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Image on title page: Genome fluidity of Ca. Altiarchaea.  
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I. Abstract 
Archaea have long been thought to reside solely in extreme environments like hot springs, 

volcanos, or salt lakes and this is reflected in the majority of their available isolates. However, 

culture-independent methods such as metagenomics have shown Archaea to be ubiquitous in 

the environment, though they typically are the minority compared to Bacteria with the 

exception of extreme environments. The terrestrial subsurface is one of the most important 

environments these techniques have made accessible, as it is poorly explored and yet hosts 

approximately 25 % of organisms on Earth. In this environment, characterized by both 

extremely low energy yields and limited dispersal, the extent of horizontal gene transfer 

influencing evolutionary adaptation as well as the growth parameters facilitating evolution are 

virtually unknown. 

  In this thesis, we aimed to recover high quality archaeal genomes of uncultivated. 

Altiarchaeaota to investigate how they adapt to their deep terrestrial subsurface habitats. These 

Archaea dominate their moderate temperature environments, and thus identifying their 

adaptations, allowing them to gain an edge, is of particular interest. To accomplish this, we 

developed a workflow to recover archaeal genomes from metagenomes. One step frequently 

neglected in the recovery of genomes from metagenomes is the genome curation, due to it both 

being a manual task and there being a limited amount of available software. Hence, we 

developed the genome curation software uBin to fill this gap and enable easy, GUI-based 

curation of genomes. Bin curation using uBin improved the quality of 78.9 % of genomes of 

the CAMI dataset. Finally, we metagenomically characterized the CO2-geyser with the highest 

water fountain in the world, the Geyser Andernach, which was dominated by Ca. Altiarchaeum 

GA. We binned and curated hundreds of MAGs from this and other deep terrestrial subsurface 

sites. To estimate the growth potential of microbes in the deep terrestrial subsurface, we 

compared the Geyser Andernach ecosystem to these 16 other sites. Their sampling depth 

ranged from near-surface caves to samples up to 3 km in depth. We identified a trend of 

organisms being able to replicate faster the deeper their habitant but having less replication 

forks at the time of sampling, a possible adaptation to oscillating nutrient availabilities. 

Additionally, we compared newly binned with available Ca. Altiarchaea genomes and 

identified an extreme conservation of genetic content between Ca. Altiarchaea of the clade 

Alti-1. These genomes clustered biogeographically by continent, indicating plate tectonics as 
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a possible route for dispersal. Their genetic repertoire showed a strong conservation of the core 

metabolism but differed in their peripheral genes, such as peptidases, with some showing signs 

of being horizontally transferred from the bacterial domain. I further substantiated these 

findings by using the complete Ca. Altiarchaeum GA genome recovered from the environment 

as a reference to identify sequence sections of genetic variability between populations of Ca. 

Altiarchaea. This analysis was congruent with prior biogeographic results and indicated that 

there is a lot more genome diversity in Ca. Altiarchaea than previously estimated. Some of 

these regions of genetic variability are likely caused by horizontal gene transfer, as evidenced 

by the presence of transposase genes. Thus, we conclude, that horizontal gene transfer may act 

to mitigate the otherwise very slow evolution within this phylum. 

 In summary, this thesis provides a valuable workflow for the recovery of archaeal 

genomes from metagenomes, along with the new, easy to use genome curation tool uBin to 

ensure their quality, and gives valuable insights into the genetic diversity of one of the few 

dominant archaea in moderate temperature deep biosphere environments. 
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II. General Introduction 
1. Metagenomics and the controversy of naming uncultivated 

microbes 

1.1 The established order: Naming of only cultivated microbes 
 
Leeuwenhoek’s discovery of ‘little animalcules’ (Lane, 2015), using a single-lens microscope, 

moving swiftly around in water in 1674 dawned the research field of microbiology, though 

most of his discoveries forgotten till their rediscovery in the 19th century (Lane, 2015). In 1838 

and 1839, respectively, the cell theory was formulated, i.e., that plants and animals are made 

up of small compartments (Mazzarello, 1999). This was followed by many further discoveries 

like Louis Pasteur’s proof that microorganisms caused perpetual fever and Osteomyelitis 

(Louis Pasteur, 2017) that microbes replicated (Ligon, 2002).  

In the early 20th century, life was still classified in two domains of life: Prokaryotes and 

Eukaryotes, based on their very distinct morphological properties (Woese and Fox, 1977). 

Microorganisms could only be differentiated based on their morphology and type culture 

characteristics (Sommerlund, 2006). No official guidelines on how to name microbes existed, 

though microbiologists tried to use the Botanical Code of Nomenclature as a proxy. This 

proved problematic as no type cultures were allowed within the Botanical code. Thus, the 

International Code of Nomenclature of Prokaryotes (ICNP) was established in 1936, stating 

some guiding and still valid principles (https://www.the-icsp.org/bacterial-code): 

1. Names should be stable and the first name published is retained 

2. Names should be unambiguous, assured via type cultures as references. 

3. Names should only be given where needed, i.e., to classify newly described 

organisms. 

In 1977, Carl Woese and George Fox challenged this paradigm by proposing a third domain 

they called “archaebacteria” (later on simply called “Archaea”), which they had uncovered by 

investigating phylogenetic relationships of 16S ribosomal RNA (rRNA) and 18S rRNA 

sequences (Woese and Fox, 1977). rRNA genes are universally present, frequently in multiple 

copies per genome (Větrovský and Baldrian, 2013), across the tree of life, with the 16S rRNA 

gene being present in all Bacteria and Archaea as well as in plastids of Eukaryotes (Woese, 

1987). Multiple rRNA gene copies were recently shown to increase genome stability in 

Bacteria (Fleurier et al., 2022). It was proposed as an ideal phylogenetic marker due to its 
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sequence containing both highly conserved (Fox and Woese, 1975) as well as hypervariable 

(Woese and Fox, 1977) regions allowing examination of a wide range of phylogenetic 

difference ranges.  

The adaptation of the 16S rRNA gene as a marker gene to characterize phylogenetic 

relationships started a movement away from purely morphological taxonomic categorization 

towards genotype-based taxonomic determination (Sommerlund, 2006). This was facilitated 

through newly developed techniques for the sequencing of DNA like the sequencing with 

chain-terminating inhibitors (Sanger, Nicklen and Coulson, 1977). In this technique, chain 

inhibiting nucleotide analogues were successively added to Polymerase Chain Reaction (PCR) 

reactions, and the resulting fragment patterns were then analyzed using gelelectrophoresis, with 

the band patterns revealing the original amplified sequence (Sanger, Nicklen and Coulson, 

1977). To this day, this so-called Sanger sequencing is used to determine the sequence of PCR 

products, though only the sequence of one DNA molecule can be determined in each 

sequencing run. Eventually, high-throughput approaches that allowed parallel sequencing of 

many different DNA molecules, e.g., derived from entire microbial communities, were 

developed, like pyrosequencing (Ronaghi et al., 1996) in 1996 and to Solexa (which was later 

acquired and rebranded as Illumina) sequencing in 1997. These cultivation-independent new 

technologies soon revealed a much larger microbial diversity than previously estimated based 

on cultivation-dependent methods, with estimates of microbial species ranging widely from 

2.2-4.3 million (Rosselló-Móra and Whitman, 2019) up to one trillion (1012) species (Locey 

and Lennon, 2016), with actually cultured and validly described species according to the ICNP 

lagging extremely far behind with only 22187 prokaryotes (April 2022, 

https://lpsn.dsmz.de/text/numbers). 

1.2 Metagenomics 
 
In 1996, the first shotgun metagenomes of environmental samples, i.e., the sequencing of 

random DNA fragments extracted from environmental samples without prior amplification, 

were reported (Stein et al., 1996) and later coined ‘metagenomics’ (Handelsman et al., 1998). 

While early sequencing techniques only sequenced a single side of these DNA fragments 

(single read datasets), newer techniques sequence between 150-250 bp of both edges of these 

DNA fragments (paired-end datasets). 
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These DNA fragments could then later be combined into their sequences of origin. To 

estimate the similarity between reads, they were decomposed into k-mers of various lengths. 

Two assembly methods exist: Overlap-Layout-Consensus (OLS) assemblies, which identify 

overlaps between reads and condense the information in a graph before making contiguous 

sequences (contigs) out of them, and De-Brujin-Graph (DBG) assemblers, which deconstruct 

reads into k-mers of varying sizes and use those to reconstruct graphs and finally assemble 

contiguous sequences from the graph. DBG can also use paired-end information to merge 

contigs, that are connected by sets of read pairs into scaffolds, filling the unknown sequence 

composition between the contigs with undefined nucleotides (typically designated with Ns; 

Figure II.1.3.1A; Please see (Li et al., 2012) for an in-depth comparison of the assembly 

methods).  

Compared to amplicon sequencing of environmental samples, metagenomics required 

more input DNA for library construction and was more expensive as the required sequencing 

depth, i.e., the total length of sequenced DNA for a metagenomic sample, was much higher 

due as much more genetic diversity was covered (the entire genomes of organisms instead of 

just a specific hypervariable region of the 16S rRNA gene for these organisms). This also 

caused amplicon datasets to cover more of the biodiversity of the ecosystems at a comparable 

sequencing depth. But metagenomics also had some distinct advantages over amplicon 

sequencing: 1) There were no amplification biases (exceptions are mini-metagenomes or 

Single-amplified genomes, see section III.1.4.8), 2) they contained information about the 

metabolic potential of the community, 3) Organisms that were underrepresented or undetected 

in amplicon studies due to unusual rRNA sequences escaping amplification could be detected, 

4) the metagenomes were a resource for biomarker discovery (Segata et al., 2011), and could 

help in identifying novel metabolic pathways (Figueroa et al., 2018). 

One further advantage became apparent in 2004, when the first genomes were 

reconstructed from metagenomes of acid main drainage (Tyson et al., 2004) and the Saragosso 

Sea (Venter et al., 2004). This was the first time that genomes were recovered from the 

environment, without a need for prior isolation followed by cultivation. This revolutionary 

approach (which will be described in detail in the following section II.1.3), granted access to 

the vast biological diversity already indicated by prior amplicon studies (see section II.1.1) and 

allowed substantial expansions to the tree of life, using more robust phylogenies utilizing many 

marker genes (Hug et al., 2016).  
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Figure II.1.2.1: The current 2-domain view of the tree of life with archaeal and bacterial domains. 
The displayed phylogenetic tree from (Castelle and Banfield, 2018), modified by removing the beige 
background, displays A) the current 2-domain view of the tree of life, with Eukarya branching off within 
the Archaea, forming a sister clade with the Asgardarchaea and B) A tree of the Archaeal domain, using 
bacteria to root the tree. Both displayed phylogenomic trees were generated based on a supermatrix of 
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14 conserved ribosomal proteins processed according to (Hug et al., 2016) and calculated using 
RAxML with the PROTCATLG option (Stamatakis, 2014). 
 

Most of the recent phylogenomic reconstructions (Spang et al., 2015; Williams et al., 

2020) and references therein, Figure II.1.2.1) indicate that life can be divided into two domains, 

the Bacteria and the Archaea, with Eukaryotes having emerged from within the Archaea, with 

the Heimdallarchaeota being the best currently available candidate for a sister clade (Williams 

et al., 2020).  

1.3 Reconstruction of genomes from metagenomes 
 

The initial genomes from metagenomes were reconstructed based on a combination of Guanin 

(G) and Cytosin (C) content, i.e., the percentage of G and C nucleotides of the total sequence 

length per contig, and contig abundance (Tyson et al., 2004), calculated by aligning 

(‘mapping’) the reads of the sample to the assembled contigs. Follow-up studies investigated 

the use of higher order k-mers as oligonucleotides had previously been shown to better capture 

species specifity than GC content (Sandberg et al., 2003) and could show that 4-mers were the 

best compromise between specifity and runtime (Dick et al., 2009). The use of 4-mers has since 

then become the community standard for the binning of metagenomes (Dick et al., 2009; 

Brown et al., 2015; Wu, Simmons and Singer, 2016; Graham, Heidelberg and Tully, 2017). 

This approach alone was still insufficient for delineating closely related organisms like species 

and strains, due to shared genetic patterns, and consequently frequently clustered them together 

(Anantharaman et al., 2016). In the context of genome comparisons, species borders are 

defined as having between 85-95% Average Nucleotide Identity (ANI) in their head-to-head 

comparison (strains have >95% ANI) (Jain et al., 2018).  

Sharon et al. proposed another metric to also delineate closely related organisms: 

Differential coverage (Sharon et al., 2013). In this extension to the original binning by coverage 

(Tyson et al., 2004), the contig abundances are also calculated via mapping. But this process 

is repeated using reads of related samples, e.g., from the same ecosystem, generating a set of 

abundances for each scaffold. Sequences belonging to the same organism are expected to share 

a similar abundance pattern over the sample series, making it possible to, e.g., distinguish 

sequences belonging to different strains of the same species, provided they do not share similar 

abundances (Sharon et al., 2013). A combination of differential coverage and 4-mer frequency-
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based binning is the current standard approach to recover metagenome-assembled genomes 

(MAGs) from metagenomes [(Sieber et al., 2018); Figure II.1.3.1B] sometimes supplemented 

with marker gene searches to identify clusters of marker genes within the 4-mer frequency & 

differential coverage space that can be used as seeds for the binning algorithms (Y.-W. Wu et 

al., 2014). The differences are more pronounced in the used algorithms to define bins, e.g., 

Maximum-likelyhood (Y.-W. Wu et al., 2014; Wu, Simmons and Singer, 2016), 

dimensionality reduction followed by clustering, graph-based clustering (Kang et al., 2019), 

modified k-medoid clustering (Kang et al., 2015) and whether the binning is manual (Ultsch, 

2005; Laczny et al., 2015) or automatized (Wu, Simmons and Singer, 2016; Uritskiy, 

DiRuggiero and Taylor, 2018; Kang et al., 2019).  Some algorithms also use either additional 

metrics or completely unique metrics like assembly Graph information (Mallawaarachchi, 

Wickramarachchi and Lin, 2020), pre-binning alignment-based assignment of sequences to 

domains (Miller et al., 2019) or codon usage (Yu et al., 2018). Since no binner has been 

identified so far that performs consistently good across all types of samples, the state-of-the-

art approach is to use various binners with a variety of different algorithms and metrics and 

aggregate these binning results into a dereplicated set of bins using DAS tool (Sieber et al., 

2018). DAS tool uses ubiquitous single copy marker genes for Archaea and Bacteria to assign 

scores to each candidate MAG based on their estimated completeness and contamination and 

selects the best representative of each MAG across the various input binning results based on 

this score, using N50 and then total genome length as tiebreaker metrics (Sieber et al., 2018). 

The N50 of a genome is the minimum sequence length needed to cover 50% of a genome with 

scaffolds of this value’s size or larger (Sieber et al., 2018). These binning methods target 

prokaryotes specifically and need to be adjusted when used for eukaryotic genome binning (see 

section III.1.1 for more details). 

The recent advent of long-read metagenomics [Pacific Biosciences (PacBIO) and 

Oxford Nanopore Technologies (ONT)], has caused a further revolution of the binning process, 

as the old adage of “a good assembly is the better binning” comes true in these technologies 

(Chen et al., 2020; Moss, Maghini and Bhatt, 2020). Long-reads can cover otherwise 

problematic regions in genomes, like repeats or non-protein coding regions, and can thus 

assemble over these regions (Chen et al., 2020). This makes long-read assemblies or hybrid 

short- and long-read assemblies frequently much better in quality, and can even result in 

recovering complete circularized genomes as single sequences directly from the environment 

(see section IV.2 for an example of this), a rare occurrence [62 complete prokaryotic genomes 
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in Sept. 2019 (Chen et al., 2020), four of those generated using PacBIO] prior to the 

development of long reads, thereby simplifying the binning process massively. 

 

Figure II.1.3.1: Reconstruction of genomes from metagenomic reads. A: Assembly of metagenomic 
reads into contigs/scaffolds, with an illustration of the decomposition of a sequence (e.g., reads) into k-
mers. For read assembly with additional scaffolding, the default used k-mer sizes used are 21, 33 and 
55 (e.g., in metaSPAdes (Bankevich et al., 2012)) while assembling into contigs without scaffolding 
employs more k-mers up to 99 (e.g., in megahit (Li et al., 2015)). B: A mixture of contigs/scaffolds is 
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clustered into Metagenome-Assembled Genomes (MAGs) based on shared 4-mer patterns and/or co-
abundance information. The resulting bins are frequently still incomplete and have contaminating 
sequences. C: Bins can be curated of contaminating reads by removing abnormalities in GC content, 
coverage and taxonomy. 

1.4 Knowledge gap: Why is genome curation necessary? 
 
The complexity of most environmental metagenomes compared to metagenomes from pure 

cultures frequently causes errors, both in the assembly as well as the binning processes (Chen 

et al., 2020). See Chen et al. for an extensive list of assembly error types as well as best 

practices on how to spot and potentially fix them (Chen et al., 2020). The two types of errors 

encountered during binning are: 1) not binning sequences and 2) binning foreign 

(“contaminant”) sequences to a bin. The former mainly has implications for inferences one can 

draw from MAGs: Unless a MAG is circularized and can thus be regarded as complete (Chen 

et al., 2020), inferences about the absence of specific genes on the MAG are difficult to validate 

as their absence may just be a result of binning errors or they may have simply not assembled. 

The latter, however, has large implications that far exceed the individual analyses of the 

ecosystems they are binned from. Genomes are made public to the community, usually via 

upload to NCBI or similar repositories, and are thus incorporated into public databases. These 

public databases are then used by other researchers across the globe for further analyses, 

causing contaminations to propagate.  

 Contaminant sequences (as well as the amount of missing sequence information in a 

MAG), can be estimated using either universal or taxon-specific single copy marker genes, i.e., 

genes that occur ubiquitously (within the taxon if taxon-specific markers are used) and are only 

present as a single copy, as each of these genes should be present exactly once per complete 

genome. Taxon-specific marker gene sets are more accurate than universal marker gene sets as 

more markers can be utilized since they only need to be universal within the given but also 

require prior correct phylogenetic placement of the genome to select the correct set (Parks et 

al., 2015). CheckM (Parks et al., 2015) is the community standard to perform taxon-specific 

contamination and completeness estimation. Universal marker genes on the other hand do not 

require prior phylogenetic placement and can thus be identified on entire assemblies, making 

them ideal for, e.g., bin set aggregation (Sieber et al., 2018). It should be noted that the used 

single copy marker genes are frequently not evenly distributed across the target genome and 

that thus comparatively small portions of the genome can be extremely enriched in marker 

genes. Examples of frequently used markers that share an operon are ribosomal proteins 
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(Cerretti et al., 1983) and ribosomal rRNA sequences (Espejo and Plaza, 2018). This can cause 

completeness (and contamination) estimates to be biased for some genome regions (Chen et 

al., 2020). While marker-based approaches are the standard approach to estimate 

contamination in genomes, a lot of approaches using other methods and even combinations 

thereof (Cornet et al., 2018; Lupo et al., 2021; Orakov et al., 2021) have been proposed [we 

refer to Cornet and Baurain for a comparison between 17 of these approaches (Cornet and 

Baurain, 2022)]. 

Recent studies (Ballenghien, Faivre and Galtier, 2017; Shaiber and Eren, 2019) have 

identified contamination to be a significant issue in public databases, identifying metagenome-

assembled Genomes (MAGS) as particularly problematic (Shaiber and Eren, 2019), due to 

their composite nature and the increasing number of submitted MAGs, with even studies 

supplying many thousands of MAGs at once becoming ever more frequent (Parks et al., 2017; 

Almeida et al., 2019; Pasolli et al., 2019). This makes the quality control of MAGs even more 

important. And yet, there are no uniform guidelines about MAG quality that need to be 

followed for them to be published (Robert M. Bowers et al., 2017), and consequently the 

quality criteria used in a publication are under the purview of the authors, reviewers and editors 

of respective journals alone, making the quality of published MAGs very heterogeneous 

indeed. Unified MAG quality standards have been proposed (Robert M. Bowers et al., 2017) 

but are not yet widely applied. This may, in part, be due to analyses having widely different 

requirements in terms of MAG quality and thus enforce different priorities in MAG quality. 

Examples of this divide in required quality are analyses of both minimal growth rates (e.g., 

growthpred (Vieira-Silva and Rocha, 2010)) and replication indices (e.g., iRep (Brown et al., 

2016)) requiring fairly complete genomes to give accurate estimates, while lower completeness 

genomes could be included in general metabolic potential characterizations of community 

members to not remove large proportions of the communities. 

1.5 How to curate genomes 
 

Genome curation has been suggested to be a mandatory analysis step prior to the submission 

of the genome to public databases but is not yet widely applied (Robert M. Bowers et al., 2017). 

But while established techniques to identify contamination exist (section II.1.4), the tools to 

curate genomes of these contaminations are sparse. All available tools like ggKbase (Wrighton 

et al., 2012), Anvi’o (Eren et al., 2015) and gbtools (Seah and Gruber-Vodicka, 2015) use a 
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combination of GC content, coverage and taxonomy to visually identify outlier scaffolds in 

MAGs (or define clusters of sequences into a MAG) (see Figure II.1.3.1C). Genome curation 

is mainly used to remove contaminations but can also be used to expand the genomes by 

recruiting additional scaffolds sharing GC, coverage and taxonomy patterns with the target 

genome sequences. While these tools use the same basic metrics to curate genomes, they differ 

widely in their MAG curation interfaces, export capabilities, additional features and the 

required preprocessing steps in order to use the software. They also differ in their availability, 

with e.g., ggKbase being a feature of the titular database, requiring metagenomes to be 

deposited there before use (Wrighton et al., 2012).  

 It must be noted that the gold standard for genome curation is still the completion of 

the sequence, i.e., recovering the complete circular chromosome of a prokaryote. Only if this 

is the case a genome can be regarded as complete as well as free of contamination. However, 

this is frequently not possible due to the fragmentation level of the assemblies of environmental 

metagenomes, though long-read technologies have begun to change that (for more on this topic, 

I refer to section II.1.3). I refer to (Chen et al., 2020) for a guide on curating genomes to 

completion. 

1.6 Initiatives to solve the problem of the ‘uncultivated majority’ 
 

Only a minority of genomes currently available in public databases are available as type strains 

in culture collection and are thus named according to the ICNP. Indeed, large proportions of 

the tree of life (Figure II.1.2.1) are entirely uncharted in terms of validly described species. For 

many groups of organisms with exacting growth requirements like obligate symbionts, it is 

highly unlikely that they will ever be available as type strains in culture collections (Whitman, 

2015). To be able to describe and classify organisms (frequently via a combination of gene 

phylogenetic and morphological evidence (Whitman, 2015)) for which no type strains exist, 

the Candidatus Category was implemented (Murray and Schleifer, 1994; Murray and 

Stackebrandt, 1995; Stackebrandt et al., 2002), which acts as a prefix to a proposed genus name 

with an optional epithet. Candidatus taxonomies have no priority, i.e., if a type strain for this 

taxonomy is found, then the cultivator has the right to propose a new name according to the 

ICNP guidelines and the Candidatus name is discontinued (Whitman, 2015). Candidatus 

names are not subject to the ICNP and do not refer to a specific taxonomic rank, i.e., there are 

Candidatus Phyla and Genera alike. Candidatus names are problematic as they violate two of 
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the founding principles of the ICNP: Names should be 1) stable and 2) unambiguous 

(https://www.the-icsp.org/bacterial-code).  

 Whitman proposed in 2015 that genome sequences could act as alternative 

replacements for type strains (and should accompany type strain submissions wherever 

possible) as they 1) allow accurate phylogenomic placement of the organism, 2) the entire 

diversity can be captured with this approach (in contrast to a strong bias towards easily 

cultivable organisms) and 3) The storage of the sequence information is much cheaper in 

maintenance than culture collection maintenance (current culture collections would need to 

expand their size at least 100-fold to encompass the entire existing diversity).  However, only 

genome sequences from pure cultures (or single cells) should be valid type material, and 

needed to comply with quality restrictions in regards to genome size and fragmentation, making 

MAGs unsuitable due to their inherent ambiguity (Whitman, 2015). This proposal, as well as 

a follow-up proposal (Whitman, Sutcliffe and Rossello-Mora, 2019) to retroactively grant 

priority to Candidatus names should genome sequences become valid type material (and they 

otherwise comply with the ICNP rules), was ultimately rejected (Sutcliffe et al., 2020). 

 An alternative to the amendment of the existing code was proposed by (Murray et al., 

2020): The establishment of a new nomenclature. This motion was put into action with the 

SeqCode (The International Code of Nomenclature of Prokaryotes Described from Sequence 

Data) initiative. The SeqCode aims to establish a platform for researchers to submit species for 

which only genomic data, including MAGs and SAGs, is available, and follows the ICNP rules 

regarding priority (though sequences are considered valid type material). It establishes rules 

for genome quality and data submission guidelines (Hedlund et al., 2022). As this initiative is 

not a proposal for the adaptation of the ICNP, it does not directly rely on the acceptance by its 

committee. Instead, it relies on the community accepting it and propagating its use. As of this 

writing (May 2022), the SeqCode paper (Hedlund et al., 2022) is expected to be published 

within the next few months (personal communication, Alexander J. Probst) and the SeqCode 

submission platform (https://seqco.de/) can be used by the public. It remains to be seen whether 

the SeqCode initiative will alleviate some of the issues being caused by the ‘uncultivated 

majority’.  
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2. Genome characteristics of Archaea in the subsurface 

2.1 Beyond Photosynthesis: Carbon fixation in the deep biosphere 
 

Traditionally, life was thought to reside solely on the surface of the land and the ocean, fueled 

by sunlight facilitating the fixation of carbon dioxide (CO2) to organic carbon in the Calvin-

Benson-Bassham (CBB) Reductive Pentose Phosphate Cycle, with organic carbon degrading 

back into H2O and CO2, and thus closing the biochemical cycle (Gold, 1992). Corliss et al. 

discovered 1979 microbial communities using sulfur oxidation instead of sunlight as the energy 

source for biomass generation in the deep-sea Galápagos Rift, providing a first example of 

sunlight-independent carbon fixation (Corliss et al., 1979). This gave rise to the notion that 

microbial life might be far more widespread, postulated to extend all the way up to 5-10km in 

the subsurface (Gold, 1992). The nutrients were assumed to be supplied by the Earth itself, 

either via thermophilic vents in the oceans, fluid migrations from the crust or the rocks 

themselves, causing an imbalance that could be utilized to generate energy chemically (Gold, 

1992). Many later studies corroborated this finding, with some examples being microbial 

communities living off hydrogen-releasing silicate (Telling et al., 2015) and FeS2 oxidation 

(Boyd et al., 2014). This sparked the search for the mechanisms by which organisms used these 

energy sources to fixate CO2, with up to now six additional carbon fixation pathways 

discovered (Berg, 2011; Steffens et al., 2021).  

 Today, we know that the pathway an organism uses is mainly tied to the availability of 

oxygen and the alkalinity of the surroundings, with secondary criteria being metal co-factor 

availability and temperature (Berg, 2011). Aerobic carbon fixation pathways generally use 

NADPH (compared to more electro-negative molecules like ferredoxin in anaerobic pathways) 

as their reducing agent for CO2 fixation and thus require more additional energy in Form of 

ATP to reduce carbon (Berg, 2011).  

On Earth’s surface, the CBB cycle is by far the most dominant form of carbon fixation, 

with it’s key enzyme, the RubisCO, the most abundant protein in the world (Ellis, 1979). It is 

responsible for the fixation of CO2 to ribulose-1,5-biphosphate, which in subsequent steps is 

further reduced to 3-Phosphoglycerate (Berg, 2011). On the surface, it is commonly coupled 

to photosynthesis, in which light energy is used to reduce electron equivalents (NADPH) and 

energy (ATP) is generated.  
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The CBB cycle is also a fairly common carbon fixation pathway in the anoerobic (or 

microaerophilic) and dark subsurface, then consequently not coupled to photosynthesis. But a 

much wider variety of carbon fixation pathways exist there, depending on the ecological 

niches. One of the typical ways of organisms to produce energy is by using the Tri-Carbolic 

Acid (TCA) Cycle in which Acetyl-CoA and oxaloacetate are first combined into citrate, which 

over the seven additional reaction steps is oxidized to oxaloacetate, resulting in a net gain of 

producing 3 NADH, 1 FADH2 and 1 ATP per Acetyl-CoA molecule. Under anaerobic 

conditions, and only in some bacteria (Ramos-Vera, Berg and Fuchs, 2009; Berg et al., 2010), 

this cycle can be reserved in the reductive TCA cycle (rTCA) and thus allows these bacteria to 

generate Acetyl-CoA from two CO2 molecules. To make this possible, the enzymes performing 

the irreversible reactions in the standard TCA cycle are exchanged in these bacteria (Berg, 

2011). In some thermophilic organisms like Aquificae, an additional ATP-dependent reaction 

to speed up the 2-oxoglutatate to isocitrate conversion is used to deplete available pool of the 

thermo-labile succinyl-CoA is inserted as well (Yamamoto et al., 2010). Recent investigations 

into the TCA cycle in the Aquificae Thermosulfidibacter takaii (Nunoura et al., 2018) showed 

that its citrate synthase could function bidirectionally dependent on the availability of organic 

versus inorganic carbon, thus making the TCA cycle natively reversible. The direction of the 

TCA cycle was later shown to be regulated via partial pressures of CO2, with high pressures 

reversing its direction towards autotrophy (Steffens et al., 2021). 

The 3-Hydroxyproprionate/4-Hydroxybutyrate (3-HP/4-BH) carbon fixation pathway 

has so far only been identified in the archaeal phyla Thaumarchaeota and Crenarchaeota (Berg, 

2011). In this aerobic carbon fixation pathway, acetyl-CoA and 2 CO2 are converted into 

succinyl-CoA (Berg, 2011). While the mechanically challenging reactions of the pathway are 

performed by homologous enzymes in the two archaeal phyla, many of the other reaction steps 

are performed by paralogous enzymes, indicating that the pathway has evolved separately in 

Thaumarchaeota and Crenarchaeota (Liu et al., 2021). The thaumarchaeal version of the 

pathway is more energy-efficient as it reduces 2 ATP only to 2 ADP instead of 2 AMP like the 

crenarchaeal version of the pathway (Liu et al., 2021). This lower energy requirement is 

considered an adaptation for the ammonia-oxidizing thaumarchaeota compared to the 

hydrogen-oxidizing Crenarchaeota (Könneke et al., 2014). The Crenarchaeota also harbor 

another related carbon fixation cycle: The dicarboxylate/4-hydroxybutylate (DC/HB) cycle. 

This cycle is restricted to anaerobic Crenarchaeota like Thermoproteales and also converts 

Acetyl-CoA and 2 CO2 molecules to succinyl-CoA, albeit with different dicarboxylases (Berg, 
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2011) and, same as other anaerobic pathways, is cheaper in terms of ATP at the expense of 

using stronger reduction equivalents. 

The hydroxyproprionate cycle is an oxygen-tolerant alternative, and is found most 

commonly in mixotrophic organisms due to its inherent ability to coassimilate fermentation 

products and other compounds (Berg, 2011) but can also support autotrophic growth (Meer et 

al., 2000). The pathway has so far only been identified in Chloroflexus aurantiacus (Berg, 

2011). 

The most energy-efficient carbon fixation pathway is the Wood-Ljiungdahl pathway, 

in which two CO2 molecules are fixated to acetyl-CoA. This pathway is strictly anaerobic, with 

the key enzyme CO-dehydrogenase/acetyl-CoA synthase being one of the most oxygen-

sensitive enzymes on Earth and is used by a great diversity of prokaryotes (Berg, 2011). 

Oxidative stress response enzymes and consortia with oxygen-consuming microorganisms 

have developed to make the pathway viable in microaerophilic environments (Shima et al., 

2001; Drake, Gössner and Daniel, 2008). The enzymes of this pathway also have more metal 

co-factor requirements than other carbon fixation pathways, restricting its use further 

(Stupperich and Krautler, 1988). The pathway is not just used for carbon fixation but can also 

be used to build up, e.g., electrochemical gradients  (Ragsdale and Pierce, 2008), or in an 

oxidative manner for decarboxylation (Can, Armstrong and Ragsdale, 2014). 

In the deep biosphere, the main carbon fixation pathways are the Wood-Lijungdahl 

pathway, the reverse TCA cycle and the CBB cycle, with the Wood-Lijungdahl pathway 

frequently being the dominant pathway in anaerobic ecosystems (Momper et al., 2017; Smith 

et al., 2019) while less energy-efficient but more oxygen-tolerant alternatives like CBB and 

rTCA cyles become more dominant in (micro-)oxygenic environments. Intolerances such as 

oxygen intolerance of pathways as well as the frequently being embedded into sediment also 

have repercussions on the dispersal of microbes in the deep biosphere.  

The Wood-Ljiungdahl pathway has likely been present in the Last Universal Common 

Ancestor (Weiss et al., 2016) and has remained present in many Archaea and Bacteria since 

then, though aspects of it show signs of convergent evolution, such as the methyl synthesis 

branch (Sousa and Martin, 2014). The 3-HP/4-BH pathway has been indicated to have evolved 

independently in Thaumarchaeota and Crenarchaeota (Liu et al., 2021). There is also the 

possibility that the hydroxyproprionate cycle being present in both Archaea and Bacteria could 

be the result of horizontal gene transfer to Archaea (Braakman and Smith, 2012). The pathway 

utilizes two biotin-dependent carboxylase reactions and these are very widely distributed in 
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Bacteria since they are required for fatty acid synthesis (Braakman and Smith, 2012). Enzyme 

analyses, however, indicate independent evolution as the catalysis step performed by 

proprionyl-CoA synthase in the Chloroflexus aurantiacus is achieved by three enzymes, that 

are only distantly related to the bacterial proprionyl-CoA synthase, in Sulfolobus tokodaii 

(Teufel et al., 2009). Hence, it remains unclear whether the distribution of the 

hydroxyproprionate pathway is a result of HGT or convergent evolution (Braakman and Smith, 

2012). 

2.2 Biogeography: Dispersal of microbes in the subsurface 
 

Many of the common microbial dispersal routes available on the surface, such as air, rivers and 

oceans as well as hitchhiking on macro-organisms (Custer, Bresciani and Dini-Andreote, 2022) 

are not available in the deep biosphere. In the deep biosphere, most microorganisms are 

embedded into the sediment and thus inherently immobile (Teske et al., 2015). Organisms in 

or adjacent to aquifer systems can however disperse through them. One further dispersal route 

for all microorganisms are plate tectonics, i.e., the shifting of continental plates, which are 

responsible for the major continential reconfigurations on Earth. These shifts however, are very 

slow processes, frequently taking many millions of years (Maruyama et al., 1997).  

 Biogeography aims is the study of organism distributions and aims to identify 

evolutionary and ecological processes shaping those distributions (Hanson et al., 2012). One 

of the common theorems in this field is the isolation by distance theory, in which a proportional 

relationship between genetic and geographic distance between species is postulated (Wright, 

1943). The higher dispersal of surface organisms can prevent speciation (Claramunt et al., 

2012). Hence, most of microbial biogeographic analyses have focused on surface organisms 

inhabiting extreme environments, such as hot spring inhabiting cyanobacteria (Papke et al., 

2003) or Sulfolobus (Whitaker, Grogan and Taylor, 2003) or Comamonas testosterone (Liu et 

al., 2015) strains inhabiting polluted environments, which are very limited in their dispersal 

due to their restricted habitants. 

 To our knowledge, similar studies have not been performed for organisms inhabiting 

the deep biosphere. The only study coming close investigated the genomic conservation in the 

bacterium Candidatus Desulforudis Audaxviator (CDA) strains across Africa, North America 

and Eurasia, also in the context of geographic distance (Becraft et al., 2021). The CDA 

populations did not show a distinct clustering by continent or correlation by distance and had 
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extremely little genomic variation between them (>= 99.5 % average nucleotide identity for all 

compared genomes across continents).  

2.3 Genome Fluidity in the deep biosphere 
 

Subsurface microorganisms contribute substantially to the total biomass on our planet 

(Magnabosco et al., 2018), despite only having access to extremely low energy (D’Hondt, 

Rutherford and Spivack, 2002) and consequently generally having minimal metabolism, more 

akin to stationary phase cultures (Finkel, 2006; Røy et al., 2012). Indeed, the number of cells 

decreases exponentially with the depth in sub-seafloor sediment, reflecting the decrease in 

available energy (Kallmeyer et al., 2012). Analyses of depth profiles of sub-seafloor sediments 

have indicated that deep biosphere communities might be remnants of the most persistent near-

seafloor community members instead of actively growing or adapting communities in the deep 

biosphere (Starnawski et al., 2017; Kirkpatrick, Walsh and D’Hondt, 2019). A periodic 

lifestyle has also been suggested, with long periods of bacteriostasis being interrupted by short 

periods of active metabolism due to ephemeral nutrient pulses (Mehrshad et al., 2021). This 

largely dormant lifestyle might also be reflected in the minor genomic differences of 

Candidatus Desulforudis audaxviator (CDA) populations from Africa and Eurasia (Becraft et 

al., 2021). The main proposed reasons for this extreme conservation in CDA were high fidelity 

DNA-replication as well as repair mechanisms encoded on the genomes, coupled to a doubling 

time of CDA was estimated to be <1-10 years and minimal evolution was suggested since the 

breakup of the pangean continent between 165 and 55 Ma ago (Becraft et al., 2021). However, 

no systematic investigation of prokaryotic growth in the subsurface have been performed yet, 

to be able to extrapolate these findings to other organism groups. 

 Since the (Starnawski et al., 2017; Kirkpatrick, Walsh and D’Hondt, 2019) studies 

relied on the 16S rRNA marker gene to estimate community structures in the sediment column 

instead of entire genomes, they would only register either new species additions or strongly 

mutated versions of 16S rRNA genes previously detected in other depths. The potential 

adaptation of deep biosphere organisms via horizontal gene transfer (HGT) would, however, 

remain undetected. HGT, i.e., the transfer of genetic material to another organism outside of 

proliferation, is ubiquitous and predominantly occurs in prokaryotes (but also in Eukaryotes) 

(Keeling and Palmer, 2008).  
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Figure II.2.3.1: Types and mechanisms of horizontal gene transfer. Only the most frequent 
mechanisms of horizontal gene transfer are shown (panel A), while rare variants such as Gene Transfer 
agents are not depicted. The phylogenetic tree and k-mer frequencies used to show techniques of 
identifying horizontal gene transfer (panel B) are there for illustration and do not represent real data. 
The heatmap was generated using ggplot2 (Wickham, 2009) and the viridis (https://cran.r-
project.org/web/packages/viridis/) package supplied the color scheme. 
 

 There are a variety of HGT mechanisms, with the three main ones being conjugation 

(pili-mediated transfer of genetic material), transformation (uptake of external DNA) and 

transfection (virus-mediated uptake of genetic material) [(Soucy, Huang and Gogarten, 2015); 
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Figure II.2.3.1A]. While conjugation has only been described between Bacteria, transduction 

and transformation occur in both Bacteria and Archaea (Soucy, Huang and Gogarten, 2015). 

Most available bacterial genomes show evidence for HGT (Arnold, Huang and Hanage, 2022). 

Potential HGT candidate genes can be identified by their differences in nucleotide composition 

compared to the host genome (Langille, Hsiao and Brinkman, 2010). These candidates are then 

later validated by discrepancies between the phylogeny of the transferred gene and reference 

phylogenies [(Soucy, Huang and Gogarten, 2015); Figure II.2.3.1.B]. Reference phylogenies, 

utilizing many conserved marker genes as the basis, reflect the species ancestry. The Genome 

Taxonomy Database (GTDB) along with its phylogenomic placement software gtdb-tk are the 

currently most widely used ways to phylogenomically classify genomes and provide a 

reference phylogeny for bacteria with 120 marker genes and for archaea with 122 marker genes 

(Chaumeil et al., 2020). However, such phylogenetic comparisons can only detect transfer 

events between distantly related organisms, making most HGT events undetectable, as 

successful HGT is most frequent between closely related organisms (Schaack, Gilbert and 

Feschotte, 2010). This higher frequency of successful HGT between closely related organisms 

is likely based on the likelyhood of homologuous recombination, which allows for efficient 

integration of closely related donor material into the recipient organism. This has been shown 

for Haloarchaeota, where 90% of observed HGT events were facilitated by homologuous 

recombination, with the frequency decreasing exponentially with the phylogenetic distance for 

Haloarchaeota pairs (Williams, Gogarten and Papke, 2012).  

 The acquisition and integration of external DNA inherently puts the host organism at a 

disadvantage. Thus, for horizontally transferred genetic material to persist in the recipient 

organism, it either needs to provide an immediate evolutionary advantage or develop one over 

time, being of little detriment during this development phase (Soucy, Huang and Gogarten, 

2015).  

 (Orsi et al., 2021) showed that deep sea sediment Thalassospira Bacteria, isolated 

within the sediment matrix, are more strongly affected by genetic drift, i.e., fluctuations in 

allele frequencies with potential to become permanent fixtures in the population causing 

synonymous (dS; does not change protein sequence), non-synonymous (dN; changes protein 

sequence) and missense (introduces stop codon) mutations, than by horizontal gene transfer 

via homologous recombination (a special variant of transformation). This caused an 

accumulation of pseudogenes, though neither genome reduction nor high dN/dS ratios were 
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observed, possibly due to the populations not having yet experienced sufficient generations to 

observe large shifts due to the low energy available in the deep biosphere. 

Currently, the extent to which horizontal gene transfer contributes to the adaptation of 

deep biosphere microbes, let alone Archaea, is completely unknown.  

2.4 Altiarchaeota: The pirates of the subsurface 
 

Archaea were originally thought to be only dominant in extreme environments, such as hot 

springs (Dai et al., 2016), salt lakes (Gunde-Cimerman, Oren and Plemenitaš, 2005) or acidic 

hot springs (Ding et al., 2011). The advancement of sequencing technologies revealed Archaea 

to be ubiquitously present, though non-extreme environments are generally dominated by 

Bacteria (Probst et al., 2013).  Notable exceptions are the Thaumarchaeota (formerly known 

as marine group I Archaea), who are among the most abundant prokaryotes on Earth across 

both marine and terrestrial environments and have the most energy-efficient aerobic carbon 

fixation pathway with their unique take on the 3-hydroxypoprionate/4-hydroxybutyrate 

pathway combined with ammonia oxidation (Könneke et al., 2014). Marine group II and 

Marine group III Archaea (now referred to as Poseidoniales and Pontarchaea) are other phyla 

that can sometimes dominate ecosystems (Vetriani, Reysenbach and Doré, 1998; Iverson et al., 

2012; Needham and Fuhrman, 2016).  

 The Altiarcheaota are another archaeal phylum that can dominate in their moderate 

temperature environments. Altiarchaeota form almost pure-species biofilms in their cold 

sulfidic spring (Henneberger et al., 2006) or cold geyser subsurface habitants (Probst et al., 

2017) and use the most energy-efficient carbon fixation pathway [the Wood-Ljiungdahl 

pathway; Figure II.2.4.1]. 
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Figure II.2.4.1: Scanning electron microscopy displaying an (a) Overview and (b) Zoom of the 
Ca. Altiarchaeum SM1 biofilm from (Probst et al., 2014). The scale bar has 2 µm length. 
  

Altiarchaeaota were first discovered in a cold sulfurous spring where they formed 

‘string of pearls’-like biofilm consortia with bacteria (Rudolph, Wanner and Huber, 2001). 

These pearls had a peculiar structure with the Thiotrix bacteria, known for being aerobic 

sulfide-oxidizers, forming the outer layers while the inside of the pearls was made up of 

Altiarcheales (Moissl, Rudolph and Huber, 2002). Thiotrix alone formed the strings connecting 

the pearls (Moissl, Rudolph and Huber, 2002). It was speculated that Thiotrix might help 

maintain the anaerobic environment the Altiarchaeales needed as well as supply them with 

sulfate, which in turn could be metabolized to sulfide by Altiarchaeales, thus closing a sulfur 

cycle within the pearls (Moissl, Rudolph and Huber, 2002). However, no genetic evidence 

supporting the use of sulfur-compounds in respiration in Ca. Altiarchaea was found so far 

(Probst et al., 2014). 

Altiarchaeal cells are about 0.6-0.7 µm diameter and coccoidal in shape and surrounded 

by around 50-100 characteristic barbwire-like cell appendages with a thrice-pronged hook at 

the terminal end termed hami with 2-3µm in length (Moissl et al., 2003). These hami likely 

facilitate adhesion to both inorganic and organic surfaces (Moissl et al., 2003), forming an 

interconnected web in the altiarchaeal biofilm and causing the characteristic 4 µm spacing 

between cells (Henneberger et al., 2006). 

In addition to inhabiting sulfidic springs, Ca. Altiarchaea were also found as the 

dominating Archaeon in the cold, high-CO2 Crystal Geyser (Emerson et al., 2016; Probst et al., 

2017, 2018). In this type of geyser, eruptions are caused by CO2 over-saturation of water due 
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to pressure fluctuations changing the saturation limit, causing its transition into gas, causing 

further pressure changes in the ecosystem. This causes a chain reaction of CO2 transitioning 

into gas phase and ultimately leads to the eruption of water displaced by the CO2 gas. Gas-

chromatography isotope ratio-mass spectrometry analyses of archaeal ether lipids coupled to 

metagenomics revealed that Ca. Altiarchaea fixate carbon via the strictly anaerobic reductive 

Acetyl-CoA (Wood-Ljiungdahl) pathway (Probst et al., 2014), thus potentially benefitting 

from the high CO2 concentrations in cold geyser ecosystems. Genomic analyses indicated that 

they use methanofuran and tetrahydromethanopterin (THMPT) as C1 carriers. These C1 carriers 

are typically used in methanogenic archaea but markers indicating methanogenesis (e.g., mcr) 

were absent. Instead of the factor420 -dependent THMPT dehydrogenase typically present in 

methanogenetic archaea, they use a NAD(P)-dependent enzyme likely acquired from 

methylotrophic bacteria. Indeed, no factor420 biosynthesis genes could be identified (Probst et 

al., 2014). Similarly, no hydrogenases supplying the WL with reduction equivalents have been 

identified so far, making the source of electrons for the WL pathway a mystery (Probst et al., 

2014). 

Bird et al. showed in 2016, using both phylogenetic analyses based on the 16S rRNA 

gene and phylogenomic analyses using 10 conserved marker genes, that two clades, termed 

Alti-1 and Alti-2, are formed within the Altiarchaeota (Bird et al., 2016). This separation was 

also apparent in the genomic differences between the clades: Only the Alti-1 clade forms 

biofilms facilitated by their hami cell appendages and can dominate ecosystems but seems to 

be restricted to sulfidic springs and cold high CO2 geysers, while Alti-2 seem to be planktonic 

but are much more widespread and genetically diverse (Bird et al., 2016). 

   

3. Scope of the thesis and publication guide 
 

The scope of this thesis was to establish a workflow for the recovery of high-quality archaeal 

genomes from metagenomes, including establishing a genome curation tool facilitating easy 

GUI-based genome curation, and using this workflow to investigate global prokaryotic 

replication in the deep biosphere and investigate the genetic adaptations dominating 

Altiarchaeota across the globe. The knowledge gaps the following publications attempt to fill 

are illustrated in section II.1.4 (knowledge gap: Why is genome curation necessary?), section 

II.1.5 (how to curate genomes), section II.2.3 (genome fluidity in the deep biosphere) and 
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section II.2.4 (altiarchaeota: The pirates of the subsurface). The following paragraphs will 

summarize the content and main findings of the three publications covered in full in section 

III. 

3.1 Recovery of archaeal genomes from metagenomes 
 

Metagenomics is a rapidly developing research field, with new software being released daily. 

Only very few steps in the metagenomics workflow have an established state-of-the art 

software associated with them, making the analyses of metagenomic very challenging, as 

researchers need to generate custom pipelines to analyze their data. The manuscript titled 

“Reconstruction of archaeal genomes from short-read metagenomes” provides our 

metagenomics pipeline for the processing of metagenomic bins, the binning of genomes as 

well as their curation of contaminant sequences, providing researchers with a ready-to-use 

pipeline for the recovery of genomes from metagenomes. This book chapter also contains a 

wealth of advice for various problems commonly encountered in the analyses of 

metagenomics, such as analyzing MDA-based metagenomics (single-cell metagenomes, mini-

metagenomes), contamination controls and what to consider when sequencing a metagenome 

(i.e., which technology and parameters to keep in mind). 

3.2 Curation of metagenomic bins with uBin 
 

Bin curation has been advocated to become an obligatory part in the workflow for the 

generation of MAGs from metagenomes but is not yet widely applied. The reason for this may 

be that bin curation is a manual and hence low-throughput task. Additionally, the few available 

software (mainly Anvi’o and ggKbase) are challenging to use for beginners, making it difficult 

for the practice of bin curation to disseminate through the community. Hence, we developed 

the bin curation software uBin, showcased in the manuscript titled “uBin – a manual 

refining tool for genomes from metagenomes”, and tested its ability to improve bin quality 

on both simulated and real world data. We also explored its potential as a standalone binner for 

low complexity metagenomes, recovering the first genomes from the International Space 

Station (ISS) mainly consisting of human-associated microbes, and identified differences in 

their replication processes (iRep values), diagnosing the flight mission (1, 2 or 3) as the main 

factor influencing their replication. 
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3.3 Genomic fluidity of deep biosphere dominating Altiarchaeota 
 

Sites of geological degassing, such as hydrothermal vents and volcanos, have long been studied 

in regard to how the gasses shape native communities and how organisms adapt to them. The 

effect of geological degassing on communities residing in the mesophilic deep biosphere, 

however, is rarely explored. In the manuscript titled ”Genetic diversity in terrestrial 

subsurface ecosystems impacted by geological degassing”, we explored one such system, 

the cold, high-CO2 Geyser Andernach, and identified a microbial community dominated by 

Ca. Altiarchaea of clade Alti-1, one of the few known archaea able to dominate in moderate 

temperature environments. Biogeographic analyses of all available Alti-1 Altiarchaea 

indicated them to be dispersed via plate tectonics, with pangenome analyses showing a 

conserved core metabolism with peripheral genes showing evidence of having been 

horizontally transferred from Bacteria, possibly compensating for the otherwise extreme 

conservation. To evaluate the impact of geological degassing on microbial communities, we 

assembled a database of 895 genomes from Geyser Andernach and 16 other ecoystems, 

covering 3 km of depth and four continents (North America, Africa, Europe, Asia), and 

uncovered patterns of faster minimal generation times but less on-going replication with 

depth. Sites impacted by geological degassing behaved similar to surface-near sites, 

indicating them to be hotspots of microbial activity in the deep biosphere.  

  



III. Publications 

 37 

 

III. Publications 
Overview 
 

 This quasi-cumulative dissertation comprises three articles. One manuscript (section 

III.3) has been published in the peer-reviewed Journal Nature Communications. Another 

manuscript (section III.1) has been accepted as a book chapter in the book series “Methods of 

Molecular Biology” and one additional manuscript (section III.2) has been submitted to the 

peer-reviewed journal Environmental Microbiology. The PhD student Till L. V. Bornemann 

has authored every manuscript printed in this thesis as first author. Supporting information as 

well as additional data is supplied on the supporting CD, whose contents are described in 

section VII. 

 

The PhD student’s contributions to the manuscripts are as follows: 

 

1. Till L. V. Bornemann, Panagiotis S. Adam, Alexander J. Probst, 2022: Till L. V. 

Bornemann wrote the manuscript, incorporated revisions and verified the functionality 

of the given code blocks.  

2. Till L.V. Bornemann, Sarah P. Esser, Tom L. Stach, Tim Burg, and Alexander J. Probst, 

2022: Till L.V. Bornemann prepared the figures, prepared the supplemental material, 

performed statistics, wrote the code used to generate uBin input files (i.e., the uBin 

wrapper scripts) and wrote the manuscript. 

3. Till L.V. Bornemann, Panagiotis S. Adam, Victoria Turzynski et al., 2022: Till L. V. 

Bornemann performed sampling and biochemical as well as microscopic experiments, 

did bioinformatic and biogeographic analyses, performed statistics, prepared figures 

and wrote the manuscript, submitted data to NCBI where applicable and implemented 

the revisions.  
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Abstract  
As the majority of biological diversity remains unexplored and uncultured, investigating it 

requires culture-independent approaches. Archaea in particular suffer from a multitude of 

issues that make their culturing problematic, from them being frequently members of the rare 

biosphere, to low growth rates, to them thriving under very specific and often extreme 

environmental and community conditions that are difficult to replicate. OMICs techniques are 

state of the art approaches that allow direct high throughput investigations of environmental 

samples at all levels from nucleic acids to proteins, lipids, and secondary metabolites. 

Metagenomics, as the foundation for other OMICs techniques, facilitates the identification and 

functional characterization of the microbial community members and can be combined with 

other methods to provide insights into the microbial activities, both on the RNA and protein 

levels. In this chapter, we provide a step-by-step workflow for the recovery of archaeal 

genomes from metagenomes, starting from raw short-read sequences. This workflow can be 

applied to recover bacterial genomes as well. 

Key words 

rare biosphere, genome-resolved metagenomics, short-read sequencing, genome curation, 
prokaryotes 
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1.Introduction.  
Metagenomics as a technique first appeared in scientific studies of acid mine drainage biofilms  

and the Sargasso Sea (Venter et al., 2004), analyzing the entire DNA content of samples instead 

of focusing on specific marker genes. Amplicon-based studies in general do not capture the 

entire extent of microbial diversity in environmental samples due to primer biases and introns 

in 16S rRNA genes (Eloe-Fadrosh, Ivanova, et al., 2016). For instance, bacteria of the 

Candidate Phyla Radiation (CPR) often have introns and Archaea of the DPANN 

(Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea) radiation 

often escape detection using standard primer pairs (Eloe-Fadrosh, Ivanova, et al., 2016; Brown 

et al., 2015; Huber et al., 2002; Baker et al., 2006; Eloe-Fadrosh, Paez-Espino, et al., 2016). 

As metagenomics is non-targeted, it enabled researchers to reveal entire clades of hitherto 

unknown microorganisms (Castelle et al., 2013; Brown et al., 2015). Shotgun sequencing of 

metagenomic DNA also allows the investigation of the entire biological diversity in a single 

experiment, including all three domains of life, DNA-based viruses as well as mobile genetic 

elements, provided these entities are double-stranded and DNA-based. In general, 

metagenomic analyses can be divided into three levels depending on the data type: Read-based 

metagenomics, assembly-based metagenomics, and genome-resolved metagenomics. These 

three levels will be briefly introduced and explained in the following paragraphs and their 

advantages and disadvantages are summarized in Table III.1.1.  
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Table III.1.1: Advantages (+) and disadvantages (-) of the three levels of metagenomic 
analyses.  

Read-based metagenomics Assembly-based metagenomics Genome-resolved metagenomics 

+ Captures the full breadth 
of sequenced 
information 

+ Genes called are usually 
fairly complete 

+ Genes called are usually 
fairly complete 

- Short reads span only 
fragments of genes 
(problem of function 
prediction) 

- Memory (RAM) 
intensive 

+ linkage of function and 
taxonomy 

- Long Nanopore reads 
can have frame shifts 
(problem of function 
prediction) 

- Calling taxonomy only 
possible with marker 
genes 

+ Proper phylogeny 
possible & other features 
like strain resolution etc. 

-  Time and resource 
intensive 

- Only assembled reads 
are taken into account 

- Only binned reads are 
taken into account 

- Taxonomic calling is 
very weak 

- Assembly errors - Assembly and binning 
errors 

 
 Read-based metagenomics is set up with the aim of analyzing the quality-checked reads 

by querying them as BLAST homology searches against a single or variety of databases. 

Protein databases (e.g., NCBI-nr, UniRef100 (Suzek et al., 2015)) are searched to estimate 

functional profiles of the metagenome and taxonomic toolkits like SILVA (Quast et al., 2013) 

or PhyloFlash (Gruber-Vodicka, Seah and Pruesse, 2020) are used to estimate taxonomic 

profiles. Genome databases (e.g., RefSeq (Pruitt et al., 2011)) can also be queried to estimate 

genome abundances and calculate Single Nucleotide Polymorphisms (SNPs). Read-based 

metagenomics is less memory-intensive than other approaches, as no assembly of the reads 

(see below) is required but the querying against databases is computationally expensive (in 

CPU power/hours). Additionally, the entire metagenome is analyzed instead of only the part 

that was assembled or binned (compare assembly-based and genome-resolved metagenomics). 

On the other hand, read-based approaches mostly rely on reference databases and thus the 

quality of the analyses is dependent on how suitable the chosen reference databases are for the 

given sample. Thus, this method will perform well for sufficiently characterized ecosystems 

but will fail to identify novel genes or species (Teeling and Glöckner, 2012). The short read 

length compared to assembled sequences also makes the alignment less accurate as the 
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unambiguous assignment of reads to a reference is often not possible, for instance due to 

repetitive sequences re-occurring across proteins.  

 In assembly-based metagenomics, the reads are assembled into contiguous sequences, 

also called contigs. During sequencing, each DNA fragment is only sequenced partially, with 

the first 100-250 bp (forward-read) and the last 100-250 bp (reverse-read) of the fragment being 

sequenced, making up a read pair. If multiple of these read pairs can be aligned to the edges of 

two contigs, indicating their connectedness, they are combined into a single sequence named 

scaffold, adding in N’s in the scaffold sequence between the two previous contigs to designate 

the unknown nucleotides linking the two contigs (scaffolding). When assembling 

metagenomes from environmental communities, both high and low abundance organisms can 

pose a challenge: The assembly of highly abundant organisms can be problematic due to the 

co-occurrence of strains making assembly graphs unresolvable and low abundance organisms 

might simply not assemble, due to a lack of available information. The assembly of highly 

abundant and strain diverse organisms can sometimes be improved by using small fractions of 

the total reads for assemblies to reduce the amount of strain interference during assembly (Hug 

et al., 2015). Only resequencing with more sequencing depth can help resolve less abundant 

community members. Assemblies are more informative than pure reads, as the longer contig 

sequences make more accurate matching to databases possible (Breitwieser, Lu and Salzberg, 

2019) and allow identification of larger genomic constructs like operons (Hu and Friedberg, 

2020), viral particles (Guo et al., 2021) or CRISPR arrays (Edgar, 2007). Similar to read-based 

metagenomics, a general overview about the taxonomic and functional composition of the 

community can be gleaned from assembly-based metagenomics. The assembly is the most 

computationally expensive (though not manual work intensive) step in the metagenomic 

analysis. One of the main differences to read-based approaches is the need for gene prediction. 

In this step, putative regions of DNA encoding for proteins are identified. This is made difficult 

by the presence of multiple genetic codes that alter the identification and translation of genes 

and can co-occur in metagenomes due to the presence of many different organisms. Thus, gene 

prediction needs to be performed on each scaffold individually to identify the correct genetic 

code and consequently the genes (Hyatt et al., 2010). Additionally, eukaryotes have a very 

different gene structure to prokaryotes, with more complex promoter regions, regulatory 

signals and introns (West et al., 2018). Eukaryotic gene prediction thus needs to be performed 

by specialized tools like EuGene-EP (Sallet, Gouzy and Schiex, 2019) as prediction using 

tools designed for prokaryotes will result in false results. To identify eukaryotic scaffolds in 
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metagenomes, tools like Eukrep (West et al., 2018) can be used. See Breitwiesser et al. (2019) 

for a comprehensive list of read-based and assembly-based software (Breitwieser, Lu and 

Salzberg, 2019). 

The complexity of metagenomes can be estimated from the raw sequencing data using 

Nonpareil3 (Rodriguez-R et al., 2018). This tool is of particular interest, as it also gives 

an estimate about how much of the microbial diversity is covered by the sequencing effort and 

predicts how much sequencing effort is needed to reach specific coverage thresholds (e.g., 

95%). The assembly-based analysis can be taken one step further by assigning subsets of 

scaffolds to genomes based on shared characteristics, i.e., the “binning” of genomes in genome-

resolved metagenomics. Most modern binning tools use one or both of two major 

characteristics: k-mer frequency patterns and (differential) coverage. Similar to the use of k-

mers in metagenome assemblies, scaffolds can be decomposed into their set of k-mers. These 

k-mer frequency patterns can subsequently be used to cluster scaffolds belonging to the same 

genome based on genome-characteristic k-mer signatures. In read assembly, a combination of 

large k-mers is usually used with k’s between 21 to 128. In binning, 4-mers (tetranucleotides) 

have been shown to be the most effective trade-off between signal sensitivity and runtime (Dick 

et al., 2009). Tetranucleotide-based binning becomes problematic if multiple closely related 

species or strains are present in the sample as they often do not have distinguishable 4-mer 

patterns. Differential coverage binning on the other hand utilizes the correlating abundance of 

scaffolds belonging to the same genome obtained from mapping of reads of related samples to 

the assembly (Albertsen et al., 2013; Sharon et al., 2013). This strategy makes the delineation 

of strains and closely related species possible, provided they have differential abundance 

patterns across the samples (Wu, Simmons and Singer, 2016). In some binning tools, additional 

characteristics like assembly graph information (GraphBin (Mallawaarachchi, 

Wickramarachchi and Lin, 2020)) or taxonomy (Autometa (Miller et al., 2019)) are used 

for binning metagenome assembled genomes (MAGs). Both manual (ESOM (Dick et al., 

2009), VizBin (Laczny et al., 2015)) as well as automatic (MaxBin (Wu, Simmons and 

Singer, 2016), ABAWACA (Brown et al., 2015), MetaBAT (Kang et al., 2019), binsanity 

(Graham, Heidelberg and Tully, 2017), Automata (Miller et al., 2019), metawrap 

(Uritskiy, DiRuggiero and Taylor, 2018), GraphBin (Mallawaarachchi, Wickramarachchi 

and Lin, 2020)) binning tools exist. The success of the various binning strategies and tools is 

very dependent on the sample type and complexity and cannot be predicted a priori (Sieber et 
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al., 2018). Thus, the state of the art approach is to use a combination of binning tools followed 

by the aggregation of the results using DAS Tool (Sieber et al., 2018) to extract the best 

representative bin set, which can also include sub-setting single bins. Even though the 

qualitatively best genomes are selected this way, they frequently still require further curation 

as both false positives (i.e., contaminant scaffolds not belonging to the bin) and false negatives 

(i.e., scaffolds belonging to the genome that were not binned) abound. The completeness of 

bins can be assessed using either ubiquitously present (Probst et al., 2017) or branch-specific 

marker genes (Parks et al., 2015). As these marker genes should be only present once per 

genome, multiple copies of marker genes can be used to approximate the degree of false 

positive information in the bin, i.e., the degree of contamination (note that some genes can also 

be split, either due to an evolutionary event or due to splitting of genes in fragmented 

assemblies). The contamination in metagenomic bins after binning makes manual curation of 

the bins necessary. Different tools exist to assist this step, including Anvi’O (Eren et al., 

2021), ggKbase (Wrighton et al., 2012), gbtools (Seah and Gruber-Vodicka, 2015) and 

uBin (Bornemann et al., 2020). They use a combination of GC content, coverage, and 

taxonomy to identify contaminant sequences, but are different in the interface design, data 

input, scope and accessibility. 

This book chapter is set out with the aim of providing the reader a guide and the 

requisite knowledge on reconstructing archaeal MAGs starting from raw short-read 

metagenomes. The method presented here can be carried out by any scientist with basic 

knowledge in shell programming and with access to a high-performance computing (HPC) 

facility. Additionally, our protocol can not only be used for reconstructing archaeal genomes 

from metagenomes but can also be applied for bacteria-focused research. 

2.Materials 

2.1 Generating sequencing reads 
While this chapter focuses purely on the analysis of metagenomic data, the data generation, 

including sampling, DNA extraction, library preparation and sequencing, remain essential 

prerequisites. The sampling strategy needs to be adjusted to the ecosystem, e.g., filtering water 

samples on filters to concentrate the cells. Particularly in ecosystems with a low expected 

biomass, such as subsurface communities, measuring the cell concentrations via microscopy 

can help determine the required amount of sample. Field blanks are also recommended for 
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environmental samples, particularly low biomass ecosystems (Sheik et al., 2018). Optionally, 

DNA from intact cells can be separated from other DNA using propidium monoazide (PMA) 

treatment (Joo, Park and Park, 2019). DNA can be extracted with a wide variety of commercial 

kits designed for specific sample types (e.g., biofilms, soil, water, human) or using classic 

chloroform-phenol-based methods. A negative control should be included to ensure detection 

of contaminants coming from the kit or reagents (Sheik et al., 2018). If needed, the DNA can 

be concentrated using ethanol precipitation protocols or vaporization, depending on the 

volume. The genomic DNA is then fragmented and metagenomic libraries are prepared using 

one of many available commercial kits. The sequencing can then be performed at sequencing 

facilities or commercial providers. Depending on the sequencing platform, DNA fragmentation 

and library preparation can also be performed by the sequencing facility. For commissioning 

the sequencing, we recommend that 1) no amplification is performed, 2) the libraries are 

paired-end, i.e., there is both a forward and a reverse read of one DNA strand (necessary for 

scaffolding in assemblies, see above) and 3) the read length is as long as possible. If 1) or 2) 

are not the case, alternate software needs to be utilized (see Notes sections 4.2 and 4.8). 

2.2 Basic bioinformatics knowledge 

Most of the analyses in this chapter are based on the UNIX command-line and consequently 

require basic knowledge in the UNIX shell, such as navigating and creating folders, inspecting 

and copying flat (i.e., non-binary) files. If the user does not have such preliminary knowledge, 

we recommend first taking a bash tutorial course like https://linuxconfig.org/bash-scripting-

tutorial-for-beginners. 

2.3 Desktop computer 

A desktop computer with at least 2 cores and 16 GB RAM is recommended (8 GB of RAM 

can work for low complexity metagenomes). Software facilitating the connection to a UNIX-

based server needs to be installed. There is a wide variety of options depending on the operating 

system of the desktop computer. On a Windows operating system (OS), the free to use software 

PuTTy (https://www.putty.org/) can be installed and used to connect to the server. UNIX-

based OS like MacOS or Linux distributions should natively be able to connect to servers using 

the ssh command. Optionally, a file sharing program like CyberDuck (https://cyberduck.io/ 

) can be installed for easier transfer of files between desktop computer and Server. Furthermore, 

the manual binning software esomana (Ultsch, 2005) or VizBin (Laczny et al., 2015) can 
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be installed (http://databionic-esom.sourceforge.net/index.html) and 

http://claczny.github.io/VizBin/). Finally, the newest release of the metagenome-assembled 

genome curation program uBin (Bornemann et al., 2020) should be downloaded from 

https://github.com/ProbstLab/uBin/releases. Installation wrapper files are available for the 

various operating systems (.exe for Windows, .dmg for MacOS, .deb for Linux 

distributions).  

2.4 Server requirements 

The server should run a Linux distribution like Ubuntu (https://ubuntu.com/download). 

Hardware requirements depend on the size of the datasets to be analyzed. The assembly step is 

by far the most memory-demanding step and scales with the size and complexity of the input 

dataset. 500 GB of RAM are a bare minimum, but very complex and deeply sequenced 

metagenomes like soil ecosystems or those containing eukaryotic reads can require more than 

three TB of RAM. See van der Walt et al. (2017) (van der Walt et al., 2017) for a benchmark 

about the memory requirements of various assemblers. The server should have a minimum of 

ten threads to be able to analyze single samples in sequence. Be aware that CPUs have a 

maximum amount of RAM they can use effectively, potentially making a higher number of 

CPUs necessary. Cloud computing platforms are an attractive alternative to purchasing and 

maintaining one’s own server system and can be configured with the respective requirements 

listed above (e.g., Amazon AWS). 

2.5 Code writing conventions 

This chapter contains code blocks detailing how individual analysis steps are performed. To 

avoid any issues with executing or understanding the code, the conventions for how different 

aspects of the code are formatted are described here. Any parts of the code that are enclosed in 

curly brackets, e.g., {int}, require the reader to replace the brackets and its contents with the 

described item (in the mentioned example, an integer value). Throughout this section, the 

scripts that are used are assumed to be in your PATH variable. If this is not the case, you can 

either add them to your PATH variable using the export function or use the path to the respective 

script. See https://opensource.com/article/17/6/set-path-linux for an explanation of the PATH 

variable and how it can be modified, both temporarily and permanently. If the software was 

installed into a conda environment and the respective environment is active, it will 

automatically be in the PATH variable (see Table III.1.2).  
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2.6 Data and data structure 

In this chapter, two formats for sequencing information will be used: the FASTA and the 

FASTQ format. In the FASTA format, each sequence entry starts with a > followed by a title 

or header for the sequence (see Subheading 2.6.1). The next line(s) then contain the sequence 

data and are used either for nucleotides (AGCT for individual nucleotides or N for undefined 

nucleotide) or amino acids (20 letters for the standard amino acids, additional letters for non-

standard amino acids e.g., Y for pyrrolysine, usually X or another symbol such as a question 

mark for undefined states). 

 
2.6.1 FASTA format with nucleotide sequences.  
>Example_header_1 
AGTCCCCCAGAGAATTTT 
>Example_header_2 
AGATTTTCCGAGTCCAGTTTAGAC 
... 

 
New lines can be used to split longer sequences over multiple lines for improved readability. 

The addition of characters other than new lines or sequence characters are not permitted and 

will cause the format to be invalid if present. We recommend avoiding the use of special 

characters (e.g., *&^%$., see 

https://www3.ntu.edu.sg/home/ehchua/programming/howto/Regexe.html for a list) in 

sequence headers as they frequently can be misinterpreted by software due to their special 

meaning in the context of regular expressions or can cause the sequence to be invalid for certain 

software. Some software even automatically replaces them with non-special characters to 

ensure compatibility. Spaces and tabs in particular should be avoided as most software truncate 

sequences at these characters. A particularly problematic case of special characters can be 

introduced when files are opened and saved with windows applications as alternate and in most 

applications invisible newline characters are in use. Those then need to be replaced by the 

UNIX newline characters. Multiple extensions other than fasta are in use. Some of those are 

fa as a shortened form for fasta, faa if the sequences present in the file are amino acids or 

fna if the sequences in the file are nucleic acid sequences. 

The FASTQ format is an extension of the FASTA format that in addition to a title and 

the sequence contains quality information for each nucleotide position (hence FASTQ). This 

format is used to convey raw sequence information along with a quality metric indicating the 
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reliability of the acquired sequences. A single entry in a FASTQ file is composed of four lines, 

with the first and second line being the title and sequence, respectively. The third line always 

starts with a + and can contain optional further information. The fourth and final line of each 

entry contains a quality string based on ASCII quality symbols with one symbol per nucleotide 

in the nucleotide sequence (see Subheading 2.6.2).  

 
2.6.2 FASTQ format with read sequences.  
@{read identifier 1} 
{Sequence 1} 
+{optional metadata or repeat of read identifier 1} 
{Quality String 1} 
@{read identifier 2} 
{Sequence 2} 
+{optional metadata or repeat of read identifier 2} 
{Quality String 2} 
... 

 
The quality string contains information about the confidence level of the base-calling and can 

be used to identify read regions with poor quality that subsequently get removed. 

While read files are commonly distributed in the FASTQ format, the order of the reads 

can vary if paired-end sequencing was performed, resulting in paired reads, i.e., a forward and 

a reverse read for each sequenced DNA fragment. Forward and reverse reads can be present as 

separate files for each sample, by convention containing a R1/r1 or R2/r2 in the name for 

forward reads and reverse reads, respectively. A read pair usually shares the read identifier but 

can optionally have an additional tab-separated identifier marking it as the forward or reverse 

read, like 1:N:0:4/2:N:0:4 (see Subheading 2.6.3).  
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2.6.3 Paired reads in separate FASTQ files. The 1 in 1:N:0:4 indicates the forward read 
file while the 2 in 2:N:0:4 indicates the reverse read file. 
 
Forward read FASTQ file          Reverse read FASTQ file 
@{read identifier 1}    1:N:0:4  
{Sequence 1} 
+ 
{Quality String 1} 
@{read identifier 2}    1:N:0:4  
{Sequence 2} 
+ 
{Quality String 2} 
... 

@{read identifier 1}    2:N:0:4  
{Sequence 1} 
+ 
{Quality String 1} 
@{read identifier 2}    2:N:0:4  
{Sequence 2} 
+ 
{Quality String 2} 
... 

 
Both files must have an identical order of reads as many programs implicitly assume the same 

order of reads in the files to assign mate-pairs. Deviating orders in the files would consequently 

generate artificial DNA fragments, making any downstream analyses invalid. Thus, comparing 

the read identifiers at the start and end of the paired files using the shell head and tail 

commands, respectively, is highly recommended. Additionally, the total number of lines per 

file can be determined using wc -l. This number should be identical for the forward and 

reverse read files. Some applications also require the forward and reverse reads to be supplied 

as a single file with merged forward and reverse reads. Two types of merged files exist: 

shuffled (also called interleaved) and unshuffled. In shuffled files, each forward 

read in the file is followed by its respective reverse read, while in unshuffled files there is no 

prescribed order of reads. The use of the wrong merged file format will also lead to the creation 

of artificial DNA fragments due to the mispairing of reads. Thus, software requirements should 

always be checked to see whether they require shuffled reads. 
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2.6.4 Shuffled FASTQ file. In the shuffled FASTQ format, the reverse read (indicated here by 
2:N:0:4) always follows its forward read mate (1:N:0:4). The {read identifier} string is 
identical between mate pairs.   
@{read identifier 1}    1:N:0:4 
{Sequence 1} 
+ 
{Quality String 1} 
@{read identifier 1}    2:N:0:4 
{Sequence 2} 
+ 
{Quality String 2} 
@{read identifier 2}    1:N:0:4 
{Sequence 3} 
+ 
{Quality String 3} 
@{read identifier 2}    2:N:0:4 
{Sequence 4} 
+ 
{Quality String 4} 
... 

 

2.7 Software 

The software mentioned herein must be installed on the UNIX-server. We recommend 

installing the software through an open-source package management system as most software 

has dependencies like specific versions of other software and those dependencies can be 

incompatible between software. Package management systems like miniconda provide both 

a convenient way to install software as well as resolving these dependency incompatibilities, 

as they allow the definition of so-called environments, in which new software can be installed 

in isolated containers. They also do not require root permissions, making it possible for every 

user to install software locally. Miniconda can be downloaded from 

https://docs.conda.io/en/latest/miniconda.html. Select a Linux-based installer with python3 

as the pre-installed python version and your systems bit version (likely 64-bit). The installer 

is provided as a shell script (.sh) and can be executed with the bash command. Please see 

https://conda.io/projects/conda/en/latest/user-guide/index.html for an introduction on how to 

install and use conda to create and manage environments and install software in them. 

 The uBin wrapper scripts repository needs to be downloaded 

(https://github.com/ProbstLab/uBin-helperscripts). We recommend the creation of two conda 
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environments, one for each major python version. The python 3.7 conda environment 

can be installed using a yaml file provided with the uBin wrapper scripts. Some additional 

software not used within the wrapper scripts will be additionally installed:  

 

2.7.1 Creation, loading and installation of python3 conda environment and software. 
This command will install the listed software and its dependencies. The command will create 
a conda environment called uBin_input_generator_pyt37. Please use the entire 
path to uBin_wrapper_reqs.yaml if you are not in the folder with the file. Prior to 
starting the contained software, the conda environment needs to be loaded using  
conda activate uBin_input_generator_pyt37.  
conda env create -f uBin_wrapper_reqs.yaml 
conda activate uBin_input_generator_pyt37 
 
conda install -c anaconda -c bioconda -c agbiome abawaca bbtools git das_tool 
megahit checkm-genome  

 
Neither the required ruby version (2.3) nor all the ruby packages (gems) are available 

through conda and thus need to be installed separately. For this purpose, we recommend a 

ruby version and gem manager like rvm (https://rvm.io/). We provide installation instructions 

for the correct ruby version as well as the needed gems using this installer in the following 

section. 

 
2.7.2 Creation of ruby 2.3 and installation of ruby gem dependencies using rvm. This 
command needs to be executed from within the downloaded uBin-wrapper scripts folder. 
Otherwise, the paths for the nu-2.0.1.gem and the gemfile file listing the required ruby 
dependencies need to be given to the bundle install and gem install commands, respectively. 
rvm install 2.3 
rvm use 2.3 
gem install bundler -v 1.16 
bundle install 
gem install –local nu-2.0.1.gem 
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A python2 conda environment is also required to execute MaxBin2 and sickle. It can 
be installed as follows: 
 
2.7.3 Creation, loading and installation of the python2 conda environment and 
software. This command will install the listed software and their dependencies. Prior to 
starting the contained software, the conda environment needs to be loaded using  
conda activate mg_pyt27. 
conda create -n mg_pyt27 python=2.7 
conda activate mg_pyt27 
conda install -c bioconda maxbin2 sickle-trim 

 
Table III.1.2 contains all essential and optional software with a description and a source 

location. The source location contains information about the installation and use of the 

respective software. All necessary software will have been installed within the respective 

conda environment via Subheadings 2.7.1, 2.7.2 and 2.7.3 (see above). Optional software 

represents software that is only mentioned in this chapter without being used. We would like 

to note that there exists alternative software and procedures to those listed here and the field is 

under constant development with new software being published every day.  

 

Table III.1.2: Software descriptions and source locations (in alphabetical order). 
Software Description Homepage 

Required software 

Programming languages 
 

Bourne Again SHell (bash) GNU shell https://www.gnu.org/software/ba
sh/  

perl Perl programming language https://www.perl.org/get.html  

R R programming environment https://cran.r-project.org/  

ruby Ruby programming language https://www.ruby-
lang.org/de/downloads/  

Python3 v3.7 
Python2 v2.7 

Python programming language. 
There are two incompatible 
releases (python2 and python3). 
python3 is still being actively 
developed but both are 
dependencies of other software      

https://www.python.org/downlo
ads/  
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Standalone software 
 

ABAWACA v1.07 Binning tool https://github.com/CK7/abawaca  

BBTools v37.62 Collection of tools for the 
analysis and preprocessing of 
sequencing data; BBDuk subtool 
that is used to trim reads 

https://jgi.doe.gov/data-and-
tools/bbtools/bb-tools-user-
guide  

BLAST  Sequence aligner for amino acid 
or nucleotide sequences 

https://www.ncbi.nlm.nih.gov/b
ooks/NBK279690/  

Bowtie2 Read mapping tool https://github.com/BenLangmea
d/bowtie2  

CheckM Estimates the completeness and 
contamination level in 
prokaryotic genomes 

https://github.com/Ecogenomics/
CheckM/wiki  

Miniconda Software environment manager  https://docs.conda.io/en/latest/mi
niconda.html 

DAS Tool MAG dereplication tool https://github.com/cmks/DAS_T
ool  

DIAMOND High-throughput aligner for 
amino acid and nucleotide 
sequences 

https://github.com/bbuchfink/dia
mond  

esomana Manual emergent self-organizing 
maps-based binning tool 

http://databionic-
esom.sourceforge.net/user.html  

git Version control system; here 
mainly used to retrieve data from 
GitHub 

https://git-scm.com/downloads  

MaxBin2 Binning tool; uses differential 
coverage and k-mers 

https://sourceforge.net/projects/
maxbin2/  

Megahit Assembler, comparatively low 
memory requirement 

https://github.com/voutcn/megah
it  

Miniconda Software environment 
management and installation 
software 

https://docs.conda.io/en/latest/mi
niconda.html 

Prodigal Prediction of open reading 
frames in prokaryotes 

https://github.com/hyattpd/Prodi
gal  

pullseq Subsetting FASTA or FASTQ 
files 

https://github.com/bcthomas/pull
seq  

rvm Ruby package and versioning https://rvm.io/ 
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software 

sickle Read sequence trimmer https://github.com/najoshi/sickle  

SPAdes Assembler, comparatively high 
memory requirement; includes 
many specialized modes (e.g., 
plasmidSPAdes, 
metaviralSPAdes, metaSPAdes) 
as well as special modes for types 
of samples (e.g., --isolate or --sc)  

https://github.com/ablab/SPAdes  

uBin Genomic bin curation software https://github.com/ProbstLab/uB
in  

uBin-helperscripts Assembly processing wrapper 
and input generator for uBin 

https://github.com/ProbstLab/uB
in-helperscripts  

Optional software 

Automata Automated binner https://github.com/KwanLab/Au
tometa   

BinSanity Automated binner https://github.com/edgraham/Bin
Sanity  

CONCOCT Automated binner using 
differential coverage 

https://github.com/BinPro/CON
COCT  

Crass Identification of CRISPR arrays 
from unassembled metagenomic 
data 

https://github.com/ctSkennerton/
crass  

CRISPRCasFinder Identification of CRISPR arrays 
and Cas proteins 

https://crisprcas.i2bc.paris-
saclay.fr/  

DESMAN De novo extraction of strains 
from metagenomes 

https://github.com/chrisquince/D
ESMAN  

DRAM Metabolic potential prediction https://github.com/shafferm/DR
AM  

dRep Dereplication of genomes https://drep.readthedocs.io/en/lat
est/  

FastANI average nucleotide identity 
comparison tool 

https://github.com/ParBLiSS/Fas
tANI  

FastQC  Quality control analysis tool for 
reads 

https://github.com/s-
andrews/FastQC 

Graphbin Refining bins using assembly 
graphs 

https://github.com/Vini2/Graph
Bin  
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GRiD Replication index calculator https://github.com/ohlab/GRiDht
tps://github.com/ohlab/GRiD  

gRodon Minimal generation time 
estimator 

https://github.com/jlw-
ecoevo/gRodon  

growthpred Minimal generation time 
estimator 

http://ftp.pasteur.fr/pub/gensoft/
projects/growthpred/  

GTDB-tk Taxonomic Classification of 
genomes 

https://github.com/Ecogenomics/
GTDBTk  

HiCanu Standalone long read assembler 
and hybrid long-read+short-read 
assembler 

https://github.com/marbl/canu  

inStrain SNP calling, iRep calculation, 
strain estimation 

https://instrain.readthedocs.io/en
/latest/  

iRep Replication index calculator; 
only works for bacteria 

https://github.com/christophertbr
own/iRep  

MAGE Online platform for in-depth 
genome annotation and analysis 

https://mage.genoscope.cns.fr/mi
croscope/home/index.php  

MetaBAT Automatic binner https://bitbucket.org/berkeleylab
/metabat/src/master/  

MetaCRAST Reference-guided CRISPR 
detection in raw metagenomic 
reads 

https://github.com/molleraj/Meta
CRAST  

metaFly Hybrid assembler for 
nanopore+illumina data 

https://github.com/agofton/meta
Fly  

metaWRAP Automated binning pipeline https://github.com/bxlab/metaW
RAP  

Microbeannotator Metabolic potential prediction https://github.com/cruizperez/Mi
crobeAnnotator  

NCBI eutilities Command line programs to 
access  

https://www.ncbi.nlm.nih.gov/b
ooks/NBK25497/  

Nonpareil3 Estimation of diversity coverage 
at used sequencing depth 

https://github.com/lmrodriguezr/
nonpareil  

pgap Official NCBI genome 
annotation tool 

https://github.com/ncbi/pgap  

PILER-CR CRISPR repeat identification https://www.drive5.com/pilercr/  
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ra2 contig error correction; 
recommended to be used only on 
genomes due to runtime  

https://github.com/christophertbr
own/fix_assembly_errors  

Unicycler Hybrid assembler for 
nanopore+illumina data 

https://github.com/rrwick/Unicy
cler  

VICTOR Clustering and classification of 
viral sequences 

https://ggdc.dsmz.de/victor.php  

VirFinder Identification of viral sequences https://github.com/jessieren/VirF
inder  

virsorter2 Viral particle prediction tool https://github.com/jiarong/VirSo
rter2  

VizBin Manual binner using nonlinear 
dimensionality reduction 

http://claczny.github.io/VizBin/  

 
2.8 Databases 

Various databases are required for the reconstruction of archaeal genomes from metagenomes. 

The installation of the BBTools suite contains various databases, including databases for 

sequencing artefacts (sequencing_artifacts.fa.gz), sequencing adapters 

(adapters.fa) and PhiX control sequences (phix174_ill.ref.fa.gz) that will be 

used for the trimming of raw reads. Further required databases are the FunTaxDB, a modified 

version of the Uniref100 database (Suzek et al., 2015) with added taxonomic information 

from Uniref100 as well as additional taxonomic information from perfect (100 % similarity) 

matches to NCBI-nr entries. This database will be used for the functional and taxonomic 

annotation of genes. The FunTaxDB (Functional Taxonomic DataBase) can be downloaded 

in FASTA format from https://uni-duisburg-essen.sciebo.de/s/pi4cuYwyZ3KJVMl. Prior to its 

use, it will need to be compiled into a DIAMOND Basic Local Alignment Search Tool (BLAST) 

(Buchfink, Xie and Huson, 2015) database. DIAMOND BLAST is an alternative to 

conventional BLAST that can be up to three orders of magnitude faster at a similar accuracy. 

The database can be compiled using the following command (Subheading 2.8.1).  

 
2.8.1 Formatting of the FunTaxDB as a DIAMOND BLAST database. The output file is in 
the binary dmnd format and is not compatible among major DIAMOND versions. This requires 
the database to be re-compiled if the used major version of DIAMOND is changed. Both versions 
of the database, extensions FASTA and dmnd, are about 80 GB in size. 
diamond makedb --in FunTaxDBvX.X.fasta -d FunTaxDBvX.X 
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Additionally, various marker gene databases are used to generate single copy gene tables for 

uBin (Bornemann et al., 2020) and to estimate completeness and contamination using 

CheckM (Parks et al., 2015) or infer the phylogeny of recovered genomes using GTDK-tk 

(Chaumeil et al., 2020). Marker genes for CheckM can be downloaded from 

https://data.ace.uq.edu.au/public/CheckM_databases/, the GTDB-tk reference database can 

be downloaded from 

https://data.ace.uq.edu.au/public/gtdb/data/releases/release95/95.0/auxillary_files/gtdbtk_r9

5_data.tar.gz, and uBin marker gene databases are downloaded alongside the uBin-

helperscripts. 

3.Methods 

3.1 Read quality control 

After sequencing, two FASTQ files should be present per sample, one with forward reads and 

one with reverse reads, or one shuffled FASTQ file with both types of reads (see data types). 

All read sequences in these files will have the same length between 100-250 bp, depending on 

the sequencing instrument. These sequences can be contaminated by Illumina adapters, 

sequencing artefacts, or spike-in controls like the PhiX controls (Mukherjee et al., 2015). To 

check for those and remove them if present, the tool BBDuk from the BBTools suite 

(Bushnell, 2021) is used. In addition to contaminant sequences, the inherent read quality can 

also vary greatly across reads and nucleotide positions. Thus, a read quality control step is 

necessary to ensure that only reliable sequencing data are used in downstream analyses. For 

this purpose, the program sickle (JN Fass, 2011) is used.  

 Both BBDuk and sickle require a shuffled, i.e., interleaved, file. The conversion of 

individual paired read files to a merged shuffled file and the reverse can be done with two shell 

scripts, https://gist.github.com/3521724 (de-interleaving) and https://gist.github.com/4544979 

(interleaving). Once a shuffled file has been created, BBDuk and sickle can be used to remove 

contaminants and perform quality-based trimming, respectively (Subheading 3.1.1). If only 

single end reads, i.e., reads without a mate pair, are available, they can be supplied to BBDuk 

using the -in flag and setting interleaved=f. Sickle provides the se option to switch to 

single end read mode. In this mode, the FASTQ file can be supplied using the -f flag and the 

output name can be set with the -o flag. The deinterleaving step can be excluded if single end 
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reads are used and the removal (rm) command should be modified to not remove the file ending 

on PE.fastq as it will contain the quality checked single reads.   

 
3.1.1 Read Quality control and contaminant removal. The command is split into actual 
code, as well as comments. Lines starting with ‘#’ are comments and are ignored by 
programming languages. If the required contaminant databases, i.e., for adapters, phiX, and 
artefacts, are not in the PATH variable, they can be supplied through the full path to the 
respective database. The command assumes that the required bbduk.sh, sickle and 
fastq_deinterleave.sh scripts are in the current directory or in the PATH variable. If 
that is not the case, the full path to the software needs to be used. 
# removes illumina adapters using BBDuk, requires an interleaved input file 
bbduk.sh ref={adapters.fa} k=23 mink=11 hdist=1 tbo tpe ktrim=r ftm=5 
in={interleaved}.fastq out={interleaved}_trim.fastq t=8 interleaved=t 
 
# removes illumina artefacts and phix174 control sequences 
bbduk.sh ref={phix174},{Illumina.artifacts} k=31 hdist=1 
in={interleaved}_trim.fastq out={interleaved}_trim_clean.fastq t=8 
interleaved=t 
 
# Quality-string-based trimming of reads 
sickle pe -t sanger -c {interleaved}_trim_clean.fastq -m 
{interleaved}_trim_clean.PE.fastq -s {interleaved}_trim_clean.SR.fastq 
 
# deinterleaving the interleaved file into PE.1 and PE.2 
bash fastq_deinterleave.sh < {interleaved}_trim_clean.PE.fastq 
{interleaved}_trim_clean.PE.1.fastq  
{interleaved}_trim_clean.PE.2.fastq 
 
# gathering basic statistics for orphan reads and removing intermediate   
# and orphan read files 
echo "cleaning up..." 
echo $(( $(wc -l {interleaved}_trim_clean.SR.fastq | awk '{print$1}') / 4 )) 
> {interleaved}_trim_clean.SR.txt 
rm {interleaved}_trim_clean.PE.fastq {interleaved}_trim_clean.SR.fastq 
{interleaved}_trim_clean.fastq {interleaved}_trim.fastq 

 
This command will result in three output files: one file for quality checked forward (PE.1) 

and reverse (PE.2) reads, respectively, and one file containing the number of orphan reads 

(reads without a mate) that were removed from the files due to the mate being of too low quality 

(SR.txt). High numbers of thusly removed reads can indicate a systematic error, e.g., the 

usage of an unshuffled input file or a problem with the databases of potential contaminants 

used. Consequently, the file should be checked to see whether it indicates any problems. We 
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also recommend checking the quality of reads using FastQC (https://github.com/s-

andrews/FastQC) before and after quality control.  

3.2 Assembly 

Reads can be assembled using a multitude of different assemblers. However, we focus on the 

two most commonly used assemblers here: MetaSPAdes (Nurk et al., 2017) and MEGAHIT 

(Li et al., 2015). We generally prefer an assembly with MetaSPAdes, as it performs 

scaffolding. The downside of using MetaSPAdes is its high memory requirements, exceeding 

a Terabyte for very large and complex metagenomes. MEGAHIT can be used as a less memory-

hungry alternative to MetaSPAdes that does not perform scaffolding. The basic execution of 

both assemblers is straightforward, requiring only the quality-checked read files and an output 

file name as the input. 

 
3.2.1 Basic execution of MetaSPAdes command. Either make sure that the 
metaSPAdes.py executable is in your PATH environment or use the full path to the 
executable in the command. 
python3 metaSPAdes.py -1 {for-read} -2 {rev-read} -o {outputfoldername} 

 
3.2.2 Basic execution of MEGAHIT command.  
megahit -1 {for-read} -2 {rev-read} -o {outputfoldername} 

 
We recommend setting a fixed number of threads for the program to use with the -t option, 

e.g., -t 10, and the user can optionally also define a memory limit using the -m option, e.g., 

-m 1000 (these flags are used in both MetaSPAdes and MEGAHIT). 

The assembly of metagenomes is the individual analysis step with the longest runtime, 

with MetaSPAdes runtimes up to a week for large assemblies. The commands presented here 

are only suitable for non-amplified and paired-end data. If only unpaired data, i.e., single read 

data without respective mates, are available, MEGAHIT can be used for the assembly. In this 

case, the -r option can be used to supply the single read file. Optionally, the used assembly 

parameters can be tuned further for the given assembly by e.g., via modifying the k-mers used 

during the assembly process or subsampling. These modifications as well as additional 

SPAdes modes for the assembly of other types of data are covered in detail in the Notes 

sections 4.2 - 4.5 and 4.8 - 4.9. 
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If the assembly using MetaSPAdes is successful, multiple output files are produced, 

including FASTA files of the generated contigs (contigs.fasta) and scaffolds 

(scaffolds.fasta), assembly graphs (assembly_graph_with_scaffolds.gfa) 

and a log-file detailing the progress and results of the assembly (spades.log). In MEGAHIT 

assemblies, contig sequences are supplied in final_contigs.fa and a log file simply 

called log details the assembly process. It is recommended to check the log file in both 

MetaSPAdes and MEGAHIT assemblies for any warnings or errors that might have occurred 

during the assembly. 

3.2.3 Scaffold / contig renaming. Both MetaSPAdes as well as MEGAHIT have a 

prescribed way of naming the output scaffolds. In MetaSPAdes, scaffolds get ranked 

according to their length compared to the entire assembly and their actual length as well as k-

mer coverage are used to name them. Thus, a typical MetaSPAdes scaffold header has the 

format NODE_1_length_2150837_cov_25.407906, indicating that this is the longest 

scaffold in the assembly (NODE_1), that its length is 2150837 nucleotides and that the k-mer 

coverage is 25.407906. Note that while there is some correlation between k-mer coverage 

and the actual sequence coverage, this number does not reflect actual sequencing coverage. 

MEGAHIT headers are also numbered throughout the assembly and contain details on their 

length as well as additional metadata (>k141_579 flag=1 multi=11.0000 

len=3709). We recommend modifying the scaffold/contig names with the Project and 

Sample names as well as creating a subset of the assembly of scaffolds/contigs >=1 Kbp in 

length, if multiple samples are being processed (See Note 4.7 for commands to rename and 

subset assembly files). 

3.3 Processing of metagenomic assemblies 

Once the reads are assembled, further processing is required to identify open reading frames 

and annotate them as well as to calculate the abundance, GC content, length, consensus 

taxonomy, and presence/absence of archaeal single copy genes of scaffolds/contigs. The 

processing is done using a wrapper script supplied along with the uBin software 

(https://github.com/ProbstLab/uBin-helperscripts). The wrapper requires a DIAMOND 

BLAST-compiled version of FunTaxDB (see 2.8.1 for compilation instructions). Then the 

wrapper can be run using the following command: 
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3.3.1 Execution of the uBin wrapper. If only an unpaired read file is available, the -sr 
option can be used to supply the single read file instead of the -r1/-r2 options. 
bash uBin_wrapper.sh -s {assembly-fasta} -p {Project_Sample} -r1 {QC’d for-
reads} -r2 {QC’d rev-reads} -e diamond -t {threads} 

 
The command is designed so that the DIAMOND database is located in the /bin/SCG 

subdirectory of the wrapper script folder. If the file is located at a different location, the 

alternate location can be specified using the flag -u {path to dmnd format database}. The 

wrapper will calculate the GC content, length, coverage and taxonomy of scaffolds as well as 

predict the presence of single copy genes, all of which are used in the binning or bin curation 

steps. The individual analysis steps performed by the wrapper as well as their output files are 

explained below.  

3.3.2 Mapping. Read mapping to the assembly is performed using Bowtie2 

(Langmead and Salzberg, 2012) in --sensitive and --no-unal mode and results in a 

file in Sequence Alignment Map (SAM) format containing alignment information for each read, 

e.g., to which scaffold the read aligned, at which positions it aligned, and how many 

mismatches there were in the alignment. The --no-unal flag causes only reads that aligned 

to a scaffold with a score meeting the threshold to be reported. The alignment location is 

allocated via a scoring function, with the alignment being assigned randomly if a read has 

multiple equal score alignment options. The mapping not only creates a file with the extension 

.sam but also a file with the extension .sam.log, which contains some general information 

about the mapping. The percentage of reads that aligned to the assembly, i.e., the overall 

alignment rate, is an important piece of information stored in the log file. This metric provides 

an indication of how representative the assembly is for the sequenced proportion of the 

community (represented by the quality-checked reads). Low percentages, e.g., <20 %, indicate 

that the assembly might not be very representative of the microbial community. Thus, the 

alignment rate should be considered when drawing conclusions from the assembled 

metagenome about the community. The Sequence Alignment Map (SAM) file is used as the 

basis for the calculation of the coverage of the scaffolds, i.e., how often each scaffold is covered 

by reads. Afterwards, as the SAM file is large and not used for any other application, it is 

deleted. Additionally, the GC content and length of the scaffolds is calculated in this step. This 

analysis step results in four files: the general mapping information (.sam.log) as well as the 
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coverage (.scaffold2cov.txt), length (.scaffold2len.txt), and GC content 

(.scaffold2gc.txt) information for each single scaffold.  

3.3.3 ORF prediction and annotation. ORFs are predicted on scaffolds with a length 

>=1 kbp using Prodigal (Hyatt et al., 2010). Prodigal takes the input sequences to train 

models to predict open reading frames on the input sequences. As genes are predicted on 

metagenome assemblies, the genes on the containing scaffolds frequently originate from a wide 

variety of organisms and could consequently be encoded with alternate genetic codes. Thus, 

Prodigal in “-p meta” mode is used, making sure that the models to determine the best 

codon usage are trained on a by-scaffold basis instead of across the entire FASTA file. The 

ORF prediction results in two files, the predicted gene sequences as amino acid sequences 

(genes.faa) and as nucleic acid sequences (genes.fna), respectively. Following their 

prediction, the ORFs (in amino acid format) are annotated against FunTaxDB with DIAMOND 

(Buchfink, Xie and Huson, 2015) with only the best hit at an E-value cutoff of 10-5 being 

reported. The output is in the BLAST format 6 (see 

http://www.metagenomics.wiki/tools/blast/blastn-output-format-6 for an explanation about the 

format) and consequently has the extension .b6. Besides quality information about the best 

match between the query ORF sequences and the FunTaxDB database like alignment identity, 

length of alignment, E-values and bit-scores, it will also give the functional annotation of the 

best FunTaxDB hit, as well as its taxonomic annotation. Using this output table, a consensus 

taxonomy for each scaffold is determined by grouping all annotated ORFs by scaffold and 

determining the taxonomic assignment by majority consensus, starting with the domain level 

taxonomy and moving down the taxonomic levels until either the species level is reached or no 

single assignment at that level has a majority taxonomy (>50 %). Please see Bornemann et al., 

2020 (Bornemann et al., 2020) for more details about how the consensus taxonomy is retrieved. 

These consensus taxonomies are stored in a scaffold2tax.txt file. 

3.3.4 Collection of scaffold information. Tables with information about the scaffolds 

(Consensus taxonomy, GC content, coverage, length) are collected in an overview table 

(overview.txt).  

3.3.5 Prediction of single copy genes per scaffold. 51 bacterial and 38 archaeal 

universal single copy genes (Probst et al., 2017) are predicted by blasting against sequence 

databases of those marker genes. The results on a per-scaffold basis are collected in a comma-

separated table (SCGS.csv), with the first column containing scaffold-ID’s and 89 other 
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columns containing the number of hits on the scaffold for the respective bacterial (B_ prefix in 

column name) or archaeal (A_ prefix) single copy genes.  

3.4 Binning of Metagenome-Assembled Genomes (MAGs) 

Various binning tools are employed in this section to bin genomes. They do not all need to be 

used for the binning of every metagenome and many additional tools exist that can be used for 

binning. The same tool can also be applied using different parameters. After binning using 

various tools, the generated sets of genomic bins are combined using the Dereplication 

Aggregation Scoring Tool (DAS_Tool) (Sieber et al., 2018). Beware that any binning tools 

relying on differential coverage can only be used to bin MAGs but no Single-cell Amplified 

Genomes (SAGs) or Mini-MAGs (MiMAGs) due to amplification biases (see Note 4.8).  

3.4.1 Calculation of 4-mer frequencies. The binning tools esomana (Ultsch, 2005; 

Dick et al., 2009) and ABAWACA (Brown et al., 2015) require 4-mer frequencies to be pre-

calculated. This can be done with the perl script esomWrapper.pl, included in the 

https://github.com/tetramerFreqs/Binning.git GitHub repository (Dick et al., 2009). The entire 

repository can be downloaded using: 

 
3.4.1.1 Copying of the GitHub directory ‘Binning’. This command will create a Binning 
directory inside the current directory. 
git clone  https://github.com/tetramerFreqs/Binning.git 

 
To execute the script, the assembly FASTA file needs to be in its own folder. For manual 

binning using esomana, optional control genomes can also be placed within this folder so that 

they can be incorporated into the 4-mer frequency calculations. They can serve as positive 

controls for the later training of the Emergent self-organizing map and should form coherent 

clusters. We use a high-GC genome (Streptomyces griseus, NC_010572.1) and a low-GC 

genome (Escherichia coli, NC_000913.3) to cover both extremes of the 4-mer frequency range. 

The script can be executed with: 
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3.4.1.2 Calculation of 4-mer frequencies. The -min option controls the minimal scaffold 
size to be used for the 4-mer frequency calculation. The -max argument indicates the 
maximum length a scaffold fragment should have. Scaffolds are fragmented if they are longer 
than this parameter and the binning is later validated by checking whether the fragments of a 
scaffold were binned together. The location of the folder containing the esomWrapper.pl script 
must be either supplied with the -script option or can be added into the code by replacing 
the paths in L113 to L114 of the esomWrapper.pl script. 
perl esomWrapper.pl -min {int} -max {int} -p {directory with .fasta files} -
dir {outputfoldername, optional} 

 
See perl esomWrapper.pl -h for an explanation of the parameters. We generally use 

3000/5000 and 5000/10000 for -min/-max respectively in ABAWACA and just 

5000/10000 in esomana. All other parameters are optional. If a directory name is not 

supplied in the -dir option, an output folder called ESOM will be created instead. A 

description of the various output files is provided in Table III.1.3. 

 

Table III.1.3: Explanation of output files of the esomWrapper.pl script. 
Extension Description 
.names Assignment of scaffold fragments to scaffolds 
.lrn all k-mer frequencies of scaffold fragments 
.mod.lrn Subset of k-mer frequencies not containing AUG 
esom.fasta All FASTA sequences 
esom.log Log file containing information about the run of 

the script and recommendations for the ‘rows’ 
and ‘columns’ parameters used within the 
‘esomana’ manual binning software 

 

4-mers containing the start-codon AUG are overrepresented due to its nearly ubiquitous use 

and thus are not characteristic for any specific genome. Consequently, a subset of 4-mer 

frequencies containing AUG-less 4-mers is supplied as mod.lrn and used in the respective 

binning tools. 

3.4.2 ABAWACA can be executed using: 

 
3.4.2.1 Execution of the automatic binner ABAWACA. The ABAWACA binning tool uses the 
output files created by the esomWrapper.pl script. 
abawaca {.names} {.mod.lrn} {esom.fasta} {outputfoldername} 

 
ABAWACA needs to be executed separately for each set of -min/-max calculated 4-mer 

frequencies. The software uses a dimensionality reduction and clustering approach to bin 
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genomes and is relatively fast compared to other binning tools. The final set of genomes will 

be in a new subdirectory called final-clusters in the output folder as a set of FASTA files. 

3.4.3 MaxBin is a binner utilizing both differential coverage and 4-mer frequencies to 

bin genomes. It can be installed via conda (see Table III.1.2). The required input is the 

assembly FASTA file along with coverage information for the assembly. If only a single sample 

is available, the coverage information can be supplied in the form of the 

scaffold2cov.txt table already generated during the processing during the metagenomic 

assembly using the -abund option. If multiple samples of the same ecosystem are available, 

the interleaved read files can be supplied with the -reads or -reads_list options. The 

MaxBin software can be executed using the command: 

 
3.4.3.1 Execution of the automatic binner MaxBin. If multiple samples are available, the -
abund option can be exchanged for the -reads option and interleaved read files can be 
supplied. They need to be supplied separately to -reads flags, e.g., -reads, -reads2, -
read3, or a single file enumerating the locations to the read files can be supplied to the -
reads_list flag. 
perl run_MaxBin.pl -c {assembly} -abund {scaff2cov.txt 1} -t {in} -markerset 
{40 or 107} -o {outputname}  

 
It is recommended to make a new folder for this analysis, as MaxBin produces a lot of files in 

the folder where it is executed. MaxBin comes with two marker sets that are used to identify 

seeds for the clustering algorithm. The default 107 marker genes encompassing marker set 

works well for conventional prokaryotic genomes, while the 40-marker gene dataset contains 

universal markers for bacteria and archaea that may work better for reduced genomes like 

Bacteria of the Candidate Phyla Radiation or Archaea of the DPANN superphylum. Thus, 

running MaxBin with both marker sets is recommended. 

3.4.4 Concoct is an alternative to MaxBin that also uses differential coverage and 4-

mer frequencies and requires the same input files. Concoct is much slower compared to 

MaxBin making it unsuitable for very large assemblies (>50 GB read file size). Concoct 

requires large scaffolds to be chopped up in a similar fashion to ABAWACA and esomana and 

supplies the cut_up_fasta.py script to do. Details on usage of both the auxiliary script 

and Concoct are supplied at https://concoct.readthedocs.io/en/latest/usage.html. 

3.4.5 Manual binning tools. There are multiple manual binning tools available. Manual 

binning as a general rule of thumb is a time-consuming process but can also produce 
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comparatively higher quality bins when working with low complexity samples (Sieber et al., 

2018). Manual binning tools are not suitable as a high-throughput method, making them less 

suitable for larger sample sets. Two manual binning software that are available are esomana 

(Ultsch, 2005) and VizBin (Laczny et al., 2015). The esomana software can be used to 

manually define genomic bins based on 4-mer frequencies that are organized in emergent self-

organizing maps. It can be downloaded from http://databionic-

esom.sourceforge.net/index.html and uses the mod.lrn file that ABAWACA also utilizes as 

input. Please see the User Manual under the provided link for an introduction to esomana. 

We recommend training ESOMs with the default Online training, adjusting the start 

value for radius to 50 and the number of rows & columns in map, i.e., the size of the 

ESOM, to the values suggested in the esom.log file. After the binning using esomana has 

finished and a new CLS file containing the new bin assignments has been saved, the bins can 

be extracted using the previously downloaded getClassFasta.pl script with the 

command: 

 
3.4.5.1 Extraction of Bins in FASTA format from esomana output. This script takes the 
assigned bins {.cls} as well as the NAMES and esom.fasta files from the tetramer 
frequency calculation as input and extracts the bin with the number defined in {bin-nr} as 
a FASTA file called {bin-nr}.fasta. To extract all bins in a single command, the bin-
nr’s can be looped over with seq  1 1 {max. bin-nr}. 
perl getClassFasta.pl -cls {CLS} -names {NAMES} -fasta esom.fasta -loyal 51 -num {bin-nr} 

 

VizBin uses a FASTA file with the assembled sequences as input and performs a nonlinear 

dimensionality reduction to prepare the input sequences for manual binning (Laczny et al., 

2015). Selected bins can directly be exported as FASTA files.  

3.4.6 Additional binning tools. Many further binning tools are available. Some of those 

are GraphBin (Mallawaarachchi, Wickramarachchi and Lin, 2020), Autometa (Miller et 

al., 2019), MetaBAT (Kang et al., 2019), binsanity (Graham, Heidelberg and Tully, 

2017) and metawrap (Uritskiy, DiRuggiero and Taylor, 2018). As any arbitrary number of 

binning tools can later be combined using DAS Tool (see below), there is no technical 

restriction in the amount of binning tools used. There are diminishing returns though after the 

first few binners, as most binners use similar input data (Sieber et al., 2018), i.e., either just k-

mer frequencies or also differential coverage, and thus only differ in the grouping algorithm 
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used, making the differences less pronounced once a certain number of binners has been 

applied (depending on the complexity and data structure of the data set).  

3.4.7 Generation of scaffold2bin tables. Most Binning tools produce the output bins as 

FASTA files and thus need to be converted to scaffold2bin tables to serve as input for DAS 

Tool. The conversion of all FASTA files in the current folder to a scaffold2bin.txt 

table can be done using the script Fasta_to_Scaffolds2Bin.sh script supplied along 

with the DAS Tool software with the following command (no files other than the genomes 

ending on FASTA must be in the current directory). Use the script with the parameter help to 

see optional input parameters. 

 
3.4.7.1 Generation of scaffold2bin tables for the DAS Tool input. The script assumes that 
the genomes are present as FASTA files in the current folder with the fasta extension. The 
-i and -e options can be used to set non-default folder locations and extensions, respectively. 
The script will produce a table containing the scaffold names in the first column and the bin 
names in the second column. 
bash Fasta_to_Scaffolds2Bin.sh. > {scaf2bin.txt} 

 
The script will produce a {scaf2bin.txt} table in the current folder with the FASTA file 

names as bin names. DAS Tool requires the bin names to be unique across all input bin sets. 

Thus, some {scaf2bin.txt} tables may need to be further modified to make the bin names 

unique. This can be done using the bash command: 

 
3.4.7.2 Renaming bin names to make them unique. 
sed -i “s/$/_{unique binset identifier}/” {scaf2bin.txt} 

 
3.4.8 Aggregation of bin sets. Bins are aggregated using DAS Tool (Sieber et al., 

2018). DAS Tool first predicts ORFs using Prodigal and identifies ORFs belonging to 

universal single copy genes in Archaea and Bacteria, thus assessing completeness and 

contamination in the bins of the various bin sets. Bins across bin sets are matched and 

dereplicated, aggregated, and finally scored based on their completeness and contamination. 

All bins meeting the score threshold are finally output as a scaffold2bin table. The basic 

DAS Tool command can be run like this: 

 
3.4.8.1 Execution of DAS Tool for the aggregation of individual bin sets. Beware that 
there must not be any spaces in the comma-separated strings given in the -i/-l options for 
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the bin sets (-i) or their labels (-l), respectively. Thus, bin set file names must not contain 
any spaces. The labels supplied in the -l option are:  
DAS_tool -c {assembly.fasta} -i {binset1},{binset2},{binset3},...  \ 
-l {binset1},{binset2},{binset3},...-t {10} -o {outputprefix}  

 
Running just the DAS_tool script without parameters shows all the options. 

3.5 Manual curation of metagenomic bins  

 

3.5.1 Addition of bin information. The scaffold2bin information from DAS Tool can 

be added to the overview file with the command: 

 
3.5.1.1 Addition of bin information to overview.txt files. The script 
09_additionbincol.sh is supplied along with the uBin wrapper scripts. 
bash 09_additionbincol.sh {scaffolds2bin} {overviewfile} > {outputfilename.txt}  

 

3.5.2 Transfer of files to the local machine. The newly created overview file with bin 

information as well as the SCGS.csv file created during processing and the assembly FASTA 

file must be moved to the desktop computer that has an installation of the uBin software. 

Please either use a file sharing program, e.g., Cyberduck or Forklift, or the scp 

command to download the files to your local computer. The following command is a template 

for the usage of the scp command.  

 
3.5.2.1 scp-based Transfer of files from remote location to the local computer. The port 
number needs to be supplied to the -P option if it differs from the default 22.   
scp -P {int} {username}@{IP address}:{Path to files on server} {local file destination} 

 
Optionally, {PATH to files on server} can also be the folder containing the files. In 

that case, the -r option needs to be used. 

3.5.3 Manual curation of genomes with uBin. Open the uBin (Bornemann et al., 2020) 

application and click on the Import tab (Layout Import Tab). Navigate to the files you just 

transferred in the file system on the left side. First click on the  symbol next to the overview 

file with the added bin information and then the SCGS.csv file. Enter a name for the sample. 

This name will be used as the basename for the curated bins and we thus recommend using the 

{Project_Sample} as the name. The name will be used to differentiate between samples 
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in uBin and thus needs to be unique. You can choose between three import options: 1) 

Everything, i.e., both binned and unbinned scaffolds, 2) Binned scaffolds and 3) 

Unbinned scaffolds. After selecting the files, naming the sample and selecting the 

import option, press the import button. A loading window will appear and close once the 

data have been imported. Afterwards, you can switch to the Samples tab (Layout Samples 

Tab). Click on Import/Export>Import Records>{your Sample} to select your 

sample for bin curation. The Samples tab consists of six plots of which all but the Single Copy 

Gene (SCG) plots on the right showing genome completeness and contamination for bacteria 

(top) and archaea (bottom), respectively, are interactive. This means that any of the plots can 

be used to select specific ranges of GC content, coverage, or taxonomies and all other plots 

will change according to the new selection. The selected ranges are shown in the top. You can 

select a bin to curate through Select Bin. A video tutorial is provided on GitHub showing 

how to curate bins (Video tutorial) along with an interface description (Interface description). 

Saving a bin will save the current selection as a new bin named 

{SampleName}_{Taxonomy}_{GC}_{Coverage}. The original bin with the scaffolds 

that did not get included in the curated bin will also remain available in the Select Bin tab. 

3.5.4 Identification and curation of archaeal bins in uBin. The Single Copy Genes and 

taxonomy wheel can be used to identify archaeal bins for curation. To do this, go through the 

bins in Select Bin and see whether any bins are indicated to be archaeal based on their 

taxonomy and Single Copy Genes and curate the ones thus identified as Archaea. 

3.5.5 Export of bins from uBin. Once all bins have been curated, it is recommended to 

go through your bins and delete all the bins not meeting your expectations with regard to 

completeness & contamination. You can delete bins by clicking on the red trash bin symbol in 

the top right. Please see Bowers et al. (2017) as a reference for common MAG quality cut-offs 

(Robert M. Bowers et al., 2017). After you have finalized your set of curated bins, you can 

click on the export button in the top right of the Samples tab. A window will pop up asking 

you to select a target directory. We recommend to also select a FASTA format file with the 

assembly sequences to directly export your bins as FASTA files. After pressing the Save 

button, a new overview table will be created containing the curated bin assignments. If an 

assembly FASTA file was supplied, a folder containing the curated bins in FASTA format is 

also created. 
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3.6 Branch-specific completeness and contamination prediction 

CheckM (Parks et al., 2015) can be used to roughly assign genomes to phylogenetic branches 

and then calculate their completeness and contamination levels using branch-specific sets of 

marker genes. Since these marker genes are not the same set as used in DAS Tool or uBin, 

they can be regarded as an independent confirmation of the bin quality. We refer to the 

CheckM wiki for usage instructions (Quick Start workflow). While marker genes give an 

indication of completeness and contamination of MAGs, they still need to be considered as 

estimates as these marker genes only represent a small repertoire of genes of the respective 

organisms. Only circularized genomes can be assumed to be complete. Nevertheless, we 

recommend confirming circularity via read-mapping as described in (Chen et al., 2020). 

3.7 Filtering out low-quality genomes 

Depending on the application, various MAG quality cut-offs are in use, either using just the 

completeness and contamination metrics or also incorporating the presence of various rRNAs 

and tRNAs. The cut-offs largely depend on the type of downstream analyses the genomes will 

be used for, e.g., growth estimators require fairly complete genomes. We refer to Bowers et al. 

(2017) (Robert M. Bowers et al., 2017) for guidelines on quality categories of MAGs as well 

as genomes recovered from mini-metagenomes (MiSAGs) and single-cell genomes (SAGs). 

3.8 Phylogenomic placement 

Genomes are taxonomically placed using the classify workflow of GTDB-tk (Chaumeil et 

al., 2020). This workflow first identifies 120 bacterial and 122 archaeal marker genes, aligns 

them and then finally infers the phylogeny of the genomes based on their placement on the 

GTDB-tk reference tree. Prior to running the classify workflow, the path to the reference 

database needs to be set. GTDK-tk provides the environment variable GTDBTK_DATA_PATH 

for this purpose. Thus, the command to first set the variable and then run the workflow is: 

 

3.8.1 Phylogenomic placement of genomes using GTDK-tk. The modification of the 
GTDBTK_DATA_PATH variable is temporary, i.e. needs to be repeated with every new 
terminal session, unless the command is added to the shell profile (e.g., ‘.bashrc’). 
# Set the GTDBTK-DATA_PATH variable  
export GTDBTK_DATA_PATH={path to GTDB-tk reference data folder} 
 
# run the classify__wf workflow of gtdb-tk 
gtdbtk classify_wf --genome_dir {genomes as FASTA} --out_dir {output-dir} 
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The number of CPUs can be adjusted with the --cpu option. Among the many output files, 

there are two summary.tsv files, summarizing the results for bacteria and archaea, 

respectively. These include the GTDB taxonomy for the target genome as well as its closest 

reference genome and the Average Nucleotide Identity (ANI) to the reference genome if 

closely related (ANI >=80 %). An ANI >= 95% indicates that the reference genome might 

belong to the same species (Jain et al., 2018). The classify workflow also produces a treefile 

in Newick format that can then be visualized in software like iTOL (Letunic and Bork, 2016). 

Since phylogenomic placement of MAGs or entire lineages is a complicated issue, we include 

some additional suggestions in the Note 4.14. 

3.8 Beyond binning 

The binning of genomes is just the beginning in genome-resolved metagenomics, as it opens 

up the possibility of pursuing many different types of analyses. Some of those are quickly 

presented in this section. 

3.8.1 Extending and completing genomes. During the curation of genomes, the main 

objective is to remove contaminating sequences. The removal of contaminating sequences 

reduces the possibility for false positive predictions caused by foreign sequences in genomes 

and is essential to be able to interpret the genomic data. But these genomes are frequently 

fragmented and very incomplete. Just like the process of curating genomes by removing 

contaminating sequences, they can also be improved in completeness by assigning additional 

scaffolds whose actual assignment needs to be carefully checked (including GC-content, 

coverage, etc.). Additionally, scaffolds can be extended via mapping reads and further 

assembly to produce more complete and finally possibly circularized genomes (we recommend 

the software Geneious for this). This process is very time- and labor-intensive as it requires 

many cycles of mapping, manual inspection, and sequence editing. Only circularized genomes 

can allow reaching conclusions about the absence of genes and thus the completeness or 

patchiness of certain pathways (setting aside proteins of unknown function). Consequently, 

completing genomes might be an option for key organisms in datasets, provided the initial bins 

are already of high quality. We refer to Chen et al. (2020) for a guide on how to go about the 

extending and merging of scaffolds and the completion of genomes (Chen et al., 2020). 

3.8.2 ORF prediction on genomes. Prodigal in normal mode is usually the first 

option used to predict ORFs from genomes, as most organisms share a genetic code. 
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Prodigal in normal mode uses the entire genome to train its prediction models and thus is 

generally more accurate than Prodigal in meta mode. By default, Prodigal in normal mode uses 

the universal genetic code 11 but also tries genetic code 4 (Mycoplasma/Spiroplasma), if the 

average training gene length is too low. Other codes can be used (see genetic codes for all 

available genetic codes), if set manually. As per its documentation, Prodigal does not 

distinguish between genetic codes 4 and 25 (in the CPR lineages Absconditabacteria and 

Gracilibacteria), thus the latter has to be set manually if the user is aware of such a taxonomic 

affiliation. 

3.8.3 Dereplication of Genomes.  If multiple metagenomic samples are analyzed from 

the same ecosystem, it is likely that many of the recovered genomes are recovered multiple 

times. This makes a dereplication step necessary to get a representative set of genomes for this 

ecosystem and select the best representative for each genome cluster. For this purpose, dRep 

(Olm et al., 2017) has been developed which scores genomes based on CheckM-derived 

completeness, contamination and strain heterogeneity measures as well as the total genome 

size and its N50 value [a metric describing the fragmentation degree of the genome (Earl et al., 

2011)]. It then clusters the genomes based on Mash (Ondov et al., 2016) followed by gANI 

clustering and then uses the score to select the best representative for each genome cluster (Olm 

et al., 2017).  

3.8.4 Prediction of minimal generation time. Minimal generation times can be 

calculated based on the difference in codon usage bias between housekeeping genes like 

ribosomal proteins and the other genes in the genome. These calculations are implemented in 

the growthpred (Vieira-Silva and Rocha, 2010) software as well as the R (R Core Team, 

2008) package gRodon (Weissman, Hou and Fuhrman, 2020). Please note, that this 

calculation provides only an estimate of the minimum generation that is theoretically possible 

and does not provide evidence that this is the case in the ecosystem or during sampling. At the 

moment, calculation of replication indices using Peak to Trough ratio methods, like iRep 

(Brown et al., 2016) is impossible for Archaea, due to a series of peculiarities in their 

replication, such as the existence of multiple origins of replication (Zatopek, Gardner and 

Kelman, 2018).  

3.8.5 Prediction of metabolic potential. One of the main advantages of genome-based 

analyses compared to either assembly- or read-based analyses is that specific ecosystem 

functions can be assigned to community members based on predicting the functions encoded 
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in the genes of the respective genomes. For this purpose, manual BLAST analysis against 

various databases from NCBI (Uniprot100, ncbi-nr, Uniref) or against the 

FunTaxDB (included in uBin wrappers, see above) can be performed. However, many more 

sophisticated metabolic potential analyses suites have been developed that either query the 

genomes using Hidden-Markov Models (HMMs) of target genes or the ORFs against various 

databases. Some of these suites are DRAM (Shaffer et al., 2020), MicrobeAnnotator 

(Ruiz-Perez, Conrad and Konstantinidis, 2021), KOALA (Kanehisa, Sato and Morishima, 

2016) and PGAP (Tatusova et al., 2016). For a very detailed analysis of individual genomes, 

MAGE by Genoscope (Vallenet et al., 2006) can also be employed. 

3.8.6 Virus-host matching. Viruses are the most abundant entities on Earth (Pan et al., 

2017). Consequently, investigating the virome of a respective sample is often necessary to 

obtain a complete picture of the interactions in a microbial community. Many tools exist to 

identify viral particles, including Virsorter2 (Guo et al., 2021) and Virfinder (Ren 

et al., 2017). They can also be clustered to identify viral clusters using Victor (Meier-

Kolthoff and Göker, 2017). A virus-specific HMM-database, the VogDB 

(http://vogdb.org/download) is available to annotate viral genes. The CRISPR-Cas system is 

one of the mechanisms by which cellular organisms defend against foreign DNA and RNA like 

viruses and works by incorporating snippets of this foreign DNA (“spacers”) into CRISPR 

arrays in the genome to later recognize re-occurring invasion by these particles and defend 

against it (Lillestøl et al., 2006; Makarova et al., 2006). Thus, by matching these spacers to 

protospacers, i.e., sequences matching to the spacers on viral genomes, potential hosts of these 

viruses can be determined and infection histories can be reconstructed (Shmakov, Wolf, et al., 

2020). CRISPR arrays can be identified in assembled sequences with PILER-CR (Edgar, 

2007), Crass (Skennerton, Imelfort and Tyson, 2013), with CRISPRCasFinder (Couvin 

et al., 2018) additionally identifying Cas proteins, or directly from reads using Crass 

(Skennerton, Imelfort and Tyson, 2013). CRISPR Spacers can be extracted from the reads 

using MetaCRAST (Moller and Liang, 2017) using previously identified repeat sequences. 

As an example for a detailed study on novel archaeal viruses and their infection histories, see 

(Rahlff et al., 2021). 

3.8.7 Single-Nucleotide-Polymorphism (SNP) and strain analysis. Genomes recovered 

from metagenomes are so-called population genomes as they do not reflect the genotype of 

individual organisms but rather the average sequence across an entire population of the 
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respective organism (Olm et al., 2021). To resolve the intra-population differences in a 

population genome, SNP analyses can be utilized. Various tools have been developed for this 

purpose, including inStrain (Olm et al., 2021) and STRONG (Quince et al., 2021).  

4.Notes 

4.1 Read quality control for new sequencing technology 

 When using a new sequencing technology, it should be checked whether their adapter 

sequences are in the respective adapter sequence file. For instance, adapter sequences can be 

found on the Illumina homepage (Illumina Adapters).  

4.2 Assembling single-end metagenomes 

While recent Illumina sequencing projects almost exclusively use paired-end sequencing, 

many of the metagenomes available on SRA are still single-end. In single-end sequencing, only 

one side of each DNA fragment is sequenced and thus no paired-end information is available. 

Consequently, no scaffolding can be performed. Thus, assemblers like MEGAHIT are used 

instead of MetaSPAdes. 

4.3 Assembly of pure cultures 

If your dataset is expected to contain only a single organism, the original SPAdes algorithm 

(instead of MetaSPAdes for mixed communities) should be used. This algorithm will 

generally result in a better assembly for pure culture genomes, as the assumption that only a 

single organism is present in the sample makes a simplification of the assembly procedure 

possible (Bankevich et al., 2012) as well as allow for the use of more sets of k-mers during 

assembly. Thus, we highly recommend using a dedicated pure culture metagenome assembler 

like SPAdes for this type of metagenome. SPAdes also has an --isolate option that is 

recommended for high coverage prokaryote/viral isolate as well as multi-cell organism data. 

Apart from these de-novo assembly strategies, reference assemblies guided by genomes of 

closely related organisms can sometimes also bolster genome assembly, e.g., see AMOScmp 

(Pop et al., 2004). 

4.4 Communities with extremely highly abundant organisms 

Some metagenomic samples like biofilms are enriched in specific organisms and individual 

species sometimes constitute 80% of the community (Probst et al., 2014). These population 
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genomes often contain multiple strains that break the assembly, due to ambiguous paths in 

assembly graphs. In these cases, a separate assembly strategy is applied which relies on a) 

assembling a subset of reads (e.g., 1%) that map to an initial draft genome (often of low quality) 

of the dominant species and b) assembling the reads that were not mapped separately (Wrighton 

et al., 2012). Coverage estimates on subassemblies should still use all the reads of a sample. 

4.5 Modification of k-mers used during assembly 

Each assembly software has its default set of k-mers that are used for the respective assembly. 

These k-mers can range from as low as 21-mers up to k-mers corresponding to the minimum 

read length in the sample.  The modification of k-mers used and/or the addition of more sets of 

k-mers used can result in an improved assembly quality. Fine-tuning this parameter is a rather 

time-consuming process and frequently only improves the assembly marginally, if at all. Thus, 

it should only be attempted when trying to, e.g., recover a specific genome in the highest 

possible quality. See Page et al. (2016) for an example of fine-tuning the k-mer parameter for 

a specific assembly (Page et al., 2016). 

4.6 Targeted assembly of plasmids and viruses 

In addition to being identifiable in the assemblies, virus- and plasmid-specific assembly 

workflows also exist within the SPAdes software suite called MetaViralSPAdes 

(Antipov et al., 2020) and PlasmidSPAdes (Antipov et al., 2016), respectively. These can 

be used to specifically recover viruses and circular elements, respectively. 

4.7 Modification of scaffold/contig names 

We recommend modifying the scaffold/contig names by replacing either the NODE in 

MetaSPAdes scaffold names or the ‘k’ in MEGAHIT scaffold headers with a 

{Project}_{Sample} designation. This has two advantages: 1) When working with 

multiple samples, the header name lets you know to which sample this sequence belongs to 

and 2) it ensures that the headers are unique across samples. Most tools have an implicit 

requirement of sequences having unique headers but only sometimes check if this requirement 

is met and can thus produce erroneous results. We provide commands to modify the 

scaffold/contig headers for MetaSPAdes scaffolds (see 4.7.1) and MEGAHIT contigs (see 

4.7.2). 
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4.7.1 Renaming of MetaSPAdes headers. This command will remove the decimals of the k-
mer coverage in the scaffold header name, replace NODE with the supplied name in 
{Project_Sample} and replace any ‘.’ or ‘-’ occurring in the header. Note that the -i 
option in sed will cause the original file to be modified instead of the output being printed to 
stdout.  
sed -i "s/\.[0-9]\+$//g;s/>NODE_/>{Project_Sample}_/g;s/\./_/g;s/-/_/g" 
{fasta} 

 
4.7.2 Renaming of MEGAHIT headers. This command will replace NODE with the supplied 
name in {Project_Sample} and replace any ‘.’ or ‘-’ occurring in the header. 
sed -i "s/>k/>{Project_Sample}_/g;s/\./_/g;s/-/_/g" {fasta} 

 
We also recommend using only scaffolds of at least 1 Kbp in length for gene prediction. 

Thus, a command creating a subset of the assembly file containing only sequences >=1 Kbp of 

is provided (see 4.7.3).  

 
4.7.3 Making a subset >=1000 bp of the assembly. The pullseq 
(https://github.com/bcthomas/pullseq) application is required. It should either be in the PATH 
variable or the full path to the application needs to be used. 
pullseq -i {fasta} -m 1000 > {Project_Sample}_min1000.fasta 

 

4.8 Amplified metagenomes 

Multiple Displacement Amplification (MDA) amplifies DNA using non-specific primers. This 

method can provide sufficient DNA for library preparation even from single cells and makes 

it possible to analyze genomes from individual organisms instead of population genomes 

recovered from conventional metagenomes (Woyke et al., 2010). This process comes with 

similar drawbacks as amplicon-based metagenomics, i.e., sequences are amplified unevenly 

and thus the observed abundance no longer reflects the abundance in the community (Rinke et 

al., 2013). It also affects the assembly strategy as it can no longer be assumed that k-mers 

belonging to the same DNA sequence share an abundance (Rinke et al., 2013). Thus, alternate 

assembly modes need to be used. SPAdes has a separate --sc mode for the analysis of single 

cell metagenomes and mini-metagenomes (Bankevich et al., 2012) that takes uneven coverage 

into account. Please note, that coverage information cannot then be used to bin draft genomes 

from the dataset due to a distortion in sequence profiles. 
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4.9 Long-read data 

Recent advances in nanopore sequencing have enabled assembling complete circularized 

bacterial genomes directly from the reads without any need for the binning of genomes (Moss, 

Maghini and Bhatt, 2020). While the base-calling in Nanopore sequencing is very inaccurate 

compared to conventional Illumina short-read sequencing (Noakes et al., 2019), the extremely 

long reads of up to Mbps in length significantly improve the assembly of short reads as 

problematic regions in short-read sequencing like conserved repeats can be resolved (Moss, 

Maghini and Bhatt, 2020). However, Nanopore and other long-read sequencing methods 

require specialized DNA extraction protocols, as long continuous DNA strands are necessary 

(Moss, Maghini and Bhatt, 2020). Long-read sequencing, either PacBio or Oxford Nanopore, 

is currently mainly used in conjunction with short-read data to support short-read assemblies 

in hybrid approaches (i.e., scaffolding). While long-reads can also be added to the assembly in 

(meta-)SPAdes, many specific hybrid assemblers exist (e.g., Unicycler (Wick et al., 

2017), MetaFlye (Kolmogorov et al., 2020) or HiCanu (Nurk et al., 2020)), with no 

specific hybrid assembler currently as the community standard (as of the writing of this 

chapter).  

4.10 Contamination controls 

Environmental metagenomics is frequently hindered by low biomass and consequently 

extremely vulnerable to contamination. This contamination can be introduced during all steps 

of the wet lab component of the metagenomic analysis, i.e., sampling, DNA extraction, library 

preparation, and sequencing. Thus, including negative controls into the analyses where possible 

is recommended, e.g., blank extractions or field blanks. There are lists of bacterial genera that 

are frequent contaminants in molecular reagents (Sheik et al., 2018) and any genomes that are 

taxonomically classified to be members of these genera should be investigated further by 

comparing the recovered genomes to publicly available representatives using Average 

Nucleotide Identity (ANI) using, e.g., the FastANI tool (Jain et al., 2018). Genomes showing 

close similarity to these putative contaminant species (>95% ANI indicating same species), 

should be considered for exclusion from further analyses. 

4.11 Targeted binning 

In some instances, the objective of metagenomic binning is to recover a specific bin in the 

dataset instead of all bins. To do this, the target bin can be identified using a scaffold carrying 
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a respective marker gene. Afterwards, automatic binning followed by DAS Tool dereplication 

of the individual bin sets is performed and the bin that carries the specific scaffold is identified 

and curated in, e.g., uBin. See Speth et Orphan. (2018) for an example of a marker gene-aided 

identification of target metagenomes in followed by the targeted binning of a 

Methanomassiliicoccales genome (Speth and Orphan, 2018). 

4.12 Assembly error correction 

Assembly errors can occur both in the assembly of contiguous sequences and in scaffolding. 

These errors can be detected by mapping reads to the genomes or assemblies, using various 

scoring thresholds for the mapping and identifying regions on scaffolds with little to no 

coverage support. One tool for the correction of assembly errors is ra2 (Brown et al., 2015) 

( https://github.com/christophertbrown/fix_assembly_errors). This software 1) identifies 

putative assembly errors using stringent mapping, 2) recruits reads mapping to the region at 

lower stringency and 3) re-assembles the sequence region (if possible), splits apart the sequence 

or replaces the non-assembled area with Ns. However, this tool is designed for individual 

genome bins only as it is computationally expensive.  

4.13 Assessment of diversity coverage 

The degree to which reads map back to the assembly, indicates how representative the 

assembly is for the sequenced reads. However, it does not show how well the microbial 

diversity in the ecosystem is represented by the metagenome, i.e., the sequenced reads. The 

software Nonpareil3 (Rodriguez-R et al., 2018) estimates how much of the microbial 

diversity is covered at the current sequencing effort, i.e., how representative a metagenome is 

of the microbial diversity in the ecosystem. It will also estimate how much sequencing depth 

would be needed to reach certain diversity coverage thresholds, e.g., 95% or 99% of the 

microbial diversity. We refer to the GitHub page of Nonpareil3 

(https://github.com/lmrodriguezr/nonpareil/tree/master/docs) for instructions on its use. 

 

4.14 Systematic classification and phylogenomics 

GTDB-tk is but one of many automated pipelines that can be used for the taxonomic 

classification of MAGs, with common alternatives including Phylosift (Darling et al., 

2014) and PhyloPhlan (Asnicar et al., 2020). Differences among such tools usually concern 
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the (presumably vertically inherited) marker genes used to create alignment supermatrices and 

the algorithm choices for alignments, trimming, and phylogenetic inference in each pipeline. 

GTDB-Tk has the added advantage of using its own standardized system of prokaryotic 

classification (GTDB) (Parks et al., 2018, 2020) that counters misclassification issues that have 

crept into public databases like NCBI Taxonomy over time. However, since GTDB-Tk uses 

FastTree (Price, Dehal and Arkin, 2010) to construct phylogenies instead of more 

sophisticated Maximum Likelihood and Bayesian methods (Lartillot, Lepage and Blanquart, 

2009; Stamatakis, 2014; Minh et al., 2020) there exists potentially a speed-accuracy tradeoff. 

Domain-level phylogenies, such as the placement of a novel MAG within Archaea, tend to 

carry multiple bias the most pervasive of which is mutational saturation manifesting as long 

branch attraction e.g., see (Kapli, Yang and Telford, 2020). Automated pipelines do not afford 

much modularity in phylogenomic analyses and one should be aware of alternative algorithms 

for the different analysis steps, as well as downstream analyses that can be used to counter 

biases in deep phylogenies, such as recoding, desaturation, and mixture models. The reader is 

referred to previous work using sophisticated phylogenomic approaches on archaeal 

phylogenies, such as (Raymann, Brochier-Armanet and Gribaldo, 2015; Dombrowski et al., 

2020; Martijn et al., 2020). 
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Abstract 
Resolving bacterial and archaeal genomes from metagenomes has revolutionized our 

understanding of Earth’s biomes yet producing high quality genomes from assembled 

fragments has been an ever-standing problem. While automated binning software and their 

combination produce prokaryotic bins in high throughput, their manual refinement has been 

slow, sometimes difficult or missing entirely facilitating error propagation in public databases. 

Here, we present uBin, a GUI-based, standalone bin refiner that runs on all major operating 

platforms and was additionally designed for educational purposes. When applied to the public 

CAMI dataset, refinement of bins was able to improve 78.9% of bins by decreasing their 

contamination. We also applied the bin refiner as a standalone binner to public metagenomes 

from the International Space Station and demonstrate the recovery of near-complete genomes, 

whose replication indices indicate active proliferation of microbes in Earth’s lower orbit. In a 

worker variability test, the majority of first-time users (students) showed a significant 

improvement of their reconstructed genomes. uBin is an easy to install software for bin 
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refinement, binning of simple metagenomes and communication of metagenomic results to 

other scientists and in classrooms. The software and its helper scripts are open source and 

available under https://github.com/ProbstLab/uBin.  

 

Originality-Significance Statement 

Environmental genomics, foremost genome-resolved metagenomics, has substantially 

increased our knowledge regarding Earth’s genetic diversity, ecosystem functioning and given 

raise to numerous biotechnological inventions. The basis for this research is the reconstruction 

of accurate genomes from mixed communities, which is, however, prone to errors, particularly 

for complex data. The software uBin that we present in this study has the potential to 

substantially decrease binning errors in reconstructed genomes and thus improve the accuracy 

of the predictive power of metagenomics and any downstream analysis including public 

databases. 

 

 

Keywords 
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archaea 
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Introduction 
Genome-resolved metagenomics aims at recovering genomes from shotgun sequencing data of 

DNA of mixed populations. The genomes allow determination of the metabolic capacities of 

the individual community members and provide the basis for many downstream ‘omics 

techniques like metatranscriptomics and metaproteomics. Since the percentage of closed 

genomes from complex ecosystems remains as low as 5.3% even with applying long-read 

sequencing (Singleton et al., 2020), genomes generally need to be reconstructed (“binned”) 

from metagenomes using genome-wide shared characteristics like their similar abundance 

pattern and k-mer frequencies (Teeling et al., 2004; Albertsen et al., 2013), which can be 

accomplished using a multitude of automatic and semi-automatic tools (Dick et al., 2009; 

Alneberg et al., 2014; Wu, Simmons and Singer, 2016; Sieber et al., 2018; Kang et al., 2019). 

The quality of the resulting bins, however, can vary greatly depending on metagenome 

complexity (e.g., strain heterogeneity, microbial community characteristics, repetitive genomic 

regions and combinations thereof)  (Sieber et al., 2018). Recent studies have shown that 

contamination in genomes from metagenomes in public databases is a frequent occurrence 

(Ballenghien, Faivre and Galtier, 2017; Shaiber and Eren, 2019) and suggested genome 

curation as a mandatory analysis step prior to genome submission to public databases (Robert 

M Bowers et al., 2017). 

While established tools exist to determine the bin quality (Parks et al., 2015; Sieber et 

al., 2018), software to improve the bin quality are sparse. Some established tools are used for 

genome refinement (Wrighton et al., 2012; Eren et al., 2015) but have not been designed for 

educational purposes and are sometimes not open source (Wrighton et al., 2012). 

Consequently, we developed uBin as an interactive graphical-user interface that is easy to 

install on Mac OS, Windows, and Ubuntu for usage in, e.g., classrooms. uBin is inspired by 

ggKbase (Wrighton et al., 2012) and enables the curation of genomes based on a combination 

of GC content, coverage and taxonomy and couples this to information on completeness and 

contamination for supervised binning. In addition, uBin can be directly used as a standalone 

software to bin genomes from low complexity samples. 
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Results and Discussion 
The designed software called uBin is an interactive tool that enables live curation of 

metagenome-derived bins by first formatting the dataset using helper scripts 

(https://github.com/ProbstLab/uBin-helperscripts), followed by import of the full metagenome 

data (Figure III.2.1). We ensured uBin’s compatibility with any binning software currently 

available (including DAS Tool (Sieber et al., 2018)). After successful import, the predefined 

bins from automated binners can be selected and interactively improved using %GC-content, 

coverage information and taxonomy (Figure III.2.1). The process can be supervised using 51 

bacterial and 38 archaeal single copy genes as used in DAS Tool (Sieber et al., 2018). After 

successfully improving all bins in one sample, all data can be batch exported as tab-delimited 

file assigning scaffolds/contigs to bins or additionally as individual fasta files for prompt 

downstream analysis (Figure III.2.1).  
 

  

Figure III.2.1 | The bin curation interface of uBin. All plots shown in the interface are interactive, 
i.e., selections in the scatterplot, histograms or in the taxonomy wheel modifies the availability of data 
in the other plots. Selected areas in the interface are highlighted. All selections can be reverted using 
the ‘Reset filters’ button; once bins are curated, they can be saved (or deleted). After bin curation of all 
bins in a dataset is completed, the curated bins can be exported in FASTA format. Figure S6 provides 
an explanation for both the bin curation interface (i.e., the Samples tab) and the Import tab. A video 
tutorial on how to use uBin is provided at uBin_video_tutorial. The uBin software was generated using 
the Electron app generation toolkit (https://www.electronjs.org/). 
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We first tested the performance of uBin on simulated datasets with varying complexity. 

For this purpose we used the data of the Critical Assessment of Metagenome Interpretation 

(CAMI) challenge and applied four automated binners and aggregation via DAS Tool to 

generate bins (Sieber et al., 2018). The quality of the bins before (after DAS Tool) and after 

curation with uBin was compared to the correct assignment based on the CAMI dataset (Table 

S1). uBin curated bins showed a highly significant quality improvement in medium (p < 10-4) 

and high complexity datasets (p < 10-5, Figure III.2.2A), while no significant difference could 

be detected for the low complexity dataset (p > 0.70 / 0.65). 

The bin quality of the low complexity dataset was significantly higher than the bin 

quality in medium (0.197 higher F-score, p < 10-6 ) and high complexity (0.078 higher F-score, 

p < 0.10) datasets (ANOVA coupled to TukeyHSD, p < 2x10-6) after application of DAS Tool 

and prior to refinement with uBin [(Sieber et al., 2018); Figure S1A]. Subsequent to curation 

with uBin the differences between these datasets were much less pronounced (ANOVA, p < 

0.01, Figure S1B), leading to the conclusion that mainly high-complexity datasets can greatly 

benefit from manual curation. 
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Figure III.2.2 | Performance of uBin on simulated and real datasets with varying degrees of 
complexity. A: Violin plots of the F-score (mean between recall and precision) of genomes prior to 
uBin curation (pre uBin) and after uBin curation (post uBin) across simulated low, medium and high 
complexity datasets of the CAMI challenge as well as real world metagenomic datasets of medium 
(Tomsk) and high (SulCav AS07-7) complexity. CheckM completeness and redundancy estimates were 
used to calculate F-scores for bins from environmental metagenomes where the true assignment of 
scaffolds was unknown. Unpaired Kruskal-Wallis p-values are depicted. B: Histograms of the F-score 
differences for each bin prior to and post uBin curation and their density distribution. Paired Welch t-
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test p-values are shown. F-score calculation, statistics, as well as violin and histogram plot generation 
was done in R (R Core Team, 2008) and using ggplot2 (Wickham, 2009). The panels were assembled, 
and legends, statistics and titles were added in Affinity Designer v1.10.4. 
 

Secondly, we applied uBin to subsurface metagenomes from the Tomsk aquifer 

(Kadnikov et al., 2018) and the Acquasanta Therme (AS) cave system (Hamilton et al., 2015). 

We used Nonpareil3 (Rodriguez-R et al., 2018) to estimate their complexity, indicating that 

they were less diverse than the low complexity CAMI dataset (Figure S3A). A comparison of 

the number of individual rpS3 sequences recovered from the assemblies indicated that these 

environmental metagenomes have a much larger number of organisms than the low complexity 

CAMI dataset and placed Tomsk and AS metagenomes solidly between low-mid and mid-high 

CAMI challenge datasets (Table S4). We estimated F-scores based on the  independent genome 

quality estimation tool CheckM (Parks et al., 2015) to assess MAGs from Tomsk and AS 

samples before and after curation with uBin. Comparison of F-scores using paired t-tests 

revealed that uBin curation improved the MAG quality significantly for both datasets (Figure 

III.2.2B). 

We further tested uBin’s capability as a standalone binner of low-complexity samples 

only using the metrics of %GC content, coverage, and taxonomy profile and the supervision 

via single copy genes. We chose the indoor environment of the International Space station 

(ISS) due to its low complexity, both based on rpS3 gene number and nonpareil3 diversity 

estimates, and the availability of public metagenomes (see Table S4). The results were 

compared to those of Emergent-Self-Organizing Maps (ESOMs), one of the semi-automated 

binners available for metagenomics, because this software still involves manual definition of 

bins by the user and can thus lead to highly accurate bins (Dick et al., 2009). uBin outperformed 

ESOM-based binning when used as a standalone tool and also when uBin was used for curation 

of the bins generated via ESOMs (Figure III.2.3A, see Supplementary Material for details). 

Using uBin, we successfully reconstructed 53 genomes with at least 94 percent completeness 

(Figure III.2.3B) and only 6% or less contamination (Table S2). Their phylogenetic placement 

agreed in 98% of the genomes with the taxonomic classification provided by uBin (Table S3). 

The reconstruction of these 53 genomes represents an important step for space science since 

these are the first environmental genomes reconstructed from the ISS or associated transport 

flights. To investigate if the genomes are actively replicated under these conditions, we were 

able to calculate the in situ replication measure iRep (Brown et al., 2016) for 43 out of 53 

genomes. Across all sampling sites, the replication rates of the recovered population genomes 
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varied from 1.20 to 2.55, which implies an active metabolism. For instance, the lowest iRep 

value, which was calculated for Methylobacterium aquaticum, indicated that on average 20% 

of its sampled population was undergoing genome replication. While closely related organisms 

often had similar replication measures (Figure S4), the main discriminatory factor for varying 

replication indices was the sample origin, i.e., the space flight from which the samples were 

retrieved (Figure III.2.3C). This result indicates community-wide shifts in replication between 

the different flights. The dataset also enabled the answer to a long-standing question of indoor 

microbiology relating to how external DNA influences the measurements of iRep values in 

metagenomics. Samples of the third sampled ISS flight were analyzed using both regular 

metagenomics as well as metagenomics following propidium monoazide (PMA) treatment, 

which removes external DNA fragments and enables DNA sequencing of cells with intact 

membranes. When comparing the iRep values of the paired samples (n=7 per group), no 

significant difference could be observed (paired t- and Wilcoxon-tests, Figure III.2.3D), 

although the variance of the iRep values increased tremendously after PMA treatment. 

Equivalence testing confirmed that there are no differences between these two sample types (p 

< 0.01). We suggest that PMA-treatment can improve the accuracy of iRep measures of 

environmental samples and recommend its usage where appropriate.  
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Figure III.2.3 | Reconstruction of genomes from the ISS, scoring of their curation and their 
phylogeny. A: Comparison of genome statistics after ESOM 4-mer binning, after uBin curation of 
ESOM bins, and after standalone binning using uBin. p-values correspond to paired Welch t-tests. B: 
Phylogenetic reconstruction based on the concatenation of 16 ribosomal proteins of 53 genomes from 
ISS metagenomes when using uBin as standalone binner. Branch colors indicate phyla assignments 
with coloring of leaves on tree displaying the sampling origin of the genomes. Genomes from PMA-
treated samples (see main text) are highlighted with a red circle. The bargraphs on the right panel display 
completeness, contamination, genome size, GC content, coverage (relative abundance based on read-
mapping) and the in situ replication measure (iRep (Brown et al., 2016)). C: Replication index 
dependency on flight of origin and significance testing thereof using ANOVA followed by TukeyHSD. 
D: Effect of PMA-treatment for removal of extracellular DNA on iRep of genomes from PMA-treated 
samples having increased iRep variance but no significant differences in iRep value based on paired 
Wilcoxon and paired t-tests (n=7 per group). Genomes were paired based on sample ID as well as using 
their shared uBin-taxonomy and GC content. Plots presented in panels A, C and D were generated in R 
(R Core Team, 2008) with ggplot2 (Wickham, 2009), with statistic annotation and axis labels being 
added in Affinity designer during Figure assembly. The phylogenomic tree presented in panel B was 
generated using Fasttree 2.1.8 (Price, Dehal and Arkin, 2009) from a supermatrix of 16 ribosomal 
proteins and visualized in Dendroscope 3.7.2 (Huson et al., 2007).  
 

The herein presented uBin software is designed for improvement of bins and as a 

standalone binner for simple metagenomes with few species. It is independent of the operating 

system (available for Windows, MacOS, Linux) and GUI-based so that a wide audience of 

non-bioinformaticians can make use of it. The initial data processing (as general metagenomic 

data processing) necessitates bioinformatics knowledge, but respective easy-to-use wrapper 

scripts are provided along with the software. Thus, uBin is ideally used by bioinformaticians 
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to communicate metagenomic data to non-bioinformatics peers and to students in classrooms 

(for worker variability between students please see Figure S5; please see Figure S7 for survey 

results of students after using uBin in classrooms). The curated genomes can be further 

explored for metabolic analyses with, e.g., MAGE (Vallenet et al., 2009) or KEGG mapper 

(Kanehisa and Sato, 2020). Consequently, uBin represents an important software link between 

automated binners along with the widely-used software DAS Tool and downstream analyses 

including genome refinement to completion (Moss, Maghini and Bhatt, 2020). 
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Abstract 
Earth’s mantle releases 38.7 ± 2.9 Tg/yr CO2 along with other reduced and oxidized gases to 

the atmosphere shaping microbial metabolism at volcanic sites across the globe, yet little is 

known about its impact on microbial life under non-thermal conditions. Here, we perform 

comparative metagenomics coupled to geochemical measurements of deep subsurface fluids 

from a cold-water geyser driven by mantle degassing. Key organisms belonging to uncultivated 

Candidatus Altiarchaeum show a global biogeographic pattern and site-specific adaptations 

shaped by gene loss and inter-kingdom horizontal gene transfer. Comparison of the geyser 

community to 16 other publicly available deep subsurface sites demonstrate a conservation of 

chemolithoautotrophic metabolism across sites. In silico replication measures suggest a linear 

relationship of bacterial replication with ecosystems depth with the exception of impacted sites, 

which show near surface characteristics. Our results suggest that subsurface ecosystems 

affected by geological degassing are hotspots for microbial life in the deep biosphere. 

Introduction 
The continental subsurface is a huge reservoir for life, hosting about 60% of all 

microorganisms on Earth (Magnabosco et al., 2018; Flemming and Wuertz, 2019),. Carbon, 

nitrogen and sulfur turnover by these microorganisms have a vast contribution to all 

biogeochemical cycles on the planet (Falkowski, Fenchel and Delong, 2008). In addition to the 

great number of microorganisms, subsurface ecosystems can accommodate a large diversity of 

different bacteria and archaea (Castelle et al., 2015; Anantharaman et al., 2016; Probst et al., 

2018), with even single ecosystems containing representatives of almost all known bacterial 

phyla (Anantharaman et al., 2016). Subsurface ecosystems are categorized as either detrital or 

productive, depending on whether buried organic carbon or inorganic carbon are the main 

carbon sources of the community (Stevens, 1997). Since no light is available as an energy 

source in the deep biosphere, alternative electron donors to water like hydrogen (H2) or sulfide 

(H2S) are used to fuel mostly anaerobic carbon fixation pathways such as the Wood-Ljungdahl 

pathway (Stevens, 1997). Subsurface lithoautotrophic microbial communities (Stevens and 

McKinley, 2000) have been reported for many terrestrial ecosystems including the 

Fennoscandian Shield (Nyyssönen et al., 2014), the Columbia River Basalt (Stevens and 

McKinley, 2000), the Witwatersrand Basin (Lau et al., 2016), and subsurface fluids discharged 

by Crystal Geyser (Probst et al., 2017). While these subsurface ecosystems are usually 
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dominated by bacteria, one exception are archaea belonging to the Alti-1 clade of the Ca. 

Altiarchaeota (Probst et al., 2014, 2018; Hernsdorf et al., 2017) Alti-1 form biofilms using 

their characteristic nano-grappling hooks (hami) (Moissl et al., 2005; Bird et al., 2016). The 

other clade, Alti-2, are more widespread and diverse but found at lower abundances in their 

ecosystems (Bird et al., 2016). Ca. Altiarchaeota live autotrophically using the Wood-

Ljungdahl carbon fixation pathway (Wood, 1991), which was the most dominant carbon 

fixation pathway prior to the evolution of photosynthesis (Gutiérrez-Preciado et al., 2018; 

Adam, Borrel and Gribaldo, 2019).  

Chemolithoautotrophic life in subsurface ecosystems necessitates the presence of 

adequate electron donors like hydrogen, hydrogen sulfide or methane. One source of such gases 

can be Earth’s mantle, which also releases 38.7 ± 2.9 Tg/yr of oxidized carbon (Aiuppa et al., 

2019), mainly in form of carbon dioxide (CO2), into the crust and the atmosphere (Bräuer et 

al., 2013; Werner et al., 2019). This process, also termed mantle degassing, is the transition of 

volatiles from the mantle (supercritical) to the subcritical zone of the upper crust fueled by 

lower pressure of volatiles near the surface compared to the mantle (Zhang, 2014). Modern 

Earth has few areas with active mantle degassing, which are usually restricted to terrestrial 

volcanoes, subduction zones or hydrothermal vents in oceans (Caracausi and Paternoster, 2015; 

Loreto et al., 2015; Fullerton et al., 2019; Gilfillan et al., 2019; Lee et al., 2019). At 

hydrothermal vents, chemolithoautotrophs initiate the microbial trophic network and 

proliferate at high rates leading to high microbial cell numbers(Magnabosco et al., 2018; 

Adam, Borrel and Gribaldo, 2019; Aiuppa et al., 2019). While volcanic sites and hydrothermal 

vent fields have been studied fairly thoroughly regarding both their microbial community 

composition and activity(Hedrick et al., 1992; Schrenk, Holden and Baross, 2008; Ding et al., 

2017; Tu et al., 2017; Galambos et al., 2019), little is known about deep subsurface ecosystems 

with low temperatures (283-293 K) and still impacted by gases released from the mantle. 

 Previous studies have analyzed the influence of mantle degassing via volcanic mofettes, 

i.e., CO2 seeps below 373 K, on near surface biomes, particularly soil microbial communities 

(Frerichs et al., 2013; Mehlhorn et al., 2014; Beulig et al., 2015, 2016). (Mehlhorn et al., 2014) 

showed that gases from the mantle can alter the availability of different heavy metals including 

metalloid arsenic and predicted impacts on microbial communities. Beulig and co-workers 

reported an increase in dark carbon fixation and found evidence that the CO2 from the degassing 

is indeed incorporated into biomass based on IR-GC/MS measurements of fatty acid methyl-

esters and DNA Stable-Isotope Probing experiments of microcosms fed with 13C-labelled CO2 
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(Beulig et al., 2015, 2016). Along with fermentation processes, the pathways for the turnover 

of organic carbon were similar in both systems, while the microbial diversity of soils in 

mofettes was lower compared to controls. Carbon and sulfate respiration were enriched during 

degassing, while aerobic respiration declined (Beulig et al., 2016), and acetogenesis was 

suggested to play a major role in these systems (Beulig et al., 2015). However, these studies 

were limited to the upper 50-cm of Earth’s critical zone, and the influence of mantle degassing 

on mesophilic microbial communities in the deep subsurface including their metabolic capacity 

and activity has not been investigated so far. 

The cold-water (291 K) Geyser Andernach is located in the Rhine Valley near Koblenz 

in western Germany and is driven by gases discharged from the mantle (Bräuer et al., 2013). 

Since 2001 the geyser has had an intact tubing, thus tapping into a unique ecosystem. Once 

released by a mechanical shutter, the gases from the mantle (mainly CO2) permeating the 

groundwater cause the eruption of cold subsurface fluids sourced from an uniform aquifer 

system. Thus, Geyser Andernach is an ideal ecosystem to investigate how mantle degassing 

shapes mesophilic microbial life in the subsurface.  

Here, we used a combination of long-term geochemical characterization coupled to 

genome-resolved metagenomics to investigate the geyser’s microbial community. To analyze 

how mantle degassing impacts mesophilic microbial communities, we set the bacterial 

replication index values, minimal generation times and microbial metabolism abundances in 

Geyser Andernach into relation to 16 other deep continental subsurface ecosystems across the 

globe. We identified a pattern of decreasing replication indices but shorter minimal generation 

times with increasing depth. Sites impacted by mantle degassing showed similar replication 

indices and generation times as near-surface sites, rendering them hotspots for microbial 

activity in the subsurface. Comparative genomics applied to a key player at sites impacted by 

geological degassing (Ca. Altiarchaeum sp.), revealed that the slow evolutionary rate present 

in this phylum might be counteracted by horizontal gene transfer (HGT) and gene loss events 

in this organism group. 

Results 
Geyser Andernach provides access to a stable ecosystem impacted by mantle degassing 

Geyser Andernach was drilled to a depth of 351 m in 1903 tapping into a shale-hosted aquifer 

with quartz veins. Its eruptions are driven by mantle degassing and can be controlled via 

mechanical shutters (a diagram of the plumbing system is provided in Supplementary Figure 
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1). Geochemical measurements averaged over 14 years have demonstrated that the subsurface 

fluids provide a constant environment (Supplementary Table 1). The gaseous and ionic 

composition of the geyser showed the predominance of CO2 in the system and previously 

reported traces of hydrogen and hydrogen sulfide (Bräuer et al., 2013). Prominent electron 

donors and acceptors were determined to be hydrogen and ferric iron as well as sulfate, 

respectively. To investigate the microbial community in subsurface fluids impacted by mantle 

degassing, we sampled two eruptions of Geyser Andernach, and collected the planktonic 

fraction of microorganisms onto three individual 0.1-µm filters. Metagenomic sequencing of 

the community resulted in ~7 billion bp per sample (5% SD), covering about 80% of the 

microbial diversity as estimated by Nonpareil3 [(Rodriguez-R et al., 2018); Supplementary 

Figure 2]. Reads were assembled into 921,520 scaffolds on average (20% SD, for further 

statistics please see Supplementary Table 2). Approximately 75% of the reads (2.6% SD) 

mapped back the assembly providing evidence that the reconstructed metagenome is 

representative for the planktonic community at the time of sampling. The community 

composition based on ribosomal protein S3 (rpS3) sequences assembled from the metagenome 

displayed a fairly restricted diversity consisting of 52 organisms, which spanned twelve phyla 

(Figure III.3.1). The core community was composed of 15 organisms detected via rpS3 across 

all three metagenomes (Figure III.3.1), and they accounted for 42.8% (1.3% SD) of the total 

relative abundance of the community. For 20 of these 52 microorganisms, we reconstructed 

high quality genomes with at least 70% estimated completeness (and less than 10% estimated 

contamination, details in Supplementary Data 1). The most abundant species recruited 42.8% 

(1.3% SD) of the metagenomic reads and belonged to the Ca. phylum Altiarchaeota (Probst et 

al., 2018) (in the following denoted as Ca. Altiarchaeum GA) and specifically grouped within 

the Alti-1 (Bird et al., 2016) clade. The second most abundant organism was classified as 

Caldiserica, which were originally known to inhabit hot springs (Mori et al., 2009) but were 

recently also detected in subsurface ecosystems populated by mesophiles (Probst et al., 2017, 

2018). 
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Figure III.3.1 | Metagenomic and microscopic characterization of the community in subsurface 
fluids discharged by Geyser Andernach. A: RpS3-based phylogenetic diversity of the organisms in 
the Geyser Andernach. Centroid rpS3 sequences (after clustering at 99% similarity using cdhit) were 
used for the calculation of the phylogenetic tree using IQTree. Colors of the different branches signify 
different phyla. Matching recovered draft genomes in each sample (A, B and C for samples GA_E1-1, 
GA_E1-2 and GA_E2-1 respectively), i.e., genomes binned from these samples, are provided as green 
boxes (otherwise left white). The presence of marker genes based on a marker gene search using HMMs 
on these genomes for specific chemolithoautotrophic pathways is shown as green boxes (otherwise left 
white). C signifies carbon fixation with 1) CBB, 2) rTCA and 3) WL, C1 for C1-metabolism with 4) 
carbon monoxide oxidation, 5) Formaldehyde oxidation and 6) methanol oxidation, O for oxygen 
metabolism with 7) cytochrome c bd, 8) cytochrome c bo, 9) cytochrome c caa3 and 10) cytochrome 
cbb3, H for hydrogen metabolism with 12) FeFe-Hydrogenases type A, 13) NiFe-Hydrogenases type 
3b, 14) NiFe-Hydrogenases type 3c, 15) Nife-Hydrogenases, 16) NiFe-Hydrogenases type 4 and 17) 
NiFe-Hydrogenases type 1, N for nitrogen metabolism with 18) Nitrate reduction, 19) Nitric oxide 
reduction, 20) nitrite reduction and 21) nitrous oxide reduction, S for sulfur metabolism with 22) sulfide 
Oxidation, 23) sulfite reduction with dsr, 24) sulfite reduction with asr, 25) sulfur oxidation with dsr, 
26) sulfur oxidation with sor, 27) sulfur oxidation with sdo, 28) sulfate reduction via APS with sat and 
29) Thiosulfate disproportionation. Olive bars show the average iRep value of the respective bacterial 
population, brown bars show the maximal growth rate of the representative genome as estimated by 
growthpred and blue bars show the average log10-scaled coverage. B: Morphologies of microorganisms 
as determined via DAPI staining and fluorescence microscopy (scale bars = 5 µm) are shown. The 
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morphologies were documented in two sampling campaigns (June 2016 and February 2018 with three 
and two samples in technical duplicates, respectively). 
 

We verified that bacteria in this community were replicating at the time of sampling 

using in situ replication index values. Replication index values are calculated from the 

difference of sequencing coverage between the origin of replication and terminus of 

replication. Proliferating organisms replicate their genomes with multiple replication forks 

starting at the replication origin and thus contributing more to sequencing reads. In our study, 

these index values ranged between 1.4-1.5, indicating that 40-50 % of those microbial 

populations, whose iRep values were calculated, underwent genome replication at the time of 

sampling. Microscopic cell counts of organisms from the subsurface fluids ranged from 2.7 x 

106 to 4.2 x 106 (average 3.5 x 106) cells ml-1 (Supplementary Figure 3) and displayed various 

morphologies ranging from cocci and rods to filamentous-shaped microorganisms (Figure 

III.3.1). Importantly, we also observed clusters of small cocci, which are similar to previously 

reported biofilm structures of Ca. Altiarchaeota (Probst et al., 2014) and whose presence was 

confirmed by metagenomic results. We estimated the total amount of erupting carbon (CO2 

and hydrogen carbonate (HCO3-)) to be 6,270 kg per year, while the microbial cells account 

for approximately 111.5 g of carbon, suggesting that about 0.0018% of carbon degassing from 

the mantle is fixed in this ecosystem. 

 

Replication index values and maximal growth rates across multiple deep continental 

subsurface ecosystems 

To investigate if mantle degassing has an impact on microbial replication in the continental 

subsurface, we used in situ replication index values (iRep) of bacterial genomes and maximal 

growth rate estimates of bacterial and archaeal genomes. We first investigated if iRep can be 

used as a measure of replication by comparing groundwater fluids to sediments, because 

microbes in sediments are known to be more active (Kairesalo et al., 1995). Indeed, iRep 

suggested a significantly higher replication of microbes in sediments than groundwater (p-

value < 10-3). Replication measures from Geyser Andernach were then compared with those 

from other public datasets from deep subsurface environments of varying depth (overview of 

samples and ecosystems is provided in Supplementary Table 4). The sampling depth varied 

from 0 m below ground (cave systems) to 3140 m depth. We reconstructed genomes of 

previously unbinned metagenomes resulting in 560 newly assembled and classified 
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prokaryotes (Supplementary Data 1) representing 415 different organisms after dereplication. 

Combined with genomes and iRep results from previous studies (Anantharaman et al., 2016; 

Hernsdorf et al., 2017; Probst et al., 2018), we leveraged in situ replication measures for 895 

bacteria (Supplementary Data 2) spanning the vast majority of all known bacterial phyla (see 

Supplementary Data 5). The average iRep value of bacteria of the individual ecosystems 

correlated negatively and highly significantly with sample depth across all individual iRep 

values (Pearson’s test, p-value < 10-8) and across median per sampled ecosystem (p-value < 

0.0007, Figure III.3.2, Supplementary Table 5). In other words, the deeper the origin of the 

retrieved sample, the lower the genome replication measure. 
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Figure III.3.2 | In situ bacterial replication rates across subsurface ecosystems ordered by 
ecosystem depth. The figure depicts a beeswarm plot of iRep values of genomes (x-axis) across 
ecosystems (y-axis) with genomes colored according to their predicted metabolic potential and the black 
dot representing the median iRep value (individual iRep values in Supplementary Data 2). C represents 
carbon, N2 nitrogen, H2 hydrogen, O2 oxygen and S sulfur. Colored squares depict the sample type. 
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Samples impacted by geological degassing and a sediment sample along with the respective aquifer 
sample are plotted separately. The top y-axis shows the sampling depth of the different ecosystems 
(Supplementary Table 5). In total, 895 genomes were used for this analysis with >=70% completeness 
and <=10% contamination based on 51 bacterial and 38 archaeal single copy genes. The order of 
samples is given in Supplementary Table 5. P-values are derived from two-sided student’s t-tests. The 
exact p-values from top to bottom are p < 2.2x10^16 (minimal value in R) and p=0.0003934, 
respectively. 
 

In particular, organisms with the capacity of carbon fixation (cor=-0.47), of sulfur 

oxidation (cor=-0.46) or of metabolizing hydrogen (cor=-0.45) contributed to this observation 

(correlations are summarized in Supplementary Table 6). Samples impacted by high CO2 

concentrations, either solely from mantle degassing (this study) or from both mantle degassing 

and thermal activity(Probst et al., 2018), were outliers in this correlation analysis. In fact, iRep 

measures of bacteria in these samples were significantly higher than iRep measures of other 

subsurface samples (p-value < 10-15) and nearly reached values of samples that are close to 

Earth’s surface (Figure III.3.2). When excluding these samples from the correlation analysis 

with depth, the respective correlation coefficient decreased from -0.20 to -0.28 (p-value < 10-

8). We also tested how the availability of oxygen influences genome replication measures of 

bacteria in the continental subsurface. iRep values were on average 0.09 higher for bacteria in 

oxygenic samples (p-value < 10-8) meaning that about 9% more of the bacteria were undergoing 

genome replication. 

While iRep values indicated that there is less ongoing replication in deeper regions of 

the subsurface, they do not allow any inference about the speed at which organisms are 

replicating. Thus, we also calculated maximal possible growth rates, i.e., minimal generation 

times, based on the codon usage bias between constitutionally expressed ribosomal proteins 

and the rest of the genes per genome using growthpred (Vieira-Silva and Rocha, 2010). 

Correlation analyses of these maximal growth rates with the sampling depth revealed that the 

maximally possible replication speed increases, i.e., shorter doubling times, with increasing 

depth (p < 0.0011, cor = -0.143, Supplementary Figure 4).  
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Conserved chemolithoautotrophic metabolism of subsurface microbial communities 

Since bacterial replication is predicted to differ between sites impacted by mantle degassing 

and reference sets, we investigated if the general metabolism for carbon, nitrogen and sulfur 

turnover of entire communities is adapted to high-CO2 subsurface environments. We searched 

for key enzymes for metabolic pathways across our entire metagenomic assemblies 

(Supplementary Table 2) and used the abundance of scaffolds that carried a key enzyme as 

relative abundance measure of the respective metabolism (Figure III.3.3, Supplementary 

Figure 5, Supplementary Figure 6). The core metabolism remained relatively stable across all 

tested ecosystems. We performed both Student’s t-tests and Kruskal-Wallis-tests along with 

equivalence testing to determine whether there was a significant difference between high-CO2 

and non-high-CO2 metabolisms and could only detect a significant difference in the nitrite 

reduction metabolism (Kruskal-Wallis group comparison, p-value = 6 x 10-4, details on tests in 

Supplementary Table 7). Consequently, and in congruence with previous studies investigating 

the metabolic diversity in a subseafloor aquifer (Tully et al., 2017), little difference exists in 

the metabolic potential between regular subsurface microbial communities and those at sites 

impacted by mantle degassing, although the indigenous organisms at these sites appear to have 

higher replication index values. 
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Figure III.3.3 | Chemolithoautotrophic metabolic potential across ecosystems. The heatmap shows 
the read-normalized abundance of chemolithoautotrophic pathways, Z-score scaled for the respective 
metabolisms. Colored squares on the right depict the sample type. If multiple biological replicates of 
samples were available, up to three were depicted. Sample order is according to Supplementary Table 
5. Supplementary Figure 5 and Supplementary Figure 6 display the Z-scaled number of hits 
(Supplementary Figure 5) or normalized abundance (Supplementary Figure 6) of the individual genes 
aggregated into their pathways in this figure. 
 

Biogeography and functional adaptations of deep subsurface Altiarchaeota 

Key organisms in continental subsurface ecosystems impacted by geological degassing 

belong to the Ca. phylum Altiarchaeota due to their high abundance. Ca. Altiarchaeota can 

currently be divided into two clusters, Alti-1 and Alti-2, with the latter having a broader 

metabolic variability than Alti-1 (Bird et al., 2016). In the following, we are going to refer to 

Alti-1 Altiarchaeota as Ca. Altiarchaea. However, organisms of the Ca. Altiarchaea are those 

that can dominate entire ecosystems, as shown for multiple sites across the globe (Probst et al., 

2014, 2018; Hernsdorf et al., 2017). Nearly all of the ecosystems dominated by Ca. Altiarchaea 

have all been reported to have high CO2 partial pressure or great amounts of carbonate deposits 

(Probst et al., 2013). The average nucleotide (ANI) and amino acid (AAI) identity of all so-far 

recovered Ca. Altiarchaea genomes indicated that they belong to the same genus 

(Supplementary Figure 7), although 16S ribosomal RNA gene similarity suggested the same 

species. When correlating the genomic differences based on ANI to the geographical distance 

between sampling sites of the Ca. Altiarchaea genomes, a highly significant negative 

correlation (Pearson, cor = -0.77, p = 9 x10-4) could be observed, indicating that a greater 

distance led to greater dissimilarity (Supplementary Figure 7). We challenged this observation 

by using robust phylogenetic analyses based on a supermatrix of 30 ribosomal proteins and 

found that Ca. Altiarchaea cluster based on geographical sampling site going all the way to 

continent scale (Figure III.3.4C, Supplementary Figure 8). However, we did not observe any 

biogeographic pattern for Ca. Altiarchaeota of the Alti-2 clade, which mainly occur in ocean 

sediments (Bird et al., 2016). Based on Hidden Markov Model (HMM) profiles of key 

chemolithoautotrophic genes of Alti-2 and Alti-1 genomes, some of which we newly 

reconstructed from public datasets, we identified substantial differences particularly in the 

hydrogen metabolism (Figure III.3.4B, details on Ca. Altiarchaeota genomes in Supplementary 

Table 3). However, Alti-2 showed a significantly smaller minimal generation time than Alti-1 

(U-test p < 0.0024; Supplementary Figure 9).  
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Figure III.3.4 | Geographical distribution and chemolithoautotrophic potential of Ca. 
Altiarchaeota. A: Global map with locations from which Ca. Altiarchaeota genomes were recovered. 
B: Metabolic potential of Ca. Altiarchaeota genomes. Genomes belonging to the Alti-1 clade are 
highlighted in dark grey, Alti-2 genomes in beige. If multiple genomes from a specific site were 
available, they were all used to identify the metabolic potential. The bar chart shows averaged 
growthpred-predicted minimal generation times across all genotypes recovered from a specific genome, 
with error bars denoting the averaged standard deviations (growthpred returns both an average minimal 
generation time and a standard deviation for this value). Additionally, the mean minimal generation 
time for each genome is indicated by black dots. The circled numbers below the heatmap depict the 
genes identified as markers and stand for: 1) codhC, 2) codhD, 3) rubisco form III, 4) fae, 5) fmtf, 6) 
mtmc, 7) NiFe-Hydrogenase group 4, 8) NiFe-Hydrogenase group 3b, 9) NiFe-Hydrogenase group 1, 
10) FeFe-Hydrogenase, 11) hdh, 12) ars. C: Phylogeny of Alti-1 genotypes based on 30 universal 
ribosomal proteins (5136 aa positions, IQTree JTTDCMut+F+G4) and using the Alti-2 genome IMC4 
as the outgroup. Branch supports correspond to ultrafast bootstraps (Hoang et al., 2018) (1000 
replicates), the SH-aLRT test (Guindon et al., 2010) (1000 replicates), and the approximate Bayes test 
(Anisimova et al., 2011) respectively (tree with outgroup in Supplementary Figure 8). Details on 
Altiarchaeales genomes in Supplementary Table 3. 
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Since Ca. Altiarchaea showed a strict biogeographic pattern, we further investigated 

their differences in metabolic capacities in depth using a genome model published previously 

(Probst et al., 2014) (Figure III.3.5). We identified that all Ca. Altiarchaea share a central 

NAD(P)H-based Wood-Ljungdahl pathway for carbon fixation and carbon monoxide 

utilization. The main difference of Ca. Altiarchaeum GA to the reference genome Ca. 

Altiarchaeum hamiconexum (Probst et al., 2014) was the presence of genes for a NiFe 

hydrogenase (Figure III.3.4B), which seems to be a specific adaptation to hydrogen containing 

gases from the mantle. Indeed, we identified that this NiFe hydrogenase existed in multiple 

other Ca. Altiarchaea and was lost in Ca. Altiarchaeum hamiconexum from IMS. The 

phylogenetic relatedness revealed that NiFe-hydrogenases of Alti-1 were sister to those of Alti-

2 suggesting a conservation of this key enzyme in their last common ancestor (tree is provided 

in Supplementary Data 7). Other genes affected by gene loss across Ca. Altiarchaea encoded 

for proteins, which function as mechanosensitive channels, desulfoferredoxin, polysaccharide 

biosynthesis enzymes and some peptidases and glycosylhydrolases (Supplementary Data 8-

15). By contrast, rubyerythrine and multiple peptidases spanning the families C44 (precursor 

of amidophosphoribosyltransferase), M06 (metalloendopeptidases), and C01b (endo- and exo-

peptidases) were horizontally acquired by Ca. Altiarchaea species, mostly from the bacterial 

domain (Supplementary Data 16-19).  
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Figure III.3.5 | Metabolic capacities of Ca. Altiarchaeum pangenome. Previously identified genes 
in Ca. Altiarchaeum hamiconexum IMS (Probst et al., 2014) were used as the basis to query the other 
genomes of known Altiarchaea clade members (see Figure III.3.4 for all members used in this analysis). 
To expand the predictable metabolic capacity of the genomes, METABOLIC (Zhou et al., 2019) was 
used to annotate genes, which mainly resulted in peptidases and glycosylhydrolases. If multiple 
genomes copies per site were available, they were all used to query for the respective genes. All gene 
functions are listed in Supplementary Data 3.  
 

This indicates an extreme degree of biogeographic provincialism across Earth. The small 

genetic divergence of Ca. Altiarchaea organisms in their core genome combined with their previously 

determined constant cell division (Probst et al., 2014) implies a very slow evolutionary rate of these 

organisms. However, gene loss and horizontal gene transfer in Ca. Altiarchaea suggests a compensation 

for these slow evolutionary rates potentially providing a substantial advantage over other organisms in 

deep subsurface environments. 
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Discussion 

Modelling of current cell counts estimate the amount of prokaryotic microorganisms in 

the continental subsurface to 2 to 6 x 1029 (Magnabosco et al., 2018) which amounts to 60% 

of the prokaryotic life on our planet (Flemming and Wuertz, 2019). The diversity of 

microorganisms declines with sampling depth in the continental subsurface (Magnabosco et 

al., 2018). Our metagenome assemblies showed the same trend in diversity change (based on 

the rpS3 marker gene, cor=-0.40, p-value = 0.021, Supplementary Figure 10). This indicates 

that they are representative of general subsurface microbial communities and were 

consequently used to establish a genome database to calculate genome replication index values 

and minimal generation times across various subsurface ecosystems. These metrics revealed 

an apparent contradiction, with both replication index values and minimal generation times 

decreasing, thus indicating that organisms in the deep biosphere can replicate faster though 

they replicated less at the time of sampling. Prior studies (Starnawski et al., 2017; Kirkpatrick, 

Walsh and D’Hondt, 2019) observed a reduction in microbial load with marine sediment depth 

and age, indicating that communities in older sediments were probably formed by members of 

surface communities that have a higher degree of persistence compared to others. Thus, 

subsurface communities would not be formed by actively replicating organisms but instead be 

shaped by the differing mortality of surface community members (Starnawski et al., 2017; 

Kirkpatrick, Walsh and D’Hondt, 2019). The upper ten centimeters of sediment were found to 

be an exception showing active proliferation (Lloyd et al., 2020). Although we analyzed many 

different ecosystems, our data do not allow drawing conclusions about the impact of mortality 

shaping subsurface microbial communities as they originate from different geologic 

formations. However, our observed decrease in replication measures with sampling depth does 

agree with these prior observations of a reduction of microbial load with depth and indicate 

that replication is occurring, albeit with less replication forks in the subsurface compared to 

near-surface ecosystems. On the other hand, the genome structures indicated a faster ability to 

replicate for organisms in the deep subsurface. This faster possible generation times with depth 

can be explained by the strategy employed by subsurface microorganisms recently termed as 

‘halt and catch fire’ (Mehrshad et al., 2021). This strategy refers to an adaptation to nutrient-

poor environments like the deep subsurface, where organisms need to adapt to utilize short 

bursts of available nutrients and thus replicate fast during times when nutrients are available. 

Sites impacted by geological degassing showed a similar pattern compared to surface samples, 
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both in terms of replication index values and minimal generation time estimates. This could be 

caused by the unique geology of sites impacted by geological and thermal degassing. In these 

fracture-controlled aquifers, which are characterized by solid rock formation-embedded 

channels, flows can reach up to multiple magnitudes greater speeds than flows in comparable 

sediment-hosted aquifers. Thus, the availability of reduced mantle gases like H2 and H2S as 

microbial electron donors highlight the absence of nutrient bursts and the presence of a 

continuous nutrient flow similar to biomes on Earth’s surface.  

At Geyser Andernach, Ca. Altiarchaeota of the Alti-1 clade reach high cell densities in 

the CO2 subsurface ecosystem and represent the main primary producers similar to the other 

high-CO2 aquifer system Crystal Geyser, which additionally harbors a tremendous amount of 

bacterial diversity but also taps into three different aquifer ecosystems (Probst et al., 2017, 

2018). The predicted higher minimal generation time for the Alti-1 clade compared to their 

sister clade Alti-2 is likely caused by their higher costs of living. In contrast to their sister clade, 

Ca. Altiarchaea (Alti-1) live in biofilms, likely granting them increased survivability against a 

multitude of biotic and abiotic factors (See Olsen 2015 for a review on biofilm resistance 

(Olsen, 2015)). But this increased resistance also comes with a cost of requiring the synthesis 

of hundreds of their characteristic cell surface appendages called hami (Moissl et al., 2005; 

Probst et al., 2014) as well as other materials making up the extracellular polymeric substances 

(EPS) matrix. Additionally, Ca. Altiarchaea all need to assimilate CO2 via the Wood-

Ljiungdahl-Pathway instead of also supplementing their carbon compounds by taking up 

organic carbon compounds as only gases can freely penetrate the biofilms. Thus, their 

proliferation would presumably be much more expensive than for their planktonic sister clade. 

This leads to the hypothesis that not replication speed but energy requirements limit Ca. 

Altiarchaea proliferation, making an optimization of the codon code to increase replication 

speed unnecessary. 

The abovementioned hypothesis regarding replication speed of Ca. Altiarchaea would 

also align well with their strict biogeography. The clustering by continent of origin (North 

America, Europe, Asia), also reproducible in ANI and AAI (Supplementary Figure 7), indicate 

a strict provincialism. As dispersal via the surface is unlikely due to the high oxygen sensitivity 

of Ca. Altiarchaea (Probst et al., 2014), plate tectonics could have been a viable alternative 

dispersal route providing ample opportunities for the common ancestor to distribute to North 

America and Europe. Plate tectonics have recently been implicated as the potential dispersal 

route for Ca. Desulforudis audaxviator to Africa, North America and Eurasia between 55 to 
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165 Myr (Becraft et al., 2021). The dispersal of Ca. Altiarchaea could have occurred within 

the Phanerozoic, starting with the early Devonian (~400 Myr), when the continental margins 

Laurentia and Baltica, which form today’s North America and Europe, respectively, collided 

to form Laurasia(Cocks and Torsvik, 2005; Torsvik et al., 2012). Japan, on the other hand, has 

not been in contact with those margins since the break-up of Rodinia 750-600 Myr ago 

(Maruyama et al., 1997), thus making dispersal to Japan during the Phanerozoic unlikely. As 

European and Japanese Ca. Altiarchaea are indicated to have a common ancestor, one possible 

route of dispersal from Europe to Japan could be across the Siberian plate through China in the 

early Mesozoic and then transferal to Japan during the plate processes, which uplifted the 

Japanese islands from the sea 25 Myr ago. Future studies are necessary to recover Ca. 

Altiarchaea genomes from Asia to further underpin this hypothesis of dispersal, since current 

public datasets from this continent are substantially underrepresented in databases. 

The strict biogeography of the Ca. Altiarchaea is reflected by the conserved core 

metabolism, with most pathways being present in every Ca. Altiarchaea genome and indicate 

a slow evolving genus. However, observed putative gene loss and gene transfer events in 

investigated Ca. Altiarchaea populations indicate a compensatory strategy to counteract the 

slow evolutionary rate. This observed gene loss and transfer might be exuberated by the 

exclusive living in biofilms, which have generally been known as hotspots of horizontal gene 

transfer (HGT) for Bacteria (Hausner and Wuertz, 1999). The genes in Ca. Altiarchaea 

acquired via HGT are mainly from the bacterial domain, an evolutionary process frequently 

occurring in nature (Nelson-Sathi et al., 2015). This HGT likely took place in the subsurface 

due to the immobility of Ca. Altiarchaea mediated by the anchoring of cells via their hami. 

Consequently, our analyses provide evidence that subsurface ecosystems impacted by 

geological degassing can be hotspots of microbial life and of increased evolutionary rates 

bolstered by lateral gene transfer across domains. 

Methods 

Geological setting. The cold-water Geyser Andernach is located 2 km downstream of 

Andernach (Rhine kilometer 615) on a 0.21 km2 peninsula called Namedyer Werth in the 

Middle Rhine valley. Driven by magmatic CO2, the geyser erupts regularly and intermittently 

approx. every two hours, when the groundwater filling the well is saturated with CO2 and a 

reinforced chain reaction (domino effect) concludes in a gas/water-eruption up to >60 meters 
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in height (Schunk, 2012), lasting for 15-20 minutes. The well (drilling Ø 750/312/216 mm; 

casing/screens Ø 150 mm) was drilled in 2001 and is the third borehole (after 1903 and 1955) 

on this peninsula. The drilling taps 14 m of Quaternary fluvial deposits and continues then until 

its total depth of 351.5 m in lower Devonian formation called ‘Hunsrück Schiefer s.l.’ (shale) 

(Krauthausen, Deuster and Lang, 2007). A diagram of the plumbing system of the Geyser 

Andernach is provided in Supplementary Figure 1. 

The small peninsula is part of the Pleistocene terrace which is covered by a thin sandy layer of 

fluvial Holocene deposits. Only at the NE margin of the peninsula the terrace is bare of 

deposits. The thickness of the Quaternary layer varies from 14 m (drilling 2001) to 20.75 m 

(drilling 1903) (Altfeld, 1913) and 24.2 m (drilling 1955) in the vicinity of the cold-water 

geyser. Beneath the Quaternary deposits follow lower Devonian rock formations of low 

metamorphic shale, such as clayish shale and intercalated minor layers of quarzitic sandstones; 

the thickness of these series is up to 5000 m. 

The peninsula is located in the Middle Rhine Valley, which is a part of the European Cenozoic 

Rift System (Dèzes, Schmid and Ziegler, 2004). This rift system runs between the cities Bingen 

and Bonn in SE-NW-direction and crosses the Variscian complex of the Rhenish massif. 

Located at the SE edge of the lower Middle Rhine Valley, Geyser Andernach is situated on the 

intersection of two major fault structures: about one km to the NW the Variscian Siegen thrust 

fault running SW-NE crosses the Rhine Valley and can be traced for over 100 km from the 

Eifel area to the Westerwald. This fault shows a vertical displacement of several thousand 

meters, which occurred during the Variscian orogenesis, thus bringing rocks of the middle 

Siegenian stage in lateral contact with lower Emsian stage (Meyer and Stets, 2000). About two 

km to the SE the lower Middle Rhine valley is morphologically separated from the adjacent 

intraplate Tertiary Neuwied basin by an approx. 100 m vertical displacement caused by the 

SW-NE trending Andernach fault. 

The Andernach fault and the Siegen thrust fault were in post-Variscian time intersected and 

200-300 m displaced by a SE-NW trending dextral strike-slip fault (Meyer and Striem, 1983; 

Schreiber and Rotsch, 1998). The fault is supposed in the river Rhine bed and covered by 

Quaternary deposits. The horizontal movement was probably combined with shear strain and 

cataclastic rocks in the vicinity of the fault. This fault is the cause for pathways of mantle gases 

to reach the subsurface aquifers and ultimately the atmosphere. 



III. Publications 

 109 

Starting in Tertiary, a mantle plume under the Eifel area caused an uplift of the Rhenish massif 

during the last two million years and is the driving force for the volcanic activity in the 

Quaternary Eifel area since 700 k years (Ritter, 2007). 

The mantle plume is the basic requirement for the rise of magma under and into the crust, 

whereby magmatic gases are released. 

Sampling and geochemical measurements. The mesophilic and CO2-driven Geyser 

Andernach (50.448588°N, 7.375355°E) in western Germany was sampled on 21 February in 

2018 by collection of erupting water in sterile, DNA-free containers and subsequent filtration 

onto 0.1 μm pore size filters of 142 mm diameter (Merck Millipore, JVWP14225) and storage 

on dry ice / 193 K until DNA extraction. Water samples were collected during eruption of the 

geyser and analyzed biochemically as well as microscopically (see Suppl. Material for details). 

In total, two sequential eruptions were sampled, resulting in two filter samples for the first 

eruption and one filter for the second eruption. The upper 83 m of the geyser well have a casing 

and are sealed with cement so that no water can enter the well from the sides. The residual 

length of the geyser borehole (83-351.5 m) is intermittently covered by bridge-slotted screens 

which allow entry of CO2-saturated water into the geyser well (Supplementary Figure 1). Each 

eruption flushes the tubing system (cylindric shape, 7.5 cm radius, 351.5 m length, approximate 

volume 6.2 m3) with 6-7 m3 water and an additional eruption was performed prior to the 

sampled eruptions to rid the tubing system of any stagnant water. The metagenomes recovered 

from both eruptions show identical community compositions and consequently, the sampled 

communities should be representative of subsurface communities and not contamination from 

the tubing system. 

Metagenomic sequencing and processing. DNA was extracted from three individual 0.1 µm 

bulk water filtration filter membranes using the DNeasy PowerMax Soil DNA extraction Kit 

(Qiagen, JVWP14225) according to the manufacturer’s instructions and further concentrated 

using ethanol precipitation with glycogen as the carrier. The samples were sequenced as part 

the Census of Deep Life phase 13 sequencing grant using Illumina NextSeq (paired end, 150 

bps each). The three samples were processed individually as follows: Quality control of raw 

reads was performed using BBduk (Bushnell, https://sourceforge.net/projects/bbtools/) and 

Sickle (JN Fass, 2011). The metagenomic coverage and sequence diversity of metagenomes 

was estimated using Nonpareil3 (Rodriguez-R et al., 2018) using k-mers of size 20. Reads 

were assembled into contigs and scaffolded using metaSPAdes 3.11 (Nurk et al., 2017). For 

the sample IMS-BF, a sub-assembly of reads not mapping to the available Ca. Altiarchaeum 
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SM1 genome (GCA_000821205.1) was performed to improve assembly quality and this sub-

assembly was used for the binning of additional genomes. Open reading frames were predicted 

for scaffolds larger than 1kbp using Prodigal (Hyatt et al., 2010) in meta mode and annotated 

using DIAMOND blast (Buchfink, Xie and Huson, 2015) against UniRef100 (state Dec. 2017) 

(Suzek et al., 2007), which contained the NCBI taxonomic information of the respective 

protein sequences. Taxonomy of each scaffold was predicted by considering the taxonomic 

rank of each protein on the scaffold on each taxonomic level and choosing the lowest 

taxonomic rank when more than 50% of the protein taxonomies agree. Reads were mapped to 

scaffolds using Bowtie2 (Langmead and Salzberg, 2012) and the average scaffold coverage 

was estimated along with scaffolds’ length and GC content. 

Binning of GA samples. Abawaca (Brown et al., 2016), MaxBin2 (Wu, Simmons and Singer, 

2016), tetranucleotide-based Emergent Self-Organizing Maps (ESOM (Dick et al., 2009)), and 

CONCOCT (Alneberg et al., 2014) were used to identify metagenome assembled genomes and 

DAS Tool with standard parameters was used to aggregate the results (Sieber et al., 2018). 

(See supplementary methods for a detailed listing of the parameters used). Binning of publicly 

available datasets was carried out using a combination of MaxBin2, Abawaca and 

tetranucleotide ESOM, if possible. Bins were refined using GC content, coverage and 

taxonomy and their completeness and contamination was accessed by a set of 51 bacterial and 

38 archaeal single copy genes as described previously (Probst et al., 2017, 2018). Only bins 

with >= 70% estimated completeness and <= 10% estimated contamination were used for 

downstream analysis. For each sample, genomes were dereplicated using dRep (Olm et al., 

2017). 

Ribosomal protein S3 (rpS3) analysis. Genes annotated as ribosomal protein S3 were 

extracted and assigned to genomes where possible based on shared GC, coverage, and 

taxonomy. rpS3 coverage was determined based on the scaffold coverage (see above) 

containing the ribosomal protein. Ribosomal protein sequences were clustered using MUltiple 

Sequence Comparison by Log-Expectation (MUSCLE) (Edgar, 2004), trimmed using BMGE 

1.0 (Criscuolo and Gribaldo, 2010) with the BLOSUM62 scoring matrix and aligned using IQ-

TREE (Nguyen et al., 2015) multicore 1.3.11.1 with -m TEST -bb (Hoang et al., 2018) 1000 

and -alrt (Guindon et al., 2010) 1000 options. The tree was visualized along with other genomic 

data using the iToL platform version 5.5 (Letunic and Bork, 2016). 

Identification of potential contaminant genomes. The GTDB-Tk (Chaumeil et al., 2020) 

classify_wf workflow with default parameters was used to place the recovered genomes from 
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the Geyser Andernach in relation to a reference dataset. If a close relative genome was 

identified in this approach, we calculated the ANI between the reference and the newly 

recovered genome. The only genome showing a similarity >= 80 % ANI to the reference dataset 

was GA_180221_E-1-2_metaspades_Carnobacterium_36_4 (96.42 % ANI to Carnobacterium 

alterfunditum GCF_000744115.1) and was thus identified as a potential contaminant and 

excluded from further analyses. 

Determination of bacterial in situ replication index. Reads were mapped onto concatenated 

genomes per sampling site using Bowtie2 with the reorder flag (Langmead and Salzberg, 2012) 

and the index of replication (iRep (Brown et al., 2016)) was calculated, allowing for 2% 

mismatches relative to the read length (3 mismatches for 150 bp). The calculation of in situ 

replication index values is based on the assumption that organisms, that are actively 

proliferating, replicate their genome starting at the origin of replication and ending at the 

terminus of replication. Replicating organisms can thus have already replicated the parts of 

their genome close to the origin of replication but have not yet completed replicating sequences 

close to the terminus of replication. This can result in higher relative coverage of the sequence 

close to the origin of replication compared to the terminus of replication. Multiple simultaneous 

replication processes can exuberate this difference further. The in situ index of replication 

(iRep) estimates the number of replication processes based on this coverage difference but only 

works in Bacteria as Archaea can have multiple origins of replication (Z. Wu et al., 2014) and 

thus the iRep signal is distorted and cannot be applied in a comparative manner. If multiple 

samples were available for one ecosystem, all iRep values for one genome were calculated and 

averaged to ensure comparability with other samples. 

Prediction of maximal growth rates. Growthpred (Vieira-Silva and Rocha, 2010) values 

were calculated on prodigal-predicted genome gene sets in nucleotide format with the -t 

parameter and otherwise default options. Growthrate estimators like Growthpred utilize 

differences in codon usage between genes which are continuously expressed like housekeeping 

genes (by default growthpred uses ribosomal proteins) and the rest of the gene pool to predict 

how optimized the genome is for a faster replication. In contrast to iRep, growthpred does 

predict the actual fastest rate at which a genome can replicate.  

Metabolic potential predictions. A set of Hidden Markov-Models (HMM) with respective 

score thresholds for chemolithoautotrophic key enzymes (Anantharaman et al., 2016) was used 

to predict the metabolic potential of recovered genomes and overall in entire assemblies (See 

suppl. Material for more detailed information). 
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Biogeographical analysis. The R package sp (Pebesma and Bivand, 2005) was used to 

calculate the geographical elliptical distance between two sampling sites (based on 

longitude/latitude), in which putative genomes of the Ca. Altiarchaeales subclade Alti-1 were 

identified. The average nucleotide identities (ANI) between all available putative genomes of 

the Ca. Altiarchaeales subclade Alti-1 were calculated using the ANI calculator (Rodriguez-R 

and Konstantinidis, 2016) with default parameters. Correlations between geographical distance 

and ANI were done using Pearson’s r (R Core Team, 2008). 

Genome comparison of Ca. Altiarchaeota. Genes of all Ca. Altiarchaeota genomes were 

blasted against each other (E-value: 10-5) and matches were filtered to matches with the 

similarity [(AlignmentLength x Identity) / QueryLength] thresholds of >= 40 %, 50 %, 60%, 

70% or 80% . Cytoscape 3.7.2 (Shannon et al., 2003) was used to visualize the networks at the 

respective similarity thresholds. 

Metabolic network of Ca. Altiarchaea (Alti-1). The annotated genes from (Probst et al., 2014) 

were used as the basis to identify homologues in other Alti-1 genomes using an E-value of 10-

5 as the cutoff. If multiple versions of a genome were available, their results were concatenated. 

Additionally, genomes were annotated using METABOLIC (Zhou et al., 2019), mainly 

incorporating annotations for glycosyl hydrolases, peptidases and aminotransferases.  

Phylogenomic analysis of Ca. Altiarchaeota. Amino acid sequences and annotations for Alti-

1 ORFs plus one Alti-2 serving as outgroup were predicted using Prokka 1.14.0 (Seemann, 

2014) with options: --kingdom archaea --metagenome --compliant). The resulting protein 

datasets were searched with HMMER 3.2.1 (Eddy, 2011) for homologs of 30 universal 

ribosomal proteins using the v4 HMM profiles from Phylosift (Darling et al., 2014). A 10-4 

cutoff was applied, and the resulting datasets were curated manually to remove distant 

homologs and multiple copies in each genome, as well as to fuse contiguous fragmented genes. 

Individual genes were aligned with MUSCLE v3.8.31 (Edgar, 2004) and trimmed with BMGE 

(Criscuolo and Gribaldo, 2010) under the BLOSUM30 matrix. The genes were then 

concatenated into a supermatrix of 5156 aa positions. The phylogeny was reconstructed in 

IQTree 1.6.11 (Nguyen et al., 2015) under the JTTDCMut+F+G4 model as selected by 

ModelFinder (Kalyaanamoorthy et al., 2017). 

Tracking of gene loss and gene transfer events in Ca. Altiarchaea. To identify genes that 

were lost in multiple Ca. Altiarchaea or identify genes that were acquired by individual Ca. 

Altiarchaea through HGT, we selected genes only present in one or two Ca. Altiarchaea 

genomes (Figure III.3.5) for phylogenetic analyses. The selected genes were used as BLASTp 
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queries (E-value: 10-5) against a reference database of bacterial and archaeal genomes, 

retaining up to 2,000 hits per search. The database is a concatenation of bacterial and archaeal 

genomes in NCBI Genome database (accessed 2019.06.01), dereplicated using rpS3 amino 

acid sequence clustering with CD-Hit at 99% identity followed by dRep at 95% ANI to get a 

single representative genome per species. This resulted in a databank of 25,226 bacterial and 

1,808 archaeal genomes. Taxonomic information and functional annotation (when available 

for genomes with protein datasets) were used directly from NCBI. If no protein dataset was 

available, the translated ORFs were predicted with Prodigal. Genes were aligned with 

MUSCLE, trimmed using BMGE with the BLOSUM30 matrix and their phylogeny was 

reconstructed using IQTree2.0-rc2 with the -m MFP, -bb 1000 and -alrt 1000 options. 

Community-wide analyses. Genes were predicted on assemblies with scaffolds longer than 1 

kbp and chemolithoautotrophic key enzymes were predicted as described above. The 

abundance of the genes was estimated using the coverage of the encoding scaffolds after 

adjustment to unequal sequencing depths by normalization using the total bps per library. If a 

pathway was represented by multiple key enzymes, the enzyme with the highest frequency of 

hits was selected. Abundances of individual key enzymes were summed to provide the total 

relative abundance of each pathway in the respective samples. Likewise, diversity within each 

assembly was estimated based on rpS3 diversity and relative abundance of the respective 

scaffolds. 

Estimations of annual total erupted carbon and intracellular erupted carbon. The annual 

total erupted carbon was calculated based on the available CO2, HCO3- and cell concentrations, 

the eruption volume (Supplementary Table 1), the average estimate of the intracellular carbon 

amount from (Kallmeyer et al., 2012) of 14 fg cell-1 and the number of eruptions during tourist 

season (roughly 1 April – 31 October ~ 210 days). See the Supplementary Material for the 

calculations. 

Statistical analysis. Statistical analyses were performed in the R programming environment 

(R Core Team, 2008). These included paired and independent t-tests, Pearson correlations, 

analysis of variance (ANOVA), TukeyHSD significance tests (Haynes, 2013), the Shannon-

Wiener index (Shannon, 1948) and equivalence testing using TOSTER (Lakens, Scheel and 

Isager, 2018). As the upper and lower equivalence boundaries for equivalence testing of two 

groups, we used the effect size the CO2-poor sample group had a 33% power to detect as 

recommended previously (Simonsohn, 2015). Results were visualized using ggplot2 

(Wickham, 2009).  
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Methods for DAPI staining, cell counting, geochemical measurements are provided in the 

Supplementary Methods. 

 

Data availability 

Raw sequencing data and MAGs from Geyser Andernach have been deposited at SRA and 

Genbank, respectively, and are available under the BioProject PRJNA627655. MAGs binned 

from additional ecosystems have been deposited at Genbank in the BioProject PRJNA767587. 

Individual BioSample ID’s of all MAGs are listed in Supplementary Data 1 and individual 

SRA accession codes are listed in Supplementary Table 4.  
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IV. General Discussion 
1. The need for high quality genomes from metagenomes 

1.1 Considerations for established workflows to generate genomes 
from metagenomes 
 
The development of next generation sequencing (NGS) has revolutionized our understanding 

of the biological diversity in the environment, opening up the vast majority of organisms for 

research. Due to the novelty [first genome-resolved metagenomes in 2004; (Tyson et al., 2004; 

Venter et al., 2004)] and extreme speed of development, the workflows and software used to 

analyze metagenomes are in a steady flux, with no specific approach being the community 

standard. Indeed, the approach already varies a lot depending on the type of metagenomic 

analyses performed: read-based, assembly-based or genome-resolved metagenomics (see 

section III.1 for more information on these types of metagenomic analyses).  

  Within book chapter 33 in “Methods in Molecular Biology, vol. 2522” (see section 

III.1) , we aimed to provide a workflow to retrieve archaeal genomes from metagenomic raw 

reads. Many steps of the given workflow can be accomplished with alternate software, with 

only a few steps of the workflow having an actual community standard in terms of used 

software. Among those few established steps is the assembly process, in which metaSPAdes 

(Nurk et al., 2017) are the commonly accepted state of the art approach, as well as the 

prokaryotic ORF annotation using prodigal (Hyatt et al., 2010). For most other steps, many 

different software solutions exist, though, generally, the principles of what those do remains 

the same, starting with quality trimming of the reads, their assembly, ORF prediction and 

annotation, abundance estimation via mapping. Binning has an even greater variety of different 

tools and approaches [see (Sieber et al., 2018) for an overview of a small collection of binning 

tools], with none being consistently the best, hence requiring the use of many different types 

of binners and aggregating the results to get the best results (Sieber et al., 2018). Even the 

combination of various binners, while being the state of the art, is not yet widely applied, as it 

complicates the workflow, making it unattractive for studies not primarily focused on genome-

resolved metagenomics.  

Bin curation on the other hand is not commonly applied, likely due to a  missing 

automated software that facilitates this step. This makes it the bottleneck in the otherwise high-

throughput and automatable workflow. Instead, various manual bin curation tools are 
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sometimes used. Once bins have been produced, CheckM (Parks et al., 2015) and GTDB-tk 

(Chaumeil et al., 2020) are the community standard for their quality assessment and 

classification, respectively. Other than that, follow-up analyses are very diverse, depending on 

research question, ranging from strain delineation, metabolic prediction, growth estimates, 

detailed phylogenomic analyses and virus-host analyses to name just a few. 

 Since the field is so broad, both in terms of available software and types of possible 

analyses, the supplied workflow should just be seen as an option to recover genomes from 

metagenomes and shows the combination of tools we commonly use for this task. It should be 

noted that while the book chapter (section III.1) named for recovering archaeal genomes 

specifically, there is no reason why it cannot be used for bacteria as well. Indeed, the only 

difference between recovering archaeal and bacterial genomes are the single copy genes used 

to estimate completeness and contamination[and the possibility of there being alternatively 

coded bacterial genomes in the community such as the Gracilibacteria (Wrighton et al., 2012)]. 

1.2 Why uBin is needed in the bin curation landscape 
 
Prior to the development of uBin, various other bin curation tools were already available. So 

one might ask, why an additional tool is needed when other tools are already available. In 

general, until options to reliably automate genome curation are developed, researchers will 

need to continue the tedious curating process manually. Despite being suggested as an 

obligatory part in genome-resolved metagenomics studies (Chen et al., 2020), bin curation is 

still not used everywhere. Hence, it is extremely important to make these tools as easy to use 

as possible and thus give researchers as much of an incentive to curate their genomes. We 

believe that existing tools all have a much higher barrier of entry, either requiring prior upload 

of metagenomic data, then also using their entire server structure (Wrighton et al., 2012), being 

just a subroutine of a much larger software suite (Eren et al., 2015) or being mainly a 

reporting/visualization tool (Seah and Gruber-Vodicka, 2015; Vollmers et al., 2022). Hence, 

we tried to make uBin as easily usable and accessible as possible. 

uBin itself is inspired by ggKbase. We aimed at improving the ggKbase curation 

interface (ggKbase curation inferface) by improving upon the individual selection plots, e.g., 

also allowing selection of target taxonomies instead of purely excluding taxonomies, and also 

by including a combined GC and coverage scatterplot to find outliers in both metrics. The uBin 

software is available on all commonly used platforms as an open-source desktop application 
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(in contrast to ggKbase which is not easily accessible due to requiring user account generation, 

upload of genomes and being browser-based). We hope that its ease of use will make bin 

curation much more accessible to a wider audience and thus in the long run improve upon the 

genome quality in individual research but also in databases. We reiterate it is very subjective, 

which bin curation software one likes to use, and there consequently is no real “best” bin 

curation software. 

Note that the uBin software was not used for bin curation in section III as the binning 

and bin curation performed for this section predates even its alpha versions. Bin curation in 

this section was performed in Tableau, as it makes approximation of the later uBin interface 

(GC and coverage bar charts, scatterplot, single copy gene plots) and selection within those 

possible, albeit without a taxonomy wheel to easily filter taxonomy (deselection had to be done 

by ticking off specific taxonomic names). While functional, this approach left much to be 

desired, as large datasets were very slow in loading and the handling of the software interface, 

designed to easily plot and manipulate economics data, had an entry barrier. Thus, curating 

these (and other) genomic datasets were the main reason why we felt that the uBin software 

was needed.  
 

1.3 Implications of decreasing growth in the deep biosphere on 
genome fluidity 
 

The established metagenomic processing, binning and curation workflow described in sections 

III.1 and sections III.2 allowed us to reconstruct a database of subsurface genomes, spanning a 

depth gradient of 0-3 km, and allowed us to verify whether some of the trends observed in 

individual sites, such as the microbial load decreasing with depth (Magnabosco et al., 2018), 

or functional against taxonomic conservation, hold true across continents and a large depth 

span.  

In this work, a trend of decreasing ongoing growth (i.e., lower replication indices) with 

faster replication speed (i.e., minimal generation times) with depth was detected (Figure 

III.3.2), and was attributed to cells at greater depths being exposed to more short nutrient bursts 

to which they should react fast. For small populations, it is conceivable that there might be a 

slight dependency between the number of detected replication forks, approximated by iRep 

values, and the minimal generation time, approximated by growthpred values, as the time spent 
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with detectable replication forks would be only as long as the minimal generation time. 

However, since metagenomics generally looks at entire populations of many thousands of 

organisms, this is unlikely to have much of an effect as enough of a sample size is measured to 

accurately represent the average replication forks happening. 

 The lower replication happening in the deep subsurface might have severe implications 

on deep biosphere communities and their genetic adaptation to their environment as well as 

their arms race against viral predation as genome replication as a source of adaptation happens 

much less frequently than in the critical zone. Hence, faster ways of adaptation, such as 

horizontal gene transfer (Figure II.3.1A) might be much more important in these environments, 

particularly if genetic exchange is easily possible such as in aquifer systems (in contrast to, 

e.g., microbes encased in stone). 

 In this thesis, I specifically looked at the genetic diversity in Ca. Altiarchaea of clade 

Alti-1, which are indicated to have been distributed via plate tectonics (Figure III.3.4A,C), 

though more Alti-1 populations are needed to accurately map the entire dispersal route, and 

specifically the timing of the allopatric speciation events. Both the core metabolism as well as 

the overall genomes of Alti-1 Ca. Altiarchaea are very conserved (Figure III.3.5; Figure 

III.3.4B), indicating very little genetic divergence, though their auxiliary metabolism shows 

signs of adaptation, with some of these adaptations being caused by horizontal gene transfer 

from Bacteria. Since all Ca. Altiarchaea identified so far inhabit either sulfidic springs & caves 

or cold geysers, this may restrict their potential diversity, though biogeographic distribution 

seems to outweigh ecosystem type, as the two Alti-1 genomes from cold geysers (Crystal 

Geyser, Utah and Geyser Andernach, Germany) do not form a cluster (Figure III.3.4C). 

Additionally, their lifestyle as biofilms might be sufficient to negate the need for individual 

genome adaptation to stressors, as biofilms are known to be very beneficial as a stress defense 

(Davies, 2003). On the other hand, biofilms are known to be hotspots of horizontal gene 

transfer (Madsen et al., 2012) and thus might make it easier for beneficial transfers to 

disseminate throughout the community. 

 The following sections will utilize a complete Ca. Altiarchaeum GA genome recovered 

from the Geyser Andernach by Sophie Simon (Group for Aquatic Microbial Ecology, 

University-Duisburg-Essen) to relate Ca. Altiarchaeum in situ replication indices to the overall 

community as well as take an in-depth look into areas of genetic divergence between Ca. 

Altiarchaeum genomes. 
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2. Genome characteristics and fluidity as revealed by complete Ca. 
Altiarchaeum GA genome 

2.1 Ca. Altiarchaeum GA have non-canonical origins of replication 
 

Ca. Altiarchaea of the clade Alti-1 were estimated to have a minimal generation time of ~7.5 

h based on the differences in the codon usage between ribosomal proteins, i.e., house-keeping 

genes, and the residual gene repertoire (see section III.3). Other techniques, available for 

bacterial draft genomes, such as the calculation of replication indices (Brown et al., 2016), 

cannot be used for most Archaea since they can have multiple origins of replication (Z. Wu et 

al., 2014). The calculation of bacterial replication indices relies on arranging the scaffolds in a 

draft genome so that the difference in sequence abundance between the origin of replication 

(where replication starts) and the terminus of replication (where replication ends) can be 

calculated and thus identify the percentage of the population of actively replicating. Due to the 

possible multiple origins of replication in Archaea, it is not possible to arrange the genome 

from origin to terminus of replication with any certainty if the genome is fragmented as is 

typical for draft genomes (Zhang and Zhang, 2005). Hence, complete genomes, i.e., circular 

genomes, of Archaea are needed to be able to calculate replication indices. But these complete 

genomes are very difficult to obtain using short read metagenomics. Difficulties arise from 

strain heterogeneity, repetitive genome regions (repeats longer than read length), highly similar 

genomic regions across populations (e.g., transposons or CRISPR arrays, gene duplications), 

non-protein coding regions having an atypical k-mer frequency (e.g., 16S rRNA genes). This 

assemblies from short reads to be rather fragmented, making it very rare to recover complete 

genomes. Long-read metagenomics like ONT or PacBio are much better suited to generate 

complete genomes as their up to many kbp-sized reads can assemble across problematic 

regions like repeats (Chen et al., 2020). However, current long-read metagenomes still have 

some disadvantages over short-read metagenomes, such as higher error rates, being more 

expensive and generally having lesser sequencing depth [see (Amarasinghe et al., 2020) for a 

review on the advantages and disadvantages of long-read metagenomics]. 

Using ONT, Sophie A Simon reconstructed a complete genome of Ca. Altiarchaaeum 

from Geyser Andernach (sampled on 30.11.2021, 40L on 0.2 µm pore size filter) with a total 
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length of 1687308 bp, using metaFlye (Kolmogorov et al., 2020) assembly, inspection of 

altiarchaeal scaffolds via uBin and identification of single circular scaffold of altiarchaeal 

origin, i.e., a complete Ca. Altiarchaeum GA genome, followed by read mapping on the Ca. 

Altiarchaeum GA genome using Minimap2 (Li, 2018) and finally reassembly of the mapped 

reads using Trycycler [(Wick et al., 2021); Supplemental file sectionIV_FileS1 contains the 

genome in FASTA format, please see section VII Content of supporting CD for more 

information on Supplemental files]. CheckM (Parks et al., 2015) assigned it 86.1% 

completeness, 4.46% contamination and 16.67% strain heterogeneity using the Euryarchaeota-

specific marker set (there is no marker set specifically for Ca. Altiarchaea). Since this genome 

is circularized and hence presumed complete (excluding possible extrachromosomal elements 

(Wang et al., 2015)), the low completeness indicates that some of the markers used for this 

estimation are either missing or obfuscated by e.g., frameshifts that can occur in ONT 

sequencing (Hackl et al., 2021). Thus, based on this genome, CheckM consistently 

underestimates Ca. Altiarchaea completeness. Multiple sequence alignments of duplicated 

(“contaminating”) marker sequences indicated that some of these contaminations could be the 

result of gene duplications due to their high sequence similarity and close proximity on the 

genome. This is also indicated by the strain heterogeneity value, which measures the average 

amino acid identity between duplicated sequences to identify closely related contaminations 

(Parks et al., 2015). Examples of gene duplications are the ribosomal protein S19e and NAD+ 

synthetase. The ribosomal protein S19e is of particular interest as it is regarded as an universal 

single copy gene and used as such in both DAS tool (Sieber et al., 2018) and uBin (Bornemann 

et al., 2020), consequently overestimating the contamination level in Ca. Altiarchaea genomes 

if both are assembled and binned into the same genome. The predicted rpS19e loci are 43 kbp 

distant from each other. This fact excludes that ORF prediction might have split the single 

rpS19e gene into two, resulting in a false dual annotation of this gene as the loci should in that 

case be next to each other. All genomes of Ca. Altiarchaeum GA recovered in section III.3 

have only either zero (GA E1-1) or one copy of the gene (GA E1-2; GA E2-1). This might 

indicate that the nearly identical genes got assembled together due to their shared k-mer 

patterns and provide one example why short-read metagenomics was not able to recover a 

closed Ca. Altiarchaeum genome. Bird et al. also reported in 2016 that a gene encoding for a 

putative phenylalanine tRNA synthetase beta subunit, which is regarded as an universal marker 

gene for Archaea [(Probst et al., 2017); and used as such in uBin], is split in Altiarchaea (Bird 
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et al., 2016). However, CheckM does not use this marker gene in its Euryarchaea marker set 

and thus their apparent contamination value remains unaffected. 

Origins of replications are usually located at positions of asymmetry in the nucleotide 

composition across a genome (Lobry, 1996). In contrast to Bacteria, Archaea can have multiple 

origins of replication, with, e.g., Sulfolobus solfataricus P2 having three origins of replication 

(Zhang and Zhang, 2005). These are expected to have resulted from the uptake of 

extrachromosomal elements (Samson et al., 2013). Many techniques like the GC skew (Lobry, 

1996) and others listed in Zhang and Zhang (2005) were developed to identify the origin of 

replication in Bacteria as well as Archaea, with the Z-curve method (Zhang and Zhang, 2005) 

being one of the latest approaches. In this method, the sequence characteristics (amine versus 

ketone (MK), purine versus pyrimidine bases (RY), strong versus weak hydrogen bonds (SW)) 

are cumulatively summed up across the genome sequence and plotted in a 3D line graph. Each 

of these characteristics can also be plotted separately on the Y-axis in 2D line graphs across 

the genome sequence (X-Axis; Figure IV.2.4.1). While most Z-curve plots of Archaea (and 

Bacteria) show clear extremes at origins of replication (Zhang and Zhang, 2005), the Ca. 

Altiarchaeum GA genome shows no clear maxima (Figure IV.2.4.1). Ambiguous results from 

the Z-curve method have been reported previously for a miniority of archaeal genomes (Zhang 

and Zhang, 2005). Examples of these are Nanoarchaeum equitans and Archaeoglobus fulgidus 

(Zhang and Zhang, 2005). 
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Figure IV.2.4.1: Identification of putative origins of replication and replication initiator genes in 
the complete Ca. Altiarchaeum GA genome. Sequence characteristics were calculated with an in-
house shell script and plotted with ggplot2 (Wickham, 2009) in R (R Core Team, 2008). Origin 
recognition boxes (ORB) and cdc6/orc1 initator protein sequences were identified either with orifinder2 
(Luo, Zhang and Gao, 2014) or hmmsearch (Eddy, 2011) using the publicly available TIGR02928 
hidden-markov model at an E-value threshold of 1E-5. The x, y and z coordinates per nucleotide 
position used to generate the figures are given in supplementary file sectionIV_FileS2. 

 

A second indicator for the location of origins of replication are origin recognition boxes 

(ORB) and cdc6/orc1 initiator protein sequences, which are typically adjacent to each other 

(Ausiannikava and Allers, 2017). Both of these are necessary for the start of replication in 

Archaea, with the Cdc6 initiator protein binding to the ORB sequence and thus initiating the 

replication process (Ausiannikava and Allers, 2017). In the Ca. Altiarchaeum GA genome, two 

ORB regions and 4 cdc6 genes were identified but cdc6 and ORB regions were not co-localized 

(Figure IV.2.4.1). While archaeal genomes can have multiple cdc6 homologs and are suggested 

to use their differing affinity for different ORB sequences and their respective origins of 

replication to modulate the replication process (Coker et al., 2009), they are almost always co-

localized [though the cdc6 gene is not always essential (Coker et al., 2009)]. One exception is 
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the Sulfolobus solfataricus P2 genome, where the cdc6 gene has a distance of about 80 kbp to 

its closest origin (Lundgren et al., 2004), which is still much closer than the distances observed 

for the Ca. Altiarchaeum GA genome. It has been suggested that origins of replication with 

distant cdc6 genes could be replicating with a different mechanism (Zhang and Zhang, 2005). 

In the case of Sulfolobus islandicus, the Cdc6 protein is non-essential as S. islandicus 

additionally encodes for the Whip protein, which can also bind ORB regions and thus replace 

functions (Samson et al., 2013). No whip homolog could be identified in the Ca. Altiarchaeum 

GA genome via DIAMOND BLAST (Buchfink, Xie and Huson, 2015) against FunTaxDB 

[(Bornemann et al., 2020); E-value: 1E-5].  

Both of the ORB regions identified in the Ca. Altiarchaeum GA genome have a preceding 

DEDD_Tnp_IS110 domain-containing protein, a relatively uncharacterized type of 

transposase (Garcia, Cavanaugh and Kacar, 2021), which could indicate that the ORB has been 

transferred via a mobile genetic element (see sectionIV_FileS3 for a table with blast results for 

each ORF along with its position on the genome). The second ORB region (1598752-1599190 

bp) also contains many more adjacent transposase genes while the first ORB region (1466766-

1467456 bp) contains mostly uncharacterized proteins instead. Thus, both detected ORB 

regions might be the result of HGT and may not be actively used origins of replication.  

 In summary, based on sequence information, no origins of replication can be 

confidentially identified based on sequence information in the Ca. Altiarchaeum GA genome, 

as no initiator proteins and ORB regions are co-localized (and all ORB regions are adjacent to 

transposons). Possible reasons could be non-canonical ORB regions or Cdc6 proteins.  

2.2 Ca. Altiarchaeum GA genome coverage indicates active 
replication 
 

Provided that large proportions of the Ca. Altiarchaeum GA population are replicating, the 

coverage around the origin of replication(s) should be at the coverage maxima across the 

genome (also assuming that the same origins of replication are used across the population for 

replication), as this part of the genome is replicated first, with the terminus of replication being 

replicated last. This characteristic is employed in the iRep algorithm extensively used in section 

III.3 to estimate replication indices across the subsurface (see Figure III.3.2). However, the 

iRep algorithm only works with genomes having a single origin of replication, i.e., in Bacteria 
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and a few Archaea, as it relies on rearranging the fragments of a draft genome in a coverage-

descending order, thus generating a slope from the origin of replication to the terminus of 

replication (Brown et al., 2016).  

When applied to the Ca. Altiarchaeum GA genome, and using various available 

metagenomic datasets from GA, a single maximum is clearly visible in all datasets, peaking at 

around 1.5Mbp for samples from 2018 (GA E1-1, GA E1-2, GA E2-1) and peaking at 1.3Mbp 

for samples from 2019 (GA2019_1, GA2019_2). Figure IV.2.2.1.A shows the coverage 

distribution exemplified for GA E1-1.  

 

Figure IV.2.2.1: Peak-to through ratio calculations for Ca. Altiarchaeum GA genomes. A: 
Coverage distribution after mapping using Bowtie2 (Langmead and Salzberg, 2012) of short reads to 
Ca. Altiarchaeum GA genome, using the metagenomic dataset GA E1-1 as an example. The genome 
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was rearranged to have the maximum in the middle of the sequence. B: bPTR calculation plots as 
described in (Korem et al., 2015) and implemented as a script in (Brown et al., 2016) for all five 
metagenomic datasets available for the Geyser Andernach. The origin of replication and terminus was 
determined using the coverage mode as GC skew was an unreliable measure for this genome (see Figure 
IV.2.1.1).  
 

No clear coverage minimum could be identified, with coverage profile plateauing in the 

sequence area of 535kbp – 835 kbp (Figure IV.2.2.1.A). The coverage profile, however, 

allowed identification of a clear maximum, which should correspond to the origin of replication 

(and a single origin of replication is the requirement for Peak-to-Through-Ratio methods). 

Hence, the bPTR method (Korem et al., 2015), made available as a script (Brown et al., 2016), 

was used to estimate a putative replication index. The coverage mode was used to identify the 

origin of replication (Figure IV.2.2.1.B, GC skew-based origin localization gave similar 

results, data not shown). Estimated growth index values ranged between 1.12-1.22 (i.e., 12-22 

% of the population were replicating at the time of sampling) and were thus far below the ~1.5 

iRep value estimated for the rest of the community, and indeed lower than any replication 

measures calculated during section III.3. Provided that the bPTR method is comparable to these 

iRep values (shown in (Brown et al., 2016), though only on single genome and with bPTR 

having consistently slightly lower values), this indicates that a far smaller percentage of the 

Ca. Altiarchaeum GA population is replicating than for the rest of the community in Geyser 

Andernach. One explanation for this finding could be the presence of other Altiarchaea strains 

obfuscating the coverage profile, causing misleading bPTR results. Another more biologically 

relevant explanation was already postulated to explain the slower generation times of the Alti-

1 clade compared to its planktonic sister clade Alti-2 (section III.3B), this could also be caused 

by the higher energetic costs of living in a biofilm, i.e., the necessity of EPS production and 

living autotrophically (see section III.3), which make replication a costly process. Additionally, 

since Biofilms are very heterogeneous in terms of microbial activity, due to only a small 

compartment of the biofilm being exposed to nutrients (Ren et al., 2018; Flemming and 

Wuertz, 2019), the bPTR value might simply reflect the ratio of dormant to proliferating cells 

in the biofilm as each inactive or dormant cell would shift the detected value towards one. 

Simulation studies have also indicated that in pore spaces, slower growing bacterial biofilms 

can have an advantage over fast-growing biofilms as clogging up the pores and consequently 

interrupting the nutrient flow can be disadvantageous (Coyte et al., 2017). It is currently 

unknown where Ca. Altiarchaeum GA resides in the Geyser Andernach ecosystem (please see 
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Supplementary Figure 1 of section III.3 for a schematic of the subsurface environment of the 

Geyser Andernach). The majority of water in the Geyser Andernach subsurface likely passes 

through quartz veins, which are probably too large to clog. But water is also expected to move 

through smaller passageways and those could indeed benefit from slower growing biofilms to 

avoid clogging. Depending on where Ca. Altiarchaum GA populations reside in the ecosystem, 

they could thus benefit from slower growth. 

In any case, the slow replication values align well with the observed conservation of 

Alti-1 genetic content across ecosystems and continents (see Figure III.3.5), as mutations 

incurred during replication are the traditional way of genetic diversification. Horizontal Gene 

Transfer as an independent, and in biofilms highly effective, way to introduce genetic 

diversification might then be doubly important. 

2.3 Mapping on complete Ca. Altiarchaeum GA genome reveals 
large genome rearrangements 
 

To identify how much of the complete Ca. Altiarchaeum GA genome is contained in the short 

read datasets of all ecosystems with populations of the Alti-1 clade (Figure III.3.4A) and get a 

more general understanding on similar Ca. Altiarchaeum GA is to other Altiarchaeota 

populations outside of the Central metabolism (Figure III.3.5) and marker genes used to 

reconstruct phylogenies (Figure III.3.4C), metagenomic reads of all ecosystems were mapped 

to the Ca. Altiarchaeum GA genome (Figure IV.2.3.1).  
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Figure IV.2.3.1: Genomic variability of Altiarchaeota clade Alti-1 Genomes revealed by mapping. 
Reads of metagenomic datasets were mapped on the complete genome of Ca. Altiarchaeum GA, 
recovered from a sampling campaign in November 2021. Names largely correspond to the names used 
in section III.3, with the following notable exceptions: GA2019_1, GA2019_2 and IMS2018 are new 
metagenomic datasets not used in the main manuscript of section III.3 (GA_2019_1 is only used in 
Figure S12 of the Supplementary Material in this section) and represent additional time points for the 
respective ecosystems Mühlbacher Schwefelquelle (IMS) and Geyser Andernach (GA), respectively. 
WB and SM2021 represent two additional ecosystems containing Ca. Altiarchaea, namely the cold 
geyser Wallender Born (WB), also located in the Volcanic Eiffel in Germany, and the Sippenauer Moor 
(SM2021) adjacent to the IMS site in Regensburg, Germany. For Crystal Geyser (CG), one 
metagenomic dataset with the highest coverage of Altiarchaeota (CG_2014-23_combo_of_CG_2014-
06-09_8_20_14_all_150) was taken as the representative. A similar approach was taken for WB, where 
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the sample WB02no17 of a time series had the highest Ca. Altiarchaea coverage. The ecosystems are 
as follows: Geyser Andernach in the Volcanic Eiffel in Germany (GA), Wallender Born in the Volcanic 
Eiffel in Germany (WB), Aquasanta Terme sulfidic cave in Italy (SulCav), Lake Huron on the 
Canadian/USA border (LH), Crystal Geyser in Utah, USA (CG), the Honorobe Underground Research 
Station in Japan (HURL), the Sippenauer Moor in Regensburg, Germany (SM2021) and the Islinger 
Muehlbach in Regensburg, Germany (IMS). The metagenomic read datasets were mapped onto the 
Altiarchaeum GA genome with Bowtie2 in sensitive mode (Langmead and Salzberg, 2012). The 
coverage per nucleotide position was calculated with an in-house script and loaded into R (R Core 
Team, 2008) for data analyses. In R, medians coverages were calculated for 1000 bp window sizes to 
reduce the impact of coverage discrepancies, with each point in the figure corresponding to the median 
coverage for one 1000 bp window. Median coverages of 0, i.e., non-covered regions in the respective 
metagenomic dataset, were not plotted. Data was log10-transformed for plotting and plotting was 
performed using the circlize R package (Gu et al., 2014). The raw coverage data for each ecosystem, 
prior aggregation of 1000 bp window steps by median, is supplied in sectionIV_FileS4. 
 

 In general, the mapping onto the Ca. Altiarchaeum GA genome shows congruent results 

with the phylogenomic analyses (Figure III.3.4C). The genome coverage of Ca. Altiarchaeum 

GA decreases along the phylogenetic (and geographic) distance, causing progressively more 

1000-bp windows with zero median coverage (see sectionIV_FileS5 for a list of the number of 

empty windows per ecosystem). This causes European sites (outer rings: 1-5 Geyser 

Andernach in the Volcanic Eiffel, Germany; 6 Wallender Born in the Volcanic Eiffel, 

Germany; Sippenauer Moor in Regensburg, Germany; 8-9 Islinger Muehlbach in Regensburg, 

Germany; 10 Aquasanta therme, Italy) to have the greatest similarity to the genome from 

Geyser Andernach, followed by Asian sites (outer rings: 11-12 HURL140 and HURL250 from 

the Honorobe Underground Research Facility, Japan). The American sites (13-14 Lake Huron, 

USA-Canadian Border, and the Crystal Geyser, Utah, USA) have the least coverage of the Ca. 

Altiarchaeum GA genome. This allows for the conclusion, that the clustering by continent 

observed via phylogenomics is likely also transferrable on a whole genome-basis, as was 

already indicated by ANI comparisons (Supplementary Figure 7 in section III.3). However, 

some areas show abnormalities and differences between Ca. Altiarchaea populations and will 

be analyzed in more detail below. 

The mapping of Geyser Andernach reads from 2018 and 2019 (Figure IV.2.3.1, outer 

rings 1-3 and 4-5, respectively) show complete coverage of the Ca. Altiarchaeota genome and 

no noticeable differences incurred during the intermittent year. The only area where the 

coverage of all GA metagenomes drops to close to zero (and actually reaching zero for 

GA2019_1 in a single 1000-bp window) can be found in the genomic region 678-682 kbp and 

contains (based on DIAMOND BLAST at 1E-5 E-value threshold against FunTaxDB; identical 

to the approach used in section III.3) two (extremely short with ~200 bp) putative Signal 
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recognition particle (SRP) GTPases, a Phage shock protein A PspA/IM30, a TFR region 

domain-containing protein and a putative Rhombioid protease GluP. The specific role of GluP 

is unclear (Rather, 2013) and SRP GTPases act as molecular switches (Shan, Schmid and 

Zhang, 2009), though the recovered SRP GTPases are much shorter than known functional 

SRP GTPases (Bange, Wild and Sinning, 2007). The phage shock protein (Psp) system is 

conserved in many Bacteria and Archaea (Popp et al., 2021) and, contrary to its name, does 

not only get expressed as a response to filamentous phage infection but also many other types 

of stressors (Darwin, 2005). It modulates the response to infractions upon cell membrane 

integrity (Popp et al., 2021). Particularly the Psp system gene might give Ca. Altiarchaeum 

GA enough of a direct benefit to make this HGT viable and thus also transfer the auxiliary 

genes into the genome. 

 Some additional areas with coverage abnormalities visible in the mapping of GA short 

reads to the Ca. Altiarchaeum GA genome (Figure IV.2.3.1, outer rings 1-5) are the ranges 

301-306 kbp, 333-340 kbp, 461-464 kbp and 1556-1562 kbp. 1556-1562 kbp contains, in 

addition to unclassified proteins, a CRISPR cas5 protein and a Type I-B CRISPR associated 

protein cas7. Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems are a 

type of adaptive immunity many prokaryotes employ to defend against alien DNA, relying on 

first  assimilating the foreign DNA and then utilizing that known sequence to identify and 

defend against sequential invasions by this DNA (Nidhi et al., 2021). While this system is 

primarily regarded as a defense against phages (Nidhi et al., 2021), both self-targeting 

(Wimmer and Beisel, 2020) as well as targeting of symbionts has been reported for Ca. 

Altiarchaeota Alti-1 in the Crystal Geyser ecosystem [ (Esser et al., 2022), in revision for 

Nature]. For Ca. Altiarchaeum GA specifically, no viruses targeting could be identified in prior 

analyses based on metagenomes from 2018 (Rahlff et al., 2021). Directly adjacent to this 

sequence region (1548-1551 kbp; 1551-1552 kbp), two conserved CRISPR arrays are located 

(identified via PILERC-CR v 1.06 (Edgar, 2007)), sharing the same repeat sequence 

(GTTTCCATACTACATAGTGCGATTTAAAC; see sectionIV_FileS6 for the PILER-CR 

output file). The drop in coverage for the cas protein region indicates that it is only present in 

a fraction of the Ca. Altiarchaeota populations in 2018 and 2019, either via loss of cas proteins 

or a new acquisition in a subpopulation (Shmakov, Utkina, et al., 2020). It is generally rather 

unlikely that a mobile genetic element with exactly the needed cas proteins was integrated into 

the genome right next to the CRISPR arrays needing them as most genome integration 

mechanisms (transfection, transposons) integrate at random positions (Soucy, Huang and 
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Gogarten, 2015). Hence, I postulate that the section containing the cas proteins was lost in the 

majority of Ca. Altiarchaeum GA. We cannot detect a further decrease in the metagenomes of 

2018 and 2019 as the ratio between the sequence area containing the Cas proteins and the rest 

of the genome remains constant, but this may simply be caused by the process being too slow. 

The putative loss of cas proteins does not align well to the conservation of the adjacent CRISPR 

arrays, though CRISPR systems do not necessarily need to have adjacent cas proteins 

(Shmakov, Utkina, et al., 2020). 

 The region between 461-464 kbp does not contain any proteins while 302-306 kbp is 

likely a transposon, containing multiple transposase genes, unclassified proteins as well as two 

copies of an UPF0020 domain-containing protein that is involved in the methylation of a 

guanosine nucleotide in tRNAs and is thus likely also a recent addition to the Ca. Altiarchaeum 

genome. 

 The coverage of reads from other sites (WB, SM, IMS, SulCav, HURL) mapped to the 

Ca. Altiarchaeum GA also reveals some further large-scale differences. These are two big gaps 

in coverage between 330-384 kbp and 1495-1537 kbp. The first of these is not present in WB 

while the second gap is much smaller than in the other ecosystems. This indicates that these 

sequence regions may be unique to the Volcanic Eiffel area where both WB and GA are 

located, and cover a wide variety of gene types. It should be noted that while these are the two 

large differences to the Ca. Altiarchaeum GA, a lot of other 1000 bp windows interspersed 

between the otherwise covered regions are not covered by reads, revealing more minute 

differences to Ca. Altiarchaeum GA (the size of points in Figure IV.2.3.1 makes them easily 

visible but causes a lot of overlap between adjacent points, masking the absence of individual 

points in otherwise well covered regions; this is particularly problematic for inner rings due to 

increased overlap). The coverage profile of the Japanese HURL site shows an additional gap 

not visible in European Ca. Altiarchaea (GA, WB, SM, IMS and SulCav) at 1278-1353 kbp, 

containing relatively few open reading frames (n=17), with only three classified proteins that 

interact with DNA (A peptidase u62 modulator of DNA gyrase, a DNA primase dnaG as well 

as a subtilisin serine protease).  

 Overall, the mapping of short read datasets of various Ca. Altiarchaeum containing 

metagenomes to the complete Ca. Altiarchaeum genome revealed that differences between Ca. 

Altiarchaea populations are much larger than previously estimated based on phylogenomic 

analyses (Figure III.3.4C), ANI analyses (Supplementary Figure 7 of section III.3) as well as 

core metabolism analyses (Figure III.3.5) and indicates that there is much more to explore 
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about the genomic fluidity within the Ca. Altiarchaea and the extent to which horizontal gene 

transfer might contribute to their individual adaptations in their environments. 
 

3. Future perspectives for exploring genomic fluidity in 
Altiarchaea 

 
Genome-resolved metagenomics has revolutionized our understanding of Earth’s environment, 

vastly extending the biodiversity available for research, and thus generating entire new fields 

of research [e.g., genome-informed cultivation (Liu et al., 2022), genome-informed 

microscopy (Rahlff et al., 2021), phylogenomics (Hug et al., 2016)]. It also has revolutionized 

other OMIC’s techniques which rely on reference data, such as proteomics and transcriptomics.  

However, this is likely only the beginning of the genome-based revolution, with new 

technologies, particularly long-read technologies, extending the available research fields even 

further. The continued development of ONT in particular, e.g., by improving kit chemistry and 

flow cell architecture, enhances sequencing quality as well as evaluation software. Long-read 

sequencing technologies have already begun to warp the field of genome-resolved 

metagenomics. By contrast, environmental short-read metagenomes are very fragmented, 

rendering assembly, binning and bin curation dauting tasks. In long-read metagenomics, the 

much more intact assembly already simplifies the binning (and consequently curation) process 

immensely. Depending on how far this technology progresses, it might even make traditional 

binning and bin curation redundant, if (near-)complete genomes can consistently be assembled 

directly from the reads (which was the case for the Ca. Altiarchaeum GA genome investigated 

in detail in section IV.2. Both ONT as well as Pacific Biosciences can also identify base 

modifications and thus could open up the research field of environmental epigenetics, which 

has so far mainly been explored in humans and cultured organisms through specialized 

technologies, as an additional dimension. Indeed, other polymers such as proteins can also be 

sequenced via ONT, though the 20 different possible amino acids (with additional 

dimensionality via Post-Translational Modifications) make their sequencing much more 

complex.  

ONT-based detection of epigenetic elements in particular might be very interesting in 

multiple regards to the research questions tackled within this thesis. First, as of today, the only 

epigenetic elements known in Archaea are chromatin protein modifications, which have been 

identified in Sulfolobus (see (Blum and Payne, 2019) for a review on epigenetics in Archaea).  
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Thus, more large-scale surveys into possible DNA modifications might be able to either 

provide more broad evidence for there being no DNA modification systems, such as Adenine 

methylation, in Archaea or disproof this current view. Second, adenine methylation in Bacteria 

has been shown to affect replication initiation, making it relevant for the replication component 

of this thesis, and also DNA repair (Willbanks et al., 2016), which could affect genome 

variability and fluidity (though rather in Bacteria than Archaea). One further open question that 

might be explorable using model systems, might be whether hereditary epigenetics, i.e., the 

transfer of epigenetic information to one’s offspring, plays a role in prokaryotes. If it was 

identified to play a role, then the epigenetic element in horizontal gene transfer might be 

another layer of research.  

A related research topic could also be tRNA modifications, which can also be detected 

via ONT (Thomas et al., 2021). The mapping survey done in section IV.2.3.3 putatively 

identified a transposon in the 302-306 kbp region of the Ca. Altiarchaeum GA genome. This 

transposon contained two copies of a protein involved in guanine methylation in tRNAs. While 

tRNA guanine methylation in Archaea is a known mechanism (Armengaud et al., 2004), this 

could provide the opportunity to investigate how the introduction of new methylation 

capabilities might influence the organism. As a first step, this would require an in-depth 

analysis of the other tRNA methylation capabilities in Ca. Altiarchaeum GA to make sure that 

this type of tRNA methylation is a newly acquired function. In the best case scenario, i.e., the 

transferred genes are active based on methylation patterns of tRNA’s and methylation events 

can be unambiguously assigned to their activity due to no homologs being present in the rest 

of the genome, this might actually show an example of a HGT event influencing not just the 

genome of the recipient but also their epigenome. 

Some more immediate follow-up analyses could be a more in-depth biogeographic 

analysis of Ca. Altiarchaea, using Ancestral Sequence Reconstruction to try to test whether the 

proposed time points of divergence, e.g., the splitting up of the Pangean supercontinent, are 

reflected in their sequence divergence. Since a complete Ca. Altiarchaeum GA genome is now 

available, one could identify potential horizontal gene transfers across the whole genome and 

see whether specific horizontal gene transfers, e.g., from specific bacterial phyla, are prevalent, 

and thus reconstruct a horizontal gene transfer interaction map. Single Nucleotide 

Polymorphism analyses to detect strain variants of Ca. Altiarchaeum GA over the years could 

also be very interesting to see whether shifts in their ratios have occurred from 2018 to 2021. 
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The effect of genetic drift, i.e., SNP allele frequency fluctuations across a population with 

potential to become permanent, on Ca. Altiarchaeum GA could be explored via identification 

of synonymous, non-synonymous and missense SNPs, to evaluate the effect of normal 

replicative evolution on Ca. Altiarchaea. (Orsi et al., 2021) could act as a guide for this type 

of analyses.  

In the complete Ca. Altiarchaeum GA genome, two maintained CRISPR arrays were 

detected but the adjacent Cas proteins are indicated have been lost in a large proportion of the 

community. This abnormality also needs more in-depth investigation due to their being 

conflicting signals regarding the CRISPR system activity. On the one hand, the CRISPR arrays 

are maintained, i.e., the repeats do not show any SNPs, indicating that it might be active. On 

the other hand, adjacent Cas proteins have most likely been lost in most of the population, 

which should in principle signal that the CRISPR system is not active. Thus, in depth CRISPR 

analyses akin to Esser et. al. could be performed (Esser et al., 2022). This would hopefully also 

elucidate what these CRISPR systems target, as prior analyses of GA (Rahlff et al., 2021) were 

not able to find viruses targeting Ca. Altiarchaeum GA and consequently the purpose of these 

arrays is unclear. Another potential area of interest might be the transcription machinery of Ca. 

Altiarchaeum GA, e.g., small regulatory RNAs and transcription factors, or focusing in on the 

hami-encoding region on the genome to see whether details about its assemblage can be 

gleaned. One might also explore the genome with the goal of trying to cultivate Ca. 

Altiarchaeum GA (which is the ultimate goal of the BMBF-funded MultiKulti Project of the 

Probst lab). 

 These are the ideas I am currently most exited about to further explore regarding the 

genomic fluidity of Ca. Altiarchaeum specifically but also prokaryotes as a whole in the deep 

biosphere. The availability of a full genome really opens up the amount of available research 

directions immensely, with a close to unlimited amount of potential research objectives 

becoming available, and highlights why long-read metagenomics is so important for genome-

resolved metagenomics.  

V. Zusammenfassung 
 
Archaeen wurden für lange Zeit als nur Extremumgebungen, wie Vulkane, heiße Quellen oder 

Salzseen, besiedelnde Organismen gehalten, was sich in der Mehrheit der verfügbaren Isolate.  
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widerspiegelt. Jedoch haben kultivierungsunabhängige Methoden wie Metagenomik gezeigt, 

dass Archaeen ubiquitär verbreitet, aber häufig deutlich weniger abundant als Bakterien sind. 

Der terrestrische Untergrund ist eine der bedeutendsten Umgebungen, der durch diese 

Methoden erschlossen wurde, da er zugleich sehr wenig erforscht und jedoch Hochrechnungen 

zu Folge 25 % der Organismen auf der Erde beinhaltet. In dieser Umgebung lebende 

Organismen sind gekennzeichnet von einem Leben nahe am energetischen Minimum sowie 

mit wenig Ausbreitungsmöglichkeiten. Wie sich Archaeen an diese Extrembedingungen 

anpassen und inwiefern horizontaler Gentransfer eine Rolle dabei spielt, ist gänzlich 

unbekannt. 

 In dieser Dissertation hatte ich das Ziel, qualitativ hochwertige archaeelle Genome von 

unkultivierten Altiarchaeota zu generieren, um deren Anpassung an ihre Ökosysteme 

untersuchen zu können. Diese Archaeen dominieren ihre moderat-temperierten Umgebungen, 

daher besteht besonderes Interesse, zu verstehen, wie sie sich durch ihre Adaptionen einen 

Vorteil verschaffen. Zunächst haben wir einen Arbeitsablauf zur Erstellung archaeeller 

Genome aus Metagenomen etabliert. Ein Schritt, der bei dabei oft vernachlässigt wird, ist die 

Kuration von Genomen, da dieser Schritt manuell und mit begrenzter Softwareunterstützung 

durchgeführt wird. Daher haben wir die Genomkurationssoftware uBin entwickelt. uBin 

ermöglicht eine einfache, GUI-basierte Kuration von Genomen. Die Verwendung von uBin 

verbesserte die Genomqualität von 78.9 % Genomen im öffentlich erhältlichen CAMI-

Datensatz. Zuletzt haben wir den CO2-getriebenen Kaltwassergeysir Andernach, der die 

höchste Wasserfontäne weltweit hat und von Ca. Altiarchaeum dominiert wird, 

metagenomisch charakterisiert und hunderte prokaryotische Genome von diesem Ökosystem 

und anderen Umgebungen im tiefen terrestrischen Untergrund rekonstruiert und kuriert. Um 

das Wachstumspotential von Bakterien im tiefen Untergrund zu beziffern, verglichen wir das 

Ökosystem Geysir Andernach mit 16 weiteren Ökosystemen aus dem terrestrischen 

Untergrund. Diese Ökosysteme überspannen einen Bereich von oberflächennahen Höhlen bis 

zu 3 km Tiefe. Wir identifizierten einen Zusammenhang zwischen minimaler Generationszeit 

und Ökosystemtiefe in Bakterien, i.e., je tiefer ihr Vorkommen, desto schneller konnten sie 

sich teilen. Gleichzeitig replizierten sie aber weniger zum Probenahmezeitpunkt, je tiefer ihr 

Ökosystem. Dies deuten wir als Adaptation an im terrestrischen Untergrund herrschende 

schwankende Nährstoffverfügbarkeiten.  

Ein Vergleich neu generierter und bereits verfügbarer Ca. Altiarchaea Genome zeigte 

eine starke Konservierung der Genome von Ca. Altiarchaea der Klade Alti-1. Wir deuten die 
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biogeographische, nach Kontinent gruppierte, Konservierung der Genome als Hinweis für eine 

Ausbreitung durch Plattentektonik. Das genetische Repertoire zeigte eine starke 

Konservierung des Kernmetabolismus und Variationen der peripheren Gene, wie Peptidasen, 

wovon einige womöglich aus horizontalem Gentransfer mit Bakterien abstammen. Auf diesen 

Analysen aufbauend nutzte ich ein neu konstruiertes zirkuläres Ca. Altiarchaeum GA Genom 

als Referenz, um Regionen von genetischer Variabilität zwischen Ca. Altiarchaea 

Populationen zu identifizieren. Die Ergebnisse stehen in Einklang mit vorherigen 

biogeographischen Analysen, zeigten jedoch auch, dass Ca. Altiarchaea deutlich mehr 

Genomvariationen haben als angenommen. Einige dieser Bereiche genetischer Variation 

wurden vermutlich von horizontalem Gentransfer verursacht, wie Transposasegene in diesen 

Bereichen belegen. Daraus schlossen wir, dass horizontaler Gentransfer die sonst sehr 

langsame Evolution in diesem Phylum mitigieren könnte. 

 Zusammengefasst zeigt diese Arbeit einen Arbeitsablauf für die Gewinnung von 

archaeellen Genomen aus Metagenomen auf, zusammen mit der neuen, leicht verwendbaren 

uBin Software zur Genomkuration, um die Genomqualität zu gewährleisten. Darüber hinaus 

gibt die Arbeit wertvolle Einblicke in die genetische Diversität von einem der wenigen 

dominanten Archaeen in moderat temperierten tiefen Biosphäre Umgebungen.  
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The accompanying CD contains the supplemental data for the publications presented in 

sections III and IV. The three folders with the respective supplemental Material on the CD are:  

1. sectionIII.2_uBin 

2. sectionIII.3_genetic_diversity 

3. sectionIV.2_archaeal_diversity 

 

Supplemental files are supplied in a separate subfolder while the main Supplementary 

Information document is directly supplied in PDF format in the respective section folder. 

Supplemental files were named to match the name listed in the main and supplemental 

manuscript if the journal had given them an alphanumeric identifier. Section III.1 does not 

contain any supplemental data and is thus not listed on the CD. For each folder, the 

supplemental files are additionally explained in a File descriptions document in the main 

subfolder. Due to their size, the not yet publicly available metagenomes used in section IV are 

not supplied on the CD. They will be published soon but in the interim will be supplied upon 
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request. For archiving purposes, these folders are all archived for posterity in our in-house 

servers in /ICEAGE/Archive/Theses/TLVB_PhDthesis. Requests for the supplemental files, 

not yet public metagenomes and in-house scripts used in section IV and can be send to 

till.bornemann@uni-due.de.  
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