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ABSTRACT
The steady state behavior of thermodynamically supercritical

natural circulation loops (NCLs) is investigated in this work. Ex-
perimental steady state results with supercritical carbon dioxide
are presented for reduced pressures in the range of 1.1-1.5, and
temperatures in the range of 20-65 ◦C. Distinct thermodynamic
states are reached by traversing a set of isochors. A generalized
equation for the prediction of the steady state is presented, and its
performance is assessed using empirical data. Changes of mass
flow rate as a result of changes of thermodynamic state, heating-
and driving height are shown to be accurately captured by the
proposed predictive equation. However, the enhanced viscous
losses in the instrumentation of the loop and in the proximity
of heat transfer equipment are shown to significantly limit the
steady state flow rate. Subsequently, the findings are put forward
in aid of the development of safe, novel supercritical natural cir-
culation facilities.

INTRODUCTION
When a flow loop is heated at one of its vertical legs and

cooled at the other, a natural convection is induced. The flow-
and cooling rates of single phase natural circulation facilities are
generally orders of magnitude too small to serve any purpose
in industrial applications. However, if the operating fluid is
in a thermodynamically supercritical state, considerable flow
rates can be obtained due to strong density variations in the
vicinity of the critical point. The flow rates generated with
these simple systems can be used in settings in which an
elsewise moderate flowrate is required, but where problems
stemming from leakages, power outages and mechanical noise
associated with forced convective flows need to be avoided.
As such, supercritical fluid NCLs can act as reliable, off-grid
cooling solutions for nuclear reactors, in case large heat sinks
are present. Additionally, these systems can be used for the
passive removal of heat from solar heater assemblies, or for the
generation of steady, pulseless flows for sensitive experiments.
However, as the properties of supercritical media vary greatly
with state, the prediction of the steady state of supercritical
NCLs for their potential implementation is not straightforward.

The steady state of supercritical natural circulation loops
has previously been investigated using both numerical and
experimental approaches. In the numerical literature, a one-
dimensional transient model is most commonly used to predict
both the steady and unsteady behavior of the considered loops
[1]–[4], although three-dimensional approaches have also been
undertaken [5]. The mass flow rate of a natural convection loop
has been predicted to attain a maximum with varying heating
rates [1], [2]. Furthermore, a rise in mass flow rate is expected
with increasing loop heights, and increasing channel diameters
[1], [3], [5]. On the contrary, an increase of the loop length is
expected to have a limiting effect on the flow rate of the loop [5]
The influence of thermodynamic state on the steady behavior
of supercritical NCLs is briefly touched upon in [4]. Here,
increases in both the filling mass and the heating rate are pre-
dicted to result in an increase in loop pressure and subsequently
loop flow rate for the range of considered parameters. Similar
conclusions can be drawn from experimental investigations of
NCLs with supercritical media. An increase in mass flow rate
with increasing heating rate was first measured by Tokanai et
al., [6]. The broader range of results presented in Liu et al. [7]
also show the previously discussed maximum in the mass flow
rate with increasing heating. As predicted, an increase in system
temperature yields an increase in static pressure at a set charge
[8], [9], and an increase in mass flow rate for the considered
parameters in the work of Sadhu et al., as shown in [9].

The above findings only consider and discuss an NCL’s
sensitivity to changes in specific parameters. A generalized
consideration of all variables that affect the steady state is
however needed in aid of the reliable design of future facilities.
A first correlation of the flow rate of a liquid-like supercritical
carbon dioxide NCL, in terms of Grashof and Prantl numbers,
was presented by Yoshikawa et al., [10]. A more elaborate
approach was put forward by Swapnalee at al. [11], following
the modus operandi of Vijayan et al. for single-phase fluids
[12], [13]. Here, an expression for the mass flow rate is derived
from the one-dimensional steady state momentum equation. In
order to characterize the distribution of density in the equation
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that follows, the change in loop density has to be expressed as
a function of the change in enthalpy in the heater. For this, the
relationship between dimensionless density and dimensionless
enthalpy introduced by Ambrosini et al. [14] is used. Here,
the adequate overlap of the dimensionless quantities for a
broad range of supercritical pressures makes that a single curve
can be used to express the relationship between density and
enthalpy. Swapnalee et al. [11] use three distinct linear fits of
the constitutive curve to express an expected change of density
for three separate ranges of subcooling. From this, a straight-
forward equation for the NCL flow rate follows, which can be
expressed in terms of a pipe diameter based Grashof (GrD) and
a Reynolds (ReD) number. A very similar approach is followed
in the work of Liu et al. [15], where a two-region linear fit
of Ambrosini’s[14] curve is used to derive an expression for
the steady mass flow rate. As the true evolution with state is
however continuous, the chosen discrete description of thermo-
dynamic properties is expected to introduce significant errors
in the prediction of the flow rate. Additionally, the absence
of the characterization of experimental loop minor losses in
both works makes that the found relationship between GrD
and ReD is configuration specific. As the driving forces are
generally limited in comparison with forced convective systems,
setup-specific pressure losses in equipment can be expected to
have a considerable effect on the flow rates of NCLs.

In this work, a revised generalized equation for the pre-
diction of the steady flow rate of natural circulation loops with
supercritical media is proposed. Consequently, the generalized
formula is assessed using the experimental results of a new
supercritical carbon dioxide natural circulation facility at the
Process & Energy laboratory of the Delft University of Tech-
nology. In order to find the causes for possible disagreement
between theory and experiment, the contributions of state,
heating rate, configuration and pressure losses are independently
considered.

GENERALIZED FLOW EQUATION
Away from regions with considerable radial temperature gra-

dients, the flow in a NCL is expected to display behavior similar
to that of a developed pipe flow. As such, a generalized equa-
tion is sought from the mass- and momentum balance of a one-
dimensional flow. Here, a constant-area pipe, and negligible vis-
cous heating are assumed. A geometry that can be described with
figure 1 is considered. Here, a heater and a cooler are consecu-
tively placed along a closed flow loop. In the figure, the heater
and cooler are indicated with red and blue circles, respectively.

Figure 1: Schematic of simplified NCL. Low- and high density
sections indicated in red and blue, respectively. Preferential flow
direction indicated with red arrow.

The mass- and momentum balance equations for the considered
system are described as a function of streamwise coordinate s:
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Here, the coefficient γ(s) ∈ [−1, 1] is used to account for the
direction of gravity with respect to the flow at coordinate s. The
rightmost term in equation (2) serves to describe viscous losses
in the system, using dimensionless Fanning factor f . Given that
the mass flow rate ṁ is a constant, and that

¸
d(1/ρ) and

¸
dP

are zero for a closed loop, the path integral of equation (2) re-
duces to ˛
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A force balance with only contributions from the driving buoy-
ancy distribution and viscous losses in the loop remains. The
system is ultimately driven by the density difference ∆ρ over the
vertical section between the cooler and heater with equivalent
length ∆z. Here, ∆z is the vertical distance between the cooler
and the heater, if they were to be modeled as point sources and
point sinks for heat transfer. In reality, a vertical distribution of
ρ is found in both heat exchangers. As such, ∆z depends on the
heat transfer mode- and rate, and will attain a value close to the
vertical centerline distance. Given the above, equation (3) can be
rewritten to

∆ρg∆zAcs =
1

L

Ap

A2
cs

ṁ2

2ρm

n∑
i=1

(fiLi). (4)

Here, the viscous loss contributions of all sections i are to be
summed. By linearizing the change in density with varying en-
thalpy at the mean loop temperature Tm = 1/L

´
T (s)ds and

mean loop pressure Pm, and assuming constant pressure in the
heat transfer equipment, ∆ρ can be expressed as a function of a
change in enthalpy ∆h:
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Using the chain rule, the thermodynamic quantity ∂ρ/∂h|p can
be rewritten to ρmβm/cp,m. Here, all thermodynamic quanti-
ties are to be evaluated at Tm. Lastly, given that ∆h = Q̇/ṁ,
Acs = πD2/4 and Ap = πDL an equation as a function of de-
sign parameters of a supercritical fluid NCL follows:

ṁ3 =
π2g

32
· ρ2mβm

cp,m︸ ︷︷ ︸
Fluid properties

· Q̇∆zD5︸ ︷︷ ︸
Configuration

· 1

Σ(fiLi)︸ ︷︷ ︸
Viscous losses

. (6)

2

Equation  (6)  expresses  expected  mass  flow  rate  ṁ  as  a  function  
of  a  state  dependent  group  of  variables,  a  configuration  and
geometry  specific  group,  and  a  viscous  loss  term.  The  viscous  
loss  term  Σ(fiLi)  accounts  for  both  viscous  losses  in  developed 
sections,  and  for  additional  losses  in  loop  equipment  and  bends.
Equation  (6)  has  to  be  solved  for  iteratively,  since  the  viscous
loss  term  is  a  function  of  mass  flow  rate  ṁ.  Furthermore,  as  the 
Reynolds  numbers  for  the  warm  and  the  cold  leg  of  the  system

DOI: 10.17185/duepublico/77307



differ at constant ṁ, their viscous losses have to be solved for
independently. The fluid properties of the respective sections
can be solved for at hh,c = hm ± 1

2∆h|P , the value of which
follows from the guess for ṁ.

In order to allow for ease of experimental fitting, equa-
tion (6) should be rewritten in dimensionless form. For this
purpose, dimensionless quantities GrD and ReD are introduced:

GrD =
ρ2mβm

cp,mµ2
m

Q̇gD3

ṁ
, ReD =

ρmUD

µm
. (7)

Consequently, the Grashof number can be expressed as a func-
tion of the Reynolds number:

GrD = 2
Σ(fiLi)

∆z
·Re2D. (8)

In case the pressure losses in loop equipment attain negligible
magnitudes, and a fanning factor expression of the form f =
p/RebD is used, equation (8) reduces to

ReD =

(
∆z

2pL
·GrD

) 1
2−b

. (9)

EXPERIMENTAL FACILITY & METHODOLOGY
The experimental facility designed for- and used in this work

is depicted schematically in figure 2. As the heater and cooler are
located along the vertical legs of the system, a preferential flow
direction prevails. For steady flows, a counter-clockwise circula-
tion is expected in the perspective of the figure. The dimensions
of the flow loop and the range of conditions within which it has
been designed to operate are specified in table 1. Whereas most
of the system is joined using detachable stainless steel tube fit-
tings, EPDM or PTFE is used in components where non-metallic
soft seals are required [16]. Heat is supplied to the system using
a series of movable electric band heaters. In order to minimize
heat losses to the surroundings, the circulation loop is insulated
with a 40 mm thick annulus of rockwool. The loop is cooled
using a tube-in-tube counter-current heat exchanger. Here, the
outer annulus is equipped with baffles to aid in the distribution
of the coolant. The inlet temperature of the cooler is controlled
using a Julabo FP51-SL refrigerated circulator. Whilst mostly
simplistic of nature, the loop is also equipped with flow- and
state control devices. An adjustable local pressure loss is intro-
duced using a regulating needle valve. Additionally, the volume
in the loop can be varied using a 1 l piston accumulator, indicated
below 5 in the figure. Here, nitrogen is used as the secondary
medium.

Parameter & Description Value/Range Unit
m4.0Loop heightH
m10.0Loop lengthL

mm21.1Inside diameterD
∆z Driving height ≤ 2.5 m
P Design pressure ≤ 140 bar
T Design temperature −20 ≤ T ≤ 65 ◦C

Table 1: Test loop description

Figure 2: Schematic depiction of the TU Delft Process & Energy
sCO2 natural circulation loop. As indicated in grey, the system is
connected to 1 a CO2 bottle with dip tube, 2 a CO2 purge that
is connected to the lab’s gas vent system, 3 a vacuum pump, 4
a drain, and 5 a nitrogen bottle. The electric heater and annular
cooler are indicated in red and blue, respectively.

3

  The  facility  is  equipped  with  a  series  of  transmitters  for  the 
continuous  monitoring  of  its  performance.  Bulk  temperatures  
are  measured  using  PT100  resistance  thermometers  with  a  
nominal  accuracy  of  ±0.1  ◦C,  which  are  laterally  inserted 

into  the  flow.  Absolute  pressure  measurements  are  taken  using 
welded  STS  ATM.1st  transmitters,  with  a  nominal  uncertainty 
of  ±0.16  bar  or  0.1%.  Furthermore,  the  loop  includes  a  Rheonik 

RHM08  Coriolis  mass  flow  meter  with  a  nominal  uncertainty  
of  0.2%.  Finally,  two  Siemens  SITRANS  P420  differential 
pressure  sensors  were  used  for  the  quantification  of  the  viscous 
losses  in  both  the  Coriolis  meter  and  the  regulating  valve.  The 
transducer  data  are  acquired  at  1Hz  using  a  NI  cRIO-9074,
with  RTD  module  NI-9216,  analog  in-  (NI-9208)  and  output
(NI-9266)  modules,  and  digital  input  module  NI-9421.  A 
Labview  user-interface  for  the  real-time  visualization  of  the  data  
was  developed  to  complement  the  data  acquisition  structure.
Here,  the  interpolation  of  tabulated  thermodynamic  properties  
allows  for  the  live  monitoring  of  various  compound  quantities.
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Figure 3: Lines of constant mass at set system volume for car-
bon dioxide at supercritical pressure. Current experimental data
points indicated at measured Tm and Pm for all considered nomi-
nal densities. Boiling- and pseudo-boiling curves indicated with
thick solid and dashed lines, respectively

In order to fill the loop, the system is first brought to moderate
pressures. Consequently, a blow-off valve at the top of the
loop is used to purge the system of non-condensable gases.
Additionally, a valve at the bottom of the loop is opened to
drain the loop of unwanted liquids. After evacuating the system
with a vacuum pump, liquid carbon dioxide of a high purity
is fed to the system from a cylinder with a dip tube. As the
bottle is weighed, the filling mass of the loop is known. Once
an equilibrium in pressure is reached between the bottle and the
experimental facility, the loop is cooled. As a result, the loop
pressure decreases to below the vapor pressure of the bottle,
resulting in a flow of carbon dioxide towards the facility. By
moderately heating the loop during this cooling step, a natural
flow is generated that allows for greater cooling rates, and
therewith accelerates the filling process.

In this work, the thermodynamic space is explored by
traversing a set of isochors. As shown in figure 3, a desired
supercritical pressure can be attained for different filling masses
at different loop temperatures. During operation, the coolant
temperature is adjusted at a constant volume to attain the
appropriate pressure. As such, a constant mean state can be
maintained for varying heating rates. The mean state is both
continuously and a posteriori evaluated by assuming a linear
distribution of T in the heat transfer equipment. The range of
states that was therewith reached in this work is listed in table 2,
and depicted in figure 3. The distinct thermodynamic states were
attained for heating rates of both 400 W and 800 W , and are
used in discussions of the dependency on thermodynamic state
of the mass flow rate and the assessment of the performance of
the generalized equation.
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Figure 4: System temperature ranges for selected loop filling
masses, at Q̇ = 800 W, ∆z = 2.5 m. Range is bound by great-
est and lowest measured temperature in the loop. Boiling- and
pseudo-boiling curves indicated with solid and dashed lines, re-
spectively.

Parameter & Description Value/Range Unit

Q̇ Heating rate ≤ 2 kW
ρm Mass density 250 ≤ ρm ≤ 750 kg m−3

Pm Operating pressure 81 ≤ Pm ≤ 111 bar
Tm Operating temperature 20 ≤ Tm ≤ 60 ◦C

4

Table  2:  Operating  range

RESULTS  &  DISCUSSION
  During  the  steady  operation  of  the  natural  circulation  loop,
the  loop  temperature  distribution  varies  with  thermodynamic 
state.  The  loop  temperature  distribution  for  an  assortment  of  
states  within  the  considered  range  is  depicted  in  figure  4.  The
natural  flow  is  driven  by  moderate  temperature  gradients,  espe-
cially  in  the  vicinity  of  the  pseudo-critical  line.  With  increasing 
pressure  beyond  the  critical  point,  the  pseudo-critical  curve  
gradually  transforms  from  a  point  of  near-discrete  phase  transi-
tion  to  a  gradually  increasing  region  of  mild  property  gradients.
Additionally,  as  the  fluid’s  specific  heat  near  this  curve  decreases  
with  pressure,  less  variation  of  driving  temperature  is  found  
along  isobars  of  greater  magnitudes.  Of  course,  a  quantitative  
assessment  of  the  loop  temperature  distribution  follows  from  the 
steady  state  mass  flow  rate.  If  the  loop  mass  flow  rate  is  known,
the  loop  temperature  maxima  and  minima  can  be  obtained  using
Tmax,min  =  Tm  ±  Q̇/(2  ṁcp,m).  Using  the  experimental  mass 

flow  rate  ṁexp,  close  agreement  with  experimental  data  is  found  
for  the  considered  range  of  thermodynamic  states.

  In  this  work,  equation  (9)  is  proposed  for  the  prediction 
of  steady  mass  flow  rate  ṁ.  A  comparison  of  equation  (9)  with 
experimental  data  is  given  in  figure  5.  Here,  no  minor  pressure
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losses are considered in determining the viscous loss term of
equation (9), consistent with previous approaches in existing
literature. As the value of ReD for all current empirical data
exceeds 104, Blasius viscous loss constants for hydrodynam-
ically smooth turbulent pipe flow p = 0.25 and b = 0.0791
are used. The experimental data for this figure is obtained in
the absence of the regulating valve depicted in figure 2. The
current prediction is expected to yield values of comparable
magnitude as the generalized formulae of Swapnalee and Liu
[11], [15], as similar approaches are undertaken. As shown in
figure 5, significantly lower empirical Reynolds numbers were
however obtained in the current experiments. Disagreement of
the dimensionless quantities of a similar extent was also found in
the work of Sadhu et al., [9]. In search of generality, an attempt
is made to find the source of disparity between the prediction
and the found experimental data. Hence, the contributions of
the individual terms in dimensional equation (6) are further
investigated.

108 109 1010

GrD (-)
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R
e D
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)
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( "z
2pL "GrD)

1
2!b

Figure 5: ReD as function of GrD for experimental data in the
range of operating values indicated in table 2. Prediction of equa-
tion (8) indicated in figure with solid curve.

In order to consider the independent contribution of Q̇ in equa-
tion (6), all other terms have to attain constant values when Q̇
is varied. Through variation of the coolant temperature, a con-
stant thermodynamic mean state can be maintained with varying
heating rates. As the measured value of Σ(fiLi) is however non-
constant due to variation in U , ṁexp has to be compensated for
using

ṁcor,fl = ṁexp ·
(

Cfl

Σ(fiLi)exp

)1/3

. (10)

Here, ṁ is assumed to scale with Σ(fiLi)
−1/3, following equa-

tion (6). The value of Cfl should be chosen such that it matches
one of the values of Σ(fiLi) within the considered experimental

data set. As will be shown later in this work, the experimental un-
certainty is the least for ρ ≥ 700 kg m−3 and pr ≥ 1.3 within the
considered range of thermodynamic states. As such, this range
of thermodynamic conditions is chosen for the assessment of the
individual contributions of Q̇, ∆z, and Σ(fiLi). In figure 6, the
expected contribution of Q̇ is compared to corrected empirical
data. Here, the measured increase in heating rate Q̇ = ṁcor,fl∆h
is used rather than the imposed electrical heating rate Q̇imp, in or-
der to account for heating losses in the system. Close agreement
is found between the predicted trend in mass flow rate and the
experimental data for the considered range, hence ṁ is assumed
to scale with Q̇1/3 from this point onwards. As such, heating
losses can be compensated for in investigations of data sets in
which Q̇ is to be kept constant using

ṁcor,Q̇ = ṁexp ·

(
Q̇imp

ṁ∆h

)1/3

. (11)
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  One  such  corrected  set  of  empirical  data  is  shown  in  figure  
7.  The  depicted  experimental  data  has  been  corrected  for  both
variation  in  viscous  losses,  and  variation  in  heating  losses.  Here,
the  expected  change  in  ṁ  with  variation  in  ∆z  is  compared  to  
data  from  experiments  in  which  ∆z  is  independently  varied.
Again,  close  agreement  is  found  between  theory  and  practice,
and  the  source  of  the  discrepancy  in  figure  5  has  not  yet  been
identified.

  An  investigation  of  the  influence  of  thermodynamic  state 
follows  in  figure  8.  For  the  current  analysis,  the  measured  value
of  Σ(fiLi)  has  been  found  to  vary  with  pressure,  whereas  its  
value  remains  predominantly  constant  along  each  isobar.  Hence,
the  theoretical  fluid  property  contribution  of  equation  (6)  is
multiplied  with  Cf(pr).  The  value  of  this  constant  is  chosen  as  
such  that  the  theoretical  curve  intersects  with  the  lowest  mean 
temperature  data  point  for  each  reduced  pressure.  Heating  losses
are  compensated  for  using  equation  (11),  and  the  corrected  mass 
flow  rate  values  ṁcor,  Q̇  are  shown  in  the  figure.  The  proposed 
theoretical  contribution  of  thermodynamic  state  is  found  to
closely  and  continuously  describe  the  corrected  data  for  any  de-
gree  of  sub-cooling  in  the  considered  range  of  parameters.  Note 
that  the  size  of  the  confidence  intervals  of  ṁcor,  Q̇  varies  greatly
with  thermodynamic  state.  The  uncertainty  in  measurements 
of  temperature  and  pressure  is  however  mostly  constant  within  
the  current  range  of  experiments.  As  the  sensitivity  of  enthalpy  
to  temperature  however  varies  with  pressure,  the  uncertainty  in  
enthalpy  follows  accordingly.  This  makes  that  the  uncertainty  in  
the  determination  of  the  fluid  enthalpy  used  for  the  correction  of  
heating  losses  is  greatest  near  maxima  of  specific  heat,  hence  at 
the  pseudo-critical  line  at  pressures  in  the  vicinity  of  the  critical 
pressure.  Therefore,  investigations  of  individual  contributions  of  
equation  (6)  should  be  performed  away  from  the  pseudo-critical
curve,  to  reduce  the  uncertainty  of  the  findings.  As  such,
the  more  liquid-like,  high  pressure  thermodynamic  states  are 
considered  for  these  analyses,  as  previously  elaborated  on  in  this 
work.

  Finally,  the  effect  of  pressure  losses  caused  by  equip-
ment  is  investigated.  For  this,  the  joint  pressure  drop  ∆pe  over
the  flow  meter  and  the  regulating  valve  section  is  monitored.
Pressure  drop  ∆pe  is  the  summed  value  of  the  readings  over
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Figure 6: Variation of ṁcor,fl with Q̇ = ṁcor,fl∆h, at ρnom =
700 kg m−3, pr = 1.5, ∆z = 2.5 m, with 95% confidence
intervals. Constant C is chosen as such that the leftmost data
point coincides with the theoretical curve.
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Figure 7: Variation of ṁcor,fl,Q̇ with ∆z, at ρnom =

700 kg m−3, pr = 1.3, Q̇ = 800 W, with 95% confidence
intervals. Constant C is chosen as such that the rightmost data
point coincides with the theoretical curve.
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Figure 8: Variation of ṁcor,Q̇ with Tm and Pm, at ∆z = 2.5 m, Q̇ = 800 W, with 95% confidence intervals. Cf(pr) is chosen
as such that the leftmost data point for each pr coincides with the theoretical curve.

both differential pressure transmitters indicated with dPT in
figure 2. Despite having different means to generate a driving
force with, both natural and forced convective flows are driven
by steady pressure gradients. As such, the flow in a NCL should

6

only  deviate  from  a  developed  pipe  flow  near  heat  transfer  
equipment  where  radial  temperature  gradients  are  present,  and 
at  flow  obstructions.  Hence,  measurements  of  pressure  losses  
only  in  obstructive  equipment  combined  with  pressure  loss
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Figure 9: Left axis, full line and markers: variation of ṁcor,Q̇

with ∆pe, at ρnom = 730 kg m−3, pr = 1.1, ∆z = 2.5 m, Q̇ =
400 W, with 95% confidence intervals. Predictive curve found
by varying the equipment loss term (fL)e in equation (6), and
iteratively solving for ṁ. The leftmost data point has not been
corrected to take heating losses into account. Right axis, dotted
line: ∆pe as a fraction of the estimated total loop pressure loss
Σ∆p.

correlations based on ideal and developed pipe flows should
suffice in reconstructing the NCL’s sensitivity to pressure losses.

Figure 9 shows the loop mass flow rate as a function of
the experimental values of ∆pe, and the relative magnitude
of ∆pe with respect to the total viscous pressure losses in the
system. The regulating valve is present in all but two data
points of the current analysis, for which it is removed from
the supercritical NCL. In the leftmost data point in the figure,
both the valve and the mass flow meter are removed from the
experimental facility. Here, the mass flow rate is estimated from
the imposed heating rate and the measured enthalpy increase
over the heater, i.e. ṁexp = Q̇imp/(hh,exp − hc,exp). As heating
losses cannot be reliably estimated for this data point, they
are not compensated for. The predictive curve is obtained by
adding an equipment loss term (fL)e = (∆peD)/(2ρcU

2
c ) in

the viscous loss term in equation (6). For each value of ∆pe,
the distribution of the viscous losses in the system has to be
iteratively solved for. As such, the presented theoretical curve in
figure 9 is state- and configuration dependent and therewith only
applicable to the current analysis.

The theoretical curve is found to closely resemble the
experimental data. The value of the predictive curve at a zero
value of ∆pe corresponds to the expected mass flow rate in
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Figure  10:  Steady  state  prediction  error  with  inclusion  of  mea-
sured  ∆pe  into  equation  (6),  at  ∆z  =  2.5  m,  Q̇  =  400  W  ∨  Q̇  =
800  W,  with  95%  confidence  intervals.

case  no  equipment  losses  are  assumed.  For  this  point,  the  total 
loop  pressure  loss  is  solely  predicted  using  the  turbulent  Blasius  
viscous  loss  constants  specified  previously  in  this  section.
Whilst  this  modeling  assumption  is  likely  to  be  accurate  for 
the  majority  of  the  loop,  the  relatively  large  uncertainty  in  the 
unobstructed  and  leftmost  data  point  makes  that  no  definitive  
claims  regarding  the  validity  of  the  modeling  choice  can  be  
made.  Furthermore,  a  comparison  of  the  two  leftmost  points  in 
the  figure  shows  that  a  threefold  decrease  in  mass  flow  rate  is 
the  direct  consequence  of  the  inclusion  of  a  flow  meter  in  the 
experimental  loop.  The  difference  in  mass  flow  rate  is  of  similar 
magnitude  as  the  shift  in  figure  5,  in  which  equipment  pressure
losses  were  not  taken  into  account.  As  can  be  seen  from  figure 
9,  the  losses  in  the  flow  meter  alone  are  estimated  to  exceed  the  
regular  viscous  losses  in  the  loop.

  Figure  10  shows  the  error  in  the  prediction  of  the  exper-
imental  steady  state  mass  flow  rate  ṁexp,  if  the  measured  ∆pe
is  included  in  the  viscous  loss  term  of  equation  (6).  As  shown 
in  the  figure,  close  agreement  is  found  with  the  predicted  mass  
flow  rate  ṁp  for  the  majority  of  the  data.

  Albeit  moderately,  the  value  of  ṁexp  is  systematically 
over-predicted  for  the  more  liquid-like  data  points  of  the
considered  range,  shown  mostly  in  the  top  half  of  figure  10.
A  possible  cause  for  the  above  is  an  under-prediction  of  the  
viscous  losses  in  the  flow  in  the  vicinity  of  the  heat  transfer
equipment  of  the  setup.  As  qualitatively  described  in  the  work  
of  Wahl  et  al.  [17],  the  alignment  of  the  direction  of  both  forced-
and  natural  convection  can  result  in  near-wall  velocities  that  are 
greater  than  in  an  adiabatic  setting.  For  flows  of  supercritical
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media, this is the case for downward cooled and upward heated
pipe flows. As such alignment is present in both heat transfer
configurations of the investigated loop for the preferential
flow direction, enhanced buoyancy-aided shear is expected in-
and directly downstream of the cooler and heater. From the
correlations presented in the review of Fang et al. [18], it follows
that the greatest degrees of shear enhancement can be found
for more liquid-like states beyond the critical point. As these
additional viscous losses are not measured and hence not taken
into account for the determination of ṁp in figure 10, the true
steady state is likely over-predicted.

For all the considered experimental data points of this
work, the total loop viscous losses are dominated by the equip-
ment losses of a single Coriolis transmitter. The associated loss
of flow rate is expected to be even more prevalent in facilities
with less simple geometries, in which the flow is forced through
a greater amount of instruments, or past series of turbine blades.
Hence, the a priori characterization of the equipment minor
losses is essential for an accurate prediction of the steady mass
flow rate of supercritical NCLs, which are generally inflexible
to changes in maximum heat throughput. Without the proper
portrayal of such losses, an empirical fit based on equation (8)
yields little insights for the development of future circulation
loops. Additionally, equation (6) will only serve as a qualitative
measure of the evolution of ṁ with thermodynamic state, ∆z
and Q̇ from some configuration specific steady state value.

CONCLUSIONS
The steady state behavior of a natural circulation loop that em-

ploys thermodynamically supercritical carbon dioxide was ex-
perimentally investigated in this work. The experiments were
conducted using a novel facility at the Process & Energy lab-
oratory of the Delft University of Technology. Distinct empir-
ical data points were obtained by varying the system’s filling
mass, its heating rate, and the temperature of the coolant. The

experimental data was compared to a newly proposed general-
ized equation for the prediction of the steady state mass flow rate
of supercritical NCLs. Whereas the effects of changes in heating
rate, differential heating height, and state were shown to be ac-
curately captured in isolated experiments, the experimental mass
flow rate was significantly over-predicted. The over-prediction
was attributed to the viscous losses in the instrumentation, which
can significantly limit the flow rates in these systems in which
the driving forces are generally of moderate magnitudes. There-
fore, an in-advance assessment of equipment losses is required
for the accurate prediction of yet to be developed supercritical
NCL systems.
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