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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

When using machine learning for quality prediction in injection molding, feature processing is an important step in data preparation to improve 
the quality of model prediction. The objective of this study was to evaluate the prediction performance of different feature extraction algorithms 
compared to more common feature selection. Two test specimens, each with two recorded quality features, were produced in six different injection 
molding process states, resulting in 11.720 injection cycles as the data base. Depending on the process state, R² of up to 0.99 could be achieved. 
Nevertheless, the results show that feature selection is preferable for feature processing. 
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1. Introduction 

Thermoplastic injection molding is one of the most popular 
plastics processing methods, as it allows mass production of 
complex parts in a single discontinuous production step. The 
process consists of the following steps: First, the material, 
which is usually in granular form, is plasticized by the rotation 
of a screw and additional heat input from heating elements. 
Then the melt is injected into the cavity of the mold. Due to 
shrinkage effects caused by the cooling of the part, the screw 
injects further material to compensate for this effect during the 
holding pressure phase. Finally, the mold opens and the part is 
ejected. [1] 

The quality of the molded parts depends on various internal 
and external influences, like machine settings, machine wear, 
material batch variations, etc. In order to compensate for these 
disturbing effects, various methods have been developed 
throughout history. [2] 

These control strategies can be divided into three categories 
depending on the parameters they use for control: Machine 
parameter control, process parameter control and quality 
control. Machine parameters are independently controllable 

variables such as cylinder temperature or holding pressure. 
Process parameters are dependent variables and result from 
various machine parameters and other parameters like mold 
geometry. Examples are cavity pressure or melt temperature. 
The result of machine, process and external parameters are 
quality parameters like part weight and dimensions. [3] 

The goal of all control strategies is to adjust the machine 
parameters to obtain the desired quality. Strategies that directly 
measure quality are often not feasible in an industrial context 
due to additional equipment costs, measurement time, and other 
constraints like space in the mold. Therefore, current research 
focuses on indirect prediction methods. These can be based on 
physical or statistical modeling, although the former is less 
pursued since a complete physical description of the injection 
molding process is not possible. [4] 

Currently, machine learning has been proven as a statistical 
modeling method with good prediction performance. The 
quality prediction task is categorized as a supervised learning 
problem because the goal of machine learning is to find the 
relationship between the input data (also called "features") and 
the output data. In injection molding, the machine and process  
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Fig. 1. Steps involved in creating a quality prediction using machine learning. 

parameters are the input data and the quality variables are the 
output data. [5] 

Before a prediction can be implemented, three steps are 
necessary (cf. Fig. 1), with the feature preprocessing step 
(marked in red in Fig. 1) being as important as the selection of 
a suitable machine learning method and its training. This 
preprocessing step has three goals: 1) reduce the amount of data 
to limit memory requirements and decrease computation time; 
2) focus on relevant data for next use; and 3) increase the 
prediction performance of the machine learning algorithm. [6] 

Feature processing algorithms can be divided into feature 
selection (FS), feature extraction (FE), and feature construction. 
While FE and FS reduce the dimensionality of the data (number 
of features), feature construction can expand the number by 
creating new features that attempt to increase the 
expressiveness of the original features [7]. Since we focus on 
dimensionality reduction methods (DRM) in this paper, feature 
construction is not discussed further. 

Although feature preprocessing is an important step, it is 
often neglected when using machine learning in injection 
molding. Usually, the focus is on training the model and the 
prediction itself. As a result, few research papers in recent years 
mention this step, and even fewer address it (cf. Table 1). 

Table 1. Overview feature selection and extraction in injection molding. 

Algorithm Approach Reference 

Different embedded methods Feature selection [5] 

InfoGain Feature selection [8] 

InfoGain & ReliefF Feature selection [9] 

Correlation based feature 
selection & ReliefF Feature selection [10] 

Recursive feature elimination Feature selection [11] 

Autoencoder Feature extraction [12] 

Principal component analysis Feature extraction [13] 

Recursive feature elimination 
& Support vector wrapper  Feature selection [14] 

We do not claim completeness in this survey, and some 
literature not listed in the table uses manual FS, but there is a 
wide range of possible DRMs. However, the main difficulty is 
that a particular DRM may be suitable for a particular data type 
and application and not for others [15]. 

This study is a continuation of [16], in which we applied 
various FS algorithms to injection molding data. To our 
knowledge, there is no systematic analysis of FE methods on 
injection molding data, although this type of DRM can be as 
good as FS [17]. Therefore, the following questions are 
analyzed in this study: 

• How good is the prediction of different machine learning 
algorithms using FE as a feature processing step?  

• Which FE algorithm performs best on injection molding 
data? 

• How important is the selection of a specific machine 
learning algorithm?  

• How does the predictive performance of models trained 
using FE compare to the same models trained using FS? 

The rest of this paper is organized as follows. In Chapter 2, 
the experimental setup for data generation is presented, as well 
as the FE algorithms used for comparison. Also, the overall 
prediction process is outlined. Next, Chapter 3 presents the 
results that answer the above research questions. This is 
followed by a discussion in Chapter 4. Lastly, the results are 
summarized and an outlook on future work is given. 

2. Methodology 

2.1. Experimental setup 

All data used for the evaluation of the different FE 
algorithms were generated with an all-electric KraussMaffei 
120-380 PX injection molding machine, which is part of a 
production cell consisting of the injection molding machine, a 
linear robot, a conveyor belt and 100% inline quality 
monitoring. Two test specimens (cf. Fig. 2) were produced, a 
plate specimen made of polypropylene (Moplen HP501H, 
LyondellBasell Industries N.V., Rotterdam) and a cover 
specimen made of polyamide 6 (Durethan B30S, Lanxess 
Deutschland GmbH, Cologne). The weight and length of the 
plate specimen and the weight and diameter of the cover 
specimen were used as quality variables. The weight was 
measured with a Sartorius Entris 153I-1S balance and the 
length and diameter were photographed automatically with a 
Canon Eos 5D Mark III DSLR camera with EF 70-200 mm f/4L 
USM lens. The dimensions were then extracted by an automated 
algorithm. Machine and process parameters were taken from 
the built-in machine sensors. In addition, the cavity pressure for 
the plate specimen was recorded. Six different experiments 
were used to generate the data: A start-up process, a stable 
process, a process with downtime, a process with regrind 
material, a process with regrind material and KraussMaffei 
APC+ (a control strategy based on process parameters), and a 
Design of Experiment (DOE). These experiments were 
intended to reflect real situations that may occur in industry 
sooner or later in the production process. Each experiment had 
1000 injection molding cycles, only the DOE had 860, resulting 
in a total of 11.720 injection molding cycles. Further 
information on the various experiments can be found in [18].  

 

 

Fig. 2. (a) plate specimen; (b) cover specimen. 
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2.2. Feature extraction 

Feature extraction is a DRM that generates a new set of 
features computed from the original set. While FS reduces the 
dimensionality of the set by selecting a list of features from the 
entire feature set, FE reduces the dimensionality by mapping 
the feature space to fewer dimensions. This is usually done by 
a transformation. [7]  

Next, we would like to briefly introduce the algorithms we 
used for the study. 

Principal component analysis (PCA) is an orthogonal linear 
projection method in which the old features are replaced by 
new, so-called principal components (PCs) by linear 
combination. Here, the variance in the original features 
represents their importance. After sorting the PCs by variance, 
a certain number is selected and the rest is discarded. [15] 

Independent component analysis (ICA), like PCA, is a 
projection method. While PCA tries to find uncorrelated 
features, ICA looks for independent features. In this work, we 
use a reconstruction ICA that modifies the standard ICA to 
improve the performance of the FE method. [19] 

Kernel PCA (kPCA) is a nonlinear DRM and an extension 
of conventional linear PCA using the "kernel trick", which 
results in lower computational power. Instead of computing the 
covariance matrix, the eigenvectors of the kernel matrix are 
computed [20]. The kernel also makes PCA suitable for 
nonlinear mappings [15]. 

Multidimensional scaling (MDS) is a manifold approach that 
generates new features that maintain the distances between old 
data points for a selected neighborhood [21]. We have used two 
different MDS methods. First, the classical MDS (CMDS), 
which uses Euclidean distance. Second, a non-classical MDS 
(NCMDS), which extends the classical MDS by allowing 
different criteria to construct the configuration, e.g., non-metric 
scaling. 

Like MDS, locally linear embedding (LLE) is a nonlinear 
DRM that aims to preserve the local properties of the data while 
reducing the feature space. LLE consists of three steps. First, 
the k-nearest neighbors are identified. Second, a set of weights 
is computed for each point using a linear combination of the 
neighbors. Last, the points are transformed to a lower feature 
space while maintaining the weight matrix from step 2. [21]  

The Isomap algorithm is an extension of the classical MDS 
by using geodesic distances instead of Euclidean distance. This 
enables the MDS to deal with non-linear data. There are 
furthermore two criteria for the neighborhood. First, the epsilon 
neighborhood, which is a threshold for a real value where only 
points with a Euclidean distance less than epsilon are 
considered neighbors. Second, the k-neighborhood, which 
simply considers the nearest k points. [21] In this work we only 
consider the k-neighborhood.  

Autoencoders were not actually developed with 
dimensionality reduction in mind but have shown that they can 
be used as such. They are a neural network consisting of at least 
three layers, where the output layer has the same number of 
neurons as the input layer, and the hidden layer(s) have fewer 
than the input and output layers. This structure is also referred 
to as the "encoder-decoder architecture," where the encoder 
encodes the high-dimensional data into a lower dimension, 

while the decoder uses the low-dimensional data and attempts 
to reconstruct the original high-dimensional data. The goal is to 
reduce the reconstruction error, using only the encoder for FE. 
[22] 

2.3. Quality prediction system 

All steps to build a quality prediction model were performed 
in MATLAB2020b. First, the data were cleaned of features 
with no or constant entries. This left a total of 48 features. Then, 
the data were divided into 80% training data and 20% test data 
using the holdout method [23]. The FE algorithms were then 
applied. Table 2 shows the different configurations of the 
methods with their hyperparameters. 

Table 2. Feature extraction configurations 

Algorithm Hyperparameter 

PCA, ICA, CMDS, NCMDS - 

LLE  Number of neighbors [5,15,25] 

Isomap Number of neighbors [15,25] 

kPCA Kernel [Linear, Polynomial, Gaussian, 
Exponential, Laplacian] 

Autoencoder Transfer function [Saturating linear, 
Log-sigmoid] 

A total of 16 FE models were initially considered, with the 
feature space reduced to five. This number was chosen as the 
threshold, since previous evaluations have shown that the 
optimal number of features is between five and ten [24]. 

In the next step, the training of the model was performed. 
The following seven machine learning algorithms were used: 
Artificial neural networks (ANN) [25], support vector machines 
(SVM) [26], binary decision trees (DT) [27], k-nearest-
neighbors (kNN) [28], ensemble methods (EM) (LSBoost [29] 
& random forest [30]), Gaussian process regression (GP) [31] 
and multiple linear regression (MLR) [29]. The 
hyperparameters were optimized using Bayesian optimization 
with 5-fold cross validation [24]. An overview of the 
hyperparameters and their values can be found in [18]. The 
coefficient of determination (R²) was used as the evaluation 
criterion for the prediction on the test dataset. 

3. Results 

3.1. Preselection of feature extraction configurations 

In order to reduce the computation time, a pre-selection of 
the different configurations (cf. Table 2) was made based on 
the DOE dataset for the cover weight. This dataset has been 
shown to be suitable for model evaluation in the past [18]. A 
configuration was selected for further evaluation only if it 
could achieve an R² > 0.4 with at least one of the seven different 
models.  
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Fig. 3. R² for the best prediction performances achieved from the different FE 
configurations on the DOE test dataset for the cover weight. 

Figure 3 shows the results of the different configurations and 
the model that achieved the highest performance. Of the seven 
possible machine learning methods, only three different ones 
achieved the highest coefficients of determination. Most 
frequently, the Gaussian process achieved the best R² (12/16), 
followed by the ensemble method (2/16) and the support vector 
machine (1/16). The highest predictive performance was 
obtained by NCMDS with 0.92. The lowest R² was 0.03 by 
kPCA with the Gaussian kernel. 

With this preselection, four configurations are no longer 
used. In addition, the configuration LLE | k | 15 is omitted 
because the results are very similar to the other numbers of 
neighbors. 

3.2. Overall prediction performances 

The main research question was focused on the predictive 
performance when using FE. First, figure 4 shows the highest 
R² value for the different datasets focusing on the specimen and 
quality criteria. The prediction performance varies depending 
on the dataset. Only the DOE dataset achieved an R² above 0.7 
for all modelled quality features. Overall, of the 24 datasets, ten 
models had an R² below 0.4, three models had an R² between 
0.4 & 0.7, and eleven models had an R² above 0.7. The most 
common combination of FE and model  

 

Fig. 4. Best R² for every test dataset and quality criteria. 

was Autoencoder | Log-sigmoid & ANN (6), followed by 
NCMDS & GP (5) and CMDS & ANN (4). 

Next, figures 5 & 6 show a comparison between the different 
FE algorithms for the plate and cover specimen to answer the 
research question of which algorithm performs best on injection 
molding data. The highest R² and the mean value from the six 
experiments are shown. The plate weight could be predicted 
with an R² above 0.9 with each FE method. This is also true for 
length, except for the LLE | k | 5 configuration, which only 
achieved 0.71. The prediction performance for the cover varied 
more and was worse than for the plate. Here, the highest R² for 
cover weight was 0.92 (NCMDS) and the lowest 0.49 (LLE | k 
|5). From the mean values it can be seen that no FE algorithm 
had performed significantly better than others. Only LLE and 
Isomap showed inferior values on both cover and plate. The 
mean value of the Autoencoder | Saturating linear was also 
lower for the cover dataset than that from the PCA, ICA, kPCA, 
and MDS variants. Only NCMDS and Autoencoder | Log-
Sigmoid achieved an R² above 0.7 with the highest being 0.71, 
and that only for the plate weight (cf. Fig. 5). To look at the 
prediction accuracy in more detail, figure 7 shows the R² on the 
start-up process test dataset for the cover specimen. This dataset 
was used because the overall prediction performance here was 
typically lower than for other datasets (cf. Fig. 4). Again, LLE 
and Isomap showed lower values (R² of ~0.1) than the other 
algorithms. Considering a threshold of 0.7, none of the models 
on this dataset were able to exceed it.  

 

 

 Fig. 5. Highest and mean R² for the FE algorithms on the plate specimen test 
dataset. 

 

Fig 6. Highest and mean R² for the FE algorithms on the cover specimen test 
dataset. 
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Fig 7. R² for the cover specimen on the start-up process test dataset. 

3.3. Comparison of different machine learning algorithms 

To answer the question how important the right choice of 
machine learning algorithm is, figure 8 shows the comparison 
of the different used algorithms. GP and ANN most frequently 
achieved the highest R² (cf. Fig. 8a) with a total share of 75%. 
However, if we look at the relative share of the sum of R² over 
all datasets (cf. Fig. 8b), we see an even distribution, with only 
MLR and kNN have a smaller share.  

3.4. Comparison with feature selection 

The last question was whether feature extraction or feature 
selection is better as a step of feature processing in injection 
molding. Here we used a forward search with correlation-based 
feature selection. This combination was found to provide good 
results [18]. Figure 9 shows the highest R² achieved by both 
methods. Of the 24 datasets, FE was superior to FS only once, 
with a difference of 0.03 for the regrind dataset using the cover 
weight. The largest overall difference was 0.51 for the regrind 
& APC+ dataset for the cover weight as well. On average, the 
FS had an R² 0.12 higher than FE.  

4. Discussion 

Relating the results to the steps of generating a quality 
prediction (cf. Fig. 1), it can be seen that the largest influence 
on the prediction performance came from the data source then 

 

Fig. 8. Comparison of machine learning algorithms according to best R² (a) 
and summed R² (b). 

 

 
Fig. 9. Comparison feature selection and extraction. 

 
followed by the choice of the machine learning algorithm (cf. 
Fig. 8a) and lastly the choice of the feature processing algorithm 
(cf. Figs. 5 & 6). This order is also consistent with the results 
from [18,24]. Comparing the R² from the weight and the 
dimensions, it can be seen that the weight was easier to predict 
than the length or the diameter. One reason for this could be the 
accuracy of the measurement methodology. While the 
measurement of weight has few disturbing factors, the 
measurement of dimensions is affected by various disturbing 
factors such as ambient light, shape tracking algorithms, 
position on the conveyor belt, etc. In addition, only the DOE 
dataset was able to provide high predictive values across all 
specimens and quality criteria, which may be one reason for its 
popularity as a data source for predicting injection molding 
quality. However, for use in industry, the use of a stable process 
should be aimed for, as performing a DOE takes time and 
resources.  

In principle, a high prediction quality could be achieved with 
FE, so that this type of DRM can be used for quality prediction. 
Only LLE and Isomap stood out here with worse R². An 
explanation for the results of Isomap could be that the geodesic 
distances represent the present feature space worse. This would 
also be confirmed by the higher R² of CMDS, which uses 
Euclidean distance. An explanation for LLE could be the lack 
of optimization of the number of neighbors. 

The comparison of the different machine learning methods 
shows that the best prediction performance could be achieved 
with GP or ANN (cf. Fig. 8a). Nevertheless, it should be noted 
that a simple multiple linear regression did not provide 
significantly worse results (cf. Fig. 8b). This is also consistent 
with the findings in [18]. Compared to the other methods 
(except kNN), MLR has the advantage that no long training 
phase is required. As a result, the quality prediction application 
is ready for use much faster. 

The comparison between feature extraction and selection has 
shown that FS is to be preferred as a step of feature processing. 
It should be noted that FE is particularly useful for high-
dimensional data (HDD). HDD is data where the number of 
features is greater than the number of samples (here cycles) 
[32]. This was not the case in this study. In addition, the results 
can be interpreted after feature selection because the features 
remain unchanged. This is advantageous in terms of quality 
control because the information can be traced directly to the 
machine and process variables. 
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5. Conclusion and outlook 

Feature extraction is a common feature processing method 
in machine learning applications. In this study, we evaluated 
several algorithms on injection molding data with the goal of 
using machine learning for quality prediction. After a pre-
selection, we compared the 12 most promising configurations 
on 24 datasets consisting of six different experiments, each with 
two specimens and two quality criteria. Seven machine learning 
methods were used for prediction. A total of 2016 R² were 
analyzed. The highest R² was 0.995. 

Measured by the achievable model quality, the feature 
extraction algorithms perform almost as well as the feature 
selection. However, acceptable models could not be generated 
for all process states using FE. Only ten models achieved an R² 
above 0.7, which we consider a threshold for use in quality 
prediction. When datasets can be modelled well, the choice of 
FE algorithm is secondary. 

Dimensionality reduction for data preprocessing will have 
an important role as the digitization of industrial plastics 
manufacturing progresses with more and more sensor 
information available, in order to optimally process the 
available data. However, it is even more important to increase 
the quality of the available data to improve the prediction 
performance, especially with stable process data, which is the 
most common situation in industry. Since no general statement 
can be made about which combination of methods should be 
chosen in the respective phases of model building, dynamic 
model building can provide better results. We have already 
shown a first approach here [33]. 
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