pGMM estimator cannot give slack to any
overidentifying moment condition. Thus, B̂pGMM

N+D = B̂N+D and β̂ = 0 minimize the loss
function of the pGMM estimator, where B̂N+D is the solution of the the overidentified
block-recursive SVAR GMM estimator in Equation (5.10), using the weighting matrix
WN+D. Choices of λ other than λ = 0 or λ = ∞ lead to solutions which lie between
these extreme cases. In practice, we recommend using cross-validation to find the optimal
value of λ.

The penalty term uses weights ωj ≥ 0, ∀j ∈ D̃, to shrink the elements of β differently.
Let E[fDj (B, ut)] for j ∈ D̃ correspond to one specific moment of E[fD(B, ut)]. A higher
ωj leads to more shrinkage for βj and consequently, makes it more likely that βj becomes
zero, meaning that the corresponding moment E[fDj (B, ut)] gets selected. Furthermore,
ωj = 0 implies that even if the tuning parameter λ is large, there is no cost for giving
slack to the moment condition E[fDj (B, ut)], implying that those moments do not
influence the estimated B̂pGMM

N+D . Since we aim to select only the relevant and valid
moment conditions E[fA(B, ut), and not the invalid E[fI(B, ut)] or redundant moment
conditions E[fR(B, ut)], we would specify ωj > 0 for all valid and relevant conditions, and
ωj = 0 for all invalid or redundant conditions. To achieve this without prior knowledge
on E[fA(B, ut)], E[fR(B, ut)], and E[fI(B, ut)], Cheng and Liao (2015) construct ωj
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allowing information-based adaptive adjustment for each moment in E[fD(B, ut)]. More
precisely, they use

ωj =
µr1

j

|β∗
j

r2 |
, j ∈ D̃, (5.12)

where µj is a measure for the empirical relevance of the moment condition E[fDj (B, ut)],
relative to the identifying moment conditions E[fN(B, ut)], and β∗

j is a preliminary
consistent estimator of E[fDj (B0, ut)] and r1 ≥ r2 ≥ 0 are constants specified by the
researcher. The use of 1/|β∗

j
r2 | resembles an adaptive LASSO penalty (cf. Zou (2006))

and implies that moments with small β∗
j are subject to more shrinkage. Since β∗

j is a
consistent estimator and the true value of β∗

j for a valid moment is zero, the adaptive
penalty ensures that valid moments get selected. However, using only the adaptive penalty,
we would unintendedly incentivize the estimator to select also redundant moments since,
by definition, these are also valid. To avoid selecting redundant moments, Cheng and
Liao (2015) suggest to multiply the adaptive penalty with

µj = ρmax
(
V̂N − V̂N+Dj

)
, j ∈ D̃, (5.13)

where ρmax(A) is the maximum eigenvalue of a square matrix A and V̂N and V̂N+Dj are
consistent estimators of the efficient asymptotic variance-covariance matrices V ∗

N and
V ∗

N+Dj
, defined in Appendix 5.A.1. If the maximum eigenvalue of V ∗

N −V ∗
N+Dj

is positive,
then adding moment condition E[fDj (B, ut)] to the conditions E[fN(B, ut)] decreases
the asymptotic variance of the estimator and hence, moment condition E[fDj (B, ut)] is
relevant. Therefore, µj estimates the empirical relevance of the moment E[fDj (B, ut)].7

Cheng and Liao (2015) show that, under conditions, the pGMM estimator consistently
selects the valid and relevant moments, i.e., limT →∞ P (β̂j = 0) = 1 if the moment
condition E[fDj (B, ut)] is in E[fA(B, ut)], and does not select the invalid or redundant
moments, i.e., limT →∞ P (β̂j = 0) = 0 if the moment condition E[fDj (B, ut)] is in
E[fR(B, ut)] or E[fI(B, ut)]. They also derive that, under conditions, the pGMM
estimator is a consistent estimator of B0 and asymptotically normal with asymptotic
variance VN+A.8 In our case, the conditions in particular require that Assumption
5.2 holds. However, consistency and asymptotic normality do not rely on independent
shocks, i.e., Assumption 5.3. Even though the SVAR pGMM estimator uses the moment
conditions E[fN(B, ut)] and E[fD(B, ut)] for estimation, its asymptotic variance only

7Cheng and Liao (2015) show that V ∗
N − V ∗

N+Dj
is positive semidefinite for every j ∈ D̃, implying that

the maximum eigenvalue of V ∗
N − V ∗

N+Dj
is nonnegative. Furthermore, note that both V̂N ≡ V̂N

(
B̂N
)

and V̂N+Dj ≡ V̂N+Dj

(
B̂N
)

are evaluated at B̂N, which is obtained from Equation (5.9). Thereby, we do
not rely on B̂N+Dj to estimate V ∗

N+Dj
since the moment associated with Dj may be invalid and hence,

V̂N+Dj

(
B̂N+Dj

)
inconsistent for V ∗

N+Dj
.

8This result is not explicitly stated in Cheng and Liao (2015) but follows from their Remark 3.5 using
the Cramér-Wold device, an arbitrary weighting matrix W and replacing the variance of the sample
GMM estimator with the asymptotic variance. We prove the result in Appendix 5.A.5 under Assumption
5.1 and 5.2.
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depends on the moments conditions E[fD(B, ut)] and E[fA(B, ut)]. That is, the SVAR
pGMM estimator successfully ignores the redundant and invalid moments and decreases
the asymptotic variance by incorporating the information contained in the relevant and
valid moments. The weighting matrix W ∗

N+D := S−1
N+D leads to the estimator with

the lowest possible asymptotic variance (Hall, 2005), corresponding to the asymptotic
variance of the oracle estimator. The oracle estimator uses only moment conditions
E[fN(B, ut)] and E[fA(B, ut)] and is infeasible in practice without prior knowledge of
E[fD(B, ut)] and E[fA(B, ut)]. However, the SVAR pGMM estimator is as efficient as
the oracle estimator asymptotically.

5.5 Finite sample performance

In this section, we conduct two Monte Carlo studies. The first one illustrates that
the performance of SVAR estimators can be improved substantially by exploiting the
block-recursive structure. This is especially relevant for SVARs with a large number of
variables. The second Monte Carlo study focuses on how to incorporate information in
overidentifying higher-order moment conditions. More concretely, we demonstrate that
the pGMM estimator selects relevant and does not select redundant moment conditions
in a data-driven way and thereby, improves the finite sample performance.

For both Monte Carlo experiments, we consider three different sample sizes T =
{100, 250, 1 000} to analyze the influence of the sample size on the performance of
the estimators. We independently and identically draw each structural shock ϵit, i =
1, . . . , n, t = 1, . . . , T, from the two-component mixture

ϵit ∼ 0.79 N (−0.2, 0.72) + 0.21 N (0.75, 1.52),

where N (µ, σ2) indicates a normal distribution with mean µ and standard deviation σ.
The shocks have skewness 0.9 and excess kurtosis 2.4.

We compare the finite sample performance of various SVAR estimators.9 Based on
the simulations presented in Keweloh (2021a), we use continuous updating estimators
(CUEs) instead of GMM estimators and estimate the asymptotically efficient weighting
matrix based on serially and mutually independent shocks.10 Since CUE estimators are
closely related to GMM estimators, we use both terms interchangeably. More specifically,
we refer to the estimators as follows:

9The estimators are implemented in python and the pGMM estimator uses the solvers of Defferrard,
Pena and Perraudin (2017).

10Keweloh (2021a) demonstrates that the inability to precisely estimate S, the long-run covariance
matrix of the moment conditions, and as consequence the efficient weighting matrix leads to a poor small
sample performance of two-step GMM and CUE estimators. Recognizing this downside, Keweloh (2021a)
proposes a novel estimator for S exploiting serially and mutually independent shocks.Keweloh (2021a)
illustrates that the estimator for S substantially increases the small sample performance of the two-step
GMM and CUE estimator. Additionally, Keweloh (2021a) illustrates that CUE estimators are less biased
than GMM estimator in small samples.

169



• GMM: Continuous updating estimator based on Equation (5.9) using only the
identifying moment conditions E[fN(B, ut)].

• oGMM: Overidentified continuous updating estimator based on Equation (5.10)
using the identifying moment conditions E[fN(B, ut)] and overidentifying moment
conditions E[fD(B, ut)].

• GMM-Oracle: Overidentified continuous updating estimator based on Equation
(5.10) using the identifying moment conditions E[fN(B, ut)] and the relevant overi-
dentifying moment conditions E[fA(B, ut)].

• pGMM: Continuous updating LASSO estimator based on Equation (5.11).
We only indicate which block-recursive structure is imposed for estimation, when necessary
(e.g., when comparing an GMM estimator without restrictions with a block-recursive
GMM estimator).

5.5.1 Block-Recursive Structure

We simulate a SVAR with n = 2 and n = 4 variables. The mixing matrices B0 are given
by

B0 =
[
10 5
5 10

]
and B0 =


10 5 0 0
5 10 0 0
5 5 10 5
5 5 5 10

 . (5.14)

The Monte Carlo study analyzes the impact of imposing a block-recursive structure
for GMM estimators. In the small SVAR with n = 2, we impose no restrictions. In the
large SVAR with n = 4, we estimate the GMM estimator without restrictions and the
block-recursive GMM estimator, using the block-recursive structure in Equation (5.14),
i.e., we apply zero restrictions for all elements where B0 is zero.11

Table 5.1 summarizes the results of M = 3, 500 Monte Carlo simulations. The table
shows the average of each estimated element b̄ij = 1/M∑M

m=1 b̂
m
ij and the estimated

mean squared error (MSE), σ̂2
i,j = 1/M∑M

m=1

(
b̂m

ij − bij

)2
, where bij denotes the element

of B0 in row i and column j and b̂m
ij its estimated value in Monte Carlo run m. Moreover,

we calculate the average over the empirical biases, Bias := ∑n
i=1

∑n
j=1wi,j

(
b̄ij − bij

)
,

and the average over the estimated MSEs, V ar := ∑n
i=1

∑n
j=1wi,j σ̂

2
i,j , across estimated

elements in B̂, i.e., wi,j equals zero if b̂m
ij is restricted to be zero and one over the number

of estimated elements in B̂ otherwise. Additionally, we report the number of moments
used by each estimator.

11In this Monte Carlo study, we focus on GMM estimators. We include the oGMM, GMM-Oracle and
pGMM estimator in the second Monte Carlo study.
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Table 5.1: Finite sample performance of the GMM and block-recursive GMM estimator.
n=2 n=4

GMM GMM block-recursive GMM

T
=

10
0 B̂

[ 9.78
(2.26)

4.90
(4.31)

4.90
(4.24)

9.76
(2.18)

] 
9.28

(3.24)
4.63

(4.82)
0.04

(5.31)
0.07

(5.27)
4.70

(4.87)
9.23

(3.20)
0.08

(5.32)
0.05

(5.14)
4.68

(6.54)
4.62

(6.74)
9.27

(5.01)
4.74

(6.54)
4.67

(6.67)
4.65

(6.53)
4.66

(6.48)
9.33

(4.93)




9.74

(2.31)
4.91

(4.30)
. .

4.87
(4.43)

9.74
(2.18)

. .

4.86
(2.51)

4.89
(2.44)

9.63
(2.17)

4.84
(4.41)

4.87
(2.56)

4.91
(2.45)

4.84
(4.24)

9.64
(2.34)


#Mo 5.00 22.00 14.00
Bias −0.1649 −0.3314 −0.1878
MSE 3.25 5.41 3.03

n=2 n=4
GMM GMM block-recursive GMM

T
=

25
0 B̂

[ 9.88
(1.10)

4.90
(2.30)

4.98
(2.22)

9.85
(1.13)

] 
9.56

(1.64)
4.79

(2.77)
0.02

(3.19)
0.06

(3.21)
4.77

(2.69)
9.54

(1.65)
−0.01
(3.14)

0.04
(3.26)

4.74
(4.05)

4.83
(3.94)

9.56
(2.76)

4.83
(3.92)

4.74
(4.10)

4.82
(3.91)

4.79
(3.86)

9.61
(2.85)




9.87

(1.07)
4.91

(2.41)
. .

4.94
(2.33)

9.83
(1.15)

. .

4.93
(1.16)

4.91
(1.20)

9.81
(1.13)

4.92
(2.30)

4.94
(1.14)

4.92
(1.21)

4.91
(2.32)

9.84
(1.09)


#Mo 5.00 22.00 14.00
Bias −0.0982 −0.2065 −0.1069
MSE 1.69 3.18 1.54

n=2 n=4
GMM GMM block-recursive GMM

T
=

10
00 B̂

[ 9.96
(0.24)

5.00
(0.46)

4.97
(0.48)

9.97
(0.22)

] 
9.92

(0.26)
4.99

(0.53)
0.00

(0.64)
0.02

(0.54)
4.95

(0.51)
9.94

(0.29)
0.00

(0.61)
0.02

(0.53)
4.95

(0.73)
4.99

(0.72)
9.92

(0.56)
4.99

(0.65)
4.95

(0.69)
4.99

(0.66)
4.96

(0.75)
9.95

(0.43)




9.97

(0.22)
5.02

(0.48)
. .

4.97
(0.46)

9.99
(0.24)

. .

4.98
(0.25)

5.01
(0.28)

9.96
(0.21)

4.99
(0.40)

4.98
(0.25)

5.01
(0.27)

4.98
(0.41)

9.97
(0.20)


#Mo 5.00 22.00 14.00
Bias −0.0262 −0.0295 −0.0124
MSE 0.35 0.57 0.31

Note: The table reports the average b̄ij and the corresponding estimated MSE
(in parentheses) of each estimated element in B̂ as well as the BIAS and
MSE across estimated elements in B̂ over 3, 500 Monte Carlo replicates. We
estimate the GMM estimator without restrictions for n = 2 and n = 4, and
the block-recursive GMM estimator for n = 4, which uses zero restrictions
highlighted by the dots.
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For each estimator, the average bias and MSE decreases with the sample size.
Furthermore, the simulation highlights how the performance of the GMM estimators,
which are based entirely on non-Gaussianity, decreases with an increasing model size
(e.g., the average bias and MSE for each sample size is up to 2.1 and 1.9 times higher
for the GMM estimator with n = 4 compared to the GMM estimator with n = 2). The
Monte Carlo study illustrates how in a typical macroeconomic application, which rarely
or if at all contains more than a few hundred observations, data-driven estimates based
on non-Gaussianity become less reliable the more variables the SVAR contains. However,
the simulation also stresses that exploiting the block-recursive structure annihilates the
deterioration of the performance induced by a larger model. That is, the average bias
and MSE for each sample size in Table 5.1 is at least 1.8 and 1.8 times higher for the
GMM estimator with n = 4 compared to the block-recursive GMM estimator with n = 4.
Using the block-recursive structure allows to identify the four elements on the lower left
of B0 (each with a value of 5) only by covariance moment conditions (which explains
why the average MSE of the block-recursive GMM estimator with n = 4 even can be
lower than or comparable to the GMM estimator with n = 2, which relies on higher-order
moment conditions).

Our results suggest that if in a given application well-justified restrictions are
available, these restrictions should be used as they substantially improve the performance
of the estimator.

5.5.2 Recursive Structure

In this subsection, we simulate a recursive SVAR using n = 4 variables and

B0 =


10 0 0 0
5 10 0 0
5 5 10 0
5 5 5 10

 .
For the estimation of B0, we impose a recursive order for all considered estimators, i.e.,
we use zero restrictions for all elements where B0 is zero. In this setup, the pGMM,
GMM-Oracle, and the oGMM estimator are efficient estimators and have a smaller
asymptotic variance than the GMM estimator, which is equivalent to the estimator
obtained by applying a Cholesky decomposition. By using a recursive structure, we
can apply Proposition 5.3 to calculate whether an overidentifying moment condition is
relevant or redundant. Therefore, we can analyze whether the pGMM estimator selects
relevant moment conditions and does not select redundant moment conditions. With the
imposed recursive order, the identifying moment conditions E[fN(B, ut)] contain 10 and
the overidentifying conditions E[fD(B, ut)] contain 47 conditions. All moment conditions
in E[fD(B, ut)] are valid. More precisely, 17 of overidentifying conditions are redundant
and 30 overidentifying conditions are relevant.

The construction of the weights for the pGMM estimator as in Equation (5.12)
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requires an initial consistent estimate B̂ to estimate β∗ and the asymptotic variance
in Equation (5.13). To this end, we apply the GMM estimator, which is the Cholesky
estimator in this case. Moreover, we again use the assumption of independent shocks to
estimate the asymptotic variance, as proposed by Keweloh (2021a). We use r1 = 2 and
r2 = 1 in Equation (5.12) and additionally, we normalize the weights such that they sum
to one, i.e., we use ω∗

j := ωj/
∑

k∈D̃
ωk, allowing for straightforward comparison among

the weights.
We choose the optimal λ for the pGMM estimator with 5-fold cross-validation from

a sequence of 10 potential values. The maximum value of the sequence of λ’s depends
on the sample size, ensuring that it is large enough to select all moments j for which
ω∗

j > 10−4.12 We also include λ = 0 in the range of possible values to allow our estimator
to simplify to the recursive SVAR. The selection of the optimal tuning parameter is based
on the median of the GMM loss of each left-out fold.

Table 5.2 summarizes the results of M = 3, 500 Monte Carlo simulations. We report
the same summary statistics as in Table 5.1. In addition, we calculate the average
number of moments selected by the pGMM estimator and the median of the chosen λ’s
for the pGMM estimator across Monte Carlo runs. In Appendix 5.B.1, we display results
including the Post-pGMM estimator which uses the moments selected by pGMM in a
second stage estimation.

The GMM estimator performs well in the smallest sample size in terms of bias and
MSE. However, the GMM estimator is asymptotically inefficient and has the largest
MSE among all considered estimators for T = 250 and T = 1000. Due to many
moments, the oGMM estimator performs worst in terms of bias and MSE among the
considered estimators for T = 100. Yet, its performance improves with sample size and
it eventually outperforms the GMM estimator in terms of MSE. The bias is highest for
the oGMM and GMM-Oracle estimator across sample sizes, which might be explained
by the greater number of moments used by these estimators. Note that both estimators
are asymptotically efficient. Nevertheless, many moment conditions can still lead to
a finite sample bias. The MSE of the GMM-Oracle estimator is already comparable
to the GMM estimator in small samples. Relative to the other estimators, its MSE
further decreases with the sample size and it performs best in the largest sample size.
In general, the GMM-Oracle estimator is infeasible since the redundant moments are
unknown a priori.13 In contrast to that, the pGMM estimator is feasible and uses a
data-driven approach to select the relevant and valid moments. The pGMM estimator
performs well across all sample sizes in terms of bias and MSE. For T = 100, its bias and
MSE is notably smaller than the one of the oGMM and the GMM-Oracle estimator and
surprisingly, also smaller than the one of the GMM estimator. In the largest sample, the

12We specify the maximum value of the sequence of λ’s in a data-driven way using the subgradient of
Equation (5.11) with respect to β. We give more details on how to construct the maximum value of the
sequence of λ’s in the cross-validation in Appendix 5.A.6.

13Even if we knew the non-Gaussianity of the shocks, we would not be able to derive the oracle
estimator if the block-recursive structure was not just purely recursive. In this case, we still lack the
information on which moments are redundant and which are relevant.
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pGMM estimator performs similar to the oGMM and GMM-Oracle estimator in terms of
MSE and best in terms of bias.14 The simulation shows that the pGMM estimator can,
without prior specification, distinguish informative from non-informative overidentifying
moments, which solves the many moments problem of the oGMM estimator and allows

Table 5.2: Finite Sample Performance of the pGMM estimator.
GMM oGMM GMM-Oracle pGMM

T
=

10
0 B̂


9.93

(1.09)
. . .

4.98
(1.21)

9.86
(1.02)

. .

4.97
(1.49)

4.95
(1.29)

9.83
(1.12)

.

4.96
(1.71)

4.93
(1.46)

4.91
(1.27)

9.78
(1.08)




9.77
(1.07)

. . .

4.90
(1.31)

9.71
(1.01)

. .

4.89
(1.69)

4.88
(1.43)

9.70
(1.10)

.

4.90
(2.07)

4.88
(1.74)

4.88
(1.46)

9.69
(1.09)




9.76
(1.07)

. . .

4.91
(1.17)

9.70
(1.02)

. .

4.91
(1.50)

4.88
(1.26)

9.69
(1.10)

.

4.92
(1.81)

4.88
(1.51)

4.88
(1.25)

9.67
(1.10)




9.96
(1.09)

. . .

5.00
(1.15)

9.88
(1.01)

. .

4.98
(1.46)

4.96
(1.22)

9.85
(1.11)

.

4.99
(1.71)

4.96
(1.42)

4.95
(1.21)

9.82
(1.10)


#Mo 10.00 57.00 40.00 24.22
Bias −0.0883 −0.1806 −0.1804 −0.0650
MSE 1.27 1.40 1.28 1.25

λ . . . 71.08

GMM oGMM GMM-Oracle pGMM

T
=

25
0 B̂


9.97

(0.43)
. . .

4.99
(0.51)

9.96
(0.43)

. .

4.98
(0.64)

5.00
(0.52)

9.93
(0.45)

.

4.98
(0.72)

4.99
(0.61)

4.98
(0.51)

9.91
(0.45)




9.90
(0.40)

. . .

4.96
(0.49)

9.90
(0.40)

. .

4.96
(0.65)

4.97
(0.51)

9.87
(0.42)

.

4.97
(0.73)

4.96
(0.61)

4.97
(0.49)

9.86
(0.42)




9.90
(0.40)

. . .

4.97
(0.44)

9.90
(0.40)

. .

4.97
(0.59)

4.97
(0.46)

9.87
(0.42)

.

4.98
(0.65)

4.97
(0.54)

4.96
(0.44)

9.85
(0.42)




9.99
(0.42)

. . .

5.01
(0.45)

9.97
(0.41)

. .

5.01
(0.59)

5.02
(0.46)

9.94
(0.42)

.

5.02
(0.66)

5.01
(0.55)

5.00
(0.44)

9.92
(0.43)


#Mo 10.00 57.00 40.00 27.20
Bias −0.0311 −0.0676 −0.0656 −0.0114
MSE 0.53 0.51 0.48 0.48

λ . . . 118.92

GMM oGMM GMM-Oracle pGMM

T
=

10
00 B̂


10.00
(0.11)

. . .

5.00
(0.13)

9.99
(0.11)

. .

4.99
(0.15)

4.99
(0.13)

9.99
(0.11)

.

4.99
(0.19)

4.99
(0.15)

4.99
(0.13)

9.98
(0.11)




9.98
(0.10)

. . .

4.99
(0.12)

9.97
(0.10)

. .

4.99
(0.13)

4.99
(0.11)

9.98
(0.10)

.

4.99
(0.16)

4.99
(0.14)

4.99
(0.11)

9.97
(0.10)




9.98
(0.10)

. . .

4.99
(0.11)

9.97
(0.10)

. .

4.99
(0.13)

4.99
(0.10)

9.98
(0.10)

.

4.99
(0.15)

4.99
(0.13)

4.99
(0.11)

9.97
(0.10)




10.00
(0.11)

. . .

5.00
(0.11)

9.99
(0.10)

. .

5.00
(0.13)

5.00
(0.11)

10.00
(0.10)

.

5.00
(0.16)

5.00
(0.13)

5.00
(0.11)

9.98
(0.10)


#Mo 10.00 57.00 40.00 29.59
Bias −0.0076 −0.0158 −0.0158 −0.0021
MSE 0.13 0.12 0.11 0.12

λ . . . 75.34
Note: The table reports the average b̄ij and the corresponding estimated MSE (in parentheses) of each
estimated element in B̂ as well as the BIAS and MSE across estimated elements in B̂ over 3, 500 Monte
Carlo replicates for the GMM estimator, the oGMM estimator, the GMM-Oracle estimator, and the
pGMM estimator. All estimator use zero restrictions which are highlighted by the dots.

14The Post-pGMM estimator reported in Appendix 5.B.1 performs similar to the pGMM estimator.
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to exploit information in overidentifying higher-order moments already in small samples.
Table 5.2 indicates that the average number of selected moments increases only

slightly as T increases. Even for T = 1000, the pGMM estimator only selects 20 out of
30 valid and relevant overidentifying moments in addition to the 10 identifying moments.
That said, the remaining 10 moments would only decrease the MSE from 0.12 to 0.11,
indicating that the moments not being selected would not lower the MSE much. Figure
5.2 illustrates that pGMM estimator only selects relevant moments and manages to leave
out redundant moments, especially as T increases. Moreover, the share of selections of
each moment across all Monte Carlo runs rises with the sample size for the majority of
relevant moments. In Figure 5.B.2, we plot the average weight of each moment across
Monte Carlo runs. By comparing Figure 5.2 and Figure 5.B.2, we argue that there is
a clear correlation between the average weight and the number of selections of each
moment. More precisely, all redundant moments have an average weight which is very
close to zero and hence, they are not selected by the pGMM estimator.

Figure 5.3 highlights the influence of λ on β and hence, on the number of selected
moment conditions for one Monte Carlo run.15 For instance, for log(λ) = −6 no
overidentifying moment conditions are selected and the solution of the pGMM estimator
corresponds to the one of the GMM estimator. Further, the number of selected moments
increases as λ increases, i.e., the penalty shrinks the elements of β to zero. Furthermore,
the relevant moments get selected first when λ increases and we do not select any
redundant moment until λ becomes very large.

15For the purpose of illustration, we use a wider range of of λ values for this plot.
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Figure 5.2: Share of Selections of Moments across Monte Carlo Runs

(a) T = 100

(b) T = 250

(c) T = 1000Note: The figure shows how often each moment gets selected across
M = 3, 500 Monte Carlos simulations. Redundant moments (orange)
and relevant moments (blue) are displayed on the x-axis. Each x-axis
label abbreviates a moment condition, e.g., [0, 1, 2, 1] corresponds to
E[e(B)0

1,t e(B)1
2,t e(B)2

3,t e(B)1
4,t].
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Figure 5.3: Illustration of Influence of λ on β.

(a) Trace Plot (b) Selected Moments
Note: Panel (a) of the figure shows the values of β in dependence on log(λ) for one Monte Carlo run
for T = 100 and the corresponding number of selected moments in D̃. Panel (b) of the figure splits the
number of selected moments into the number of selected redundant and the number of selected relevant
moments for each log(λ).

5.6 Application of the block-recursive SVAR: Disentangling
speculative demand and supply shocks in the oil market

In this section, we propose a SVAR model for the oil market to analyze the impact of flow
and speculative supply and of flow and speculative demand shocks on the real oil price.
A flow supply shock for oil represents an exogenous deviation in the present amount of
oil coming out of the ground and a flow demand shock for oil an exogenous deviation in
the present amount of oil being consumed. A speculative oil supply shock represents a
shift in the expected future oil supply and a speculative oil demand shock a shift in the
expected future oil demand.

We consider a SVAR with monthly data from January 1974 to December 2019 of
the form 

Ot

Yt

OPt

SRt

 = α+
12∑

i=1
Ai


Ot−i

Yt−i

OPt−i

SRt−i

+


uO

t

uY
t

uOP
t

uSR
t

 . (5.15)

The variable Ot is the log difference of global oil production, Yt is the log difference of
industrial production, measuring economic activity, OPt is the growth rate of real oil
price, and SRt are real monthly stock returns.16 We decompose the reduced form shocks

16Global oil production is given by the global crude oil including lease condensate production obtained
from the U.S. EIA. We obtain industrial production by the monthly industrial production index in the
OECD and six major other countries from Baumeister and Hamilton (2019). The real oil price is equal to
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ut into four structural shocks with
uO

t

uY
t

uOP
t

uSR
t

 =


b11 b12 0 0
b21 b22 0 0
b31 b32 b33 b34
b41 b42 b43 b41




εs
t

εd
t

εs−exp
t

εd−exp
t

 , (5.16)

where εs
t is a flow supply shock for oil, εd

t is a flow demand shock for oil, εs−exp
t is a

speculative oil supply shock, and εd−exp
t is a speculative oil demand shock. The block-

recursive restrictions in Equation (5.16) imply that oil production and economic activity
behave sluggishly and can contemporaneously only respond to flow supply and demand
shocks, whereas oil prices and stock returns can immediately incorporate all available
information and contemporaneously respond to flow and speculative supply and demand
shocks.

The simultaneous relationship is estimated using the block-recursive SVAR pGMM
estimator.17 In line with the Monte Carlo simulations, we apply continuous updating for
the weighting matrix and use the assumption of serially and mutually independent shocks
to estimate the asymptotically efficient weighting matrix as proposed by Keweloh (2021a).
With the imposed block-recursive structure, we can divide the moment conditions into 14
identifying conditions E[fN(B, ut)] and 43 overidentifying conditions E[fD(B, ut)]. We
use the same specifications to construct the weights as in the Monte Carlo simulation,
i.e., we use r1 = 2 and r2 = 1 in Equation (5.12). For the cross-validation, we consider a
range of 28 values for λ, including λ = 0. The maximum value of λ is chosen such that
all conditions E[fD(B, ut)] for which ωj/

∑
k∈D̃

ωk > 10−7 get selected. With the chosen
λ = 34679, which is the 27th value of the considered sequence, 12 coskewness and 12
cokurtosis conditions are selected.18

For each estimated structural shock, Table 5.3 shows the estimated skewness, kurtosis
and p-value of the Jarque-Bera test. To ensure identification, at most one structural
shock in each block may be Gaussian. With our block-recursive structure, each block
contains only two shocks and, therefore, it is sufficient for identification to show that at
least one structural shock in each block is non-Gaussian. Furthermore, the block-recursive
structure implies that each of the two unmixed innovations in the first block is equal to a
linear combination of the two structural shocks in the first block, i.e., if both structural
shocks are Gaussian, the two unmixed innovations have to be Gaussian as well. However,

the refiner’s acquisition cost of imported crude oil from the U.S. EIA deflated by the U.S. CPI. Real stock
prices correspond to the aggregate U.S. stock index constructed by the OECD deflated by the U.S. CPI.

17In Appendix 5.B.2, we conduct various robustness checks. In particular, we estimate the block-
recursive SVAR using the GMM estimator from Equation (5.9) and the overidentified GMM estimator
from Equation (5.10). Estimates using the white fast SVAR GMM estimator proposed by Keweloh (2021b)
and the PML estimator proposed by Gouriéroux et al. (2017) are qualitatively similar and available on
request. Additionally, we report results for different specifications of the variables in the block-recursive
SVAR.

18Additionally, we compute the block-recursive SVAR pGMM estimator using the plugin rule λ =
k

r2/4
D T (−0.5−r2/4), where kD denotes the number of overidentifying moment conditions, see Cheng and

Liao (2015). The estimator selects 8 coskewness and 6 cokurtosis conditions.
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the skewness, kurtosis, and the Jarque-Bera test suggest that the unmixed innovations
in the first block are non-Gaussian and, hence, that at least one structural shock in
the first block is non-Gaussian. Consequently, the first block is identified. Moreover,
the unmixed innovations in the second block are equal to a linear combination of the
structural shocks in the second block (the argument follows from Equation (5.A.3) in the
proof of Proposition 5.2). Again, the skewness, kurtosis and the Jarque-Bera test suggest
that the unmixed innovations in the second block are non-Gaussian, implying that at
least one structural shock in the second block is non-Gaussian. Thus, the second block is
also identified. Consequently, the block-recursive SVAR is identified.

Table 5.3: Non-Gaussianity of the estimated structural shocks
εs

t εd
t εs−exp

t εd−ext
t

Skewness −0.97 −0.21 0.46 −0.82
Kurtosis 9.92 4.58 6.79 6.88
JB-Test 0.00 0.00 0.00 0.00

Note: Skewness, kurtosis and the p-value of the Jarque-Bera test.

In Figure 5.4, we show impulse response functions (IRFs). With the block-recursive
structure, labeling of the shocks in the plot of the IRFs is straightforward. In the first
block, there is only one shock which leads to a significant immediate increase of economic
activity and, thus, an immediate increase in demand for oil. We label this shock as the
flow demand shock and the remaining shock in the first block as the flow supply shock.
In the second block, one shock leads to an immediate increase of the real oil price and
to a long-run increase of economic activity. We label this shock as the speculative oil
demand shock. The remaining shock in the second block leads to an immediate decrease
of the oil price and to an increase of economic activity and oil production in the long-run,
which corresponds to the speculative oil supply shock.

Our results show that flow supply shocks immediately increase oil production and
decrease the real oil price and flow demand shocks increase economic activity and the
real oil price. Moreover, oil production responds to the demand shock with a lagged
increase. Interestingly, it seems that real stock returns do not respond significantly to
flow demand and supply shocks. With respect to the speculative shocks, we find that a
supply expectation shock leads to an increase of oil production and of economic activity
after one year. Furthermore, it immediately and permanently decreases the real oil price
and increases real stock returns. A speculative demand shock increases oil production and
economic activity. Additionally, the speculative demand shocks leads to an immediate
increase of the real oil price and of real stock returns.

Figure 5.5 shows the contribution of the estimated structural shocks to the evolution
of the real oil price. Figure 5.B.3 in Appendix 5.B.2 shows the historical evolution of
the real oil price. Figure 5.5 suggests that the increase of the real oil price from 1978 to
1981 is mainly driven by flow supply and speculative supply shocks. Moreover, we find
that the decline of the real oil price from 1981 to 1985 is largely explained by speculative
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Figure 5.4: Impulse Responses of the block-recursive SVAR pGMM estimator.

Note: Impulse responses to the estimated structural shocks for the block-recursive SVAR pGMM estimator.
Confidence bands are symmetric 68% and 80% bands based on standard errors and 1000 replications.
The rows show the cumulative responses. The x-axis displays monthly lags.

supply shocks. Additionally, the decrease in real oil prices after the collapse of OPEC in
1985 and the peak of real oil prices during the Persian Gulf War in 1990 can to a large
extent be explained explained by speculative supply shocks. The run-up in the real oil
prices from 2003 to 2008 is driven by flow demand, speculative demand, and speculative
supply shocks. Flow demand and speculative demand shocks explain the plunge of the
real oil price during the financial crisis in 2008. Additionally, most of the recovery of
the real oil price after the financial crisis is explained by demand shocks. The collapse
of the real oil price since mid 2014 is related to flow demand, speculative demand, and
speculative supply shocks.

The IRFs in Figure 5.4 show no evidence against a recursive structure of the shocks in
the first block. That said, our results clearly suggest that the second block does not have a
recursive structure since the two structural shocks in the second block have an immediate
impact on both reduced form shocks in the second block. As a robustness-check and
to illustrate the impact of misspecification in the second block, we estimate a recursive
specification as proposed in Kilian and Park (2009). That is, we restrict b12 and b34

180



Figure 5.5: Real oil price evolution explained by the estimated structural shocks.

Note: In each of the panels, we simulate the real oil price (blue line) by setting all but one of the shocks
to zero (and for ease of interpretation, we also set α = 0 in Equation (5.15)). The red vertical bars
indicate the following events: Iranian Revolution (1978 : 9), Iran Iraq War (1980 : 9), collapse of OPEC
(1985 : 12), Persian Gulf War (1990 : 8), Asian Financial Crisis of (1997 : 7), Iraq War (2003 : 1), the
collapse of Lehman Brothers (2008 : 9), and the oil price decline in mid 2014.

in Equation (5.16) to zero. In this case, the interpretation of the shocks changes and
we refer to the third and fourth shock as speculative oil price shock and residual stock
market shock, respectively.

Figure 5.B.5 in Appendix 5.B.2 displays the IRFs of the recursive SVAR. The
response of the real oil price to flow supply and demand shocks in the recursive model is
similar to the the one in the block-recursive model. The speculative oil price shock leads
to an decrease of the real oil price. However, none of the remaining variables shows any
significant response to the speculative oil price shock, except for economic activity which
shows a small negative reaction in the first seven month. In the recursive SVAR for the
oil market, we cannot distinguish between speculative supply and speculative demand
shocks. Rather, the speculative oil price shock contains a mixture of the speculative
supply and speculative demand shock. However, the impact of the speculative oil price
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shocks on oil production and the economy should depend on the source of the speculative
oil price shock and, thus, it is not surprising that we are unable to find a clear response
of oil production, economic activity, and the stock market to the speculative oil price
shock in the recursive specification.

As a further robustness-check, we estimate the SVAR without any restrictions on the
interaction, i.e., we estimate the model without the zero restrictions given in Equation
(5.16). In this case, the labeling of the shocks is the same as in Equation (5.16). However,
the difference is that oil production and economic activity can now contemporaneously
respond to speculative supply and demand shocks. Figure 5.B.6 and Figure 5.B.7 in
Appendix 5.B.2 show the corresponding IRFs. Overall, the unrestricted responses in
Figure 5.B.6 are comparable to the block-recursive responses in Figure 5.4. However, the
confidence bands are broader and there is no significant response of the real oil price to
flow supply and (almost) no significant response to flow demand shocks.

5.7 Conclusion

For a non-Gaussian block-recursive SVAR, we derive a small set of identifying moment
conditions based on the assumption of mean independent shocks. Moreover, we derive
overidentifying moment conditions, some of these require mean independent shocks and
some of these additionally require independent shocks. We show that the overidentifying
conditions can decrease the asymptotic variance of the block-recursive SVAR estimator.
In particular, we prove that the frequently applied Cholesky estimator can be inefficient.
Since some of the overidentifying moment conditions may be redundant, i.e., may not
decrease the asymptotic variance, or be invalid, i.e., may lead to inconsistent estimates,
we employ the block-recursive SVAR pGMM estimator to select only the relevant and
valid overidentifying moment conditions.

We demonstrate in a Monte Carlo experiment that imposing a block-recursive
structure substantially increases the finite sample performance compared to unrestricted
estimators. Furthermore, a second Monte Carlo experiment highlights that, for a given
block-recursive structure, the block-recursive SVAR pGMM estimator selects only relevant
moment conditions and thereby, increases finite sample precision compared to the block-
recursive SVAR GMM estimator and overidentified block-recursive SVAR GMM estimator.

Our application analyzes the impact of flow and speculative supply and flow and
speculative demand shocks in the oil market. We argue that there are some but not
enough well-justified restrictions available to identify the SVAR based on second moments.
Traditional approaches would either rely on additional less credible restrictions or refrain
from using any restrictions and solely rely on non-Gaussianity. The proposed block-
recursive estimator allows to utilize only the well-justified restrictions and, therefore, offers
a compromise between both approaches. The application illustrates that by combining
data-driven identification with traditional zero restrictions we are able to gain deeper
insights into the transmission of demand and supply shocks in the oil market.
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Appendix 5.A Supplementary Notation and Proofs

We include the formulas in Appendix 5.A.1 and 5.A.2 for completeness, even though they
are standard textbook results (cf. Hall (2005)).

5.A.1 Asymptotic variance of the block-recursive SVAR GMM estimator

The asymptotic variance of the block-recursive SVAR GMM estimator defined in Equation
(5.9) is given by

VN := MNSNM
′
N

where
MN :=

(
G′

NWNGN
)−1

G′
NWN, SN := lim

T →∞
E [TgN(B0)gN(B0)] ,

GN := E

[
∂fN(B0, ut)
∂vec(B)′

]
.

Consequently, using the weighting matrix W ∗
N := S−1

N leads to the estimator B̂∗

with the asymptotic variance
V ∗

N := (G′
NS

−1
N GN)−1,

which is the lowest possible asymptotic variance (see Hall (2005)).

5.A.2 Asymptotic variance of the (overidentified) block-recursive SVAR
GMM estimator

The asymptotic variance of the overidentified block-recursive SVAR GMM estimator
defined in Equation (5.10) is given by

VN+D := MN+DSN+DM
′
N+D, (5.A.1)

where
MN+D :=

(
G′

N+DWN+DG
)−1

G′
N+DWN+D, SN+D := lim

T →∞
E
[
gN+D(B0)gN+D(B0)′] ,

GN+D :=
[
GN
GD

]
, gN+D(B0) :=

[
gN(B0)
gD(B0)

]
,

GD := E

[
∂fD(B0, ut)
∂vec(B)′

]
.
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Using the weighting matrix W ∗
N+D := S−1

N+D leads to the estimator B̂∗
N+D with the

asymptotic variance
V ∗

N+D := (G′
N+DS

−1
N+DGN+D)−1, (5.A.2)

which is the lowest possible asymptotic variance (see Hall (2005)). To construct VN+Dj

and V ∗
N+Dj

, j ∈ D̃, we replace the moment conditions fDj (B, ut) by moment condition
fDj (B, ut), j ∈ D̃, in Equation (5.A.1) and (5.A.2).

5.A.3 Identification in the block-recursive SVAR

Proof of Proposition 5.1.
For ease of notation, we omit the time index t and w.l.o.g., consider an example with
two blocks19 [

up1

up2

]
=
[
B11,0 0
B21,0 B22,0

] [
εp1

εp2

]
and B =

[
B11 0
B21 B22

]
,

where up1 and up2 contain the reduced form shocks of the first and second block, εp1 and
εp2 contain the structural shocks of the first and second block, and B11,0, B21,0, B22,0,
B11, B21, and B22 are the corresponding blocks of the matrices B0 and B.

First, let E[f2p1
(B, u)] = 0 contain all (co-)variance conditions of shocks in the

first block. The block-recursive structure implies that up1 = B11,0εp1 . If at most one
structural shock in the first block has zero excess kurtosis, it follows from Lanne and
Luoto (2021) that the conditions containing only shocks in the first block

E

[
f2p1

(B, u)
f4p1

(B, u)

]
= 0

locally identify B11 = B11,0, the impact of the shocks in the first block on the variables
in the first block.

19If the SVAR contains more than two blocks, the procedure outlined in the proof can be repeated
multiple times to identify arbitrary many blocks. For example, a SVAR with three blocks[

up1

up2

up3

]
=

[
B11,0 0 0
B21,0 B22,0 0
B32,0 B32,0 B33,0

][
ϵp1

ϵp2

ϵp3

]
can be written as

[
up1

ũp2

]
=
[

B11,0 0
B̃21,0 B̃22,0

][
ϵp1

ϵ̃p2

]
,

with ũp2 = [u′
p2 , u′

p3 ]′, B̃22,0 =
[

B22,0 0
B32,0 B33,0

]
, B̃21,0 =

[
B21,0
B31,0

]
,and ϵ̃p2 = [ϵ′

p2 , ϵ′
p3 ]′. Our proof then

shows how to identify B11,0, B̃21,0 =
[

B21,0
B31,0

]
, and ϵp1 . Defining

[
zp2

zp3

]
:=
[

up2

up3

]
−
[

B21,0
B31,0

]
ϵp1 then yields

[
zp2

zp3

]
=
[

B22,0 0
B32,0 B33,0

][
ϵp2

ϵp3

]
,

which is another block-recursive SVAR with two blocks.
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Second, let E
[
f2p1p2

(B, u)
]

= 0 contain all covariance conditions belonging to shocks
in both blocks. At the local solution B11 = B11,0, the covariance conditions containing
shocks of both blocks only hold if B21 = B21,0. To see this, rewrite the covariance condi-
tions as E [ep2(B)ep1(B)′] = 0. With the partitioned inverse of B and the block-recursive
structure, it holds that ep2(B) = −B−1

22 B21B
−1
11 B11,0εp1 + B−1

22 (B21,0εp1 +B22,0εp2).
Therefore, with B11 = B11,0 it holds that

E
[
ep2(B)ep1(B)′] = −B−1

22 B21E
[
εp1ε

′
p1

]
+B−1

22 B21,0E
[
εp1ε

′
p1

]
+B22,0E

[
εp2ε

′
p1

]
.

With E
[
εp1ε

′
p1

]
= I and E[εp2ε

′
p1 ] = 0, the condition E [ep2(B)ep1(B)′] = 0 implies

0 = −B−1
22 (B21 −B21,0) at B11 = B11,0. Therefore, at the local solution B11 = B11,0

the covariance conditions E
[
f2p1p2

(B, u)
]
, globally identify B21 = B21,0 the impact of

shocks in the first block on variables in the second block.
Finally, let E[f2p2

(B, u)] = 0 contain all (co-)variance conditions of shocks in the
second block. At the solution B11 = B11,0 and B21 = B21,0 the unmixed innovations of
the second block ep2(B) are mixtures of the structural shocks in the second block and are
not influenced by shocks from the first block. This follows from the partitioned inverse
of B and the block-recursive structure such that ep2(B) = B−1

22 B22,0εp2 . If at most one
structural shock in the second block has zero excess kurtosis, it then again follows from
Lanne and Luoto (2021) that at the solution B11 = B11,0 and B21 = B21,0 the remaining
conditions containing only shocks in the second block

E

[
f2p2

(B, u)
f4p2

(B, u)

]
= 0

locally identify B22 = B22,0, meaning the impact of shocks in the second block on variables
in the second block.

Proof of Proposition 5.2.
To simplify the notation let
ũ1 := [u1, ..., upi−1]′, ẽ1(B) := [e1(B), ..., epi−1(B)]′, ε̃1 := [ε1, ..., εpi−1]′,

ũ2 := [upi , ..., upi+1−1]′, ẽ2(B) := [epi(B), ..., epi+1−1(B)]′, ε̃2 := [εpi , ..., εpi+1−1]′,

ũ3 := [upi+1 , ..., un]′, ẽ3(B) := [epi+1(B), ..., en(B)]′, ε̃3 := [εpi+1 , ..., εn]′,

such that ũ1, ẽ1(B), and ε̃1 contain all reduce form shocks, unmixed innovations, and
structural shocks in blocks preceding the ith block of Bbrec, ũ2, ẽ2(B), and ε̃2 contain
the innovations and shocks in the i-th block of Bbrec, and ũ3, ẽ3(B), and ε̃3 contain the
innovations and shocks following block i of Bbrec. Moreover, we denote parts of the B0
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matrix as follows ũ1
ũ2
ũ3

 =

B11,0 0 0
B21,0 B22,0 0
B31,0 B32,0 B33,0


ε̃1
ε̃2
ε̃3

 ,
and B11, B21, B31, B22, B32, and B33 denote the respective parts of a given B matrix.

With the block-recursive structure and the partitioned inverse, it holds that
ẽ1(B) = B−1

11 B11,0ε̃1,

ẽ2(B) = −B−1
22 B21B

−1
11 B11,0ε̃1 +B−1

22 (B21,0ε̃1 +B22,0ε̃2) .

For any matrix B satisfying E
[
f2(B, ut)

]
= 0 and, therefore, 0 = E [ẽ2(B)ẽ1(B)′] it

holds that 0 = −B−1
22

(
B21,0 −B21B

−1
11 B11,0

)
B′

11,0(B−1
11 )′ and, thus, B21 = B21,0B

−1
11,0B11.

Any B Matrix satisfying the condition 0 = E [ẽ2(B)ẽ1(B)′] thus yields innovations of the
second block equal to

ẽ2(B) = B−1
22 B22,0ε̃2, (5.A.3)

meaning the innovations of the second block are equal to a linear combination of the
structural shocks in the second block. Applying the identification result from Lanne and
Luoto (2021) yields that the conditions E

[
f4p̃i

(B, ut)
]

= 0 locally identify B22,0.

Analogously, with the block-recursive structure and the partitioned inverse it holds
that

ẽ3(B) = −B−1
33

[
B31 B32

] [B11 0
B21 B22

]−1 [
B11,0 0
B21,0 B22,0

] [
ε̃1
ε̃2

]

+B−1
33

([
B31,0 B32,0

] [ε̃1
ε̃2

]
+B33,0ε̃3

)
.

With B21 = B21,0B
−1
11,0B11 it follows that

ẽ3(B) = −B−1
33

[
B31 B32

] [ B−1
11 0

−B−1
22 B21,0B

−1
11,0B11B

−1
11 B−1

22

] [
B11,0 0
B21,0 B22,0

] [
ε̃1
ε̃2

]

+B−1
33

([
B31,0 B32,0

] [ε̃1
ε̃2

]
+B33,0ε̃3

)

= −B−1
33

[
B31 B32

] [ B−1
11 0

−B−1
22 B21,0B

−1
11,0 B−1

22

] [
B11,0 0
B21,0 B22,0

] [
ε̃1
ε̃2

]

+B−1
33 (B31,0ε̃1 +B32,0ε̃2 +B33,0ε̃3)

186



= −B−1
33

[
B31B

−1
11 −B32B

−1
22 B21,0B

−1
11,0 B32B

−1
22

] [B11,0 0
B21,0 B22,0

] [
ε̃1
ε̃2

]

+B−1
33 (B31,0ε̃1 +B32,0ε̃2 +B33,0ε̃3) .

Hence, at B22 = B22,0 the condition E
[
f2(B, ut)

]
= 0 implies 0 = E[ẽ3(B)ẽ2(B)′] and

therefore,
0 = B−1

33 (−B32B
−1
22 B22,0 +B32,0)

which implies B32 = B32,0.

5.A.4 Redundant and relevant moment conditions in the recursive SVAR

The proof of Proposition 5.3 requires to verify the redundancy conditions from Breusch
et al. (1999). However, verifying these conditions is a lengthy task. We derive analytical
expressions for the conditions in Online Appendix C and summarize them in Lemma
5.C.14 in Online Appendix C. The following proof of Proposition 5.3 uses Lemma 5.C.8
and 5.C.14 in Online Appendix C.

Proof of Proposition 5.3.
In the recursive SVAR, the identifying moment conditions E[fN(B, ut)] only contain
second-order moment conditions and therefore, are referred to as E[f2(B, ut)] in this
proof.

Breusch et al. (1999) show that overidentifying moment conditions E[fD(B, ut)] are
redundant w.r.t. the identifying moment conditions E[f2(B, ut)] if and only if

GD = SD2S
−1
2 G2,

where

GD := E

[
∂fD(B0, ut)
∂vec(B)′

]
, G2 := E

[
∂f2(B0, ut)
∂vec(B)′

]
,

S2 := lim
T →∞

E
[
g2(B0)g2(B0)′] , SD2 := lim

T →∞
E
[
gD(B0)g2(B0)′] .

Moreover, Breusch et al. (1999) show that overidentifying moment conditions E[fD(B, ut)]
are partially redundant w.r.t. E[f2(B, ut)] for a subset of coefficients b ⊂ vec(B) w.r.t.
the moment conditions E[f2(B, ut)] if and only if

Gb
D − SD2S

−1
2 Gb

2 =
(
G¬b

D − SD2S
−1
2 G¬b

2

)((
G¬b

2

)′
S−1

2 G¬b
2

)((
G¬b

2

)′
S−1

2 Gb
2

)
,(5.A.4)

where

Gb
2 := E

[
∂f2(ut, B0)

∂b′

]
, Gb

D := E

[
∂fD(ut, B0)

∂b′

]
,
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G¬b
2 := E

[
∂f2(ut, B0)
∂(¬b)′

]
, G−b

D := E

[
∂fD(ut, B0)
∂(¬b)′

]
,

and where ¬b denotes all unrestricted elements of B not contained in b. With Lemma
5.C.8 it holds that Gbi

2
′
S−1

2 G
bj

2 = 0 for i, j ∈ {1, . . . , n} with i ̸= j. Therefore, for any
vector bi = [bii, ..., bni] representing the impact of the ith structural shock ϵi,t it holds
that Gbi

2
′
S−1

2 G¬bi
2 is zero. Therefore, for any vector bi = [bii, ..., bni] the right hand side

of Equation (5.A.4) is zero and hence the partial redundancy condition simplifies to
Gbi

D − SD2S
−1
2 Gbi

2 = 0.

The statements then follow from Lemma 5.C.14.

5.A.5 Asymptotic variance of the block-recursive SVAR pGMM estimator

We show how to derive the asymptotic variance of the pGMM estimator, VN+A, based
on Remark 3.5 of Cheng and Liao (2015). We first show Lemma 5.A.1 and then
apply the result in Remark 3.5 of Cheng and Liao (2015). Recall that E[fI(B, ut)] and
E[fR(B, ut)] denote the sets of invalid and redundant moment conditions, respectively.
Denote E[fU(B, ut)] as moment conditions either in E[fI(B, ut)] or E[fR(B, ut)] and
the number of moment conditions E[fU(B, ut)] by kU. Similarly, we denote kA as the
number of moment conditions in E[fA(B, ut)]. Further, define the number of unrestricted
elements in vec(B) as dB. In the proof of Lemma 5.A.1, we use the indices 1 ≡ N + A,
2 ≡ (N + A,U), 3 ≡ (U,N + A), and 4 ≡ U to keep notation uncluttered. Let
ι∗ = (ι′,0′

kU
)′ where ι = (1, . . . , 1)′ is a dB × 1 vector, i.e., ι∗′Aι∗ gives the leading

dB × dB-upper west block of an arbitrary (dB + kU) × (dB + kU) matrix A.

Lemma 5.A.1.
ι∗′ (Γ′WΓ

)−1 (Γ′WSN+DWΓ
) (

Γ′WΓ
)−1

ι∗ = VN+A,

where

Γ :=
[
GN+A 0(kN+kA)×kU

GU −IkU

]
, VN+A := MN+ASN+AM

′
N+A

MN+A :=
(
G′

N+AW
pi
N+AGN+A

)−1
G′

N+AW
pi
N+A, SN+A := lim

T →∞
E
[
gN+A(B0)gN+A(B0)′] ,

GN+A :=
[
GN
GA

]
, W pi

N+A :=
(
WN+A −WN+A,I∪RW

−1
I∪RWI∪R,N+A

)
,

GA := E

[
∂fA(B0, ut)
∂vec(B)′

]
, WN+D :=

[
WN+A WN+A,I∪R,

WI∪R,N+A WI∪R

]
,

WN+A ∈ R(kN+kA)×(kN+kA), WN+A,I∪R ∈ R(kN+kA)×(kD−kA),

WI∪R,N+A = W ′
N+A,I∪R, WI∪R ∈ R(kD−kA)×(kD−kA).
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Proof. Recall thatGN+A andGU have dimension (kN+kA)×dB and kU×dB, respectively.
We define

L :=
[
L1 L2
L3 L4

]
:=
(
Γ′WΓ

)−1
.

Additionally, let

N :=
[
N1 N2
N3 N4

]
:=
(
Γ′WSN+DWΓ

)
,

and denote the inverse of W by

W ipi :=
[
W ipi

1 W ipi
2

W ipi
3 W ipi

4

]
:= W−1 =

[
W1 W2
W3 W4

]−1

.

Let W pi
1 :=

(
W1 −W2W

−1
4 W3

)
. Then, by the partitioned inverse, W ipi

1 :=
(
W pi

1

)−1
. By

similar arguments as leading to (2.18) in the Online Appendix of Cheng and Liao (2015),
we get that

L1 =
(
G′

1

(
W1 −W2W

−1
4 W3

)
G1
)−1

=
(
G′

1W
pi
1 G1

)−1

and, by using the partitioned inverse formula again, and similar arguments as leading to
(2.10), (2.11) and (2.18) in the Online Appendix of Cheng and Liao (2015), that

L3 = −W−1
4
(
−G′

1W2 −G′
4W4

)′ (
G′

1W
pi
1 G1

)−1

=
(
W−1

4 W3G1 +G4
)
L1

= XL1, (5.A.5)

where we used that W ′
4 = W4, W3 = W ′

2 and X :=
(
W−1

4 W3G1 +G4
)
. Further, let

H :=
[
H1 H2
H3 H4

]
:= WSN+DW,

where
H1 := W1S1W1 +W2S3W1 +W1S2W3 +W2S4W3

H2 := W1S1W2 +W2S3W2 +W1S2W4 +W2S4W4

H3 := W3S1W1 +W4S3W1 +W3S2W3 +W4S4W3

H4 := W3S1W2 +W4S3W2 +W3S2W4 +W4S4W4.
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Note that H3 = H ′
2 since W3 = W ′

2, W1 = W ′
1, W4 = W ′

4, S3 = S′
2, S1 = S′

1 and S4 = S′
4.

Hence, similar to (2.11) in the Online Appendix of Cheng and Liao (2015),
N1 = G′

1H1G1 +G′
4H3G1 +G′

1H2G4 +G′
4H4G4

= G′
1H1G1 +G′

4H
′
2G1 +G′

1H2G4 +G′
4H4G4

N2 = −G′
1H2 −G′

4H4

N3 = N ′
2

N4 = H4.

Then,
ι∗′ (Γ′WΓ

)−1 (Γ′WSN+DWΓ
) (

Γ′WΓ
)−1

ι∗ = ι∗′LNLι∗

= L1N1L1 + L2N3L1 + L1N2L3 + L2N4L3

= L1N1L1 + L′
3N3L1 + L1N2L3 + L′

3N4L3

(5.A.5)= L1N1L1 + L′
1X

′N ′
2L1 + L1N2XL1

+ L′
1X

′N4XL1

= L1
(
N1 +X ′N ′

2 +N2X +X ′N4X
)
L1,(5.A.6)

where we used that L′
1 = L1, L′

3 = L2, and N ′
3 = N2.

Next, define Y := N1 +X ′N ′
2 +N2X +X ′N4X. Then, multiplying out gives

Y =G′
1H1G1 +G′

4H3G1 +G′
1H2G4 +G′

4H4G4 +
(
G′

1W2W
−1
4 +G′

4

) (
−H ′

2G1 −H ′
4G4

)
+
(
−G′

1H2 −G′
4H4

) (
W−1

4 W ′
2G1 +G4

)
+
(
G′

1W2W
−1
4 +G′

4

)
H4
(
W−1

4 W ′
2G1 +G4

)
=G′

1W2W
−1
4 H4W

−1
4 W ′

2G1 +G′
1H1G1 −G′

1W2W
−1
4 H ′

2G1 −G′
1H2W

−1
4 W ′

2G1

=G′
1

(
W2W

−1
4 H4W

−1
4 W ′

2 +H1 −W2W
−1
4 H ′

2 −H2W
−1
4 W ′

2

)
G1

=G′
1

(
W2W

−1
4 W3S1W2W

−1
4 W3 +W1S1W1 −W2W

−1
4 W3S1W1 −W1S1W2W

−1
4 W3

)
G1

=G′
1

(
W1 −W2W

−1
4 W3

)
S1
(
W1 −W2W

−1
4 W3

)
G1
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=G′
1W

pi
1 S1W

pi
1 G1 (5.A.7)

Plugging (5.A.7) into (5.A.6), we obtain
ι∗′ (Γ′WΓ

)−1 (Γ′WSN+DWΓ
) (

Γ′WΓ
)−1

ι∗

= L1
(
G′

1W
pi
1 S1W

pi
1

)
G1L1

=
(
G′

1W
pi
1 G1

)−1 (
G′

1W
pi
1 S1W

pi
1 G1

) (
G′

1W
pi
1 G1

)−1

=
(
G′

N+AW
pi
N+AGN+A

)−1 (
G′

N+AW
pi
N+ASN+AW

pi
N+AGN+A

) (
G′

N+AW
pi
N+AGN+A

)−1

which was to show.

Note that in the following proposition, we treat the number of valid and relevant
moment conditions, kA, and the number of invalid moment conditions, kI, as fixed
constants to keep our asymptotic results for the pGMM estimator in line with the
asymptotic results for the block-recursive SVAR GMM estimator in Equation (5.10).
Cheng and Liao (2015) allow both kA and kI to increase with the sample size. However,
their results also hold when the number of moment conditions is fixed.

Proposition 5.A.1. Assume that the Assumptions in Theorem 3.3 of Cheng and Liao
(2015) hold. Further, assume that E

[
∂fA(B0,ut)

∂vec(B)′

]
= ∂E[fA(B0,ut)]

∂vec(B)′ and Assumption 5.1 and
5.2 hold. Then,

√
T
(
vec(B̂N+D) − vec(B0)

)
d→ N (0, VN+A)

Proof. Define ΣCL := (Γ′WΓ)−1 (Γ′WSN+DWΓ) (Γ′WΓ)−1 and γ =
(
ν ′,0′

kU

)′
where

ν ∈ RdB is an arbitrary vector. Then, by Remark 3.5 of Cheng and Liao (2015),∣∣∣∣∣∣Σ1/2
CL γ

∣∣∣∣∣∣−1 √
Tν ′

(
vec(B̂N+D) − vec(B0)

)
d→ N (0, 1),

where ||a|| :=
√
a′a is the ℓ2-norm of an arbitrary vector a.

Note that Lemma 5.A.1 immediately implies
∣∣∣∣∣∣Σ1/2

CLγ
∣∣∣∣∣∣ =

√
γ′ΣCLγ =

√
ν ′VN+A(W )ν.

Hence, ∣∣∣∣∣∣VN+A(W )1/2ν
∣∣∣∣∣∣−1 √

Tν ′
(
vec(B̂N+D) − vec(B0)

)
d→ N (0, 1),

where VN+A(W ) is the asymptotic variance of vec(B̂N+D) since it holds that

ν∗′VN+A(W )ν∗ =
∣∣∣∣∣∣VN+A(W )1/2ν

∣∣∣∣∣∣−2
ν ′VN+A(W )ν = 1

where ν∗ :=
∣∣∣∣∣∣VN+A(W )1/2ν

∣∣∣∣∣∣−1
ν.
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Consequently, using the Cramér-Wold device, we get
√
T
(
vec(B̂N+D) − vec(B0)

)
d→ N (0, VN+A).

5.A.6 Choice of maximum λ in the cross-validation

In the following, we illustrate how to choose the maximum value of λ in the cross-validation.
Define the loss function of the pGMM estimator as

L∗(B, β) := L(B, β) + λ
∑
i∈D̃

ωi |βi|, (5.A.8)

where L(B, β) :=
[
gN(B)
gD(B, β)

]′

W

[
gN(B)
gD(B, β)

]
.

Further, let z ∈ ∂||β||1, where z ∈ RkD , denote the subgradient for the ℓ1-norm
evaluated at β, i.e.,

zi = sign(βi), ifβi ̸= 0,

zi ∈ [−1, 1], ifβi = 0, (5.A.9)

for i = 1, . . . , kD (Wainwright, 2006). Then, the first order condition of the pGMM
estimator with respect to βi, i = 1, . . . , kD, evaluated at β and B is

∂L∗(B, β)
∂βi

= ∂L(B, β)
∂βi

+ λωi zi = 0 (5.A.10)

Note that ωi ≥ 0. However, if ωi = 0, βi is not penalized and therefore, we only consider
i ∈ P̃ := {j ∈ D̃| ωj > 0} for which, by definition, ωi > 0 when choosing the maximum
value of λ in the cross-validation. By (5.A.9) and (5.A.10), β = 0 = (0, . . . , 0)′ and
B = B0 minimize the loss function in (5.A.8) only if

1
ωi

∂L(B0,0)
∂βi

∈ λ[−1, 1],

for i ∈ P̃ . Thus,

max
i∈P̃

∣∣∣∣ 1
ωi

∂L(B0,0)
∂βi

∣∣∣∣ ≤ λ.

This motivates us to use

λmax = max
i∈P̃

∣∣∣∣ 1
ωi

∂L(B0,0)
∂βi

∣∣∣∣ .
as the largest value in the cross-validation. Note that any λ > λmax would not have an
effect on β as λmax already shrinks all elements of β to zero. In practice, we replace B0
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and ωi by consistent estimators to obtain λmax. Furthermore, we consider a weight ωj to
be positive and hence, j ∈ P̃ , if ωj/

∑
k∈D̃

ωk > 10−4.

Appendix 5.B Supplementary Figures and Tables

5.B.1 Finite sample performance

Table 5.B.1: Finite sample performance including Post-LASSO.
GMM oGMM GMM-Oracle pGMM Post-pGMM

T
=

10
0 B̂


9.93

(1.09)
. . .

4.98
(1.21)

9.86
(1.02)

. .

4.97
(1.49)

4.95
(1.29)

9.83
(1.12)

.

4.96
(1.71)

4.93
(1.46)

4.91
(1.27)

9.78
(1.08)




9.77

(1.07)
. . .

4.90
(1.31)

9.71
(1.01)

. .

4.89
(1.69)

4.88
(1.43)

9.70
(1.10)

.

4.90
(2.07)

4.88
(1.74)

4.88
(1.46)

9.69
(1.09)




9.76

(1.07)
. . .

4.91
(1.17)

9.70
(1.02)

. .

4.91
(1.50)

4.88
(1.26)

9.69
(1.10)

.

4.92
(1.81)

4.88
(1.51)

4.88
(1.25)

9.67
(1.10)




9.96

(1.09)
. . .

5.00
(1.15)

9.88
(1.01)

. .

4.98
(1.46)

4.96
(1.22)

9.85
(1.11)

.

4.99
(1.71)

4.96
(1.42)

4.95
(1.21)

9.82
(1.10)




9.84

(1.06)
. . .

4.96
(1.09)

9.79
(1.01)

. .

4.94
(1.39)

4.93
(1.19)

9.77
(1.11)

.

4.94
(1.61)

4.93
(1.38)

4.91
(1.18)

9.73
(1.11)


#Mo 10.00 57.00 40.00 24.22 24.22
Bias −0.0883 −0.1806 −0.1804 −0.0650 −0.1256
MSE 1.27 1.40 1.28 1.25 1.21

λ . . . 71.08 .

GMM oGMM GMM-Oracle pGMM Post-pGMM

T
=

25
0 B̂


9.97

(0.43)
. . .

4.99
(0.51)

9.96
(0.43)

. .

4.98
(0.64)

5.00
(0.52)

9.93
(0.45)

.

4.98
(0.72)

4.99
(0.61)

4.98
(0.51)

9.91
(0.45)




9.90

(0.40)
. . .

4.96
(0.49)

9.90
(0.40)

. .

4.96
(0.65)

4.97
(0.51)

9.87
(0.42)

.

4.97
(0.73)

4.96
(0.61)

4.97
(0.49)

9.86
(0.42)




9.90

(0.40)
. . .

4.97
(0.44)

9.90
(0.40)

. .

4.97
(0.59)

4.97
(0.46)

9.87
(0.42)

.

4.98
(0.65)

4.97
(0.54)

4.96
(0.44)

9.85
(0.42)




9.99

(0.42)
. . .

5.01
(0.45)

9.97
(0.41)

. .

5.01
(0.59)

5.02
(0.46)

9.94
(0.42)

.

5.02
(0.66)

5.01
(0.55)

5.00
(0.44)

9.92
(0.43)




9.93

(0.41)
. . .

4.98
(0.44)

9.92
(0.41)

. .

4.98
(0.57)

4.99
(0.45)

9.89
(0.43)

.

4.99
(0.64)

4.98
(0.54)

4.97
(0.44)

9.87
(0.44)


#Mo 10.00 57.00 40.00 27.20 27.20
Bias −0.0311 −0.0676 −0.0656 −0.0114 −0.0480
MSE 0.53 0.51 0.48 0.48 0.48

λ . . . 118.92 .

GMM oGMM GMM-Oracle pGMM Post-pGMM

T
=

10
00 B̂


10.00
(0.11)

. . .

5.00
(0.13)

9.99
(0.11)

. .

4.99
(0.15)

4.99
(0.13)

9.99
(0.11)

.

4.99
(0.19)

4.99
(0.15)

4.99
(0.13)

9.98
(0.11)




9.98

(0.10)
. . .

4.99
(0.12)

9.97
(0.10)

. .

4.99
(0.13)

4.99
(0.11)

9.98
(0.10)

.

4.99
(0.16)

4.99
(0.14)

4.99
(0.11)

9.97
(0.10)




9.98

(0.10)
. . .

4.99
(0.11)

9.97
(0.10)

. .

4.99
(0.13)

4.99
(0.10)

9.98
(0.10)

.

4.99
(0.15)

4.99
(0.13)

4.99
(0.11)

9.97
(0.10)




10.00
(0.11)

. . .

5.00
(0.11)

9.99
(0.10)

. .

5.00
(0.13)

5.00
(0.11)

10.00
(0.10)

.

5.00
(0.16)

5.00
(0.13)

5.00
(0.11)

9.98
(0.10)




9.99

(0.11)
. . .

5.00
(0.11)

9.98
(0.11)

. .

4.99
(0.13)

4.99
(0.11)

9.98
(0.10)

.

5.00
(0.16)

4.99
(0.13)

4.99
(0.11)

9.97
(0.11)


#Mo 10.00 57.00 40.00 29.59 29.59
Bias −0.0076 −0.0158 −0.0158 −0.0021 −0.0122
MSE 0.13 0.12 0.11 0.12 0.12

λ . . . 75.34 .
Note: The table reports the average b̄ij and the corresponding estimated MSE (in parentheses) of each
estimated element in B̂ as well as the BIAS and MSE across estimated elements in B̂ over 3, 500 Monte
Carlo replicates for the GMM estimator, the oGMM estimator, the GMM-Oracle estimator, the pGMM
estimator, and the Post-pGMM estimator. The Post-pGMM estimator uses only the overidentifying
moment conditions selected by the pGMM estimator for the estimation of the block-recursive SVAR.
All estimator use zero restrictions which are highlighted by the dots.
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Figure 5.B.1: Relationship of chosen λCV and Number of Selected Moments across
Monte Carlo runs.

(a) T = 100

(b) T = 250

(c) T = 1000
Note: The figure shows the chosen λCV in the cross-validation and the
corresponding number of selected moments for each of the M = 3, 500
Monte Carlo simulations.
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Figure 5.B.2: Average Weight of Moments across Monte Carlo runs.

(a) T = 100

(b) T = 250

(c) T = 1000
Note: The figure shows the average weight of each moment across
M = 3, 500 Monte Carlo simulations. Redundant moments (orange)
and relevant moments (blue) are displayed on the x-axis. Each x-axis
label abbreviates a moment condition, e.g., [0, 1, 2, 1] corresponds to
E[e(B)0

1,t e(B)1
2,t e(B)2

3,t e(B)1
4,t].
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5.B.2 Empirical illustration

This section contains supplementary material and robustness checks for the application
presented in Section 5.6.

Table 5.B.2 shows descriptive statistics of the variables used in the SVAR. Table 5.B.3

Table 5.B.2: Descriptive statistics.
Mean Median Std. deviation Variance Skewness Kurtosis

Ot 0.078 0.19 1.5 2.26 −1.66 10.8
Yt 0.20 0.29 0.60 0.37 −1.2 5.21

OPt 0.32 0.03 7.31 53.4 0.06 4.46
SRt 0.34 0.62 3.61 13.03 −0.82 3.67

shows the correlation between the estimated structural shocks from the block-recursive
SVAR pGMM estimator and the reduced form shocks. Figure 5.B.3 shows the historical

Table 5.B.3: Correlation of reduced form and estimated structural shocks.
uO uY uOP uSR

εs 1 −0.03 −0.13 −0.05
εd 0.06 1 0.12 0.06

εs−exp −0.08 0.02 0.94 −0.27
εd−exp −0.05 0.02 0.33 0.96

evolution of the real oil price.

196



Figure 5.B.3: Real oil price.

Note: The vertical bars indicate the following events: Iranian Revolution 1978 : 9, Iran Iraq War 1980 : 9,
collapse of OPEC 1985 : 12, Persian Gulf War 1990 : 8, Asian Financial Crisis of 1997 :7, Iraq War
2003 : 1, the collapse of Lehman Brothers (2008 : 9), and the oil price decline in mid 2014.

Figure 5.B.4 shows the estimated structural shocks across years.
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Figure 5.B.4: Estimated structural shocks, averaged to annual frequency.

Note: The figure shows the average across years for each estimated structural shocks of the block-recursive
SVAR pGMM estimator.

Figure 5.B.5 shows the IRF for the recursive oil market SVAR from Section 5.6
estimated with the SVAR GMM estimator from Equation (5.9). In the recursive SVAR,
the GMM estimator is just identified and equal to the estimator obtained by applying the
Cholesky decomposition to the variance-covariance matrix of the reduced form shocks.
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Figure 5.B.5: Impulse Responses of the recursive SVAR GMM estimator.

Note: Impulse responses to the recursive oil market SVAR from Section 5.6 estimated with the recursive
SVAR GMM estimator from Equation (5.9), equal to the estimator obtained by applying the Cholesky
decomposition to the variance-covariance matrix of the reduced form shocks. Confidence bands are
symmetric 68% and 80% bands based on standard errors and 500 replications. The rows show the
cumulative responses. The shock εop−exp denotes a speculative oil price shock and the shock εsm

represents a residual stock market shock.

Figure 5.B.6 shows the IRF for the unrestricted oil market SVAR from Section 5.6
estimated with the unrestricted SVAR GMM estimator from Equation (5.9) where the
weighting matrix is continuously updated and estimated based on the assumption of
serially and mutually independent shocks.
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Figure 5.B.6: Impulse Responses of the unrestricted SVAR GMM estimator.

Note: Impulse responses to the estimated structural shocks for the unrestricted oil market SVAR from
Section 5.6 estimated with the unrestricted SVAR GMM estimator from Equation (5.9) where the
weighting matrix is continuously updated and estimated based on the assumption of serially and mutually
independent shocks. Confidence bands are symmetric 68% and 80% bands based on standard errors and
500 replications. The rows show the cumulative responses.

Figure 5.B.7 shows the IRF for the unrestricted oil market SVAR from Section 5.6
estimated with the overidentified unrestricted SVAR GMM estimator from Equation
(5.10) where the weighting matrix is continuously updated and estimated based on the
assumption of serially and mutually independent shocks.
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Figure 5.B.7: Impulse Responses of the unrestricted SVAR oGMM estimator.

Note: Impulse responses to the estimated structural shocks for the unrestricted oil market SVAR from
Section 5.6 estimated with the overidentified unrestricted SVAR GMM estimator from Equation (5.10)
where the weighting matrix is continuously updated and estimated based on the assumption of serially and
mutually independent shocks. Confidence bands are symmetric 68% and 80% bands based on standard
errors and 500 replications. The rows show the cumulative responses.

Figure 5.B.8 shows the IRF for the block-recursive oil market SVAR from Section
5.6 estimated with the block-recursive SVAR GMM estimator from Equation (5.9) where
the weighting matrix is continuously updated and estimated based on the assumption of
serially and mutually independent shocks.
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Figure 5.B.8: Impulse Responses of the block-recursive SVAR GMM estimator.

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from
Section 5.6 estimated with the block-recursive SVAR GMM estimator from Equation (5.9) where the
weighting matrix is continuously updated and estimated based on the assumption of serially and mutually
independent shocks. Confidence bands are symmetric 68% and 80% bands based on standard errors and
500 replications. The rows show the cumulative responses.

Figure 5.B.9 shows the IRF for the block-recursive oil market SVAR from Section 5.6
estimated with the overidentified block-recursive SVAR GMM estimator from Equation
(5.10) where the weighting matrix is continuously updated and estimated based on the
assumption of serially and mutually independent shocks.
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Figure 5.B.9: Impulse Responses of the block-recursive SVAR oGMM estimator.

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR
from Section 5.6 estimated with the overidentified block-recursive SVAR GMM estimator from Equation
(5.10) where the weighting matrix is continuously updated and estimated based on the assumption of
serially and mutually independent shocks. Confidence bands are symmetric 68% and 80% bands based
on standard errors and 500 replications. The rows show the cumulative responses.

Figure 5.B.10 shows the IRF for the block-recursive oil market SVAR from Section
5.6 using 24 lags estimated with the block-recursive SVAR GMM estimator from Equation
(5.9) where the weighting matrix is continuously updated and estimated based on the
assumption of serially and mutually independent shocks.
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Figure 5.B.10: Impulse Responses of the block-recursive SVAR GMM estimator using 24
instead of 12 lags.

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR
from Section 5.6 using 24 lags estimated with the block-recursive SVAR GMM estimator from Equation
(5.9) where the weighting matrix is continuously updated and estimated based on the assumption of
serially and mutually independent shocks. Confidence bands are symmetric 68% and 80% bands based
on standard errors and 500 replications. The rows show the cumulative responses.

Figure 5.B.11 shows the IRF for the block-recursive oil market SVAR from Section 5.6
using the percentage deviation of industrial production from a linear trend instead of the
log difference of industrial production. The SVAR is estimated with the block-recursive
SVAR GMM estimator from Equation (5.9) where the weighting matrix is continuously
updated and estimated based on the assumption of serially and mutually independent
shocks.
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Figure 5.B.11: Impulse Responses of the block-recursive SVAR estimator using the
percentage deviation of industrial production from a linear trend.

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from
Section 5.6 using the percentage deviation of industrial production from a linear trend instead of the
log difference of industrial production. The SVAR is estimated with the block-recursive SVAR GMM
estimator from Equation (5.9) where the weighting matrix is continuously updated and estimated based
on the assumption of serially and mutually independent shocks. Confidence bands are symmetric 68%
and 80% bands based on standard errors and 500 replications. The rows Ot, OPt, and SRt show the
cumulative responses.

Figure 5.B.12 shows the IRF for the block-recursive oil market SVAR from Section
5.6 using log of real oil price instead of real oil price growth and the percentage deviation
of industrial production from a linear trend instead of the log difference of industrial
production. The SVAR is estimated with the block-recursive SVAR GMM estimator
from Equation (5.9) where the weighting matrix is continuously updated and estimated
based on the assumption of serially and mutually independent shocks.

205



Figure 5.B.12: Impulse Responses of the block-recursive SVAR GMM estimator using
the percentage deviation of industrial production from a linear trend and

the log of the real oil price.

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR
from Section 5.6 using the log of the real oil price instead of real oil price growth and the percentage
deviation of industrial production from a linear trend instead of the log difference of industrial production.
The SVAR is estimated with the block-recursive SVAR GMM estimator from Equation (5.9) where the
weighting matrix is continuously updated and estimated based on the assumption of serially and mutually
independent shocks. Confidence bands are symmetric 68% and 80% bands based on standard errors and
500 replications. The rows Ot and SRt show the cumulative responses.

Figure 5.B.13 shows the IRF for the block-recursive oil market SVAR from Section
5.6 using log of real oil price instead of real oil price growth. The SVAR is estimated
with the block-recursive SVAR GMM estimator from Equation (5.9) where the weighting
matrix is continuously updated and estimated based on the assumption of serially and
mutually independent shocks.
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Figure 5.B.13: Impulse Responses of the block-recursive SVAR GMM estimator using
the log of the real oil price.

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from
Section 5.6 using the log of the real oil price instead of real oil price growth. The SVAR is estimated with
the block-recursive SVAR GMM estimator from Equation (5.9) where the weighting matrix is continuously
updated and estimated based on the assumption of serially and mutually independent shocks. Confidence
bands are symmetric 68% and 80% bands based on standard errors and 500 replications. The rows Ot,
Yt, and SRt show the cumulative responses.

Appendix 5.C Derviation of the Lemmata used in the Proof of
Proposition 5.3

5.C.1 Notation and preparations part 1

Consider a recursive SVAR u = B0ϵ with independent structural shocks with mean zero
and unit variance. Let A := B−1

0 and aql [bql] denote the element at row q and column l of
A [B0]. Moreover, let ωi2 := ωii := E

[
ϵ2i
]
, ωi3 := ωiii := E

[
ϵ3i
]
, and ωi4 := ωiiii := E

[
ϵ4i
]

for i = 1, . . . , n. Throughout this part of the appendix, the superscript (∗) indicates that
the equality follows from e(B0) = ϵ with ϵ being mutually independent with mean zero
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and unit variance. Additionally, the superscript (∗∗) indicates that the equality follows
from B0 and hence A0 being recursive.

We divide the variance-covariance conditions E[f2(B, ut)] into a set of variance
conditions

E[f2M(B, ut)] := E


e(B)2

1,t − 1
...

e(B)2
n,t − 1

 ,
and n− 1 sets of covariance conditions E[f2C1

(B, ut)], . . . , E[f2Cn−1
(B, ut)] where

E[f2Ci
(B, ut)] := E

e(B)i,te(B)i+1,t
...

e(B)i,te(B)n,t

 , for i = 1, . . . , n− 1.

We divide the coskewness conditions E[f3(B, ut)] into n subsets

E[f3ii(B, ut)] := E



e(B)1,te(B)2
i,t

...
e(B)i−1,te(B)2

i,t

e(B)2
i,te(B)i+1,t

...
e(B)2

i,te(B)n,t


, for i = 1, . . . , n,

and one additional subset E[f3rest(B, ut)] containing all remaining coskewness conditions
of E[f3(B, ut)] not contained in a subset E[f3ii(B, ut)], which are all coskewness conditions
of the type E[e(B)i,te(B)j,te(B)k,t] with i ̸= j ̸= k.

We divide the cokurtosis conditions E[f4(B, ut)] into n subsets

E[f4ii(B, ut)] = E



e(B)1,te(B)3
i,t

...
e(B)i−1,te(B)3

i,t

e(B)3
i,te(B)i+1,t

...
e(B)3

i,te(B)n,t


, for i = 1, . . . , n,

n− 1 subsets

E[f4iii(B, ut)] = E


e(B)2

i,te(B)2
i+1,t

...
e(B)2

i,te(B)2
n,t

 , for i = 1, . . . , n− 1,

and one additional subset E[f4rest(B, ut)] containing all remaining cokurtosis conditions of
E[f4(B, ut)] not contained in a subset E[f4ii(B, ut)] or E[f4iii(B, ut)], which are all cokur-
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tosis conditions of the type E[e(B0)ie(B0)je(B0)ke(B0)l] and E[e(B0)2
i e(B0)je(B0)k] with

i ̸= j ̸= k ̸= l.
Throughout this part of the appendix, we will use the following Lemmata.

Lemma 5.C.1. The derivative of the i-th element of the unmixed innovations at B0
with respect to an element bpq is given by

∂eit(B0)
∂bpq

=
{

−aipϵqt, if i ≥ p

0, else
.

Proof.
∂et(B0)
∂bpq

= ∂B−1
0

∂bpq
ut

=
(

−B−1
0
∂B0
∂bpq

B−1
0

)
ut

= −B−1
0
∂B0
∂bpq

B−1
0 B0ϵt

= −B−1
0
∂B0
∂bpq

ϵt

= −A0
∂B0
∂bpq

ϵ1t
...
ϵnt



= −

a1p
...
anp

 ϵqt
recursive SVAR= −



0
...
0
app
...
anp


ϵqt

Lemma 5.C.2. For i = 1, . . . , n− 1 and j = 1, . . . , n let

G
bj:,j
2 :=

[
G

bj:,j
2M

, G
bj:,j
2C1

, . . . , G
bj:,j
2Cn−1

]′
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with

G
bj:,j
2M

:= E

[
∂f2M(ut, B0)
∂ (bjj , . . . , bnj)′

]
,

G
bj:,j
2Ci

:= E

[
∂f2Ci

(ut, B0)
∂ (bjj , . . . , bnj)′

]
.

Then

G
bj:,j
2M

= −2

 0(j−1)×(n−j+1)
ajj . . . ajn

0(n−j)×(n−j+1)


︸ ︷︷ ︸

n×(n−j+1)

= −2

 0(j−1)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

n×(n−j+1)

(5.C.1)

and
G

bj:,j
2Ci

= 0(n−i)×(n−j+1), for i ̸= j, (5.C.2)

G
bi:,i
2Ci

= −

ai+1,i ai+1,i+1 0
... . . .
ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−i)×(n−i+1)

. (5.C.3)

Proof. Equation (5.C.1): The (q,r)-th entry of Gbj:,j
2Ci

is equal to

G
bj:,j
2Ci

(q, r) = E

[
∂(e(B0)2

q − 1)
∂bj+r−1,j

]
(∗)=
{

−2aq,j+r−1, if q = j

0, else
.

Equation (5.C.2) and (5.C.3): The (q,r)-th entry of Gbj:,j
2Ci

is equal to

G
bj:,j
2Ci

(q, r) = E

[
∂(e(B0)ie(B0)i+q)

∂bj+r−1,j

]
(∗)=


−ai+q,j+r−1, if j = i

−ai,j+r−1
(∗∗)= 0, if j = (i+ q)

0, else
.

Lemma 5.C.3. For i, j = 1, . . . , n let

G
bj:,j
3ii

:= E

[
∂f3ii(ut, B0)
∂ (bjj , . . . , bnj)′

]
,

G
vec(B)
3rest

:= E

[
∂f3rest(ut, B0)
∂vec(B)′

]
.
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Then
G

bj:,j
3ii

= 0(n−1)×(n−j+1), for i ̸= j, (5.C.4)

G
bi:,i
3ii

= −ωiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
... . . .
ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

,

and
G

vec(B)
3rest

= 0. (5.C.5)

Proof. Equation (5.C.4): The (q,r)-th entry of Gbj:,j
3ii

with q < i is equal to

G
bj:,j
3ii

(q, r) = E

[
∂(e(B0)2

i e(B0)q)
∂bj+r−1,j

]
=


−aq,j+r−1ωiii, j = i, q ≥ r + i− 1
−aq,j+r−1ωiii

(∗∗)= 0, j = i, q < r + i− 1
0, else

and the (q,l)-th entry of Gbj:,j
3ii

with q ≥ i is equal to

G
bj:,j
3ii

(q, r) = E

[
∂(e(B0)2

i e(B0)q+1)
∂bj+r−1,j

]
=


−aq+1,j+r−1ωiii, j = i, q ≥ r + i− 1
−aq+1,j+r−1ωiii

(∗∗)= 0, j = i, q < r + i− 1
0, else

.

Every element in Gvec(B)
3rest

can be written as E[∂(e(B)a,te(B)b,te(B)c,t)
∂bq,l

] for some a, b, c ∈
{1, . . . , n} with a ̸= b ≠ c. Equation (5.C.5) follows with Lemma 5.C.1, e(B0) = ϵ, and
independence and mean zero of ϵt.

Lemma 5.C.4. Let

G
bj:,j
4ii

:= E

[
∂f4ii(ut, B0)
∂ (bjj , . . . , bnj)′

]
, for i = 1, . . . , n− 1, j = 1, . . . , n,

G
bj:,j
4iii

:= E

[
∂f4iii(ut, B0)
∂ (bjj , . . . , bnj)′

]
, for i, j = 1, . . . , n,

G
vec(B)
4rest

:= E

[
∂f4rest(ut, B0)
∂vec(B)′

]
.
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Then

G
bi:,i
4ii

= −2

aii ain

aii ain


︸ ︷︷ ︸
(n−i)×(n−i+1)

= −2

aii

0(n−i)×(n−j)
aii


︸ ︷︷ ︸

(n−i)×(n−i+1)

, (5.C.6)

G
bj:,j
4ii

= 0(n−i)×(n−j+1), for i > j,(5.C.7)

G
bj:,j
4ii

= −2

 0(j−i−1)×(n−j+1)
ajj . . . ajn

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

= −2

 0(j−i−1)×(n−j+1)
ajj 0(1)×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

, for i < j,(5.C.8)

and

G
bi:,i
4iii

= −ωiiii



a1i a1n

ai−1,i ai−1,n

ai+1,i ai+1,n

ani ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

= −ωiiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
... . . .
ani . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

, (5.C.9)

G
bj:,j
4iii

= −3

 0(j−1)×(n−j+1)
aij . . . ain

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

(5.C.10)

= −3

 0(j−1)×(n−j+1)
aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

, for i > j,

G
bj:,j
4iii

= −3

 0(j−1−1)×(n−j+1)
aij . . . ain

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

= 0(n−1)×(n−j+1), for i < j,(5.C.11)

and
G

vec(B)
4rest

= 0. (5.C.12)
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Proof. Equation (5.C.6), (5.C.7), and (5.C.8): The (q,r)-th entry of Gbj:,j
4ii

is equal to

G
bj:,j
4ii

(q, r) = E

[
∂(e(B0)2

i e(B0)2
i+q − 1)

∂bj+r−1,j

]
(∗)=



−2ai,j+r−1, if j = i, r = 1
−2ai,j+r−1

(∗∗)= 0, if j = i, r ̸= 1
−2ai+q,j+r−1, if j = i+ q, r = 1
−2ai+q,j+r−1

(∗∗)= 0, if j = i+ q, r ̸= 1
0, else

.

Equation (5.C.9), (5.C.10), and (5.C.11): The (q,r)-th entry of Gbj:,j
4iii

with q < i is
equal to

G
bj:,j
4iii

(q, r) = E

[
∂(e(B0)3

i e(B0)q)
∂bj+r−1,j

]
(∗)=


−aq,j+r−1ωiiii

(∗∗)= 0, if j = i

−3ai,j+r−1, if j = q, r ≤ i− j + 1
−3ai,j+r−1

(∗∗)= 0, if j = q, r > i− j + 1
0, else

.

The (q,r)-th entry of P j
i with q ≥ i is equal to

G
bj:,j
4iii

(q, r) = E

[
∂(e(B0)3

i e(B0)q+1)
∂bj+r−1,j

]
(∗)=


−aq+1,j+r−1ωiiii, if j = i, q − r ≥ j − 2
−aq+1,j+r−1ωiiii

(∗∗)= 0, if j = i, q − r < j − 2
−3ai,j+r−1, if j = q + 1
0, else

.

Equation (5.C.12) follows analogously to Equation (5.C.5).

Lemma 5.C.5. The matrix S2 = E [f2(ut, B0)f2(ut, B0)′] can be written as

S2 =
[
S2M S2M 2C

S2C2M S2C

]
, with

S2M := E [f2M (ut, B0)f2M (ut, B0)′] ,
S2M 2C := E [f2M (ut, B0)f2C (ut, B0)′] ,
S2C2M := E [f2C (ut, B0)f2M (ut, B0)′] ,
S2C := E [f2C (ut, B0)f2C (ut, B0)′] ,

and

S2M =

ω1111 − 1 0
. . .

0 ωnnnn − 1


︸ ︷︷ ︸

n×n

, (5.C.13)

S2M 2C = 0n×n(n−1), (5.C.14)
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S2C2M = 0n(n−1)×n,

S2C = In(n−1)×n(n−1). (5.C.15)

Therefore, S2 is equal to

S2 =


ω1111 − 1 0

. . . 0n×n(n−1)
0 ωnnnn − 1

0n(n−1)×n In(n−1)×n(n−1)

 . (5.C.16)

Proof. Equation (5.C.13), (5.C.14), (5.C.15), and (5.C.16): The (q,r)-th entry of S2M is
equal to

S2M (q, r) = E
[
(e(B0)2

q − 1)(e(B0)2
r − 1)

] (∗)=
{
ωqqqq − 1, if q = r

0, else
.

Any entry of S2M 2C can be written as

E
[
(e(B0)2

a − 1)(e(B0)be(B0)c)
] (∗)= 0

for some a, b, c ∈ {1, . . . , n} with b ̸= c. Any entry of S2C2C can be written as

E [(e(B0)ae(B0)b)(e(B0)ce(B0)d)] (∗)=
{

1, if a = c, b = d

0, else
,

for some a, b, c, d ∈ {1, . . . , n} with a ̸= b and c ̸= d. The case a = c and b = d occurs at
the diagonal of S2C2C .

Lemma 5.C.6. For i = 1, . . . , n and j = 1, . . . , n− 1 let
S3ii2 =

[
S3ii2M S3ii2C1

. . . S3ii2Cn−1

]
,

S3rest2 =
[
S3rest2M S3rest2C1

. . . S3rest2Cn−1

]
with

S3ii2M := E
[
f3ii(ut, B0)f2M(ut, B0)′] ,

S3ii2Cj
:= E

[
f3ii(ut, B0)f2Cj

(ut, B0)′
]
,

S3rest2M := E
[
f3rest(ut, B0)f2M(ut, B0)′] ,

S3rest2Cj
:= E

[
f3rest(ut, B0)f2Cj

(ut, B0)′
]
,
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and

S3ii2M =



ω111 0 0
. . . 0 0(n−i)×(n−i)

0 ω(i−1)3 0
0 ω(i+1)3 0

0(i−1)×(i−1) 0 . . .
0 0 ωnnn


︸ ︷︷ ︸

(n−1)×(n)

(5.C.17)

and

S3ii2Ci
= ωiii

[
0(i−1)×(n−i)
I(n−i)×(n−i)

]
︸ ︷︷ ︸

(n−1)×(n−j)

, for i = 1, . . . , n− 1,(5.C.18)

S3ii2Cj
= 0(n−1)×(n−j), for i < j, (5.C.19)

S3ii2Cj
= ωiii

 0(j−1)×(n−j)
01×(i−j−1) 1 01×(n−i)

0(n−j−1)×(n−j)


︸ ︷︷ ︸

(n−1)×(n−j)

, for i > j, (5.C.20)

and
S3rest2 = 0. (5.C.21)

Proof. Equation (5.C.17): The (q,r)-th entry of S3ii2M with q < i is equal to

S3ii2M(q, r) = E
[
(e(B0)2

i e(B0)q)(e(B0)2
r − 1)

] (∗)=
{
ωqqq, if r = q

0, else

and the (q,r)-th entry of S3ii2M with q ≥ i is equal to

S3ii2M(q, r) = E
[
(e(B0)2

i e(B0)q+1)(e(B0)2
r − 1)

] (∗)=
{
ω(q+1)3 , if r = q + 1
0, else

.

Equation (5.C.18), (5.C.19) and (5.C.20): The (q,r)-th entry of S3ii2Cj
with q < i is

equal to

S3ii2Cj
(q, l) = E

[
(e(B0)2

i e(B0)q)(e(B0)je(B0)j+r)
] (∗)=

{
ωiii, if i = j + r, j = q

0, else
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and the (q,r)-th entry of S3ii2Cj
with q ≥ i is equal to

S3ii2Cj
(q, l) = E

[
(e(B0)2

i e(B0)q+1)(e(B0)je(B0)j+r)
] (∗)=

{
ωiii, if i = j, q + 1 = j + r

0, else
.

Equation (5.C.21) holds, since every moment condition in E[f3rest(ut, B0)f2M (ut, B0)′]
can be written as

E
[
(e(B0)ae(B0)be(B0)c)(e(B0)2

d − 1)
]

for some a, b, c, d = {1, . . . , n} and a ̸= b ̸= c, which implies
E
[
(e(B0)ae(B0)be(B0)c)(e(B0)2

d − 1)
]

= 0 by independence and mean zero of ϵ.

Lemma 5.C.7. Let
S4ii2 =

[
S4ii2M S4ii2C1

. . . S4ii2Cn−1

]
, for i = 1, . . . , n− 1,

S4iii2 =
[
S4iii2M S4iii2C1

. . . S4iii2Cn−1

]
, for i = 1, . . . , n,

S4rest2 =
[
S4rest2M S4rest2C1

. . . S4rest2Cn−1

]
with

S4ii2M := E
[
f4ii(ut, B0)f2M (ut, B0)′] , for i = 1, . . . , n− 1,

S4ii2Cj
:= E

[
f4ii(ut, B0)f2Cj

(ut, B0)′
]
, for i, j = 1, . . . , n− 1,

S4iii2M := E
[
f4iii(ut, B0)f2M (ut, B0)′] , for i = 1, . . . , n,

S4iii2Cj
:= E

[
f4iii(ut, B0)f2Cj

(ut, B0)′
]
, for j = 1, . . . , n− 1, i = 1, . . . , n,

S4rest2M := E
[
f4rest(ut, B0)f2M (ut, B0)′] ,

S4rest2Cj
:= E

[
f4rest(ut, B0)f2Cj

(ut, B0)′
]
, for j = 1, . . . , n− 1,

and

S4ii2M =


ωiiii − 1 ω(i+1)4 − 1 0

0(n−i)×(i−1)
... . . .

ωiiii − 1 0 ωnnnn − 1


︸ ︷︷ ︸

(n−i)×(n)

, (5.C.22)
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S4iii2M = ωiii



ω111 0 0
. . . 0 0(n−i)×(n−i)

0 ω(i−1)3 0
0 ω(i+1)3 0

0(i−1)×(i−1) 0 . . .
0 0 ωnnn


︸ ︷︷ ︸

(n−1)×(n)

,(5.C.23)

and

S4ii2Ci
= ωiii


ω(i+1)3 0

. . .
0 ωnnn


︸ ︷︷ ︸

(n−i)×(n−i)

, (5.C.24)

S4ii2Cj
= 0(n−i)×(n−j), for i ̸= j,(5.C.25)

S4iii2Ci
= ωiiii

[
0(i−1)×(n−j)
I(n−i)×(n−j)

]
︸ ︷︷ ︸

(n−1)×(n−i)

, (5.C.26)

S4iii2Cj
= 0(n−1)×(n−j), for i < j,(5.C.27)

S4iii2Cj
= ωiiii

 0(j−1)×(n−j)
01×(i−j−1) 1 01×(n−i)

0(n−j−1)×(n−j)


︸ ︷︷ ︸

(n−1)×(n−j)

, for i > j,(5.C.28)

and
S4rest2 = 0. (5.C.29)

Proof. Equation (5.C.22): The (q,r)-th entry of S4ii2M is equal to
S4ii2M(q, r) = E

[
(e(B0)2

i e(B0)2
i+q − 1)(e(B0)2

r − 1)
]

(∗)=


ωiiii − 1, if r = i

ω(i+q)4 − 1, if r = i+ q

0, else
.
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Equation (5.C.23): The (q,r)-th entry of S4iii2M with q < i is equal to

S4iii2M(q, r) = E
[
(e(B0)3

i e(B0)q)(e(B0)2
r − 1)

] (∗)=
{
ωiiiωqqq, if r = q

0, else

and the (q,r)-th entry of SS4iii2M with q ≥ i is equal to

S4iii2M(q, r) = E
[
(e(B0)3

i e(B0)q+1)(e(B0)2
r − 1)

] (∗)=
{
ωiiiω(q+1)3 , if r = q + r

0, else
.

Equation (5.C.24) and (5.C.25): The (q,r)-th entry of S4ii2Cj
is equal to

S4ii2Cj
(q, r) = E

[
(e(B0)2

i e(B0)2
i+q − 1)(e(B0)je(B0)j+r)

] (∗)=


0, if i ̸= j

ωiiiω(i+q)3 , if i = j, q = r

0, if i = j, q ̸= r

.

Equation (5.C.26), (5.C.27), and (5.C.28): The (q,r)-th entry of S4iii2Cj
with q < i

is equal to

S4iii2Cj
(q, r) = E

[
(e(B0)3

i e(B0)q)(e(B0)je(B0)j+r)
] (∗)=



0, if i < j

ωiiii, if i = j, q = j + r (∗∗∗)

0, if i = j, q ̸= j + r

ωiiii, if i > j, q = j

0, if i > j, q ̸= j

and note that for q < i the case (∗∗∗) never occurs since i > q = j + r = i + r implies
r < 0. Moreover, the (q,r)-th entry of S4iii2Cj

with q ≥ i is equal to

S4iii2Cj
(q, r) = E

[
(e(B0)3

i e(B0)q+1)(e(B0)je(B0)j+r)
] (∗)=



0, if i < j

ωiiii, if i = j, q + 1 = j + r

0, if i = j, q + 1 ̸= j + r

ωiiii, if i > j, q + 1 = j (∗∗∗)

0, if i > j, q + 1 ̸= j

and note that for q ≥ i the case (∗∗∗) never occurs since q + 1 = j < i ≤ q implies 1 < 0.
Equation (5.C.29)) holds, since every moment condition in E[f4rest(ut, B)f2Cj

(ut, B0)′]
can be written as

E [(e(B0)ae(B0)be(B0)c)(e(B0)de(B0)f )]
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a, b, c, d, f = {1, . . . , n} and a ̸= b ̸= c, which implies
E [(e(B0)ae(B0)be(B0)c)(e(B0)de(B0)f )] = 0 by independence and mean zero of ϵ.

5.C.2 Preparation part 2

Lemma 5.C.8. For bpq and bp̃q̃ with p, q, p̃, q̃ ∈ {1, . . . , n} and p ≥ q and p̃ ≥ q̃ and
q ̸= q̃ it holds that

(Gbpq

2 )′S−1
2 G

bp̃q̃

2 = 0.

Proof. For bpq and bp̃q̃ with p, q, p̃, q̃ ∈ {1, . . . , n} and p ≥ q and p̃ ≥ q̃ and q ̸= q̃ it holds
that

(Gbpq

2 )′S−1
2 G

bp̃q̃

2 = (Gbpq

2M
)′S−1

2 G
bp̃q̃

2M
+

n−1∑
i=1

(Gbpq

2Ci
)′S−1

2 G
bp̃q̃

2Ci
.

The statement then follows by plugging in Equation (5.C.1), (5.C.2), and (5.C.3).

With Lemma 5.C.8 it holds that Gbi
2

′
S−1

2 G
bj

2 = 0 for i, j ∈ {1, . . . , n} with i ̸= j.
Therefore, for any vector bi = [bii, . . . , bni] representing the impact of the i-th structural
shock ϵi,t it holds that Gbi

2
′
S−1

2 G¬bi
2 is zero. Therefore, for any vector bi = [bii, . . . , bni]

the right hand side of Equation (5.A.4) is zero and hence,
Gbi

D − SD2S
−1
2 Gbi

2 = 0. (5.C.30)

The following Lemmata yield analytic expressions for SD2S
−1
2 Gbi

2 in Equation
(5.C.30).

Lemma 5.C.9. For i, j = 1, . . . , n it holds that

S3ii2MS
−1
2M
G

bj:,j
2M

= −2 1
ωjjjj − 1



ω111 0 0
. . . 0 0(n−i)×(n−i)

0 ω(i−1)3 0
0 ω(i+1)3 0

0(i−1)×(i−1) 0 . . .
0 0 ωnnn


︸ ︷︷ ︸

(n−1)×(n)

×

 0(j−1)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

n×(n−j+1)

.
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For i = j

S3ii2MS
−1
2M
G

bj:,j
2M

= On−1×n−j+1.

For i < j

S3ii2MS
−1
2M
G

bj:,j
2M

= − 2ωjjj

ωjjjj − 1

 0(j−2)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.

For i > j

S3ii2MS
−1
2M
G

bj:,j
2M

= − 2ωjjj

ωjjjj − 1

 0(j−1)×(n−j+1)
ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.

Furthermore, for i = j

S3ii2Ci
G

bi:,i
2Ci

= −ωiii

[
0(i−1)×(n−i)
I(n−i)×(n−i)

]
︸ ︷︷ ︸

(n−1)×(n−i)

ai+1,i ai+1,i+1 0
... . . .
ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−i)×(n−i+1)

= −ωiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
... . . .
ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

.

For i < j

S3ii2Cj
G

bj:,j
2Cj

= 0(n−1)×(n−j)

aj+1,j aj+1,j+1 0
... . . .
anj an,j+1 . . . ann


︸ ︷︷ ︸

(n−j)×(n−j+1)

= 0(n−1)×(n−j+1).
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For i > j

S3ii2Cj
G

bj:,j
2Cj

= −ωiii

 0(j−1)×(n−j)
01×(i−j−1) 1 01×(n−i)

0(n−j−1)×(n−j)


︸ ︷︷ ︸

(n−1)×(n−j)

aj+1,j aj+1,j+1 0
... . . .
anj an,j+1 . . . ann


︸ ︷︷ ︸

(n−j)×(n−j+1)

= −ωiii

 0(j−1)×(n−j+1)
aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.

Proof. Follows from Lemma 5.C.2, Lemma 5.C.5, and Lemma 5.C.6 and simple matrix
algebra.

Lemma 5.C.10. For i = 1, . . . , n and j = 1, . . . , n− 1 it holds that

S4iii2MS
−1
2M
G

bj:,j
2M

= −2 ωiii

ωjjjj − 1



ω111 0 0
. . . 0 0(n−i)×(n−i)

0 ω(i−1)3 0
0 ω(i+1)3 0

0(i−1)×(i−1) 0 . . .
0 0 ωnnn


︸ ︷︷ ︸

(n−1)×(n)

×

 0(j−1)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

n×(n−j+1)

.

For i = j

S4iii2MS
−1
2M
G

bj:,j
2M

= On−1×n−j+1.

For i < j

S4iii2MS
−1
2M
G

bj:,j
2M

= − 2ωjjjωiii

ωjjjj − 1

 0(j−2)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.
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For i > j

S4iii2MS
−1
2M
G

bj:,j
2M

= − 2ωjjjωiii

ωjjjj − 1

 0(j−1)×(n−j+1)
ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.

Furthermore, for i = j

S4iii2Ci
G

bi:,i
2Ci

= −ωiiii

[
0(i−1)×(n−i)
I(n−i)×(n−i)

]
︸ ︷︷ ︸

(n−1)×(n−i)

ai+1,i ai+1,i+1 0
... . . .
ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−i)×(n−i+1)

= −ωiiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
... . . .
ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

.

For i < j

S4iii2Cj
G

bj:,j
2Cj

= 0(n−1)×(n−j)

aj+1,j aj+1,j+1 0
... . . .
anj an,j+1 . . . ann


︸ ︷︷ ︸

(n−j)×(n−j+1)

= 0(n−1)×(n−j+1).

For i > j

S4iii2Cj
G

bj:,j
2Cj

= −ωiiii

 0(j−1)×(n−j)
01×(i−j−1) 1 01×(n−i)

0(n−j−1)×(n−j)


︸ ︷︷ ︸

(n−1)×(n−j)

aj+1,j aj+1,j+1 0
... . . .
anj an,j+1 . . . ann


︸ ︷︷ ︸

(n−j)×(n−j+1)

= −ωiiii

 0(j−1)×(n−j+1)
aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.

222



For i = 1, . . . , n− 1 and j = 1, . . . , n− 1

S4ii2MS
−1
2M
G

bj:,j
2M

= −2 1
ωjjjj − 1


ωiiii − 1 ω(i+1)4 − 1 0

0(n−i)×(i−1)
... . . .

ωiiii − 1 0 ωnnnn − 1


︸ ︷︷ ︸

(n−i)×(n)

×

 0(j−1)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

n×(n−j+1)

.

For i = j

S4ii2MS
−1
2M
G

bj:,j
2M

= −2ωiiii − 1
ωiiii − 1

ajj

0(n−i)×(n−j)
ajj


︸ ︷︷ ︸

(n−i)×(n−j+1)

= −2

ajj

0(n−i)×(n−j)
ajj


︸ ︷︷ ︸

(n−i)×(n−j+1)

.

For i < j

S4ii2MS
−1
2M
G

bj:,j
2M

= −2ωjjjj − 1
ωjjjj − 1

 0(j−i−1)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

= −2

 0(j−i−1)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

.

For i > j

S4ii2MS
−1
2M
G

bj:,j
2M

= 0(n−i)×(n−j+1).
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Furthermore,

S4ii2Ci
G

bi:,i
2Ci

= −ωiii


ω(i+1)3 0

. . .
0 ωnnn


︸ ︷︷ ︸

(n−i)×(n−i)

ai+1,i ai+1,i+1 0
... . . .
ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−i)×(n−i+1)

= −ωiii


ai+1,iω(i+1)3 ai+1,i+1ω(i+1)3 0

... . . .
aniωnnn an,i+1ωnnn . . . annωnnn


︸ ︷︷ ︸

(n−i)×(n−i+1)

.

Proof. Follows from Lemma 5.C.2, Lemma 5.C.5, and Lemma 5.C.7 and simple matrix
algebra.

Lemma 5.C.11. For i, j = 1, . . . , n and i = j

G
bj:,j
3ii

− S3ii2S
−1
2 G

bj:,j
2 = − ωiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
... . . .
ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

+ ωiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
... . . .
ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

= 0(n−1)×(n−i+1).

For i, j = 1, . . . , n and i < j

G
bj:,j
3ii

− S3ii2S
−1
2 G

bj:,j
2 = 2ωjjj

ωjjjj − 1

 0(j−2)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.
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For i, j = 1, . . . , n and i > j

G
bj:,j
3ii

− S3ii2S
−1
2 G

bj:,j
2 = 2ωjjj

ωjjjj − 1

 0(j−1)×(n−j+1)
ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

+ ωiii

 0(j−1)×(n−j+1)
aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.

Proof. For i, j = 1, . . . , n let
W

bj:,j
3ii

:= S3ii2S
−1
2 G

bj:,j
2 .

Then, for i = 1, . . . , n− 1

W
bi:,i
3ii

= −ωiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
... . . .
ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

,

for i = n

W
bi:,i
3ii

= 0(n−1)×1,

for i < j

W
bj:,j
3ii

= − 2ωjjj

ωjjjj − 1

 0(j−2)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

,

for i > j

W
bj:,j
3ii

= − 2ωjjj

ωjjjj − 1

 0(j−1)×(n−j+1)
ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

− ωiii

 0(j−1)×(n−j+1)
aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.
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Moreover, it holds that

W
bj:,j
3ii

=
[
S3ii2M S3ii2C1

. . . S3ii2Cn−1

] [S2M 0
0 In(n−1)×n(n−1)

]−1

×
[
G

bj:,j
2M

, G
bj:,j
2C1

, . . . , G
bj:,j
2Cn−1

]′

=S3ii2MS
−1
2M
G

bj:,j
2M

+
n−1∑
q=1

S3ii2CqG
bj:,j
2Cq

.

From Lemma 5.C.2 it follows that Gbj:,j
2Cq

= 0 for i ≠ j and, hence, for i = 1, . . . , n,
j = 1, . . . , n− 1

W
bj:,j
3ii

= S3ii2MS
−1
2M
G

bj:,j
2M

+ S3ii2Cj
G

bj:,j
2Cj

and for j = n

W
bj:,j
3ii

= S3ii2MS
−1
2M
G

bj:,j
2M

.

With Lemma 5.C.9 (implying S3ii2MS
−1
2M
G

bi:,i
2M

= 0 and S3ii2Cj
G

bj:,j
2Cj

= 0 for i < j) it
follows that

W
bi:,i
3ii

= S3ii2Ci
G

bi:,i
2Ci

, for i < n,

W
bi:,i
3ii

= 0(n−1)×1, for i = n,

W
bj:,j
3ii

= S3ii2MS
−1
2M
G

bj:,j
2M

, for i < j,

W
bj:,j
3ii

= S3ii2MS
−1
2M
G

bj:,j
2M

+ S3ii2Cj
G

bj:,j
2Cj

, for i > j.

The statements then follow with Lemma 5.C.9 and Lemma 5.C.3.

Lemma 5.C.12. For i, j = 1, . . . , n− 1 and i = j

G
bj:,j
4ii

− S4ii2S
−1
2 G

bj:,j
2 = −2

aii
... 0(n−i)×(n−j)
aii


︸ ︷︷ ︸

(n−i)×(n−i+1)

+2

aii
... 0(n−i)×(n−i)
aii


︸ ︷︷ ︸

(n−i)×(n−i+1)
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+ ωiii


ai+1,iω(i+1)3 ai+1,i+1ω(i+1)3 0

... . . .
aniωnnn an,i+1ωnnn . . . annωnnn


︸ ︷︷ ︸

(n−i)×(n−i+1)

= ωiii


ai+1,iω(i+1)3 ai+1,i+1ω(i+1)3 0

... . . .
aniωnnn an,i+1ωnnn . . . annωnnn


︸ ︷︷ ︸

(n−i)×(n−i+1)

.

For i = 1, . . . , n− 1, j = 1, . . . , n, and i > j

G
bj:,j
4ii

− S4ii2S
−1
2 G

bj:,j
2 = 0(n−i)×(n−j+1) − 0(n−i)×(n−j+1)

= 0(n−i)×(n−j+1).

For i = 1, . . . , n− 1, j = 1, . . . , n, and i < j

G
bj:,j
4ii

− S4ii2S
−1
2 G

bj:,j
2 = −2

 0(j−i−1)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

+2

 0(j−i−1)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

= 0(n−i)×(n−j+1).

Proof. For i = 1, . . . , n− 1, j = 1, . . . , n let
W

bj:,j
4ii

:= S4ii2S
−1
2 G

bj:,j
2 .

Then, for i = 1, . . . , n− 1

W
bi:,i
4ii

= −2

aii

0(n−i)×(n−i)
aii


︸ ︷︷ ︸

(n−i)×(n−i+1)

−ωiii


ai+1,iω(i+1)3 ai+1,i+1ω(i+1)3 0

... . . .
aniωnnn an,i+1ωnnn . . . annωnnn


︸ ︷︷ ︸

(n−i)×(n−i+1)

,

for i < j

W
bj:,j
4ii

= −2

 0(j−i−1)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

,
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and for i > j

W
bj:,j
4ii

= 0(n−i)×(n−j+1).

Moreover, it holds that

W
bj:,j
4ii

=
[
S4ii2M S4ii2C1

. . . S4ii2Cn−1

] [S2M 0
0 In(n−1)×n(n−1)

]−1

×
[
G

bj:,j
2M

, G
bj:,j
2C1

, . . . , G
bj:,j
2Cn−1

]′

=S4ii2MS
−1
2M
G

bj:,j
2M

+
n−1∑
q=1

S4ii2CqG
bj:,j
2Cq

.

From Lemma 5.C.2 it follows that Gbj:,j
2Cq

= 0 for i ≠ j and, hence, for i = 1, . . . , n,
j = 1, . . . , n− 1

W
bj:,j
4ii

= S4ii2MS
−1
2M
G

bj:,j
2M

+ S4ii2Cj
G

bj:,j
2Cj

and for j = n

W
bj:,j
4ii

= S4ii2MS
−1
2M
G

bj:,j
2M

.

From Lemma 5.C.7 it follows that S4ii2Cj
= 0 for i ̸= j and, hence,

W
bi:,i
4ii

= S4ii2MS
−1
2M
G

bi:,i
2M

+ S4ii2Ci
G

bi:,i
2Ci

W
bj:,j
4ii

= S4ii2MS
−1
2M
G

bj:,j
2M

, for i ̸= j.

The statements then follow with Lemma 5.C.10 and Lemma 5.C.4.

Lemma 5.C.13. For i , j = 1, . . . , n and i = j

G
bj:,j
4iii

− S4iii2S
−1
2 G

bj:,j
2 = − ωiiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
... . . .
ani . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)
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+ ωiiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
... . . .
ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

= 0(n−1)×(n−i+1).

For i, j = 1, . . . , n and i > j

G
bj:,j
4iii

− S4iii2S
−1
2 G

bj:,j
2 = − 3

 0(j−1)×(n−j+1)
aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

+ 2ωjjjωiii

ωjjjj − 1

 0(j−1)×(n−j+1)
ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

+ ωiiii

 0(j−1)×(n−j+1)
aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

= (ωiiii − 3)

 0(j−1)×(n−j+1)
aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

+ 2ωjjjωiii

ωjjjj − 1

 0(j−1)×(n−j+1)
ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.

For i, j = 1, . . . , n and i < j

G
bj:,j
4iii

− S4iii2S
−1
2 G

bj:,j
2 = 0(n−1)×(n−j+1) + 2ωjjjωiii

ωjjjj − 1

 0(j−2)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)
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= 2ωjjjωiii

ωjjjj − 1

 0(j−2)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.

Proof. For i, j = 1, . . . , n let
W

bj:,j
4iii

:= S4iii2S
−1
2 G

bj:,j
2 .

Then, for i = 1, . . . , n− 1

W
bi:,i
4iii

= −ωiiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
... . . .
ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

.

For i = n

W
bj:,j
4iii

= 0(n−1)×1.

For i < j

W
bj:,j
4iii

= − 2ωjjjωiii

ωjjjj − 1

 0(j−2)×(n−j+1)
ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.

For i > j

W
bj:,j
4iii

= − 2ωjjjωiii

ωjjjj − 1

 0(j−1)×(n−j+1)
ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

− ωiiii

 0(j−1)×(n−j+1)
aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.

Moreover, it holds that

W
bj:,j
4iii

=
[
S4iii2M S4iii2C1

. . . S4iii2Cn−1

] [S2M 0
0 In(n−1)×n(n−1)

]−1
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[
G

bj:,j
2M

, G
bj:,j
2C1

, . . . , G
bj:,j
2Cn−1

]′

=S4iii2MS
−1
2M
G

bj:,j
2M

+
n−1∑
q=1

S4iii2CqG
bj:,j
2Cq

.

From Lemma 5.C.2 it follows that Gbj:,j
2Cq

= 0 for i ̸= j and, hence, for i = 1, . . . , n,
j = 1, . . . , n− 1

W
bj:,j
4iii

= S4iii2MS
−1
2M
G

bj:,j
2M

+ S4iii2Cj
G

bj:,j
2Cj

and for j = n

W
bj:,j
4iii

= S4iii2MS
−1
2M
G

bj:,j
2M

.

With Lemma 5.C.10 it follows that
W

bi:,i
4iii

= S4iii2Ci
G

bi:,i
2Ci

, for i < n,

W
bi:,i
4iii

= 0(n−1)×1, for i = n,

W
bj:,j
4iii

= S4iii2MS
−1
2M
G

bj:,j
2M

, for i < j,

W
bj:,j
4iii

= S4iii2MS
−1
2M
G

bj:,j
2M

+ S4iii2Cj
G

bj:,j
2Cj

, for i > j.

The statements then follow with Lemma 5.C.10 and Lemma 5.C.4.

5.C.3 Final Lemma

We now combine the conditions in Lemma 5.C.11 - 5.C.13 into conditions for specific
moment conditions.

Lemma 5.C.14. In a recursive SVAR with independent shocks, it holds that for i, j, k, l ∈
{1, . . . , n}

1. coskewness moment condition E[fD(B, ut)] = E[e(B)ie(B)je(B)k] with i ̸= j ≠ k
satisfy

Gb
D − SD2S

−1
2 Gb

2 = 0

for every unrestricted element b of B0.

2. coskewness moment condition E[fD(B, ut)] = E[e(B)2
i e(B)j ] with i ̸= j satisfy
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G
bpq

D − SD2S
−1
2 G

bpq

2 =



2E[ϵ3
j,t]

E[ϵ4
j,t]−1ajp, if p = j, q = j, i < j,

2E[ϵ3
j,t]

E[ϵ4
j,t]−1ajp + E[ϵ3i,t]aip, if q = j, p = j, i > j,

E[ϵ3i,t]aip, if q = j, p = j + 1, . . . , i, i > j,

0, else

.

3. cokurtosis conditions E[fD(B, ut)] = E[e(B0)ie(B0)je(B0)ke(B0)l] and
E[fD(B, ut)] = E[e(B0)2

i e(B0)je(B0)k] with i ̸= j ̸= k ̸= l satisfy

Gb
D − SD2S

−1
2 Gb

2 = 0

for every unrestricted element b of B0.

4. cokurtosis conditions E[fD(B, ut)] = E[e(B0)2
i e(B0)2

j − 1] with i ̸= j satisfy

G
bpq

D − SD2S
−1
2 G

bpq

2 =
{
E[ϵ3i,t]E[ϵ3j,t]ajp, if q = i, p = i, . . . , j

0, else
.

5. cokurtosis conditions E[fD(B, ut)] = E[e(B0)3
i e(B0)j ] with i ̸= j satisfy

G
bpq

D − SD2S
−1
2 G

bpq

2 =



2E[ϵ3
j,t]E[ϵ3

i,t]
E[ϵ4

j,t]−1 ajp, if p = j, q = j, i < j,

2E[ϵ3
j,t]E[ϵ3

i,t]
E[ϵ4

j,t]−1 ajp + (E[ϵ4i,t] − 3)aip, if q = j, p = j, i > j,

(E[ϵ4i,t] − 3)aip, if q = j, p = j + 1, . . . , i, i > j,

0, else

.

Proof. The statements directly follow from Lemma 5.C.11 - 5.C.13.
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6 Conclusion

This thesis applies modern shrinkage methods in the context of discrete choice models and
time series models, identifies shortcomings of existing estimators, and proposes methods
for their improvement. Chapter 2 deals with a special case of the LASSO regression
and elastic net regression in a discrete choice framework which models unobserved
heterogeneity with a nonparametric approach. Building on the estimators of Chapter
2, Chapter 3 considers a random elastic net estimator. Chapter 4 estimates flexible
forms of observed heterogeneity in discrete choice models using neural networks. To this
end, an influence function approach is applied together with ℓ2-regularization, which
shrinks the weights of the neural network towards zero. Chapter 5 applies a LASSO-Type
GMM estimator to select valid and relevant moment conditions in a SVAR model in a
data-driven way.

This thesis also reveals that there are open questions with respect to the studied
approaches to be solved in the future. For example, Chapter 2 relates the FKRB
estimator to the LASSO estimator, implying that it might be challenging to construct a
valid inference procedure for this estimator and its extensions. Neither Chapter 2 nor
Chapter 3 develop an inference procedure for the proposed estimators, which, however,
would be important for applications. Furthermore, the estimator presented in Chapter
2 does not allow for high-dimensional random coefficients. In principle, the estimator
developed in Chapter 3 can deal with high-dimensional random coefficients. However,
in this case it would be interesting to explore ways to reduce computation time when
including a larger number of random coefficients. The estimation of the neural network
in Chapter 4 involves many tuning parameters. Further simulations could help to guide
the choice of those tuning parameters and shed light on the robustness of the applied
influence function method. In theory, the LASSO-type GMM estimator in Chapter 5
is not distorted by invalid moment conditions. Further simulations could illustrate this
property. Additionally, developing a shrinkage estimator which can identify potential
zero restrictions on the interactions of the shocks of the SVAR from the data could
complement and further justify the restrictions imposed by ecomonic theory.
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