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Abstract

Supramolecular ligands engineered to bind biomolecules with high specificity can help elucidate
biological processes by acting as biosensors, enzyme modulators or protein–protein interaction
modulators. Achieving specificity requires detailed knowledge of the interaction between the
ligand and target biomolecule. Obtaining this information experimentally can prove challenging,
especially for flexible supramolecular ligands that do not adopt a well-defined binding pose. In
these situations, computational methods can be used to model the interaction and sample the
most probable binding modes.
There is a variety of techniques to model the interaction between two molecules, with a

trade-off between levels of granularity and computational speed. This work is concerned with
the computational evaluation of the energetic landscape of protein–polymer complexes when
the electrostatic interaction is the driving force. This effort is carried out using rigid body
correlation, a type of exhaustive search where the protein and ligand are treated as non-flexible
entities interacting non-covalently. Suitable building blocks extracted from the polymer are
used as probes to reveal areas of high affinity on the protein surface and help infer the most
probable binding sites of the full-length polymer.

Inaccuracies caused by treating flexible molecules as rigid bodies are mitigated by applying
the correlation on multiple conformers to generate a more realistic energetic landscape. The
result of this correlation is directly comparable to crystallographic data and molecular dynamics
data, and is shown to be reliable even for polymer fragments bearing a single electric charge.
The method is fast and rather insensitive to the choice of charge parameters for the ligand.



Kurzfassung

Supramolekulare Liganden können so konstruiert werden, dass sie Biomoleküle mit hoher
Spezifität binden und somit bei der Untersuchung biologischer Prozesse als Biosensoren,
Protein–Protein-Interaktionsmodulatoren oder Enzymmodulatoren dienen. Um eine hohe
Spezifität zu erreichen, benötigt man detaillierte Kenntnisse der Wechselwirkung zwischen
dem Liganden und dem Zielbiomolekül. Diese Kenntnisse experimentell zu erlangen, kann
sich als Herausforderung erweisen, insbesondere für flexible supramolekulare Liganden, die
keine genau definierte Bindungsposition einnehmen. In diesen Fällen können numerische
Methoden Abhilfe schaffen, indem man die Wechselwirkung nachbildet, und dann nach die
wahrscheinlichsten Bindungsmodi sucht.

Es gibt eine Vielzahl von Techniken, um die Wechselwirkung zwischen zwei Molekülen zu
modellieren, wobei ein Kompromiss zwischen Granularitätsgrad und Rechengeschwindigkeit
besteht. Diese Arbeit befasst sich mit der numerischen Auswertung der Energielandschaft
von Protein–Polymer-Komplexen, wenn die elektrostatische Wechselwirkung die treibende
Kraft ist. Das Modell basiert auf der Verwendung der sogennanten Starrkörperkorrelation,
bei der das Protein und der Ligand jeweils als starre Einheiten behandelt werden, die nicht
kovalent wechselwirken. Geeignete Bausteine, die aus dem Polymer extrahiert wurden, werden
als Sonden verwendet, um Bereiche mit hoher Affinität auf der Proteinoberfläche zu entdecken
und die wahrscheinlichsten Bindungsstellen des Polymers voller Länge abzuleiten.

Ungenauigkeiten, die durch die Behandlung flexibler Moleküle als starre Körper verursacht
werden, werden durch Anwenden der Korrelation auf mehrere Konformere verringert, um eine
realistischere Energielandschaft zu erzeugen. Das Ergebnis dieser Korrelation ist direkt mit
kristallographischen Daten und molekulardynamischen Daten vergleichbar und hat sich auch
für Polymerfragmente mit einer einzigen elektrischen Ladung als zuverlässig erwiesen. Das
Verfahren ist schnell und ziemlich unempfindlich gegenüber der Wahl der Ladungsparameter
für den Ligand.
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1 Chapter

Modeling molecular recognition

Elucidation of the physico-chemical mechanism for molecular recognition plays a critical role
in rational ligand design, where knowledge of the binding mode gained from a combination
of experimental data and computational methods is used to develop ligands with enhanced
affinity and specificity for a target (Tollenaere 1996). Although more than a century old,
rational ligand design is a constantly evolving field of research, notably in supramolecular
chemistry where techniques originally designed for small and relatively rigid molecules aren’t
well-suited to the investigation of long and flexible polymers (Schneider 2009).

The “lock-and-key” principle was the first attempt at modeling molecular recognition, relying
on geometric complementarity to explain enzyme–substrate specificity (Fischer 1894). The
purely rigid and sterical nature of this model would later evolve to capture protein flexibility
and long-range interactions (Schneider 2015; Csermely et al. 2010). Two well-known examples
are the “induced fit” paradigm (Koshland 1958) and the “conformational selection” paradigm
(Csermely et al. 2010), created to account for enzyme plasticity at the catalytic site. Although
the difference between these two paradigms is still a matter of debate to this day (Csermely et al.
2010; Gianni et al. 2014; Chakraborty and Di Cera 2017; Di Cera 2020), other developments
reduced the relevance of the lock-and-key paradigm, such as conformational proofreading
(Cramer and Freist 1987), allosteric effects (Lavigne and Anslyn 2001; Schneider 2015) and
hydrophobic effects (Schneider 2015), to name a few examples. In spite of its simplicity, the
lock-and-key metaphor can still be used in biology as a form of abstraction (Cramer 2007), for
example when describing computational chemistry algorithms (Morrison et al. 2006).

Rational ligand design often relies on protein crystallography, an experimental technique in
structural biology that generates macromolecular models of protein–ligand complexes with
near-atomic precision (Verlinde and Hol 1994; Anderson 2003). Since this technique can
only resolve static protein–ligand systems with sufficient accuracy to produce interpretable
data, it is of limited use for flexible protein–polymer systems, although polymer fragments can
sometimes be co-crystallized with their target protein to reveal high-affinity binding sites. The
structural information gained via this approach offers an incomplete picture of the binding
mode, as polymers typically interact with their target over a large surface area. Low-affinity
binding sites are also difficult to detect with this technique, even though they contribute to the
total binding affinity of the protein–polymer complex in a non-linear manner, which is known
as the “cooperative effect” (Di Cera 1998; Biedermann and Schneider 2016).
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Computer-aided ligand design provides an alternative in the form of a molecular mechanics
(MM) model of the interaction. In general terms, modeling a protein–polymer system requires
the generation of a topology for the protein and polymer, and the formulation of an energy
function—the Hamiltonian—that depends on geometrical parameters. The evaluation of the
Hamiltonian for a collection of geometrical parameters yields an energetic landscape, which
can be used to test hypotheses on the protein–polymer system. For example, calculating the
derivative of this energy function gives the direction of the nearest local minimum or saddle
point, from which the ligand position and geometry can be iteratively optimized until a binding
site is found. This strategy is usually known as an optimized search, and can be carried out
with deterministic and stochastic algorithms.

Optimized search is the method of choice for protein–ligand systems with a single binding
site, however in the context of protein–polymer interfaces, multiple binding sites contribute
to the stability of the complex. For these systems it is desirable to sample the energetic
landscape uniformly using exhaustive search algorithms, such as correlation-based algorithms.
This approach is typically slower and more memory-intensive than an optimized search, and
relies on a coarse description of the interaction and molecular geometry, but detects all local
minima in that model within a specified tolerance. Under favorable conditions, the results
from such a calculation can be used as input parameters of an optimized search to generate a
higher-resolution model of the interaction.

1.1 Rigid body correlation: An overview

1.1.1 Early work on correlation

Greer and Bush formulated a framework for the encoding of physico-chemical properties
into grid-based representations of biomolecules and the evaluation of correlation functions
using these representations to detect complementarity sites (Greer and Bush 1978). Multiple
algorithms were developed in the following years to exploit this framework but were limited to
either two-dimensional exhaustive searches via the cross-correlation of protein and ligand slices
(Zielenkiewicz and Rabczenko 1984; Zielenkiewicz and Rabczenko 1985), or to a heuristic
three-dimensional search (Kuntz et al. 1982). GRID was one of the first methods to propose an
exhaustive three-dimensional sampling of the volume around a protein, using a spherical probe
to represent a chemical group made of one to four atoms (Goodford 1985). This simplification
ignored any information about the ligand structure and orientation, but the peaks in the
resulting grid could be used to manually place a ligand in the putative binding site. The
energetic model took Coulomb and van der Waals interactions into account.
AUTODOCK 1 (Goodsell and Olson 1990) used the GRID methodology to pre-compute

energetic grids for all mono-atomic probes extracted from a ligand and store the grids in
memory as lookup tables. These grids were computed in a small region of the putative binding
site to reduce their memory footprint. Evaluating the energy of multiple ligand conformations
was achieved via an inexpensive linear interpolation of the grid points around the position of
each atom in the ligand. This strategy enabled the optimization of a ligand conformation by
simulated annealing (Kirkpatrick et al. 1983; Černý 1985), a type of heuristic search.
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SOFTDOCK introduced polyatomic probes and relied on the exhaustive six-dimensional
sampling of the volume around a protein, i.e. sampling of the three translational and three
rotational degrees of freedom of the probe (Jiang and Kim 1991). The energetic model was
simplified to consider a binary response—favorable/unfavorable—between three interactions:
electrostatics, hydrogen bonding and hydrophobicity. The energy grid was calculated as the
sum of favorable interactions on the contact surface between the protein and ligand. In an
effort to make the calculation computationally tractable, it was carried out in two steps: an
exhaustive six-dimensional sampling using a coarse grid resolution and a small number of
rotations to detect putative binding sites quickly, followed by an exhaustive six-dimensional
refinement of each candidate binding site.

1.1.2 The fast Fourier transform breakthrough

So far, software relying on exhaustive three-dimensional (only translations) or six-dimensional
(translations and rotations) correlation algorithms were limited by the computational power
and memory of the hardware. However, the correlation of three-dimensional matrices in real
space is equivalent to a matrix multiplication in the frequency domain according to the cross-
correlation theorem (Stockham 1966), hence any three-dimensional translation correlation can
be evaluated using the fast Fourier transform (FFT) algorithm (Cooley and Tukey 1965) to reduce
the computational complexity from O (N 6) to O (N 3 log(N 3)). This strategy made calculations
involving larger probes computationally amenable, such as small proteins (Katchalski-Katzir
et al. 1992; Gabb et al. 1997). Similarly, energetic models could afford to be more elaborate,
and therefore more realistic, as long as interactions could be modeled in a linear form.
MolFit (Katchalski-Katzir et al. 1992) was the first software to take advantage of the FFT

to speed up the exhaustive translational correlation of two proteins with atomistic resolution.
FFT acceleration quickly became the norm for rigid body correlation, even for low-resolution
correlation (Vakser and Aflalo 1994; Vakser 1995; Vakser and Nikiforovich 1995), which lead
to the GRAMM (Vakser 1997) and GRAMM-X (Tovchigrechko and Vakser 2005; Tovchigrechko
and Vakser 2006) software. A two-stage approach was developed where a rigid body exhaustive
search produces putative binding sites on the target protein and putative orientations of the
partner protein at these sites, followed by a flexible body refinement of the most promising
candidates, creating a link between the fields of shape correlation and molecular docking.
This approach was implemented by Ckordo (Meyer et al. 1996; Heuser et al. 2005), FTDock
(Gabb et al. 1997), 3D-Dock (Smith and Sternberg 2003) and RDOCK (Li et al. 2003). More
in-depth details can be found in contemporaneous reviews (Halperin et al. 2002; Eisenstein
and Katchalski-Katzir 2004; Vajda and Camacho 2004; Moreira et al. 2010), as molecular
docking is outside the scope of this work.
Further research in FFT algorithms lead to the spherical polar Fourier transform (Ritchie

and Kemp 2000; Kovacs and Wriggers 2002; Kovacs et al. 2003) to accelerate the exhaustive
six-dimensional correlation in Hex (Ritchie and Kemp 2000; Ritchie et al. 2008; Ritchie and
Grudinin 2016) and FRODOCK (Garzon et al. 2009). A GPU-accelerated FFT algorithm is
used in Hex (Ritchie and Venkatraman 2010) and PIPER (Sukhwani and Herbordt 2010).



1 Modeling molecular recognition 4

1.1.3 Diversification of the energetic model

While the original implementation of MolFit was based on geometric matching, the energetic
model later included the hydrophobic effect (Vakser and Aflalo 1994) and the electrostatic
interaction using the linearized Poisson–Boltzmann (PB) equation (Heifetz et al. 2002). An
early version of GRAMM (Vakser 1995) adapted the geometric matching strategy for large
and partially disordered protein structures with low atomic resolution, later evolving into
GRAMM-X (Tovchigrechko and Vakser 2005) for high-resolution protein structures, using a
modified Lennard-Jones potential for improved accuracy. FTDock (Gabb et al. 1997) added a
simple Coulomb formula with a variable dielectric to treat the electrostatic interaction, while
DOT (Mandell et al. 2001) and CS-Map (Dennis et al. 2002; Kortvelyesi et al. 2003) used
the linearized PB equation. FTDock later evolved into ZDock (Chen and Weng 2002) through
the addition of a desolvation term in the energetic model; the shape complementarity term in
the energetic model was ultimately replaced with pairwise potentials (Mintseris et al. 2007).
PIPER (Kozakov et al. 2006) also uses a combination of shape complementarity, electrostatics
and pairwise potentials, while Ckordo (Meyer et al. 1996) uses hydrogen bonding and shape
complementarity.

The pair potentials method expresses inter-atomic potentials in the form
∑︁

i , j ̸=i ai a j /r n
i , j with

ai a j the interaction prefactors for atoms i and j and r n
i , j the separating distance raised to the

power n (Harrison et al. 1994). These convolutions can be evaluated at a low computational
cost using FFT, although some potentials are poor candidates. In particular, the electrostatic
potential in a non-uniform dielectric cannot be rewritten as a pair potential. In that case, the
electrostatic potential is either approximated with a uniform dielectric, or calculated from the
PB equation in a numerical solver.
The statistical pair potentials method is an alternative strategy that relies on datasets of

crystallographic coordinates of protein–protein complexes to estimate potentials in the form∑︁
i , j ̸=i ei e j within a distance threshold (Miyazawa and Jernigan 1985). The potential mean force

between atom types can be evaluated from the frequency of pairwise contacts in the dataset
using the Boltzmann distribution (Zhang et al. 1997; Moont et al. 1999), as implemented
in FTDock (Moont et al. 1999), ZDock (Chen and Weng 2002; Mintseris et al. 2007) and
CS-Map (Dennis et al. 2002; Kortvelyesi et al. 2003). The pairwise potentials can be simplified
further by reducing the set of interactions ei to a small ensemble of linear combinations, as
implemented in PIPER (Kozakov et al. 2006) and ZDock (Mintseris et al. 2007).

1.1.4 The case of small ligand correlation

The development of the first FFT-accelerated correlation algorithm enabled protein–protein
docking in a matter of hours (Katchalski-Katzir et al. 1992) and profoundly changed the range
of applications of exhaustive scanning, making it a viable alternative to established stochastic
search algorithms. By 2010, FFT-based protein–protein docking algorithms became as popular
as stochastic algorithms (Moreira et al. 2010) in the CAPRI challenge (Janin et al. 2003).
This success overshadowed the original protein–ligand correlation methods in GRID and

SOFTDOCK. Research on protein–ligand scanning was neglected until the release of CS-Map
(Dennis et al. 2002) for protein–solvent mapping. The project eventually evolved into FTMap
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(Brenke et al. 2009), a tool to infer the binding site of large inhibitors from the mapping of small
solvent molecules. The tool was later extended to support the mapping of custom drug-like
compounds (Ngan et al. 2012). This was followed by the release of an early version of Epitopsy
tailored for protein–ligand scanning (Wilms 2013) based on the original FTDock algorithm
(Gabb et al. 1997), but using the non-linear PB equation for a more accurate description of
charge–charge interactions.
The fragment-based scanning methodology originally explored in GRID (Goodford 1985),

SOFTDOCK (Jiang and Kim 1991) and FTMap (Brenke et al. 2009) eventually found applications
in protein–polymer interaction modeling. Using chemically relevant fragments of a polymer,
for example its constituent monomers, one could “map” hot-spots on the protein surface with
a protein–ligand correlation tool and use that information to formulate an hypothesis on
the putative protein–polymer binding mechanism. This strategy was originally investigated
with sulfated polysaccharide fragments as the molecular probe by Epitopsy (Wilms 2013) and
PIPER (Mottarella et al. 2014). The present work builds upon and extends Epitopsy for
protein–ligand correlation and validates its application in protein–polymer research, using
heparin (Grad et al. 2018) and a semi-synthetic polymer (Gigante et al. 2019) as highlights.

1.1.5 Epitopsy: A general purpose protein–ligand correlation tool

1.1.5.1 Hamiltonian

Soon after the release of the first version of Molfit (Katchalski-Katzir et al. 1992), a derivation
of the Helmholtz free energy of binding in the grand canonical ensemble was formulated in
the pair potentials method (Harrison et al. 1994), using an approximation of the electrostatic
potential that ignores the change of dielectric permittivity at the protein–solvent interface.
The authors suggested using an electrostatics solver to calculate the electrostatic potential of
the protein on a grid with the same dimensions as the shape grid. This idea was implemented
simultaneously by MolFit (Heifetz et al. 2002), DOT (Mandell et al. 2001) and CS-Map
(Dennis et al. 2002) using the linearized PB equation.

A derivation of the Gibbs free energy of binding was formulated in prior work on Epitopsy
(Wilms 2013), with emphasis on the PB equation. This formulation is reproduced and extended
in Appendix A on page 86, using a different notation and providing a direct link between
discretized quantities and continuum quantities. The discretization and correlation algorithm
are detailed in greater depth in Work 1 (Grad et al. 2018, equations 1 to 13).

1.1.5.2 Software implementation

Epitopsy is an open-source Python (Oliphant 2007) package licensed under the GNU LGPL v3
(Free Software Foundation 2007). Calculations are carried out with the following scientific
computing libraries: BioPython for operations on molecular structures (Cock et al. 2009),
NumPy for operations on arrays (Oliphant 2006; Millman and Aivazis 2011), ANFFT for FFT
(Collette 2010) and scikit-learn for machine learning (Pedregosa et al. 2011). Performance-
critical code is written in Cython (Behnel et al. 2011).
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1.1.5.3 Input files

Epitopsy requires two types of inputs: molecular topologies and electrostatic potential grids. A
molecular topology consists of an all-atom three-dimensional molecular structure with atomic
radii and partial charges information. These parameters are typically obtained from MM force
fields using the tool PDB2PQR (Dolinsky et al. 2004; Dolinsky et al. 2007). The protein and
ligand structures need to be provided in the PQR file format, which is a derivative of the PDB
file format with extra fields to store the partial charges and atomic radii.

The non-linear PB equation is solved by APBS (Baker et al. 2001; Jurrus et al. 2018) using
input files generated by PDB2PQR. The electrostatic potential grids of biomolecules and the
corresponding boundary grids must be provided to Epitopsy in the OpenDX file format, which
is the default output of the APBS software.

1.1.5.4 Obtaining suitable partial charges

Ab initio methods
Quantum chemistry packages can derive partial charges from the electrostatic potential of
small molecules relatively inexpensively. Partial charges can also be obtained from MM force
fields derived from ab initio calculations, such as the AMBER force field (Cieplak et al. 1995).

Semi-empirical methods
The Austin Model 1 (AM1) (Dewar et al. 1985) is a fast but inaccurate semi-empirical method
for deriving partial charges (Jakalian et al. 2002). The AM1-BCCmethod uses the AM1method
to derive approximate charges and refines them via bond charge corrections (BCC) to reproduce
HF/6-31G*//HF/6-31G* charges1 with good accuracy (Jakalian et al. 2000; Jakalian et al.
2002). This approach is suitable when working with large libraries of drug-like compounds, for
which a systematic HF/6-31G*//HF/6-31G* charge derivation would be too expensive. This
approach is used in the GAFF force field (Wang et al. 2004; Jämbeck and Lyubartsev 2014).

Empirical methods
The partial equalization of orbital electronegativity (PEOE) method (Gasteiger and Marsili
1978; Gasteiger and Marsili 1980) assigns charges based on electronegativities and bond
information. The calculation is fast at the expense of accuracy (Bikadi and Hazai 2009; Santos-
Martins et al. 2014), sometimes requiring manual corrections for protonable groups (Huey
et al. 2007; Morris et al. 2009). It is the default method in Open Babel (O’Boyle et al. 2011).
The empirical electronegativity equalization method (EEM) (Jiroušková et al. 2009) provides
a more accurate alternative to the PEOE method. Originally derived from a semi-empirical
method (Mortier et al. 1985; Mortier et al. 1986), the empirical version is parameterized
using datasets of ligands for which ab initio partial charges have been calculated. Parameter
sets are available for non-standard ligands (Geidl et al. 2015; Raček et al. 2016).

1Ab initio calculations at two levels of theory are written {single-point energy//geometry}. HF stands for the
Hartree–Fock method (Hartree and Hartree 1935). The Pople basis set 6-31G* describes the number of Gaussian
functions used per electron in the system (Ditchfield et al. 1971).
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1.1.5.5 Rotation function

Rigid body correlation in six-dimensional space requires uniform sampling methods for both
translations and rotations. While partitioning translations uniformly in R3 is straightforward,
generating an isotropic distribution of rotations of arbitrary size in R3 is a long-standing
problem in mathematical modeling. It is especially crucial in rigid body correlation, as any bias
would lead to the generation of preferential orientations, making the evaluation of shape and
electrostatic complementarity sensitive to the initial orientation of the input ligand structure.

Trivial solutions to this problem can be derived from molecular symmetry: the non-reflective
symmetry operations of the Td, Oh and Ih groups generate uniform and orientation-preserving
rotation sets of size 12, 24, and 60 respectively; reflections and inversions are excluded as
they do not preserve chirality. To generate pseudo-uniform sets of angular states of arbitrary
size, the axis-angle method (Miles 1965) can be used, which reduces the problem to finding
a pseudo-uniform distribution of points on the surface of a sphere around which the probe
can spin. Fibonacci generative spirals (Hannay and Nye 2004; Swinbank and James Purser
2006; González 2010) were used throughout this work to sample the rotation axis, while the
spin was sampled from a uniform distribution. A summary of existing sampling methods is
available in Appendix B on page 88.

1.2 Molecular mechanics

Three-dimensional models of proteins and ligands suitable for rigid body correlation and
molecular dynamics can be readily obtained from structural biology databases. Familiarity
with the experimental techniques can help identify sources of bias in the structural data, which
need to be corrected during the pre-processing stage.

Generating a topology suitable for molecular dynamics (MD) simulations is straightforward
for proteins, which have default sets of parameters in most MM force fields. Non-natural
polymers however need to be parameterized.

The following sections give an overview of experimental sources of protein and ligand models.
Since this work only relied on protein structures sourced from X-ray diffraction data, other
experimental techniques are not emphasized for the sake of brevity. Tools used for topology
generation and force field parameterization are also presented.

1.2.1 Modeling proteins

1.2.1.1 Obtaining a model from structural biology databases

Protein structures can be determined experimentally using a variety of methods. Examples
of well-established techniques are X-ray crystallography (Parker 2003), nuclear magnetic
resonance (NMR) spectroscopy (Wüthrich 1995), neutron crystallography (O’Dell et al. 2016)
and electron diffraction (Nannenga 2020). These experimental structures are typically deposited
on the Protein Data Bank (PDB) (Bernstein et al. 1977; Berman et al. 2000).
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1.2.1.2 Structure preparation

Background on protein crystallography
Crystallography provides a mean of determining the three-dimensional structure of a protein
based on the X-ray diffraction pattern of a single crystal of that protein (Parker 2003). A single
crystal is obtained by gradually concentrating an already saturated solution of the protein until
nucleation occurs (Russo Krauss et al. 2013; McPherson 2017). Various organic molecules
(Sauter et al. 1999) and inorganic salts (Hegde et al. 2017) are added to the solution as
adjutants to trigger nucleation and promote crystal growth (Russo Krauss et al. 2013). The
protein crystal is then flash-cooled with liquid nitrogen and illuminated by an X-ray source to
produce a diffraction pattern. The intensity of the diffraction peaks gives information on the
amplitude of the waves that form the pattern, but no phase information can be recovered. This
issue is called the “phase problem” (Taylor 2010).

To construct the electron density of the unit cell, the phases of the waves are obtained from
another source, usually from already solved structures with similar amino acid sequence and
three-dimensional structure, or from the pooling of multiple X-ray diffraction patterns from the
same protein co-crystallized with different heavy metals (Taylor 2010). The electron density
map is obtained by a Fourier transform of the amplitudes and phases of the scattered waves. An
initial molecular model of the protein is fitted against the electron density and the discrepancies
are minimized through several rounds of refinement until a satisfactory model is obtained
(Smyth and Martin 2000).

Structure quality and interpretability
Crystal structures suffer from different sources of bias inherent to the techniques used in their
obtention (Borek et al. 2003;Wlodawer et al. 2008). For example, crystals are diffracted at
cryogenic temperatures to reduce protein mobility, with the potential to immobilize the protein
conformation into an energy minimum not observed at room temperature (Fraser et al. 2011).
In addition, low occupancy side-chain rotamers and alternative inhibitor binding poses might
not be clearly visible (Lang et al. 2014).
Several features of the solid state are physiologically irrelevant and can potentially lead

to misinterpretation. In particular, a crystal lattice is stabilized by non-covalent interactions
between the protein in the unit cell and its periodic images. Identifying the physiologically
relevant protein quaternary structure can sometimes prove challenging (Elez et al. 2020). X-ray
structures also feature non-physiological ligands obtained from the crystallization medium
which can locally perturb the protein structure (Handing et al. 2018; Ledvina et al. 1996): pH
buffers (sulfate, citrate), anti-freeze agents (polyethylene glycol), co-solvents (dioxane, dimethyl
sulfoxide), inorganic salts and metallic ions, to cite a few examples.

The protein may have also been subjected to mutagenesis to facilitate crystallization. These
engineered proteins often deviate from their wild type variants by point mutations in solvent-
exposed residues to help solubility (Derewenda 2010) or reduce entropy (Cooper et al. 2007;
Derewenda 2010). Sometimes multiple residues are deleted in flexible regions to locally reduce
disorder, e.g. termini trimming and loop contraction (Derewenda 2010).
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Pre-processing
Experimentally-determined protein structures cannot be used directly as input to bioinformatics
tools. Measurement uncertainties and perturbations must be addressed manually, namely:

• missing residues or side-chains in disordered regions, such as flexible loops
• missing hydrogen atoms; requires careful examination in the case of histidines, which
have three protonation states: Nδ, Nε, or both Nδ and Nε

• artificial insertions/deletions/mutations designed to reduce protein flexibility, facilitate
purification (polyhistidine-tag) or promote crystallization

• post-translational modifications (phosphorylation, glycosylation) or lack thereof
• alternative side chain conformations
• extra ligands, salts and co-solvents
• free or capped N- and C-termini.

These details must be carefully reviewed based on the quality of the experimental data
(Kleywegt 2000) and known post-translational modifications of the protein. Most operations
involving the restoration of missing atoms or residues can be easily achieved with homology
modeling software. Multiple validation tools are available to assess the quality of the molecular
model (Laskowski 2003).

1.2.1.3 Topology preparation

For rigid body correlation, this step consists in adding van der Waals radii and atomic partial
charges to the PDB file to generate a PQR file. Proteins consisting of standard amino acids
and crystallographic water molecules can be directly processed by PDB2PQR (Dolinsky et al.
2004; Dolinsky et al. 2007), which uses either the CHARMM (MacKerell et al. 1998) or the
AMBER (Wang et al. 2000) force field. For proteins with metallic centers, the metallic ions
need to be manually added back into the PQR file, with van der Waals radii obtained from the
literature and partial charges corresponding to their oxidation state.
The procedure is more complex for chemically functionalized proteins. The protein can be

treated by the AMBER force field, while the functionalizing group is treated with a specialized
force field, such as GLYCAM for saccharide conjugates (Woods et al. 1995) or AMBER-DYES
(Graen et al. 2014) for fluorescent dyes. Other types of derivation require the use of ad hoc
force field modification files from the literature.
The AmberTools suite of programs provides the LEaP tool to generate topologies from the

terminal (TLEaP). The protein structure can be loaded in LEaP and then conjugated or loaded
as an already-conjugated structure. The resulting MM topology can be parsed to extract the
protein van der Waals radii and partial charges, and used for MD simulations.

1.2.1.4 Conformational sampling

Conformational sampling can be carried out by MD simulations if a suitable MM topology
was generated at the previous step. The resulting trajectories are then clustered to extract
probability-weighted conformer ensembles. Alternatively, a collection of crystal structures of
the protein can be used.
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1.2.2 Modeling ligands

1.2.2.1 Obtaining a model

Crystal structure of the solid phase
The CSD (Allen 2002) and COD (Gražulis et al. 2012) provide X-ray structures of ligands in
the solid phase. These structures are useful to get an initial geometry for the ligand, however
they do not necessarily reflect the ligand conformation(s) in solution.

Crystal structure of the bound state
The PDB (Bernstein et al. 1977; Berman et al. 2000) provides a comprehensive dataset of
protein–ligand complexes. The PDBbind (Wang et al. 2005) and MOAD (Hu et al. 2005)
are manually curated databases of high-resolution complexes with binding affinity data. The
bound-state conformation of a ligand can be extracted from these structures.

Molecular mechanics model with experimental geometric parameters
Many natural products are readily available in parameterized form. For all-atom models,
natural amino acids and nucleic acids are available in AMBER, lipids and cholesterol in LIPID
(Skjevik et al. 2012; Dickson et al. 2014), saccharides and glycosaminoglycans in GLYCAM
(Woods et al. 1995; Kirschner et al. 2008; Singh et al. 2016). Scaffolding of the full molecule
can be achieved in AmberTools or online for GLYCAM and LIPID. The only necessary pieces
of information are the experimentally-determined dihedral angles between the sub-units of
the polymer. For example, dihedral angles of the glycosidic bonds in polysaccharides can be
obtained from X-ray fiber diffraction.

Ab initio calculation
Quantum chemistry packages can optimize a ligand geometry and generate partial charges.
Despite the computational burden associated with these calculations, a reasonable trade-off
between computational time and accuracy can be achieved using a vacuum optimization
with Hartree–Fock (HF) or density functional theory (DFT). The HF/6-31G* level of theory for
example was used to parameterize early AMBER force fields (Cornell et al. 1995).

1.2.2.2 Topology preparation

For peptides, the PDB2PQR tool will generate adequate partial charges and atomic radii. For
ligands obtained from specialized force fields, the charges and radii can be extracted from
the MM topology. For drug-like compounds, a literature search might reveal readily-available
parameterized files. For other, non-standard ligands, charges need to be derived with the
methods previously described in section 1.1.5.4 “Obtaining suitable partial charges”, while radii
can usually be obtained by analogy with similar molecules with known radii.
If MD simulations are required for these non-standard ligands, they will have to be fully

parameterized. For small molecules, the GAFF (Wang et al. 2004) tool provides a framework to
derive bonded and non-bonded parameters by analogy with AMBER parameters. Alternatively,
the PRODRG (van Aalten et al. 1996; Schüttelkopf and van Aalten 2004) tool with charge
correction (Medeiros et al. 2013) can generate AMBER and GROMACS topologies. For larger
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molecules, a fragment-based approach might be required. This approach consists in splitting
the molecule into physiologically relevant building blocks, typically at amide and ester bonds,
and deriving suitable force field parameters for each block using ab initiomethods. The protocol
is described in more length in section 1.2.3.2 “Force field parametrization”.

1.2.2.3 Conformational sampling

For small ligands, GPU-accelerated MD simulations are generally fast enough to produce
microsecond trajectories in a matter of days. The trajectory can then be clustered to extract
representative conformers. For polymer fragments, fiber diffraction and NMR experiments can
provide experimental ranges for dihedrals connecting the polymer building blocks.

1.2.3 Molecular Dynamics

1.2.3.1 Defining the Hamiltonian

The role of a MM model is to approximate bonded and non-bonded interactions occurring at
the molecular level. Non-bonded interactions are quite diverse: hydrogen bonds, salt bridges,
ion–dipole and dipole–dipole forces, forces involving induced dipoles, and other van der Waals
forces. In chiral organic molecules, these non-bonded interactions tend to exhibit some degree
of directionality, including the charge–charge interaction, as observed for salt-bridges in solid
(Barlow and Thornton 1983; Kumar and Nussinov 2002; Donald et al. 2011) and solvated
(Huerta-Viga et al. 2015) systems.

The AMBER Hamiltonian is given by equation 1.1. The force is obtained by deriving the
Hamiltonian with respect to the distance r . The equation can be divided into the following
terms (Cornell et al. 1995; Salomon-Ferrer et al. 2013; Betz and Walker 2015):

• bonds lengths: inter-nuclear separations ℓi are constrained near their equilibrium value
ℓi ,0 with restoring forces kb

i using a harmonic oscillator, which for small deviations from
ℓi ,0 is a reasonable approximation of the Morse potential

• bond angles: angles θi are constrained near their equilibrium value θi ,0 with restoring
forces ka

i using a harmonic oscillator
• dihedral angles: anglesφi are constrained to their local minimaφi ,n,0 with energy barriers

Vi ,n and periodicity n using Fourier series
• non-bonded interactions: short-range interactions are modeled using a 6-12 Lennard-
Jones potential while electrostatic forces are modeled using a Coulomb potential; for
pairs of atoms separated by 3 bonds or less this calculation is not performed since their
contribution to the Hamiltonian is already accounted for by the bonded terms.

V (r N ) =
bonds∑︂

i
kb

i (ℓi −ℓi ,0)2 +
angles∑︂

i
ka

i (θi −θi ,0)2 +
torsions∑︂

i

∑︂
n

1

2
Vi ,n[1+cos(nφi −φi ,n,0)]

+ ∑︂
i< j
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i j

r 12
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−
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i j
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+ qi q j

εri j

}︄ (1.1)
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1.2.3.2 Force field parameterization

The AMBER99SB force field provides parameters for amino acids, nucleic acids, water and
ions. Non-natural molecules can be represented with specialized force fields, such as GAFF for
drug-like molecules (Wang et al. 2004). Non-natural residues connected to amino acids via
covalent bonds need to be parameterized by following the procedure of the original AMBER
force field (Cornell et al. 1995; Cieplak et al. 1995).

If the set of atom types for natural residues in AMBER99SB is transferable to the non-natural
residues to be parameterized, the Lennard-Jones parameters can be obtained by analogy
(Weiner et al. 1984). The Coulomb interaction however requires the derivation of partial
charges from quantum mechanics (QM) calculations (more details in Appendix C on page 93).
Using a point charge model significantly simplifies the treatment of electrostatic interactions
between particles, however this approximation is inadequate for highly polar molecules such as
water. This issue is remediated using one of the numerous modified water models: the SPC/E
model applies a polarization correction (Berendsen et al. 1987), the TIP4P model uses one
extra partial charge in between the two hydrogens (Jorgensen et al. 1983), and TIP5P uses two
extra partial charges for the electron pairs on the oxygen atom (Mahoney and Jorgensen 2000).
Bonded parameters are obtained through the minimization of the error between QM and

MM energy for an ensemble of molecular conformations, for example via the program paramfit
(Betz and Walker 2015). Dihedral bonds are fitted last, as their role is to encode short-range
intramolecular Lennard-Jones and Coulomb interactions, as well as interactions not explicitly
accounted for in the Hamiltonian, such as aromaticity. There are two types of dihedrals: proper
and improper. Proper dihedrals are assigned to 4 atoms connected linearly (A–B–C–D) and
represent the angle between the planes formed by the triangles ABC and BCD. They are used
to model the energetic profile of the rotation barrier around the bond B–C. The Fourier sum
usually contains 1 to 4 terms with varying strength, frequency and phase, depending on the
complexity of the energetic landscape. Improper dihedrals are assigned to 4 atoms connected
in a planar star-shaped configuration (A–B(=C)–D). They are used to model the energy penalty
associated with the deformation of the plane. This configuration is used for delocalized π
systems, such as aromatic cycles, amides and carbonyl groups. The Fourier sum usually consists
of a single term with a high energy barrier.



2 Chapter

Validation of Epitopsy against MD
simulations

Most animals with bilateral symmetry express Hedgehog morphogens (Ingham et al. 2011),
which are key components of the Hedgehog signaling pathway (Robbins et al. 2012). Disruption
of the pathway can lead to abnormal limb development in mouse embryos (Riddle et al. 1993;
Pathi et al. 2001; Li et al. 2006) and basal cell carcinomas in humans (Daya-Grosjean and
Couvé-Privat 2005). Interactions between Sonic Hedgehog (Shh) and glycosaminoglycans are
an active field of study (Zhang et al. 2007;Manikowski et al. 2019), and are being investigated
as potential targets for inhibitors and biosensors (Daye et al. 2010; Lamson et al. 2021).

The Shh affinity for heparin (Bumcrot et al. 1995) was initially attributed to the presence of
a binding domain at the N-terminus (Rubin et al. 2002), more specifically a Cardin–Weintraub
(CW) domain (Cardin and Weintraub 1989). Later research revealed a secondary heparin
binding site involving basic residues in a globular domain (Farshi et al. 2011) and suggested
the binding mode could be different in the monomeric and oligomeric forms of Shh. Structural
elucidation of the murine Shh:heparin complex revealed that heparin could bind to a secondary
binding site composed of residues Lys88, Arg124, Arg154, Arg156, although with lower affinity
compared to the canonical CW residues Lys32, Arg33, Arg34, Lys37, Lys38 (Whalen et al. 2013).

This chapter focuses on the investigation of the Shh:heparin interaction with Epitopsy and
MD. This research extends earlier work on the Shh:heparan sulfate interaction (Wilms 2013),
which was instrumental to the genesis of Epitopsy. The following work also compares energy
grids (EGs) obtained by Epitopsy against crystallographic data to assess the predictive power
of the method.

This chapter includes reference Grad et al. 2018. Reprinted with permission from Jean-Noël
Grad, Alba Gigante, Christoph Wilms, Jan Nikolaj Dybowski, Ludwig Ohl, Christian Ottmann,
Carsten Schmuck, and Daniel Hoffmann, “Locating Large, Flexible Ligands on Proteins”. Journal
of Chemical Information and Modeling 2018, 58(2), 315–327. doi:10.1021/acs.jcim.7b00413.
Copyright 2018 American Chemical Society.
https://pubs.acs.org/doi/10.1021/acs.jcim.7b00413

https://doi.org/10.1021/acs.jcim.7b00413
https://pubs.acs.org/doi/10.1021/acs.jcim.7b00413
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ABSTRACT: Many biologically important ligands of proteins are large, flexible, and in
many cases charged molecules that bind to extended regions on the protein surface. It is
infeasible or expensive to locate such ligands on proteins with standard methods such as
docking or molecular dynamics (MD) simulation. The alternative approach proposed
here is scanning of a spatial and angular grid around the protein with smaller fragments
of the large ligand. Energy values for complete grids can be computed efficiently with a
well-known fast Fourier transform-accelerated algorithm and a physically meaningful
interaction model. We show that the approach can readily incorporate flexibility of the
protein and ligand. The energy grids (EGs) resulting from the ligand fragment scans can
be transformed into probability distributions and then directly compared to probability
distributions estimated from MD simulations and experimental structural data. We test
the approach on a diverse set of complexes between proteins and large, flexible ligands,
including a complex of sonic hedgehog protein and heparin, three heparin sulfate substrates or nonsubstrates of an epimerase, a
multibranched supramolecular ligand that stabilizes a protein−peptide complex, a flexible zwitterionic ligand that binds to a
surface basin of a Kringle domain, and binding of ATP to a flexible site of an ion channel. In all cases, the EG approach gives
results that are in good agreement with experimental data or MD simulations.

■ INTRODUCTION

The prediction of binding poses of small molecules with a
mixture of polar and hydrophobic groups that bind with high
affinity in protein pockets has been one of the dominating
problems in biomolecular modeling, and the successes in this
endeavor have had a major impact in the life sciences and drug
design. However, many biologically important interactions are
almost the exact opposite of this scenario: large, flexible ligands
bind to protein surfaces, their binding is often transient, and
charge−charge interactions are essential. Examples are
interactions between secreted proteins and the extracellular
matrix of glycosaminoglycans,1,2 interactions of virus proteins
with host receptors in viral cell entry,3 and interactions of T-cell
receptors with MHC I−peptide complexes.4 Another interest-
ing case is the design of novel supramolecular ligands that bind
protein surfaces with many low-affinity interactions but overall
high avidity.5

How can we model and predict complexes of proteins with
such large, flexible ligands that are often charged or
zwitterionic? Sometimes it is possible to predict binding
modes of large, flexible ligands by docking suitable fragments
using methods developed for small-molecule docking.6 This is
less promising if binding occurs not in typical small-molecule
binding pockets but rather at the protein surface, often
involving charged residues with long, flexible side chains, as

for instance in the case of protein−glycosaminoglycan binding.
In these cases, interactions could be characterized by molecular
dynamics (MD) simulation or related sampling methods,7

though the necessary computational effort can be excessive.
Thus, current computational methods are either not suitable

for the treatment of large, flexible ligands or are very expensive
to apply. Unfortunately, the same also applies to high-
resolution experimental characterization by X-ray crystallog-
raphy or NMR spectroscopy. This makes it all the more
important to develop reliable and efficient computational
methods that can, e.g., be used to predict protein residues or
regions that are crucial for the interaction with the ligand. Such
predictions can then be tested, for instance, by measuring
affinity changes after site-directed mutagenesis.
A promising avenue toward such efficient computational

methods for this ligand class involves approaches that evaluate
energies for ligand positions on a three-dimensional (3D) grid
around the target protein. Although they have mainly been used
for docking,8 i.e., for locating optimal ligand positions and
poses, in principle they allow for a characterization of the
complete target protein surface region with respect to ligand
binding energetics. A great advantage of grid-based approaches
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is that the protein−ligand interaction energies on the grid can
be evaluated efficiently by exploiting discrete fast Fourier
transforms (FFTs), and this insight has led to the development
of fast methods for protein−protein docking and for docking of
small molecules to proteins.9−13 However, these implementa-
tions of FFT-based docking have not been intended or used for
locating large, highly flexible ligands on proteins.
Since we are mostly interested in interactions of proteins

with charged ligands, another candidate method for character-
izing the interaction energetics around the target protein is the
solution of the Poisson−Boltzmann equation, typically also
with efficient grid-based methods.14,15

In the work presented here, we assess the suitability of fast
grid-based methods for predicting binding regions of large,
flexible, and usually charged ligands on protein surfaces. These
ligands not only defy docking methods but also force us to
abandon the notion of the well-defined binding pose because
their size and flexibility as well as the fact that they bind to
extended protein surface regions will make binding more fuzzy.
One way to account for this uncertainty while still retaining a

quantitative approach is to predict affinity distributions or
probability densities for the ligand, or at least for those
functional groups that likely mediate binding. The above-
mentioned grid-based methods9−12 are attractive because they
could provide exactly this information in an efficient way.
Generally, the approach proposed here assumes that we can
infer the location of a large, flexible ligand from probability
distributions of characteristic fragments and that these fragment
probability distributions can be computed efficiently and
sufficiently accurately by grid-based, FFT-accelerated scanning.
We also demonstrate that flexibility of the target protein and of
ligand fragments can be incorporated easily.

Many fragment-based approaches have been developed to
identify binding poses or pockets of small drug-like molecules
on proteins (see, e.g., refs 8 and 16−18), and some of these
have even been applied to dock flexible peptides to well-defined
binding pockets (see, e.g., ref 19), but to our knowledge, these
methods are untried for our purpose of computing probability
densities of our ligand class of interest on protein surfaces. We
have therefore used MD as an established general-purpose
reference method. An important advantage of comparison with
MD simulations is that we can use a parametrization, especially
charges and van der Waals radii, that is consistent between MD
simulations and our “energy grid” (EG) computations, so that
potential differences can be attributed to differences in
conformational sampling and solvent model. Good agreement
of EGs with X-ray structures and probability densities from MD
simulations would be a first validation of EGs for our ligand
class of interest. Since EGs can be computed at a small fraction
of the computational cost of MD simulations, they could then
be an interesting alternative approach.
To test the approach, we have evaluated EGs for five

different test cases that cover several scenarios of practical
interest: surface binding of heparin to sonic hedgehog protein,
for which we compare several methods and experimental data;
specific interactions of an epimerase with three different
heparan sulfate substrates or nonsubstrates as an example of
specificity of interaction; stabilization of a protein−peptide
complex by an artificial multibranched supramolecular ligand as
an example of a large nonpolymeric ligand; binding of a flexible
zwitterionic ligand to a Kringle domain; and binding of ATP to
a flexible receptor.

Figure 1. Workflow for the computation of (interaction) energy grids (EGs) with Epitopsy. Representative conformations of ligand fragments and
the target protein are required as input (A, B). Charges and radii of both interaction partners are assigned (C, D). The EG for a ligand−protein pair
as a “correlation” with FFTs is computed as described in text (E). EGs can then be analyzed in various ways outside Epitopsy (F).
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■ METHODS

Workflow. Figure 1 shows the overall workflow of our grid-
based analysis. Each of the steps will be described in the
following sections. To make our results reproducible, we
provide our experimental Epitopsy software as free open-source
code at https://github.com/BioinformaticsBiophysicsUDE/
Epitopsy.
To test the ability of the approach to predict binding regions

of charged, flexible ligands on proteins, we have compared for
several molecular systems electrostatic potentials (ESPs), EGs,
probability densities, and crystal structures. For two of the
systems, we have estimated probability densities of ligands by
series of molecular dynamics simulations.
Molecular Dynamics Simulations. MD simulations were

used first to determine representative ligand conformations as
input to Epitopsy (Figure 1A) and second as a reference
method to estimate probability densities of ligand fragments
around the target protein that can then be compared with the
corresponding probabilities computed from (interaction)
energy grids generated by Epitopsy.
MD simulations were run with GROMACS 4.6.720 using the

Amber ff99SB force field21 for proteins and GlyCAM 06h-222

for saccharides. Phosphorylated serine parameters were
obtained from the literature.23 Nonstandard amino acids in
ligand QQJ-096 (succinic acid, phenyl trihydrazine, N-
acetyllysine, and GCP) were parametrized for the ff99SB
force field according to the procedure described in the original
ff94 article.24 Atomic charges were derived from electrostatic
potential maps calculated at the HF/6-31G* level of theory in
Gaussian 09, revision A.02,25 and fitted to the residues using
the restrained electrostatic potential (RESP) method.26,27 Force
constant parameters were obtained by chemical analogy with
readily available parameters in ff94.28 Topology files were
created with the pdb2gmx module of GROMACS for the
protein and with the TLEaP module of Amber version 12.2129

with the AmberTools suite version 13.22 for the ligands. Amber
topologies were converted to GROMACS topologies by
ACPYPE.30

Proteins and ligands were solvated in a dodecahedral box of
SPC/E water molecules31 with a minimum separation of 10 Å
between the protein and the box boundaries. The system was
neutralized by addition of Na+ and Cl− ions to a final ionic
strength of 0.15 mol/L. The system was energy-minimized by
steepest descent to a total force of 1800 kJ mol−1 nm−1 and
equilibrated for 5 ns in the NVT ensemble with restrained
heavy atoms followed by 5 ns in the NPT ensemble without
restraints. Production simulations were run in the NPT
ensemble for 250−500 ns. The temperature was stabilized at
300 K in the NVT and NPT ensembles using the V-rescale
thermostat,32 while the pressure was stabilized at 1 atm in the
NPT ensemble using the Berendsen barostat (equilibration) or
Parinello−Rahman barostat (data production).33 Simulations
were carried out on a GPU (GeForce 970 and GeForce 1070,
CUDA 6.5) using a time step of 2 fs, the Verlet scheme34 with a
10 Å cutoff for neighbor search, the particle mesh Ewald
method35 for electrostatic calculations, and the LINCS
algorithm36 for bond constraints.
Representative structures were extracted from trajectories on

the basis of mutual RMSDs, using the g_rms tool in
GROMACS to produce 2D RMSD plots, the PAM (partition
around medoids37) tool from R package cluster, version 2.0.6, in
R version 3.3.138 to find clusters, and the cluster.stats function

from R package fpc, version 2.1.10, to validate the clustering on
the basis of silhouette coefficients.39

When high flexibility in the ligand prevented the extraction of
representative structures, the ligand trajectory was projected on
a grid to produce a probability distribution of the ligand around
the protein. To this end, the simulation box was discretized,
and we counted for each grid point the number of MD frames
where it was within the van der Waals radius of a ligand atom.
The resulting count was divided either by the total number of
frames in the trajectory to yield a grid point sampling frequency
or by the sum of the grid point frequencies to yield a (ligand)
probability density. The latter was used to compute cumulative
density plots and to draw highest-density regions (HDRs)40 in
PyMOL. In comparisons of electrostatic, energy, and
probability density grids, all of the compared grids were laid
out with the same resolution, dimensions, and offset. EGs,
HDRs, and molecules were visualized with PyMOL version
1.841 compiled from sources.

Protein Structures. Crystal structures were refined in
MODELLER 9.1742,43 to restore missing residues if necessary
(Supporting Table S2). Candidate structures were required to
minimize the DOPE and molpdf score. In the case of a tie, the
refined model with lowest root-mean-square deviation
(RMSD) with respect to the template was selected.

Assignment of Charges and Radii. For the computation
of EGs, charges and radii have to be assigned to the ligand
(Figure 1C) and protein (Figure 1D). Charges and atomic radii
were added on the proteins with PDB2PQR version 2.0.044,45

at neutral pH and 298 K using the Amber force field option.
Ligand charges were obtained from molecular mechanics
(MM) force fields if available, or from one of these methods
as specified in the text: electrostatic potential fit using the
Merz−Singh−Kollman scheme46,47 in Gaussian 09, revision
A02,25 at the HF/6-31G** level of theory; or the
Gasteiger−Marsili method48,49 from OpenBabel50 version 2.3.2.

Electrostatics. For the target protein, the electrostatic field
was computed by solving the nonlinear Poisson−Boltzmann
equation with APBS version 1.4.115 at 310 K with an ionic
concentration of 0.15 mol/L and relative dielectric permittiv-
ities εr

protein = 2 and εr
water = 79.

Energy Grid Computation. The central part of the
workflow is the computation of the energy grid for a ligand
(or ligand fragment) and target protein (Figure 1E) by
scanning the protein environment with the ligand or fragment.
As we are mainly interested in charged ligands, the energy
model currently only considers electrostatic interactions
between the ligand and protein for non-overlapping relative
positions and poses. EGs were calculated using the EnergyGrid
tool of Epitopsy 1.0.51 The following subsections describe how
the energy is evaluated.

Shape Complementarity. The atomic description of a
proteinobtained either from experimentally solved structures
or from homology modelingis mapped to a grid of
dimensions (N1,N2,N3) with resolution (m1,m2,m3), usually
in the range 0.5−1.0 Å. The default value in this work was 0.8
Å. Discretization proceeds by assigning a nonzero value to grid
points within the van der Waals radii defined by PDB2PQR for
protein and ligand atoms. These discretized geometries are
labeled fPl,m,n

vdw for the protein and fLl,m,n
vdw for the ligand:
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The surface layer is the ensemble of solvent grid points in
direct contact with the protein. The correlation is positive
whenever the ligand is in contact with the protein surface (i.e.,
occupying the surface layer), negative when the ligand overlaps
the protein, and zero otherwise. Ligand poses with negative
shape correlation are discarded. Flexibility is introduced by the
use of coefficients with opposite sign: an overlapping pose with
n overlapping grid points is rejected unless a minimum of |δ·n|
grid points are in surface contact. We used mainly δ = −15 as
given by ref 10, but we point out in the Discussion and
Supporting Figure S4 that it can be useful to vary δ.
The shape correlation fCα,β,γ

vdw can be defined as the direct

product of the two matrices fPl,m,n
vdw and fLl,m,n

vdw for any shift vector
(α, β, γ):
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This calculation has an asymptotic time complexity of O(n6),
making it impractical for solving numerically large systems. The
fast Fourier transform (or −1 for the reverse operation)
was successfully introduced by Gabb et al.10 in this context,
resulting in a time complexity of O(n3 ln(n3)):
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where the uppercase letter F represents the decomposed signal
f and F̅ is the complex conjugate of F.
Electrostatic Energy. The electrostatic potential (ESP)Φl,m,n

of the protein in ionic aqueous solution obtained by solving the
nonlinear Poisson−Boltzmann equation (see above) is stored
in a matrix ΦPl,m,n, with the protein interior and surface set to a

potential of zero, and the matrix qLl,m,n contains the ligand partial
charges:
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The electrostatic interaction between the ligand partial charges
and the protein electrostatic potential is used to compute the
energy correlation matrix fCα,β,γ

elec :
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The same FFT optimization as described in eq 3 is used to
speed up the correlation here:
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Correlation Matrix. The energy correlation matrix fCα,β,γ

elec (eq
5) is used to calculate ΔEbind

elec (α, β, γ), the electrostatic
contribution to the binding affinity for any shift vector (α, β,
γ) where the molecular probe does not overlap with the
protein, i.e., for fCα,β,γ

vdw ≥ 0:

α β γΔ =
α β γ α β γ

HE f f( , , ) [ ]bind
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where H[x] is the Heaviside step operator, given by
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Angular Sampling and Energy Grid Values. The
correlation matrices are evaluated for many orientations ω ∈
Ω of the ligand, where Ω is a set of rotation angles (ϕ, θ, ψ)
with (ϕ, θ)-tuples uniformly distributed on a sphere using a
Fibonacci generative spiral52,53 and ψ an optional spin around
each (ϕ, θ) tuple, sampled uniformly in [0, 2π] with a step of
2π/n (n = 1 for no spin or any nonzero even number for a
spin). The binding free energy ΔGbind

elec (α, β, γ) is computed
from |Ω| correlations:
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The division by |Ω| accounts for the purely entropic free energy
of the reference state, i.e., the ligand immersed in pure solvent,
where it takes |Ω| orientations of zero enthalpy. We used
mainly |Ω| = 150 without spin, as this value provides a
reasonable trade-off between accuracy and calculation time; we
show in Supporting Figure S3 the effect of increasing |Ω|.
The number of available ligand rotations at every grid point

is

∑α β γΩ Ω =
ω Ω∈

ω
α β γ

H f( , , , ) [ ]available
C
vdw

, ,
(10)

The ligand excluded volume (LEV) corresponds to the set of
grid points (α, β, γ) where no rotational state with finite energy
is available to the ligand (Ωavailable = 0), or the set of all grid
points where the function LEV is 1:

α β γ Ω Ω= − −HLEV( , , , ) 1 [ 1]available

Energy Grids for Multiple Conformers. When several
conformers P of the protein and L of the ligand are provided,
with respective internal energies Ui for P and Uj for L, the
binding free energy is
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The number of available orientations is
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Conversion to Probability Densities. EGs may be trans-
formed into probability density functions (PDFs) with
Boltzmann factors K for positions outside the LEV:
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Quantitative Comparison of EGs with Experimental
Ligand Positions and MD. To obtain a simple measure of
agreement between ligand positions in crystal structures and
EGs, we used the following method. The EG was partitioned
into clusters corresponding to local energy minima with a series
of several hundred simulated annealing (SA) runs, in each
letting a probe walk on the EG to an energy minimum.54,55 The
minima were postprocessed with a robust silhouette-validated
PAM clustering.37,39 With this procedure, we effectively
denoised the EG and ended up with a small number of
compact clustersalways less than 20 clusters in the cases
studied here. We further assigned to the cluster the energy
value of its medoid. We then took the distance between the
cluster medoids and the geometric center of the ligand in the
crystal structure as a measure of agreement between the EGs
and the crystal structure: the smaller the distance dX−EG
between the EG cluster medoid of lowest energy and the
crystal structure, the better the agreement between the EG and
the crystal structure.
For comparison between MD results and EGs, we first

computed the EGs and determined clusters using the SA/
clustering approach described above. Then we used the same
EG grid geometry to discretize the MD trajectories: For each
ligand pose sampled in MD, a counter at each grid point within
the ligand volume was incremented by 1. In this way, the
complete set of trajectories was mapped onto counts of grid

point hits. These were then transformed into probabilities by
normalization, which were log-transformed into energies. The
SA/clustering approach was applied to this MD-derived grid in
the same way as described above. Finally, we evaluated the
distances dMD−EG between the MD and EG medoids of lowest
energy or the distances between neighboring minima in either
grid.

■ RESULTS
Sonic Hedgehog and Heparin. The complex of sonic

hedgehog protein (Shh) and a heparin ligand is prototypical of
our systems of interest: a large, flexible, and highly charged
ligand binds to the surface of a protein. The general assumption
underlying our computational assessment of the heparin
location is that we can infer the location of large, flexible
ligands from the probability densities of characteristic frag-
ments. Of course, this assumption has to be tested, and it will
break down under certain conditions, as we outline in the
Discussion. To test the approach, we therefore compiled for
this system a comprehensive data set consisting of the crystal
structure of the Shh−heparin tetrasaccharide complex from ref
56, the electrostatic potential (ESP) of Shh, the energy grid
(EG) and probability densities for disaccharide heparin
fragment scans of Shh with Epitopsy, and seven 500 ns MD
simulations of Shh with disaccharide fragments (placed initially
at random positions on the Shh surface; Supporting Figure S2).
The MD trajectories were sufficiently long to observe ligand
binding and unbinding events (Supporting Figure S9).
Overall, the four sources of data give a consistent picture

(Figure 2): The ESP has its largest high-potential region
around Arg156, and this is where the EG has its largest low-
energy blob and where the heparin tetrasaccharide is located in
the crystal structure. This is also the area of the highest heparin
disaccharide probability density, as estimated from MD
trajectories, with good agreement between the MD and EG
global minima (dMD−EG = 3.3 Å).
Assuming a Boltzmann distribution, the EG and ESP values

can be transformed into probability densities for ligand
occupancy (eq 13). These probability densities can then be
compared directly with the probability densities estimated by
MD sampling, either visually (e.g., with 3D isosurfaces; Figure
2) or quantitatively (Figure 3). For the latter, we evaluated the

Figure 2. Sonic hedgehog protein (Shh) with heparin ligand. (A) ESP isosurfaces of Shh at +1kBT/|e| (blue) and −1kBT/|e| (red). (B) EG
isosurfaces at ±1kBT (translucent blue/red) and ±2kBT (solid blue/red), merging across two population-weighted conformations of a heparin
disaccharide (clustering details and glycosidic angles are provided in Supporting Table S1) according to eq 11 using |Ω| = 600 and n = 4. (C) EG-
based probability densities of heparin disaccharide drawn around 20% HDR (solid green) and 30% HDR (translucent green). The 20% HDR forms
a hull around the crystallographic position of the heparin tetrasaccharide from ref 56 (PDB entry 4c4n). (D) MD-based probability densities of
heparin disaccharide drawn at 20% and 30% HDR (solid and translucent green) from a 3.5 μs multitrajectory MD simulation. MD starting
conditions and trajectories are detailed in Supporting Figure S2.
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2 Validation of Epitopsy against MD simulations 19

frequency with which the heparin disaccharide visited each EG/
ESP grid cube in the concatenated MD trajectories as described
in Methods. The highest probability densities from EG and MD
are located in the same area around Arg156 (Figure 2C,D),
where the EG shows its by far largest low-energy blob (Figure
2B). However, the EG probability density maximum there has a
much larger spatial spread than the MD probability density.
Interestingly, the region of 20% highest probability density as
computed from heparin disaccharide EGs forms an envelope
around the crystal position of the heparin tetrasaccharide,
following the crystal ligand in shape and size (Figure 2C). The
center of the heparin hexamer in the crystal structure is closest
to the lowest-energy cluster medoid of the EG from the scan
with the heparin disaccharide. The distance is dX−EG = 6.1 Å
(see the last paragraph of Methods and Supporting Figure
S10A), i.e., less than two monosaccharide units. It should be

noted that the distance of the medoid to the closest
disaccharide subunit of the crystal ligand is 4.1 Å, i.e., less
than one monosaccharide away.
In another quantitative comparison between the EG and MD

probability densities (Figure 3B), we see that the MD
probability density roughly follows an exponential of the EG
values, as expected for a Boltzmann distribution (coefficient of
determination r2 = 0.94). The deviation between the actual
distribution and an exponential could be a result of
unequilibrated MD sampling or EG model deficiencies.
The obvious similarity of ESP and EG (Figure 2A,B)

suggests that ESP should have a similarly good association with
MD. However, this is not the case (Figure 3A). If we transform
ESPs into probability densities for a charged ligand, the
probability density is almost completely concentrated at a single
grid point close to the two-calcium center of Shh, 2 nm away

Figure 3. Probability density of heparin disaccharide occupancy computed from MD simulations vs (A) electrostatic potential and (B) energy grid at
the same grid positions. Each point in each plot stands for all grid points with a certain value of (A) potential or (B) energy as given by its position
along the horizontal axis. The numbers of grid points with the respective ESP or EG values are shown as colors. Both horizontal axes go from
repulsive to attractive, and in both panels the vertical axes give the probability estimated by MD sampling averaged over the grid points with a given
ESP or EG value. The error bars mark the 99% confidence intervals assuming normally distributed probabilities. In (A), 13 outliers in the ESP grid
with energies ranging from 400kBT/|e| to 800kBT/|e| lie outside the plotting range. Supporting Figure S11 shows the distribution in a 2D histogram.

Figure 4. Interaction of D-glucuronyl C5-epimerase with heparan sulfate. (A) Disaccharides used to compute EGs around epimerase: (top) substrate
CH3O−GlcNS−GlcA−OCH3; (middle) product and in vitro substrate CH3O−GlcNS−IdoA−OCH3; (bottom) nonsubstrate CH3O−GlcNAc−
GlcA−OCH3. (B) Crystal structure of epimerase in complex with heparin hexamer (PDB entry 4pxq58). The two heparin fragments (black) bind at
the two active sites of the C2-symmetric enzyme dimer. Amino acids critical for reaction (Ala mutations lead to enzyme activity loss of >60%
compared with the wild type58) are marked in blue. (C−E) EGs of the substrate (C), product (D), and nonsubstrate (E) scanned using the apo
protein (PDB entry 4pw258) with isosurfaces drawn at ±1kBT (translucent blue/red) and −2kBT (solid red) and crystallographic heparin (black
space-filling). The isosurfaces in (C−E) were robust against changes in dihedral angles of the HS dimer used for scanning. Glycosidic angles are
provided in Supporting Table S1.
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2 Validation of Epitopsy against MD simulations 20

from Arg156. While this point is certainly very attractive for the
heparin disaccharide if we only consider Coulomb interactions,
it is sterically not accessible and therefore neither visible in the
EG nor sampled by MD. Figure 3A suggests that the same is
true for many points of high ESP that are barely explored in
MD simulations or evaluated in the EG. On the other hand,
excluding points that may be sterically difficult to access from
the ESP evaluation also makes the information obtained from
ESP alone much less specific (see Supporting Figure S8).
C5-epimerase and Polyanionic Heparan Sulfate Sub-

strates and Nonsubstrates. D-Glucuronyl C5-epimerase
modifies heparan sulfate (HS), i.e., long, negatively charged,
and highly flexible carbohydrate chains. The epimerase has a
varied surface topography with deep clefts. The HS chains have
to be threaded through a narrow, partially buried active site,
which makes the epimerase−HS complex a harder test case
than the Shh−heparin complex of the previous section, where
heparin bound preferentially to a well-accessible surface patch
on Shh. The more specific, conformation-dependent chemical
function of the epimerase suggests a more accurate positioning
of the HS substrate chains on epimerase than the superficial
attachment of heparin to Shh. The hypothesis of a more
accurate positioning is consistent with the observed substrate
length dependence of the reaction: the enzymatic activity
decreased by 90% on a digested heparan sulfate fraction
containing octasaccharides and smaller oligosaccharides.57 Our
question was therefore whether we would be able to trace an
extended binding site in EGs that could accommodate such
longer oligosaccharides. For validation, we compared the
predicted binding sites with crystallographically determined
binding sites of an inhibitor, a heparin hexamer (Protein Data
Bank (PDB) entry 4pxq58).
We used three different HS dimer fragments (Figure 4A) to

compute the EGs: CH3O−GlcNS−GlcA−OCH3 as model of
the substrate, CH3O−GlcNS−IdoA−OCH3 as model of the
product, and CH3O−GlcNAc−GlcA−OCH3 as a nonsub-
strate.57,59 It should be noted that in vitro the enzyme works
both ways, i.e., the product is a substrate for the reverse
reaction.59 A parsimonious natural explanation of this finding is
that the substrate and product use the same molecular binding
site.
In fact, in the EGs with epimerase substrate and product we

detected the same low-energy channel, centered around the
active sites (Figure 4B−D). The region that binds most
strongly in the EG matches the crystallographic positions of the
heparin hexasaccharide and covers the amino acid residues
most important for enzymatic activity.58 For all three ligands,
the crystal position is closest to the lowest-energy cluster
medoid of the EG (dX−EG = 2.6, 3.1, and 4.5 Å; also see
Supporting Figure S10E,F). However, the low-energy region
extends noticeably beyond the crystallographic location of the
heparin hexasaccharide and could easily accommodate HS
oligomers longer than octasaccharides (translucent red in
Figure 4C,D). The shape of this low-energy region suggests a
core binding site for HS chains reaching from the right flank of
the narrow cleft with the active center down the crystallo-
graphic heparin binding site.
While the substrate and product are both doubly negatively

charged, the nonsubstrate molecule (bottom of Figure 4A)
carries only one negative charge. In the corresponding EG, the
−1kBT region has shrunk drastically and now only covers the
location of the crystallographic heparin hexasaccharide. Thus,
although the nonsubstrate could be chemically epimerized in

principleit has the same GlcA amenable to epimerization
this particular epimerase enzyme offers no suitable binding site
for a longer chain of this nonsubstrate type.

14-3-3 Protein and Polycationic Supramolecular
Ligand. Recently we were able to demonstrate experimentally
(Gigante et al., unpublished) that the binding of a supra-
molecular ligand, QQJ-09660 (Figure 5B), stabilizes the

interaction between the 14-3-3 protein and peptide fragments
of c-Raf protein (we call this complex 14-3-3/c-Raf). The large
QQJ-096 ligand has three flexible arms (“R” in Figure 5B), each
of which ends in two positively charged groups, a lysine and a
guanidinocarbonylpyrrole (GCP). The size and flexibility of the
ligand makes it unsuitable for small-molecule docking, and it is
unlikely that this ligand takes a single, well-defined binding
pose. Nevertheless, its effect on the interaction of c-Raf and 14-

Figure 5. Interaction of 14-3-3/c-Raf complex with the supramolecular
ligand QQJ-096. (A) Isosurfaces of electrostatic potential at +1kBT/|e|
(blue) and −1kBT/|e| (red) of 14-3-3/c-Raf (PDB entry 4ihl61). (B)
QQJ-096 ligand with only one of three arms (“R”) shown. (C) GCP
with capped ends. (D) Lys with capped ends. (E−H) 14-3-3/c-Raf
protein complex (14-3-3 in white, c-Raf in yellow): (E, F) EGs for
GCP and Lys, respectively, with isosurfaces drawn at ±1kBT
(translucent blue/red) and −1.5kBT (solid red); (G, H) 20% HDR
(solid green) and 30% HDR (translucent green) for GCP and Lys,
respectively, from a 1.5 μs multitrajectory MD simulation of the 14-3-
3/c-Raf complex with QQJ-096 in aqueous solution.
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3-3 could be explained most easily by specific binding of QQJ-
096 to 14-3-3/c-Raf.
The electrostatics of 14-3-3/c-Raf shows many regions of low

electrostatic potential (red in Figure 5A) that could interact
with the positive end groups of QQJ-096, i.e., GCP (Figure 5C)
and Lys (Figure 5D). For a more ligand-specific assessment of
binding, we computed two EGs with molecules corresponding
to these two end groups. The EGs show roughly the same
features for GCP (Figure 5E) and Lys (Figure 5F), with
particularly high affinities in the center of the 14-3-3 cleft
between the c-Raf peptides. For Lys there are additional high-
affinity patches so that the c-Raf fragments are sandwiched
between regions of high affinity for Lys. Both end groups have a
few small high-affinity islands outside the central cleft of 14-3-
3/c-Raf, with Lys having more of those islands than GCP.
Overall, this result suggests that QQJ-096 could seal off the 14-
3-3/c-Raf cleft and in this way inhibit dissociation of c-Raf
fragments, in agreement with experimental results (Gigante et
al., unpublished).
For comparison we simulated the 14-3-3/c-Raf/QQJ-096

system with MD. Because of the size of the molecular system
and the low charge density on the ligand, a computational
experiment analogous to the Shh−heparin experiment above
seemed to be unfeasible, i.e., we did not expect to reach the MD
steady state on the microsecond time scale with a ligand
initially positioned at random in the solvent box. On the basis
of the experimental evidence for QQJ-096-mediated stabiliza-
tion of the 14-3-3/c-Raf complex and the assumption of a direct
mode of interaction, the MD starting conditions could be
narrowed down to the 14-3-3 cleft (Supporting Figure S1). On
the basis of this reasoning, we carried out a pilot set of six 50 ns
MD simulations of the 14-3-3/c-Raf dimer in aqueous solution
with QQJ-096 initially positioned 10 Å above the c-Raf peptides
(Supporting Figure S1A,C). In three simulations the ligand
failed to interact with the protein. We then ran six 250 ns
simulations with the ligand initially positioned 4−6 Å above the
c-Raf peptides (Supporting Figure S1B,C) and observed a quick
convergence to binding sites of QQJ-096 end groups in the 14-
3-3 cleft close to those predicted by EGs computed with the
end groups (Figure 5G,H and Supporting Table S3). Regions
outside the cleft were barely explored. Thus, the MD
simulations and EGs support the same mechanism for the
experimentally observed stabilization of 14-3-3/c-Raf binding
by QQJ-096, namely, that the supramolecular ligand QQJ-096
blocks the 14-3-3 cleft and in this way impedes escape of c-Raf.

QQJ-096 is a case where the comparison of MD and EGs
revealed an interaction of the Lys and GCP end groups on the
same ligand. While the distributions of GCP and Lys are
similar, as can be seen in the EGs separately computed for each
of the two fragments (Figure 5E,F), the distances between the
MD-derived medoids and the closest EG-derived medoids (see
the last section of Methods) are smaller for GCP than for Lys
(Supporting Table S3). If we consider that GCP groups bind
more strongly to negatively charged groups than Lys, this
observation can be readily explained as displacement of Lys by
GCP.

Kringle Domain and Flexible Zwitterionic Ligand. The
Kringle domains of plasminogen attach to Lys residues on
fibrin, a precondition for the decomposition of fibrin by
plasminogen. A known alternative ligand of the Kringle
domains is ε-aminocaproic acid (EACA), and a crystal structure
of its complex with plasminogen Kringle domain 4 (KR4) has
been determined (PDB entry 2pk462). EACA is a highly flexible
zwitterionic molecule (Figure 6A−C) that binds to a shallow
basin in the KR4 surface. We used the EACA−KR4 complex as
a test case for the application of EGs based on multiple ligand
conformers for the identification of binding sites (eq 11). In an
application scenario we would probably not know the actual
conformer but instead would rely on plausible ligand
conformers obtained from other experiments or modeling.
Accordingly, our EACA input conformers were the stretched
conformer (Figure 6A) observed in the solid phase of pure
EACA63 and an MM-energy-minimized turn geometry (Figure
6B) that is entropically and enthalpically more favorable for a
free ligand. The conformer actually observed in the crystal
complex (Figure 6C) is closer to the stretched geometry in the
solid phase (Figure 6A), though with a bent amino end.
The zwitterionic nature of EACA suggests a binding site that

bridges two regions of opposite electrostatic potential.
However, this pattern is too unspecific since there are many
regions that fall into this category (Figure 6D). The full
correlation with shape and electrostatics information leads to
the identification of the correct binding basin, which in fact
bridges regions of opposite electrostatic potential (Figure 6E−
G). For the stretched EACA conformer there are two binding
sites: the one in the crystal structure and an alternative binding
site with slightly lower affinity between Asp381 and Lys433
(Figure 6E). For the EACA turn conformer, the correct basin is
clearly the region with highest affinity (Figure 6F). The EG
averaged over both ligand conformers (eq 11, with the two

Figure 6. ε-Aminocaproic acid (EACA) and its complex with plasminogen Kringle domain 4 (KR4). (A) Experimental structure (“stretched”) of
EACA in the solid phase (CCDC entry 110250963). (B) Energy-minimized structure of EACA (“turn”, MMFF94 force field, steepest descent in
vacuum). (C) Structure of EACA in complex with KR4 (PDB entry 2pk4). (D) Electrostatic potential isosurfaces around apo KR4 (PDB entry
2pk4) drawn at +1kBT/|e| (blue) and −1kBT/|e| (red). (E−G) EG isosurfaces drawn at ±1kBT (translucent blue/red) and ±2kBT (solid blue/red) of
apo KR4 with EACA stretched (E), as turn (F), and merging across multiple conformations of the ligand and protein according to eq 11 (G). For
the ligand Gasteiger−Marsili partial charges were used.
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ligand conformations weighted equally) also has the basin of
the crystal structure as the clearly dominant binding site
(Figure 6G). The crystal ligand is closest to the lowest-energy
cluster medoid of the EG (dX−EG = 1.7 Å; also see Supporting
Figure S10D).
A question related to the multiconformer ligand treatment is

the multiconformer receptor treatment, and eq 11 treats the
ligand and receptor symmetrically in this respect. In fact, Figure
6G is based not only on two ligand conformations but also on
three equally weighted KR4 receptor conformations, including
the EACA−KR4 complex structure (2pk4), a KR4 complex
with sulfate (PDB entry 1krn), and a KR4 complex with
arginine (PDB entry 4duu). However, since the differences
between the receptor structures are small (RMSDs of Cα atoms
with respect to 2pk4: 0.29 Å for 1krn and 0.69 Å for 4duu), the
results are very similar for the combined EG and for the three
EGs based on single receptor structures: for all three apo KR4
structures, the respective EGs identified the same correct EACA
binding basin as the best binding site.
Flexible ATP Binding Site of the P2X4 Ion Channel. In

some applications of EGs with flexible protein receptors, either
the apo state or the holo state of the protein is known, but not
both, leading to some uncertainty as to whether EGs for one
state allow inferences for the other state. An example where this
question can be tested is the ATP-gated P2X4 receptor cation
channel. This protein undergoes a significant conformational
change upon binding of ATP, and crystal structures of the apo
and holo states of P2X4 (PDB entries 4dw0 and 4dw1,
respectively64) show remarkable plasticity at the ATP binding
site (Figure 7A). To evaluate the resilience of EGs toward the
conformational change of the receptor protein, the apo and
holo structures of P2X4 were evaluated with ATP as the ligand.
The two structures led to similar EGs (Figure 7C,D) that
correctly identified the crystallographic ATP binding site
(Figure 7B). Although P2X4 is a transmembrane protein, it
was completely solvated for simplicity. Correlation information
at the transmembrane interface, which is 40 Å away from the
ATP binding site, should therefore be ignored (this region
contributes very little since it is nonpolar). The absolute
minimum of the EG is located at the actual ATP binding site
for both the apo and holo structures (Figure 7C,D). In the holo
structure of the receptor, the probability density of ATP is
sharply concentrated to only a few grid points at the
crystallographic binding site (Figure 7F), while in the apo
structure the highest probability density is more spread out
around this point (Figure 7E). The positions of the three
crystal ligands in both the apo and holo structures are closest to
the lowest-energy cluster medoids of the EG (dX−EG = 3.8−6.8
Å; also see Supporting Figure S10B,C).

■ DISCUSSION
The very nature of large, flexible ligands, such as glycosami-
noglycan chains, large receptor loops, and novel supramolecular
binders, makes it challenging to model their interactions with
proteins. First, these ligands are too large and flexible for small-
molecule docking. Even the notion of a well-defined binding
pose, commonly used in small-molecule docking, has to be
abandoned. Instead, we should restate the aim from finding the
binding pose to computing a probability density for the ligand
around the protein. Second, the vastness of their conforma-
tional spaces makes large, flexible ligands also difficult objects
for the standard method MD simulation, as it will be prone to
severe undersampling.65,66 A third established candidate

method is continuum electrostatics. It takes advantage of the
charged nature of the ligands, but the electrostatic potential
alone is difficult to interpret or insufficiently specific. The fact
that electrostatics alone is not sufficient to locate large charged
ligands like DNA or RNA has been noted before.67,68 Our
results corroborate this because we found only a weak
correlation between the electrostatic potential, the probability
density obtained from extensive MD simulations of the Shh/
heparin system, and corresponding experimental data. In this
case, we achieved good consistency of MD simulation and
experimental structures with EGs that complement electro-
statics with information about shape, charge distribution, and
volume of the ligand or ligand fragments.
The good correlation of the EG approach with probability

densities from extensive MD simulations at a small fraction of
the computational cost makes EGs an interesting way to
approximate such densities. For instance, the MD simulations
took 7 GPU-weeks for the Shh/heparin system and 12 GPU-
weeks for the 14-3-3/QQJ-096 system, while the setup and
computation for the EGs took 3−4 h of wall-clock time with a
conventional CPU-based PC. However, there are also
limitations that should be considered. There are two basic
categories of deficiencies: first, those due to features of the real
system that are missing in the model, and second, those due to
inadequate configuration of the model.
Intraligand interactions fall into the first category of

deficiencies. In the fragment-based screening used for the

Figure 7. P2X4 channel and its interaction with ATP. (A)
Superposition of the ATP-free apo (blue, PDB entry 4dw064) and
ATP-bound holo (brown, ATP in sticks, PDB entry 4dw1) crystal
structures of P2X4. (B) Crystal structure of the P2X4−ATP complex;
the ligand (black spheres) binds at the interface between two chains of
the C3-symmetric trimer. (C, D) EG isosurfaces of ATP drawn at
±1kBT (translucent blue/red) and ±8kBT (solid blue/red) for the (C)
apo and (D) holo structures of P2X4. (E, F) EG-based probability
densities of ATP drawn around 95% HDR, with zoomed-in panels
showing only the binding site. The same was observed for the two
other C3-related binding sites.
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EGs, we neglect interactions between fragments. This can be
problematic since we are looking at large, flexible ligands that
carry charges and can have plenty of opportunities for such
interactions, e.g., repulsion between same-sign charges, salt
bridges, or π−cation interactions. It is clear that such
interactions exist and that they can have an impact on the
ligand structure.69 A factor that could limit the severity of the
effect of intramolecular interactions is that they have to
compete with ligand−protein and ligand−water interactions
and with the conformational entropy of the ligand.
Another example of a principal deficiency of the underlying

model is the use of continuum electrostatics. This leads, e.g., to
the neglect of structural water molecules, although such waters
can be crucial for specific interactions at the surface of charged
proteins.70,71 A similar argument can be made for ions.
Inclusion of fixed water molecules or ions in the protein
structure is technically feasible in EG computations. For a first
test, we used the Trp repressor interaction with a nucleotide
ligand, where structural water molecules are known to mediate
interactions.72 In this case, the presence of the known structural
water molecules had a negligible effect on the ligand
distribution (Supporting Figure S5).
A further deficiency of our current EG implementation is the

treatment of uncharged ligands. Since our focus was on charged
ligands, this problem did not matter in the cases studied here.
However, there are large, flexible biomolecules that do not carry
formal charges and that are potentially interesting protein
ligands. Since these uncharged ligands usually are still required
to be soluble in aqueous solution, they will have to expose
many hydrogen-bond donor and acceptor groups. For the same
reason, protein surfaces typically are dominated by hydrogen-
bond donors and acceptors and charged groups, too. Thus, we
have to expect that hydrogen bonds play an important role in
the interactions of proteins with such ligands. Since hydrogen
bonds can be partly attributed to electrostatic interactions,
these bonds can in principle be modeled by the proposed
method. However, there is a crucial caveat resulting from the
fact that hydrogen bonds are highly directional (in contrast to
charge−charge interactions) and that the donor and acceptor
groups are often flexible in that they can reorient easily, such as
many hydroxyl groups in protein and carbohydrate side chains.
This means that in order to pick up a clear electrostatic signal,
the involved donors and acceptor groups on both the protein
and the ligand should be in the right orientations, which is quite
improbable because of their ability to reorient. For instance, in
a complex of cyclomaltodextrin glucanotransferase with β-
cyclodextrin (Supporting Figure S12H), the electrostatic
interaction energy in the crystal complex amounts to
−26.3kBT if we take the crystal structure of the complex and
manually introduce the presumably correct hydrogen positions,
but this affinity collapses to −6.2kBT if we do not take these
precautions and choose the default hydrogen orientations of
the GlyCAM force field. On the other hand, because the
protein surface is cluttered with hydrogen-bond donors and
acceptors, there will be ample competition for hydrogen-bond-
mediated binding across the protein surface. Accordingly, in the
case of the protein complex with β-cyclodextrin discussed
above, large parts of the protein surface are sprinkled with
elevated probability density (Supporting Figure S12G). Third,
water itself is of course available for hydrogen-bonding
interactions, which limits the free energy of protein−ligand
binding in these cases. Taken together, these considerations
indicate that the method studied in this work will in general not

be sufficient for identifying binding regions on proteins for
ligands devoid of formal charges but rich in hydrogen-bond
donors and acceptors.
Furthermore, the current EG implementation does not

explicitly account for hydrophobic interactions. It is unlikely
that interactions of large, flexible ligands with proteins in
aqueous solution are dominated by hydrophobic interactions
because otherwise the binding partners would probably not be
soluble. However, it is still possible that hydrophobic
interactions between, say, a hydrophobic pocket of the protein
and an alkyl group of the ligand, play a role in the interaction,
so neglecting these interactions could lead to wrong probability
densities. This problem could be addressed within the FFT-
based EG computations by using complex numbers in the
shape correlation (see Shape Complementarity), with one
dimension modeling the shape and the other the hydrophobic
interaction, similar to approaches that have been used in
protein−protein docking.73

Yet another potential deficiency is the treatment of molecular
flexibility. In the Kringle domain and P2X4 systems the location
of the probability density maximum was robust against
conformational changes. However, it is easy to imagine cases
where, for instance, charged groups are dislocated by a
conformational change and fundamentally change the EG. If
such conformational changes are known beforehand, they can
be consistently included in the EG calculations on both the
ligand side and the receptor side as demonstrated above.
However, if not all of the relevant receptor conformations are
known or if the protein−ligand interaction induces a new,
unknown set of conformations, the distributions obtained from
the EGs can be wrong. While this has not been an issue in the
systems discussed above, it could be relevant for highly flexible
proteins.
Finally, the FFT-based correlation computation used in

Epitopsy treats the protein and ligand inconsistently: while the
protein is modeled as a uniform medium with a low dielectric
constant, the ligand is treated as point charges in continuum
water. For flexible charged ligands, this approximation can be
acceptable because they will be well-solvated and polarizable,
but it could become inaccurate for ligands with more rigid
structures or nonpolar regions.
The second category of deficiencies can be controlled by

proper configuration of the model. For instance, if all of the
relevant conformations of the ligand fragment and receptor are
known, they should be included in the EG evaluation (eq 11),
or at least the robustness of the EGs against conformational
changes should be checked.
Another source of errors that can be controlled is the grid

configuration. If the spatial or angular grids are too coarse,
regions around the protein that contribute to the EG will be
missed. In the present study, we used fragments with the
maximum size of a disaccharide and a grid spacing of 0.8 Å, and
the comparison with MD and experimental data showed that
the results are reasonable for the given ligands and proteins.
However, we expect that problems will arise with increasing
ligand fragment size and ruggedness of the protein topography
(Supporting Figure S6). For instance, the larger the ligand
fragment and the deeper the protein pockets, the more difficult
it will be to map the protein−ligand interaction on the angular
and spatial grid because many fragment poses will lead to
collisions and therefore be discarded. Another useful parameter
in this context is the clash penalty δ (eq 1). A weaker penalty
will increase the noise but also has the potential of making
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visible finer structures in the EG or probability density
(Supporting Figure S4).
The correct charge of the ligand fragment is crucial, as shown

in the epimerase example. However, the approach is robust
against small variations in the charge distribution (see, e.g.,
Supporting Figure S7), allowing resource-intensive quantum-
mechanics-based methods for charge assignment to be
substituted with MM force field charges.
An important point that has not been addressed in this work

is heterogeneous ligand composition. In the presented
examples we could infer the location of larger ligands from
fragment probability densities because the large ligand had a
rather homogeneous composition, e.g., it was a heparin
polysaccharide with negative charges on all of the disaccharides
or a multibranched ligand with positively charged GCP and Lys
groups. However, such large ligands may comprise subunits
with different physicochemical characters. In this case,
information on EGs for different ligand fragments have to be
combined to infer likely locations of complete ligands. We are
currently developing methods to postprocess sets of EGs for
heterogeneous ligands in this sense.
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(53) Gonzaĺez, Á. Measurement of Areas on a Sphere Using
Fibonacci and Latitude-Longitude Lattices. Math. Geosci. 2010, 42, 49.
(54) Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by
Simulated Annealing. Science 1983, 220, 671−680.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.7b00413
J. Chem. Inf. Model. 2018, 58, 315−327

326



2 Validation of Epitopsy against MD simulations 26
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Input structures

Supporting Table S1: Geometries of the glycosaminoglycans used as input for EGs, following the
crystallographic definition of the glycosidic angles Φ(i) (O5(i)–C1(i)–OX(i−1)–CX(i−1)) and Ψ(i + i)
(C1(i+1)–O1(i+1)–CX(i)–CX−1(i)) for aldopyranoses.1 The two heparin structures were determined
from a 2 µs MD simulation trajectory partitioned in two clusters. The other angles were based on
the GlcNS-IdoA linkage in PDB entry 5t03.2 The glycosidic bonds in heparan sulfate are known to be
highly flexible,3 so we checked the EG of the heparosan against the EG of an alternative conformer
with different angles still within the experimental error, and found no significant difference. All sugar
rings have the conformation 4C1.

Disaccharide unit Linkage Φ (◦) Ψ (◦)

Heparin (cluster 1) GlcNS(6S)-IdoA(2S) 63.7 95.0
Heparin (cluster 2) GlcNS(6S)-IdoA(2S) 96.0 148.5
Desulfated heparin GlcNS-IdoA 70.0 103.0
Heparan sulfate GlcNS-GlcA 70.0 103.0
Heparosan GlcNAc-GlcA 70.0 103.0

Heparosan (alt.) GlcNAc-GlcA 100.0 79.0

heparin: 2-deoxy-4-O-methyl-2-(sulfoamino)-6-O-sulfonato-α-D-glucopyranosyl-(1→4)-1-O-methyl-
2-O-sulfonato-α-L-idopyranuronate

desulfated heparin: 2-deoxy-4-O-methyl-2-(sulfoamino)-α-D-glucopyranosyl-(1→4)-1-O-methyl-
α-L-idopyranuronate

heparan sulfate: 2-deoxy-4-O-methyl-2-(sulfoamino)-α-D-glucopyranosyl-(1→4)-1-O-methyl-
α-D-glucopyranuronate

heparosan: 2-(acetamido)-2-deoxy-4-O-methyl-α-D-glucopyranosyl-(1→4)-1-O-methyl-
α-D-glucopyranuronate

SupportingTable S2: PDB identifiers of crystal structures used as templates for refinement inModeller
and RMSD value between the templates and models.

Protein Template RMSD (Å)
Sonic Hedgehog 4c4n4 0.30

14-3-3ζ 4ihl5 0.44
C5-epimerase 4pw26 0.34
Trp repressor 1tro7 0.36
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Supporting Figure S1: Initial placement of QQJ-096 in the MD simulations with 14-3-3/c-Raf. Based
on the EGs obtained in Figure 5, the search space was reduced to the 14-3-3 pore where the two c-Raf
peptides are located. Two conformations of QQJ-096 extracted from a 50 ns simulation in water were
introduced in the 14-3-3/c-Raf simulation box and rotated to yield 6 different starting conditions. In a
first series of 6 simulations, the minimal distance between QQJ-096 and the c-Raf peptides was above
10 Å (A), however in 3 runs the ligand did not reach the receptor within 50 ns (C, upper panel). In a sec-
ond series of 6 simulations, the ligandwas brought closer to the pore, with aminimal distance of 4–6 Å
(B), resulting in immediate binding (C, lower panel). The plateau at the beginning of the simulations
(C) corresponds to the NVT equilibration where the coordinates of heavy atoms are restrained.
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Supporting Figure S2: Initial placement of the heparin disaccharide in theMD simulations with Sonic
Hedgehog. (A) Sonic Hedgehog (semi-transparent white surface) and heparin di-saccharide centers
(black spheres in front of the protein, red spheres behind the protein) scattered at random around the
protein surface, with a minimal inter-atomic distance of 1.8 to 3.6 Å between the ligand and protein.
(B) MD traces of the seven 500 ns simulations.

A B

Supporting Table S3: Local minima in the EGs and MD-derived grids for scans with GCP and Lysine
were detected and clustered as described in last section of Methods. For each MD medoid, the Eu-
clidean distance to the nearest EG medoid is reported. For comparison: the length of GCP is about
10 Å, the length of Lys is about 8 Å.

GCP Lysine
MD cluster size (%) Distance (Å) MD cluster size (%) Distance (Å)

24 10 45 8.4
22 7.6 17 11
17 7.7 9.5 18
10 20 8.5 19
6.5 6.1 8.0 11
5.0 9.1 5.0 22
4.5 8.5 3.0 12
4.5 19 1.5 13
4.0 5.9 1.5 11
1.0 16 1.0 24
1.0 18 – –
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Effect of different choices of parameters

Supporting Figure S3: Effect of the number of rotations |Ω| on the quality of EGs of C5-epimerase
with a CH3O-GlcNAc-GlcA-GlcNS-OCH3 trisaccharide as molecular probe at a resolution of 0.8 Å.
We measure the energy difference between grid points of an EG calculated with |Ω| rotations and
a reference EG with |Ω| = 800, while limiting ourselves to grid points where the molecular probe
made contact with the protein surface, i.e. where n angular states where allowed with 0 < n < |Ω|.
The average difference for any grid point in this region is close to zero with a 95% confidence interval
decreasing as |Ω| increases (±0.16kBT for |Ω| = 75, ±0.10kBT for |Ω| = 250). The computation
time increases linearly with |Ω|.
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Supporting Figure S4: Effect of decreasing the grid size: EGs of C5-epimerase scanned with the
GlcNS-GlcA ligand at (A)0.80Åwith penalty δ = −15, (B)0.40Åwith penalty δ = −3, (C)0.40Åwith
penalty δ = −15, all isosurfaces drawn at±1kBT (translucent blue/red) and±2kBT (solid blue/red)
with black lines to represent the EG boundaries. The EG with δ = −3 (A) shows slightly more detail
but overall the same main structures as the EG with δ = −15 (B). In contrast, details are lost if we
improve resolution from 0.80 Å (A) to 0.40 Å (C) without adapting the penalty.

A B C
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Supporting Figure S5: Effect of explicit water molecules: (A) Trp repressor (PDB entry 1tro7) with the
crystallographic water molecules within 3 Å of the surface, (B) APBS grid without the water molecules,
(C–D) epitopsy EGs using the crystallographic DNA fragment as molecular probe, with isosurfaces
drawn at−6kBT (translucent red) and−8kBT (solid red), (C) without crystallographic waters and (D)
with crystallographic waters.

A B C D

Supporting Figure S6: Effect of the ligand size: EGs of Sonic Hedgehog scanned with a heparin (A)
dimer and (B) octamer, drawn at−2kBT (translucent red) and−4kBT (solid red), and ligand excluded
volume (LEV) of the heparin (C) dimer and (D) octamer. The LEV in (D) is approximately two grid
points larger than in (C), which corresponds to an 1.6 Å expansion. This offset can play an important
role for EGs of protein surfaces with narrow clefts.

A B

C D
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Supporting Figure S7: Effect of the ligand charge distribution: EGs of Sonic Hedgehog scannedwith a
heparin di-saccharide with partial charges obtained (A) fromGlyCAMand (B) from delocalized formal
charges (−1/3 on sulfate oxygens and −1/2 on carboxylate oxygens, zero on all other atoms), drawn at
±1kBT (translucent blue/red) and±2kBT (solid blue/red).

A B

Supporting Figure S8: To study the contribution of shape complementarity and ligand charge distri-
bution to EG and probability density, we compare the EG (A) and probability density (C) described in
the main text with full correlation of shape complementarity and electrostatics based on charge distri-
bution of heparin di-saccharide with a version of EG (B) and probability density (D) that neglects shape
complementarity and focuses on the ESP alone. For the latter ESP-based EG the Shh protein surface
was extended by 5 Å to approximate the ligand excluded volume of a heparin mono-saccharide, and
correlatedwith a test point charge of−4e (i.e. the total charge of the heparin di-saccharide). (A) EG iso-
surfaces at±1kBT (translucent blue/red) and±2kBT (solid blue/red), merging across two population-
weighted conformations of a heparin di-saccharide. (B) ESP×(−4e) isosurfaces at ±1kBT (translu-
cent blue/red) and ±2kBT (solid blue/red) using the test charge. (C) EG based probability density of
heparin di-saccharide drawn around 20% HDR (solid green) and 30% HDR (translucent green). (D)
ESP×(−4e) of a test charge drawn around 5% HDR (solid green) and 10% HDR (translucent green).
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MD trajectory and EG clustering

Supporting Figure S9: Frequent binding sites on the surface of Sonic Hedgehog were extracted
from the MD simulations using inter-residues, distance-based PCA.8 The distances were computed
as theminimum distance between basic amino acids in sonic hedgehog and negatively-charged groups
(R−SO−

3 , R−CO−
2 ) in heparin MD. Silhouette-validated PAM clustering of the binding sites was con-

ducted on the first 6 principal components of the PCAmatrix and yielded 4 clusters. (A) The 7 heparin
trajectories projected into PCA space as dots colored by cluster. (B) Binding/unbinding events (spikes
at 10–15 Å) are necessary for heparin to sample other binding sites. The still frames with no cluster
information correspond to the 20 ns NVT equilibration with position restraints. (C) The 4 clusters are
depicted as green spheres with log-radii proportional to the cluster population, superimposed to the
EG isosurfaces (Figure 2B,±1kBT ).
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Supporting Figure S10: For each of the protein-ligand complexes the distance between clustermedoids
(see Methods, section Quantitative comparison of EGs with experimental ligand positions) and center
of crystallographic ligand position (x-axes) is plotted against the EG energy value of the corresponding
medoid (y-axes). The plot shows that the clusters with the lowest energy are always the closest to
the binding site(s). The x-coordinates of the colored circles correspond to dX−EG. The circle size is
proportional to the cluster size, i.e. the number of simulated annealing chains that converged to the
same cluster. For the all proteins except P2X4 the cluster closest to the binding site is also the largest
cluster.
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ESP/EG correlation histograms

Supporting Figure S11: Correlation between the MD probability density and the ESP grid and EG
of Sonic Hedgehog with a heparin di-saccharide as molecular probe at a resolution of 0.8 Å. Attrac-
tive regions have positive potential in ESP and negative EG value. Binning the averageMD occupancy
versus the electrostatic potential, respectively, the energy in 2D histograms shows a higher correla-
tion between EG and MD. In both histograms, the vertical line centered at zero corresponds to grid
points far away from the protein where the heparin was not making contact with the protein and was
randomly navigating in water. The horizontal baseline in ESP corresponds to zones of high potential
values never sampled in MD due to the van der Waals exclusion zone. The ESP distribution is slightly
skewed towards grid points of positive energies, but the correlation is barely measurable. The Epi-
topsy distribution has two visible plumes in regions of negative energies. The second plot shows the
MD occupancy on the log scale with zero occupancy indicated by 0.
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Uncharged ligands

Supporting Figure S12: Robust correlation requires electrical charges on the molecular probe. Al-
though the charge grid is fine enough to capture the dipole moment of hydrogen bond donors and
acceptors, this class of interaction is very sensitive to orientation and distance. Experiments with
4-α-glucanotransferase/amylose (A-D) and cyclomaltodextrin glucanotransferase/cyclodextrin (E-H)
complexes show that binding regions cannot be accurately predicted in Epitopsy. (A) ESP isosurfaces
of 4-α-glucanotransferase at ±1kBT/|e| (blue/red). (B) EG isosurfaces at ±1kBT (blue/red) using a
glucose di-saccharide. (C) EG based probability density of the glucose di-saccharide drawn around
1% HDR (green). (D) crystal structure (PDB entry 5jiw9). (E) ESP isosurfaces of cyclomaltodextrin
glucanotransferase at ±0.1kBT/|e| (blue/red). (F) EG isosurfaces at ±0.1kBT (blue/red) using a cy-
clodextrin. (G) EG based probability density of the cyclodextrin drawn around 0.1% HDR (green). (H)
crystal structure (PDB entry 1d3c10).
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2.2 Discussion

2.2.1 Molecular modeling

2.2.1.1 Sonic Hedgehog

Most crystal structures available for Shh feature a ligand. Two structures feature Shh with
glycosaminoglycans: PDB entries 4c4n and 4c4m (Whalen et al. 2013), where heparin resp.
chondroitin-4-sulfate are bound to the two-calcium state of murine Shh with a shortened
N-terminus. The Ca2 state is typical for Shh in blood plasma, where calcium is found in a
higher concentration than in the cytoplasm (Clapham 2007). Two structures feature Shh in
the apo state: PDB entry 3m1n (Pepinsky et al. 2000) with Shh in the Ca0 state, and PDB
entry 6pjv (Bonn-Breach et al. 2019), with Shh in the Mg1 state with an atypical coordination
geometry for the zinc cation.
For consistency of the analysis between the X-ray structure and in silico predictions, Shh

was modeled after the structure in PDB entry 4c4n. The flexible terminal loops, including the
CW domain, were not restored to their full wild-type length to limit flexibility during MD.

2.2.1.2 Generation of a conformer ensemble for heparin

Heparin is a polymer of d-glucosamine N-sulfate (GlcNS) and l-iduronate (IdoA), with a random
sulfation pattern on position 2 of IdoA and on position 6 of GlcNS. Heparin was modeled as a
methyl-blocked di-saccharide2 CH3O-GlcNS(6S)-IdoA(2S)-OCH3 in TLEaP with the default
4C1 chair conformation (Ernst et al. 1998) for both saccharides. Initial dihedral angles at the
glycosidic bond were obtained from PDB entry 4c4n (Whalen et al. 2013).

The di-saccharide conformational dynamics were sampled by MD in water for 2 µs. Although
the iduronate ring can exist in both the 4C1 and 2S0 conformations under this sulfation pattern
(Muñoz-García et al. 2013; Hsieh et al. 2016), ring puckering was not observed during the
simulation. This is consistent with previously reported simulations of IdoA(2S) mono-saccharide
that suggested 2S0 was an intermediate in the 4C1 ⇆ 1C4 interconversion with an exchange
rate of the order of 10 µs (Sattelle et al. 2010).
Clustering of the MD trajectory revealed two clusters with good mixing (Figure 2.1). The

main difference resided in the dihedral angle at the glycosidic bond; the Φ and Ψ angles3 were
63.7°,95.0° for cluster 1 and 96.0°,148.5° for cluster 2 (Table S1 in Work 1). Experimental data on
dihedral angles for free and protein–bound heparin fragments shows large fluctuations around
mean values (Mulloy and Forster 2000, Figure 6B; Khan et al. 2013, Table 2), which could be
explained by the presence of multiple low-energy equilibrium values. Both conformers were
used as input for Epitospy, weighted by their respective cluster frequency, using partial charges
from the GROMACS topology.

2IUPAC nomenclature: 2-deoxy-4-O-methyl-2-(sulfoamino)-6-O-sulfonato-α-D-glucopyranosyl-(1→4)-1-O-methyl-
2-O-sulfonato-α-L-idopyranuronate.

3Φ and Ψ angles follow the crystallographic definition of the glycosidic angles Φ(i ) (O5(i )–C1(i )–OX (i−1)–CX (i−1))
and Ψ(i + i ) (C1(i+1)–OX (i+1)–CX (i )–CX−1(i )) for aldopyranoses (IUPAC 1983).
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Figure 2.1: Clustering of the heparin di-saccharide MD simulation using the PAM algorithm. The silhouette plot shows no im-
provement in selecting more than two clusters. The two clusters frequently inter-convert according to the RMSD plot.
The relative proportion of clusters stabilizes at 60% and 40% according to the convergence plot.

2.2.2 Modeling the interaction

2.2.2.1 MD simulations

For a fair comparison between MD and EG, it is crucial to sample the interaction energy
landscape uniformly. Unfortunately, running an MD simulation with a long simulation time
seldom results in a uniform sampling, as the system can be trapped in a local minimum with
a high energy barrier. This situation is commonly referred to as the MD sampling problem
(Zuckerman 2011; Maximova et al. 2016). Multiple enhanced sampling techniques have been
designed to overcome energy barriers (Bernardi et al. 2015), although multiple-copy dynamics
(Perez et al. 2016; Yan et al. 2020) offers a simpler and more straightforward setup: running
multiple short trajectories with different initial conditions and concatenating them into a long
trajectory. Using this strategy, the Shh:heparin system was simulated for a total of 3.5 µs.

In order to quantify the frequency of binding/unbinding events and rank the most favorable
binding sites, the trajectories were clustered based on the contact distance between the protein
and ligand. While coordinate-based clustering methods are a standard procedure for rigid pro-
teins interacting with small ligands, distance-based clustering methods are more advantageous
when flexibility is present (Ernst et al. 2015). The metric measures the distance from a basic
residue (Arg, Lys) in Shh to the nearest anion (R−SO−

3 , R−CO−
2 ) in the heparin di-saccharide4.

To further reduce the dimensionality of the problem, principal component analysis (PCA)
was used to extract the 6 dimensions that contributed most to the variability of the dataset.
Silhouette-validated PAM clustering of these 6 principal components produced four clusters
(Figure S9A in Work 1). Converting these clusters back to Cartesian coordinates revealed that
cluster number 3 was located inside the blob of highest energy in the EG (Figure S9C in Work 1),
where residue Arg156 is located. While the ligand could freely move between the other clusters,
once it reached cluster 3, it was unable to detach itself from the binding site within the 0.5 µs
of the individual simulations (Figure S9B in Work 1, blue highlight).

4An intuitive understanding of this metric can be gained by relating the inter-residue contact distance r of the
cation–anion pair to the electrostatic energy UE of two point charges in a medium with constant permittivity,
where UE ∝ r−1. Contact distances contribute to a cluster proportionally to the Coulomb energy.
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2.2.2.2 The role of shape correlation

Plotting the MD probability density against the EG and electrostatic potential (ESP) (Figure 3
in Work 1) clearly demonstrates the importance of shape correlation in the formulation of the
correlation energy. A qualitative picture is obtained by drawing the corresponding isosurfaces
(Figure S8C-D in Work 1), which show a larger spatial variance for the point-like probe.

To better visualize the discrepancy between ESP and EG, the grid points in Figure 3 in Work 1
were binned and plotted in a 2D histogram (Figure S11 in Work 1, top row). The histograms
reveal a correlation between EG values and MD occupancies (Figure S11 in Work 1, top right),
which appears to be linear in the log plot (Figure S11 in Work 1, bottom right). This observation
is consistent with the Boltzmann distribution. Conversely, the ESP distribution isn’t remarkably
correlated to the MD occupancies (Figure S11 in Work 1, bottom left).
To understand the origin of the difference between ESP and EG, it is helpful to plot one

against the other (Figure 2.2, left plot). A pattern starts to emerge, which is more visible when
the histogram is split in three histograms based on the number of allowed rotational states
|ω|, i.e. the number of ligand rotations for which the quantity fvdwCα,β,γ

in Equation 3 in Work 1
is non-negative (Figure 2.2, three plots on the right). The region |ω| = 0 contains 3.2% of the
grid points and corresponds to the ligand excluded volume. The EG is zero while the ESP has
a high dynamic range, with several grid points reaching a potential of ±40 kBT/|e| (visible in
Figure S11 in Work 1, bottom left), because positions in that region are accessible to water
molecules but inaccessible to the ligand due to van der Waals repulsion.
The region |ω| = |Ω| contains 91.4% of the grid points and corresponds to positions far

enough from the protein surface to allow full rotation of the ligand. This region is characterized
by a linear correlation between the ESP and EG. Fitting a linear model yields the equation
ŷ =−0.06kB T /|e|+0.94 x/q ligand with q ligand =−4 |e| for the heparin di-saccharide probe. This
model is close to the expected result for a point charge, i.e. y = x/q ligand. The region 0 < |ω| < |Ω|
contains 5.4% of the grid points and corresponds to positions where the ligand makes physical
contact with the protein surface. This region features a strong deviation from linearity due to
the treatment of shape complementarity.

Figure 2.2: 2D histogram of the ESP and EG values for Shh with a heparin di-saccharide as molecular probe at a resolution of
0.8 Å and |Ω| = 1200 (plot 0 ≤ |ω| ≤ |Ω|), with decomposition based on the number of available rotational states ω
(plots |ω| = 0, 0 < |ω| < |Ω|, |ω| = |Ω|). The set ω is a subset of Ω.
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This experiment shows that protein electrostatics, on its own, is not an adequate tool to
investigate protein–ligand energetic landscapes. The striking difference between the ESP and
EG correlations in Figure 3 in Work 1 is mostly due to the region |ω| < |Ω|, which accounts
for less than 9% of the grid points. In this region the ligand can no longer be accurately
described by a point charge. This limitation of the PB model is addressed by the rigid body
correlation method, which uses a simple charge and van der Waals representation of the ligand
as the probe. The resulting EG has an intuitive interpretation and can be directly compared to
computationally-expensive MD simulations. Rigid body correlation also works with zwitterionic
probes, which cannot be represented in a point-like model.

2.2.2.3 Domain of validity for rigid correlation

Interaction model approximation
For the correlation to be meaningful, both the receptor and probe need to carry at least one
electrical charge. Zwitterionic probes, although electrically neutral, also qualify (Figure 6 in
Work 1). Probes with no charges produce a weak correlation signal indistinguishable from noise
(Figure S12 in Work 1). Conversely, proteins with high charge density, such as nucleosome,
are poor candidates due to the limitations of the mean-field-based PB equation used in APBS
(Kirmizialtin et al. 2012). Other types of interactions are not modeled by Epitopsy. Section
1.1.3 “Diversification of the energetic model” gives an overview of other implementations of
the rigid body correlation method that are not limited to the electrostatic potential.

Continuum model approximation
The mean-field based PB equation models the solvent as a continuum and introduces implicit
counter-ions as non-interacting point charges. This assumption breaks down for highly charged
biomolecules, such as nucleic acids (Kirmizialtin et al. 2012) and their receptors, leading to
unphysical ions concentration close to the surface. The size-modified Poisson–Boltzmann
(SMPB) model is an extension of the PB model where the counter-ions are interacting particles
with a non-zero volume. Multiple versions of the SMPB equation were formulated (Borukhov
et al. 1997; Chu et al. 2007; Kirmizialtin et al. 2012), resulting in more realistic ESP grids for
DNA duplexes with salt concentrations up to 0.15mol l−1 (Chu et al. 2007). The SMPB method
was added to APBS in 2007 (Chu et al. 2007) but later removed due to numerical instability5.

Similarly, the formation of an ionic atmosphere (Chu et al. 2008; Kirmizialtin et al. 2012;
Lavery et al. 2014;Gebala et al. 2016) around these highly charged proteins poses the question
of the inclusion of tightly and loosely bound salts and water molecules, which are usually
visible in X-ray diffraction structures but not always fully or correctly captured (Carugo and
Bordo 1999; Handing et al. 2018; Zheng et al. 2017). Water molecules in particular are known
to extend hydrogen bonds (Williams et al. 1994; Janin 1999; Jiang et al. 2005) and salt-bridges
(Papoian et al. 2003; Sabarinathan et al. 2011) between proteins and their ligands, but can
also bridge two ions in the protein, in which case they can be difficult to displace by the ligand
due to both enthalpic and entropic factors (Kubinyi 2007; Klebe 2015).

5GitHub repository Electrostatics/apbs-pdb2pqr: method SMPB was disabled on March 7, 2017 (commits c1c658d,
286292c). Last visited on November 28, 2019.

https://github.com/Electrostatics/apbs-pdb2pqr
https://github.com/Electrostatics/apbs-pdb2pqr/commit/c1c658df34b1c3e498903422d67992d839a9f8c5
https://github.com/Electrostatics/apbs-pdb2pqr/commit/286292c8d54600ea6ee117288dbb2170e5d5ca67
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Crystallographic water molecules are crucial to understand protein binding to ligands, but
are also challenging to identify and properly model (Bodnarchuk 2016; Jukič et al. 2017). To
evaluate the impact of such water molecules, two EGs were calculated for the RNA-binding
Trp-repressor protein, using the protein structure with and without crystallographic water
molecules (Figure S5 in Work 1). Apart from extending the protein molecular surface by the
diameter of a water molecule, the presence or absence of water did not play a significant role.

Inhomogeneous dielectric medium
Several families of proteins interacting with charged ligands are found on the cell membrane.
Although Epitopsy in its current form can only treat proteins in a homogeneous solvent, the EGs
computed for the ATP-gated P2X4 channel show Epitopsy could still be used with reasonable
accuracy for transmembrane proteins, even though the lipid bilayer was modeled as saline
water. Such an approximation can be justified by the following two factors: the ATP binding
site is located far away from the lipid bilayer, and the protein surface in contact with the lipid
bilayer is mostly apolar, therefore contributing minimally to the EG. This is however not true
for all transmembrane proteins, and applications of Epitopsy to such systems should be decided
on a case-by-case basis. For systems where the binding site is close to the lipid bilayer, the
electric charges from the lipid tails and the potential difference between the cell interior and
exterior cannot be neglected anymore. APBSmem (Callenberg et al. 2010) could be used
instead of APBS as the electrostatics solver backend to properly model the change of dielectric,
although this option was not explored in Epitopsy due to the difficulty to compare predictions
to accurate protein MD simulations at the lipid/water interface.

Protein and ligand flexibility
The rigid nature of complementarity scanning can be seen as a limitation of the method,
since many biologically relevant systems exhibit some level of flexibility. This shortcoming
is traditionally solved from the ligand side by either selecting a consensus ligand pose that
optimizes the prediction against a collection of protein targets (Mottarella et al. 2014), or by
using a coarser grid for the ligand (Vakser 1995; Vakser 1996). Alternatively, one can employ a
two-stage approach where the predicted binding sites are extracted from the EG and used as
input for a finer exhaustive search (Gabb et al. 1997) or for a heuristic search with a different
algorithm that can treat flexible groups (Li et al. 2003; Sternberg et al. 1998), or both for
a three-stage approach (Meyer et al. 1996). From the receptor side, one approach consists
in generating perturbed structures using a rotamer library and selecting the structure with
highest affinity for the ligand (Grove et al. 2013).
Using an ensemble of ligand poses for ε-aminocaproic acid and protein conformations for

plasminogen Kringle Domain 4, Epitopsy was able to recover the position of the binding site
with high accuracy via a simple arithmetic mean (Figure 6G in Work 1). This suggests that
the complementarity scanning method can account for flexibility simply by merging EGs
together, without the need to select or filter conformers. In the case where the conformational
ensemble is generated by a method that also produces relative frequencies, this information
can be incorporated in the averaging step using a weighted arithmetic mean. For example, the
frequency of the two heparin di-saccharide conformations was used as weights to calculate
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the EGs of the Shh:heparin system.
Conformational averaging of EGs is not a viable strategy for proteins with extreme plasticity,

such as the ATP-gated P2X4 channel, where the binding site moves by several grid points
between the apo and holo states. In this situation, Epitopsy was able to correctly locate
the binding site in the bound and unbound states separately (Figure 7C-F in Work 1 and
Figure S10B-C in Work 1). This system also reached the limit of what Epitopsy could achieve
for buried binding sites: the features of the EG in the bound state are dominated by three grid
points, one per binding site (Figure 7F in Work 1).



3 Chapter

Epitopsy-directed MD simulations

14-3-3 proteins are ubiquitous signal transducing adaptor proteins that regulate signaling
pathways by altering the activity or function of signaling proteins through reversible binding
(Mackintosh 2004). The family of 14-3-3 proteins contains 153 known isoforms across unicellular
and multicellular organisms (Rosenquist et al. 2000), with seven in humans (Aitken 2002).
Key client proteins are found in the rapidly accelerated fibrosarcoma (RAF) kinase family: RAF
proto-oncogene serine/threonine-protein kinase (c-Raf), serine/threonine-protein kinase A-Raf
(A-Raf) and serine/threonine-protein kinase B-Raf (B-Raf). These three enzymes self-assemble
into homo-dimers and hetero-dimers (Rushworth et al. 2006; Freeman et al. 2013; Varga
et al. 2017; Rajakulendran et al. 2009). 14-3-3 plays a central role in the regulation of c-Raf
(Khazak et al. 2007), c-Raf:Ras complexes (McCubrey et al. 2006) and c-Raf:B-Raf complexes
(Rushworth et al. 2006; Varga et al. 2017).

B-Raf and c-Raf are part of the Ras-Raf-MEK-ERK signaling pathway (McCubrey et al. 2007).
Disruption of this pathway is linked to numerous health disorders (Kim and Choi 2010; Zebisch
and Troppmair 2006;Montagut and Settleman 2009). This pathway is relevant to oncology,
where B-Raf (Khazak et al. 2007; Shepherd et al. 2010; Huang et al. 2013; Rajakulendran
and Adam 2014; Hertzman Johansson and Egyhazi Brage 2014; Ascierto et al. 2012) and
c-Raf (McPhillips et al. 2006; Heidorn et al. 2010; Blasco et al. 2011) are well-established
therapeutic targets.
14-3-3 is also relevant to oncology (Hermeking 2003; Wilker and Yaffe 2004; Aghazadeh

and Papadopoulos 2016) and is considered a potential therapeutic target (Yang et al. 2012;
Matta et al. 2012; Neal and Yu 2010; Cui et al. 2020). Inhibitors were developed to destabilize
the 14-3-3 dimer interface through phosphorylation (Woodcock et al. 2015) and steric effects
(Ehlers et al. 2018), however the loss of 14-3-3 function affects all client proteins rather
indiscriminately.
Recently, an alternative strategy targeting the protein–protein interaction (PPI) between

14-3-3 and specific client proteins emerged (Kaplan et al. 2017; Kaplan and Fournier 2017).
This paradigm shift opens up new perspective for rational ligand design, as the PPI can be
modulated through the inhibition or stabilization of specific 14-3-3:c-Raf complexes (Mori et al.
2013; Bartel et al. 2014; Hartman and Hirsch 2017), instead of 14-3-3 or c-Raf individually.
Although inhibition is the most frequent choice in PPI modulation, for example using tweezers
(Bier et al. 2013), stabilization is another possibility, for example with natural molecules
cotylenin A and fusicoccin A (Molzan et al. 2013;Milroy et al. 2015).

This chapter investigates the 14-3-3:c-Raf PPI stabilization by polymer QQJ-096 via all-atom
MD simulations. It is a direct continuation of the preliminary results and observations made in
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Work 1, section “14-3-3 Protein and Polycationic Supramolecular Ligand.” This project provides
a general procedure for planning MD simulations of large proteins with highly flexible ligands
using EGs. Contrary to the previous chapter, where quantitative agreement between MD and
EG could be shown due to the simplicity of the Shh:heparin system, the flexible nature of the
14-3-3:c-Raf:QQJ-096 system made MD convergence an unrealistic goal to achieve. Instead, two
rigid and charged fragments of the stabilizer were used to narrow down the putative binding
site to a small area of the protein surface. Simulations were carried out with QQJ-096 initially
placed at that location with a random orientation, and a prediction of the most probable
glutamate and aspartate binding partners was obtained.

This chapter includes the following work: Alba Gigante, Jean-Noël Grad, Jeroen Briels, Maria
Bartel, Daniel Hoffmann, Christian Ottmann, Carsten Schmuck, “A new class of supramolecu-
lar ligands stabilizes 14-3-3 protein–protein interactions by up to two orders of magnitude”.
Chemical Communications 2019, 55(1), 111–114. doi:10.1039/C8CC07946C.
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We report the first supramolecular stabilizers of the interaction

between 14-3-3f and two of its effectors, Tau and C-Raf, which are

involved in neurodegenerative diseases and proliferative signal

transduction, respectively. These supramolecular ligands open up an

opportunity to modulate functions of 14-3-3 with these effectors.

Due to the key role of protein–protein interactions (PPIs) in the
homeostasis of biological systems, their dysfunction is involved
in many pathologies and diseases like cancer, neurodegenera-
tion or viral/parasitic infections.1,2 In the last years a number of
successful examples of molecules that are able to modulate
PPIs have been carried on into the clinic.3,4 Thus, protein
surface recognition has become a promising tool to modulate
protein function by disrupting or stabilizing PPIs.5

The human 14-3-3 protein family is one of the regulatory
elements in intracellular signalling pathways which recognize
Ser/Thr-phosphorylated proteins like those implicated in the
mitogen-activated protein kinase (MAPK) pathway.6,7 To date
approx. 300 potential physiological effectors of this family have
been identified.8,9 Currently, only a few small molecules have been
shown to stabilize PPIs of some 14-3-3/effector complexes.10–13 In
all these studies the described effectors present the length that is
involved in the interaction and not the full sequence. The first
reported examples were the fungal toxin Fusicoccin12 and the
plant growth regulator Cotylenin-A,13 which promote the inter-
action of 14-3-3 proteins with the human potassium channel

Task314,15 and the proto-oncogene C-Raf,13 respectively. Specifi-
cally, Fusicoccin showed an EC50 value of 2 mM for the stabilization
of 14-3-3/Task3 complex, while cotylenin-A is less effective with an
EC50 of 65 mM for the 14-3-3/C-Raf interaction. More recently, new
fusicoccin derivatives (fusicoccanes)12 and trisubstituted pyrrolidi-
nones (as fusicoccin mimetics)16,17 have been described as result
of different PPIs stabilizer optimization programs. However, their
EC50 values for stabilization were similar to those of the natural
compounds.

Currently more than 100 crystal structures of 14-3-3 proteins
with different binding partners and also with their respective
inhibitors or stabilizers are available in the PDB18 (see Table S1
in the ESI†). For example, by analysing the crystal structure of
the complex formed by 14-3-3 and C-Raf with cotylenin-A, we
observed that the natural product forms two hydrogen bonds
with Asp213.12 In addition, around the central binding channel
of 14-3-3 other surface-exposed negatively charged residues are
located. Therefore, the design of positively charged compounds
that could bind specifically to this anionic region in the vicinity
of the central binding channel of 14-3-3 could lead to the
modulation (inhibition or stabilization of PPI) of these 14-3-3
interactions with different effectors (Fig. 1).

To identify molecules that could modulate these physio-
logically highly relevant 14-3-3 PPIs, we performed a screening
of cationic supramolecular ligands originating from our home-
made library. For the screening we selected ligands which
contain the guanidiniocarbonyl pyrrole aka GCP moiety, an
arginine mimetic developed by our group.21 It forms very stable
ion pairs with oxyanions such as carboxylates and phosphates
significantly more stable than simple guanidinium cations or
ammonium ions (as in the natural amino acids arginine or
lysine) (Table 1).19–23 Hence we usually incorporate this binding
motif to improve the affinity of peptide-based ligands for
proteins. In the search for stabilizers of 14-3-3 protein–protein
interactions fluorescence polarization (FP) measurements were
carried out, employing 14-3-3z/effector systems in which the
complex had not formed yet (see Fig. S1, ESI†). The binding
partners were fluorescein-labelled, monophosphorylated synthetic
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peptides comprising the phosphorylation sites C-RafpS259 and
Task3pS373, as well as the diphosphorylated peptide TaupS214pS324.
Binding of these peptides to 14-3-3z in the presence and
absence of molecules from our library was tested. Several
ligands containing the GCP group were identified as new
stabilizers of 14-3-3z/effector complexes with the best results
for C-Raf and Tau binding partners (Table 1).

First, these data highlight the importance of the arginine
mimetic in these ligands for the stabilization effect. Compounds
which do not have a GCP group, such as 2c and 4c, do not show
stabilization of the interaction between 14-3-3z protein with C-Raf,
Tau and Task3; while their corresponding counterparts which
have a GCP moiety, such as 2a, 2b, 4a and 4b, show EC50 values in

the lower micromolar range. Second, the multivalency of the
compounds seems to correlate with their PPI-stabilizing activity.
For example, 4a which has three arms containing one GCP group
each increases the stability of 14-3-3z/C-Raf complex to a larger
extent compared to 3a or 2a which only have two arms. In
addition, the latter substances show a higher stabilization effect
on this interaction than 1a which possesses a single arm. The
same behavior is noted for compounds belonging to series b and
also for both series with the 14-3-3z partner peptide derived from
Tau. Moreover, in terms of selectivity, compound 3a is noteworthy
since it stabilizes specifically the 14-3-3z/C-Raf complex with an
EC50 value of 47.0 � 2.0 mM without showing an effect on 14-3-3
binding to the peptides derived from Tau and Task3. However, 4a
and 4b are the most potent compounds of this family, being the
first synthetic stabilizers for Tau peptide to 14-3-3z and being
more potent in comparison with the described Cotylenin A for
14-3-3 z/C-Raf interaction, which stabilized the complex with an
EC50 of around 65 mM.15 Also the same assay was carried out in
absence of 14-3-3z protein for the latest compounds, as a control
experiment, to ensure that these data are not a response of the
binding of these ligands with C-Raf or Tau effectors (see Fig. S3,
ESI†). As a result 4a and 4b did not bind to C-Raf or Tau.

Subsequently, we focused on the 14-3-3z interactions with
the peptide derivates from C-Raf and Tau and determined the
apparent KD values in the absence and presence of our com-
pounds (Table 2). In the presence of 50 mM of these multi-armed
compounds we observed an enhancement of the stability of these
interactions as reflected in lower apparent KD values. In line with
the EC50 data the apparent affinity confirmed the multivalency
effect of this family in stabilizing the interactions. Accordingly,
compounds with three arms showed a higher stabilization than
compounds with two arms, while ligands with one arm were
ineffective. 4a, the most potent compound, enhanced the inter-
action of 14-3-3z with C-Raf and Tau approximately 84-fold and
26-fold, respectively, from a KD of 16.00 � 0.60 mM to 0.19 �
0.01 mM for the binding partner C-Raf and from a KD of 7.00 �
0.20 mM to 0.27 � 0.01 mM for Tau. Similarly, 4b increased the
stability of these interactions, 56-fold in the case of C-Raf and
20-fold for Tau, from a KD of 8.90 � 0.50 mM to 0.16 � 0.01 mM

Fig. 1 Stabilizing effect between14-3-3z protein (PDB id: 4JDD) and a
binding partner (C-Raf, Tau or Task3).

Table 1 EC50 values obtained by FP assay of FAM-labelled effectors and
14-3-3z titrated with different supramolecular ligands

Cmpds C-Raf-EC50
a (mM) Tau-EC50 (mM) Task3-EC50 (mM)

1a 41000 41000 41000
2a 50.0 � 4.1 89.0 � 9.9 150.0 � 7.3
3a 47.0 � 2.9 41000 4300
4a 8.4 � 0.1 1.4 � 0.2 4200
1b 41000 41000 41000
2b 41000 22.9 � 3.9 4300
3b 55.6 � 0.5 14.5 � 0.5 147.0 � 9.0
4b 30.9 � 2.1 4.7 � 2.3 4200
2c 41000 4200 4600
4c 41000 4200 41000

a 50% effective concentration or concentration of these compounds
which is required to stabilize 50% of the interaction between 14-3-3z
and these effectors.

Table 2 Apparent KD and the resulting increase in stability (IS) of the
14-3-3z/c-Raf and 14-3-3z/Tau interactions in the presence of different
supramolecular compounds

Cmpds C-Raf: KD app (mM) IS Tau: KD app (mM) IS

Control

16.00 � 0.60

—

7.00 � 0.20

—8.90 � 0.50a 3.50 � 0.10a

1a 14.40 � 0.60 �1 5.90 � 0.10 �1
2a 3.70 � 0.40 �4 0.56 � 0.02 �12
3a 7.30 � 0.20 �2 1.35 � 0.03 �5
4a 0.19 � 0.01 �84 0.27 � 0.01 �26
1b 5.70 � 0.30a �1.6 2.30 � 0.10a �1.5
2b 4.50 � 0.20a �2 0.49 � 0.01 �14
3b 1.20 � 0.03 �13 0.37 � 0.01 �18
4b 0.16 � 0.01a �56 0.17 � 0.01a �20

a Experiments carried out in a different time and with different batch of
protein, effectors and ligands.
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for the binding partner C-Raf and from a KD of 3.50 � 0.10 mM
to 0.17 � 0.01 mM for Tau.

These observations regarding 4b were supported by isothermal
titration calorimetry (ITC). The observed KD decreased from
17.04 to 0.36 mM for the complex 14-3-3z/C-Raf in the presence
of 4b, enhancing the stabilization 47-fold (Fig. 2). In the case of
Tau the KD decreases from 11.65 to 0.60 mM increasing the
stabilization 20-fold (see Fig. S6, ESI†).

Then, we determined by microscale thermophoresis (MST)
the binding constants of some of these ligands with 14-3-3z
(see Fig. S7 and S8, ESI†). The KD values of 4b, 4a and 3a are
5 mM, 22 mM and 41 mM, respectively. However, 1a did not show
binding to 14-3-3z. These results explain why the 3-arm ligands
stabilize these interactions better, as their affinity for this
protein is higher than its 2-arm counterpart. Conversely, the
single arm 1a does not bind and therefore cannot stabilize.
Besides, it is interesting that although the affinity of 4b is higher
than 4a, 4a stabilizes the C-Raf interaction more. This could be
because its affinity for this complex is higher than in the case of 4b.

To determine the region of the protein where these com-
pounds most likely bind, molecular dynamics (MD) simula-
tions were carried out using a procedure detailed previously.27

We studied the complex of 14-3-3z/C-Raf (Fig. 3A) in the

presence of 4b (Fig. 3B). However, the flexibility of this mole-
cular system precluded the identification of a single binding
pose. Instead, we monitored the volumes explored by the
peptidic arms containing the GCP moiety and the central
benzene ring in six MD simulations. An exemplary MD simula-
tion is represented in Fig. 3B (see Fig. S9 for all MDs, ESI†). The
3-armed ligand 4b binds indeed to both the protein (grey
surface) and one C-Raf peptide (salmon surface). The central
benzene ring of 4b (blue volume) and one arm (green volume
under the blue volume) are located close to the pore of the
14-3-3z dimer attaching the ligand to the protein. Another arm of
the ligand binds to the C-Raf peptide’s C-terminal carboxylic acid
(salmon, bottom left corner in the zoomed region), while the third
arm is not involved in a salt bridge. The six simulations consistently
show the ligand anchoring itself to the protein electrostatically and
preventing C-Raf release through steric effects. This is due to the
GCP units in ligand 4b that interact more frequently than Lys units
with the anionic Asp/Glu side-chains around the central pore and
in regions where the C-Raf peptides also bind (see Fig. S10A, ESI†).
The acidic residues most frequently engaged in salt bridges with
GCP according to these MD simulations are marked in dark blue in
Fig. 4. This binding pattern is fully consistent with the observed
stabilization of the 14-3-3/C-Raf interaction by our ligand.

Even though the third arm in 4b does not form stable salt
bridges compared to the other two arms (see Fig. S10B, ESI†),

Fig. 2 (A) Isothermal titration calorimetry of binding C-Raf to 14-3-3z and
(B) the same interaction in the presence of 50 mM of 4b compound.

Fig. 3 (A) Two aspects of the complex formed by 14-3-3z (grey) and two phosphorylated C-Raf peptides (salmon); (B) MD simulations of 14-3-3z dimer
(grey) with two phosphorylated C-Raf peptides (salmon), and peptidic arms containing GCP (green) as well as the central benzene ring (blue). Green and
blue volumes indicate presence in at least 25% of the MD trajectories.

Fig. 4 Anionic amino acids (dark blue) in 14-3-3z (grey) and C-Raf
peptides frequently involved in salt bridges with the GCP groups (at least
10%) in the MD simulations, averaged over C2-symmetry equivalent atom
pairs in the 14-3-3z/C-Raf dimer.
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its presence statistically increases the chances of forming salt
bridges during the initial binding, and during unbinding/
rebinding events (positive cooperative binding). This could be
the reason for the higher affinity of the 3-armed ligand compared
to that of the 2-armed ligand.

In summary, we identified a new and potent family of
stabilizers of the interaction between 14-3-3z and C-Raf or
Tau with EC50 values in the low micromolar range. Ligands
with a higher level of multivalency such as 4a and 4b (three arms)
are more potent stabilizers for this PPI as shown by both FP
measurements and ITC data. The interaction of the protein
with the effector peptides is enhanced by nearly two orders of
magnitude in the best case. In addition, the area where 4b most
likely is located in the 14-3-3z/C-Raf complex was identified
in silico by Epitopsy, followed by MD to sample the binding
events with atomistic resolution, providing a consistent expla-
nation of the observed stabilization. These results should now
allow further modifications of this new class of stabilizers to
obtain even more potent and selective compounds. A clear
advantage of artificial ligands is the much higher synthetic
accessibility23–26 over highly complex natural products which
have predominantly been described as PPI stabilizers. To what
extent the advantage of natural product PPI stabilizers – cell
availability and selectivity – can be achieved with our supra-
molecular ligands will be the subject of future studies.
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5. Molecular Dynamics simulations (MDs) 

MD simulations were carried out with Gromacs 4.6.71 using the methodology and 
parameters described in the literature.2 12 simulations were produced: a set of 6 pilot 
simulations of 30 ns to sample the binding event (Figures 3, 4, S8), followed by a set of 6 
production simulations of 250 ns, amounting to 1.5 μs, for the statistical analysis of salt 
bridge formation (Figure S9). We determined the frequency of salt bridge formation between 
ligand 4b and the 14-3-3/C-Raf receptor by measuring the N···O distance between their 
charged groups (Lys ε-ammonium group, GCP guanidinium group, Asp/Glu side-chain 
carboxylate groups, C-Raf peptide C-terminal carboxylate group) using a cutoff value of 3.2 
Å. Figure S9A shows how often the 6 basic residues in ligand 4b interacted with acidic 
groups from the 14-3-3ζ/C-Raf complex. Overall GCP formed salt bridges more frequently 
than Lys. Figure S9B shows that in MD 2, 3, and 6 the third arm did not actively participate 
in salt bridge formation. 

 



3 Epitopsy-directed MD simulations 55

S10 
 

 

Figure S8. Six MD simulations of 14-3-3ζ dimer (grey) with C-Raf peptides (salmon) and peptidic arms 

containing GCP (green) as well as the central benzene ring (blue). Green and blue volumes indicate 

presence in at least 25% of the MD trajectories. 
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Figure S9. Salt bridge frequency in the MD simulations involving the 14-3-3/C-Raf/4b complex. (A) 

The three chemically equivalent arms in ligand 4b are labeled 1, 2, and 3 by decreasing frequency of 

binding. (B) combines the same results from (A) in one graphic to highlight the relative contribution 

of each arm. 
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3.2 Discussion

3.2.1 Molecular modeling

3.2.1.1 14-3-3:c-Raf complex

14-3-3 isoforms are evolutionarily highly conserved (Wang and Shakes 1996) and adopt a
characteristic U-shaped quaternary structure made of nine α-helices stacked anti-parallel to
each other. 14-3-3 forms complexes with client proteins via a phosphopeptide-binding site
(residues Lys49, Arg56, Arg127 and Tyr128) located in an amphipathic groove (Liu et al. 1995;
Yaffe et al. 1997). c-Raf becomes a client of 14-3-3 upon phosphorylation of residues Ser233,
Ser259 or Ser621 (Luo et al. 1995; Tzivion et al. 1998; Yip-Schneider et al. 2000). Although the
full tertiary structure of c-Raf is unknown (Hatzivassiliou et al. 2010), it is assumed that Ser233

and Ser259 can bind simultaneously to both binding sites of a 14-3-3 dimer to form a bidentate
complex. This assumption is based on a co-crystal of 14-3-3ζ with a di-phosphorylated pSer233,
pSer259 c-Raf fragment (Gln229 to His264) and on the cooperative effect observed in binding
studies with di-phosphorylated peptides (Molzan and Ottmann 2012).

The 14-3-3 C-termini are poorly resolved in crystal structures (Williams et al. 2011). Since
they interact weakly with the amphipathic grooves and get easily displaced by phosphopeptides
(Silhan et al. 2004), they are often truncated in MD simulations, in an effort to reduce the
box size and avoid poor sampling statistics. One notable exception is a Hamiltonian replica
exchange investigation of full-length 14-3-3 dimers and monomers binding to phosphopeptides
for 6.7 µs of enhanced-sampling MD simulation time (Nagy et al. 2017). The study confirmed
the poor sampling of the 14-3-3 C-termini, and despite their interference with phosphopeptides
binding pathways in a few simulations, the same experiments carried out with truncated 14-3-3
C-termini resulted in reasonable agreement with experimental data.
A truncated version of the 14-3-3ζ dimer (“14-3-3∆C”, sequence Met1 to Ser230) was used

for this work, with two identical c-Raf fragments phosphorylated at Ser259 (“c-Raf(pS259)”,
sequence Arg254 to His264) and initially located in the two 14-3-3∆C binding sites. Using the
same c-Raf sequence in both binding sites helped preserving the C2-symmetry of the receptor
and allowed for a more direct comparison to the results of the fluorescence polarization assay,
where a similarly short fluorescent probe (5-FAM)–RQRSTpSTPNVH–COO– was used. A model
of the 14-3-3∆C:c-Raf(pS259) dimer was built using PDB entry 4ihl (Molzan et al. 2013).

3.2.1.2 QQJ-096 stabilizer

The QQJ-096 ligand is composed of three peptidic arms with sequence GKWK connected
to an aromatic tri-hydrazone via a succinic acid linker (Figure 5 in Work 1). On each arm,
one lysine is decorated with a guanidiniocarbonyl pyrrole (GCP) cation. This scaffold was
originally investigated in a combinatoric library of multi-armed peptidic inhibitors ofβ-tryptase
(Jiang et al. 2013), where the substitution of arginine by the artificial mimetic GCP increased
the binding affinity by two orders of magnitude. The Lys–Trp–Lys motif was explored in
a subsequent fluorescence study (Wang et al. 2014) and retained for a new generation of
multi-armed peptidic inhibitors of β-tryptase featuring a central aryl ring (Jiang et al. 2015).
This class of inhibitors was later discovered to stabilize the 14-3-3:c-Raf interaction in the
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sub-micromolar range, prompting further research to develop a 14-3-3:c-Raf–tailored stabilizer
in the nanomolar range (Bartel 2015, chapter 5).
The parameterization procedure is detailed in section “Molecular Dynamics Simulations”

in Work 1. The ligand was assembled in TLEaP and equilibrated in explicit solvent with NaCl
0.15mol l−1 for several nanoseconds.

3.2.2 MD simulations and data analysis

Given the size of the molecular system, optimal MD initial conditions were needed to reduce
the sampling time. EGs calculated with two probes extracted from the stabilizer revealed a
probable binding site above the 14-3-3 pore. Using this prediction, the stabilizer was initially
placed above the pore and 10 Å away from the c-Raf fragments, in an effort to gain some
insight into the binding pathways that lead to the amphipathic grooves. This precaution proved
unfruitful, as the stabilizer failed to make contact with the c-Raf fragments within the first
50 ns in half of the simulations (Figure S1 in Work 1). A new series of simulations were carried
out with the stabilizer much closer to the c-Raf fragments, at which point contact could be
observed within 2 ns. This series was sampled for 6×250 ns.

Due to the highly dynamic nature of the binding, it was not possible to extract meaningful
binding poses for the stabilizer. Instead, MD occupancies were calculated for the GCP and
central aryl moieties (Figures 3 in Work 2 and S8 in Work 2), in order to visualize the spatial
extent of the three arms. Most of the 6 trajectories have well-localized blobs of density, which
give a qualitative understanding of the interaction specificity.

For a more quantitative approach, salt bridge formation between QQJ-096 and the receptor
was monitored in the trajectories. Plotting the frequency of salt bridges from the point of
view of acidic residues in the receptor revealed Glu14 and Glu17 to be key partners of QQJ-096
(Figure 3.1), with a minor contribution from Asp223. These statistics were mapped to the protein
surface for better visualization (Figure 4 in Work 2). The two glutamates are located next to
each other in space (7 Å), and relatively close to their C2-related pair in the second chain of the
14-3-3∆C dimer (15 Å between the two Glu17). The proximity of these acidic residues coupled to
the scarcity of solvent-exposed basic residues in the immediate vicinity6 leads to the formation
of a negatively charged binding site above the pore, ideally suited to a polycationic ligand.
Plotting the salt bridge frequency from the point of view of cationic groups in QQJ-096

revealed that at least one GCP and one Lys did not engage in salt bridges (Figure S9 in Work 2),
albeit not necessarily from the same arm (Figure S9 in Work 2, panel “MD 5”). This observation
is consistent with experimentally determined EC50 values (Table 1 in Work 2), which shows a
minor decrease in binding affinity between QQJ-096 (30.9 µm±2.1 µm, compound 4b) and its
two-arm equivalent (55.6 µm±0.5 µm, compound 3b).
Considering the large volume of the 14-3-3 cleft, it would be interesting to determine the

stoichiometry of the binding. The previous series of MDs handled the case of a 2:2:1 ratio of the
14-3-3∆C:c-Raf(pS259):QQJ-096 complex. To handle the 2:2:2 case, the last frame of each of the
six MDs was used as the starting condition for a new MD, with an additional QQJ-096 molecule
manually placed so as to form at least two salt bridges with 14-3-3∆C. The rationale behind

6Basic residues inside the pore are physically inaccessible to QQJ-096, residues Lys49, Arg56, Arg60, Arg127 from the
amphipathic groove are occluded by the c-Raf(pS259) fragments, leaving only Lys11 in the cleft.
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Figure 3.1: Frequency of binding of acidic amino acids (Glu, Asp, C-terminal carboxylate of c-Raf(pS259)) with the positively
charged groups in QQJ-096. Only the most frequent binding partners are represented. The frequency is averaged
across the C2-related residues in the receptor and the C3-related residues in QQJ-096.

this approach was the concern that the high concentration of positive charges on QQJ-096
would cause the new, randomly placed stabilizer to be electrostatically driven out of the cleft
by the original, optimally-anchored stabilizer.
The 2:2:2 stoichiometry was sampled for 6×50 ns. In 3 cases out of 6, the extra QQJ-096

partially left the cleft due to steric occlusion of the binding site by the original stabilizer. Plotting
the frequency of salt bridges from the point of view of the cationic groups in QQJ-096 showed
overall that two GCPs in the first QQJ-096 and one GCP in the second QQJ-096 were involved in
salt bridges with the receptor (Figure 3.2). Although the cleft is in principle sufficiently spacious
to accommodate for two QQJ-096 ligands, the plot suggested a non-additive effect, probably
due to saturation of the binding site. A similar conclusion was reached in MD simulations with
a 4-armed analogue of QQJ-096 (Bartsch et al. 2019).
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Figure 3.2: Salt bridge frequency for the GCP and Lys groups in QQJ-096 (same as Figure S9 in Work 2, but with 2 equivalents
of QQJ-096, named L1 and L2). The bars represent the fraction of the simulation time spent in a salt bridge between
any basic residue in QQJ-096 and any acidic residues in the 14-3-3∆C:c-Raf(pS259) receptor. A salt bridge is formed
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peptide C-terminal carboxylate group) is smaller than 3.2 Å.
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A Appendix

Epitopsy energetic model

This section provides the theoretical background for electrostatics correlation. To this end,
the Hamiltonian of a point-charge in continuum electrostatics is formulated in a statistical
mechanics framework. This section builds upon a prior formulation of the Epitopsy energetic
model inWilms 2013, section 4.2.1 “Electrostatic interaction energy model”.
Let P be a protein of charge density ρ(⃗r ) generating an electrostatic potential Φ(⃗r ) and L a

ligand of N atoms with partial charges qi and individual positions r⃗i . To completely describe the
position and orientation of L relative to P, six variables are required: three Cartesian coordinates
for the vector between the geometric centers of P and L, and three angles φ ∈ [0,2π), θ ∈ [0,π],
ψ ∈ [0,π] to describe the orientation of L. The coordinates of atoms in L after a rotation are
given by the transformation r⃗i

′ = R̂(φ,θ,ψ)·(⃗ri − r⃗L)+r⃗L with r⃗L = 1
N

∑︁N
i r⃗i the geometric center

of L and R̂ the rotation matrix operator.
Indistinguishable non-interacting particles such as L occupy available microstates (⃗r ,φ,θ,ψ)

with Coulomb energies UE (⃗r ,φ,θ,ψ) (Equation A.1) according to the Maxwell–Boltzmann
distribution e−βUE (⃗r ,φ,θ,ψ) with β= 1/kB T . The system partition function Z (Equation A.2) is
formulated as the integral of the Maxwell–Boltzmann distribution over the complete Cartesian
and angular space. The angles are sampled independently from each other, with probability
density term 1

2 sin(θ) to avoid oversampling at the poles (González 2010) and term 2
π sin2

(︁ψ
2

)︁
(Kendall and Moran 1963, paragraphs 4.25–4.30 on pages 93–101) to avoid undersampling at
large ψ (Miles 1965; Rummler 2002; Rühle et al. 2013).

Since the partition function cannot be evaluated, it is necessary to define two intermediate
quantities: the density of states g (⃗r ) (Equation A.3) for L in the system {P + water + ions} and
the density of states g0(⃗r ) (Equation A.4) for L in pure water, where the electrostatic potential is
zero everywhere. g (⃗r ) and g0(⃗r ) can be interpreted as the concentration of L in the bound and
unbound states respectively, and their ratio yields the equilibrium constant K (⃗r ) (Equation A.5),
from which the electric Gibbs energy of binding ∆Gelec(⃗r ) is deduced using the relation in
Equation A.6.
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UE (⃗r ,φ,θ,ψ) =
N∑︂
i

qiΦ
(︁
R̂(φ,θ,ψ) · (⃗ri − r⃗L)+ r⃗L − r⃗

)︁
(A.1)
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K (⃗r ) = g (⃗r )
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2

)︂
e−βUE (⃗r ,φ,θ,ψ) (A.5)

∆Gelec(⃗r ) =−kB T ln(K (⃗r )) (A.6)

In a discretized simulation box, Equations A.1–A.6 become A.7–A.12, withΩ a finite ensemble
of rotational states ω that map to discretized angular coordinates sampled from (φ,θ,ψ), Φl ,m,n

the electrostatic potential at discretized Cartesian coordinates (l ,m,n) and qωl ,m,n the ligand
charges after rotation R̂ω. These equations are reproduced from Wilms 2013, section 4.2.1,
equations 4.1–4.7.

Uω
l ,m,n =Φl ,m,n ·qωl ,m,n (A.7)

Z = ∑︂
l ,m,n

Ω∑︂
ω

e−βUω
l ,m,n (A.8)

gl ,m,n = 1

Z

Ω∑︂
ω

e−βUω
l ,m,n (A.9)

g0l ,m,n =
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Z
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Z

(A.10)

Kl ,m,n = gl ,m,n

g0l ,m,n

= 1

|Ω|
Ω∑︂
ω

e−βUω
l ,m,n (A.11)

∆Gelec
l ,m,n =−kB T ln

(︁
Kl ,m,n

)︁
(A.12)



B Appendix

Sampling over SO(3)

This section provides the background on the problem of sampling an isotropic set of points of
arbitrary size over SO(3), the special orthogonal group of dimension 3. This group contains
all rotations in R3 that preserve distances, orientation and origin. The core of the issue is to
partition the polar (θ), azimuthal (φ) and spin (ψ) coordinates isotropically. An ensemble of
isotropically distributed points in SO(3) is typically visualized as a uniform distribution of
points on the surface of a 4-dimensional unit sphere.
There is a mathematical connection between sampling over SO(3) and over S2, the surface

of a 3-dimensional unit sphere. Over S2, the spin angle ψ is degenerate, which reduces the
problem to partitioning the angular coordinates φ,θ isotropically. This problem is known as
the optimal packing of spheres on a sphere (Mackay et al. 1977). Trivial solutions are obtained
from platonic solids inscribed in a sphere: their vertices uniformly tessellate the sphere surface
(Lindemann et al. 2005).

Although there is no exact formula to sample an arbitrary number of points over S2, many
algorithms will find approximate solutions. Quasi-uniform grids are obtained by increasing
the number of vertices on platonic solids (Williamson 1970; Sadourny 1972; Cullen 1974;
Cullen and Hall 1979). Uniform longitude–latitude grids sample Euler angles uniformly
and independently from each other, leading to irregularities and oversampling at the poles
(Swinbank and James Purser 2006; González 2010) that typically require corrective methods
(Williamson 1992). More recent algorithms include Lattmanian angle grids (Lattman 1972;
Williams 1973), Saff–Kuijlaars grids (Saff and Kuijlaars 1997), Sukharev grids (Sukharev 1971)
and layered Sukharev grids (Yershova and LaValle 2004), heuristic grids (Edmundson 1992),
spherical spiral grids (Chukkapalli et al. 1999) and Fibonacci grids (Hannay and Nye 2004;
Swinbank and James Purser 2006; González 2010).
Returning to the SO(3) sampling problem, a couple of special cases can be addressed first.

For a spherical probe, such as Cu2+or Cl–, all rotation angles are degenerate due to spherical
symmetry and a single rotational state can be used. For a rod-like probe, such as N≡C–O–

or O=N+=O, the spin angle ψ is degenerate due to radial symmetry along the main axis, and
uniform sampling over SO(3) simplifies to a uniform sampling over S2 (Figure B.1). For probes
with no degenerate rotation axis, it is necessary to solve the SO(3) sampling problem directly.
Trivial solutions can be derived from molecular symmetry, where the symmetry operations of
the Td, Oh and Ih groups generate uniform samples over SO(3) of size 12, 24, and 60 for chiral
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A B C D

Figure B.1: Trivial solution to the SO(3) sampling problem for rod-like probes and N=20. (A-B) Optimal sphere packing for N=20
(red dots) based on the regular dodecahedron (wireframe). (C) Optimal SO(3) sampling for N=20. (D) Hydroxide ion
(HO−) with molecular axis collinear to one of the optimal vectors.

probes (orientation-preserving symmetry operations only). There is however no procedure to
generate an arbitrary number of isotropically distributed points in SO(3).

Multiple algorithms are available to generate approximately uniform samples over SO(3) of
arbitrary size. Several of them rely on the Lattman distance ℓ, whichmeasures the rotation angle
between two angular states (Lattman 1972), with 0 ≤ ℓ≤π. This distance can be visualized as
the angle associated with the shortest arc connecting two points obtained from the application
of two rotation matrices R1 and R2 on a vector v⃗ . The limit case ℓ= 0 corresponds to R1 = R2

and the limit case ℓ=π corresponds to a setup where R1v⃗ =−R2v⃗ .
In MolFit (Katchalski-Katzir et al. 1992), Euler angles (α,β,γ) (with α,γ ∈ [0,2π],β ∈ [0,π])

are sampled uniformly and independently with constant step. In FTDock (Gabb et al. 1997),
an additional filtering step is carried out where pairs of angular states satisfying ℓ≤ t (with
t a threshold) are considered degenerate and removed. In SOFTDOCK (Jiang and Kim 1991),
Euler angles (α,β,γ) are generated such that each angular state has at least 4 neighbors
within a threshold t . In Lattmanian grids, the angles are not sampled independently to limit
oversampling at the poles (Lattman 1972). In the axis-angle method (Miles 1965), a rotation
axis φ,θ is sampled over S2 and the spin ψ is sampled from a non-uniform distribution with
probability density sin2(ψ/2). In Epitopsy, a rotation axis φ,θ is sampled over S2 with the
Fibonacci method (Hannay and Nye 2004; Swinbank and James Purser 2006; González 2010)
and the spin ψ is sampled from a uniform distribution.

The uniformicity of a set of rotation angles sampled over SO(3) can be assessed by examining
the Lattman distance matrix of the set. As a first step, one can extract the distance to nearest
neighbor (DNN) quantity ui , which is the minimum of the off-diagonal elements of the matrix
row-wise, i.e.

ui = min
j∈J , j ̸=i

ℓi j , i ∈ J (B.1)

with J = 1, . . . , N and N the size of the set. In a DNN plot, the points should concentrate on
a single horizontal line if the sampling over SO(3) is uniform. This criterion is not sufficient
to conclude if a distribution is uniform, however if the criterion is not met, the distribution
cannot be uniform.

DNN plots were produced for various implementations of the methods described previously,
using a final set size of N = 400 whenever possible to facilitate comparison between methods
(Figure B.2). Plots of the probability density of the DNN for the same methods are also provided
for completeness (Figure B.3).
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Figure B.2: DNN plots for multiple SO(3) sampling methods. The same data is plotted as probability densities in Figure B.3. The
legend provides the name and parameters of the Epitopsy methods used to generate the data.
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Figure B.3: DNN probability density for multiple sampling methods. A smoothing kernel was applied when necessary.
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The following observations can be made:

• molecular symmetry method: only orientation-preserving symmetry operations are used
(Figure B.2, top-left panel, red/green/blue curves). Uniform samples in SO(3) are obtained,
for which the DNN is a constant that depends on the sample size.

• random uniformmethod: angles (φ,θ,ψ) are sampled from a random uniform distribution
(Figure B.2, top-left panel, purple curve). The high dynamic range in ui is an indication
that many angular states are clustered together (ℓ<10°) while peripheral angular states
lie far from their nearest neighbors (ℓ≥25°).

• Euler method: angles (α,β,γ) are sampled with a regular interval S (Figure B.2, top-
right panel, red curve). The jump from ℓ=11.1° to ℓ=25.7° suggests a strong bias in
the distribution of points, which is to be expected considering the method is prone to
oversampling at the poles. Filtering out angular states that are within a threshold angle
T yields a DNN that is more consistent with a uniform sampling (green and blue curves),
albeit with numerous irregularities.

• Lattman: angles (φ,θ,ψ) are sampled with the Lattman method (Figure B.2, bottom-left
panel, red curve) with P the number of samples for θ2 (Lattman 1972). The distribution
clearly shows a cluster of 200 degenerate rotational states (ℓ=0°). Filtering out angular
states within a threshold angle T yields improved DNN distributions (green and blue
curves) that are more consistent with a uniform sampling, but the Lattman method does
not seem to be qualitatively better than the Euler method.

• Fibonacci method: N rotation axes (φ,θ) sampled from a Fibonacci sequence (Figure B.2,
bottom-right panel, red curve) with S spin angles ψ (green and blue curves). This method
is characterized by a smooth progression consistent with a locally uniform sampling,
and an almost horizontal distribution. The spin plays a crucial role in increasing the
spread of points over SO(3): the distributions with spin are offset by 10° compared to the
distribution without spin. There is no major difference between a uniform sampling of ψ
and the non-uniform sampling of ψ proposed in Miles 1965.

Plotting the probability distribution of the rows of a Lattman distance matrix for a set of
angular states, excluding the diagonal elements, offers a more quantitative view of the sampling
quality. In the ideal case of the exact solutions obtained from symmetry groups, all rows in the
Lattman distance matrix have the same histogram (Figure B.4). For other sampling methods,
it would be desirable for the distributions to be homogeneous with one another and skewed
towards π. In the case of the Euler, Fibonacci with spin and Lattman methods (Figure B.5), the
distributions are not perfectly homogeneous, indicating non-uniform sampling over SO(3). The
Euler method produces the most homogeneous histograms (Figure B.5, left panel), however
the DNN has already shown irregularities in the distribution. The Lattman method is highly
inhomogeneous, with three curves clearly visible (Figure B.5, second panel), which indicates
the angular states are forming clusters. The Fibonacci with spin method is also inhomogeneous,
but is closer to the Euler method. This information, combined with the DNN plot, suggests the
Fibonacci with spin method is preferable over the Lattman and Euler methods.
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Figure B.4: Histograms of the Lattman distance matrices for exact solutions using molecular symmetry.
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Figure B.5: Probability densities of the Lattman distance of sets generated using the Euler, Lattman and Fibonacci with spin
methods, super-imposed for readability.



C Appendix

Partial charges derivation methods

The AMBER Hamiltonian defined in equation 1.1 relies on Coulomb’s law for point charges. The
partial charges qi are obtained by fitting the potential of the point charge model outside the
van der Waals surface of the molecule to the molecular electrostatic potential (MEP) from a QM
calculation (Singh and Kollman 1984). Multiple fitting strategies were developed: least square
fit with penalties to preserve electroneutrality (Cox and Williams 1981) and reproduce the
experimentally determined dipole moment (Momany 1978), Levenberg–Marquardt nonlinear
least square fit (Singh and Kollman 1984), the method of Lagrange multipliers (Chirlian and
Francl 1987; Besler et al. 1990), and the restrained electrostatic potential (REsP) method
(Bayly et al. 1993; Cornell et al. 1993).

As the MEP is sensitive to the molecule conformation (Williams 1990; Reynolds et al.
1992; Stouch and Williams 1992), especially in hydrocarbon chains (Stouch and Williams
1992; Bayly et al. 1993), it is beneficial to run the fitting procedure with the MEP of multiple
conformers. The results can be combined using ensemble averages with iterative MD sampling
(Basma et al. 2001) or Lagrange multipliers (Reynolds et al. 1992; Bayly et al. 1993; Cornell
et al. 1993; Cieplak et al. 1995). The REsP method supports multi-conformational fitting
and Lagrangians to average the charges of symmetry-equivalent atoms (Cieplak et al. 1995).
It is also capable of constraining groups of atoms to a specific charge, which is necessary to
handle the boundary conditions of monomers. For example, amino acids are processed as
blocked tri-peptides, using acetic acid (abbreviated ACE) as the N-terminus capping group and
N-methylamine (abbreviated NME) as the C-terminus capping group.

The REsP fitting method was applied to derive charges on amino acids and nucleic bases for
the AMBER ff94 force field (Cieplak et al. 1995; Cornell et al. 1995), on saccharides for the
GLYCAM_2000 (Woods and Chappelle 2000; Basma et al. 2001; Kirschner and Woods 2001)
and GLYCAM_06 (Kirschner et al. 2008) force fields, and on the QQJ-096 building blocks used
in Work 1 and Work 2. The following will briefly explore the two-stage REsP fitting procedure
(Cieplak et al. 1995) used in the original AMBER force field (Cornell et al. 1995).

Starting from a generic amino acid AA, a tri-peptide ACE–AA–NME is formed (Figure C.1).
The initial molecular structure is geometry optimized and the MEP is calculated at the HF/6-31*
level of theory in the gas phase. This basis set is known to overestimate dipole moments,
which is desirable for polar molecules since their dipole is usually larger in solution than in
the gas phase (Stouch and Williams 1992; Bayly et al. 1993). For less polar molecules, this
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Figure C.1: Original REsP procedure for amino acids in the AMBER ff94 force field. The amino acid (AA) is capped at the N-
terminus by an acetyl group (ACE) and at the C-terminus by an N-methylamine group (NME).

overestimation is problematic and has to be mitigated using a stronger hyperbolic penalty to
decrease the magnitude of the charges (Woods and Chappelle 2000).
During the first REsP stage, several atoms are assigned fixed partial charges. The ACE and

NME residues (blue boxes) are given standard charges that are identical for all amino acids
to avoid introducing artificial dipoles on the protein backbone. These charges sum up to zero
to preserve the formal charge on the amino acid. The backbone carbonyl group and amide
nitrogen (green boxes) are given consensus charges that are identical for groups of amino acids
sharing a chemically similar side-chain. Partial charges on the remaining atoms are allowed
to vary during the fit, with intramolecular charge equivalence constraints if necessary7 and
intermolecular charge equivalence constraints when multiples molecules are used8 .

During the second stage, all atoms get their charges fixed to those obtained in the first stage,
except for symmetry-equivalent non-polar hydrogens, namely methyl hydrogens (R–CH3) and
freely rotatable methylene hydrogens (R–CH2–R’), which are re-fitted with intramolecular
charge equivalent constraints (Cieplak et al. 1995). When no such group exists, the second stage
is unnecessary. The role of this stage is to avoid the formation of small, artificial dipole moments
along freely rotatable hydrocarbon chains. This equivalencing is typically not conducted in the
first stage to limit the number of Lagrangian constraints in a single fitting step; attempts to
carry out both fits in a single step resulted in unrealistic dipole moments across bonds (Cornell
et al. 1993; Bayly et al. 1993).
Here is a detailed protocol for lysine:

• ab initio geometry optimization and MEP calculation on two side-chain rotamers of
lysine (Figure C.2A)

• REsP stage 1: fixed charges on the ACE, NME, amide and carbonyl groups (Figure C.2B,
gray atoms), free fitting on aliphatic hydrogens (black atoms), fitting with intermolecular
equivalence restraints (colored atoms) and an extra intramolecular equivalence restraint
on the ammonium R–NH3

+ group due to rotational symmetry
• REsP stage 2: charges are read from the previous stage (Figure C.2C, gray atoms), except
for aliphatic methylene hydrogens (colored atoms) which are re-fitted with intra- and
intermolecular equivalence restraints

7For example, C3-equivalent ammonium hydrogens in lysine, C2-equivalent aromatic carbons in phenylalanine and
tyrosine, or C2-equivalent guanidino R–NH2 groups in arginine.

8When multiple conformers of the same molecule are used, identical atoms are constrained to be assigned the same
partial charges. When different molecules are used, e.g. nucleic acids or N- and C-terminal amino acids, subsets of
atoms on each molecule may be constrained to sum up to a specific charge (Cieplak et al. 1995).
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Figure C.2: Original REsP procedure for lysine in the AMBER ff94 force field. A) Optimized geometry of two conformers of lysine
tri-peptide (ACE–LYS–NME), more specifically two rotamers differing by their Cα–Cβ dihedral angle (represented
in the 2D sketch as a bent side-chain for simplicity). B) First stage of the REsP fitting procedure with atoms colored
according to their restraints (gray: atoms constrained to fixed charges, black: free fitting, colored: fitting with inter-
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hydrogens). C) Second stage of the REsP fitting procedure with atom colored according to their restraints (gray: atoms
constrained to fixed charges read from the previous stage, colored: fitting with intra- and intermolecular equivalence
constraints).
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