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Abstract

Visualization systems offer data exploration and are often designed to help domain analysts under-
stand trends, outliers, and patterns in the data. These systems have little to no support for commu-
nicating knowledge or insights that are derived through the analysis. Data-driven storytelling, on
the other hand, employs specially designed explanatory visualizations or combines a textual narra-
tive alongside a visualization to communicate analysis results to a wider audience, but mostly has no
support for exploration. Targeting a sweet spot between explanation and exploration, this doctoral
thesis envisions a data representation that integrates explorable visualizations with an automatically
generated textual narrative for the dissemination of analysis results to a broad audience.

Grounded in an empirical study on a set of already published data-driven stories, the thesis first
describes the interplay of text and visualizations with a focus to derive effective means of achiev-
ing a coherent integration between the two media. The thesis then introduces a generic approach
for generating an integrated visual and textual representation of data, followed by its instantiations
to many diverse application domains and datasets including bivariate geographic data, bibliographic
data, knowledge graphs, and source code quality data. Finally, considering the technical challenges
and lack of authoring support for the construction of such data representation, the thesis contributes
a novel and easy-to-use authoring tool that combines automation with a graphical user interface to
establish linking between text and visualizations.

The proposed data representation can still be regarded as a visual analytics solution where text is
considered as an active part of the system, just like any other visual element. The text summarizes core
findings and hints at notable analysis insights, while intriguing users to explore and even verify the
insights. Likewise, while exploring, the text provides additional information on analysis methods and
domain-specific terminology, and links back to the explanation.

iv
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“Do our reading environments encourage active reading? Or do they utterly oppose it? A typical read-
ing tool, such as a book or website, displays the author’s argument, and nothing else. The reader’s line
of thought remains internal and invisible, vague and speculative. We form questions, but can’t answer
them. We consider alternatives, but can’t explore them. We question assumptions, but can’t verify them.
And so, in the end, we blindly trust, or blindly don’t, and we miss the deep understanding that comes
from dialogue and exploration.”

—Bret Victor



1
Introduction

D ata is ubiquitous and the quantity of data produced in our society—in almost all fields of
life—is increasing at a staggering pace. Data holds an enormous amount of information that
can be discovered for the betterment of society. Researchers and analysts apply data analysis

techniques to find valuable information and insights from raw data. Decisionmakers, in turn, rely on
these insights to take better decisions to tackle problems at hand, for instance, to fight an infectious
disease, improve public transportation, or even counter issues like globalwarming and climate change.
Although the general public is a direct beneficiary of these informeddecisions, inmany situations (e.g.,
to stop the spread of an infectious disease) the public canplay their part—and an effective role—if they
apprehend and use the derived analysis insights. However, the results of data analysis are often diffi-
cult to comprehend, especially when they discuss complex data. Therefore, conscious efforts must be
made to communicate complex data analysis results to wider audiences in order to reap the benefits.
For instance, self-explanatory illustrations of mathematical concepts (like exponential curves and log-
arithmic scales) and the impact of movement and lockdown on the spread of COVID-19 have helped
spread awareness about the seriousness of the pandemic. Visualization designers and journalists cre-
ated engaging, insightful, and easy-to-understand stories—including explanatory visualizations—for
this purpose. This is just one instance ofmanypossible applicationswhichwarrants that the capability
to comprehend and disseminate data to a broad audience is becoming inevitable.

Data visualization leverages visual perception and graphical representation of data to provide effec-
tive tools for better understanding meaningful insights and notable patterns. However, conventional
visualizations focus on rapid analysis and exploration of data and are designed to support domain
experts in finding patterns, detecting outliers, formulating hypotheses, and confirming them. They
provide great exploration capability yet lack an explanatory aspect that is critical to reach an audience
beyond experts. For instance, Figure 1.1 shows two visual analytics systems. Both examples (character-
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Figure 1.1: Examples of visual analy c systems: Lex et al.’s approach 104 visualizes set intersec ons and Malqui et al.’s system 110

analyzes passing sequences in a soccer game. Although both systems visualize datasets (IMDB, soccer match) that are relevant and
interes ng for common users (moviegoers and soccer fans) yet they are complex and lack explanatory aspect.

istics of movies across different genres104* and ball passing strategies in a soccer game110) are relevant
for non-expert users (e.g., movie enthusiasts, soccer fans). Yet, comparatively complex visual encod-
ing, domain terminology, and many interconnected views render them overwhelming for common
users. To increase the legibility of such intricate visualization systems beyond expert users, it is cru-
cial to emphasize the communication aspect of analysis results, which is lacking in most of the visual
analytics systems.

Nowadays, visualizations—specifically designed for communication purposes—are proving to be
a great source of communicating data-driven facts and insights to the general public. This concept is
often referred to as narrative visualization151 or data-driven storytelling.143 It is the ability to turn
data into intuitive and self-explanatory stories through the use of explanatory data visualizations. Sev-
eral impactful news media outlets (New York Times, Washington Post, FiveThirtyEight, Financial
Times, TheGuardian, and others) produce such stories, embedding a textual narrative with the visual
representation of data and publish regularly on a variety of topics such as politics, sports, economics,
and culture. While visualizations in these stories show the data, the narrative explicitly explains in-
sights and context, thereby making the whole representation self-explanatory. Figure 1.2 shows three
excerpts of data-driven digital stories (complete stories: A†, B‡, and C§) comprising a narrative and
visual representation of data. However, most of these stories offer little to no exploration of data.
Sometimes, they do include explorable visualizations (e.g., the choropleth map in Figure 1.2 A is in-
teractive: it offers a tooltip, it can switch between nationwide or state-level data, and may even load
a different data variable), but this exploration is restricted to the main narrative of the story; users
mostly have to follow the author’s line of argument and a directed progression. Unlike a visual analyt-
ics system, they cannot break free from the main narrative, freely explore various dimensions of data,
and develop their own narrative and understanding.

While traditional visualization systems offer comprehensive and untethered exploration, the data-
driven storytelling focuses on the communication aspect of data analysis. In fact, both can be con-

*http://vcg.github.io/upset
†https://projects.fivethirtyeight.com/redistricting-maps
‡https://web.northeastern.edu/naturalizing-immigration-dataviz
§https://www.vox.com/a/weather-climate-change-us-cities-global-warming
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A B C

Figure 1.2: Excerpts from the data-driven stories published in various digital news media. They use a combina on of text and visual-
iza ons to communicate data-driven insights.

sidered as two extremes of a continuum between exploration and explanation. By combining them,
we can have the best of both worlds: the expressive and exploratory power of visualizations, and the
flexibility and explanatory nature of text resulting into a representation, hereafter referred to as in-
teractive data documents, that support exploranation—a term coined by Ynnerman and others189
that stems from exploration and explanation. In such a representation, exploration and explanation
should blend in smoothly to reach a point on the continuum. The use of a (natural language) textual
narrative brings in an easy-to-understand and self-explaining characteristic. It provides great flexibil-
ity for integrating context and backdrop, and can express implicit data explicitly. At the same time,
visualizations can provide an overview, spotlight visual patterns, and allow exploration.

Tomake interactive data documents self-explaining, intuitive, and exploranative, natural language
text plays a pivotal and multifaceted role. To begin with, text can explain unintuitive visual encoding
and appear as descriptive captions of visualizations. Further, it can summarize core analysis insights
that can serve as anchor points to guide the exploration process. While exploring visualizations, it can
provide explanations or link back to the (textual) insights for better understandability. It can further
elaborate analysis methods to even increase the transparency of analysis. Exploiting interactivity and
flexibility, text can even provide domain-specific terminology and exemplify it with the current con-
text. Since text is drivenby the data and interactively linkedwith visualizations anduser interactions, it
would require greater adaptability as opposed to text in data-driven storytelling, which does not have
to be fluid. This warrants the use of natural language generation137 to automatically produce textual
explanation on-the-fly which—unlike pre-written text by a human expert—can bemade adaptable to
data changes resulting as interactive actions of an end user.

From a technical perspective, authoring of the envisioned interactive data documents is challeng-
ing as it entails automatic text generation and linking generated text to various parts of a visualization
at a fine-grained level (e.g., brushing-and-linking text with visualization) existing authoring solutions
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do not have enough support. Existing tools have poor support for authoring such documents as they
often require advanced programming skills, taking care of nitty-gritty details, and going through com-
plex application code. As the authors of these interactive documents are digital journalists and visu-
alization designers, the current workflow as supported by existing low-level coding libraries (D319,
JavaScript, React) or markup tools (e.g., Idyll31) could be tedious and cumbersome. To offload the
technical overhead, a desirable solution could move in the direction of an authoring tool that uses an
intelligent user interface often called a mixed-initiative interface, that can partly automate some tasks
(e.g., identifying and linking relevant text fragments to visualizations) and provide an intuitive user
interface to do the rest.

This thesis aspires to bridge the gap between explanation and exploration by conceiving the idea of
interactive data documents. In particular, it investigates the role of natural language text as an explana-
tory medium in visualization systems and reasons for integrating it with exploratory visualizations to
make the analysis accessible, self-explaining, and intuitive for a broader audience. The thesis con-
tributes novel methods to develop fully automated interactive data documents for a variety of diverse
datasets and application domains including but not limited to bibliographic, geographic, software
code quality, and knowledge graph data. Considering the technical challenges and limitation of au-
thoring tools for generating similar representation of data, it also discusses the design of an authoring
system using a novel mixed-initiative user interface.

1.1 Research Objectives

To approach the overarching problem, the thesis is subdivided into three main research objectives,
each focusing on a specific aspect but contributing toward the final goal.

Text and visualizations are two integral components of the proposed interactive data documents.
Therefore, as the first step, it is vital to investigate their role in existing representations of data to de-
velop a deeper understanding of their interplay. Since most visualizations systems do not include any
text, themost natural source to extract this information are data-driven stories. Such stories published
in high quality digital newsmedia outlets provide an opportunity to get a deeper understanding of the
visualization–text interplay. These stories have already been used in other empirical studies to inform
the design strategies of similar stories.151,69,21 The objective here is to look closely at the reported anal-
ysis insights and discover how they are communicated through narrative and visuals. What purposes
text serve in these stories, and how is it embedded inside or along with visualizations? Finally, what
strategies are employed to perceptually link the two media.

Research Objec ve – RO 1

Understand different roles of textual narrative in data-driven stories and discover how it is in-
terwoven with the visual representation of data.

In a usual data analysis workflow, insights are first identified, then prioritized, and ultimately de-
scribed as a narrative. These are then presented alongside visualizations in a data-driven story. The
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narrative in these stories is authored by a human expert. However, interactive data documents would
demand textual explanations to be flexible and adaptable to data changes in reaction to user interac-
tions. For instance, to always align a caption with ever-changing data in a visualization to describe
the current state, it would require on-the-fly production of text. Therefore, automatically generating
text using natural language generation techniques can be beneficial for such purposes. It would easily
adapt to data changes and require less effort than manually writing explanations to cater every possi-
ble use case that may arise during the free exploration of data. The generated text could serve many
purposes: It can hint at notable insights and intrigue users to explore the visualizations. The ability of
exploration would provide an opportunity to even verify the generated insights and facts. Moreover,
while exploring a visualization, users would get explanations, not only about what the visualization
depicts, but also brief notes on the analysis methods and esoteric terminology. This would ultimately
lead to better transparency in data communication.

Research Objec ve – RO 2

Leverage natural language generation techniques to automatically and on-the-fly produce tex-
tual explanations of data and derived insights.

Since text and visualization in an interactive data document will describe the same underlying data
at different levels of abstractions, implicit connections exist between the two representations. For an
interplay, both representations need to be coherently integrated. This goes beyond placing visual-
izations close to relevant text. The challenge is to seamlessly integrate generated textual explanations
with explorable visualizations to provide an obtrusive, yet non-distractive, blend. The explanations
should fuse so naturally with visualizations that it becomes effortless to discover them and—once
discovered—they become an invaluable part of the exploration process. Apart from the conceptual
side of things, the objective, here, is to also investigate realization of such an integration. Existing au-
thoring solutions require programming expertise that are mostly absent from visualization designers
and journalists who are authoring interactive content for the general public. Therefore, to facilitate
the authoring process, there is a need for an easy-to-use authoring tool.

Research Objec ve – RO 3

(3.1) Seamless integration of text and visualizations in an interactive data document where the
two representations are in a symbiotic relationship and augment each other as well as (3.2) de-
sign of an easy-to-use authoring tool.

1.2 Summary of Contributions and Thesis Outline

The thesis consists of seven chapters; four main chapters discuss the three research objectives, while
the other chapters provide background, related work, and conclusion.
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In the beginning, Chapter 2 reviews the prior research that has been done on the core concepts this
thesis builds on. In particular, the research on data-driven storytelling, natural language generation
and processing in the context of data visualization, and integration of visualization and text is relevant.

Chapter 3 (RO 1) presents two empirical studies on different sets of data-driven stories published
in news media. They aim at understanding the fine-grained interplay of text and visualizations. The
first study investigates the role of every sentence and visualization within stories to reveal how they
interplay. Moreover, it explores the positioning and sequence of various parts of the narrative to find
patterns that further consolidate the stories. The second study focuses on identifying implicit refer-
ences between text and visualizations. Drawing from the findings, this chapter further discusses study
implications with respect to best practices and possibilities to automate the report generation.

Chapter 4 (RO 2) introduces two interactive visualization systems that present automatically gen-
erated insights through amix of visualizations and text. First, VISAuthor Profiles looks at publication
records from various perspectives, mixing low-level publication data with high-level abstractions and
background information. It is a novel approach to generate integrated textual and visual descriptions
to highlight patterns in publication records. It leverages template-based natural language generation
to summarize notable publication statistics, evolution of research topics, and collaboration relation-
ships. Seamlessly integrated visualizations augment the textual description and are interactively con-
nectedwith each other and the text. The underlying publication data and detailed explanations of the
analysis are available on demand that make the whole system transparent to the end user. Second, In-
teractive Map Reports advocates the use of natural language text for augmenting map visualizations
and understanding the relationship between two geo-statistical variables. Here, the text generation
process is flexible and adapts to various geographical and contextual settings based on small sets of
parameters.

Chapter 5 (RO 3.1) discusses the concept of exploranation and its application in proposed inter-
active data documents. The main focus is to describe a layout and interactive linking model of the
document that truly supports exploranation. It initializes the generic concept first and then instanti-
ate it for a variety of different domains including software engineering, knowledge graphs, and virtual
reality. Chapter 6 (RO3.2) presentsKori, amixed-initiative interface enablingusers to construct inter-
active references between text and charts. Kori leverages natural language processing to automatically
suggest references as well as allows users to manually construct other references effortlessly. While the
tool assists authors in creating interactive references, the readers profit from an improved synthesis of
text and charts leveraging those references. A user study complemented with algorithmic evaluation
of the Kori system suggests that the interface provides an effective way to compose interactive data
documents.

Finally, Chapter 7 reflects on the major contributions and their implications, as well as provide an
outlook into future opportunities and research challenges.
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2
Background and Prior Research

T raditional visualization systems focus on visual exploration of data and are designed to help
domain experts discover meaningful patterns, identify outliers, and test their hypotheses. Of-
tentimes, these systems have complex design and are tailored to specific needs of domain an-

alysts and do not clearly communicate analysis results. With the increasing accessibility of data in
the public domain, the communication of data is becoming valuable and inevitable. Nowadays, the
general public is a direct beneficiary of data analysis in many fields of life. This demands an effective
communication of data analysis to a much wider audience—beyond the audience of experts–and has
lead to the emergence of data-driven storytelling.143

2.1 Data-driven Storytelling

Data-driven storytelling—also known as narrative visualization—focuses on the communication as-
pect of visualization and aims formaking datamore understandable for a broad audience.143,88 Story-
telling leverages design elements, (visual) annotations, embellishments, and a textual narrative to com-
municate data.151 It connects visualizations with a narrative to produce a data representation that is
intuitive and self-explaining. The proportion of text in data-driven stories varies from short captions
of visualizations to annotations explaining the main takeaways to long explanations about insights,
context, and backdrop of the story. The inclusion of explanations at various stages guides readers
through the analysis findings and assist in reading the accompanying visualizations. As a matter of
fact, the self-explanatory nature of text and its linking to visual representation is what contributes to
the increased intuitiveness and consequently to their widespread outreach.

In the recent past, journalists and visualization designers have been regularly issuing data-driven
stories to inform the general public on the happenings in the world about diverse topics such as cul-
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ture, sports, politics, and science. As these are published in impactful news media outlets like New
YorkTimes, Financial Times, BBC, andmany others, researchers in the visualization community have
investigated them to reveal effective design strategies and pinpoint what makes them self-explanatory
and suitable for a broad audience. Many characteristic factors—related to layout, navigation, role of
visualizations, messaging, interactivity, and level of control—have been found to play an important
role in how users read and interact with the stories.115,151,10 Researchers have employed empirical re-
search to inform design space of these characteristic factors.151,69,70 However, the role of text is still
under-explored. Text—be it a longer narrative alongside a visualization or brief annotations inside a
visualization—is a vital part of data-driven stories and should be investigated at a similar level as visual-
ization. Currently, we lack an in-depth understanding of what different roles it plays—not only as an
explanatory medium but also with respect to facilitating exploration process—in data-driven stories
and how it interacts with visualizations; this is the first objective of the thesis (RO 1).

Visual analytics systems and data-driven stories can be thought of as two extremes of data visualiza-
tion; the former embraces exploration and the latter explanation. However, unlike stories published in
print media, digital journalism (e.g., Web-based reading) has opened up possibilities to include some
form of interactivity and exploration capability in data-driven stories. Existing research has suggested
that stories can range from self-running presentations that users consume like watching a video or a
slideshow, on the one hand, to interactive ones allowing exploration of data, on the other hand.88
However, the exploration is very limited to few standard interactions in most cases. In addition, this
limited interactivity is aligned with an author-driven narrative that users follow and has no option to
go beyond to explore data from their own perspective.

2.2 Text and Visualization: Two Faces of the Same Data

Text is a flexible medium when it comes to explaining, while visualization is better at revealing pat-
terns and providing an overview of the data. In a data-driven storytelling scenario, they describe the
same underlying data, but at different levels of abstraction. For example, writing a narrative based on a
scatterplot, the textual narrative may explain the outliers (referring to a few points), clusters (referring
to a group of points), or relationship between the plotted data dimensions (referring to scatterplot
as a whole). As a consequence, natural implicit connections form between text and visual marks in
the visualization; users discover them as they read through the text. Through these links, both com-
plement each other and make the resulting representation intuitive, engaging, and immersive.143,73
However, describing information at two different modalities comes with a caveat: the split-attention
effect.8 The problem originates from the fact that, in a bimodal—including two media: text and
visualizations—representation of data, the visualizations need to be placed at a slightly different phys-
ical location from the relevant text. This far-off placement of graphics forces the readers to switch
their attention back and forth between text and graphics, which can cause a split-attention effect9
that increases the cognitive effort to comprehend the information.166

Sweller, Van Merrienboer, and Pass168 introduced cognitive load theory. The theory assumes a
limited capacity of working memory that users have at their disposal while consuming information.
The working memory has partially independent components to process auditory and visual informa-
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Figure 2.1: An example demonstra ng split-a en on effect taken from the work of Sweller et al. 168 (Le ) Presenta on with split-
a en on effect. (Right) Integrated presenta on with no split-a en on effect.

tion, as well as holding information in memory. An improper design of information can overload the
working memory and reduce the efficiency in consumption of information. Figure 2.1 shows an ex-
ample of explaining a simple geometric problem. On the left, the solution is presented with a diagram
and series of equations. In this representation, the diagram alone communicates nothing, but only
when it is read together with the equations. To understand it, users must integrate the two sources
mentally; for instance, begin with an equation, hold it in the working memory, and then look for re-
lated reference in the diagram. This process can be cognitively demanding and stems purely from the
particular style of presentation. As an alternative, the solution presented on the right integrates the
equations right inside the diagram therefore eliminating the need of mental integration, thus, saving
working memory of users.

In a data-driven story, it is challenging, from readers’ perspective, to synthesize information across
two distinct media as these are spatially separated apart.87 The readers have to switch their attention
back and forth to find implicit references between text and visual marks in a visualization that encode
data values (e.g., bars, lines, points) and vice versa. This phenomenon incurs a significant cognitive
burden on readers’ working memory and can have a negative impact on learning.9,26 The cognitive
load theory argues that information should be presented in away that it does not overload theworking
memory of users. In particular, talking about data documents that includes two distinct media, the
information should be coherently integrated in a way that reduces the split-attention effect.
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2.3 Integration of Text and Visualization

Although text and visualizations are spatially separated apart in a data-driven story, they are seman-
tically associated as they describe the same underlying data. In line with cognitive load theory, two
possibilities naturally arise to bring the two representations closer: The first is to reduce the physical
distance through the use of small visualizations (word-sized graphics) that can be completely embed-
ded inside the lines of text where they belong. Second, we can improve the linking through visual cues
and interactivity. Taking inspiration and advancing the state-of-the-art, we discuss word-sized graph-
ics and interactive visualization–text linking as two powerful means to bring text and visualizations
closer in the context of interactive data documents.

2.3.1 Word-sized Graphics

Micro visualizations embedded into the lines of text are knownas sparklines173,word-sized18, orword-
scale52 graphics. Tufte defines them as “data-intense, design-simple, word-sized graphic[s]”.173 In con-
trast to regular-sized visualizations, these graphics are produced at the height of a word. Due to their
small size, they can be completely embedded within the lines of text. This allows readers to remain fo-
cused on the same spatial area while consuming the information. For instance, fluctuations in EUR–
USD currency exchange rates (2012–2016) can be easily seen in this word-sized line chart 1.6

1.0.
Figure 2.2 illustrates how the use of word-sized graphics (e.g., , ) integrated within

a text or table can reduce the split-attention effect by presenting most of the visualizations next to
the relevant text. The representation on the left includes two large visualizations and passages of text
(marked in blue and green) that correspond to each visualization. This representation forces readers
to switch their attention back and forth to relevant visualization while reading text and constructing
references in working memory. The representation on the right contains the same information, but
large visualizations are replaced by their word-sized counterparts. Since these are embedded right next
to the text that references them, it reduces the split-attention effect by providing physical integration;
users donot needmental integration anymore as theywould in the former representation. Likewise, in
a table, word-sized visualizations can provide a visual comparison of information by placing multiple
instances next to each other.

Althoughword-sized graphics have beenwidely discussed in the literature, their integration in data-
driven stories and other interactive data documents is still scarce. Beck and Weiskopf18 present a
survey on their actual use in existing research. It was discovered that most of the existing research
introduces word-sized graphics just as examples or uses them to augment other visualizations.39 With
respect to their integration in other media, they are most frequently included in the source code of
a computer program; for instance to observe its runtime behavior169,64, performance bottleneck16,
or to monitor variable values over a program execution.58,165 Beyond software engineering, they have
been leveraged for literature data analysis.121,18,15 However, their inclusion in longer text, especially
as part of data documents, is not very common.

Only a few researchers have explored their usability with respect to integrate visualization and tex-
tual representations of data. Goffinandothers53 have explored the design space ofword-sized graphics
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Figure 2.2: (Le ) Document without word-sized graphics where the reader has to switch a en on between graphics and text. (Right)
Document using integrated word-sized graphics in line with the text and in tables to reduce a split-a en on effect and save space for
addi onal content (here, a table with further informa on). Colors indicate the textual and visual content that relate to each other.

for text documents and several placement options (e.g., in line with text, as an overlay on top of text,
between two lines of text, and so on) to integrate themwithin the lines of text. They found that infor-
mation encoded inword-sized visualizations andput right next to the related textwasmore prominent
to the users and had a positive effect in memorability as well as recall. Though various placement op-
tions did not have any significant impact on the reading behavior.52 Likewise, Beck and Weiskopf18
proposed that the word-sized visualizations embedded inside lines of text may reduce split-attention
effect. Further, Beck and Weiskopf suggested that interactive counterparts of word-sized visualiza-
tion can also be beneficial as a quick in-place unit of information (often showing parts of the data)
andultimately leading users—when interactedwith—to the large visualizationswhichwould bemore
comprehensive. This way, word-sized visualizations can serve as a bridge between text and large visu-
alizations, reducing the distance between the two representations in the information space.

However, in most cases, the use of word-sized graphics is restricted to simple line, bar, or propor-
tion charts with a very few exceptions—Hlawatasch et al.62 visualize trajectories. Probably that gives
a misconception that word-sized graphics can only encode fairly simple data as few straightforward
visualization types (e.g., bar, line, proportion) Interestingly, they can represent any type of graphic in-
cluding but not limited to bar charts, scatter plots, box plots, or even node-link diagrams. This thesis
argues that word-sized graphics are much more flexible with respect to the type of visualization and
the data they can encode. Our prior work investigates the use of both static and interactive word-sized
graphics in achieving a coherent representation of content presented across twomedia.93 This partic-
ular paper extends the design space of existingword-sized graphics to represent comparatively complex
data including multivariate , spatial , and graph or relational data .
Interested readers may look up details in the paper93, especially with respect to the applicability of
these word-sized graphics in a realistic scenario.

2.3.2 Interactive Visualization–Text Linking

As discussed earlier, text and visualization describe the same data and, therefore, implicit references
exist between the two representations. For instance, while describing a scatterplot, the text usually
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references the entities encoded by individual dots, groups of dots, or a visual annotation in the scat-
terplot. Users discover these implicit references as they first read through the text and then tend to
look at the relevant part of a visualization, thereby increasing the cognitive load on their working
memory. In an interactive data document, a way to reduce the distance between text and visuals in
the information space is to convert these implicit references to explicit and interactive links.18 The
interactive visualization–text linking corresponds to providing visual cues (e.g., visual highlighting)
to quickly guide users’ attention to the relevant portion of a visualization while interacting with the
corresponding text fragments and vice versa. This linking aligns with the signaling principle that ar-
gues for guiding users’ attention from one medium to the other in a multimodal representation as a
possible antidote to reduce cognitive burden.112

Existing research has shown that this interactive linking can facilitate users in reading a data docu-
ment, particularlywith regard to visual explorationof data, aswell as in interpreting visualizations. For
instance, VisJockey90 offers the possibility to animate the related parts of a comparatively complex vi-
sualization (e.g., parallel coordinates) by interacting with the corresponding text fragment. Similarly,
Figure 2.3 shows two more examples of interactive linking between text and visualization or table.
(Right) Beck and Weiskopf18 use visual highlighting to guide users attention to the relevant part of
the bar chart while clicking on the interactive text fragment (printed in boldface in the figure). (Left)
Kim et al.80 advocate for an interactive text–text linking to facilitate the reading of a document that
comprises many tables. Their approach links the main body of text with the associated text in tables.
Moreover, existing research applies this type of linking directing from textual narrative to visualiza-
tions assuming the standard reading strategy—read the text first and then explore the visualizations.
However, in an interactive data document, users may wish to explore the visualizations first and then
read the corresponding text. Following this alternative reading strategy, Beck and Weiskopf18 pro-
pose an abstract idea of a bidirectional interactive linking between text, word-sized visualizations, and
regular visualizations. Building on Beck and Weiskopf’s abstract linking model18, our prior research
instantiated this model for graph data.97 The approach uses a declarative syntax to produce an inter-
active data representation as shown in Figure 2.3; the details can be found in the paper.97

Recent research in the visualization community has also looked into the gains of interactively com-
bining text and visualizations. An effective linking and layout strategy can have a positive impact on
comprehension and information recall.194 The impact is evenmore obvious among the users that had
low visualization literacy.91 Particularly studying the impact of explicit visualization–text linking (vi-
sual marks in the visualization were highlighted when hovering over a relevant phrase of text) Zhi et
al.194 found that participants recalled information better when it was interactively linked across both
representations. Another experiment by Barral et al.13,91 achieved somewhat similar results, yet using
a different type of linking method. In contrast to explicit linking194, Barrel and others used a gaze-
driven approach; the relevant parts of a visualization were highlighted based on participants’ eye fixa-
tion on a related sentence in the textual narrative. This adaptive gaze-driven linking helped improve
comprehension, particularly among participants with low visualization literacy. When studying the
impact of explicit visualization–text linking in the context of a Bayesian reasoning problem, Ottley
et al.131 discovered that people tend to consolidate information well across the text and visualizations
when they are interactively linked.
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Kim et al. 2018 Beck & Weiskopf. 2014

Figure 2.3: Two examples of interac ve referencing in literature: (Le ) Kim et al. 80 use highlights related text in tables while reading
the corresponding text. (Right) Beck and Weiskopf 14 propose the idea of visually highligh ng relevant parts of the visualiza on while
interac ng with associated text elements.

We have evidence that a joint and well-connected representation of data including both text and
visualization is beneficial for the end users, especially for a broader audience. However, achieving such
an integrated representation where both text and visualization augment each other, yet keeping the
cognitive burden167 low that may arise from context switching in a bimodal representation at the
same time, is challenging and under-explored. One of the main objectives of this research (RO 2) is
to explore various linking methods that bring text and visualization closer and reduce the gap in the
information space (Chapter 3).

2.4 Automatic Text Generation for Data and Visualization

As an alternative to human-authored text, automatic generation approaches can be employed to pro-
duce a narrative from data, for instance, to explain analysis insights. These approaches fall under the
scope of natural language generation (NLG) which deals with producing natural language text from
data and other abstracted forms of information.138 The most frequent and well-known use case of
natural language generation are personal assistants (e.g., Google, Siri, Alexa), weather forecasts, and
directions you get in a vehicle navigation system. There exist various generation approaches in gen-
eral48 ranging from the ones using artificial intelligence (e.g., Generative Pre-trained Transformer 3)
to the ones relying on simple templates often utilized in weather forecasting and navigation systems.
Despite its widespread applicability to many domains, only a few have investigated the generation of
text for data visualizations, and these approaches are the focus of discussion here.

2.4.1 Text Generation for Statistical and Other Forms of Data

Existing approaches generate textual content ranging from simple quantitative univariate data36,68,71
to comparatively complex imaging data.76,122 The previous work is scattered across many domains:
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A

B

Figure 2.4: Interac ve data document describing the biography of a fic onal character, Jon Snow, from the TV series Game of
Thrones. Two visualiza on–text linking interac ons: (A) The result of hovering over an interac ve text and (B) a node in the node-
link diagram.

GALIWeather135 automatically generates linguistic descriptions for short-termweather forecasts based
on the analysis of climate data, theWIP system178 generates instructional and maintenance manuals
for simple machines, and SoftLearn Activity Reporter 136 uses verbalization to interpret the perfor-
mance of students in a virtual learning environment. Automatic text generation has also been used
in the context of software engineering25,101,102,118,33, geographic data175,34, and transportation.20,175
Some approaches deal with generating textual reports for source code, such as code documentation
and summarization.159,124,113 Another interesting use case of natural language text is the communi-
cation of data analysis results to the visually impaired population170; text can ultimately be read out
aloud. While these approaches generate text from data, they do not consider or coordinate with visu-
alizations and text is not always presented alongside visual representation of data.

Other approaches focus on summarization of the analysis results that are to be put right next to a
visualization. For instance, Sripada andGao162 present the scuba diver’s depth-time profilewith a line
plot. Similarly, Jain and Keller74 generate summaries of healthcare data gathered by sensors installed
in the homes of elderly people who are living alone. The main objective here is to support medical
staff and nurses to quicklymonitor and act in case of an anomaly. Query-to-question (Q2Q)126 system
summarizes the progression and sequence of user interactions from the analysis of interaction log files.
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However, these approaches still consider visualization and text as two separate mediums, yet they are
presented together.

2.4.2 Text Generation for Data Visualization

Unlike data-driven storytelling, the use of text is not common in visual analytics systems at all. Ma-
jority of these systems even lack descriptive captions of visualizations. Only a handful of these sys-
tems combine textual narratives to provide guidance to the users in exploring the data. Text can be
employed to provide interventions while the users explore a visualization, either to explain or to of-
fer guidance. For instance, Voder 160 generates short textual insights or data facts to guide users in
exploring a multivariate dataset. The generated data facts serve as interactive widgets and suggest
other relevant visualizations to further facilitate the data explorationprocess. Likewise,CauseWorks30
uses longer textual narrative well-connected to a causal network visualization to explain causality. It
was discovered that the coupling of causality visualizations with a textual narrative significantly in-
creases accuracy and narrative acts as a pivotal component augmenting visualizations. In contrast, for
long text documents including many tables (e.g., annual budget reports), visualizations can augment
the document with visualizations to make it more interpretable. One such example is Elastic Doc-
uments11; it provides an interactive viewing interface augmenting text and tables with on-demand
contextual visualizations. When compared against a conventional PDF viewer, it was found that this
combination of text, tables, and visualizations improves the quality of summarization as well as com-
prehension to a moderate extent. Another system,Method Execution Reports17, automatically sum-
marizes the execution behavior of a software program and includes interactive word-sized graphics
inline with the text.

From an end user’s perspective, there are several characteristics (e.g., working memory, perceptual
speed, information needs) that matter while interacting with a visualization system.171 These char-
acteristics can be leveraged to suggest meaningful interventions (like the ones provided in Voder and
CauseWorks) to help users—especially those with low abilities—for processing visualizations.171 To
generate interventions for guiding exploration and offering explanations about a visualization, both
representations need to be completely intermingled. As opposed to data-driven stories—where text is
human-authored and appears alongside visualizations and is often not adaptable to user interactions
due to very limited exploration capability—we require amuchmore flexible generation approach that
considers joint creation of textual and visual content. This is another major objective of the thesis
(RO 3, Chapter 4).

2.5 Interactive Data Documents

Visual analytics systems support explorationbuthave little tono support for communicationof knowl-
edge or insights that are gained through the analysis. Data-driven storytelling, on the other hand, is
suitable for the explanation and dissemination of data analysis results to a broad audience, but has very
little support for exploration. Targeting a sweet spot between explanation and exploration, this thesis
aims for an exploranative solution, interactive data documents offering both explanations and ex-
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Figure 2.5: The envisioned data-driven documents lie at the sweet spot between visual analy cs systems and data-driven stories.

ploration (Figure 2.5). A novel and seamlessly integrated combination of text and visualization brings
the benefits of both media. Authoring an interactive data document would involve construction of
three main components: natural language text, exploratory visualizations, and the interactive link-
ing between the two. While we have already discussed the first component in the previous section,
this section discusses the challenges and existing support with respect to the latter two components.
However, we begin by looking at the authoring support for data-driven stories first, as they also closely
relate to interactive data documents from a technical design perspective.

2.5.1 Authoring Support for Data-driven Storytelling

With the increasing popularity of data-driven stories in digital journalism, more andmore researchers
are exploring ways to author themwith ease. Existing tools that help create such stories allow users to
add textual descriptions and annotations, as well as to customize visualmarks and layouts.164,109,32,140
Many of these tools focus on allowing users to build a narrative around a single, oftentimes static and
non-interactive visualization.147,141,106,142,186,83,82 Others support creating a complete story with a
sequence of logically connected visualizations and textual explanations as annotations.55,7,146,21,81,116
Existing research also explores novel forms of data-driven stories including videos7, comics81, and
slideshows.55,146,21

Mostof the existing authoring approaches canbebroadly classified into two types. First are the ones
that support manual creation of data stories: Among these,DataClips7 provides an authoring inter-
face for data videos with different templates that users can customize; Data Illustrator 107 supports
data binding to expressive charts for making data stories memorable; Ren et al.140 discuss the design
space of annotations and present an interactive tool to create them; and Brehmer et al.21 facilitate the
authoring of timeline narratives. In contrast, the second type of authoring approaches provides au-
tomatic support. Notable among them are Datashot 179 and Calliope153. The former automatically
derives data facts from tabular data and generates infographics to provide an overview, and the latter
supports the automatic generation of a story sequence directly from a given dataset.

2.5.2 Creating Exploratory Visualization

Visualizations will contribute the major part of exploration in the interactive data documents. Prior
research has also explored ways to author interactive visualizations with ease and using minimal pro-
gramming. Theuse of declarative syntax such asMarkdownhasmade it even easier to create interactive
visual content.78,97,98 Vega149 andVega-Lite148 use a simple JSON syntax to produce interactive visu-
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alizations. Low-level libraries likeD319 provide good support for developing highly customizable and
explorable visualizations. Computational environments such as JupyterNotebook,RMarkDown, and
Observable* are systems that aim at creating and sharing computations or graphics in a reproducible
way. It is possible to create interactive content using these systems, but they focus on interactive cod-
ing experience and target technical users.

2.5.3 Establishing Linking of Text and Visualization

While existing tools provide ways to add annotations and textual explanations inside or close to visu-
alizations as discussed in Section 2.5.1, they rarely go beyond positional linking, let alone interactive
linking. Realizing the benefit of interactive visualization–text linking, some scientific publishers such
asAuthorea1 andElsevier 130 attempt to support this integration, but are limited to very simple linking
(e.g., finding a related figure given an explicit text reference). Kong et al.87 recently used crowdsourc-
ing to reconstruct references between textual phrases and visual marks on the charts in existing data
stories and highlight their importance in reading such a document. Similarly, Metoyer et al.117 auto-
matically integrate short textual annotations at various points in the visualizationwhenusers highlight
a passage of text.

In these tools, textual parts are mostly considered passive supportive elements—semantically con-
nected yet separated from the associated visualizations. Therefore, practitioners resort to program-
ming libraries (e.g., D319) or frameworks (e.g., Idyll 31) in order to create interactive references be-
tween the two (see an interactive data document about Boston’s subway system†). Idyll31 introduces
a markup language combined with reactive programming in JavaScript for creating interactive data
documents for theweb. The focus of Idyll is broad, and it allows building custom visualizations using
D3 or Vega-Lite and binding them to the text. This generalizability comes at the cost of programming
custom visualizations. Hence, solutions including Idyll or D3 require programming expertise.

In contrast to existing tools and programming frameworks, we target users who do not have pro-
gramming expertise and aim to provide an accessible user interface for constructing interactive data
documents including interactive linking between text and visualizations; the third objective of the
thesis (RO 3).

*https://observablehq.com
†http://mbtaviz.github.io/

17

https://observablehq.com
http://mbtaviz.github.io/


18



3
Understanding Visualization–Text Interplay

D ata-driven storytelling combines the expressive power of visualizations with a textual narra-
tive to communicate analysis findings to a broader audience. In such stories, both represen-
tations seem to complement each other; visualizations provide an overview of the data while

the accompanying text hints at insights and blends in the context and backdrop to make the story en-
gaging, compelling, and intuitive. Since text and visualization describe the same underlying data, an
interplay exists between the two. This interplay relates to spatial arrangement, positioning, sequenc-
ing of visuals in the narrative, the embedding of text inside visualizations, and how various parts of
the story reference other parts. Prior research has discovered—by means of small-scale user studies—
that these factors, especially the spatial arrangement and interactive linking of text and visualization
influence the readers’ engagement, comprehension, and information recall.131,194,13,91 A deeper un-
derstanding of visualization–text interplay can reveal effective design strategies for textual narrative
and visualization for authoring joint representation of data.

This chapter aims to understand the visualization–text interplay at a fine-grained level. It begins
by presenting research questions focusing on different aspects of the interplay. It then describes two
empirical studies aiming to answer these research questions. Finally, it is concluded with a systematic
characterization of the learned integration strategies, and possibilities to automatically generate parts
of the textual narrative that would describe analysis insights.

3.1 Research Questions

For understanding visualization–text interplay, we formulated three research questions, each focus-
ing on a different aspect. The first question deals with analysis insights and their textual and visual
communication. It is obvious that text in a data-driven story serves various purposes. A major part
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of the text reports insights that result from the data analysis, while a comparable proportion conveys
the context behind these insights (e.g., the backdrop of a story, opinion of researchers or politicians)
to make the story interesting for the readers. Likewise, various visualizations are employed to pro-
vide an overview of the data as well as highlight notable insights. Learning about what insights are
communicated and how they are presented would help in automating their generation.

RQ 1 – What are the reported analysis insights and how is the related data visually communicated?

RQ 1.1 What are the analysis insights presented in the textual narrative, and how is context
blended with these insights?

RQ 1.2How are visualizations used as a complement to communicate the data?

The main strength of data-driven stories lies in the fact that they closely integrate narrative and vi-
sualization at different levels.151 For instance, placing visualizations in the proximity of relevant text
reduces the distance in the information space and facilitates readers to quickly glance at the corre-
sponding visualization while reading a specific paragraph. Similarly, text inside a visualization may
hint at the main takeaway of that visual and contribute to its self-explainability. Oftentimes, several
visualizations are employed to demonstrate distinct aspects of the same data; their sequence in the
story can be crucial. For example, including an overview visualization up front could familiarize users
with the data before presenting a certain aspect of analysis. The second research question aspires to
understand the connections between the two media.

RQ 2 – How do textual narra on and visualiza on interplay?

RQ 2.1What links exist between the two media?

RQ 2.2How and in what sequence are visualizations embedded into the narrative?

Since both text and visualization are based on the same underlying data, it is natural to have implicit
references between the two representations. Such references relate to the phrases of text that has a vi-
sual representation in a visualization. For instance, imagine a scatterplot of countries; every mention
of a country or continent name in the text would refer to a single or group of points (visual marks) in
the scatterplot (Figure 3.5). Previous research has shown that users, in particular the ones who lack
visualization literacy, often have a hard time consolidating information that is presented across text
and visualizations.131 Extracting such implicit references and converting them to explicit and interac-
tive references helps in better consumption of information.13,91,194 With this focus, the third research
question aims at exploring the design space of implicit references in existing stories.
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RQ 3 –What implicit references exist between text and visualiza on and how do they relate to the data?

RQ 3.1What type of implicit references exist between text and visualizations?

RQ 3.2How do these references relate to data and visualizations?

3.2 Methodology

To answer the research questions (RQ 1 – RQ 3), we adopt a similar approach as applied in sev-
eral existing works.151,69,115 We perform two empirical studies: first to answer RQ 1 and RQ 2, and
second—due to slightly different data needs—to answer RQ 3. For both studies, we follow a qualita-
tive approach focusing on fewer examples but a fine-grained and deep analysis as we—unlike previous
research—are particularly interested in exploring the possibilities of automatic generation in addition
to deriving the best practices for designing similar content. This is also why the stories should have
high quality, both with respect to their textual narration and visual data representation.

As RQ 1 and RQ 2 emphasize a lot more on the communication of analysis insights, here the sto-
ries relating to geographic data are particularly interesting as the spatiotemporal nature of data makes
the reporting challenging. Unlike reporting plain time series (e.g., the revenue of a company) or re-
sults of public-opinion polls, it usually requiresmultiple visualizations to showdifferent aspects of the
spatiotemporal data; some with a geographic focus and others with a temporal one. We find exam-
ples of geographic narratives across diverse journalistic branches such as politics, economics, science,
and health. The COVID-19 pandemic further provided the unique opportunity to collect various
polished examples from the same context. We investigate the role of every sentence within each of
the narrative categories and how sentences are interwoven with the visual representation. Besides, we
explore the positioning and sequential patterns among various parts of the stories.

In RQ 3, we are particularly interested in implicit references and what visualization features (e.g.,
legend, visualmarks, axes) of a visualization they refer to. Therefore, a lotmore exampleswith a variety
of visualization types are needed. In the existing literature, Kong et al.87 already performed a similar
study on a small-scale dataset. We use their dataset as our basis and expand it with more examples and
even diversify it with respect to visualization types.

In the rest of this section, we refer to these two studies as Study I and Study II while explaining the
data collection and analysis process. Afterward, the results of both studies are organized into different
sections—one section per research question.

3.2.1 Data Collection

To ensure quality and diversity, we manually picked examples from well-known news media outlets
and research publication venues (only valid for Study II).
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Figure 3.1: Sources of stories in the sample data collec on for Study I. Almost 50% (14/22) of the stories were gathered from three
well-known sources: NYT, 538, and BBC.
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Study I

Twenty-two storieswere collected from10well-knowndigital journalistic sources includingNewYork
Times (NYT), FiveThirtyEight (538), and BBC; the full list of sources is shown in Figure 3.1. The
stories are published between 2016 and 2020. Our story selection criteria involved the presence of
at least one geographic visualization and a comparable proportion (in terms of screen real estate) of
textual and visual narrative. Another but less strictly applied criterionwas the presence of interactivity.
We began with searching for stories that contained visualization–text interactions (e.g., interacting
with text visually highlights the relevant part of the visualization or vice versa). Having found only 3
such stories, we loosened the criterion of interactivity to visualizations alone in the story. Later, seven
stories were also included that did not offer interactivity. In our sample collection, fifteen out of 22
stories offer some form of interactivity.

In the first phase, we picked 12 stories (Collection A) on a variety of themes such as culture, eco-
nomics, politics, science, and health tomaximize the diversity of topics. In the second phase, we chose
another 10 stories (Collection B) on a single topic: the COVID-19 pandemic. These 10 stories have
the same context yet cover various aspects of the pandemic. The two collections complement each
other; one embraces diversity, while the other focuses on certain comparability.

Study II

Since Kong et al.87 already conducted a similar study on a small-scale dataset, we began with their
data collection as our basis. However, their dataset was limited to 18 articles gathered from a variety
of news media outlets. Besides, it was restricted to bar charts alone. We expanded this collection with
additional chart types and sources, resulting in 77 articles comprising 110 paragraph–chart pairs. We
targeted three main sources: research articles published in (i) Visualization journals (e.g., TVCG),
(ii) Nature—the world’s leadingmultidisciplinary science journal—, and (iii) articles published in the
digital news media as web browser-based stories. Within these sources, we randomly and manually
picked examples to maximize the diversity of visualization types. Figure 3.2 shows the distribution of
our sample collection regarding their venues, chart types, and timelinewhile comparing it to theKong
et al.’s collection.

3.2.2 Qualitative Analysis

The analysis aims at understanding the fine-grained interplay of visualizations and textual narration.
Therefore, it goes down to the individual sentence level to understand how sentences are related to
data and visualizations. An open coding approach was followed in both studies; the details of the
exact process are as follows:

Study I

Every story in the collectionof 22 storieswas divided into individual sentences and visualizations. This
resulted in 1,203 sentences and 118 visualizations (638/66 forCollectionA and 565/52 forCollection
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B). The coding (i.e., labeling the sentences and visualizations) proceeded as follows: two coders (both
coauthors of this paper) used 4 stories from Collection A as seeds and independently assigned de-
scriptive codes to sentences as well as visualizations. In a follow-upmeeting, the codes were discussed;
similar codesweremerged, and conflicting code assignmentswere resolved. This initial coding scheme
was then rolled out to the rest of the eight data stories in Collection A. For this, a sequential process
was adopted: one coder did the coding first, and then the other coder checked and refined the first
coding. The analysis of Collection A provided us with a coding taxonomy that was then verified and
further fine-tunedwith its application toCollectionB.We followed the same process to analyze stories
in Collection B. Over the course of several meetings, we kept on resolving and consolidating the codes
and categories, ultimately resulting in 45 distinct codes across 4 categories and 12 subcategories.

Overall, the coding process resulted in 25 codes for sentences and 20 codes for visualizations (cf.
Figure 3.3). In total, there are 1,812 code assignments for sentences and 569 for visualizations. Our
coding scheme allowed for multiple code assignments to a sentence or visualization. We group these
codes along the categories data-driven and embedding for textual narrative (sentences), visualiza-
tion for visualization-specific codes, andvisualization–text linking for the interplaybetween the two
media (e.g., a sentence that references a visualization or a visualization that has a textual annotation).
As shown in Figure 3.3 (leftmost column), the colored coding categories have further subcategories
that will be discussed along with reporting of the results (Section 3.3 and Section 3.4). All codes
and code categories are always underlined with the respective color while reporting the results for
improved readability and figure–text linking. The categories and subcategories are printed in bold
font to discern them from the codes.

Study II

The sample collection for the second study consists of 110 paragraph–chart pairs extracted from 77
different articles. Likewise, in Study I, we divided each paragraph–chart pair into sentence–chart
pairs for our analysis. This division resulted in 227 pairs, including 82 different charts across six dis-
tinct chart types. In line with Kong et al.’s87 methodology of identifying implicit references, we first
manually constructedminimal references between text and charts. A reference from a sentence to a
chart is minimal if adding more words could increase matching data points in the chart while remov-
ing words would make the matching ambiguous. Two researchers independently followed an open
coding process to analyze the sentence–chart pairs. The researchers used the collection of Kong et
al.87 as a basis to derive the initial codes. These codes were then applied to our collection and were
expanded. As for Study I, we iteratively resolved any conflicts that arose during the process to reach a
consensus and kept on merging similar codes.*

*This analysis was performed along with NamWook Kim and Zheng Zhou from Boston College. While Zheng Zhou
was mainly responsible for data collection and labelling, Nam and I closely worked together to derive initial codes, orga-
nized them into categories, and kept on refining the codes. Toward the end, Nam further expanded the coding scheme
to include more code categories (e.g., hierarchical grouping), and together we discovered core insights that are described
in Section 3.5. 100
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Visualization–Text Linking
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Figure 3.3: Frequencies of codes for 22 stories on sentence- and visualiza on-level, structured by code categories and subcategories.
Gray-blue background encodes the frequency of sentences, yellow background the frequency of visualiza ons. Mul ple codes can be
assigned to a single sentence/visualiza on, hence, per story, the total count of sentences and visualiza ons does not correspond to
the total number of assigned codes.
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3.3 Results: Insights and Visual Communication (RQ 1)

First, we study the ingredients of the stories, namely the individual sentences and visualizations. Fig-
ure 3.3 gives a qualitative overview of what these ingredients are, but also reports related quantities
(i.e., how frequently a certain code is assigned). These quantities are notmeant to generalize beyond a
specific story but help us judge the general character of a story (e.g., working a lot with direct quotes)
and find interesting outliers (e.g., a unique style of reporting). In the following, we systematically dis-
cuss these ingredients along the code categories and subcategories, clarifying their meaning as well as
describing their typical use and notable examples.

3.3.1 Analysis Insights and Context (RQ 1.1)

Generally, we observe twomain categories of textual narrative in data-driven stories: the actualdata-
driven text and the text that serves as the embedding in the story, for instance, structuring text like
headings or contextual information like dataset descriptions. TheData-driven text does not just list
the raw numbers but summarizes analysis findings at a higher level as insights. Although there seems
to be no agreed definition of insight in the visualization community28, it may be defined as “complex,
deep, qualitative, unexpected, and relevant” 129 or “an individual observation about the data [...], a
unit of discovery” 145. In the following, we define an insight as a non-trivial, qualitative, and relevant
observation about the data. An example of an insight from A02 is: “[i]n some states, like Montana
and Alaska, nearly the entire adult population is registered [as organ donors].”

In geographic stories, geotemporal entities—location and time—are usually key terms of the tex-
tual description of the insights. Almost all stories contain (20 of 22; see Figure 3.3) identifiers of
locations. While most locations are referenced by their specific names (e.g., “Boston” – A09, “Mas-
sachusetts” – A02, “USA” – B09), a variety of collective terms according to geopolitical, geographic,
or administrative units are also used. For instance, A01 describes counties suffering high casualties
as: “[r]ural Appalachia stands out; nine counties in Kentucky and three in West Virginia make the
list.” Appalachia is a region in the easternUS and is notmarked on themap visualization; the reader’s
knowledge is presumed. Other variations include “Dakotas”, “among the peaks of the Rocky Moun-
tains” (A01), and “Midwest” (A02). The directional phrases such as “west of the Mississippi” (A01)
and “southern tip of Bangladesh” (A05) are another way of referencing location. Time identifiers are
also frequent in our examples, but not as frequent as location identifiers (contained in 16 vs. 20 stories;
61 vs. 144 occurrences). Depending on the data, time may be identified at various levels of granular-
ity (e.g., day, month, year, decade, or even century). Time identifiers include fix dates (e.g., “on April
30” – A02), longer events (e.g., “Hurricane Katrina along the Gulf Coast in 2005” – A04), or time
intervals (e.g., “since 1980” – A01, “from 2000–2016” – A04, “past decade” – A09, “1970s” – B01).
Consecutive sequences of timely events may span across multiple sentences. For instance, “By Nov 8,
[...] By mid-October, [...] As of Nov 26, [...]” – A05).

A specific type of insight identifies interesting data items as outliers, extrema, and clusters. We
observe locations that are local or global outliers. The former compares a location with its neighbors,
while the latter characterizes it with amuch larger geographical region. For instance, A04 states a local
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outlier as: “Only two rural counties in the entire area that stretches fromMississippi across to Florida [...]
even crack the list [...].” A temporal outlier highlights unique temporal behavior: “[f]or the first time
in more than 50 years, the majority of America’s public school children are living in poverty” (A11).
An example of a geotemporal and global outlier in A10 is “California has had more of these public
mass shootings than any other state.” Extrema correspond to the locations assuming the maximum
or minimum values of a data variable. They are closely related to outliers. In most cases, outliers
are extrema having specific importance with respect to a geotemporal variable. A cluster refers to a
group of locations showing similar values for one or multiple data variables. Clusters include a list of
two or more locations (“North and South Dakota” – A01) or refer to a higher level of grouping (e.g.,
“Dakotas” – A01, “Midwest” – A02). Clusters are described with the metric on the basis of which
they are identified. For instance, “counties with the lowest mortality rates, 18 out of 20 fall west of the
Mississippi” (A01) refer to a cluster of counties showing specific values of mortality rates.

Summarize insights report geographical variation, average (i.e.,mean,median, ormode), or tempo-
ral variation. A geographic variation reports the varying value of a variable across a geographic region.
For instance, “[t]he South andWest of the country [...] seen a big rise in the number of infections” (B10).
It mostly summarizes those variations that are peculiar. To describe the average, less technical words
such as “average values”, or “on average” (e.g., “[e]ach year, about 8,000 people will get that chance” –
A02) are widely used. Statistical terms like “median” or “mean” were also observed. It was surprising
to see that some stories describe even the statistical significance: “What is more, unemployment, while
being statistically significant across the country, was not associated with the Le Pen vote in urban areas”
(A07). Temporal variations correspond to the reporting of a time series. We observed more instances
of the reporting of peaks, nadirs, and steep inclination or declination, for instance, “[...] demand for
energy globally has fallen off a cliff” (B01). Long-term trends are also noted, like “[...] trend in de-
mand has been downhill ever since” (B01). Portions of a time series are compared with other portions,
specifically, the ones that are recurrent and show seasonal patterns: “[t]his compares with 73% last
week and a peak of 85% between 3 April and 13 April 2020” (B06). A summary of the temporal vari-
ations may be presented as a single sentence: “the situation got really bad in late March but by May,
cases were declining and most states had begun to ease restrictions put into place to halt the spread of the
virus”–B10.

Compare insights deal with part-to-whole comparisons, report correlation, and rank. Part-to-
whole insights refer to a proportion of a total (e.g., 20% of the counties). These proportions are re-
ported as exact percentages (e.g., “23.5 percent” – A11) or rounded (e.g., “more than half” – B08,
“one-third” – B06). While reporting a countable variable—for instance, the number of participants
of a survey in B06—we observed the use of a reference of ten (e.g., “4 in 10” to describe 41 percent
of participants). The use of quantifiers like “vast majority of the counties” (A01) is another way of
describing proportions without giving exact numbers. More than half of the part-to-whole compar-
isons are in B06—it communicates the results of a survey to gauge the social impact of COVID-19
in Great Britain. The correlation insights refer to the reporting of relationships between multiple
variables. They include descriptions of positive or negative relationships and discuss causality. For in-
stance, A07 discusses the impact of various socio-economic parameters (e.g., education, income) that
played a role in French elections. It goes beyond comparing two variables and discusses intersection
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effects: “[w]hile areas with highermedian annual income weremore likely to vote disproportionately for
the centrist candidate, the effect of income is negated when education is taken into account.”. Moreover,
rank insights report the order of data entities with respect to a variable, for instance, “Brazil reported
more than 32,000 new cases onWednesday, themost in the world, and theUnited States was second [...]”
(B03). These insights may not always reflect the numeric ranks but may also use comparative words,
for instance, “[...] black workers seem to be struggling far more than white or Hispanic workers” (A04).
The relative ranking is another way of comparing objects, for instance: “[a]fter Appalachia, the region
that features most heavily is the Dakotas” (A01).

A considerably large portion of the textual narrative integrates different types of embedding (see
Figure 3.3). A part of this embedding is the sentences that structure the story. All stories begin with
a title (a type of heading; here, colored differently as black is later used to better discern sections in
Figure 3.4). In 11 stories, the title serves as themaindrivingquestionof the story (e.g., A02,A04, B04).
Five of the stories have a title that conveys the main takeaway (A02, A03, A07, A08, B08). Thirteen
stories also contain additional driving questions (25 in total and 20/25 for stories of Collection A)
at various positions in the narrative. Transitional sentences or headings are a way to switch between
different topics.

Context is another form of embedding and provides additional information and opinion. All sto-
ries include a background that may help readers better understand the story and data. For instance,
before reporting how the organ donation system works, A02 first describes the causes and symptoms
of liver cancer. In rather technical stories likeA02 orA03, the specific technical terminology and other
related concepts are explained as domain knowledge. For instance, A03 uses a third of the narrative
to explain the concepts of production and audibility of seismic waves. The technical terminology is
explained in straightforward language, for instance, “[w]hen researchers track seismic activity, they’re
sensing the waves that make the Earth roll and rumble” – A03. Stories in Collection B describe the
impact of COVID-19where only a few sentences introduce domain knowledge. Dataset descriptions
include information on who gathered the data, how it was collected, and whether it was preprocessed
or filtered for a specific reason (e.g., “[a]reas with very low populations were removed to limit their po-
tential to skew the analysis” –A07). Almost 80% (18/22) of the stories include direct (40) and indirect
(100) quotes. We observed two main sources of these quotes. One source is researchers who worked
on the problem and gathered the data (e.g., in A03, A08, A12, B05). In such quotes, they share the
methodology, insights, eurekamoments of their research, or describe the findings. The second source
of the quotes is the policymakers (e.g., inA02, B10). These quotes included their opinions or implica-
tions. Elevenof the stories include external references, for instance, to the full dataset, a researchpaper,
or another story. Interpretations connect insights with historical facts: “American Indian populations
have historically suffered from poor health outcomes and challenges in health care access, contributing to
high mortality rates.” (A01). Or they infer and deduce other insights: “[i]f you’re a New Yorker, that
doesn’t seem very fair” (A02). Authors also attach their personal judgment: “[o]rgan donation is good
and kind, but it isn’t fair” (A02).
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3.3.2 Visual Communication (RQ 1.2)

While the textual narrative explicitly explains the analysis insights, visualizations complement the text
by showing relevant data. In our collection, 45 visualizations offer interactive exploration capabili-
ties in 13 out of 22 stories. We found, that unless annotations are made, it stays up to the reader to
find insights. Still, the authors of a story select a certain way to visually communicate the data. The
visualization category in Figure 3.3 shows the codes regarding the type, purpose, and exploration
of the visualizations, as well as whether they carry a legend or visual annotation (properties). In our
collection of 118 visualizations, we identified 8 distinct types of visualizations and 4 main modes of
exploration.

First, we try to identify for what main purpose a visualization was included in the story. Although
we do not know the original intentions of the authors, we were able to roughly categorize the visual-
izations into an overview, detail (with respect to certain aspects), and comparison visualizations. One
visualization can share two or more purposes, for instance, to provide an overview as well as to facili-
tate comparison. We do not discuss the purposes separately but mixed with the following discussion
of visualization types, as both coding subcategories interact.

We observe that every story includes an overview visualization as the first visual data representation.
Map visualization is a straightforwardway of providing an overview of geographical data, whichmore
than half of the stories (13/22) contain as the first visualization. We classify these maps as statistical
(31) and geographical maps (5). Statistical maps are either thematic maps encoding data as colored
regions (18)—also known as choropleths—or encode data in glyphs (e.g., circles, rectangles, or other
markers) overlaid on the map (13). Geographical maps, on the other hand, do not encode any addi-
tional data. Satellite images or a street view are examples of suchmaps. Maps, particularly choropleths
are mostly restrictive to a single variable and may not allow for comparisons across multiple variables.
However, multiple versions of choropleth maps (5 in Collection A, 2 in Collection B) placed next to
each other (or side by side) allow for comparisons of multiple variables.

Tabular visualizations (13) provide both comparison and overview. All tables in our collection either
use visual encoding—as font color or cell backgrounds—or embed micro visualizations. Often, they
communicate variation or uncertainty (e.g., distribution) in addition to, for instance, sum or average
values. See two such tables from A01 below:

Besides the overview and comparison of aggregated geographical data, another aspect is the com-
munication of geotemporal variations. Animating the map visualization is one way of accomplishing
it; we observed five such instances. In tables, micro line plots show the temporal variations of geo-
graphic entities that have been arranged in rows of the table (see the right table above). Beyond maps
and tables, small multiples are another way of providing geotemporal overview and comparison. We
mostly observed the use of line and area charts in small multiples. For instance, three such examples
are shown below (taken from B01, B03, and B07 respectively):
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Including a time series next to a map visualization is yet another way to simultaneously commu-
nicate both geographical and temporal aspects. In such cases, the map displays the aggregated values
for a certain time span, while the line plot shows temporal variations across that time span. Multiline
plots (e.g., B02-V4 in Figure 3.4) can also provide comparisons across geotemporal data. Each geo-
graphic region (e.g., a city, state, or country) is denoted by a separate line and a specific region can
be highlighted—on hover—to allow comparisons with all other regions (B02). We also observe the
use of a rather non-standard (overlapped) area plot for showing a temporal overview (A10); the below
timeline visualization shows the lives lost during various mass shootings in the US. Purple semicircles
denote the number of people killed compared to the ones injured, shown as light gray semicircles.

Bar plots offer comparisons across different categorical variables and include simple bar plots (6),
group bar charts (2), and stacked bar charts (8). Stacked bar charts can provide part-to-whole com-
parisons as well. For instance, B06 uses many bar charts to report the results of a survey on the social
impact of the COVID-19 pandemic in Great Britain.

The detail visualizations go deeper with respect to certain aspects of the data analysis. In our col-
lection, we observe the use of point plots (e.g., scatter plots), distribution plots, and diagrams. Dis-
tribution plots are limited to univariate data and include histograms (15), dot plots (2), and range
plots (3). Comparatively, many more detail visualizations are observed in A05, A07, and B06. For
instance, A07 reports the French presidential election results; the story begins with a spatial overview
and comparison of votes for both candidates (one choropleth for each of the candidates placed side
by side). The story, then, discusses various predictors that played a role in the election. The Sanky
diagram illustrates the shift of allegiances of voters between the first and second rounds of the elec-
tion. Similarly, Beeswarm distribution—a type of dot—plot compares the distribution of voters for
the candidates across multiple social parameters (e.g., education, income, etc.).

Furthermore, scatter plots with trend lines show the correlation of votes with respect to the education
level and income of voters.

We observed the use of infographics in some visualizations, especially in A10 and B01. A10 uses
gun icons to give an impression of the kind of weapons used in mass shootings. Similarly, avatars of
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1,204 victims and 183 shooters visually communicate their age (e.g., child or adult) and gender; users
can hover to get details about each victim or shooter. Similarly, flags of two countries (the US and
France) serve as intuitive labels in a comparison area plot in B01.

About a third of the visualizations (44/118) allows for interactive exploration. The simplest form
of exploration is to offer details-on-demand as a tooltip (16/44). Eight visualizations (all maps) offer
multiple scale zooming allowing readers to explore the data at various levels of geographical granular-
ity; for instance, first provide an overview on the state level and then the city or county level. Almost
half of the interactive visualizations (20/45) offer a data selection control. It lets readers choose a data
dimension of their interest. The visualizations in A06, A10, and B05 are attached to a single central
data selection control. While B05 just highlights the selected data object (e.g., a city) in all linked tab-
ular visualizations, A06 and A10 include multiple views showing different aspects of the data. Five
visualizations (all maps) include a time slider to play or pause an animation.

3.4 Results: Interplay of Text and Visualization (RQ 2)

Based on the ingredients discussed in the previous section, we can now study the interplay between
visualizations and text, more specifically, the various ways of linking the textual and visual represen-
tation as well as their joint organization in one story.

3.4.1 Linking the Two Media (RQ 2.1)

Links between visualization and text can be explicit or implicit. This section focuses on reporting the
explicit links that can be unambiguously identified. We also noticed various ways of implicit links
during our analysis; for instance, just referencing the same identifier or any data insights from the vi-
sualization and the text creates such implicit links. However, they were not explored as part of RQ 2;
the next section (Section 3.5) studies these implicit links in detail. Moreover, by positioning a visu-
alization close to the related text, the two are likely perceived as belonging together (the positional
interplay of the two media is discussed in more detail for RQ 2.2). With respect to the explicit links,
we discern two subcategories of codes as described in the following and summarized in Figure 3.3.

First, text-in-vis linking blends in textual content inside a visualization and includes captions (also
comprising visualization titles), annotations, and tooltips. Almost 86% of the visualizations in our
collection include a descriptive caption. The length of a caption may vary with the complexity of a
visualization. We also observed that captions are more expressive in complex and non-standard vi-
sualizations, for example, the Sankey diagram, and the Beeswarm plot in A07. In 26 visualizations,
captions communicate the main insight or takeaway from the visual. Ten of these 26 visualizations
belong to A07. An example of a caption describing the main takeaway in a choropleth map (A04)
reads: “[m]any rural counties are doing OK”, followed by a subcaption “[p]ercentage change in per
capita personal income, 2000–2016” which explains what data is displayed on the map. In most of
the stories that begin with an interactive overview visualization (e.g., A01, A08, A09, B02), the title
of the story also serves as the caption of the first visualization, thereby serving as a connection be-
tween the two media. Textual annotations are another way of blending textual explanations or labels
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in a visualization. They may include data labels—labels of states in a choropleth map or dots in a
scatterplot—(in 45/118 visualizations) or explanations (in 10/118 visualizations). While most of the
annotated points or regions are picked up and explained in the textual narrative, a few stories include
longer explanations inside the visualization (A04, A07, A09). For instance, textual annotations may
explain every region of the chart (B01):

Almost half (46%) of the visualizations in our collection contain some variant of a textual annota-
tion. Tooltips are another way of incorporating short on-demand textual explanations for interactive
visualizations. One choropleth in A11 offers a tooltip that is always activated, and it gets updated on
the selection of regions.

Second, text-to-vis linking references visualizations as the users read through the text. Before re-
porting insights, visualizations are often first introduced in the textual narrative (visualization intro-
duction). This part of the narrative may include an explanation of visual encoding (e.g., “[t]he red,
blue, black and white colors reflect the cheap plastic sheeting available to make shelters at the time” –
A05) or a certain specificity of a visualization that is not obvious (e.g., “map is drawn to maximize
the number of districts that usually vote Republican [...]” – A06). We observed fewer introductory
sentences for visualizations in Collection B. It may be because visualizations are mostly standard and
relate to rather well-knownCOVID-19 data. Visualizations in our collection did not carry identifiers,
so they may not be referenced like in a scientific document (e.g., “Figure X”). Instead, they are cross-
referenced by the name of the visualization (e.g., “see the scatter plot”) or by directional phrases (e.g.,
“the map below“ ) in case, there are multiple visualizations of the same type close by. We observed 36
instances of named or directional cross-references. We also observed color-linking in two stories (A05,
A10). Various parts of the textual narrative are formatted (e.g., font colors or colored highlighting) to
match and connect them with visual marks on the visualization. One such example is shown below
(A05):

Hovering over these text blocks highlights the relevant segments of the charts. The 5 instances of color
linking, we observed, were all interactive.
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Figure 3.4: Flow and structure of stories. Each story is represented by a series of rectangles encoding the type of sentences (heading,
data-driven, embedding, and visualiza on–text linking) and visualiza ons. The width of each rectangle encodes the size of a sentence
(word count) or a visualiza on (es mated word count equivalent). White gaps indicate paragraph spacing. Rectangles are ver cally
(equally) divided in case a sentence has mul ple codes assigned to it. The thumbnails on the right show 17 visualiza ons from our
sample collec on.

3.4.2 Embedding of Visualizations into the Narration (RQ 2.2)

Visualizations are embedded at various points in the story. Figure 3.4 shows the flow (left to right)
and the structure of the stories in our collection. Every rectangle corresponds to either a sentence or
a visualization and is scaled according to the space it consumes. To get a comparable scale for space
consumption across both representations, we converted the sizes of visualizations (in pixels) to the
number of words that would fit in the same space. We use a web browser’s developer tools to inspect
the sizes of paragraphs and visualizations. Dividing the pixels of a paragraph by the word count of
that paragraph resulted in pixel density per word. We averaged this pixel density across all stories,
resulting in a value of 1, 469.57. We computed the word count for each visualization by dividing the
size of the visualization by the average pixel density. This provided us with an estimate to analyze the
spatial importance and arrangement of content across the two media. Since our mapping is a rough
estimate—diverse font styles, editorial guidelines, and story genres were not accounted for—we have
only used it to do a coarse-grained analysis and refrained from inferring fine-grained patterns.

The proportion of textual narrative varies from 8% in B03 to 76% in A02 (Figure 3.4). We classify
all stories into three groups according to the varying proportion of text and visualizations. Fourteen
stories are visualization-dominant where visualizations occupy more than 60% of the total content.
Five stories (A02, A03, A04, B06, B08) are text-dominant and includemore than 60 percent of textual
content. Only three stories (A01, A04, B01) are balanced as they contain textual content in the range
of 40–60%.

Figure 3.4 allows us to study the arrangement and sequence of content. All stories begin with a
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Figure 3.5: Excerpt of an ar cle from Pew Research 85. Demonstra on of text–chart reference grouping: The colored texts are mini-
mal references, while A and B show how they can be grouped from bo om to top.

title (heading) and are mostly (18 of 22) organized in multiple sections as indicated by further head-
ings. As we can observe from the blank spaces in Figure 3.4, which map to the spacing between para-
graphs, most stories alsomake use of paragraphs for further text structuring. However, the diversity is
obvious—fromno use of sections and paragraphs (except for text breaks for adding the visualizations)
in A11 to fine-grained section structuring in A05 and mostly single-sentence paragraphs in B01.

Nine out of 22 stories include an overview visualization right below the title to begin the story.
While six (A01, A08, A09, A12, B02, B07) of these contain a map as an opening visual—A1 and
A12 have animated maps—, others include a line plot (B03) or a small dashboard (B08, containing
two stacked bar charts). Overall, thirteen out of 22 stories have map as their first visualization. Detail
and comparison visualizations usually appear after the overview visualization and are often placed in
different sections of the story following a semantic grouping (A04, A07, B01, B05, B07, B09, B10).
Figure 3.4 shows a few characteristic examples of detail and comparison visualizations for A04, A07,
B01, B03, and B05 along with their positions in the stories.

3.5 Results: Implicit Referencing (RQ 3)

While the previous section (RQ 2) investigates explicit links between text and visualizations, the fo-
cus of this section (RQ 3) is on understanding various types of implicit links and how they relate to
underlying data and visualizations.
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Figure 3.6: Overview of various kinds of implicit references in our sample collec on. We observed point, mul -point, and interval se-
lec ons in the text–chart references (e.g., a phrase describing one or more visual marks or a numerical range). They are o en grouped
together to generate aggregate selec ons, while also forming a hierarchical reference tree: minimal phrase→ 1st level parent phrase
→ 2nd level parent phrase→ root sentence; see Figure 3.5 for an example.

3.5.1 Types of Implicit References (RQ 3.1)

A key insight is that every text–chart reference bears a similarity to a selection operation in a visu-
alization. A visualization usually offers point (e.g., clicking one or more visual marks) and interval
(e.g., brushing a region of visual marks) selections. Likewise, a text phrase can refer to one or more vi-
sual marks by directly mentioning item names or an interval of data points by stating the axis extents.
Just to give an example, in Figure 3.5A, each country name in the phrase “Spain, Italy, the UK, and
Ireland” refers to each corresponding visual mark in the scatter plot, while the phrase “ranged from
$30,000 to $39,000” in Figure 3.5B refers to all visual marks falling in the numerical interval [$30,000
$39,000].

We observed 366 point, 294multi-point, and 16 intervalminimal references in a total of 676 refer-
ences. Every implicit reference relates to some feature of a chart. In our sample collections, references
were mainly associated with axes (283), individual marks (262), and legends (109). Figure 3.6 (left)
shows the distribution of various kinds of references and what chart features they were connected to.
References to axes and legends also ultimately lead to a selection of a set of visual marks in the chart
area (cf. Figure 3.5B). The underlying data type of the referenced chart features was mostly categori-
cal (407). Comparatively, fewer numerical (244) and temporal (25) data values were referenced. This
trend holds for point and multi-point references—194 categorical, 152 numerical and 20 temporal
in point references, against 213 categorical, 77 numerical and 4 temporal in multi-point references.
Sixteen interval references refer to 15 numerical and 1 temporal data type. Interestingly, we observed
only 4 (out of 676) visual references such as “red arrow” or an “orange slice”.
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It was found that minimal references can be grouped together to create higher-order references.
This grouping resembles the syntactic parse tree of a sentence. In such a parse tree, leaves—a word or
a phrase—are terminal nodes that serve as independent units e.g., verbs, nouns, pronouns etc. Like-
wise, a minimal reference is a word or text phrase in our reference tree that establishes an independent
connection to a chart feature. For example, in Figure 3.5A, each country name is a minimal reference
and can be combined with other (minimal) references to construct a parent (higher-order) reference
of up to four countries. Eventually, thewhole sentence lies at the root of the reference tree, referring to
all four countries (Figure 3.5A). In contrast, the second sentence in Figure 3.5 has three minimal ref-
erences: “four countries”, “ranged from $30,000 to $39,000”, and “ranged from 64% to 69%”. The first
two can be integrated to create a parent reference. This parent reference can then be combined with
the third minimal reference “ranged from 64% to 69%” resulting in the root sentence (Figure 3.5B).
When references are grouped, the leftover text—which is not part of any minimal reference—should
be added to the parent reference, which otherwise would become fragmented. This is the reason why
the final sentence (root reference) contains all text rather than only the minimal references.

In our sample collection, we observed up to four levels of references, with the last level (root ref-
erence) being the sentence itself. There were 175 first-level and 28 second-level ancestor references,
with an average of 2.48 and 2.68 minimal references respectively. While 131 sentences have at least
first-level references, only 27 (out of 227) sentences have up to second-level references. These statis-
tics roughly reveal how reference trees can be constructed. For higher-order references, we observed
more multi-point references than point references—103 versus 67 at the first-level and 25 versus 6 at
the second-level. We only observed 4 interval references at the first-level and no interval coreference at
the second-level; this is partly due to the fact that we code it as point ormulti-point when an interval
reference was combined with either of them.

3.5.2 Relation of References to Data and Visualization (RQ 3.2)

As discussed earlier, references can be groupedwith other references. This grouping incurs data trans-
formation; when references are grouped, the associated visualmarks either undergo aunionor intersec-
tion operation. To give an example, we refer to Figure 3.5B. When the phrases “ranged from $30,000
to $39,000” and “ranged from 64% to 69%” are combined, the resulting higher-order reference cor-
responds to the intersection of the two intervals (i.e., the points falling in the intersection). On the
other hand, the grouping of “Spain”, “Italy”, “UK”, and “Ireland” goes through a union operation
of the corresponding four visual marks. A reference grouping incurring a union operation indicates
that each minimal reference is independent of the other, while an intersection grouping means that
one reference constrains the other like a filtering transformation. We observed more union than in-
tersection operations (i.e., 115 unions versus 59 intersections at the first-level parent). The variation
increases as we climb up the reference hierarchy: 27 versus 4 at the second-level and 25 versus 1 at
the third-level. This is not surprising as more text phrases would increase the chances of mentioning
additional visual marks in the chart rather than narrowing down the selection.

It was observed that references (minimal or higher-order) closely relate to visualization tasks. All
minimal references correspond to identification task. For instance, country names in the sentences
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basically identify a country denoted by a point (visual mark) in the scatterplot (Figure 3.5A). In our
sample collection, the minimal references identified mostly point (361) and multi-point (315) selec-
tions. Likewise, higher-order references also involve advanced visualization tasks in addition to iden-
tification tasks. The references at first-level correspond to comparison (33), summarization (12), and
identification (130) tasks. Similarly, references at second-level relates to identification (20) and com-
parison (11) tasks. Finally, at the root (sentence) level we observed 149 identification, 49 comparison,
and 29 summarization tasks. The visualization tasks at a higher-level generally include more than a
single or multi-point selection; for instance, these may describe an extreme data point, compare mul-
tiple points, or summarize a range of data points. A concrete example of a comparison task looks
like: “[s]ome upper-middle-income countries, like the Dominican Republic and Thailand, seem to have
deadlier roads than much poorer places such as Liberia.” ; the sentence compares deaths caused in road
accidents for three countries based on a scatterplot visualization. Similarly, an example of a sentence
relating to the summarization task is “[...] when countries reach a GDP [...] of about $30,000, death
rates usually start to come down.”

It was observed that almost half (311 out of 676) of the reference phrases were exact matches to
the labels in the associated visualizations. Moreover, eighty-two references were partial matches. For
instance, the phrase “$1 increase” in a sentence against “assuming a $1 increase in theminimumwage”
in the chart label.

We also observed ambiguities in the text–chart references that could make the automatic identifi-
cation challenging: references included inferences (64)—e.g., “former communist states” in a sentence
while the chart shows explicit names of those states. The inference variation was common among ref-
erences that were inferred from the visual encoding alone, as the corresponding charts did not contain
textual labels. Other variations include synonyms (64), stemming/lemmatization (29), and abbrevia-
tions (8).

For the text phrases referring to the numerical intervals, we frequently observed approximated or
rounded-off numbers (21)—similar to abbreviations—especially for large numbers or numbers with
decimal points. Text phrases may also refer to derived statistical measures such as mean, variance, or
other computed numbers (17)—e.g., “Nearly six-in-ten (58%) in the U.S.”, which requires a transfor-
mation of the underlying data to be identified. Charts sometimes contain annotations showing these
measures, but often they do not. Therefore, it is a type of ambiguity that is equally challenging to
resolve as other linguistic ambiguities while aiming for automatic extraction.

3.6 Study Limitations

A major limitation of our studies is the comparatively small sample size (22 stories for Study I and
77 articles for Study II) which may not be a complete representative sample. However, the examples
were gathered from high-quality sources that were published quite recently (in the last 5 years) and,
therefore, provide a better basis for observing the latest trends and patterns. However, we tried to
counterbalance the small sample size by going down to individual sentences and visualizations and
doing a much deeper analysis. As assigning descriptive codes as part of a qualitative analysis is always
subjective, we tried to compensate this by redundant coding of two researchers (coders) followed by
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joint discussions of potentially ambiguous and conflicting code assignments. The specific limitations
corresponding to each study are described below:

Study I:Half of the stories (11/22) came from just two sources: the New York Times (NYT) and
FiveThirtyEight (538). Therefore, the results may have been biased by their particular style of report-
ing. Although the diversity of the examples inCollectionAof the sample is broad, itmaynot still cover
the full spectrum of possible design space. Since all the stories in our sample collectionwere published
digitally (accessible via an internet browser), they may also be restricted by technological constraints
that must be considered in order for them to be widely available (e.g., browser performance, cross-
platform compatibility, the choice of visualizations).

Study II:Despite the fact that our sample collection is diverse andmore expansive when compared
to the dataset of Kong et al.87, the number of samples (here, the text—chart pairings) is still small.
Moreover, they are limited to simple charts and do not contain complex or multiple-coordinated vi-
sualizations. The nature of the analysis method is qualitative, and it requires large manual effort and,
thus, is hard to scale to hundreds of samples; it could benefit from computational linguistic methods
that may further discover semantic and structural insights into the space of text–chart references.

3.7 Implications

While the empirical results have reported detailed findings addressing the initial research questions, in
the following, we highlight what can be learned from these studies from a broader perspective. This
perspective considers the practical aspects of authoring our envisioned interactive data documents.

3.7.1 Integration of Visualization and Text

We discovered many ways of integrating text and visualizations in data-driven stories to make them
compelling and interesting for a broader audience. Please note that here we go beyond our initial vi-
sualization–text linking code category and discuss the integration at a broader level in the light of
results obtained in Study I and II.

The integration can broadly be classified into implicit and explicit linking. The first type of ex-
plicit linking is the positional linking. Almost all visualizations in our sample collection were placed
very close to the text that describes or references them (RQ 2.2). The visualization put next to the
text helps readers better understand the descriptions. Besides, it avoids unnecessary scrolling or other
similar interactions for connecting the visual with the corresponding text. The positional linking also
depends on the presentation style—referred to as “genres” by Segel and Heer151—of the story. For
instance, in one scroll-down story (A05), an overviewmap visualization is placed as a background that
keeps on updating while other detail visualizations and textual content blend in on top as the reader
scrolls through the story. The textual elements that appear inside a visualization (RQ 2.1, text-in-vis)
are yet another variation of explicit linking. Captions, annotations, and tooltips blend in textual ex-
planations next to or on top of a visualization. We observed that 86% (91/118) of the visualizations
include captions and, in about 29% (26/91) of the cases, these captions convey the main takeaway.
These kinds of text elements can make the visualization self-explanatory and make specific insights
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stand out. Longer explanatory annotations make it possible to even include non-standard visualiza-
tion (e.g., Sanky diagrams, Beeswarm plots) in a story. Generally, informative captions can reduce the
mental effort to process a data visualization.180

It was observed in 77% (17/22) of stories that visualizations are explicitly referenced in the text
(RQ 2.1, text-to-vis). This, of course, goes beyond just cross-referencing that is commonly used to
refer to numbered figures in a conventional writing style. In data-driven stories, it is important to
describe what is visualized and how it is visualized (e.g., explain non-intuitive encoding), especially if
the visualization might not be familiar to every reader (visualization introduction). Consistent color
linking is another, rather less frequent but interestingwayof visualization–text linking. It corresponds
to the use of consistent colors that can make the visualization-related parts of the text stand out.

Implicit linking (RQ 3.1) is another type of connection that binds mostly data-driven text to re-
lated visualizations. We refer to it as implicit because these links are present, but users discover them
while reading through the text. These references can be converted to interactive links to facilitate the
reading process. For instance, highlight associated visual marks of a visualization when hovering over
the relevant text. Previous research has already shown the benefit of such visualization–text integra-
tion using specific examples.90,91,11,163,194 While these individual references would already help read-
ers in quickly switching from textual to the visual representation of data, too many of those might
overwhelm or even annoy the user. It is, therefore, desirable to group them into higher-level refer-
ences at sentence or even paragraph levels. However, it might be challenging to use just the visual
highlighting in the visualization for higher-level references (e.g., sentences describing comparisons or
geographical variations). The linking can go even beyond visual highlighting and animate parts of a
visualization that corresponds to a linked sentence or paragraph.90,99

3.7.2 Automatic Generation of Interactive Data Documents

One of the main motivation to perform these empirical studies was to look into the possibilities of
automatically generating parts of interactive data documents. In the following, we discuss the im-
plications of our studies on the parts of the existing stories that can be realistically generated using
automatic approaches.

In contrast to visualizations, where often the raw data can be visualized, textual content requires
significant selection and prioritization. Some data-driven findings are straightforward to compute,
for instance, extrema, clusters, and correlations (RQ 1.1). However, additional background on de-
mography and geography is necessary to group those entities to form natural clusters for a human
reader (see discussion on locations). Content prioritization may also be necessary because otherwise
too many findings (e.g., a long list of entities as part of ranking) will be reported that might annoy
the reader. Temporal and graphical variations are challenging but still realistic to generate. Having
prioritized the content for presentation, it must be presented in natural language text. For instance,
instead of reporting long lists of entities, the text should use collective or even vernacular names for
geographic locations. As for text generation technologies48, template-based approaches can be used
for data-driven text. However, they may require larger manual efforts to consider all possible cases.
On the other hand, machine learning approaches are more flexible as they work with an underlying
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grammar model but are harder to control and test. However, it may be challenging to seamlessly in-
terlace (data-driven) with the text that provides context as observed for the examples in our sample
collection (RQ 2.2). Hence, an automatic solution may clearly discern between the different types
of textual explanations, for instance, data-driven explanations, educational explanations, andmethod-
ological explanations125 to be transparent (more details in Chapter 5).

For the automatic generation, itmight be easier to just focus on visualization-dominated data docu-
ments (RQ 2.2) instead of creating a complex textual narrative and embedding short data-driven text
in visualizations or vis-in-text elements. We believe that automatically generated data-driven content
would profit from additional interactions to link the text and visualization (RQ3). As discussed in the
findings of RQ3.2, implicit references closely relate to visualization and underlying data. Almost half
of these references in the text exactly match to features of a visualization (RQ 3.2). Such references
can be identified using simple keyword matching. For other variations like synonyms, abbreviations,
and semantically relatedwords (e.g., BarackObama, democrat), advanced natural language processing
techniques such as word2vecmodels119,120 can be employed. Since the grouping of references follows
a similar structure as the syntactic parse tree of a text, we can leverage linguistic semantics to create
meaningful higher-level references; it is a challenging problem, though. More details on this can be
found in Chapter 6.

Automatically generating text snippets, identifying, and suggesting potential references between a
given text and corresponding visualization can facilitate the authors of interactive data documents. It
can speed up the creation process and enable journalists and designers to create interactive documents
without worrying about the nitty-gritty details of programming. However, every automatic genera-
tion approach is prone to errors. Therefore, the goal should not be to replace a human author but to
facilitate them; one way is to combine automation with a user interface that would allow authors to
quickly fix problems—resulting from automation—leading to amixed-initiative interface. Before dis-
cussing such an authoring solution (Chapter 6), the next chapter presents a generic approach to fully
automate the generation of interactive data documents and instantiate the approach for two different
application domains.
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4
Generation of an Integrated Textual and Visual

Representation

W hile visualizations are easily generalizable to multiple datasets—for example, a scatterplot
can always show the relationship between two quantitative variables irrespective of the un-
derlying context—, textual explanations on the other hand are highly domain-dependent.

A sentence describing a scatterplot may change altogether if the data changes, and even moreso when
the context changes too (e.g., fromdescribing economic characteristics of countries to pollutants caus-
ing air pollution). Hence, human-written explanations do not suffice to ply such adaptability. It
would be tedious to manually author explanations for every possible scenario. For example, generat-
ing a profile page for every researcher working in the visualization community based on bibliographic
datawould require a largemanual effort. Alternatively, automatic text generation ismore adaptable to
changing data needs. Our approach relies on natural language generation to create text for describing
data-driven insights. This chapter argues for automatically detecting, prioritizing, and then summa-
rizing analysis insights as textual explanations and embedding these explanations in a visualization
system according to the visualization–text linking concepts discussed in Chapter 3. It presents two
interactive systems for bibliography and bivariate geographical data respectively to make data analysis
accessible. The novelty of the approach lies in the joint and integrated generation of natural language
text and visualization.

4.1 Automatic Generation Process

Interactive data documents leverage a joint representation of data comprising natural language text
and visualization to make the analysis process accessible and explicit. Notable analysis insights can be
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identified and summarized as textual explanations with explicit connections to visualizations. This
section describes an end-to-end automatic solution to produce an interactive data document from
raw input data. It walks through the generic generation process irrespective of a particular application
before its instantiation to two specific application scenarios.

4.1.1 Content Determination and Prioritization

Any approach involving natural language generation begins with content determination, which ba-
sically decides what information would be conveyed. For visualizations, often the raw data can be
shown, but the textual content requires substantial selection andprioritization. AlthoughSection3.7.2
reveals analysis insights and findings that are usually presented as text in a data-driven story, these find-
ings are grounded in a very specialized type of stories, i.e., the ones describing geographical data. As
a matter of fact, the content determination process greatly depends on the domain application and
target audience; it is hard to generalize beyond a specific application. Therefore, for a specific ap-
plication, the approach should first derive information needs. It can be done either by conducting
a requirement analysis from an end user’s perspective (Section 4.2) or an explorative study with do-
main experts (Section 4.3). Having derived the information needs, suitable visualizations (including
word-sized visualizations) should be chosen along with the determination of analysis insights that are
to be communicated through textual explanations. To fulfill the information needs, various types of
analyses can be performed, oftentimes leading to many results (or insights). It may not be possible
to realistically communicate all these results to the user. Doing so would make textual explanations
unnecessarily lengthy.

Thus, weneed to prioritize the findings, for instance, just listing themost prominent clusters instead
of all. Mostly these findings can be considered as lists of data items (e.g., co-authors of a researcher,
cities that suffer deaths as a consequence of storms) that need to be sliced to a reasonable length for
presentation in the text. The underlying assumption here is that every item has an importance value
attached, and hence, can be represented as a numeric value. For instance, in a list of co-authors (data
items), the number of joint publications can be considered as the importance value. Similarly, in a list
of cities, the number of casualties might be the importance value. The selection problem may sound
trivial—one could just select the top x items. However, if we as human authors of a text would select a
number of important items, we do not restrict ourselves to a fixed number, but choose a good cut-off
point dynamically. We try to avoid that the list grows too long, but we also do not cut off at a position
where the distance to the next item is small. Mathematically, the problem reduces to selecting a to b
items from a sorted list L = (li)ni=1 of n numeric items (n > b, li ≥ li+1). We select cut-off index
c ∈ [a, b] where the difference of list elements lc+1 − lc is maximal. However, there can be several
maximal differences—in that case, we pick the smallest index, formally:

c = min

(
argmax
k∈[a,b+1]

lk+1 − lk

)
(4.1)

Finally, the list is cut after element lc and hence only contains the top c elements. In the following, we
refer to this procedure as Equation 4.1.
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4.1.2 Text Generation

The next step is to convert the identified and prioritized list of analysis insights into natural language
text. To accomplish this, various types of generation approaches can be used.48 Some approaches use
artificial intelligence and are fully automated (e.g., Generative Pre-trained Transformer 324). These
approaches, however, require substantially large training datasets and are harder to control and, con-
sequently, difficult to integrate with the visualizations as their results cannot always be predictable.
Another type of approaches are template-based; theyworkwithwell-formed, pre-written phraseswith
gaps in them and produce the output text when these gaps are filled with data. For instance, an an-
nouncement generation systemat a train station canbe considered a very simple example of a template-
based system; the template “[train] will leave for [city] at [time],” where the gaps [train], [city], and
[time] are filled from a data table might produce: “ICE577 will leave for Frankfurt at 13:30.” Tem-
plate serves as the foundation of such text generation systems.

In contrast to the advanced text generation approaches, we use template-based text generation be-
cause of its good applicability and sufficient flexibility. Another crucial aspect is predictability, which
is of great importance for our use case as wewant to closely integrate generated text with a visual repre-
sentation of data. Commercial tools such asWordsmith* orArria NLG Studio†, or libraries like Sim-
pleNLG49 allow for building customizable templates for text generation and use a grammarmodel to
do the grammar-related tasks (e.g., subject–verb agreement, handling of singular/plural). However,
integratingword-sized graphics and establishing interactive visualization–text linkingwith the output
of such systems would require more effort. Consequently, we decided to implement our template-
based generation approach as decision graphs (shown in Figure 4.3 and Figure 4.13); the approach is
inspired by the work of Beck and others.17

Although there is a widespread impression that the template-based text approaches are not as well-
founded as the advanced (also known as plan-based) approaches, Deemter et al.176 contradict this no-
tion by sketching a template-based approach that has the same level of theoretical well-foundedness
and usefulness (including maintainability) as the advanced approaches. Template-based approaches
are, sometimes, referred to as “programs that simply manipulate character strings, in a way that uses
little, if any, linguistic knowledge” 137 However, our templates are better described as “making exten-
sive use of a mapping between semantic structures and representations of linguistic surface structure that
contain gaps.” 176

4.1.3 Document Integration

In contrast to other generation systems, a novel aspect of our approach is the coherent integration
and linking of jointly generated text and graphics. In addition to the positional linking provided by
the multiple-coordinated-views layout, the next step of integration is the embedding of word-sized
graphics in the lines of text, which already visually connects the visualized data to the related text
phrase. Moreover, the use of regular-sized visualizations, which are interactively linked to the text and

*https://automatedinsights.com/wordsmith
†https://www.arria.com
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word-sized graphics, allows exploration of data. The content is further connected by visualization–
text interactions (it is discussed inmore detail inChapter 5); it describes the linking of text, word-sized
graphics, and regular visualizations. For instance, clicking on linked text fragments highlights relevant
parts of the visualization and shows related data in a details panel. (Interactive) word-sized visualiza-
tions are included as part of the text templates; they can also be considered as parameters (gaps) in the
template. We further use info icons to mark the availability of additional explanations and present
this information on click.

The following two sections present two full-fledged systems, VIS Author Profiles and Interactive
Map Reports, and demonstrate the application of our automatic generation approach to two differ-
ent datasets and domains: namely bibliographic data and bivariate geographical data, respectively.
Although both systems follow the same process, there are considerable differences in terms of layout,
use of word-sized graphics, linking, and interactivity. These differences stem from the diverse nature
of dataset for each application domain, as well as from the different focus—Interactive Map Reports
emphasizes more on the generalization of the generation approach for different datasets (of the same
type but different context). Considering the broad target audience, an important consideration is to
make these systems more accessible and self-explaining. For this purpose, we describe the following
set of design principles that should be applied while instantiating the approach to any application
domain.

• Prioritize findings and keep them short – Since text is very explicit, the approach leverages
natural language text to explain the data and analysis results. With the increasing number of
insights, a danger with text, however, is that it can become lengthy. When the explanations
would make the main text become lengthy, it is important to prioritize insights or findings in
the order of their importance. Even in this case, the information should not be unavailable to
users. The longer or additional information should be made available on demand.

• Make algorithms and data transparent – The approach, especially the natural language gen-
eration, should not sound like a black box. As it often relies on heuristics and other algorithms,
it is important to provide background on our algorithms andmake underlying data relevant to
a context available on demand to allow users to validate the textual descriptions and build trust
in the descriptions.

• Better say nothing than say something wrong – The explicit description in text holds the
approach responsible for what it says; therefore, it is better to leave out descriptions if uncer-
tainty is too high and focus on information that is certain. Of course, uncertainty decreases
with a higher quantity of information (e.g., better data availability) or a higher quality of infor-
mation (e.g., more reliable heuristics). The approach can calibrate the parameters or heuristics
for when to omit or include a certain finding as part of an iterative fine-tuning process that will
usually be followed throughout the generation process.
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4.2 VIS Author Profiles: Bibliographic Data

Bibliographic data (publication records) contain rich information and canplay an important role in as-
sessing the expertise and experience of researchers, for instance, whenhiring facultymembers, forming
a programcommittee, or finding potential collaborators. Existing digital library systems show relevant
author-centric information, but only add little abstraction to raw publication records. For instance,
they abstract publication metadata to co-author relationships but only provide them as a list rather
than an explorable co-author visualization. Users have to go through different views and apply vari-
ous filters to gather the required information. As an alternative, visualizations that show publication
and author data have been suggested. Although existing visualizations provide high-level abstractions
about author profiles, their focus is often narrower, or they grow difficult to read and complex when
adding more information.

In contrast, VIS Author Profiles combines visualizations with natural language text and leverage
the advantages of both representations. It describes a novel way of presenting publication records
and related analysis results for scientific authors. VAP* is aWeb-based interactive data document that
generates author profiles in the form of interactive reports (Figure 4.1). The text describes general
statistics, research topics, and collaboration networks. In addition, interactive visualizations allow for
exploration of trends and extended collaboration relationships.

4.2.1 Analyzing Publication Records

We begin by discussing the application of analyzing publications records: In particular, we describe
author types and identify scenarios for which such analysis is targeted, how to frame the scope, and
what information an analyst requires.†

Author Personas

VAP focuses on authors of scientific papers, a group of researchers ranging from (Master’s or PhD)
students who have just published their first paper to senior researchers or professors who may have
already published hundreds of research papers. VAP aims at creating meaningful reports for all these
researchers. To be specific, researchers (authors) can be categorized into distinct personas in the sense
that each group reflects a certain role or stereotype:

• Student: A student (Bachelor, Master, or PhD level) who contributes to research projects
within a study program or dependent employment under the supervision of experienced re-
searchers.

*The interactive system is available online at: https://mrshahidlatif.github.io/vis-author-profiles
†The analysis of publication records for discovering information needs in response to the two scenarios—Recruiting

and Identifying Experts—was performed in a close collaboration with Fabian Beck. In the early stages of development,
while I was doing pre-processing of data and implementing the VAP system, we were continuously using it as a test bed to
derive high level information needs. Furthermore, Fabian conducted the comparison and assessment of existing systems in
how well they fulfil the information needs.
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Figure 4.1: Profile of author Ben Shneiderman. The text consists of three sec ons describing general informa on, research areas,
and collabora on rela onships. The visualiza on below provides informa on on joint work with co-authors on a meline. The side-
bar shows details on demand, whereas the top-right bar chart displays the temporal distribu on of publica ons. Badges at the top
summarize achievements. The cut-outs on the right are two different versions of the sidebar (list of collabora on groups and similar
authors).

• Researcher: A postdoctoral researcher, assistant professor, research scientist, or lecturer who
is conducting their first independent research and might start supervising students.

• Senior Researcher: An associate or full professor, senior research scientist, or senior lecturer
who can build on years of experience in research and supervision.

• Occasional Contributor: An outsider to the studied scientific community who occasionally
contributes to academic work within the community.

Please note that every author cannot be unambiguously assigned to a certain persona. This list,
however, assists in structuring the collection of authors and ensuring that our technique eventually
generates relevant descriptions for researchers of varying degrees of expertise.

Scenarios

Publication records of researchers provide information on their research activities, topics they have
worked on, and their collaboration network with other researchers. VAP focuses on the following
two scenarios that build on publication records and require an author-centric view; other use cases
like literature search or the analysis of a research field are beyond the scope of VAP.
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S1 – Recruiting: Every hiring procedure revolves around evaluating a candidate’s suitability for
the position at hand. In Academia, experience and accomplishments of a researcher closely relate
to the candidate’s publications. Hence, in addition to a formal CV, the publication record of the
candidate can provide rich information. Another scenario that can be considered a variant of this
scenario is admission to a funding program.

S2 – Identifying Experts: Unlike recruiting, where specific persons apply, finding experts for
an academic task or role is open to further suggestions. Besides comprehending the data of a single
researcher, it is also required to explore similar researchers. Typical examples include looking for a
reviewer for a research paper, selecting candidates for a program committee, or looking for possible
collaborators or supervisors. In these cases, expertise with respect to certain research topics as well
as experience regarding academic collaboration with other groups of researchers are key criteria to
contact a potential researcher.

Scope andData

Research articles, papers, and books are published in almost every field of science. However, the spe-
cific publication culture differs greatly between fields. Without knowing a research community, it
is hard to understand the specifics of a publication culture that limits the process of summarizing a
publication record in a useful way. Therefore, VAP focuses on publications from computer science,
which is our own research area and where we have a decent understanding of the publication culture.

The comprehensive availability of publication data is a prerequisite for building a system to gen-
erate author profiles. DBLP* offers publication metadata. To investigate research topics, we needed
keywords that authors assigned to their papers. However, this information is present neither inDBLP
nor in any general data collection for all computer science. Consequently, we decided to focus on the
visualization community, where the Visualization Publication Data Collection† provides such infor-
mation. The generated author profiles in VAP are restricted to authors listed in this data set, with
the integration of DBLP data to include publications of those authors that appear outside visualiza-
tion venues. This narrower focus allows us to consider the specifics of the visualization community,
for instance, its branching into scientific visualization, information visualization, and visual analytics.
Figure 4.2 shows an overview of the data sources, preprocessing, and final dataset.

Thefinal and curateddataset includes 5,086 authors and128,961publications tillAugust 29, 2017.
To retrieve research topics (often denoted by keywords), we enrich the data by categorizing the most
frequent publication venues (i.e., journals, conferences, workshops, etc.) into research communities
of computer science. A classification of 688 venues with 56 keywords provided a community assign-
ment for 61,469 publications. We further enrich these high-level keywords with additional keywords
extracted from paper titles based on a manually created mapping of 26 typical terms (e.g., visualizing
→ visualization). To identify subtopics within the visualization community, we leverage the author-
assigned keywords. Since they are inconsistent, we use the mapping that the KeyVis‡ project pro-

*https://https://dblp.org/
†http://www.vispubdata.org
‡http://keyvis.org/
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Figure 4.2: Scope and data pre-processing: VIS Author Profiles is restricted to generate profiles of authors available in the VisPub
dataset. However, it retrieves other publica ons of these authors from DBLP data.

vides to map them to a standardized set of keywords. We select a subset of such aggregated keywords
that—in our opinion—best reflects certain subareas of the visualization community and map these
to simpler terms, preserving their original meaning as far as possible.

InformationNeeds

The next step is to derive information needs for supporting users regarding the aforementioned sce-
narios (S1 and S2). A list of publications can provide rich insights about the research topics of a
researcher, as well as an overview of the researcher’s collaborators. Besides, publication statistics and
temporal evolution of publication activity hint at experience levels and academic achievements.

Firstly, general publication statistics provide an idea of how actively a researcher is publishing,
which could, often, be a central criterion for recruiting (S1). In computer science (particularly the
visualization community), both journals and conference proceedings can be considered premier pub-
lication venues. On average, however, journal articles have an estimated higher contribution because
of their greater length and due to the fact that proceedings might also comprise short papers, posters,
andworkshop contributions. Hence, distinguishing between journal articles fromproceedings papers
hints at the quality of the potential contributions of the publications. The temporal distribution of
publications indicates academic age and level of experience, which is not only relevant for recruiting
(S1) but also for finding an expert with sufficient experience (S2). A special publication is the PhD
thesis, where the author independently worked on a topic and achieved a first academic milestone.
First-author publications can be considered particularly relevant when hiring early-career researchers
(S1), because these might best express the research interests and abilities of the author (assuming that,
like commonly applied in practical computer science, the author sequence reflects contributions and
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does not follow alphabetic order).

IN 1 – General Informa on

IN 1.1What is the number of publications, overall and discerned by publication type?

IN 1.2What is the publication span and temporal publication distribution?

IN 1.3When was the PhD thesis published, and what is the ratio of first-author publications
(for early-career researchers)?

Secondly, it is important to understand areas of experience on different levels of abstraction for
selecting experts (S2). Here, we discern between research communities (e.g., visualization), subfields
(e.g., information visualization), and focus areas (e.g., set visualization). In addition, the temporal
evolution of these research areas can be relevant for discerning a researcher’s current and past research
direction. Research topics can lead to other researcherswhohave similar expertise. This can be helpful
in many cases. For instance, imagine a PhD candidate approached a researcher for the role of supervi-
sor, but the researcher has declined or is unavailable, and now the student needs to find somebody else
with a similar research focus and expertise. Frequent co-authors are excluded here, as they naturally
share and work on similar research interests; we discuss them in the next information need.

IN 2 – Research Topics

IN2.1What is themain research communityand its connections to other research communities?

IN 2.2What are subfields and focus areas within the main community?

IN 2.3What is the evolution of topics?

IN 2.4Who are other authors contributing to similar topics (excluding frequent co-authors)?

Finally, relationships among co-author help to see how a researcher is connected to a research com-
munity. This information is important when looking for references of a candidate (S1), gauging a
candidate’s influence, experience in supervising other researchers (S1), or searching for similar experts
(S2). A special kind of relationship is the supervisor (often, one of the last authors) and the supervisee
(often, the first author). This can be estimated from author sequence in publications. Former super-
visees already supervising other researchers indicate a certain influence of the supervisors. Moreover,
the co-authors may form noteworthy subgroups; for instance, an author might frequently publish on
a certain topic with a specific subset of co-authors.
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Table 4.1: Assessment of fulfillment of informa on needs in author profile pages of exis ng digital library systems; degree of fulfill-
ment: no ◦ ◦ ◦, partly • ◦ ◦, largely • • ◦, and yes • • •.

Informa on Need (IN) General Informa on Research Topics Collabora on Network

1.1 1.2 1.3 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4
number
of publi-
ca ons

temporal
pub. dis-
tribu on

PhD and
first-
author

research
commu-
nity

subfields evolu on
of topics

similar
topics

main
collabo-
rators

supervisors supervisees subgroups

ACM Digital Library • • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦
AMiner • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • ◦ • • • • • • ◦ ◦ ◦
DBLP • • • • ◦ ◦ • • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦
Google Scholar • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
ResearchGate • • • • ◦ ◦ • • ◦ • • • • • • ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Scopus • ◦ ◦ • • • ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Seman c Scholar • • • • • • • • ◦ • • ◦ • • ◦ • • ◦ • ◦ ◦ • • • • ◦ ◦ • ◦ ◦ • ◦ ◦

IN 3 – Collabora on Network

IN 3.1Who are themain collaborators and what is the temporal distribution of joint work?

IN 3.2Who are or were supervisors and are the collaborations still ongoing?

IN 3.3Who are or were supervisees, are the collaborations still ongoing, and are the former su-
pervisees already supervising?

IN 3.4What are subgroups of co-authors who have frequently worked together on certain topics?

4.2.2 Existing Systems and Author Visualizations

Several digital library systems already allow for the exploration of publication records of scientific au-
thors. This section evaluates these systems against the information needs and demonstrates that they
do not yet sufficiently satisfy all needs. Likewise, author-centric visualizations provide an explorable
representation of the same data but focus a lot more on the collaboration networks of researchers.

Assessment of Existing Digital Library Systems

The existing digital library systems can be broadly categorized into two types: (i) publication-centric
systems for exploring scientific literature in general, and (ii) author-centric systems for exploring the
research profile of a specific researcher. We focus our discussion on the latter systems because these
are more closely related to the scope of VAP. We exclude systems that do not have a dedicated author
profile page (e.g., IEEE Xplore).
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Google Scholar is probably the most widely used system for online searching of scientific literature.
It has a profile page for each (registered) author comprising information on affiliation, research topics,
a list of publications, co-authors, and citations. Likewise,Microsoft Academic is a competing system
and has a similar layout for author profiles. Unlike these two systems, the author profiles of ACM
Digital Library, DBLP, ResearchGate, and Semantic Scholar employ faceted browsing188 to subse-
lect the research articles along certain facets including the publication type, research topic, co-author,
or publication venue. Google Scholar, Scopus, and Semantic Scholar show citations and publication fre-
quency on a timeline as a bar chart. AMiner provides other visualizations, including a stream graph
of research topics, a Kiviat diagram of several publication metrics, and an ego-centric (simplified) co-
authornetwork. In addition to faceted article search, Semantic Scholar features an impact visualization
to showcase researchers who influenced (and who were influenced by) a specific researcher.

We evaluate the existing systems with respect to how well, if at all, they already fulfill the infor-
mation needs (Figure 4.2.1). To conduct an objective evaluation, we consider only the availability of
features, and do not take into account their usability or data quality issues. This enables an unbiased
and reproducible comparisonwhile rating the quality of features would necessarily be considered sub-
jective. Table 4.1 summarizes the outcomes of the evaluation; an extended interactive version of the
table is part of the supplemental material of the corresponding paper95; it provides brief explanations
for every rating.

• IN 1 –All the systems show a list of publications in chronological order. However, not every
system distinguishes between publication types ( IN 1.1) or shows the aggregated number of
publications on a timeline ( IN 1.2). While no system highlights publications of a researcher
as the first author, PhD theses—though rarely contained in the data sets—can be retrieved in
those systems that allow for filtering records by publication type ( IN 1.3).

• IN 2 – In most cases, research communities ( IN 2.1) can be indirectly derived from ag-
gregated venue information (e.g., DBLP) or through author-selected keywords (e.g., Google
Scholar). In some systems, research communities can be directly identified as automatically
mined subject areas (e.g., Scopus). Similarly, more detailed information on subfields is indirectly
or directly available in most systems ( IN 2.2). On the contrary, the analysis of the evolution
of research topics is only supported in AMiner and Semantic Scholar; both systems provide
a timeline ( IN 2.3) of multiple research topics using a stream graph. Finally, AMiner is the
only system that indicates a list of other researchers that are working on similar research topics
( IN 2.4).

• IN 3–Most of the existing systems list frequent collaborators as list, but—except forSemantic
Scholar—without temporal distribution of research publications ( IN 3.1) as a result of these
collaborations. Unlike other systems, AMiner is the only system that explicitly highlights su-
pervisors and supervisees of an author ( IN 3.2 and IN 3.3). None of the existing systems—
except for DBLP—considerably supports the identification of frequent collaboration groups
of an author ( IN 3.4).

51



To summarize, on the one hand, there are systems likeDBLP andGoogle Scholar that have an easy-
to-use interface but they are restricted to only fulfill a smaller fraction of the information needs. On
the other hand, systems like AMiner and Semantic Scholar already satisfy a good proportion of the
information needs. Although these systems can be extended toward fulfilling the remaining informa-
tion needs, they are already overloadedwithmany views including lists, tables, and visualizations. The
addition of further informationwould clutter their display and consequentlymake them overwhelm-
ing. VISAuthor Profiles suggests the use of natural language to describe a large variety of information
in an easy-to-understand and compact way. It aims at fully supporting all the information needs.

Author Visualizations

VISAuthorProfiles focuses on individual authors and aim to summarize their publication activity and
co-author collaboration networks. From the social network analysis perspective, this can be consid-
ered as an ego-centric perspective and existing research in this regard is relevant that we briefly describe
in the following.

Some ego-centric network visualizations have been studied for understanding the temporal evolu-
tion of co-author relationships. One such approach encodes years as rings around a researcher profile
that are subdivided by color-coded co-authors.67 Another technique uses links in a node-link diagram
to encode temporal distributions of the joint publications.139 While these two approaches focus on
the aggregated data, other existing works also extend such representations to include temporal in-
formation. For instance, Shi et al.154 extend the nodes in an ego-centric visualization to a timeline
and connect co-authors to points in time when a jointly authored publication appeared. Similarly,
EgoNetCloud105 uses a single timeline to which the co-authors are, then, arranged in independent
and individual node-link components along the timeline of the profile author. Another very similar
system, egoSlider 185, also shows author-specific timelines, where clusters of co-authors vertically in-
teract at points in time when the joint research happened. Going beyond static graph visualizations,
MENA59 represents the ego-centric co-author network as a dynamic graph using small multiples.
Fung et al.46 draw inspiration from a botanical tree visualization and suggest summarizing collabora-
tions in each branch of a time span with co-authors encoded as leaves.

Besides ego-centric author visualizations, several other visualization approaches include other rel-
evant information in addition to co-author graphs. The collaboration relationships among a group
of researchers are often demonstrated in the form of a co-author graph.5,61,89 These systems often
integrate additional information, for instance on research topics, in the coloring of the nodes89, or
as a special topic–collaboration nodes5. CiteWiz41 combines co-author networks with keyword co-
occurrence networks and citation impact visualizations. Similarly, PivotSlice193 uses faceted explo-
ration to investigate an author’s publication records based on keywords, citation, and publication
venue information. Another very similar system, PivotPaths38, links author nodes, paper nodes, and
keyword nodes to support interactive exploration. SurVis15 associates word clouds of keywords and
authors in a faceted browsing approach for effectively managing and searching literature collection;
though SurVis is a publication-centric system rather than an author-centric one. For learning about
further approaches on the visualization of scientific bibliographic datasets, interested readers can refer
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to the survey of Federico and others.42

VIS Author Profiles includes a visualization related to the aforementioned ego-centric visualiza-
tions to show the collaboration network of an author. However, it is only a small part of the inter-
active document—VAP also integrates other related versatile information as textual explanations to
the profile description, for instance, covering research topics and a summary of general author infor-
mation. In general, this is the most distinguishing factor, and we are not aware of any approach that
augments such visualizations with generated textual descriptions.

4.2.3 Generation Pipeline

The first step in our generation pipeline is the pre-processing of DBLP publication records. We in-
tegrate this data with the Visualization Publication Data Collection and enrich it with keywords as
discussed in Section 4.2.1. All pre-processing is done in Java. The front end is written in HTML and
JavaScript. For producing the visualizations, we use Scalable VectorGraphics (SVG) andD3. The text
generation templates are implemented as part of the front-end code in JavaScript.

To build the templates, we followed an informal iterative approach. In every iteration, we drafted
a text fragment based on an author’s publication record. We implemented a base version of it as a
template and then kept on refining and fine-tuning the template by testing overmany random authors
belonging to various personas and special cases. We continued the iterations until the text covered all
the information needs discussed in Section 4.2.1. With this approach, we received quick results and
continuously tested the generated text. Step by step, we also integrated interactions and visualizations
in a similar fashion.

Directed acyclic decision graphs (Figure 4.3 gives an example) generate text from the parameterized
templates. An author’s profile consists of three fixed paragraphs (one for each group of information
needs) and we define a decision graph per paragraph. The sequence of text fragments (usually, a text
fragment represents a sentence or phrase) within a paragraph is fixed. In the decision graph, start
and stop vertices mark the beginning and end of the text generation process, text vertices (rectangular
nodes) add a new text fragment to the paragraphwhen traversed, and finally decision vertices (rounded
rectangular nodes) determine the path based on conditional statements. The path is deterministic,
and any traversal from start to stop vertex results in a paragraph. Hence, the text fragments need to be
designed to form well-formed sentences regarding all possible paths.

Our approach is flexible and produces grammatically correct sentences if all conditions are carefully
checked. In the templates, we take into account the already generated text and connect it to previous
sentences with appropriate conjunctions. The use of numerals (e.g., one, two) in place of numbers
(if a paragraph only contains small numbers less than 10) and rounding down larger numbers to the
nearest fifties make the text more natural to read. We use adjectives to characterize the objects we are
describing (e.g., long-lasting collaboration) and consider different tenses for a correct referral to time
spans.
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4.2.4 The System

VISAuthor Profiles (VAP) is aWeb-based visual analytics tool that generates profiles for authors of the
visualization community describing their publication record. It is designed to fulfill the information
needs discussed in Section 4.2.1 ( IN 1 –General Information, IN 2 –ResearchTopics, and IN 3
– Collaboration Network).

Figure 4.1 shows the user interface of VAP. It uses a two-panel layout. The central panel displays
the textual description of an author profile and is divided into three paragraphs describing (i) general
information, (ii) research topics, and (iii) the co-author network. The co-author publication timeline
visualization at the bottom of this panel provides insights into the joint work by presenting all co-
authors and their yearly publications. The right sidebar is reserved for displaying details on demand,
such as additional explanations and publication records. The ego publication timeline at the top right
provides temporal distribution of individual, joint, and topic-filtered publication recordswith respect
to the selected profile author. Enlarged versions of the word-sized visualizations are also displayed in
this bar chart. The text produced in boldface characters is interactive and allows for exploring the
underlying publication records by presenting them in the sidebar. Author names in the publication
list and anywhere on the page are links to their profiles. Please note that the authors, not available
in theVisualization Publication Data Collection, are not explorable through our tool and are marked
with an asterisk (*). An info icon in the text indicates that users can explore additional information
by clicking and loading this information in the sidebar.

To provide a quick overview of an author’s experience, VAP uses digital badges and displays them
next to the author’s name in the header as shown in Figure 4.1. It is a concept applied in computer
games and is often used for gamification (i.e., to make a non-game interface or tasks more enjoyable
or increase the motivation of users through integrating game aspects). These badges are indicators
of accomplishments and skills. VAP awards gold, silver, and bronze badges based on various levels of
experience in terms of the number of published papers, length of active publication time, and super-
vision of other researchers.

For instance, the golden sup-supervisor badge (third from left) indicates that the supervisees of the
author have also started supervising (i.e., is following an academic career) and the silver article badge
(fourth from left) highlights an accomplishment of publishing thirty or more research papers. Badges
are intended to roughly match the author personas (cf. Section 4.2.1): students can realistically earn
bronze badges, but as soon as authors have a first silver badge, they can be considered researchers, and
senior researchers for a first golden badge. Only occasional contributors are harder to link to the badges,
as they might be active for a long time but do not publish many papers.
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Figure 4.3: Decision graph explaining the flow of text genera on for the first paragraph of a profile. Rectangular nodes represent
text ver ces, whereas nodes with rounded corners are decision ver ces. The traversal of any path from start to end node produces a
meaningful paragraph.

General Information

The first paragraph of the main text gives an overview of the publication statistics of the author and
aims at fulfilling the general information needs ( IN 1). Figure 4.4 shows the text for author Ben-
jamin Bach as an example of a researcher. It is generated by traversing the decision graph shown in
Figure 4.3 according to the following path:

Start→ #Publications? (I)→ Last pub. year? (I)→ Publication span (years)? → Active re-
searcher (II)→ Temporal pattern? → Temporal pub. trend→ Publication types→ #Publica-
tions? (II)→ First author publications→ PhD thesis? → PhD thesis→ Stop.

In general, the first sentence starts by reporting the total number of publications ( IN 1.1) and
highlights the current status as active if the last publication appeared no earlier than five years ago
(nodes Active researcher (I) and (II) in Figure 4.3) or span of research if the researcher is not active
anymore (nodes Inactive researcher (I) and (II)). Active longtime contribution (≥ 20 years), like for
author Ben Shneiderman (cf. Figure 4.1), is also indicated ( IN 1.2 ; node Longtime researcher).
The adjacent sparkline shows the temporal distribution of publications in more detail ( IN 1.2 –
publication span).

Wemanually analyzed the publication behavior of a set of authors across all personas to extract the
most commonly occurring temporal patterns, which were then implemented and detected automati-
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Figure 4.4: Excerpt (general informa on) from Benjamin Bach’s profile.

cally. For each detected pattern ( IN 1.2 – temporal publication distribution), we add a clause (node
Temporal pub. trend). As two of the most frequent and notable patterns, we currently highlight if
authors published more than half the papers in any third of their publication history and exceptional
peak years greater than twice the secondmaximum value in the time series of yearly publications. Au-
thor Bach has a clearly growing publication rate, and hence most publications appeared in the last
third.

Next, wediscern thepublications as journal articles andproceedings papers (nodePublication types)
with respective sparklines attached ( IN 1.1 – publication types).

Considering the importance of publications as the first author for early-career researchers, the third
sentence states the number and temporal distribution of suchpublications as text and in a sparkline re-
spectively ( IN 1.3–first author publications; node First author publications). For senior researchers,
this number is not as important anymore and hence skipped (cf. Figure 4.1).

Finally, information about the author’s PhD (dissertation title, institution, and year of publica-
tion) is described in the last sentence of this paragraph ( IN 1.3 – PhD thesis; node PhD thesis)—
unfortunately, this data is only available for a fraction of the authors in DBLP. Profile authors with
one or only a few publications have a largely reduced version of this paragraph in their profile.

Research Topics

The following second paragraph aims at satisfying the information needs corresponding to the re-
search communities and evolution of topics ( IN 2). We analyze the publications enriched with
venue-specific keywords and author-specified keywords as described in Section 4.2.1. Figure 4.5 shows
an excerpt of the profile of senior researcher DanielWeiskopf. Since we restrict ourselves to the visual-
ization community, this paragraph starts with the description of authors’ status within the visualiza-
tion community ( IN 2.1 – research community). We discern between core member, member, and
contributor depending on the number of research papers that are classified under the visualization
keyword. We describe the author as active if themost recent publication appeared with in the last two
years. Next, we discuss relevant subfields for the visualization community: information visualiza-
tion, scientific visualization, and visual analytics, which appear in the order of frequency in that they
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Figure 4.5: Excerpt (research topics) from Daniel Weiskopf’s profile.

are assigned to the author’s publications ( IN 2.2 – subfields). The focus areas within visualization
research are reported in the following sentence ( IN 2.2 – focus areas).

Then, other research areas are listed the author has contributed to, again in the order of keyword
frequency ( IN 2.1– connection to other communities). We discern current and past research topics
(since the authors of the examples in Figure 4.1 and 4.5 are still actively contributing to all listed com-
munities, this part is skipped here). In both cases, we limit the list to three to six keywords according
to Equation 4.1. The communities are highlighted in blue, subfields in light blue, and research top-
ics in light gray. Those keywords marked in bold font are linked with publications and are listed in
the sidebar on click. Their temporal evolution is shown as an overlay on the ego publication timeline
( IN 2.3 – evolution of topics). A comparison of the evolution of research topics with the collabo-
ration timeline provides further insights into the impacts of collaborators on the research interests of
the profile author.

For the identification of authors having similar research interests ( IN 2.4), we compare the re-
search interests of the profile author with all other authors within the visualization community. We
compute their cosine similarity based on keyword frequency vectors. Since keyword coverage is not
optimal in our data, we restrict the similarity computation to authors with at least 30 publications
to avoid marking less similar authors as similar. Since frequent collaborators are likely to share most
research interests, we also exclude co-authors that share more than two publications with the profile
author from the comparison. We use again Equation 4.1 to cut short the list to the three to five most
similar authors in the last sentence of this paragraph. A longer list of similar authors is available on
demand (cf. Figure4.1, bottom right).

Co-AuthorNetwork

To analyze the collaboration network formed within the co-authors ( IN 3), we explore pairwise col-
laborations as well as groups of researchers working together. Figure 4.6 shows the textual description
of the co-author network of researcher Katherine E. Isaacs along with the co-author publication time-
line.

This paragraph first describes the pairwise collaborations among the most frequent co-authors
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Figure 4.6: Excerpt (co-author network) from Katherine E. Isaacs’s profile including the co-author publica on meline. Gray bars indi-
cate the number of publica ons per year of the co-author, while red bars show joint publica ons with Isaacs.

( IN 3.1–main collaborators). The frequent three to eight co-authors are selectedusingEquation4.1
from the list of all co-authors based on the number of joint publications. The most frequent collabo-
rations are described along with their current status (e.g., still ongoing, ended). The use of adjectives
such as prolonged and long-lasting highlights whether the span of collaboration is more than 15 years.
If the collaboration has ended, we mark it with the total span of years along with the number of joint
publications. Adjacent sparklines show the temporal distribution of joint work. Users can load the
comparative view of joint publications as a proportion of the profile author’s overall publications in
the ego publication timeline as shown in Figure 4.1. Further exploration of the joint publications is
possible by interacting with this chart—the publications of a selected year appear in the right sidebar,
sorted in alphabetical order of their titles.

In the scientific community, two roles of an author are of significant importance; i.e., supervisor
and supervisee ( IN 3.2 and IN 3.3). To identify these roles, we use a heuristic method with two
assumptions: (i) the name of the supervisor appears in the last positions in an author sequence of a
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publication and (ii) the name of supervisee appears at the first position. All co-authors of the pro-
file author who started publishing at least five years prior to the profile author are added to a list of
potential supervisors. Then, the potential supervisors who appear more frequently before the profile
author in their joint publications than after are discarded. Finally, a potential supervisor is identified
as a supervisor if, in fifty percent of their joint publications, the potential supervisor appears at the
last position. Analogously, supervisees are computed. We highlight the author roles while describing
their collaborations with adjacent sparklines as introduced above. For senior researchers like author
Ben Shneiderman (cf. Figure 4.1), the list of supervisees is quite long. We, therefore, list more super-
visees in the following sentence after cutting down the list to a maximum of five further supervisees
by applying Equation 4.1 and using their number of joint publications with the profile author as a
rating. Sparklines again provide details on the temporal distribution of joint work. To find if the su-
pervisees of the profile author are already assuming the role of supervisors ( IN 3.3), we look for the
supervisees of the supervisees and describe this in the fifth sentence. Since our approach could not
detect a clear supervisor or supervisees for Katherine E. Isaacs, her profile text does not comment on
this (cf. Figure 4.6).

For identifyingmeaningful subgroups among the co-authorswhohave frequentlyworked together
with the profile author on the same publications ( IN 3.4), VAP employs formal concept analysis
(FCA).182,47 FCA provides paired sets of co-authors and joint publications (formal concepts) that are
maximal both regarding co-authors and publications; that means, there is no other co-author that
has also contributed to all identified publications and there is no other publication that has been co-
authored by all identified co-authors. To focus on higher-order groups of co-authors and substantial
collaboration, we discard formal concepts with less than two co-authors (n < 2) and less than three
publications (m < 3). For all other formal concepts, we compute a score

√
n ·m that rates both larger

groups and groups with more publications higher. We apply a mitigating transform on the number
of co-authors

√
n because otherwise large groups of co-authors with only a few publications might

dominate the scores. This ranking results in an ordered list of groups of co-authors. However, groups
in the list might significantly overlap with respect to co-authors, for instance, one being a subgroup
of the other. Since we want to avoid listing similar groups, we sweep through the list and discard
all groups that share a high similarity with any of the previously listed groups (Jaccard coefficient of
≥ 1/3 comparing the two sets of co-authors). Among the list of groups sorted based on score, we
select the top two groups according to Equation 4.1 for presenting in the profile text along with the
number of joint publications and research topics. A longer list of collaboration groups and group
publications is available on demand and is presented in the sidebar.

Whereas only the most frequent collaborations are described in the text, the diagram showing the
co-author publication timeline below the text (cf. Figure 4.6) allows for the exploration of all collab-
orations in detail. It displays distributions of the co-author’s publications per year (gray) as well as
those joint with the profile author (red) on a timeline. The timeline begins with the starting year of
the most senior author in the visible co-authors, with a vertical red line pointing at the starting year of
the profile author. The active spans of co-authors aremarkedwith a light gray background. TheMore
button allows for expanding the list. The number in parentheses after the co-author’s name shows the
number of joint publications. The gray and red bars are selectable, and the respective publications are
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Figure 4.7: Author profiles of several researchers falling into different author personas. For each persona, VIS Author Profiles has
successfully generated meaningful profiles. (These example profiles span across two figures; please see the next figure for two more
author profiles).
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Figure 4.8: (Con nua on of Figure 4.7) Two author profiles for the senior researcher persona.

displayed in the sidebar. This visualization provides an easy way to explore temporal variations in the
collaborations, possible shifts of collaborators from one co-author to another, and the span of joint
work.

4.2.5 Author-Profile Gallery for Different Personas

To demonstrate the flexibility of the generation approach, Figure 4.7 shows six author profiles of re-
searchers with varying levels of experience and expertise. VIS Author Profiles does not automatically
determine a researcher’s persona. Instead, researchers are indirectly associated with personas based on
their experience, such as the number of publications, active years in research, and whether they have
supervised other young researchers.*

El-Assady is probably a student working toward her PhD in the visualization community. She has
not earned any badges yet, and there is not enough data to comment on her research topics and collab-

*It is important to note that publication records in VAP are included only until August 2018. Hence, the author
profiles might already be outdated. Since an author’s profile text is automatically generated, there might be some errors.
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oration groups. Yet, her co-author publication timeline reveals other researchers she is working with,
all seniors to her. Shareef may relate to the persona occasional contributor as he is active in research
for a very long time (20+ years) but have only a few (11) publications in the visualization community.
He has also collaborated in different time spans with different researchers (e.g., with Yagel during
1995–1999, with Mueller between 1997–2006), that might be another indication of him being an
occasional contributor. Baltes and Ziemkiewicz are early career researchers who already earned bronze
or silver badges. They may not yet be supervising other researchers but are contributing actively to
the visualization community. Since the data is not enough in both of these cases, VAP has not listed
the similar authors to Baltes and Ziemkiewicz. Yi and Keim are senior researchers as evident from the
silver and gold badges on their profiles. They have many publications and as a result, VAP was able
to identify more insights about them: For instance, see the second paragraph of their profiles to learn
about the evolution of research topics and similar researchers, and look at the third paragraph to know
more about their collaboration groups. While Yi has supervised other researchers (supervisor badge),
Keim has some supervisees who are already supervising other researchers (sup-supervisor badge).

Through these six author profiles, it becomes clear that VAP can produce meaningful interactive
author profiles for researchers having any level of experience and expertise. Moreover, mirroring the
two initial motivating scenarios (cf. Section 4.2.1), the corresponding research paper95 also demon-
strates the usability and application of the approach in a realistic setting; interested readers can consult
the last section of the paper.

4.3 Interactive Map Reports: Bivariate Geographical Data

The interplay of two variables reveals how one potentially influences the other. In a geographic con-
text, this influencemay depend on the geography of the region. For instance, stormsmight causemore
fatalities in densely populated areas. Thematic maps are mostly used to visualize variations in the val-
ues of a variable across geographical space. The variable is mostly encoded as color23, size, and shape
of the geographical regions (cartograms), or by overlaying specific symbols on top of the map.45 To
reveal their relationship, however, both variables need to be visualized simultaneously.

Prior research has generalized the concept of map visualization to bivariate66,22 and multivariate
geographic data.84 The work of Elmer40 presents a taxonomy of bivariate map visualizations. This
taxonomy is based on various combinations of visual characteristics and is adapted from the work of
Nelson127 and MacEachren.108 According to Elmer40, although there are more than eleven differ-
ent kinds of bivariate maps—identified from six cartography books—, only two have been generally
employed in the existing literature. These two types include bivariate choropleth maps and choro-
pleths with overlaid graduated symbols (similar to the ones shown in Figure 4.9). The bivariate map
visualizations, by construction, are visually more complex and harder to comprehend in comparison
to their univariate counterparts. Especially inexperienced users might face problems in effectively in-
terpreting the bivariate visualization. And even experienced users might find it hard to detect spatial
patterns and spot outliers. Hence, there is a need to make bivariate geo-statistical visualizations more
self-explaining and guide users through the data analysis.
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Figure 4.9: A map report describing loss of lives due to storms in the USA during 2017. The map visualiza on uses two different
encodings to visualize a focus and a context variable. The narra ve (right column) provides an overview of the data analysis. Graph-
ics in the text help establish linking between the two representa ons. Users can get addi onal details on a selected region or on a
comparison of two selected regions (dashed rectangles).

To facilitate the analysis of relationships among variables in a geographical setting, additional vi-
sualization can be linked with bivariate maps. For instance, Monmonier123 presents visual statistical
summaries of variables as a scatterplot matrix alongside a bivariate map. However, though the scat-
terplot matrix reveals relationships among statistical variables, once again, it suffers from a certain
complexity that may not be suitable for inexperienced visualization users. The use of textual explana-
tions for bivariate maps can increase the self-explainability and understandability of visually cluttered
visualizations—multiple encodings may render them less effective.44

Augmenting a bivariatemap visualizationwith a textual explanation and interactively linking both
representations can significantly improve users’ abilities to understand the data. Interactive Map Re-
ports (IMR)* is aWeb-based tool that automatically generates a textual narrative alongside amap visu-
alization to describe the analysis results for bivariate geo-statistical data. Figure 4.9 shows an example;
it explains fatalities caused by storm events in the USA, 2017. The reports summarize noteworthy
patterns and relationships among the variables. In addition, they provide explanations on selected re-
gions and the ability to compare any two regions of interest. The color and shape encoding of variables

*The interactive system is available at: https://mrshahidlatif.github.io/interactive-map-reports.
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Figure 4.10: Bivariate map visualiza ons used in the explora ve study. (Le , P1) Deaths caused by storms in various states of the
USA. (Right, P2) Average life expectancy and health expenditures across Europe.

in the textual narrative help establish quick linking of respective regions across both representations.

4.3.1 Scope, Data, and Content Determination

The generation process begins with the selection and prioritization of the content that is to be pre-
sented. In this regard, an explorative study conducted with two visualization experts provides an
overview—the results align with the findings of empirical studies (cf. Section 3.7.2)—and serves as
the basis of Interactive Map Reports. Before delving into the details of the explorative study, we first
introduce the scope and dataset.

Scope andData

IMR focuses on the analysis of bivariate geo-statistical data—measurements of two numerical vari-
ables for a geographic region. Particularly relevant are those scenarios where one variable potentially
influences the other; for example, life expectancy may depend on the amount of health expenditure.
Similarly, the intensity and number of storms can influence the number of lives lost. In the following,
we refer to the variable that potentially depends on the other as the focus variable and the other as the
context variable. If causality can be assumed (e.g., because it is obvious or there exists a reasonable
explanation for it), it points from context to the focus variable. In our analysis, we use three levels of
geography, namely regions (e.g., USA), groups of subregions (e.g., group of states), and subregions
(e.g., individual states). We use the storm–death dataset as our running example.

Explorative Study

To get an overview of what aspects to consider while describing bivariate geo-statistical data, we con-
ducted an explorative study with two participants (P1, P2). Both participants were PhD students
working in the field of visualization but were not involved in this project. They were presented with
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an interactive version of a bivariate map visualization as shown in Figure 4.10. In these visualizations,
the focus variable was encoded in the radius of filled circles placed on top of the choroplethmap show-
ing the context variable. The participants were asked to summarize the visualization (Task I), describe
one particular subregion (Task II), and provide a comparative view of two given subregions (Task III).
They had the possibility to write as much text as they wanted and there was no time limit. Below are
the findings of the explorative study organized per task:

Task I – Summary: Both participants began with the description of the subregions having
minimum and maximum values of the focus variable, followed by the explanation of outlying
regions. P1 included information on a possible correlation between the variables. P2 described
the spatial trend of the context variable. Finally, both participants noticed and described abrupt
changes in values between neighboring subregions.

Task II – Region-specific description: P1 described the values of both variables for the given
subregion, followed by naming the other regions that show similar behavior, whereas P2 pro-
vided a comparison with themean values. Further, P2 highlighted a specific subregion that has
higher values of the context variable compared to its direct neighbors.

Task III –Comparison: Bothparticipants compared the values of each variable for two regions
and described them in a single sentence. P1 included more details about one subregion, as one
of the subregions presented to P1 for comparison was an outlier.

The results show that the prominent aspects are the reporting of outliers (univariate and bivariate),
comparisons of regions with their neighbors, variations of variable values across space, and subregions
that show similar behavior. In addition, a correlation and variations of values across different sub-
regional levels (e.g., parts of Europe) might reveal interesting patterns and are worth reporting. For
instance, in Figure 4.10 (left), the correlation is much stronger in the Southern states (ρ = 0.753)
compared to the overall correlation for the whole country (ρ = 0.400).

4.3.2 Analyzing Bivariate Geographic Data

Next, we discuss statistical approaches to automatically identify the content that will be a part of the
narrative. In contrast to basic information such as statistical ranges, correlation, and extrema; the
detection of univariate outliers, bivariate outliers, and regional differences requires sophisticated data
analysis approaches.

Univariate Outliers

The importance of extreme values (minimum and maximum) in a dataset varies depending on the
distribution of variables. A Tukey’s boxplot174 uses measures namely, the first quartile (Q1), median
(Q2), third quartile (Q3), and interquartile range (IQR = Q3 − Q1) to describe a univariate dis-
tribution. Based on Tukey’s boxplot, Hoaglin and others63 categorize the observations smaller than

65



0 3,621

0 184

No. of storms

No. of deaths
Nevada

Florida

Figure 4.11: Box plots showing the distribu on of deaths caused by storms in the USA during 2017. The dataset contains univariate
outliers in both variables.

Q1− 1.5 · IQR or larger thanQ3+ 1.5 · IQR as the potential candidates for outliers. Although some-
what arbitrary, this threshold for detecting outliers works well based on their experience with many
datasets.

We analyze each variable individually and identify the univariate outliers, i.e., the points lying out-
side the range: [Q1 − 1.5 · IQR,Q3 + 1.5 · IQR]. Figure 4.11 shows the distribution and outliers
corresponding to each of the two variables in our exemplary dataset.

Bivariate Outliers

We are also interested in subregions that demonstrate different behavior compared to the rest of the
subregions based on the values of both variables. Such a bivariate outlier may not necessarily be an
outlier in both univariate variables. For instance, although the states of Nevada and Florida in Fig-
ure 4.11 (marked with red dots) are not outliers in variable storms, they are bivariate outliers as shown
by the bagplot (Figure 4.12). A bagplot144 is a bivariate generalization of a boxplot and visualizes the
distribution, spread, and outliers jointly for both variables. Three main components of a bagplot are:
the bag containing 50% of the observations, the fence usually obtained by inflating the bag by a factor
of 3 separating inliers from outliers, and the loop, that is the convex hull of the points lying between
the bag and the fence.

The detection of bivariate outliers depends on the shape or distribution of the data, which is often
characterized by a covariancematrix. To identify outliers, we use awell-known distancemeasure—the
Mahalanobis distance—which takes into account the covariance matrix and is defined as the distance
between an observation and amultivariate (here, bivariate) distribution. Mathematically, this distance
is specified as:

d =
√
(x− μ)TS−1(x− μ) (4.2)

where x = (x1, x2) is the vector of variables, μ = (μ1, μ2) is the vector of means, and S is a two-
dimensional symmetric covariance matrix. The resulting value d represents theMahalanobis distance
of the point x from the mean μ of the distribution. For a constant value of d, Equation 4.2 defines a
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Nevada

Florida

Figure 4.12: Bagplot of deaths caused by storms in the USA during 2017. The bag (blue) contains almost 50% of the data points, and
the loop (light blue) includes points outside the bag but inside the fence. Bivariate outliers are marked as red dots.

two-dimensional ellipsoid centered at μ. The probability of ellipsoid follows a χ2 distribution with p
degrees of freedom.57 Therefore, the ellipsoid satisfying

(x− μ)TS−1(x− μ) ≤ χ2p(α) (4.3)

has a probability of 1− α. Hence, for p = 2 (bivariate case) and α = 0.5⇒ χ2 = 5.99. Equation 4.3
states that anyobservation is considered abivariate outlier forwhich the squaredMahalanobis distance
is greater than 5.99.

Geospatial Trends

The behavior of any statistical variable can vary considerably depending on the geographical subre-
gion. For instance, Figure 4.9 shows that the coastal states of theUSA have experienced a higher num-
ber of storms, and consequently sufferedmore casualties. To identify this behavior, we take a regional
subdivision of the overall geographic region under consideration. The United Nations geoscheme
provides a classification of the countries of the world into groups. For instance, European countries
are grouped into Eastern, Western, Northern, and Southern countries. Similarly, the regional clas-
sification of the USA discerns West, Midwest, Northeast, and South. Using this grouping (or other
externally provided groupings), we can look for differences between these groups of subregions. In
particular, we detect if there is a strong positive or negative correlation between focus and context vari-
able in one or more of these groups. Besides the bivariate outliers, an identification of subregions that
show different behavior compared to the adjacent subregions can be of interest. For instance, Fig-
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ure 4.9 shows that the state of Nevada has different statistics with respect to both variables compared
to its neighboring states: Arizona, California, Idaho, Oregon, and Utah. To this end, we compare the
values of each variable for every subregion with its neighbors to identify the regions showing different
statistics.

4.3.3 Adaptable Text Generation

Just like VIS Author Profiles, a directed acyclic decision graph guides the text generation flow and
produce text from pre-written templates. Figure 4.13 shows the decision graph that is responsible
for generating the main part of our map reports. To achieve flexibility in narration and to make the
templates adaptable to different datasets (of the same bivariate geographic type), we leverage user-
defined parameters that describe the metadata about a scenario. Through these parameters, we add
semantics and domain-specific vocabulary that cannot be automatically detected from the raw data.
The list of parameters along with short descriptions and possible values is shown in Table 4.2.

The parametersRegion and Subregion Level define the name of the region and the name of the level
of detail for regions, respectively. The parameters Focus and Context Type describe the type of both
variables that can be selected from a list of predefined values. The choice of adjectives, quantifiers,
and verbs depends on the variable types. For instance, for the type casualties, possible phrases are: “X
suffered several casualties”, “X reported a large number of deaths”, or “X lost many lives”. Similarly, for
the variable typemonetary, a possible phrase is “X spent a large amount on Y” or “X spent less on Y”.
Depending on the variable type, we pick verbs from a list of synonymous verbs to make the text more
interesting and natural to read.

In addition to the quantifiers and verbs, the choice of adverbs (e.g., better, worst) depends on the
context or situation under consideration. We describe three possible situations:

• Positive: Situations where higher values of the focus variable are desirable. For instance, higher
values of average life expectancy are commonly considered to be desirable.

• Negative: Situations that favor lower values of the focus variable. For example, cities reporting
less number of fatalities occurring in road accidents would be considered as better.

• Neutral: Situations that do not clearly favor small or large values of the focus variable. For in-
stance, only depending on a country’s situation (e.g., aging society or unemployment of young
people), lower or higher birth rates are desirable.

Combining the variable typewith the situation, we cannowusemore expressive and specificphrases
to describe the results. For Focus Type← demographic-indicator and Situation← positive, a possible
phrase could be: “X reports better values of life expectancy compared to Y.” Similarly, the Context Type
← incidents, but situation← negative could result in: “X was the safest subregion due to the least num-
ber of accidents.”

Another consideration is that the presence of a strong correlation may wrongly be interpreted as
causal. Correlation, however, does not always imply causality and it is not possible to automatically
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Figure 4.13: Decision graph that shows the text genera on process. Round-rectangular decision nodes control the path, while rectan-
gular text nodes add a text fragment when visited. The green path marks the narra ve genera on for the example in Figure 4.9.

extract causality from the numerical data. Therefore, the parameterCausalityhelps in avoidingwrong
interpretations about causality.

4.3.4 The System

InteractiveMapReports is aWeb-based system that generates visual analysis reports for bivariate geo-
statistical data. Figure 4.9 shows the interface of our tool and the components of the generated report.
A map visualization on the left visualizes two variables. The right column presents the generated
narrative, consisting of an overview and additional details on the selected subregion or a comparison
of any two selected subregions (shown below the map in Figure 4.9 for space efficiency). The small
info icon indicates the availability of additional explanations—for instance, a complete list of re-
gions with their respective variable values or details on the analysis methods. The use of word-sized
graphics—circles for the focus and color coding for the context variable—in text supports the quick ref-
erence and comparison of regions while reading the text. The subregion names are produced in bold-
faced characters and are interactive—when clicked, the system highlights the respective subregion on
the map. Besides, a tooltip presents the exact numerical values of both variables when hovering over
the subregions.
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Table 4.2: User-defined parameters for configuring the map reports.

Parameter Description Values

Region Name of the region for which map is displayed String value, e.g.,World, Europe,Germany

Subregion Level Name of the type of regions the map is subdivided in String value, e.g., countries, states, cities

Focus/Context Type Variable types according to predefined categories incidents, casualties, demographic-indicator,
quantitative, percentage,monetary, or indicator

Situation Type of situation with respect to focus variable positive, negative, or neutral

Causality If causality can be assumed from context to focus
variable

yes or no

BivariateMap Visualization

For visualizing two geo-statistical variables on a map, IMR employs a standard technique; it uses two
kindsof encoding, one for eachvariable. The context variable is visualized as a choroplethmapbasedon
a single-colored linear brightness gradient. The values of the focus variable are encoded in the radii of
filled circles and are overlaid on top of the choroplethmap. These circles are positioned at the centroid
of the respective subregion. We pick this visualization because it was found to perform better when
comparing with other variants of bivariate map visualization.40

The choice of color for encoding the focus variable depends on the specified situation, i.e., positive
→ green, negative→ red, and neutral→ orange. The choice is based on the fact that green color is
generally associated with positive sentiments and safe situations, while red is considered to be a sign of
warning or danger. However, the choice of orange color for neutral situation is somewhat arbitrary
and has been chosen for better visibility as it must be overlaid on top of the gray color. For the context
variable, we always use the same neutral gradient (light gray to dark gray) irrespective of the situation.
as the situation depends only on the focus variable.

Textual Summary

The first section of the generated narrative provides an overview. It is divided into three paragraphs;
the structure and ordering of the paragraphs are fixed, but the sentences change considerably depend-
ing on the dataset and scenario. In Figure 4.9, the overview is generated by traversing the green path
in the decision graph of Figure 4.13.

Start→ Vis. desc. → Extent of focus var. → Univariate outliers? → Uni. outlier desc. →
Outlier among neighbors? → Outlier among neighbors desc. → Regional differences? → Reg.
differences desc.→ Correlation? → Pos./neg. corr. desc.→ Correlation in reg. groups? →Reg.
corr. desc.→ Bivariate outliers? → Bivar. outlier desc.→ Stop.

The opening paragraph consists of a single sentence that introduces the dataset and the visual en-
codingwith the help of in-line legends. The second paragraph summarizes the results of the univariate
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analysis for the focus variable. It begins by stating the average values followed by its statistical range
(text nodeVis. desc.). In case of multiple subregions having the sameminimum (or maximum) value,
it names one subregion according to the alphabetic ordering followed by the info icon. The com-
plete list of these regions can be retrieved by interacting with the info icon. The next sentence lists the
regions that are univariate outliers according to the focus variable (text node Uni. outlier desc.). This
and all other similar lists of subregions are restricted to show only 2 to 4 subregions according to the
dynamic selection method (Equation 4.1) with the possibility to view the complete list on demand.

In the second paragraph, the text nodeOutlier among neighbors desc. describes regions that exhibit
substantially different values compared to their adjacent or neighboring subregions. IMR employs
Tukey’s fences (Section 4.3.2) for identifying such local outliers. The method works well if the num-
ber of adjacent subregions are larger (e.g., for Missouri, Nevada, Texas, Wisconsin). However, in case
of few adjacent subregions (e.g., Florida has only two adjacent states), it cannot detect meaningful
outliers. For this particular case, even Dixon’s Q test35—an efficient method for detecting outliers
in a small number of observations—failed to detect Florida as an outlier. Since these situations are
challenging to identify, IMR takes a conservative decision and exclude all subregions that have less
than three neighbors from the list of potential local outliers. The last sentence of this paragraph de-
scribes regional differences in the values of both variables (text nodeReg. differences desc.). Depending
on the regional classification of the geographical region, IMR describes the subregional groups that
show distinct behavior. For instance, Figure 4.9 depicts that Southern states lost more lives to storms
in comparison to other states.

The last paragraph highlights the relationship between the context and the focus variable, as well as
bivariate outliers. First, it reports a positive or negative correlation (text node Pos./neg. correlation).
In case of causality set to yes, a different phrasing and vocabulary is applied to highlight causal rela-
tionship. For instance, Figure 4.9 (third paragraph) it is stated that “Texas experienced a high number
of deaths as a result of a high number of storms.” The choice of the phrase “as a result of” is specific
to causality. The first sentence of this paragraph is left out (e.g., in Figure 4.9) when the value of cor-
relation is below the threshold value; Figure 4.14 shows an example of this sentence. The presence of
a strong positive or negative correlation among one or more subregional groups is stated in the next
sentence (text nodeReg. corr. desc.). Then follows the description of regions that are bivariate outliers.
For instance, Texas and Nevada in Figure 4.9; Texas has maximum values for both variables, whereas
Nevada suffered a very high number of casualties in a relatively small number of storms.

On-Demand Explanation

The overview section provides a high-level summary of analysis results and does not include a descrip-
tion of every subregion. Therefore, in addition to the tooltips revealing exact values, IMR generates
additional descriptions for every subregion. Users can click any subregion to acquire these details,
which are then displayed below the overview section (in the right panel).

Here, the first sentence compares the values of the focus and context variable for the selected subre-
gion with the respective average values across all subregions. If the selected subregion is among one of
the extreme cases, it is stated by using quantifiers such as “highest”, “lowest”, and “most”. For instance,
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Table 4.3: Parameter configura on for shown examples

.

F o c u s C o n t e x t

Fig. Title Region Subregion Name Type Name Type Situation Causality

4.9 Fatalities caused by storms,
USA, 2017

USA states deaths casualties storms incidents negative yes

4.14 Average life expectancy and
spending on health, Europe,
2018

Europe countries average life
expectancy

demographic-
indicators

health
expenditure

monetary positive no

4.15 Adolescent birth rates and
use of Internet,World, 2015

World countries adolescent
birth rate

demographic-
indicators

Internet
users

percentage neutral no

4.16 Obesity and consumption
of alcohol, World, 2010

World countries obese
people

percentage alcohol con-
sumption

indicator negative no

in the case of Texas, this sentence reads: “Texas experienced the highest number of deaths (184) and
highest number of storms (3,621) among all states of the United States of America.” The next sentence
states the statistical ranking of the selected subregion with respect to the focus variable. The last sen-
tence provides a comparison of the selected subregion with its neighboring regions for highlighting
similar or dissimilar statistics. For instance, the state of Utah is the only state among its neighboring
states that does not report any casualties.

Besides the explanations on one subregion, users can compare any two subregions by simultane-
ously selecting them on the map. Here, the generated text consists of a single sentence that contrasts
both regions based on the values of both variables. For instance, Figure 4.15 and Figure 4.16 presents
two different instances of comparison texts.

4.3.5 Application Examples

This section presents several examples to demonstrate the usefulness of IMR. Through these exam-
ples, it is shown that IMR (i) detects outliers, regional differences, and prominent patterns reliably
for various datasets, (ii) produces meaningful textual descriptions about the analysis results, and (iii)
adapts to different variable types and different levels of subregional granularity.

We demonstrate map reports for three different regions: the world (Figure 4.15 and Figure 4.16),
continent (Figure 4.14), and country (Figure 4.9); and two different subregional Levels: countries and
states. Table 4.3 shows the values of the user-defined parameters for the presented examples. At the
world level, the report describes the group of countries showing distinct behavior. For instance, Euro-
pean countries have higher numbers of internet users and lower adolescent birth rates* in comparison
to the rest of the world. On the continent level, Figure 4.14 reports the differences among various
parts of Europe—countries in Southern Europe have better average life expectancy despite spending
less on health. At the country level, in addition to describing the differences across various states of the
country, the report also highlights the states showing dissimilar behavior in contrast to their adjacent

*“The adolescent birth rate measures the annual number of births to women 15 to 19 years of age per 1,000 women in
that age group. It is also referred to as the age-specific fertility rate for women aged 15-19.” – definition by United Nations
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Figure 4.14: An interac ve map report describing average life expectancy and health expenditure across Europe in 2018.

Figure 4.15: An interac ve map report showing the possible rela onship between adolescent birth rates and the percentage of Inter-
net users across countries of the world in 2015.
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Figure 4.16: An interac ve map report describing the percentage of obese people and alcohol consump on in the world during 2010.

states. For instance, Figure 4.9 shows that the states of Missouri, Nevada, and Wisconsin suffered a
lot more deaths than their neighbors.

To show the adaptability of the generated text to various situations, we showcase examples for each
type of situation. Figure 4.15 highlights the relationship between adolescent birth rates and a number
of people who have access to the internet. The adolescent birth rate (focus) is neither clearly posi-
tive nor negative, thus this report is generated according to the neutral situation. The map reports
shown in Figure 4.9 and Figure 4.16 are produced with the negative value of the situation. For in-
stance, the phrase “suffered a lot more casualties” reflects the negativity of the situation (Figure 4.9).
Although both examples share the same value of the situation, the narrative differs considerably based
on the variable types and the presence of correlations. The former example highlights the presence
of a positive correlation among Southern states, while there was no considerable correlation for the
entire country. In contrast, there is no paragraph about correlation in Figure 4.16 as the value is not
large enough. Figure 4.14 presents the average life expectancy and the money per household spent on
health. Here, higher values of life expectancy are favorable, so the situation is positive. The phrase,
“better is the life expectancy”, reflects the positive character of the situation while describing the higher
values of the focus variable.

Besides the situation parameter, the choice of quantifiers and verbs also depends on the variable
type. For instance, Figure 4.9 uses the casualties as the type of the focus variable and hence the phrase
“number of” is used. Similar is the case with variable type percentage in Figure 4.15 (“percentage of
internet users”) and Figure 4.16 (“percentage of obese people”). Referring to Figure 4.14, the choice
of quantifier “values of” for the variable health expenditure is based on the variable type monetary.
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However, the variable type demographic-indicators does not need any phrase as seen in the examples
of Figure 4.14 and Figure 4.15 (“African countries showed higher adolescent birth rates”). In Figure 4.9,
the verbs “suffered”, “experienced”, and “faced” correspond to Focus Type ← casualties. Interested
readers are invited to explore more examples in the online tool at https://mrshahidlatif.github.
io/interactive-map-reports.

4.4 Discussion

Wehave demonstrated the application of our automatic generation approach in two diverse scenarios,
each resulting in an interactive system. Through several examples in each case, it was shown that both
VAP and IMR fulfill the required information needs and guide through the analysis insights, as well
as provide additional explanations for interpreting the data. Reflecting on and thinking beyond the
two presented systems, this section discusses the strengths and limitations of the approach, as well as
makes suggestions for the application and generalization of the approaches to other domains.

4.4.1 Quality and Accuracy of Information

One of the biggest challenges while applying the automatic generation approach to a specific appli-
cation is to ensure the quality and accuracy of generated information. For VAP and IMR, we tried
to assure the correctness by only showing information that is available in sufficient quality and quan-
tity. For instance, VAP does not speculate on the research topics of an author if keyword information
is only available for a single publication (see the profile of El-Assady in Figure 4.7). Likewise, IMR
leaves out the correlation if its value is not statistically significant. Of course, such checks can also be
included into other approaches. However, in a tabular or pure visual representation, missing infor-
mation may cause confusion to some users. In text, it seems more natural to only focus on the things
that are most relevant and reliable. A counterargument might be that this selection takes away the
user’s control, but we counterbalance it by providing explanations and making the underlying data
available on demand. This way, users are not only restricted to what the narrative tells them, but they
can also explore.

Another problem with auto-generated reports like ours is that the possibility of incorrect infor-
mation being generated cannot be excluded. However, one might argue that the same problem may
apply to and endanger visualizations to some extent as well, especially when the mapping between
data and visual elements is complex. The problem is more severe with auto-generated text as it is
more explicit. Like for any complex software system development, one possible countermeasure is
to apply thorough testing to avoid the generation of false information. Since incorrect information
(in text) mostly stems from heuristic-based algorithms (e.g., Catherine Plaisant was falsely classified
as a supervisee of Ben Schneiderman; see the third paragraph in Figure 4.1), lucid communication on
how these heuristic-based algorithms work helps in making the representation transparent. Another
possible solution could be to communicate uncertainty in the generated information, for instance,
including visual hints to convey how confident the approach is on a certain finding; we leave this for
future work.
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4.4.2 Usefulness and Usability

Both visual and textual representations have their own advantages and augment each other when
interactively blended together. Prior research already provides evidence that a bimodal representa-
tion can be beneficial for understanding and interpreting the presented information: Gkatzia et al.50
demonstrate better decision-making under uncertainty using a task-based study. Similarly, Sripada
and Gao162 claim that divers find the bimodal representation more comprehensive while judging the
safety of a deep dive. However, their results are based on specific datasets and may not generalize.
Although we have not evaluated our approach in a user study with actual target users, the usefulness
of VAP and IMR is shown through several application examples. These examples showcase that both
systems producemeaningful reports and fulfill initial information needs. UsingVAP,we also simulate
two realistic scenarios (S1 – Recruiting and S2 – Identifying Experts) to demonstrate how an analyst
would benefit from the system; see details in paper95.

Therefore, we cannot yet claim that our approach performs better than a pure visualization-based
representation. For such comparison, we shall need to first develop the other representations showing
equivalent information and optimize each as we have optimized the presented data documents (VAP
and IMR). Only then, we can perform a user study comparing the three representations: pure visu-
alization, pure textual, and bimodal (our) representation. While a quantitative study could answer
which of the representations is best in terms of accuracy and answer times, a qualitative approach
could also reflect on how intuitive and self-explaining the representations are and how end users work
with them. Furthermore, textual explanations can influence the way users interpret visualizations.
Whereas a recent study86 investigates the effect of diagram titles on the interpretation of visualiza-
tions, the impact of longer textual explanations on the accompanying visualizations remains yet to be
explored.

4.4.3 Generalizability

In contrast to most previous systems (e.g., GALIWeather135, WIP178, Q2Q126, and others discussed
in Chapter 2) which generate textual descriptions for a very specific scenario, our focus is on produc-
ing integrated visual and textual representations of comparatively complex data (e.g., bibliographic
data compared to a simple time series weather data). While the approach greatly depends on an appli-
cation scenario for which it is to be applied, the design principles and different components are gen-
eralizable to many application domains and scenarios; for instance, the selection of important data
items (Equation 4.1), and document integration are applicable to any dataset. Although text gener-
ation requires thorough rework for each application scenario; IMR provides some flexibility in text
generation within a specific scenario or for somewhat similar scenarios.

For instance, in the VAP system, despite some tailoring for the visualization community, most of
the generated text would still work for other DBLP publication data. Increasing with the difference
in publication culture, more adaptation would become necessary when switching to other fields. For
instance, some research communities might use the alphabetic ordering of authors that renders our
current algorithm unable to identify supervisor relationships. Still, the seniority check in our ap-
proach (supervisor is at least five years senior to the supervisee) holds acrossmany publication cultures
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and might convey this information to some extent. Whereas developing a system uniting various sci-
encesmight be challenging, tailored solutions for specific fields are straightforward to derive. Only the
phrasing of the text and calibration of algorithms would need to be adapted. Similarly, we can also
build profile pages for actors, musicians, software developers, or other people. The only requirement
is that these people work together and contribute to specific work items.

The use of a small set of configuration parameters in IMR gives sufficient flexibility to adapt the
same text generation process for different datasets of the same type. Hence, our approach can be con-
sidered as lying between the fully automated text generation systems (which are tailored to a narrow
scenario) and tools that allow for building fully customizable templates. However, our approach does
not support manual refining or extending the text templates beyond the configurations that can be
specified through the parameters, as opposed to commercial tools like Wordsmith and Arria NLG
Studio.

4.4.4 Applicability and Extension

The automatic generation approach greatly depends on the scenario and dataset. The approach re-
quires substantial effort to tailor it for a specific application scenario. However, once tailored, the ap-
proach gives enoughflexibility formodification and extensions. Unlike pure visualization approaches,
where addingmore data aspects could result in amore cluttered representation, the extension of a tex-
tual description usually does not reduce how self-explaining or understandable it is. For instance, VAP
did not include related information such as affiliations, citation information, or awards due to the
non-availability of such data reliably. Adding paragraphs for this information to the author profiles
would be a natural and easy extension. Likewise, IMRhas chosen a specific geographic visualization to
encode the bivariate data, it would be relatively easy to replace the visualization with a different one or
even make it customizable. An option to achieve it could be the use of the comprehensive declarative
model for producing visualizations.75

In our approach, we use the generated textual representation as a primary entity to demonstrate the
capabilities of this rarely leveraged bimodal representation. However, we do not argue that our repre-
sentation needs to replace conventional visualization or table-based approaches. On the contrary, the
generated explanations could simply be made part of the existing visualization systems. For instance,
as an introductory text of an author profile in a digital library system, as a detailed description of an
author node in a co-author network visualization, or as a description of bivariate outliers in a map
visualization. Following this idea, our technique could enrich existing approaches without the threat
that the additional information would clutter the interface as text grows linearly and does not lose
its intuitiveness, unlike visualizations that can become overloaded if too much information is added.
Moreover, the generated texts are rather likely to make a formal representation more self-explaining
and understandable.
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5
Exploranation – Exploration and Explanation

E xploranation is a new science communication paradigm introduced by Ynnerman, Löwgren,
andTibell.189The term stems from exploration and explanation, which used to be two clearly
distinguishable objectives of a visualization. While the former enables efficient and rapid visual

data analysis (e.g., traditional visual analytics systems), the latter (data-driven storytelling143 or nar-
rative visualization151) focuses on communicating the analysis findings to the general public. In the
context of scientific communication, Ynnerman et al. showcase a variety of exploranative examples;
for instance, to show visitors of a museum a visualization of an ancient mummy, then guide them to
interesting aspects of this visualization but also let them explore it. A similar earlier work byWeiskopf
and others181 combines visual explanation and exploratory and illustrative visualizations for commu-
nicating Einstein’s theory of relativity to non-experts.

Akin to the concept of exploranation, Bret Victor177 presents the idea of explorable explanations
that argues for active reading 6. According to Victor, an active reader “asks questions, considers alter-
natives, questions assumptions, and even questions the trustworthiness of the author. An active reader
tries to generalize specific examples, and devise specific examples for generalities. An active reader doesn’t
passively sponge up information, but uses the author’s argument as a springboard for critical thought
and deep understanding.”

We adopt the ideas of explorantion and explorable explanations for visual analytics scenarios. The
overarching objective is the broad dissemination of analysis results as an interactive visual represen-
tation (interactive data document) that enables exploranation in an accessible way. Orthogonal to
Ynnerman et al., we work extensively with multiple media like text and audio to provide explanations
(as opposed to other visual views in Ynnerman’s examples189). Some of their design principles are
also applicable to our scenario, in particular, the explorative microenvironments blended with sign-
posted narratives results in an intriguing representation. Accordingly, we interweave explorative parts
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through annotations, textual explanations, and visualization–text linking into an overall self-directed
exploranative representation. With respect to the visual representations of data, Victor’s suggestions
for explorable explanations are even closer to our work, as they also focus on interactive documents.
We employ explorable examples and contextual information, as two of three suggested categories of
interactive data representations enabling active user behavior.

This chapter first extends interactive data documents with respect to explorative analysis as a step
toward blurring the borderline between explanation and exploration (Section 5.1). In the proposed
exploranative data representation, users are not restricted to passively consuming explanations, but
they are facilitated to actively explore the data. In contrast to traditional visual analytics interfaces,
which focus solely on exploration, more guidance is provided to the users in the form of textual ex-
planations while preserving the explorative power of visualization; they can read with a specific focus,
break the content apart, and analyze its meaning. While Section 5.2 directly instantiates the concept
of exploranation to a software engineering application, the next two sections (Section 5.3 and Sec-
tion 5.4) can be considered as translations of this concept to data representation involving chatbots
and virtual reality environments, respectively.

5.1 Exploranation in Interactive Data Documents

The overarching objective of the interactive data documents is to support active reading6 or active user
behavior.177 While VIS Author Profiles95 and Interactive Map Reports94 (described in Chapter 4)
present interactive representations of data, they have a substantial focus on explanations; the explo-
ration is very restrictive (especially for InteractiveMapReports) andmostly originates from the textual
content. The objective, here, is tomove toward a visual analytics solution that retains its characteristic
extensive exploration capability while providing users with explanation and guidance as they explore
the data. This section describes the general approach that is applicable (in particular) to multivariate
data in a broader sense andmight even extend to wider classes of interactive data representations (e.g.,
virtual reality visualizations). The approach comprises the following three building blocks:

I – Textual Explanations

The approach uses automatically generated text as the main explanatory medium. The textual expla-
nations are categorized into three types: (i)Data-driven explanations summarize the results of data
analysis (e.g., identification of patterns, clusters, and outliers) and point to remarkable observations as
well as give characteristic examples. (ii)Educational explanationsprovidebackgroundon thedomain
concepts reflected in the data that may not be well-known to the target audience. (iii)Methodologi-
cal explanations give details about how the analysis was performed, what heuristics were employed,
and the reasonwhy the system came to certain conclusions. Such explanations contribute to increased
transparency and allow for the validation of data-driven explanations.

The textual explanation is the main feature that distinguishes our approach from conventional vi-
sual analytics solutions. The data-driven explanations are the focus of the exploranative document
and serve as an independent and connected view, just like other visual views in a visual analytics sys-
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tem. The two other kinds of explanations provide important context and are mostly available on
demand. Users can obtain them if they require background information for any part of the generated
data summary. Chapter 4 already explains the automatic generation methods for generating these
textual explanations.

II – Explorable Visualizations

The explorative component of (exploranative) interactive data documents is mainly contributed by
visualizations. Here we discern two types of visualizations. (i)Overview visualizations (vis)—as ev-
ident from the name—provide an overview of the data and should have a consistent location in the
interface. They should be visible to the user at all times. As with the presence of data-driven explana-
tions, it is important that these visualizations do not get scrolled out of the users’ view. The layout
presented in Section 4.1 enforces it through the use of coordinated multiple views. Any appropriate
visualization of data (e.g., parallel coordinates, scatterplot matrices, or multivariate glyphs for multi-
variate data) can be employed to provide the overview.

In contrast to overview visualizations, the (ii) embedded detail visualizations (emvis) enrich the
textwith further information and just show subsets or different aspects of the data. Thesemay include
regular (large) visualizations that scroll with the corresponding text or word-sized graphics embedded
inside lines of text. The better these visualizations are integrated with textual explanations, the eas-
ier it will be for the users to explore them along reading the text. The exploration process happens
visually by users deciding to look at and investigate certain elements of the visualization, followed by
interactions to subselect the data and pick out individual elements for further inspection.

III – Consistent Linking

Similar to a traditional multiple-coordinated-view visual analytics system, a challenge is to maintain a
clear and consistent linking between different views. The linking becomes even more difficult in our
case as data is described on various levels of abstraction and with different modalities (text or audio
and visualization). We apply the concept of interactive (i) vis–text linking. This linking refers to
providing visual cues (e.g., visual highlighting) to guide users’ attention to the relevant portion of a vi-
sualizationwhile interactingwith the corresponding text fragments and vice versa. To connect textual
and visual descriptions, consistent interactive linking is important. Webuild on the concept of vis–text
interaction introduced by Beck and Weiskopf.18 Figure 5.1 shows an abstract representation of our
visualization–text linking model. It envisions an interactive data document consisting of overview vi-
sualization (vis), embeddedword-sized visualization (emvis), and textual explanations (text) as already
explained in Chapter 4. These representations are interactively linked to each other in a bi-directional
way. The model discerns between two types of interactions: The local interactions that only locally
impact a component (text–text, emvis–emvis, vis-vis). Examples include details on demand or filter-
ing data in a visualization. The global interactions, on the other hand, are intended to link the various
visual representations (e.g., text–emvis, vis–text). Through bi-directional visualization–text linking,
text and visualizations become a coherent and integrated unit of information and the resulting docu-
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text–emvis

emvis–text

Textual Explanations
Embedded Detail 
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text–text emvis–emvis

vis–vis

Figure 5.1: Abstract representa on of the interac on model. We have bi-direc onal interac ons among text, embedded visualiza-
ons (emvis), and overview visualiza ons (vis).

ment supports easy and guided exploration of the presented content. In standard reading strategy—
reading the text first and then exploring the visualizations while going through the text—linking helps
in quickly seeing and collecting the text–vis references. Besides, it would also offer alternating reading
strategies such as exploring the visualization first, and then reading the corresponding parts in the text
that are visually highlighted through this linking.

The approach further uses a consistent (ii) color coding to clarify relationships between the differ-
ent textual and visual descriptions of related data. We suggest applying a consistent color coding of the
different variables across all representations. For instance, similar variables can be grouped by hue and
get assigned a different brightness. Finally, the (iii) positional linking places content that is related
in close physical proximity. Having fixed panels and a consistent visual platform to hold information
helps in seeing global interactions more clearly as everything is in the users’ viewport.

With the aforementioned components of a data document, we aim at supporting active reading
and the exploranation. This exploranative representation can also cater multiple groups of users with
varying levels of expertise and experience. Within such documents, at first, users are confronted with
a textual summary and associated overview visualizations. One group of readers, especially first-time
users, might follow mainly the provided narrative and start reading the explanations from the be-
ginning. Whenever they find something unclear from the high-level summary, they can explore the
required background (I.ii and I.iii) on demand. After having read the summary text, they may switch
to exploring the data using visualizations. On the contrary, another group of users—who are more
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experienced—could directly start the data exploration process. While some information can be di-
rectly gained from the visualizations, reading the textual explanations for other insights can provide
further support. Likewise, the textual summaries might also point them to interesting findings that
they might have missed otherwise.

5.2 Exploranation: A Concrete Application Example

This section instantiates the concept of exploranative documents for multivariate data, with its appli-
cation to a concrete and specific example of software engineering. This resulted in a visual analytics
solution, namely Code Quality Documents. It presents the source code analysis of a software project.*

TheCodeQualityDocuments is a full-fledged system† developed for the analysis of the source code
quality. It was developed for less technical stakeholders like product owners, projectmanagers, or any-
one interested in better understanding the quality of source code as well as for supporting software
developers. The systemwas developed in close collaborationwith software engineers and visualization
experts. This section skips such extensive details (interested readers can consider reading the paper125)
and discuss the exploranative aspect of the Code Quality Documents. However, the necessary infor-
mation on the analyzed dataset and code quality metrics is included. Afterward, this section gives an
overview of the interface, explains the individual components, and finally describes the interaction
model that links the different components.

5.2.1 Code Quality Data and Analysis

Our target user group is broader than just the technical stakeholders or highly experienced developers.
That is why integrating guidance and explanations will provide valuable support for most of the users
and allows themtodrawactionable conclusions. However, simplypresenting a static reportwouldnot
suffice because the prepared summaries and explanations can only be a starting point for investigating
a detected problem in detail.

Data – The system utilizes 11 software metrics defined at class-level in object-oriented software
projects (Table 5.1). These metrics provide significant information on code quality and are employed
to measure and quantify different code quality aspects.114,12,29 Code Quality Documents focuses on
four quality aspects: complexity, coupling, cohesion, and inheritance. Table 5.1 shows the associated
metrics for each quality attribute along with their acronyms and brief descriptions. Themetrics listed
in the “Other” category reflect general properties like the size of a class or the history of bugs in a class.
Somemetrics in this category are required to detect code smells. Code smells provide information on
implementation decisions or choices that might degrade code quality.192

*The research project 125 was led by Haris Mumtaz (the first author), a PhD student working in the field of software
visualization atVISUS,University of Stuttgart. Iwas involved in the project as the second author andwasmainly responsible
for the presentation and communication aspect of the analysis results through the integration of automatically generated
explanations and visualizations to support exploranation. WhileHaris conducted the codequality analysis (briefly described
in Section 5.2.1, I focused on summarizing analysis results as automatically generated textual explanations, conceptualizing
and implementing the interactive linking model, and extensively worked to make the representation exploranative.

†The system is Web-based and available online at: https://mrshahidlatif.github.io/code-quality-reports.
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Table 5.1: Eleven class-level so ware metrics (name and acronym) used for code quality analysis, grouped by quality a ributes.

Quality A ribute So ware Metric Acronym Descrip on

Complexity Weighted methods per class wmc The sum of all method complexity values for a
class.

Maximum cycloma c complexity max_cc The maximum of all the method-level
complexity values of a class.

Coupling Afferent coupling ca The number of other classes that depend on a
class (incoming dependencies).

Efferent coupling ce The number of other classes on which a class
depends (outgoing dependencies).

Cohesion Lack of cohesion of methods lcom3 It checks whether the methods access the
same set of variables of a class.

Inheritance Depth of inheritance dit The inheritance levels for a class.

Number of children noc The number of immediate descendants of a
class.

Other Average method complexity amc The average size of the methods in a class.

Lines of code loc The total lines of code present in a class.

Number of public methods npm The number of methods declared as public in a
class.

Number of bugs bug The number of bugs that have been associated
with a class.

Analysis – The system uses thresholds (similar to the work of Filó et al.43) to rate code quality
(as good, regular, or bad) with respect to four quality attributes and highlight the severity level of the
problem (high, medium, or low). Again based on related work132, we detect four types of common
class-level code smells: large class, functional decomposition, spaghetti code, and lazy class using class-
level metrics. A large class is one that has many fields and methods, resulting in many lines of code. A
class with many private fields and methods is associated with functional decomposition. A class with
spaghetti code has long methods without proper structure. A class with little to no functionality is a
lazy class. Sincewe have class-levelmetrics, it is possible to compute these code smells using predefined
thresholds.

Based on the metrics and the analysis, the content of the code quality document comprises three
parts: first, quality attributes covering coupling, complexity, cohesion, and inheritance; second, code
smells in terms of large classes, functional decomposition, spaghetti code, and lazy classes; and third,
information about bug history.
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Figure 5.2: Explorana ve code quality document for Lucene 2.0. (A) Textual overview in terms of quality a ributes, code smells, and
bugs, which includes embedded visualiza ons. (B) Overview visualiza ons: parallel coordinates plot and sca erplot. (C) The source
code of a class is provided in the details view. (D) Descrip on of a quality a ribute alterna vely presented in the details view.

5.2.2 The System

The system, Code Quality Documents, is designed as a multi-view interface with three different pan-
els: two for overview descriptions (summary text and visualizations) and one for details. The system
maps the building blocks described in Section 5.1 to the different panels of the document structure;
Figure 5.2 shows a specific example. The summary panel presents the main data-driven textual expla-
nations (I.i) summarizing the results of code quality analysis. Besides, it contains embedded visualiza-
tions (II.i) and methodological explanations (I.iii) that are retrievable on demand. The panel for the
overview visualizations (II.i) contains a parallel coordinates plot and a scatterplot. The details view
provides educational explanations (I.ii) or class details (e.g., source code) on selection.

Textual Explanations

To automatically produce textual descriptions, we employed the same text generation process as al-
ready described in Section 4.1.2. The data-driven text (I.i) is split into three categories (Figure 5.2 A )
and describes code quality along quality attributes, code smells, and bugs. The overview text also con-
tains detailed embedded visualizations and a list of classes corresponding to specific categories of code
smells. These details are not expanded in this panel by default. A plus icon [+] indicates their pres-
ence and allows for expanding. Likewise, an info icon i⃝ hints at the availability of methodological
explanations (I.iii). Hovering over this icon presents a tooltip that describes the exact methodology
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Figure 5.3: Methodological explana on of classifying the complexity of a source code project in terms of low, regular, or good.

that was employed to come upwith the corresponding detail. Figure 5.3 shows an example displaying
the software metrics and their thresholds used to classify low, regular, or good complexity. The re-
porting of different quality issues along with methodological explanations can assist users in quickly
understanding the core issue and making decisions to improve the quality.

The names of the quality attributes (e.g., complexity) and the software metrics carry a thick col-
ored underlining at the bottom (e.g., wmc, max_cc) to provide a quick reference about whichmetrics
and quality attributes are related. Educational explanations (I.ii) provide background information on
these quality attributes and code smells. Interacting with these terms brings up educational explana-
tions in the details panel. Beside standard definitions of the terminologies, the description includes
project-specific examples to better communicate the concept in the current context. For instance,
Figure 5.2 D shows the educational explanation for the quality attribute cohesion; WhitespaceAn-
alyzer is provided as an example of a class having the highest value of lack of cohesion of methods
(lcom3). Likewise, explanations on code smells can be accessed. Clicking on a class anywhere in the
system opens the source code of that class in the details view preceded by a class-specific explanation
providing a short summary of problems in the class, if there are any; Figure 5.2 C gives an example.

The system makes extensive use of conditionals to describe different cases and provide reasons for
different analysis results. For instance, it not only lists the number of classes that have lowquality with
respect to any of the four quality attributes but also explains reasons for the specific rating. The same
rating can even have different reasons (Figure 5.5: “The code complexity is okay as 79 classes are rated
as having low quality, still fewer than the ones rated as good (153) or regular (61).” and “The usage of
class inheritance is okay. Although not a high number of classes (13) are rated as having low quality,
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Figure 5.4: Low quality in HTMLElementImpl found through ac ve explora on of the embedded detail visualiza ons of coupling,
cohesion, and inheritance.

many are just classified as regular (148) and fewer as good (132).”) The system leaves out sentences
if no results are available and produces a special text in such cases. For instance, a special case for this
paragraph is when no code smells were found: “We have not detected any class-level code smells in the
project—congratulations!”

Explorable Visualizations

To offer data exploration and provide context behind the textual descriptions, the system provides
two overview visualizations (II.i): a parallel coordinates plot and a scatterplot (Figure 5.2 B ). These
visualizations are useful in discerning important patterns and relationships between code qualitymet-
rics.150 Users find these visualizations useful in better understanding the code quality and comparing
the properties of different classes across all (parallel coordinates plot) or a subset of metrics (scatter-
plot). To obtain an overview of all the metrics, the parallel coordinates plot is helpful, whereas the
scatterplot supports the identification of relationships between two metrics and seeing if there are
outliers.

Besides these overview visualizations, the embedded detail visualizations (II.ii) complement the
data-driven text generated in the document (Figure 5.2 A ). The small bar charts are employed to
represent the metric values of each quality attribute for all classes. The classes are structured with re-
spect to the packages they belong to (Figure 5.4). Furthermore, the word-sized bar charts in line with
sentences (e.g., ) indicate percentage values to give a quick impression of the quality. These val-
ues always refer to problematic cases (e.g., low quality or bug-prone classes) and are given relative to
the overall number of classes. Likewise, small star ratings on a scale of 1–3 (e.g., ) and warning
symbols provide a quick hint of the respective rating for each quality attribute.

Linking and Interactions

Toconnect textual and visual descriptions, consistent interactive linking (III.i) is important. The com-
ponents or views in the system—textual explanations (text), overview visualizations (vis), and embed-
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Figure 5.5: Various instances of vis–text interac ons. A persistent highligh ng (click on TraverseSchema) marks the related elements
with bold font in the text (text–text), a black line in the parallel coordinates, a black dot in the sca erplot (text–vis), and black back-
ground in embedded detail visualiza ons (text–emvis). Similarly, a non-persistent highligh ng (hover on UTF8Reader) marks the corre-
sponding elements in yellow. The details panel shows the class-specific descrip on and source code of the persistently selected class,
TraverseSchema.

ded visualizations (emvis)—are interactively linked to each other in a bi-directional way as shown in
Figure 5.1.

As these components contain different representations of the same class-level multivariate data, an
essential interaction is the brushing and linking of data points across all representations. Hovering
over a class name anywhere in the text triggers a transient (non-persistent) selection. It highlights the
corresponding polyline in the parallel coordinates plot (text–vis), the dot in the scatterplot (text–vis),
the bars in the embedded visualizations (text–emvis), and other occurrences of the class name in the
text (text–text). Figure 5.5 shows the effect of hovering over the class name ; the linked parts
are highlighted with yellow color. Apart from the other instances of the hovered class in text, we also
mark the corresponding code smells that the selected class possesses. The large class and spaghetti code
are highlighted, sinceUTF8Reader contains both code smells (Figure 5.5). Hovering over a bar in the
embedded visualization and a dot in the scatterplot has a similar effect and triggers emvis–vis/vis–vis,
emvis–text/vis–text, and emvis–emvis/vis–emvis interactions.

The transient selection shows as long as the interactive element is hovered and provides a quick
way of cross-referencing different representations. Tomake the highlighting persistent, the interactive
elements can be clicked; the parts related to the clicked element are highlighted with black color in
the visualizations and with boldfaced font in the text. For instance, Figure 5.5 shows the persistent
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Figure 5.6: A selec on of the classes in Xerces 1.2 that have a Func onal Decomposi on smell; they are highlighted in the parallel
coordinates plot and the sca erplot. The cap on of the visualiza ons adapts to describe the selec on.

selection corresponding to the class . This helps in getting a comparative overview of two
different classes with respect to various quality aspects; one glance at Figure 5.5 is sufficient to tell that
UTF8Reader andTraverseSchema have one code smell (large class) in common. In addition, users can
quickly observe thatUTF8Reader has less complexity (embedded visualization for complexity), fewer
lines of code (scatterplot), and fewer bugs (parallel coordinates plot) than TraverseSchema.

Clicking on a code smell name, aside from showing an educational explanation in the details view,
highlights the set of classes that contain that code smell in the parallel coordinates plot and scatterplot
(text–vis)—Figure 5.6 shows the result of clicking Functional Decomposition. This helps in under-
standing the pattern of metric values for the classes having different code smells. Since the scatterplot
illustrates the relationship between any two softwaremetrics, we update the dimensions of the scatter-
plot on persistent (click) interactions according to the context. For example, clicking on Functional
Decomposition will update the scatterplot dimensions to weighted methods per class (wmc) and the
number of publicmethods (npm) as thesemetrics are used to identify the smell (see Figure 5.6). More-
over, users can explore the relationships between other metrics.

Since lines are hard to select in a parallel coordinates plot (they are thin and often occlude each
other), we provide a persistent range selection on the axes (brushing interaction with mouse press
and hold). On every persistent selection, the caption of the figures adapts accordingly to describe the
selected elements (see Figure 5.6). In contrast to legends, the textual captions allow for the inclusion
of contextual and methodological information (e.g., data filtering criterion), which helps in making
the interactive visualizations more self-explanatory.

The system uses consistent color coding to couple the visualized metrics (III.ii). For instance, in
Figure 5.5, the colors of complexity metrics in the caption of the parallel coordinates plot match the
color coding of the complexity bar chart in the quality attributes section. The metrics are grouped in
terms of the quality attributes—two metrics of the same group are associated with the same hue but
a different brightness.
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5.2.3 Usage Scenario – A User’s Perspective

We demonstrate how exploranative Code Quality Documents assist a user in analyzing and under-
standing the quality of a source code project. This demonstration implicitly reflects on how users can
work with our interactive document and the support they will receive from it in performing various
analysis tasks. Let us assume that a hypothetical user—Alex, who is a junior software developer—
is interested to explore Xerces 1.2 (an XML handling framework)3,111. In particular, this example
demonstrates how textual explanations point Alex to a specific issue in the code, and how exploration
helps her in analyzing the problems.

Alex loads the Xerces 1.2 project data in Code Quality Documents as shown in Figure 5.5. The
system identifies 18 code smells and issues, mainly with respect to cohesion within classes. From the
textual explanation, Alex reads that the class suffers from the two code smells: large class and
spaghetti code. The class becomes more interesting to her when she realizes that this class has
hadmany bugs in the past. Intrigued to know the root cause of the problem, she looks into the source
code of this class. Just scrolling down a little, she finds confirmation of these issues self-admitted by
the developers in the class description comment, also providing a reason: “Some blatant v[io]lation
of good object-oriented programming rules, ignoring boundaries of modularity, etc., in the name of good
performance.” This is an example that shows that our approach helps the user focus on the most
problematic classes.

Another class, , that contributes to low quality catches her attention while reading the
bug history. This class carries two code smells (large class and functional decomposition). In the class
description, she reads that is the largest class in the systemand its quality is lowwith respect
to complexity, coupling, and cohesion (see Figure 5.5, details panel). Exploration through consistent
linking helps her locate this class in the parallel coordinates plot and the scatterplot (see Figure 5.5,
black line and dot); it shows a very similar pattern as UTF8Reader (see Figure 5.5, yellow line and
dot). She moves on to the source code of TraverseSchema, to confirm the existence of a Functional
Decomposition smell because it has several private but few public methods.

Alex then switches to the quality attribute section to see whether there are any more problematic
classes. During an exploration of the embedded bar charts in the quality attributes section, she finds
thatHTMLElementImpl has a complex inheritance structure. This class has an extremely high num-
ber of children (noc) (Figure 5.4; 52 children, while the threshold of low quality is only more than
three children). She then heads on to explore the quality ofHTMLElementImpl from other quality
attributes to see whether there is a pattern. She notices that the related metrics of coupling and co-
hesion are also high (meaning low quality in these attributes) while the complexity metrics are in the
acceptable range (see Figure 5.4).

Finally, moving away from the textual explanations, Alex uses the parallel coordinates plot and the
scatterplot to freely explore the interplay of various metrics. She observes an overall positive correla-
tion between the weighted method per class (wmc) and the number of public methods (npm) in the
scatterplot. However, a few classes form interesting outliers with high wmc values but low npm val-
ues. Unsure but interested in knowing what might have caused this behavior, she selects those classes
(points on the scatterplot) and sees the captions adapting to her selections and revealing that these un-
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usual characteristics correspondwith the FunctionalDecomposition smell (highlighted as black dots in
the scatterplot in Figure 5.6, right). As the other metric values for this set of classes are shown accord-
ingly in the parallel coordinates plot (Figure 5.6, left), she observes one of the classes associated with a
file size (loc) and a high number of bugs. To her surprise, it is the same TraverseSchema class.

5.2.4 Key Takeaways

Finally, we summarize the experience gained in designing the system as a few key takeaways. These
takeaways focus on aspects that generalize beyond the specific application of software engineering.
Rather, they are applicable to interfaces producing interactive bimodal data representations consisting
of generated textual and exploratory visualizations.

Overview always – Shneiderman’s information-seeking mantra156 emphasizes on overview first
and details later for visualization systems. In slight adaptation to this mantra for interactive docu-
ments containing text and graphics, we observe that overview visualizations should always stay in view
and not scroll with the text. Likewise, longer textual explanations that provide a high-level summary
act as anchors for the users to and from the visualization; these should also always stay visible. These
overview elements are required for interactive vis–text linking and highlighting towork properly: hov-
ering an element anywhere in the interface, related items in the overview representations get visually
highlighted. The always visible overview representations along with a stable layout offers a reliable
skeleton for the user and allows other content to change dynamically without confusing the user’s
mental map.

Consider brushing text – From a strict visualization perspective, textual explanations in an in-
terface appear disconnected and boring. Since they do not belong to a visualization and, therefore,
cannot be interacted with. However, our approach has shown that text can be integrated into inter-
actions like any other element of a visualization. Brushing a marked text element, the related parts
of visualizations become highlighted and vice versa. It is important to provide text decorations (e.g.,
boldface or underlining) to discern interactive text fragments from the rest. Opportunities, where
such interactions make sense, appear naturally whenever describing a data-related entity, as already
described in empirical findings of data-driven stories (Section 3.4 and Section 3.5).

Make captions dynamic – It is surprising to see that many visual analytics systems even lack basic
captions for the visualizations shown in different views. The inclusion of captions helps to make the
interface more self-explanatory for non-expert users. However, in an interactive system, it turns out
that these captions should be adaptive. For example, when something changes or gets highlighted
in the visualization based on a user interaction, the caption needs to change accordingly and should
always accurately describe what is currently shown (Figure 5.6). Template-based natural language
generation provides the means for implementing such adaptive and dynamic captions.

Pointers everywhere – The system discerns three types of explanations: data-driven, educational,
andmethodological (Section 5.1) according to their role in the data document. However, they should
be smoothly blended in the interface. With educational or methodological hints, the data-driven text
provides necessary pointers to understand it more easily. Similarly, an educational explanation can
profit from examples from the data to better grasp the concept (as we have integrated in the respective
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background text; see Figure 5.2 D ). These hintsmay also be used as hyperlinks tomore detailed expla-
nations. When authoring the texts, we recommend strictly differentiating between the categories of
text and also reflecting this categorization in the user interface by a consistent layout. For example, we
presentedmethodological explanations only in tooltips—made available by hovering over info icons—
and educational explanations were marked with the term background in the details view on the right.
This consistency facilitates users to quickly learn where to look for a certain type of information.

Learn on the side – Similar to most visual analytics systems, we develop our approach to sup-
port users in better understanding and analyzing the specific data. With every instance of usage and
performing data analysis, the users gain experience and get insights with respect to the overall anal-
ysis procedure or domain. However, in contrast to other interfaces, we enable support for learning
on the side through methodological and educational explanations that educate users on the domain
terminology and concepts. Through activating these explanations, the interface is adapting—not au-
tomatically but with only a little extra effort—to the individual information needs of the users; for
instance, expert users can simply ignore them as they are unobtrusive.

5.3 Exploranation and Chatbots

An increasing number of visualization systems are considering a natural language interface for con-
structing, modifying, refining, and interacting with a data visualization.191,190,172,152 The objective,
here, is to relieve users from worrying about details of visual design and encoding while directly ask-
ing questions about the data. Using such an interface, users can simply specify their actions in a sim-
ple chat interface; for instance, just by typing instructions like “show the relationship between life ex-
pectancy and health expenditure” (e.g., the system can respond with a scatterplot), and then “show the
differences among different continents” (the system can encode continents as colors in the scatterplot)
in the context of a dataset. While the research on natural language interfaces is still in the early stages
and filledwith challenges172, it is a promising direction tomake the (visual) analysismore accessible to
a broader audience. Considering a broad audience, natural language interfaces can be themost natural
way of exploring information. However, existing systems either provide answers to user queries as a
visualization191,152 or as text (e.g., search engines like Google). While the former answer may suffer
from a lack of intuitiveness, explicitness, and context, the latter has no exploration aspect (other than
reading many relevant articles on the subject matter). We believe that providing an answer to users’
queries as an exploranative interactive data document facilitates them in not only knowing what they
are looking for, but also in exploring the context and other relevant information.

This section explains the idea of combining a chatbot interface with exploranation in a very spe-
cific use case scenario, i.e., searching the required information in a knowledge graph dataset. As a
response to the query, the user is presented with an exploranative representation of data (as already
demonstrated in previous sections). The section begins with a brief motivation and introduction of
the scope and dataset. Then, it goes on to describe the approach, followed by four application exam-
ples showcasing the usability. Finally, it concludes with a discussion of the strengths and limitations
of the approach.
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5.3.1 Motivation and The Problem

Nowadays,manypeople employ search engines to ask questions and knowmore about public figures*.
The process is fairly straightforward: users ask questions and search engines try to reply precisely by
pulling the related excerpts from digital encyclopedias (e.g., Wikipedia). Often, search engines (e.g.,
Google) employ knowledge graphs to show compact biographic information about historical figures
as info boxes aside the search results. However, these simple excerpts from a knowledge graph are
typically limited to a single person and do not convey interactions between different public figures.
Traditionally, information about connections between historic figures is reported in history books
and encyclopedias but is limited to the connections drawn by the authors of those bodies of text.
In a historical context, learning about famous people of the past and how they interacted with each
other helps in understanding historic developments in world politics, sports, or science. Knowledge
graphs store information about these persons in a structured way—for instance, their dates of birth,
family ties, achievements, and participation in certain events—and can be leveraged to infer possible
connections between arbitrary figures of the same era.

Employing a (natural language) chat interface—like a search engine but very focused on the above-
mentioneduse case—our system,VisKonnect aims at providing a familiar, natural, and accessible start-
ing point to start exploring the knowledge graph data. Figure 5.7 shows the response of an example
query asking whether three soccer players (Mats Hummels, Miroslav Klose, and Philipp Lahm) have
met. While the chat explicitly answers the question ( E ), three-colored rectangles in the timeline vi-
sualization (A ) reveal the shared events. The potential connections between historical figures and
their potentially intertwined lives are visualized using different visualizations. Such points of contact
could include events such as sports tournaments, award ceremonies, or summit meetings. Through
three visualizations—namely, an event timeline, an eventmap, and a relationship graph—VisKonnect
provides access to the underlying connections for users to explore.

5.3.2 VisKonnect

Given a natural-language question about two or more persons of public interest, VisKonnect returns
a textual answer to the question plus visualizations that reveal potential connections between the per-
sonsmentioned in the question. As shown in Figure 5.7, these visualizations focus on different facets:
A the event timeline represents the persons’ lives over time, B the map view depicts geographic co-
locations, and C the relationship graph provides a concise overview of shared events. Additionally,
E the chat panel serves as a textual question–answer interface. VisKonnect is a web-based system; the
front end is developed in TypeScript using Angular while the backend is written in Python.†

*“A public figure is a person, such as a politician, celebrity, social media personality, or business leader, who has a certain
social position within a certain scope and a significant influence and so is often widely of concern to the public, [...] and is closely
related to public.” –Wikipedia

†The implementation of theVisKonnect systemwas greatly supported by a groupof five graduate studentswho are also
coauthors of the corresponding paper. 92 The two senior doctoral candidates: ShivamAgarwal (research area: visualization)
and Simon Gottschalk (research area: knowledge graphs)—also co-authors—participated in feedback rounds about the
visual design of the VisKonnect system during the iterative development phase.
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ChatE
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DetailsD

FIFA World Cup 2014

Figure 5.7: VisKonnect interface visualizing the result of a query on soccer players: (A) An event meline shows individual (uni-
colored rectangles) and shared (mul -colored rectangles) life events of all historical figures in a user query. (B) An event map provides
a geographic perspec ve of those events. (C) A rela onship graph provides an overview of all shared events. (D) Clicking an event
brings up a related ar cle from Wikipedia. (E) A chat interface enables typing in a query and generates a short textual answer.

EventKG andData Retrieval

The approach requires structured information about real-world entities, specifically persons, their re-
lationships, and the events they have been involved in. A natural source of this information is knowl-
edge graphs. A knowledge graph G = (N,R) consists of a set of nodes (N) representing real-world
entities (e.g.,MatsHummels, the FIFAWorldCup 2014) and a set of edges (R) denoting relationships
between entities.65 The relationships are represented as triples consisting of a subject, a predicate, and
an object (e.g., ⟨Mats Hummels, participated in, FIFAWorld Cup 2014⟩ and ⟨Mats Hummels, type,
Person⟩).

EventKG54 is a specialized knowledge graph that incorporates event-centric and temporal infor-
mation extracted from several other knowledge graphs and semi-structured sources such asWikipedia
and DBpedia. Therefore, VisKonnect uses EventKG as the main source of data. EventKG consists
of several types of events, temporal relationships, and an event class ontology that provides a basis for
the visualization components of the system. Figure 5.8 shows an excerpt of the EventKGwith triples
about the soccer players Mats Hummels and Miroslav Klose that indicate a shared event; despite the
absence of a direct relation between the two footballers, it is still possible to infer a connection as they
both participated in the FIFAWorld Cup 2014.

As stated earlier, VisKonnect has a specific focus on connections between historical figures. Conse-
quently, it retrieves (i) the relation of people to associated events (e.g., Mats Hummels’ participation
in the FIFAWorldCup 2014) and (ii) the temporal associations between different persons (e.g.,Marie
Curie wasmarried to Pierre Curie from 1895 to 1906). We define a connection between two people if
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Mats Hummels FIFA World Cup 2014
participated in

June 12, 2014 July 13, 2014

start date end date

Miroslav Klose
participated in

type type

Football Tournament

type

Event

Person Person

sub class*

December 16, 1988

birth date

June 9, 1978

birth date

Figure 5.8: An excerpt of EventKG about the rela onship between Mats Hummels and Miroslav Klose; sub class∗ denotes transi vity.

there exists an undirected path between them via an event. We use parts-of-speech tagging and named
entity recognition using pre-trained models of spaCy to identify person names. These names are then
matched against EventKG through ElasticSearch2, and a SPARQL * query is formulated to retrieve
information about people of interest alongwith their individual and shared events from the EventKG.

The intent of the question relates to the kind of relationship between persons in the user-asked
query and is required to generate a textual response. VisKonnect restricts to three kinds of relation-
ships between persons and events: professional, personal, and general relations. Professional relations
describe working alliances between people like receiving an award or war alliances. Personal relations
consist of friendship between persons or family ties identified by events like marriage or childbirth.
Any other relation falls under the general category (e.g., if a person has influenced the other person).
The system uses a rule-based approach to detect the intent. These rules are identified through the
analysis of a set of 500 questions that are relevant for EventKG158; each relationship type is associ-
ated with a set of pre-defined words. For instance, words like “collaborate”, “work”, and “ally” define
professional connections. To classify the user’s query as one of the relationship type, we use semantic
similarity between characteristic words of a relationship type and important words in the user query
(excluding nouns and stop words). The system uses a pre-trained word2vec model120 for comput-
ing semantic similarity. It is important to note that the intent is only relevant for generating textual
answers and has no impact on visualizations.

The Interface

The interface consists of five components containing four visual and one textual view (Figure 5.7).
The views are connected through brushing-and-linking and consistent color coding. The inspiration
for visualizations—in particular, the event timeline—have been taken from Joseph Priestley’s “Chart
of Biography”133 and other related work on biography visualizations.79,103,128

*SPARQL is a semantic query language for databases. It is able to retrieve and manipulate data stored in the Resource
Description Framework (RDF) format that EventKG employs
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A EventTimeline–The event timeline provides an overviewof the overlapping events for all per-
sons in a user query. We use a distinct color for each person and vertically separate the persons
into individual timelines. Each timeline begins with the person’s date of birth and ends at ei-
ther the date of death or the last relevant event (in case the person is still alive or received awards
posthumously). Events are represented by thick colored lines, with their duration encoded in
the length. We use exoteric icons and place them at the start of the line to communicate the
type of events, for instance, a star icon for birth, a cross icon for death, and a flag icon for sports
tournaments. Many events can take place at the same time in a person’s lifetime, therefore the
overlapping events for the same person are placed on separate stacked rows. The shared events
are visualized as multicolored lines, with colors corresponding to the persons involved.

B Event Map – The event map gives a geographical perspective of places where the events took
place. For instance, Figure 5.7 B shows that all three soccer players participated in an event
in Brazil (FIFA World Cup 2014). The events are displayed as colored circles, which are hori-
zontally divided into different colors if the events are shared among two or more people. Since
not all events have a geographical location in EventKG, fewer events might appear on the map
compared to other views.

C Relationship Graph – It shows the connectivity of queried persons through shared events as
a force-directed graph. The persons are displayed with their picture and corresponding back-
ground color as assigned in the event timeline (Figure 5.7 A ). The events are connected to
corresponding persons via colored edges. Nodes representing shared events use multiple colors
similar to the event map; events only assigned to a single person are not shown to reduce clut-
ter. A desired consequence of the force-directed layout is that the more connected event nodes
appear toward the center, while the person nodes float in the periphery.

D Details–Thedetails panel is reserved for showing the relevantWikipedia article about an entity
or event on demand.

E Chat –The chat serves as the entry point to the system. It greets users with a welcomemessage
and a few sample queries. Users can freely type in a query. Figure 5.7 E shows an example
query and the generated response. Answering the user’s question is done either using theGPT-
3—an autoregressive languagemodel that uses deep learning to produce human-like text24—or
through the identified shared events with pre-written text templates. GPT-3 receives the user’s
question as input and tries to generate an answer based on its 499 billion tokens of pre-trained
data. Since these tokens come from a variety of sources, such asWikipedia or CommonCrawl,
GPT-3 answers are oftenmore precise than the information displayed by the template. If GPT-
3 fails to answer the question, VisKonnect generates a response from the text templates. This
response is based on the number of identified events and the intent. When there is no identified
event, VisKonnect reports that no event was foundwith temporal overlap between the queried
persons. When shared events are detected, the answer reflects this, and the identified events
are displayed below. Figure 5.9 shows two textual answers generated by GPT-3 and the text
templates, respectively.
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Figure 5.9: Chat responses based on templates (le ) and GPT-3 (right).

VisKonnect uses consistent colors and icons across all views to support quickly moving from one
view to another. Furthermore, interactions link the views. For instance, hovering over an event in any
component highlights the related events in other views. Users can click any event anywhere to pull up
the related Wikipedia article in a dedicated panel (Figure 5.7 D ). Besides, zooming and panning in
the event timeline, event map, and relationship graph helps in exploring the details.

5.3.3 Sample User Queries and Responses

To evaluate the expressiveness and usefulness of VisKonnect, we tested the system by asking various
queries. Here, we first present a few examples and then analyze the system’s response to highlight
benefits and potential problems.

1 –When did Pierre Curie andMarie Curie marry?

The system (GPT-3) correctly answers thequestion as: “Theymarried in July 1895” followedby listing
two individual events “spouse: Marie Curie”, and “spouse: Pierre Curie”. Clicking the ring icon in their
lifelines, it is found that the marriage lasted from 1895 to 1906; Pierre died in 1906 (Figure 5.10 1 ).
Their shared events include “Nobel Prize in Physics (1903)”, “DavyMedal (1903)”, and “WorldWar
I”. Pierre is also connected to events after his death. For instance, he posthumously received the “Elliot
CressonMedal (1909)”.
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Marie and Pierre married

Pierre died

received Elliot Cresson Medal

Marie Curie

Pierre Curie

1 2

Figure 5.10: Cut-outs of two responses generated by VisKonnect. (1) Event meline for Example 2. (2) Rela onship graph for Exam-
ple 3.

Figure 5.11: Excerpt of a ques on about Einstein and Schrödinger (Example 4). The template-based answer iden fies the Solvay
conference as a shared event where the two scien sts were photographed together.

2 - Did Brad Pitt, George Clooney, and TomCruise all receive movie awards?

The system (GPT-3) answers that they have all received the Golden Globe Award and were all nomi-
nated for an Oscar award. Two events appear in the chat: The “Golden Globe Award” and “Academy
Awards” (Oscar) supporting the claim generated by GPT-3. Searching for the award symbol in the
other views (e.g., relationship graph–Figure 5.10 2 ) and looking up details further asserts the answer.

3 – Did Erwin Schrödinger meet Albert Einstein?

Figure 5.11 shows a cut-out of the generated response. The template-based answer describes that four
shared events were identified for the two scientists; they can also be seen in the relationship graph
on the right. Among these, the “Solvay Conference” seems the most likely event for a true meeting—
clicking it actually brings up a photograph where both men can be seen together.
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4 – DidMatHummels, Miroslav Klose, and Philipp Lahmmeet?

VisKonnect (GPT-3) states that they all were members of the German national soccer team at the
same time, and they all played for FC Bayern. The chat lists two shared events: “FIFA World Cup
2014” and “FC Bayern Munich” (Figure 5.7 E ). This fact also becomes evident by looking at two
three-colored events in the relationship graph C . The event timeline A further reveals that the three
soccer players participated in other sports events together between 2002 and 2020.

VisKonnect could answer most questions correctly or partially correctly as text; the answers gen-
erated by GPT-3 were more precise than the template-based answers. The accompanying explorable
visualizations helped verify the answer, provided context, and assisted in navigating to the answer in
case VisKonnect failed to provide a textual answer. On the downside, we observed that, sometimes,
GPT-3 answers did not fully align with the visualized events. Sometimes, events are very general and
overestimate who might have met or is related (e.g., World War I is assigned to many persons). As
some events are prolonged or assignment to an event does not necessarily imply the physical presence
of the person. Some eventsmay seemmisplaced in the event timeline and start either before birth (e.g.,
beforeMarie Curie’s birth in Figure 5.10 1 ) or after death (e.g., after Pierre Curie’s death in the same
figure). VisKonnect also had problems recognizing the names of some historical people, especially the
ones having titles, prefixes, or suffixes (e.g., Queen Elizabeth II).

5.3.4 Strengths, Limitations, and Challenges

The system is a proof of concept that a natural-language interface integrated with knowledge graphs
and visualizations can support lay users in answering non-trivial questions about historical figures.
Still, there are various open issues and interesting research challenges. In the following, we discuss
these issues and challenges along with the strengths of the approach.

Verification and explanation of results–Knowledge graphs and languagemodels are twodistinct
approaches and have recently been combined for answer generation.77VisKonnect demonstrates how
this combination—through linkedvisualizations and textual answers—canprovide immediate benefit
to the user. WithVisKonnect, on the one hand, a user can verify the answer generated by the language
model through visualizations of related events. On the other hand, the generated answer helps in
explaining the information conveyed through the visualization of knowledge graph data.

Exploration of intertwined lives–VisKonnect showcases the biographies of queried people. The
linked visualizations enable exploration of their lives not only from temporal and spatial perspectives
but also highlight the shared events to show how their lives were intertwined. The consistent color
encoding across the entire interface allows easy navigation. This ability to explore relationships in the
lives of historical figures can be applied in education, as demonstrated by the usage scenarios of the
HisVA system.56

Information selection – Knowledge graphs typically contain millions of nodes and edges (for in-
stance, EventKG has more than two million relations connecting persons to events). Consequently,
the selection of relevant pieces of information that are shown to the user poses an important chal-
lenge for any visualization built on top of knowledge graphs. For the selection of relevant events,
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VisKonnect relies on the number of mentions of the respective events on Wikipedia. As a result,
events that are of large historic significance such as the First or Second World War play an important
role in VisKonnect, independent of the context, i.e., the question and the persons involved. For a
more focused exploration of the persons’ lives, there is a need for context-dependent relevancemetrics
and for providing interaction possibilities that allow users to deselect specific or less relevant pieces of
information. Another problem relates to the ambiguity in entity names (e.g., whether the user is in-
terested inWinston Churchill, the British prime minister, or the American novelist). Having human
interventions in case of such ambiguities through interactive widgets (similar to Eviza152) may resolve
the problem to some extent.

Visual scalability – Taking inspiration from TimeSets128, we used unique colors for each queried
person and represented the shared events by filling the respective colors in the glyphs (e.g., lines in the
timeline and nodes in the relationship graph). As a result, it enables the users to infer the shared events
amongqueriedhistorical figures. However, since itmaybecomedifficult todifferentiate betweenmore
than five colors, the visual scalability of the interface is limited to about five people in a single query.
Besides, the event timeline can quickly become visually cluttered when a person is linked to many
events that temporally overlap.

Templates or GPT-3? –While the use ofGPT-3 in the chat allows precise answers (see Figure 5.9),
it is hard to control, predict what it would generate, and therefore integrate with the other visual
views,whichuseEventKGasunderlyingdata. Potential differences in textual andvisual answersmight
confuse the users. In contrast, answers generated by text templates can always be made consistent
to the visual answer. However, it requires bigger effort to make them sound natural and handle all
possible cases, given the user has all the freedom to ask questions. While VisKonnect leaves it up to
the user to verify whether GPT-3 produced the right answer, a future step is to automatically analyze
GPT-3 response to flag potential misinformation or conflicting information.

Chatbot: expectations and benefits –Chatbot systems often cause the user to overestimate what
the system can do172, as they can be usually perceived as capable as a human chat partner. Overesti-
mating the system’s capabilities leads to user inputs that the system cannot handle, therefore resulting
in frustration for the user. However, we think that they can be a way of introducing a visualization
system to general users who often lack visualization literacy. For instance, first answering a question
and then pointing the user to related events (with a simple click, coherent colors and icons) which can
take the user to visual views with the context still in mind. At present, VisKonnect does not support
follow-up questions. A natural extension would involve making the system context aware and using
the chat interface to apply filters. For instance, a user query “Did x meet y?” could be followed-up by
“Were they married?” without repeating the names and using co-reference analysis. Similarly, follow-
up queries like “Showme events related to scientific awards” could apply filtering to visualization.
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5.4 Exploranation in Virtual Reality Visualizations

With the advancement in environments like CAVE *, virtual, and augmented reality, researchers have
started to investigate more immersive data visualizations.73 As originally defined by Ynnerman et
al.189, the concept of exploranation is also applicable to immersive environments. The active in-
volvement of the users177 as discussed previously for 2D visualizations—especially in a virtual reality
environment—aligns with the broader definition of immersion presented by Isenberg et al.73 as “the
engagement or involvement someone feels as the result of looking, exploring, or analyzing a visual data
representation.”

On the one hand, ideas of 2D exploranation—especially with respect to what content needs to
be communicated—are extensible to virtual reality applications. The presentation of this content
in virtual reality, on the other hand, requires an altogether different approach. For instance, textual
explanations—which are mostly used in 2D data documents—are no longer a good option. Longer
textual explanations are not only difficult to read in virtual reality but may also occlude the display
and produce visual clutter. Besides, if not properly designed, they cause motion sickness, fatigue,
and discomfort.155 Hence, audio narration can be an alternative to communicate the story instead of
text. Audio has always been a powerful medium as an alternative to text when it comes to explaining.
It has already been used in various virtual reality applications such as games, movies, reconstruction
of historical events, and virtual museums. Creation of such applications involves prerecording and
inclusion of audio commentary either at various stages of the story (e.g., in a game) or triggered by
user interactions at predefined locations (e.g., in a virtual museum). Since such applications provide
limited flexibility in terms ofwhat users can interactwith and change, the adaptability of aural content
with user interactions is not a concern as everything can be scripted beforehand. In contrast, this
adaptability becomes a challenge in interactive data documentswhere explanations need to be adapted
for different datasets and user input, thereby demanding a more flexible approach.

This section aims at supporting exploranation in immersive virtual reality visualizations by ex-
tending the idea of interactive data documents in virtual reality environments. The proposed multi-
sensory representation—mapping to sensory channels such as vision and hearing among others—of
data contributes to increased immersion73. Withour concept, TalkingRealities, we target an adequate
balance between an active exploration of data visualization and an explanation of findings through an
audio narrative for providing an engaging and immersive experience.

5.4.1 Talking Realities

Talking Realities combines a data-driven audio narrative with an immersive virtual reality visualiza-
tion. The audio narrative is automatically generated and adapts to data selections and user interac-
tions. While the narrative guides users through identified insights, the interactive visualization allows
free exploration. The concept is first discussed independent of any specific application, and then it
is instantiated on two realistic application scenarios. The concept is applicable to virtual reality sce-

*“A Cave Automatic Virtual Environment (CAVE) is an immersive virtual reality environment where projectors are
directed to between three and six of the walls of a room-sized cube” –Wikipedia
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Figure 5.12: Abstract representa on of Talking Reali es—a concept for producing data-driven narra ves in virtual reality. (A) The
interplay of three aspects (I) Immersive Visualiza on, (II) Narra ve Genera on, and (III) Explorana on. (B) Explorana on offers varying
levels of guidance: Guided Tours walk the users through a predefined sequence of events, Guided Explora on provides hints at various
possible perspec ves to explore, and Free Explora on enables the users to freely examine the dataset.

narios where data is represented as a single 3D visualization. We restrict the discussion to single-user
applications and assume the visualization is viewed with a state-of-the-art head-mounted display. In
general, we do not target an audience of experts but rather a broad group of users and do not assume
specific previous knowledge about visual analysis or the data domain. For example, one such scenario
is the visualization of long-distance air traffic projected onto a virtual 3D globe as it could be shown
in an aircraft exhibition.

Figure 5.12 describes Talking Realities on an abstract level. The process begins with the visualiza-
tion and analysis of a given dataset. While an immersive visualization provides an overview of the data
and offers exploration, automatic data analysis results in insights that are then converted to audio nar-
rative usingnatural language generation and speech synthesis (Figure 5.12 A –NarrativeGeneration).
The representation is produced by synchronously integrating the audio narrative with the immersive
visualization (Figure 5.13). Finally, users can choose from three different levels of explanation and
exploration, ranging from fully guided tours to a free exploration of the visualization (Figure 5.12 B ).
We rely on existing techniques andoff-the-shelf tools for accomplishing various tasks in our generation
pipeline (Figure 5.12 A ) as described below:

1 – Immersive Visualization

Avisualization in virtual reality provides anoverviewof thedata and serves as an anchorpoint through-
out exploration. To use the full potential of the three-dimensional virtual world, it should have a
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meaningful third dimension that adds value to the analysis. Such visualizations can be borrowed from
existing literature on virtual reality immersive analytics for information visualizations as well as scien-
tific visualizations.27 To support the exploration, the immersive visualization enables interactions.
We discern between two types of interactions. The first type includes zooming, rotating, and pan-
ning. Since these interactions allow users to adjust the orientation of the scene, we refer to them as
visual navigation interactions. They are not associated with any audio explanation and do not inter-
rupt the audio playback either. This way, users may change the orientation of the visualization during
playback to get a peek from a different angle. The second type of interaction allows users to select and
manipulate data items that are encoded by visual elements in the visualization. These interactions di-
rectly relate to the underlying representation of the data and are referred to as data interactions. Users
should be able to select data points and get details on demand, which can be presented as audio com-
ments. It should be possible to filter or sub-select the visualized data. Generally, interactions in virtual
reality are triggered through hand-held controllers.

2 – Narrative Generation

Orthogonal to immersive visualization, narrative generation aims at automatically identifying inter-
esting insights from the data by applying various analysis techniques. The resulting insights are then
verbalized. The process consists of the following three steps:

2a – Automatic Data Analysis: The first step is to automatically find interesting analysis insights
within the data. In line with the empirical findings (cf. Section 3.3), Table 5.2 provides an incomplete
list of different types of analyses that can be performed. General statistics on the overall dataset or the
most prominent parts of the data can give the users a first overview. Clusters of similar data itemsmight
be interesting to study as they show the main structure of the data. Specific examples of data items
can be identified to either illustrate a representative case for a cluster or, in contrast, show noteworthy
exceptions or outliers. If the users are interested in specific data items (either by selection or assumed
background), a data-driven comparison of the items to a set of other items is relevant. Also, trends
that describe consistent changes across sequential information, such as in a time series are often of
particular interest. Each type of analysis may produce a varying number of results, in total, often
beyond a number that can be realistically presented to the user. In this case, we need to prioritize the
findings, for instance, just listing the most prominent clusters instead of all (Equation 4.1).

2b – Language Generation and Speech Synthesis: The detected insights are then transformed
to natural language text. To accomplish this, we use an automatic generation process as already de-
scribed in Section 4.1.2. Next, to convert the generated text to an audio output, any off-the-shelf
speech synthesis API can be used as offered, for instance, by Google or Microsoft. These APIs al-
low customizing the way a text is read through the Speech Synthesis Markup Language (SSML), an
XML-basedmarkup language that controls the pronunciation and prosody of the synthesized speech.
In our narrative, we discern between contextual and data-driven explanations. The former are used to
introduce the dataset and provide other background information about the scenario. The data-driven
explanations, on the other hand, are the ones that report notable data insights (I.i – Section 5.1).

2c – Visual–Audio Synchronization: Since the content is presented across two different media
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Table 5.2: Various types of analysis that can be performed on a dataset.

Analysis Type Descrip on

Sta s cs Sta s cal proper es that summarize (parts of) the data (e.g., average, data ranges, correla ons)

Clusters Data items of similar proper es or dense connec ons

Examples Single data items that are representa ve for a group or noteworthy outliers

Comparison Contras ng data items to a set of other items

Trends Changes in sequen al informa on

(audio and visual), it becomes important to temporally align these representations. Similar to vis–text
linking (III.i – Section5.1) Figure 5.13 illustrates the synchronizationof content during thenarration.
The respective parts of the visualization are either (visually) highlighted or animated in synchroniza-
tionwith the relateddata-driven audionarrative (green andorange blocks). Contextual narrative (gray
blocks) is usually not directly associated with the visualization and hence cannot be synchronized.

Narrative

Animation

Time

…

…

Figure 5.13: The visualiza on is animated in synchroniza on with the audio narra ve.

3 – Exploranation

The data-driven audio explanations provide guidance to the users, while the visualization allows a
Free Exploration of the data. Considering this as a continuum between explanation and exploration
(Figure 5.12 B ), we suggest the following three specific usage modes, all three including elements of
explanation and exploration but with varying strengths.

3a – Guided Tours: Focusing on explanation, guided tours correspond to a fully automated story
including a predefined sequence of events. They are like self-running presentations.88 The main ob-
jective is to present the users with a series of insights in adequate detail. A linear sequence of available
insights gets automatically selected from the data. For instance, in the case of air traffic data, Guided
Tours canwalk the users through the busiest airports of the world; the airports and sequencemight be
different depending on the data currently loaded. These tours serve as the starting point and can be
used to get familiar with the data and visualization, similar to a tutorial. Users are free to select from a
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list of different, but independent tours according to their interests, which provides a minimal degree
of exploration.

3b – Guided Exploration: In contrast, the guided exploration scenario allows users to choose be-
tween various story branches at fixed junction points. The users begin by looking at the visualization
and hearing an introductory audio narrative. Then, as shown in Figure 5.12 B , at the first junction
point, the users are presented with different possible storylines and can interactively choose one. As
a third type of interaction, we refer to these as navigation interactions, since they determine the sub-
sequent progression of information. The system needs to clarify the available options, for instance,
using self-explanatory icon images or explaining available options as part of the audio narration. This
is repeated recursively for several levels. In that way, the users navigate through the data in a mix of
short explanations and exploration through choosing the next option. Different starting points should
be provided for entering different guided explorations.

3c – Free Exploration: Free exploration enables users to further investigate details after having
viewed a guided tour or guided exploration, but it can also be considered an alternative to thesemodes.
For instance, users may have some hypotheses in mind that they want to validate. They select data
points and activate short explanations, which provide details on demand. Various such options for
interactions should be provided so that users can steer in the desired direction. By selecting these var-
ious possibilities, users create their own stories fitting their current information interests.

Both data interactions and navigation interactions are associated with the audio narrative. Upon
triggering them, the audio starts playing with the relevant parts of the visualization animated. Since
the audio comments may take a while to complete, they might interfere with follow-up interactions.
While visual navigation interactions (such as zoom, pan, rotate, etc.) should not affect the playing
audio, data and story navigation interactions should influence the audio as they clearly indicate that
the user is now interested in something else. When the user triggers a data or navigation interaction
while an audio comment is playing, the active playback immediately jumps to the newly triggered
comment. Among other audio control interactions, the user should further have the option to skip
any audio playback at any time, which introduces a fourth type of interaction. Since guided tours
provide limited exploration, they only cater few story navigation interactions for choosing or switching
between the available tours. Guided exploration consists of both data and navigation interactions,
where the former may also serve as an anchor point to a branching follow-up story (controlled by the
latter kind of interactions). Finally, free exploration only provides data interactions. However, visual
navigation and audio controls are available in all modes of exploranation.

5.4.2 Application Examples

Next, we instantiate the concept of Talking Realities to two different datasets to showcase its applica-
bility. First, the air traffic data is chosen as an example due to its spatiotemporal nature and suitability
for a broad audience—nearly anyone, mostly irrespective of age and background, can understand and
connect to this scenario. Second, we sketch a mock-up for demonstrating the generalizability of the
concept. We pick the example of an information visualization scenario. The example relies on exist-
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ing tools157 for producing immersive visualizations; the audio explanations, however, are not imple-
mented and are solely drafted formock-up purposes. In contrast to the first examplewhich focuses on
guided tours and guided exploration, the second example goes deeper into the types of automatic data
analysis (Table 5.2) and describes the free explorationmode. The second example may be employed in
educational scenarios to explain, for instance, statistical concepts to pupils.

Air Traffic Data

The choice of this scenario is grounded in the fact that the data has a 3-dimensional representation; vi-
sualizing it in a virtual reality environment comes naturally andmakes sense. Also, due to its complex
geo-temporal nature, it can benefit from explicit audio explanations while showing it to the general
public. Our target audience includes flight enthusiasts, school or university students, or anyone who
wants to explore and get insights from global flight data. The prototype implementation uses Unity
and C#; it is developed for theOculus Rift head-mounted display *. The dataset we use is freely avail-
able at OpenSky Network. It consists of more than eleven million flights in a single calendar year.
Visualizing such a large amount of flight trajectories in virtual reality would result in slow rendering
times and cause visual clutter. Also, short flights are not particularly relevant on a global scale. There-
fore, we restrict ourselves to only large airports (visited by five million passengers annually) and inter-
continental flights longer than at least ten thousand kilometers. This filtering leaves us with about a
hundred thousand flights for the year 2018 and 600 airports.

Immersive Visualization: As we target an audience of non-experts, we went for straightforward
visualization of 3D trajectories as opposed to more complex visualization techniques.72 The inter-
continental flights are visualized on a 3D globe of the Earth as colored trajectories starting and ending
at airports. Figure 5.14 A shows an overview of all the inter-continental air traffic onAugust 2, 2018.
We visualize airports as blue spheres at their exact locations. We approximate flight trajectories using
cubic Bézier curves and visualized them as smooth curved lines. Although it may be more interesting
for advanced users to see the exact flight paths, it would probably confuse novices as the exact trajec-
tories result in more visual clutter. To prevent overlapping trajectories, we randomly exaggerate flight
altitudes. A color gradient (red–green) marks the departure and arrival point of a flight. To enable
exploration, the visualization offers data and visual navigation interactions. Users can interact using
the touch controllers of the Oculus Rift. It is possible to pan, rotate, zoom in, and zoom out (visual
navigation interactions). For instance, users can grab the visualization and then expand or contract to
zoom in or out the entire visualization. Users can interact with countries and airports to get details
on demand. The calendar enables users to select and load data for different days (data interactions).

Narrative Generation: The analysis (Automatic Data Analysis) results in interesting insights for
all airports and countries. For each airport, wefind its international aswell as national (statistical) rank,
number of daily departing and landing flights, longest flights to and from it, most connected airport
(in terms of number of flights), and the busiest hour of the day (Table 5.2 – Statistics). Similarly, all
these details—except for the last one—are detected and aggregated for each country. The analysis re-

*The implementation of this prototype application was greatly supported by a group of graduate students at the Uni-
versity of Duisburg-Essen.
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A

B C D

A

B The longest inter-continental flight is to
Dubai International Airport, which is 14
hours 46 minutes. An average flight
length from San Francisco International
Airport for a long-distance flight is 12
hours and 49 minutes.

C In Germany, there are two large airports.

D
Most long-distance flights are going to
Los Angeles International Airport which
is in the United States.

IMPLEMENTED AUDIO TRANSCRIPTION

The whole flight data covers a time span
of one year. It consists of 100,000 flights
over 10,000 kilometers long and 600
airports with more than 5 million
passengers annually.
For the 2nd of August of 2018 it contains
a total of 236 flights and 56 airports.

A

Figure 5.14: Graphical interface of the prototype and various anima ons. (A) The visualiza on displays the aggregated inter-
con nental flights for one regular day. The color gradient (red:departure to green:arrival) denotes the direc on of flights. Anima ons
showing (B) the longest flight from an airport, (C) large airports of a country, and (D) most flights to any other airport. The right (gray)
box discloses the audio transcrip on that are played when users see corresponding anima ons.

runs and updates according to data selections (for instance, when the users select another day of the
year). To convert identified insights into audio guides, we first employ text generation (LanguageGen-
eration) as already described in Chapter 4. Afterward, we use a text-to-speech API for transforming
text into audio (Speech Synthesis). A combination of animations and visual highlighting helps syn-
chronize the visual content with the audio narrative. When the audio narrative talks about a specific
insight, the relevant parts of the visualization are highlighted (related airports with red and trajectories
with blue color). The rest of the flights and airports are faded out using the opacity channel to create
a focus–context effect. A sequence of this highlighting produces an animation effect. Figure 5.14 ( B
– D ) provides examples of audio guides and the visual–audio synchronization. For instance, when
the user selects San Francisco International Airport (Figure 5.14 B ), the audio plays “The busiest hour
of this day is 1 o’clock, where three inter-continental flights arrive or depart.” while all these flights get
highlighted (not shown in the figure); the narrative then continues to describe the longest flight from
this airport as “The longest flight is to Dubai International Airport, which is 14 hours and 46minutes.”
and the corresponding flight gets highlighted in red.

Exploranation: In the system, users are confronted with the visualization and an introductory
(contextual) audio that explains the application scenario and data statistics (Figure 5.14 A ). At this
point, users can either go for guided tours—that are available on a virtualmenu—or start exploring the
visualization (guided or free exploration) on their own. Guidance is provided to the users via virtual
radial menus (Figure 5.15). These menus hint at possible aspects of data analysis that are available
(guided exploration). They can be accessed through hand-held controllers. For every country and
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A B C

Figure 5.15: Virtual menus providing guidance on the possible aspects of explora on on selec ng an airport (A) and a country (B).
Audio controls (C) can be accessed at any me to replay, skip the current playback, and to adjust the volume.

airport, detected insights are grouped into four distinct categories. For instance, when users select a
country, a menu (Figure 5.15 B ) appears showing the name of the country and four possible options
(navigation interactions). Users can then choose among the general statistics, arriving and departing
flights, or large airports. Similarly, for an airport, the radial menu (Figure 5.15 A ) contains infor-
mation on general statistics, temporal information (e.g., busiest hour), and the longest flight. Audio
controls interactions are provided on a similar radial menu that is available on the left touch controller
(Figure 5.15 C ). It can be accessed at all times and includes skip, repeat, and volume control options.

The explanations, in the form of audio guides, are presented when users interact with the globe vi-
sualization. In free explorationmode, interactingwith countries or airports brings forward the details-
on-demand audio guides. For instance, Figure 5.14 C shows the result of selecting Germany on the
globe. It highlights that there are two large airports in the country with not a lot of inter-continental
traffic. Similarly, Figure 5.14 D shows the state of visualization and audio comment while interact-
ing with Leonardo da Vinci (Fiumicino) Airport airport of Rome, Italy. The comment says that this
airport is most connected to Los Angeles International Airport via long-distance flights; three flights
fly daily between the two airports.

Multivariate Data

Tabular data where objects are described along multiple variables is a common type of data. For in-
stance, the multivariate dataset mtcars* contains eleven properties of 406 different car models that
were manufactured between the years 1970–1982. It can provide insights into similar car models and
relationships between different properties of cars.

Immersive Visualization: A scatterplot is an intuitive and established visualization that can be
used for this purpose. As it is not limited to only two dimensions, more properties of cars can be
simultaneously visualized as the third dimension (z-axis), color, size, shape, or opacity. Figure 5.16

*https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html
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A

Out of 406 car models, only three have five
cylinders. These models have huge
variations in values of horsepower and miles
per gallon.

In terms of acceleration, Mercedes Benz
300D and Audi 5000S has almost equal
values.

Horsepower is negatively correlated with
miles per gallon and acceleration. Cars with
a high number of cylinders have higher
horsepower but lower accelerations.

B

A
C

Mazda Rx-7 GS is one of the four cars with
three cylinders. It is the most economical car
with 23.7 miles per gallon.

The model Oldsmobile Cutlass Salon
Brougham has a high acceleration of 22.2
and low horsepower of 90.”

C

With the passage of time, an increase in the
values of acceleration and miles per gallon
is seen. On the other hand, the weight of
cars decreased.

Japanese model Datsun 1200 manufactured
in 1971 is the oldest model having high mpg.

D

D

MOCK-UP AUDIO TRANSCRIPTION

Mazda Rx-7 GS 

Cutlass Salon Brougham

Datsun 1200

Audi 5000S

Mercedes 
Benz 300D

Figure 5.16: A mock-up illustra ng the applica on of Talking Reali es to mtcars dataset. (A) Sca erplot visualizes horsepower, miles
per gallon, accelera on, and cylinders for 406 different car models (1970–1982). The right (gray) box shows the transcrip on of data-
driven audio that summarizes insights related to (A,C) correla ons among all visualized variables (B) unique models (outliers) with
respect to number of cylinders, (C) details on demand for a selected car model, and (D) changes in the values of different proper es
over the years. The first text block refers to both sub-figures A and C.

presents a mock-up of a possible implementation for virtual reality. At the center lies an interactive
3D scatterplot showing horsepower (x-axis), miles per gallon (y-axis), acceleration (z-axis), and the
number of cylinders (color) of each car model. The visualization is produced inUnity with DXR157

and offers interactions. It is possible to change (add or remove) dimensions using themenu on the left
of the scatterplot as seen in Figure 5.16 A .

Narrative Generation: Automatic data analysis followed by language generation and speech syn-
thesis can describe insights like pairwise correlations between the selected variables (Figure 5.16 A and
C ), outliers with respect to one or more variables ( B ), and temporal evolution of car models with re-
spect to the visualized variables (D ). The analysis types Statistics, Examples, and Trends have been
used here (cf. Table 5.2).

Exploranation: To steer the users’ attention, related data points on the scatterplot would be high-
lighted in synchronization with the audio narrative. For instance, in Figure 5.16A, first blue spheres
and then green spheres will be highlighted sequentially (fading out the other) while the audio plays:
“Cars with a high number of cylinders have a higher horsepower but lower acceleration.” Guidance can
be provided by offering various analysis types to users, for instance, clustering with various types of
clustering algorithms. Other users may want to directly explore the data with respect to specific ques-
tions. Figure 5.16 outlines an example of a free exploration scenario. It beginswith getting an overview
of the correlations among horsepower,miles per gallon, and cylinders (Figure 5.16 A ). Knowing the
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relationship between these three properties, now, the user wants to explore more the cylinder prop-
erty; she simply chooses it from a menu on the hand-held controller. It turns out that the 5-cylinder
cars are very rare and two of those (Mercedes Benz 300D and Audi 5000S) have almost equal acceler-
ation values (Figure 5.16 B ); since one of these models is occluded by other cars, the user rotates the
view to inspect it better (visual navigation interaction). Next, she inspects certain car models of her
interest; Figure 5.16 C describes the results of interacting with two different car models (red labeled
dots). SinceMazda Rx-7 GS is an outlier, it has more explanation compared to Oldsmobile Cutlass
Salon Brougham. Finally, the user decides to remove the variables cylinders and horsepower, and in-
stead adds year and weight as variables. The year is added as a color gradient to the scatterplot from
light red (1970) to dark red (1980) (Figure 5.16 D ). Now, the data analysis re-runs and adapts to the
new state of the scatterplot. The audio describes the relationship among the three visualized variables
(year, acceleration, and weight), followed by highlighting an outlier with respect to year andmiles per
gallon.

5.4.3 Limitations and Future Opportunities

In general, the concept Talking Realities has focused on generating interactive data representation for
virtual reality environments by integrating audio explanations and visually presented data. It uses sim-
ilar linking concepts as discussed for 2D representations (Section 5.1) and extends them to virtual re-
ality visualizations. However, our scenario and solution are still limitedwith respect to various aspects
of content presentation and, in particular, human-computer interaction that are altogether different
from conventional mouse interactions on a 2D screen. These aspects can be explored as future work
and include further relevant research challenges.

Evaluate interactions for exploranation – We have made suggestions—as part of the abstract
concept as well as specific ones in the application examples—how to design interactions for control-
ling the progression of information in a given data representation. However, it still remains an open
research question whether these interactions already sufficiently support the suggested (three) explo-
ration modes and how to best achieve a smooth information flow. An extensive user evaluation is
necessary to address it. Moreover, in the guided explorationmode, instead of having fixed exploration
paths, the system can provide flexibility, for instance, different exploration can be suggested depend-
ing on the previous selections of the user. The main constraints are that the user should be able to
go back and forth between different modes of exploranation at any viewing location and interactions
should be effortless.

Advance the natural feel of interactions – In a virtual reality environment, users usually interact
withmotion controllers they hold in their hands and bymoving their heads around. This inputmode
supports basic interactions for pointing at objects, directly manipulating these objects, panning the
visual view. However, other modes of interaction could feel more natural and increase immersion.
In particular, speech input (like Google Assistant or Apple’s Siri)—instead of selecting and tapping
objects—can transform the audio-guide into a conversational interface. However, it comes with the
caveat that usersmight get disappointed if the interface is not able to answer arbitrary questions about
the presented data.172 Also, hand gestures could further extend the Talking Realities concept. For ex-
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ample, a halt gesture could naturally stop the current audio. Likewise, we can think about extending
the output modes, for instance, including tactile feedback synchronized to audio and visual presenta-
tion. Such feedback, however, needs to be balanced well as the user might consider it as intrusive if it
is too strong and too frequent.

Adapt to users’ experience level – Considering varying levels of experience and expertise of end
users, and consequently varying the level of explanation and guidancewhile interactingwith the inter-
active data representation would be useful. We can speculate that guided tours and guided exploration
may particularly educate children and visualization novices in a playful manner while free exploration
canbe interesting to advancedusers. Still, alsonovicesmight like toplay in a freemanner, or the experts
would profit from the hints on some advanced findings (guided exploration). Interesting challenges
and future directions include: defining appropriate levels of insights and language for each group of
users, testing whether certain interaction modes are preferred by different groups of users, and how
an automatic solution can adapt to different user experience levels.

5.5 Conclusion

This chapter has introduced a generic approach of supporting exploranation in (multimodal) interac-
tive data representations leveraging the benefits of text, audio, and visualizations. Traditional visual
analytics systems have a strong focus on exploration, while conventional storytellingmethods are cen-
tered around providing more explanations in a communication context. Unlike both extremes, we
consider our contributions in aiming to blur the hard borderline between explanations (provided by
textual or audio content) and visual data exploration. The interaction model introduced to connect
visual and textual or audio elements goes beyond previous work and showcases how text generation
and brushing-and-linking techniques can play together in a multi-view system. We believe that text
or audio, well-integrated with explorable visualizations, can make data analysis more accessible and
easier to understand for a wide audience. With such close integration, eventually, text—or any other
explanatorymedium—and visualizationwill become only two points in a continuum (with any point
in between possible) instead of being treated as two separate modalities.

The resulting approach can be classified as a visual analytics solution that puts a lot more emphasis
on presentation and dissemination alongside exploration. Unlike traditional visual analytics systems,
it no longer leaves users on their own to derive insights but helps discover them, evaluate them, verify
them, and even learn on the side.
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A user interface is like a joke. If you have to explain it, it is not
that good.

Martin LeBlanc

6
Authoring Interactive Data Documents

F ully automatic solutions to produce interactive data documents—as discussed in Chapter 4
and Chapter 5—are domain-dependent and require a large effort to generalize to other appli-
cation domains and datasets. Therefore, a natural next step is to equip creators (e.g., digital

journalists) of such interactive content with an easy-to-use authoring solution. Although existing
authoring solutions provide basic support for data-driven storytelling (see Section 2.5.1), they have
poor support for creating interactive data documents—particularly with regard to allowing for inter-
active linking of the text and visualizations—that would ultimately allow exploranation. Therefore,
practitioners have to opt for programming frameworks (e.g., D319 or Idyll 31) to create such data doc-
uments. These programmatic approaches require programming skills and going through complex
application code. Content makers (e.g., journalists, visualization designers) may not have such strong
programming skills. Therefore, we need an authoring solution that is simple to use and requires lit-
tle to no programming. In the early phase, this thesis started off with a simple declarative syntax to
produce visualization–text linking inweb browser-based interactive documents.97,98These solutions,
however, are restricted to specific domains and datasets (tabular97 and graph data98) and are not easy
to generalize. On top of that, they still require basic knowledge of web programming (e.g., HTML);
hence, these are not discussed in the thesis. Instead, this section describes a more generic and power-
ful approach leveraging an intelligent graphic user interface powered by natural language processing,
resulting in a Web-based tool calledKori.

Kori is amixed-initiative interface system that enables easy authoring of interactive data documents
with a specific focus on the synthesis of text and visualizations through interactive references. Fig-
ure 6.1 shows the interface and a series of steps for constructing an interactive data representation.
Kori is grounded in the design space analysis of implicit visualization–text references (Section 3.5) and
leverages natural language processing to automatically identify references while users are authoring. It
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combines this automation with a minimal and simple-to-use graphical user interface for constructing
further references.

6.1 Design Considerations

The main objective of Kori is to facilitate non-technical users in creating customizable and highly
interactive data documents. To facilitate this user group, the most natural choice of interface is a
graphical user interface. In addition to creating interactive visualization, the system should assist users
by detecting and suggesting potential references while they are composing a narrative about these vi-
sualizations. Besides, the system should provide an intuitive and easy-to-use interface for the manual
construction of interactive references beyond the automatically suggested ones. Kori is developed
along the following design rationale:

D1 Suggest possibilities – The system should not explicitly create references, but rather suggest
them to the user. One reason is that every automatic detection systemwould inevitably result in
false positives as thematter is complex and the linkingmight be subjective to the user. Another
reason is that users may get annoyed by the automatic creation of many references—not all
wanted. Therefore, the system will only suggest them, and the user can either accept or reject
them.

D2 Let users create – Users should not feel restricted to only what is suggested by the system—
the automatic suggestion of potential references may not be enough. Users may want to create
additional references or combine the suggested ones into a single higher-level reference. The
construction of a reference involves the selection of visual marks (data items) on the chart and
relating them to the text. To this end, our goal is to support a smooth visual interaction design
for creating references. The interaction design should be intuitive, efficient, and generalizable
to multiple chart types.

D3 Assist but do not distract – In general, the users should not get distracted by the additional
features our tool provides. They should be able to focus on creating the content, while assis-
tance for linking text and charts blends in smoothly. Itmight go unnoticed at first, but becomes
a valuable tool when revising and polishing the document. The suggestions and options to cre-
ate references might even inspire the authors to communicate a deeper analysis of the data as
understandable communication is easier to achieve.

6.2 The User Interface and Usage Scenarios

Kori comprises an editor and a viewer. Accordingly, it discerns two roles of users: authors, who create
the content within the editor, and readers, who consume the content in the viewer. While the tool
assists authors in creating interactive references, the readers profit from an improved synthesis of text
and charts leveraging those references. In the following, we describe two typical usage scenarios that
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Figure 6.1: The Kori system consists of a chart gallery (le ), edit area (middle), and a link se ng panel (right). Kori automa cally
suggests poten al references (do ed gray underline) as a user types. Besides, it supports manual crea on of links through simple
interac ons (4–6). The steps 1–10 describe a usage scenario to create an interac ve story.

illustrate both perspectives, before Section 6.3 describes the technical details. For the sake of demon-
stration, we take an example dataset and a collection of charts that describe the Covid-19 cases in the
US (on federal and state level) from January to late August 2020. Let us assume that Alice writes an
interactive data document for Bob.

6.2.1 Authoring

Figure 6.1 shows the editor interface of Kori. It consists of a chart gallery and an editing area. The
chart gallery holds a collection of charts that can be inserted into the editor. Kori supports charts
based on Vega-Lite syntax148. Charts can be loaded into the gallery by dragging and dropping their
specification files. Alice begins her composition by adding four charts 1 , she has already created using
Voyager184—aTableau-like interface for data analysis that can export Vega-Lite charts. Charts can be
dragged from the gallery to the editor. The editor windowprovides a standard text formatting toolbar
at the top.

Alice first wants to give an overview of the temporal development and adds the line chart (state
level) to the editor 2 and then starts writing text. While typing, she gets automatic suggestions (e.g.,
New York). Special decorations—dotted gray underline—notify her about the suggestions. Curious,
she hovers over the suggestion “New York” to preview it. As a result, the line representing New York
gets highlighted 2 . She types the @ symbol to trigger available suggestions while creating a reference
for Illinois 3 . The small chart avatars in the suggestion panel notify her about to what chart the sug-
gestion corresponds to. Alice observes an interesting pattern about cases dipping toward the end of
April and wants to create a reference for that. She does so by first selecting the text phrase and activat-
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ing the reference construction mode 4 . Then, she selects the line chart in the link setting panel 5 ,
chooses the filteringmode , adjusts the value of the interval slider for date, and finalize her reference
construction.

Moving forward, she wants to provide a comparison of three states that were hit hard by the pan-
demic during the second wave. She sees a suggestion for each state name, but she wants to highlight
them at once to allow comparison. She simply does so by following similar steps ( 4 – 5 ) but this
time choosing the directmanipulation mode (see Figure 6.2 B ), and simultaneously selecting three
corresponding timelines using amulti-point selection on the chart 7 . Since these references are man-
ually constructed, they are underlined with blue color to discern them from suggestions.

Togive an impressionof the severity of thepandemic, she adds amapof total deaths to the editor 8 .
As shedescribes the states sufferingmore than10,000 causalities, she gets a suggestion 9 . Shepreviews
it to see whether it is correct and then accepts it. As she previews it, she realizes the opacity of faded
out regions was quite low, and they were hardly visible. She adjusts the inactive opacity as desired 10 .

6.2.2 Reading

Bob reads the composed article in the viewer. It is a restrictive version of the editor and offers a reading
interface where Bob can activate the explicit referencing by interacting with the reference text. Kori
uses visual highlighting to make the related parts of a chart stand tall. The default highlight scheme is
the opacity channel.

6.3 The Kori System

The implementation of Kori includes the challenges of coming up with a mixed-initiative interaction
paradigm that assists human authors (D1) and does so in a passive and non-distracting manner (D3)
while still giving full control and freedom to the authors (D2). Kori is a web-based system; the front
end is developed in JavaScript, React, Draftjs, and Vega-Lite, while natural language processing tasks
have been performed in Python using SpaCy and FastText.119

6.3.1 Data, Charts, and Visualization–Text References

Kori supports a wide range of chart types including but not limited to (stack or group) bar charts,
(multi) line charts, scatter plots, distribution plots, heat maps, and choropleth maps. However, ad-
vanced visualizations (e.g., network diagrams, tree maps, etc.) as well as charts with coordinated views
are not supported. Kori expects Vega-Lite148 specification—JSON syntax—of a chart. We rely on
Vega-Lite for constructing and modifying charts, as it offers an expressive and declarative syntax. Au-
thors can load their data into Voyager184 or Vega-Lite editor4 to construct and export charts. These
charts can thenbe imported toKori. Althoughnot implemented, the chart gallery canbe connected to
Voyager184 to further facilitate data analysis and chart construction inside the tool. Since, at present,
Kori is restricted to standard visualizations—that can be created using Vega-Lite or Voyager—we use
the term ‘charts’ to refer to them, instead of the broader term ‘visualization’.

116



2

3

Reference suggestionsA Reference constructionB

1

Direct Manipulation

Selection relaxationD

1

2

3

Direct Manipulation

Trigger SuggestionsC

Figure 6.2: Salient features of Kori. (A) It uses natural language processing to suggest poten al references between charts and the
text while a user types. (B) Users can construct references by directly manipula ng the visual marks on the chart. (C) It is possible
to manually trigger sugges ons. (D) In direct manipula on mode, users can easily expand their current selec on to mul ple visual
marks of the same type. The encircled numbers mark the sequence of interac ons for each ac vity.

In Kori, a visualization–text reference corresponds to an explicit linking of a text phrase to corre-
sponding visual marks in the visualization. Since both representations correspond to the same data
items, our visualization–text links are instantiations of conceptual cross-referencing between the two
(see Section 2.3.2 for more details). According to the design space of implicit references between text
and visualizations (Section 3.5), Kori supports the construction of point,multi-point, and interval ref-
erences. It also suggests higher-level references but has no user interface to manually group individual
references together yet.

6.3.2 Reference Detection

The automatic reference detection speeds up the document composition process. While Kori detects
all three types of references, it only combines intervals with the corresponding axis of the chart. Once
the references are identified, their presence is communicated to the author via visual cues without in-
terrupting the authoring process (D1, D3); they are underlined in gray. Authors can inspect them
in due time or safely ignore them as they would not appear in the viewer mode. Authors can pre-
view them by hovering over before accepting or discarding (Figure 6.2 A ). Once accepted, they are
shown with blue underline and will appear in the viewer as interactive references. Figure 6.3 shows
our automatic reference detection approach that consists of the following four steps:
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Vega-lite Spec + Text Chart Feature Extraction Point-level Matching Interval-level Matching Reference Grouping
Compute similarity based on 
vector representations of the 
text and feature.

Rules-based pattern matching 
over part-of-speech tags to 
identify intervals

Group point (axis) and interval 
references using the structural 
analysis of a dependency tree

Extract the data properties of 
the chart, such as axes, legends, 
and mark labels

Accept a chart in vega-lite 
spec along with a relevent 
text phrase 

Figure 6.3: Four stages of our automa c reference sugges on pipeline. It accepts text and Vega-Lite specifica ons as input and
begins with extrac ng features of a chart. These features are then matched against user text to find point references. The third step
iden fies numerical intervals in the user text. Finally, related references are grouped together to form higher level references.

I – Chart Feature Extraction

Charts are composed of different types of encoding that map data values to visual properties (e.g.,
position, color, shape) of marks. The first step is to extract these data properties (e.g., axes labels, axes
values and scales, legends, data labels) of a chart. The expressive JSON syntax of Vega-Lite enables
easy access to this information. We loop through all kinds of visual encoding and extract their values
in the underlying data. We also extract the axes properties, as this is particularly relevant for interval
references. The extracted features serve as a knowledge base to match the user-typed text against and
for finding potential references. For instance, the extracted features of the scatterplot in Figure 6.2 B
are: x and y axes (horsepower and miles per gallon), legend categories (Europe, Japan, and the USA),
and names of all car models (denoted by each dot).

II – Point-levelMatching

The next step detects the occurrences of chart features in a user-typed text. Ourmatching process uses
vector representations of text obtained from FastText119, a neural network-based approach to obtain
text representations that takes into account bothword- and subword-level information (and therefore
more resistant to noise than word-only approaches such as word2vec120). We first use FastText to ob-
tain vector representations of (i) chart features and (ii) n-gram representations in the sentence up to
n = 3. For each chart feature, we then select the n-gram in the sentence that had the highest cosine
similarity to the chart feature and present it as a potential link to the user if the threshold is greater
than 0.5. Both the n-gram size and the similarity threshold were selected empirically to maximize the
F1 score against a small set of 55 manually annotated examples (see Figure 6.5). In addition to exact
keywordmatches, this vector-basedmatching process can tackle typographical errors, slight variations
of the words or phrases (e.g., US, U.S., USA), abbreviations (e.g., EU, European Commission), syn-
onyms (e.g., donating, contributing), and semantically similar words (e.g., Obama, democrat).

III – Interval-levelMatching

A rules-based approach on top of words and part-of-speech tags is used to identify numerical inter-
vals in a sentence. We derived heuristics based on our observations in the design space analysis (Sec-
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tion 3.5). We observed 116 sentences (16 from our collection, 100 gathered from diverse news articles
on the web) that described one or more numerical intervals each and found the following list of fre-
quent patterns (their frequencies in brackets):

more/less/fewer than X (45), X to/through Y (29), between X and Y (15), at least X (11),
since/from X (4), below/above X (3)

The symbols X and Y denote either a number, date, or time, which is identified using the parts-of-
speech tag NUM from Spacy. The combination of words and part-of-speech tags makes it convenient
to derive compact rules to capture intervals. For instance, the rule ‘between X and Y’ is identified
with the part-of-speech pattern ‘NUM CCONJ NUM’, which detects phrases where two numbers (NUM)
are joined by a coordinating conjunction (CCONJ); a complete list of patterns can be found in the sup-
plemental material of the related research article.100

IV – Reference Grouping

The final step is to combine the intervals with the correct axis-reference of the chart. In some cases,
it may be possible to infer this by comparing the interval occurrence to chart axis values, for example
in simple charts with a single numerical axis. However, if a sentence contains multiple intervals or a
chart has multiple axes with overlapping axis extents, inferring the correct interval-axis combination
is nontrivial. Surface-level heuristics which (for example) combine an interval with the nearest axis-
reference is often inadequate as they do not take into account the syntactic and semantic structure
of the sentence. To better account for sentence structure, we use its dependency tree (again obtained
from Spacy) to map interval occurrence to their corresponding axis-references. Concretely, we map
an interval occurrence to an axis-reference that is closest in the dependency tree distance, where we
treat the dependency tree as an undirected graph and useDijkstra’s algorithm to compute the distance
betweenwords. For cases where axis-reference and/or intervals consist ofmultiple words, we compute
the tree distance between the phrase head words.

As an example, in Figure 6.4 (top) the sentence contains three axis names (Count of Records,A1 =
Minimum temperature, and A2 = Maximum temperature) of a scatter plot and two intervals (I1 =
between 5 and 10 and I2 = between 10 and 15). The shortest distance between A1 and I1 is 4 (or-
ange and blue arcs) whileA1 is 5 edges (orange and green arcs) away from I2. Similarly,A2 and I1 are 5
edges apart, while the distance betweenA2 and I2 is 4. Since we combine a pair of axis and an interval
when the shortest distance between them has the minimum value, this results in grouping ofA1 with
I1 andA2 with I2 as desired. In the case of ties based on dependency tree distance, we use the distance
to the first common ancestor as a tiebreaker (i.e., the interval-axis combination that shares a closer
ancestor is grouped together). If this second heuristic results in a tie, then we resort to the surface-
level distance as the final tiebreaker. The bottom sentence in Figure 6.4 highlights a failure case where
our approach wrongly groups the axis price with the interval between 2006 and 2008 (distance 2 –
orange and blue arcs) instead of combining it with over $400 (distance 3 – orange and green arcs).
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Figure 6.4: Dependency parsing for two sample sentences. (top) Success case: “minimum temperature” is successfully grouped with
“between 6 and 10”. (bo om) Failure case: “price” is wrongly grouped with “between 2006 and 2008” as it is closer to “price” than “over
$400.”

6.3.3 Reference Construction

Often, authors already have references in mind while writing about a chart. Thus, they may not have
to wait for reference suggestions. Instead, they can explicitly trigger suggestions by typing in the ‘@’
symbol (Figure 6.2 C ). It shows a list of features or labels of charts that are currently active in the
editor. Each item in the suggestion list is preceded by a thumbnail of the related chart, which helps
authors quickly see what feature refers to which chart. The list offers an auto-complete; it keeps on
filtering as the user types. The list of suggestions is also triggered by selecting a portion of the text.

The reference suggestions are limited and may not cover the full spectrum of possibilities that an
author needs. Authors may want to reference a certain part of the chart, a few distinct visual marks
that seem interesting in some context, or combine an arbitrary set of visual marks related to a message
they are communicating. Kori offers a smooth interface to accomplish this using two distinct modes
as shown in Figure 6.1 4 – 6 and Figure 6.2 B .

The first is the direct manipulation (Figure 6.2 B ) mode. Authors can select a portion of text
1 and then directly brush visual marks of interest 2 . Kori offers point, multi-point, and brushing
selections to select visual marks. The system enables only the valid type of selections for a chart (e.g.,
no rectangular brushing formaps). Having selected the visualmarks, authors can finalize the reference
construction 3 . The selection of visual marks is made efficient using the concept of relaxation of a
selection60. Relaxing a selection is simply a way of saying “select all items like this [selected] one”. This
is particularly useful in situationswhere users want to referencemany visualmarks that are of the same
type as a single or couple of selected marks. Figure 6.2 D explains an example where an author likes
to create a reference to data dimension Weather = rain; she can simply do so by selecting any blue
rectangle (rain) 1 and relaxing the selection to Weather 2 instead of the default dimension that was
detected by the system.

While the direct manipulation mode is explicit, it is not flexible, especially in situations where a
chart has overlapping marks or when an author wants precise referencing by combining multiple di-
mensions of a chart. The filtering mode (Figure 6.1 4 – 6 ) enables the addition of (upto) as
many filters as the number of dimensions in a chart. Values of the dimensions can be adjusted us-
ing a multi-selection search field for categorical variables or an interval slider for numerical ones. The
combination of multiple filters corresponds to the creation of higher-level references using union or
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intersection operations, as discussed in Section 3.5. Kori combines multiple filters using the intersec-
tion operation.

Kori uses opacity as the default visual highlighting scheme when previewing the interactive refer-
ences, as it does not mostly interfere with the existing visual encoding. Each chart is provided with a
configuration panel—like the one in Figure 6.1 10—where the default values of opacity can be mod-
ified for each individual chart. Users can choose between two channels (opacity and fill). For the fill
channel, we provide a color picker to choose active and inactive colors.

To showcase the flexibility of Kori and evaluate its usability, we conducted a two-fold evaluation.
First, we quantitatively evaluated the automatic reference suggestion approach and compare it against
a benchmark provided byKong et al.87 Second, we qualitatively evaluated the interface through a user
study with 11 participants including visualization experts, novices, and interface designers.

6.4 Algorithmic Evaluation: Reference Detection

To quantitatively evaluate our reference detection approach, we need pairs of Vega-Lite chart spec-
ifications and corresponding text. Although we had previously collected 110 text–chart pairs (Sec-
tion 3.2.1 – Study II), we did not have access to the underlying data for charts in all those examples.
Therefore, we curated a dataset for evaluation.

6.4.1 Dataset Curation

We had data for 42 / 110 text–chart pairs and their images (Kong et al.’s87 collection). We recon-
structed these charts in Vega-Lite editor to get Vega-Lite specifications. However, they were all bar
charts and included very few interval references. We needed a diversity of charts as well as more ex-
amples. Therefore, we augmented the 42 text–chart pairs with 50 additional pairs as follows: We
extracted 116 instances of real sentences—including interval references—about a variety of different
charts from our data collection (Section 3.2.1 – Study II). Besides, we collected 34 diverse charts from
example galleries of different visualization libraries (e.g., Vega, Vega-Lite, D3, Observables). Then,
we mapped these charts to instances of 116 real-sentence collection. A junior researcher (co-author
of the corresponding research paper100) manually rephrased the sentences to match the data on the
charts while keeping the essence as close to the original sentences as possible. A senior researcher (also
one of the co-author in the paper100), then, went through these sentences to make sure they are both
syntactically and semantically correct. Finally, we annotated each text–chart pair for point, interval,
and group references to create the ground truth. The resulting dataset includes 92 chart–text pairs
with 15 different types of charts. This dataset was randomly split into a validation (60%, 55 pairs) and
a test (40%, 37 pairs) dataset.
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Figure 6.5: Quan ta ve evalua on of the reference detec on approach. Precision, recall, and F1 at various maximum n-gram sizes for
the valida on dataset (55 text-chart pairs).

6.4.2 Results

Figure 6.5 showsprecision, recall, andF1 scores* for varying similarity thresholds for variousmaximum
n-gram sizes on the validation dataset. We selected the threshold of 0.5 and the maximum n-gram size
of 3 as these valuesmaximized the F1 score (0.34). The higher values of F1 are desirable—F1 = 1would
mean that the system correctly suggested all references, while F1 = 0 means no correct suggestion.

For the test dataset, our pipeline correctly identified 57 references (out of 137 true references), pro-
duced 90 incorrect references (false positives), and missed 93 references (false negatives). A desirable
outcome is to maximize the correctly identified references while keeping the false positives and false
negatives low. Kori correctly suggested 42 / 84 point, 9 / 26 interval, and 5 / 27 group references.
While our approach worked well for identifying point references (F1 = 0.47), the interval detection
(F1 = 0.25), and reference grouping (F1 = 0.26) proved to be more challenging. Since too many
incorrect references can be bothersome for users, another option could be to go for higher precision
(n=5, threshold=0.8). This results in fewer (32) false positives.

When running our approach on Kong et al.’s dataset (42 text–chart pairs), we obtained an average
distance (1−F1; lower values are better) of 0.57 fromthe gold standard (annotated examples by experts)
compared to 0.39 produced by their approach. Although quantitatively, references extracted byKong
et al. are closer to those in the gold standard, we detect references automatically while they rely on user
intervention to extract base references (distance to gold standard =0.54) and then automatically refine
them that reduces the distance to 0.39.

Several problems contribute to the lower F1 scores. One problemwith general purpose pre-trained
vector representations of text is that it matches words that are dissimilar in the context of a chart (e.g.,
“Obama” matches both chart categories “Democrats” and “Republicans” with cosine similarity of 0.58
and 0.56 respectively). A similar problem occurs with numbers. Numbers are important in dealing

*The F1-score is a measure of a classifier’s accuracy. It combines precision and recall into a single metric by taking their
harmonic mean.
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with charts and can be described in different ways (e.g., 12, twelve). FastText had problems matching
“60” to “sixty” in the sentence “Mostmovies have a rating between sixty and100”, and insteadmatched
“60” to “100”, presumably because arabic numeral representations of numbers are closer in the vector
space. While the parts-of-speech tagger of Spacy NUM could identify numbers with units, it has no
support for dates (e.g., months, days); they are tagged as proper nouns (NNP). Therefore, intervals
like Apr to Jun could not be detected. Some failure cases in the grouping, like the one in Figure 6.4
(bottom sentence), can be avoided if we consider the extents, scales, and units of numerical axes in the
chart in addition to distances in the dependency tree space.

6.5 User Evaluation: The Kori System

We conducted a user study to gain insights into the usefulness and usability of the Kori system. The
focus is on evaluating how people interacted with the system to author an interactive data document.

6.5.1 Participants

We recruited 11 participants (P1–P11; five male and six female) with diverse backgrounds ranging
from undergrad students (3 – P2, P9, P10) and grad students (3 – P5, P6, P11) to visualization ex-
perts (4 – P1, P3, P4, P8) and a user interface designer (P7). All participants had experience using
document editing tools like Microsoft Word, Google Docs, or similar. All participants mentioned
that they had created charts using data science tool-kits (e.g., R, Python) or programming libraries
(e.g., D3, Vega-Lite). All participants except P10 regularly create charts as part of their job or studies.
Eight participantsmentioned havingworkedwith charts in aword processing tool (e.g., GoogleDocs,
Microsoft Word).

6.5.2 Procedure and Tasks

In sessions lasting about 60 minutes each, the participants used Google Chrome on their personal
computers to access the tool in online video call with an experimenter sharing their screens. After
collecting the above demographic information, every session began with a brief introduction to the
project followed by a short tutorial. We demonstrated the main features of Kori using a variety of
chart types.

In the main part of the study, the participants had to complete three tasks. First, to familiarize
themselves with the system, we asked them to replicate an example from the tutorial, which contains
a bar chart and a paragraph of text with three interactive references. Second, the participants had
to reproduce a given but previously unseen example. Two charts (a scatterplot and a heatmap) and
two paragraphs of text were provided with nine references. We marked the references in the text, and
participants had to transform them into interactive references according to their understanding. We
tried to maximize the diversity of references so that participants had to use every feature of Kori to
construct them. In the third task, the participants had to design a short story (5 to 6 sentences) on
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A B

C D

Figure 6.6: Copy-edited excerpts of stories created by par cipants. The symbol marks the reference sugges ons. (A) P3 relied
on reference construc on using direct manipula on . (B) In contrast, P8 got 9 sugges ons (1 wrong). She manually constructed 2
references: “1930 claimed about 3 million lives.” and combined two sugges ons (“mass movement” and “extreme temperatures”) into a
single reference. (C) P5 used the first reference “very similar” to verify a fact he was describing. (D) P6 got only two sugges ons and
created most references using the filtering interface.
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one of the three scenarios (they were free to pick any) that were provided to them in the form of one
or more charts.

We concluded the session with a reflection survey on the usability and usefulness rating different
statements on a 5-point Likert scale (1-strongly disagree, 5-strongly agree). Moreover, we discussed
the overall user experience, potential improvements, and limitations in semi-structured interviews.

6.5.3 Results

All participants successfully completed all three tasks within the limited session time. The first two
tasks weremarked as complete when the participants had created all required references. They created
references in Task 1 (3 references) and Task 2 (9 references) withminimal intervention from themod-
erator. For these two tasks, Kori successfully suggested 6 references (2 for Task 1 and 4 for Task 2) as
expected. In Task 3, every participant created a short story with one or more charts; Figure 6.6 shows
four example stories. In total, Kori suggested 64 references for Task 3. (The small boxplots
show the distribution of suggestions for all 11 participants). These 64 suggestions also include 25
instances where participants explicitly triggered suggestions. Among these, 48 references (including
25 explicitly triggered suggestions, all correct point references) were correct and 16 incor-
rect . The incorrectly suggested references were rarely ignored (3) and mostly discarded (13).
Besides, the participants manually created 40 references .

For point references, they often relied on automatic suggestions. We observed comparatively fewer
instances of explicit triggering by typing @ than that of selecting a text phrase. While participants, P3
(Figure 6.6 A ) and P6 (Figure 6.6 D ), largely relied on the manual construction of references, P8
(Figure 6.6 B ) made use of more automatic suggestions. We observe the frequent use of direct ma-
nipulation mode for geographical maps, bar charts, and line plots. Comparatively, the participants
employed filtering mode comparativelymore frequently for all types of charts, especially for scatter
plots and bubble charts.

Participants rated their satisfaction of the overall experience (median, mode = 4, IQR = 0, )
andusefulness of the tool (median,mode=5, IQR=0, ). While participants foundall features of
the tool intuitive and self-explanatory, they rated the reference construction interface (median, mode
= 4, IQR = 1 ) higher than the automatic suggestions (median, mode = 4, IQR = 0, ).

All participantsmentioned that the tool is intuitive, easy to use, and has high learnability. Two par-
ticipants (P3, P4) even said that they would have easily discovered all the features without a demon-
stration. Participants specifically liked the reference construction interface. P4 praised the direct ma-
nipulation of regions on the map to construct a reference and described it as easy as “click regions of
interest and done. Impressive!”. P5 stated, “It is surprising that manual linking is so flexible and works
with so many chart types.” P6 appreciated two different modes of reference construction. P11 favored
the filtering mode over direct manipulation, saying it is more flexible and precise. The participant
further elaborated on its usefulness by adding: “Finding one data point in millions of data points is
just impossible in the brushing interface.” (This comment was in response to a scatter plot with a lot of
overlapping points.) P9 complained about not being able to brush the color legend of a chart (Kori
only supports the direct manipulation of marks inside the chart area).
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All participants agreed that the automatic suggestion is valuable and complements the reference
construction yet criticized that it is not smart enough. P9 stated that the automatic suggestions are
helpful and work reliably for simple cases. P1 commented, “suggestions are cool but not too smart.”
Nonetheless, none of the participants considered suggestions as distracting. On the contrary, P2 and
P7 suggested making their presence more noticeable. However, wrongly identified references were a
bother for one participant (P11). Three participants (P2, P7, P10) complained about long delays that
often took place in automatic suggestions. P8 remarked that the suggestions are often too short, and
their grouping needs to be better supported using the interface—the participant wanted to group two
references that were correctly suggested in a sentence (Kori does not support grouping of suggested
references).

Surprisingly, several participants (P5, P6, P9, P11) came up with a different use case that we did
not have in mind. They used interactive references as a means to explore the data. P5 described his
experience as “I wasn’t sure about a statement”—Task 3: the participant had an assumption that Cal-
ifornia, Florida, and Texas have similar trends for Covid-19 but was not sure (Figure 6.6 C )—“and I
could verify it using interactive linking. Readers can do too.” P6 reported that interactive linking pro-
vides insights and helps in understanding the data. She described her opinion as “I would say it’s not
only about writing but also [for] doing analysis while writing.”. Two participants (P1, P5) suggested
having an embedded chart creation interface. Without such an interface, it is limited to what could be
explored, P1 pointed out and said, “Charts were limited and non-modifiable. Kinda limits the scope of
investigative reporting.” Several participants highlighted the lack of some convenience features, such
as editing a reference that has been suggested or created, deleting a reference without deleting its text,
and a user interface to group the suggested references.

When asked about the usefulness of Kori, most participants (P1–P6, P11) saw its value in creating
information for reporting, presentation, and communication scenarios. P11 highlighted the benefit
of interactive references as “Readers may not interpret my intention correctly. This tool makes it much
clearer by creating explicit references to make sure readers look at what I intended.” Similarly, P8 men-
tioned that visual highlighting through interactive links may be better than adding direct annotations
on top of a chart, as it could result in visual clutter.

6.6 Limitations, Challenges, and Future Opportunities

This section introduced, Kori, amixed-initiative system to support authors in creating interactive data
documents containing references between the text and charts. The analysis of visualization–text refer-
ences in existing articles (Section 3.5) informed the design of Kori. Findings on point and interval ref-
erences, as well as the grouping of the references, guided the development of the automatic suggestion
pipeline. Besides, a flexible manual interface provides a complementary way to construct references.
While the two-fold evaluation reveals that Kori is a valuable, useful, and easy-to-use authoring tool, it
has several limitations that may lead to interesting challenges and possible future directions.

Reliability of automatic suggestions – Both algorithmic and user evaluation of Kori reveal that
the automatic linking feature was valuable, yet limited and prone to many false negatives. A key tech-
nical challenge is to make the automatic linking as reliable and accurate as possible. However, due
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to the small size of our training dataset, Kori relied on a heuristics-based approach to identify text–
visualization links. Although some stages of the 4-stage pipelined approach (Section 6.3.2) leverage
recent advances in natural language processing (e.g., a pre-trained state-of-the-art neural dependency
parser37) and has better accuracy, the approach does not learn a single model that integrates all these
pipelines into one system. Therefore, it would be interesting to explore an approach that learns a fully
end-to-end model that identifies all references between a body of text and its associated chart directly
from the raw input. However, such a system would require collecting a fairly large training set of an-
notated examples, but may allow for the use of more sophisticated contextualized embedding models
(e.g., BERTorTransformers as opposed to static FastText) that can be subsequently fine-tuned on the
collected training set. Another problem with the automatic suggestion approach is that, currently, it
does not resolve the user’s intention on which chart to link to. As a result, we observed that it often
creates an interactive link to a wrong chart rather than the one expected by the user, especially when
many charts share the same underlying dataset. Resolving such ambiguity in user intent can be chal-
lenging without the user’s explicit input. A potential resolution method would consider the user’s
current cursor or the distance from the text to the chart.

Linking to many charts – Another related issue is that Kori only supports one-to-one mapping,
resulting in a unidirectional link from one text phrase to a single chart. However, in some cases, it
might be desirable to create a reference from one text phrase to many charts that may show different
aspects of the data for the same text phrase. Such linking might facilitate, for instance, comparisons
across multiple charts. However, it is unclear whether supporting many-to-many mapping models is
ideal. Not only the authoring interface would become complicated, but also the benefit for reading
may be limited or even adversarial. A user study would be useful to shed light on its advantage.

Better reading support – The user study focused on the authoring interface as it is the core con-
tribution compared to existing research focusing on the reading experience. However, once links are
established, they can facilitate the reading process. In this work, our primary mode of operation to
address the split-attention effect in a visualization–text reference is through interactive highlighting.
According to the cognitive load theory and the cognitive theory of multimedia learning, our high-
lighting approach follows the signaling principle or temporal contiguity principle.112 However, we
also foresee many opportunities to provide an improved reading experience beyond simply revealing
references upon hovering over a text phrase. For instance, the user might want to see all relevant text
phrases linked to a specific chart for a better understanding of the underlying data context. To meet
this need, the tool can annotate related visual marks in the chart with the relevant text phrases. This
is similar to the gather operation in exploring embedded word-scale visualizations by Goffin et al.51,
while it is the opposite approach toElasticDocuments11 collecting relevant visualizations for a selected
phrase.

Suggestions for data-driven text– In contrast to the fully automated solutions described inChap-
ter 4, Kori does not yet offer any help regarding the automatic generation of data-driven text. It only
suggests links in the author written text. Integrating further automation in this regard is another
promising direction. It is possible to automatically generate the text that describes the data (as dis-
cussed in Chapter 4 and Chapter 5). Beyond these approaches, there has also been a flurry of recent
work on data-driven table-to-text generation with deep learning techniques.183 Adapting such meth-
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ods to suggest short data-driven texts in the context of chart-to-text generationmay hint at important
analysis aspects to the author of the document and is, therefore, an interesting future extension of
Kori.

Data analysis and chart construction support – As suggested by some participants during the
user evaluation, Kori lacks an interface for analyzing the data and construction of visualizations. Con-
sequently, this limits the scope of exploratory data analysis inside the tool—that is required forwriting
about data—as users have to rely on external tools to analyze and import their created visualizations
to Kori. With the current technology stack of Kori, it would be straightforward to connect or even
include Voyager184 in Kori’s user interface. Voyager* allows for exploratory data analysis using an
easy-to-use graphical user interface and can export charts as Vega-Lite specifications. The inclusion of
such an interface inside Kori would be a step toward making it an independent analysis and writing
tool that requires no programming at all.

*http://vega.github.io/voyager
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7
Conclusion

T he dissertation has investigated an underexplored—communication—aspect of visualization
systems by proposing the idea of interactive data documents that bridges the gap between
exploratory and explanatory representations of data. The design of these interactive data doc-

uments is informed by the empirical findings of data-driven stories, in particular with respect to the
interplay of text and visualizations. The understanding of this interplay along with the concepts of
explorable explanations177 and exploranation189 inspire the design of an interactive linking model
between text (or audio) and visualization for a bimodal data representation. Targeting a broader audi-
ence, this thesis then introduces a generalizable concept for automatically producing interactive data
documents that offers exploranation as it explains the data and background in a textual way as well
as it supports the exploration of the data through interactive visualizations. The applicability and
usefulness are shown by instantiating the concept to a number of different application domains and
datasets (bibliographic, bivariate geographic, code quality, and knowledge graph data) through a se-
ries of web-based prototypical solutions (VIS Author Profiles, Interactive Map Reports, Code Qual-
ity Documents, and VisKonnect). Going beyond 2D representations of data, the thesis has also dis-
cussed the proposed concept for virtual reality visualizations. Finally, considering the challenges and
limitations of existing authoring tools for producing such interactive content, the thesis explored an
easy-to-use authoring solution that leverages a mixed-initiative interface to author an interactive data
document.

This chapter concludes the thesis with a discussion of potential avenues of future research, either
stemming from the limitations of the presented generic approach and specific prototype solutions or
related to possible natural extensions.
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7.1 Limitations and Future Directions

Reflecting on the proposed generic approach and thinking beyond the individual systems, the follow-
ing section highlights three different aspects—that may be considered as limitations to some extent—
with concrete suggestions for further improvement and future work.

7.1.1 Detailed User Evaluation

The developed individual prototype systems—that are instantiations of the proposed generic con-
cept of interactive data documents—are evaluated, and their usefulness is already demonstrated in a
variety of different but specific application scenarios. However, it cannot yet be claimed that this com-
bination of longer textual explanations and visualization would always perform better than a purely
visualization-based representation as the two approaches—the proposed interactive data documents
and pure visualization system—were never contrasted in a user study. For such comparisons, it is
needed to first develop the pure visualization-based representation to show the equivalent informa-
tion. Then, a user study can be performed to compare the two representations. A quantitative study
could answer which of the representations is better with respect to accuracy and answer times. Like-
wise, a qualitative approach could reflect on how self-explaining the representations are and howusers
work with them. The textual explanations might influence the way users interpret the visualizations.
Existing research has already discovered that informative captions and titles can reduce the mental ef-
fort to process a data visualization.86,180 However, the impact of longer textual explanations on the
accompanying visualizations remains yet to be explored and could be an interesting future direction.

In interactive data documents, the split-attention effect between text and visualizations—resulting
from bimodal data representation—is primarily handled through interactive visualization–text link-
ing, positional linking, consistent color linking, and word-sized graphics integrated into the text. Ac-
cording to the cognitive load theory and the cognitive theory of multimedia learning, these linking
methods follow the signaling principle or temporal contiguity principle.112 Both theories suggest in-
tegrating information at the temporal dimension (i.e., through interactive referencing) or at the spa-
tial dimension, reducing the spatial proximity (through word-sized graphics or including text inside
visualizations) between the text and visualizations. To reaffirm and quantify how well these linking
methods work in reducing the split-attention effect in a data document, quantitative studies using
eye tracking would be beneficial. Such studies would enable a precise understanding of the reduced
split-attention phenomenon by studying eye fixations on certain regions of the data document and
how often gaze motions occur from one region to another.

7.1.2 Advance Natural Language Text Generation

In this thesis, the proposed approach hasmostly relied on relatively simple template-based natural lan-
guage text generation due to its deterministic nature and sufficient flexibility. While such an approach
is easier to design and control, it suffers from domain dependence, would require large maintenance
efforts (for instance, in case of data extensions), and is not generalizable to different application do-
mains or datasets. With the recent advances in natural language generation (e.g., sophisticated mod-
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els like Generative Pre-trained Transformer 3), many researchers are exploring table-to-text187 and
data-to-text134 generation approaches to produce text from structured data representations. Unlike
template-based approaches, these approaches use neural networks and are end-to-end trainedwithout
explicitlymodeling what to say and in what order. Another future directionwould be to explore such
advanced approaches as a replacement to the template-based text generation.

Although these approaches require substantial training data, once trained, theymay generatemore
natural looking text and bemore generalizable. However, on the downside, these approaches are usu-
ally harder to control and predict what they would generate. Therefore, another challenge would be
to integrate these explanations with the visual views through the proposed linking model. Probably,
in this case, another step would be required to automatically analyze the response of these advanced
generation approaches to extract potential links between the generated text and visualization (like the
one described in Section 6.3.2).

7.1.3 Closing the Loop from Explanation to Exploration in Authoring Tools

During the user evaluation of the authoring tool Kori, we observed an interesting insight that users—
participants of the user study—often use the authoring interface to explore the data. For instance,
they used suggested references as opportunities to examine detailed aspects of the data and actively
inspected the data by trying out different selections in the manual construction interface. Kori, in
contrast, was designed under the assumption that users would already have explored the data in any
analysis tool of their choice and had prepared visualizations theywould need before beginning to draft
an interactive document. Consequently, Kori did not include a visualization creation interface.

However, observing the usage ofKori by participantswhile creating interactive content, it becomes
clear that exploration and explanation go hand in hand during the composition of an interactive data
document. Explanation of an insight might lead to the need of exploring another related aspect of
data—for instance, to quickly test a hypothesis that comes to the author’s mind. This may require
the construction of another entirely new visualization or modifying the existing visualization. This
observation demonstrates a potential need for augmenting authoring tools like Kori to support data
exploration within the explanation interface, supporting the full life cycle of data analysis and com-
munication.

What is particularly interesting in this direction is howwe can support creating visualizations to ex-
plore additional aspects of the data, starting from text phrases or already created interactive references.
In this regard, it might be possible to include further automation for suggesting other relevant—or
even alternative—visualizations based on the already authored text, similar to interactive widgets in
Voder161. That is, going back to exploration from drafting explanations and then coming back is
particularly underexplored in the literature.

7.2 Outlook

The principal idea of this dissertation is to create an expressive, self-explanatory, and exploratory data
representation that goes beyond traditional visualization systems and data-driven storytelling. The
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resulting representation targets an adequate balance between these two extremes—exploration and
explanation—to communicate data analysis results to a broader audience in a way that is neither as
restrictive as solely following the author’s line of arguments without any flexibility of exploration nor
too unguided, complex, and overwhelming to explore. In a nutshell, the resulting data representation,
interactive data documents, can still be classified as a visual analytics solution that puts a lot more
emphasis on presentation, storytelling, and dissemination.

I believe that this exploranative data representation can prove to be a powerful and effective model
to enhance the outreach of visualizations, increase transparency and trust in data communication, and
foster deep understanding.
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