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Relaxation of photoexcited hot carriers beyond multitemperature models:
General theory description verified by experiments on Pb/Si(111)
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The equilibration of electronic carriers in metals after excitation by an ultrashort laser pulse provides an
important class of nonequilibrium phenomena in metals and allows measuring the effective electron-phonon
coupling parameter. Since the observed decay of the electronic distribution is governed by the interplay of
both electron-electron and electron-phonon scattering, the interpretation of experimental data must rely on
models that ideally should be easy to handle, yet accurate. In this paper, an extended rate-equation model
is proposed that explicitly includes nonthermal electronic carriers while at the same time incorporating data
from first-principles calculations of the electron-phonon coupling via Eliashberg-Migdal theory. The model is
verified against experimental data for thin Pb films grown on Si(111). Improved agreement between theory
and experiment at short times (<0.3 ps) due to nonthermal electron contributions is found. Moreover, the rate
equations allow for widely different coupling strength to different phonon subsystems. Consequently, an indirect,
electron-mediated energy transfer between strongly and weakly coupled groups of phonons can be observed in
the simulations that leads to a retarded equilibration of the subsystems only after several picoseconds.
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I. INTRODUCTION

Ultrafast spectroscopies, especially pump-probe experi-
ments, are one of the most powerful techniques to explore
the nonequilibrium behavior of charge carriers in condensed
matter. Already very early in the development of this method,
the time-dependent distribution of hot electrons and holes in
metals has come into focus [1,2]. For the interpretation of
the time-dependent spectra, the two-temperature model [3]
has become an invaluable tool. It is employed to describe
the equilibration between the electronic excitations and the
lattice degrees of freedom, using thermal distribution func-
tions for both. Recent extensions to multitemperature models
in which the lattice vibrations are described by multiple heat
baths at various temperatures [4,5] can account for the largely
varying coupling strengths between electrons and vibrations
of different polarization and/or frequency. Yet, shortcomings
of such models have been noticed [2] already in the early
days of the field: Building on the concept of a time-dependent
electronic temperature implies that this temperature drops in
a linear fashion (if the electronic density of states is assumed
constant), which is often not in accord with experimental ob-
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servations [6,7]. Moreover, the time required for the electronic
temperature to reach the equilibrium temperature should, ac-
cording to models of this type, be proportional to the amount
of energy deposited. Again, this is not what is observed
experimentally.

All models of this type rest on the common assumption
that electron-electron (e-e) scattering is much more efficient
(at least for carriers far away the Fermi energy) than electron-
phonon (e-ph) scattering. Due to this, the electrons and
holes would first establish equilibrium among themselves [8]
(within less than 1 ps after excitation), thus allowing us
to start from a gas of carriers at a well-defined but time-
dependent temperature Te(t ) to initiate the flow of energy from
the electronic system to the lattice. Meanwhile, we are well
aware [9] that this is an oversimplification; various more so-
phisticated theoretical approaches have indicated overlapping
timescales of e-e and e-ph scattering. For instance, this can
be demonstrated in the context of a Hubbard model coupled
to lattice vibrations by applying the formalism of nonequi-
librium Green’s functions [10,11]. Moreover, calculations of
the self-energy related to electron-phonon interaction [12,13]
or microscopically derived rate-equation models [14,15] can
be used to incorporate data from first-principles calculations.
The results of such simulations indicate that overlapping
timescales are relevant for realistic systems.

In this paper, we build a model for relaxation in a metallic
film and present the results of simulations that are compared
to experimental data. Similar to multitemperature models, our
rate-equation model is (in most of its parts) analytical and easy
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to use, yet capable of describing the deviations from thermal
distributions on both the electronic and the lattice degrees of
freedom. For this purpose, we use a simple but flexible starting
point to describe the electronic system, consisting of an excess
contribution hk (t ) of hot carriers on top of a Fermi distribution
function at a temperature Te(t ):

f (0)
k (Te(t )) =

[
exp

(
εk − μ

kBTe(t )

)
+ 1

]−1

. (1)

Here k stands for all quantum numbers characterizing an elec-
tronic state and μ ≈ EF is the chemical potential of the charge
carriers. After their equilibration with the lattice, a common
temperature is reached, Te(t ) → T∞. The objective of the pro-
posed generalization is to account for possibly overlapping
timescales of e-e and e-ph scattering found in metals. In
metals or semimetals, the impact ionization and Auger recom-
bination processes [16], involving electronic states both below
and above the Fermi energy, make the dominant contribu-
tion to Coulomb scattering. This is different from (wide-gap)
semiconductors in which the Coulomb interaction among
photoexcited carriers leads to intraband scattering among the
electrons in the conduction band, or among the holes in the va-
lence band, but scattering involving both electrons and holes
is inefficient due to the energetic separation between them.
In a metal, an expansion of the electronic distribution into
eigenfunctions of the scattering kernel originating from the
screened Coulomb interaction can be employed. Kabanov and
Alexandrov [17] started from the Boltzmann equation and
showed that the Fermi distribution is just one possible solution
describing a quasiequilibrium state, but fast temporal changes
require higher eigenfunctions of the scattering kernel to be
included. This leads us to propose the ansatz

fk (t ) = f (0)
k (Te(t )) + hk (t ), (2)

hk (t ) ≡ h(εk, t ) = h0 ξ exp

(
− t

τ

(
1 + ξ 2

π2

))
, (3)

where ξ := (εk − μ)/(kBT∞) and the mathematical form of
h(εk, t ) is adopted from Ref. [17]. Since it is an uneven
function of ξ , the same deviation from equilibrium of both
electrons and holes is assumed. As a possible generalization,
different functions h±(εk, t ) could be used for εk > μ positive
and εk < μ, i.e., for electrons and holes, as long as one makes
sure that charge conservation is obeyed. The parameter τ is a
material-specific quantity and typically lies in the range of a
few picoseconds.

For e-ph scattering, we build on the assumption that it can
be described by first-order perturbation theory using Fermi’s
golden rule, as has been previously employed in the literature.
Both for stimulated emission and for absorption of phonons by
electrons, the corresponding rate will be proportional to nω(t ),
the population of the phonon state of frequency ω. This central
quantity governing the rates will be a basic ingredient of the
theory presented here. Moreover, this level of description al-
lows us to make contact with the Migdal-Eliashberg function,
a widespread concept to describe e-ph coupling, see, e.g.,
Ref. [18]. However, the presence of an excess contribution
hk (t ) in Eq. (2) has the consequence that these extra carriers
with energies only a few meV above or below the Fermi

energy can contribute notably to the spontaneous emission
of phonons. This is understandable because such electrons
or holes can be long-lived (several picoseconds) with respect
to e-e scattering, while their energy is still sufficiently high
(comparable to the phonon energy scale of h̄ωD, where ωD

is the Debye frequency) to allow for phonon emission. Hence,
the role of the excess contribution for the overall energy trans-
fer to the lattice needs to be considered.

The structure of the paper is as follows: We outline a
kinetic theory based on rate equations that extend the estab-
lished description of electronic relaxation to systems where
deviations from a Fermi distribution function play a role.
Subsequently, the rate constants are specified based on micro-
scopic descriptions of the scattering processes, in particular,
for screened Coulomb scattering in metals. Generalization to
semimetals [16] or narrow-gap semiconductors seems to be
possible using a different parametrization of the Coulomb
scattering kernel. In Sec. III of the paper, results for a specific
system, a film of few lead (Pb) atomic layers on a Si(111)
substrate exposed to ultrashort laser pulses, are presented. A
microscopic model for electron-phonon scattering using an
Eliashberg function from first-principles electronic structure
calculations is described. Solving the rate-equation theory for
this specific case, we are in a position to compare to experi-
mental data from time-resolved photoemission spectroscopy.
Finally, we conclude and discuss further applications of the
theory presented.

II. THEORY

A. Rate-equation modeling

As starting point, we sketch the overall structure of the
theory we are aiming at. A detailed description how to cal-
culate the rate constants will be given further down in the
text. The model proposed here uses Te(t ) and n(t ) as dynamic
variables which stand for the electronic temperature and the
occupation of phonon modes. The overall framework of our
theory consists of a linear system of rate equations of the form

d

dt

(
Te(t )

n(t )

)
=

(
0 r01

r10 r11

)(
Te(t )

n(t )

)
+

(−γ + se(t )

s(t )

)
. (4)

The inhomogeneity on the very right of the differential Eq. (4)
is the central aspect of this paper and arises due to the pres-
ence of the excess distribution hk (t ) of hot carriers. Indeed,
we can consider the quantity h0e−t/τ in Eq. (3) as a small
parameter; in this sense, the theory presented here constitutes
an extension of standard models of electronic relaxation to
the situation of a small additional deviation from quasiequilib-
rium at temperature Te(t ). When we put aside for the moment
the inhomogeneities se(t ) and s(t ) in Eq. (4), the central rate
constants defining the model are the matrix elements ri j and

γ = π h̄g(EF )kB

cv

λ〈ω2〉. (5)

With the usual expression for the specific heat of a free
electron gas [19], Ee = 1

2 cvT 2
e and cv = g(EF )k2

Bπ2/3 with
the electronic density of states at the Fermi energy given by
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g(EF ), one obtains

γ = 3h̄

πkB
λ〈ω2〉. (6)

This is a well-known expression [20] for the phenomeno-
logical electron-phonon coupling constant γT = γ /Te. It
describes the rate of cooling (in Kelvin/picoseconds) by the
lattice which is observed following an excitation of the elec-
tronic system. In this way, it is possible experimentally [21]
to extract information about the material-specific parameter
λ〈ω2〉 (and ultimately about λ, the dimensionless so-called
mass enhancement factor in the theory of conventional su-
perconductors) from time-resolved pump-probe experiments.
Note that Eq. (6) doesn’t require any further materials-specific
information such as, e.g., the density of states of electrons or
phonons. From a theoretical viewpoint, the kinetic coefficients
are linked to moments of the Eliashberg function α2F (ω) by

λ〈ω j〉 = 2
∫ ωD

0
dω α2F (ω)ω j−1, (7)

and we will use this relation in conjunction with first-
principles calculations of the Eliashberg function presented in
Sec. III A.

Another crucial parameter is the rate at which the energy
deposited in the system arrives in the lattice degrees of free-
dom, described by the kinetic coefficient

r10 = πg(EF )kB

ω̄
λ〈ω2〉, (8)

where ω̄ is an average (as detailed below) vibrational fre-
quency of the modes relevant in e-ph coupling.

The theory can be readily extended to cover coupling to
multiple groups of phonons, labeled by an index i = 1, . . . N .
We use a vector notation for the occupation numbers ni(t )
of these phonon modes, and for their couplings r j0 to the
electronic temperature,

�n =

⎛
⎜⎝

n1(t )
...

nN (t )

⎞
⎟⎠, �r =

⎛
⎜⎝

r10(t )
...

rN0(t )

⎞
⎟⎠,

in conjunction with a matrix R = (r jk ) of kinetic coefficients,
j, k = 1, . . . N . The diagonal elements r j j, j = 1, N describe
the absorption of a phonon that transfers its energy to the
electronic system, while the off-diagonal elements could be
used to describe direct coupling among different phonons or
groups of phonons, e.g., due to anharmonic effects of the
lattice. For the timescales of interest in the present paper,
the latter couplings can be disregarded. The role of phonon-
phonon coupling in general has been investigated theoretically
in Ref. [5]. For the specific material Pb we study later in this
paper, the timescale for the mode conversion from perpendic-
ular to parallel modes and vice versa has been determined to
be ∼30 ps and ∼100 ps, respectively, by classical molecular
dynamics simulations [22]. Yet it should be noted that indi-
rect energy transfer between different phonon modes via the
electronic system is possible in the present theory. In addi-
tion, the line vector ρ = (r01, . . . r0N ) contains the coupling
constants of the electronic temperature to the occupation of
phonon modes. This gives us the coupled multitemperature

rate equations

d

dt

(
Te(t )

�n(t )

)
=

(
0 ρ

�r R

)(
Te(t )

�n(t )

)
+

(−γ + se(t )

�s(t )

)
(9)

that are at the heart of our theory. For the new ingredients,
the inhomogeneity �s(t ) with components si(t ), we will show
in the Appendix that it consists of a sum of terms linear and
quadratic in the small parameter h0e−t/τ ,

si(t ) = πg(EF )

ω̄i

2∑
m=1

σi,m(t )(h0e−t/τ )m, (10)

while the coefficients σi,m(t ) can again be determined from
the suitably defined moments of the Eliashberg function.

It is instructive to see how to regain from this theory the
standard formulations of a two-temperature or multitemper-
ature model. For phonons that can be described by classical
statistics, i.e., for sufficiently high occupation numbers, one
may approximate ni = kBTi/(h̄ω̄i ). In this way, we introduce
an effective lattice temperature Ti(t ) associated with a cer-
tain group of phonons with characteristic frequency centered
around ω̄i.

For the two-temperature and multitemperature models, it is
the difference Te(t ) − Ti(t ) that acts as driving force toward
equilibration. To cast our mathematical formalism into this
framework, one has to introduce a constant γ /Te (obviously
depending on Te, but for considering the approach to equi-
librium, Te ≈ T∞, this dependence may be suppressed). If, in
addition, the inhomogeneities se(t ) and si(t ) in Eq. (9) are
dropped, one obtains

d

dt

(
Te(t )

Ti(t )

)
=

(−γ /Te r̃0i

r̃i0 r̃ii

)(
Te(t )

Ti(t )

)
, (11)

which is an example of the familiar two-temperature model.
In such a model, the largest eigenvalue determines the unique
timescale for the relaxation toward equilibrium of both the
electronic and lattice degrees of freedom.

As mentioned already in the Introduction, there are im-
portant differences between multitemperature models and the
theory presented here: The additional term se(T ) on the right-
hand side of Eq. (9) allows for a time dependence different
from a linear decay of the electronic energy (or a quadratic
decay of the temperature,) as typically proposed by standard
multitemperature models. Even if the excess quantities se(t )
and �s(t ) are neglected and the classical limit is taken, we note
that the electron-phonon coupling terms r̃0i involve higher
moments of the Eliashberg function, proportional to λ〈ω3〉,
rather than λ〈ω2〉 as in standard models. As a consequence, the
high-energy part of the Eliashberg function will gain higher
weight in calculating electron-phonon coupling parameters.

B. Electron-electron scattering only

The total energy of the electronic system consists of two
parts, a contribution from the quasithermal distribution and
from the excess carriers, respectively,

Ee = Ethermal + Eexcess

= 1

2
cvT 2

e +
∫

dε ε g(ε) h(ε, t ). (12)

033218-3



PETER KRATZER et al. PHYSICAL REVIEW RESEARCH 4, 033218 (2022)

We assume that the nonequilibrium electron distribution can
be cast into the form given by Eq. (2) for all times. The effect
of the density of states can be absorbed in the prefactor h0 in
Eq. (3) which is determined by the initially deposited energy
of the laser pulse. The parameter τ is a characteristic of the
material. Since e-e scattering in the initial phase is relatively
fast, we assume that it will instantaneously re-establish the
distribution in Eq. (2), even if other mechanisms, e.g. e-ph
scattering, tend to induce deviations. Moreover, since e-e scat-
tering is energy conserving, the total electronic energy (in the
assumed absence of e-ph scattering) must be constant:

dEe

dt
= 0

= d

dt

(
1

2
cvTe(t )2

+ h0g(EF )(kBT∞)2 π7/2

2

(
τ

t

)3/2

e−t/τ

)
. (13)

From this, we derive

se(Te(t ), t ) = h0
3π3/2T 2

∞
2τTe(t )

(
1 + 3τ

2t

)(
τ

t

)3/2

e−t/τ (14)

as the mathematical form of the inhomogeneity in the rate
Eq. (9). In physics terms, this expression describes the cre-
ation or annihilation of excess electron-hole pairs by fast
Coulomb scattering during relaxation of the electronic system
to the final equilibrium temperature.

C. Electron-phonon scattering

The hot electronic system loses energy to the lattice
by electron-phonon coupling that we choose to describe in
quantum-mechanical first-order perturbation theory. Follow-
ing the work of Allen [20], the energy in the electronic
systems decays as

dEe

dt
= − 2π

h̄Nc

∑
k,k′

h̄ωq

∣∣Mq
kk′

∣∣2
S(k, k′)δ(εk − εk′ + h̄ωq),

(15)
where the matrix element is normalized to the unit cell and
Nc counts the unit cells in the sample. In our notation, we
have assumed a metal with a single band crossing the Fermi
energy (containing both electrons and holes) and have thus
suppressed the band index. However, it is possible to ex-
tend the theory to a metal with multiple bands or even to a
semimetal or small-gap semiconductors where electrons and
holes reside in different bands. Both momentum and energy
conservation must be satisfied in electron-phonon scattering.
Hence the crystal momentum of the phonon is q = k − k′. The
energy of the phonon branch ωq must match the energy differ-
ence between the initial and final state of the electron, h̄ωq =
εk′ − εk . The scattering kernel S(k, k′) is defined [20,23] as

S(k, k′) = ( fk (t ) − fk′ (t ))nωq (t ) − (1 − fk (t )) fk′ (t ).

The first term describes both absorption of a phonon by an
electron and induced emission of phonons, and hence is pro-
portional to the number nωq (t ) of phonons present at any
instant in time. The second term describes spontaneous emis-
sion. This process requires electronic occupation of the state

with quantum number k′, and a hole in state k, i.e., the final
electronic state must be unoccupied.

Rather than working with matrix elements and discrete
transitions, it is more convenient to work with the Eliashberg
function and continuous integration over energy variables for
the metallic bands. This approximation is justified if all rele-
vant scattering processes take place in a small energy interval
around the Fermi energy, such that the Eliashberg function
is a valid description in the whole energy range. Moreover,
the electronic density of states is required to show little vari-
ation around EF , otherwise this variation can be accounted
for by an additional factor multiplying α2F (ω). (see, e.g.,
Refs. [4,24,25]). The increase in lattice energy Elat is (apart
from the sign) equal to the decrease in electronic energy given
by Eq. (15),

dElat (t )

dt
= −dEe(t )

dt
, (16)

and hence can be expressed as

dElat (t )

dt
=

∫ ωD

0
dω h̄ω α2F (ω)

∫ ∞

−∞
dε

∫ ∞

−∞
dε′ δ(ε − ε′ + h̄ω)

× 2πNcg(E f )[( f (ε) − f (ε′))n(ω, Ti )

− f (ε′)(1 − f (ε))]. (17)

Here the Eliashberg function α2F (ω) carries the information
both about the size of the matrix element in Eq. (15) as
well as about the electronic density of states g(ε). We need
to insert for the electronic distribution functions f (ε, Te(t ))
the sum of both the quasiequilibrium term (at temperature
Te) and the excess term h(ε, t ). Electron-hole symmetry has
been assumed for the excess term. Therefore, as long as only
the contribution proportional to f (ε) − f (ε′) [first term in
the square bracket of Eq. (17), describing phonon absorption
and induced emission] is considered, f can be replaced by
f (0) without making an error; one can show that any terms
being linear in h(ε, t ) do not contribute to the first term in
the integral. One of the energy integrals in Eq. (17) can be
carried out easily due to the energy-conserving δ function.
For the remaining energy integral over the terms containing
f (0), one uses the well-known Sommerfeld expansion. The
effective width of −∂ f (0)/∂ε introduces an additional factor
h̄ω. Finally, the integration over ω needs to be carried out.

Often it is convenient to consolidate the lattice vibrations
into groups rather than following each nω(t ) individually. In
particular, this is appropriate if several phonons couple to the
same thermal bath. In this case, one may switch to lattice
temperatures Ti(t ) as new dynamic variables that are related
to the populations via Bose-Einstein distribution functions
nω(t ) = nB(ω, Ti(t )) = [exp(h̄ω/kBTi(t )) − 1]−1. Depending
on modeling demands, the grouping may also follow other
principles, e.g., transversal versus longitudinal polarization
of the phonon. Here, however, we use the frequency as dis-
tinguishing feature, i.e., we group together all phonons in a
frequency interval [�i−1,�i], i = 1, . . . N . We can define a
weighted-average phonon frequency in each group by

ω̄i =
∫ �i

�i−1
dω ωG(ω)∫ �i

�i−1
dω G(ω)

, (18)
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where G(ω) is the density of states of the phonons. Similarly,
the moments of the Eliashberg function are restricted to the
relevant energy ranges:

λi〈ω j〉 = 2
∫ �i

�i−1

dω α2F (ω)ω j−1. (19)

Evaluating the integrals in Eq. (17) using the above expres-
sions, the rate constants entering the matrix of the rate Eq. (9)
can be obtained. For relating the spontaneous emission of
phonons to the electronic temperature Te, it is required to em-
ploy the additional approximation [see Ref. [5], Eq. (A20)]:(

1 − f (0)
k (t )

)
f (0)
k′ (t ) = (

f (0)
k − f (0)

k′
)
nB(ωq, Te(t ))

≈ −kBTe(t )
∂ f (0)

∂εk
. (20)

Thus, one obtains

ri0 = πg(EF )kB

ω̄i
λi〈ω2〉, and γ =

N∑
i=1

ri0. (21)

When obtaining the kinetic coefficients responsible for in-
duced emission and absorption, we couple the electronic
temperature Te(t ) directly to the occupation numbers ni(t ).
This leaves us with the additional factor ω inside the integral
of Eq. (17), and we thus obtain

r0i = π h̄2g(EF )

cvTe
λi〈ω3〉 = 3h̄2

πk2
BTe

λi〈ω3〉 (22)

and

rii = −π h̄g(EF )

ω̄i
λi〈ω3〉. (23)

In addition to the absorption and induced emission con-
sidered so far, including spontaneous emission of phonons by
the hot carriers requires consideration of the nonequilibrium
distributions hk (t ) in the kernel S(k, k′):

S(k, k′) = (
f (0)
k (t ) − f (0)

k′ (t )
)(

nωq (t ) − nB(ωq, Te(t ))
)

− (
1 − f (0)

k (t )
)
hk′ (t ) + hk (t ) f (0)

k′ (t ) + hk (t )hk′ (t ).

This leads to additional terms in the coupled system of rate
equations that depend explicitly on time. For the specific
model of hk (t ) provided in Eq. (3) and for the grouping of
the phonons according to their frequency ranges, the time-
dependent inhomogeneities in the rate equation have been
worked out in the Appendix. The result has the form of
Eq. (10) with the coefficients

σi,1(t ) = λi〈ω2〉π
2τkBT∞

4t
K0(t )

− λi〈ω4〉
(

h̄2K0(t )

4kBT∞
− h̄2Te(t )2

2kBT 3∞
K2(t )

)
, (24)

σi,2(t ) = λi〈ω2〉kBT∞
π7/2

25/2

(
τ

t

)3/2

− λi〈ω4〉 1

kBT∞

3h̄2π3/2

27/2

(
τ

t

)1/2

, (25)

where the remaining integrals to be calculated numerically are
specified by

Kj (t ) =
∫ ∞

−∞
dη exp

(
− Te(t )2t

π2T 2∞τ
η2

)
η j

cosh2 η/2
. (26)

Finally, we would like to point out the connection to
multitemperature models. If only the thermal contribution is
retained, i.e., if one uses f (0)

k (Te(t )) instead of f (ε, t ) every-
where, one can make use of the identity Eq. (20) to simplify
the scattering kernel to

S(0)(k, k′) = (
f (0)
k − f (0)

k′
)(

nωq (t ) − nB(ωq, Te(t ))
)
. (27)

Thus, S(0) reflects the balance between energy flows to and
from the heat bath represented by the lattice. For small phonon
energies h̄ωq and high temperatures, one can approximate the
Bose-Einstein distribution function by its limit in classical
statistics, and thus obtain

S(0)(k, k′) ≈ (
f (0)
k − f (0)

k′
)kB(Tlat (t ) − Te(t ))

h̄ωq
. (28)

This equation shows that the energy flow between the elec-
tron and phonon systems, at least for long times where both
systems are in quasiequilibrium at some temperature, is pro-
portional to the temperature difference. This provides the
microscopic foundation for the two-temperature, or likewise
for multitemperature models, if the phonon system is divided
into subsystems each with their own temperature. However, in
our present theory we retain the nωq (t ) explicitly as dynamic
variables. For the rightmost term in Eq. (27), it is safe to
use nB(ωq, Te(t )) ≈ kBTe(t )/(h̄ωq) since Te(t ) is usually much
higher than the Debye temperature of the lattice.

III. APPLICATION TO TIME-RESOLVED
SPECTROSCOPY OF Pb FILMS

Thin films of Pb on Si(111) can be grown at varying
thicknesses that can be determined with monolayer (ML) pre-
cision. Both the electronic and vibrational structure of ML
Pb films strongly depend on the film thickness. The band
gap of Si(111) inhibits propagation of excitations from the
Pb film into the substrate. Therefore, the system Pb/Si(111)
is an ideal probing ground to study microscopic theories of
electron-phonon interactions and their implication for elec-
tronic relaxation experiments. In this paper, we focus on a 5
ML Pb/Si(111) film.

A. Microscopic input

The Eliashberg function α2F (ω) and phonon density of
states G(ω) of a free-standing film of Pb of 5 ML thickness
have been calculated using density functional theory in the
local density approximation [27]. A mixed-basis pseudopo-
tential approach [28] combining a plane-wave expansion with
local functions is used to describe the valence electrons of Pb.
The phonon properties and the electron-phonon interaction
are obtained using a linear-response technique [29–31]. Spin-
orbit coupling has been implemented as described in Ref. [32].
As was shown in Ref. [26], the spin-orbit interaction not only
has a strong effect on the phonon spectrum but also leads to a
strong enhancement of the electron-phonon coupling strength
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FIG. 1. Eliashberg function α2F (ω) (full black line, left scale)
and phonon density of states G(ω) (red dashed line, right scale) for a
free-standing Pb film of thickness 5 ML from first-principles calcula-
tions similar to Ref. [26]. The frequency scale has been divided into
the range of acoustic phonons plus four ranges describing vibrations
of the Pb layers against each other, marked by the labels �i.

in thin Pb films. The calculated α2F (ω) and G(ω) are dis-
played in Fig. 1. The mass-enhancement parameter is obtained
as λ = 2.04 and λ〈ω2〉 = 46.2 meV2/h̄2 by integrating the
calculated Eliashberg function over the full frequency range.

Later we intend to couple phonons of similar character
to a common thermal bath. Guided by the sharp maxima in
the Eliashberg function in Fig. 1, we therefore divide the
energy range of phonons into five intervals: Below �1, there
are only the acoustic phonon branches contributing [33], and
these couple only weakly to the electrons. The higher-lying
intervals involve motion of neighboring layers or neighboring
Pb atoms relative to each other. There is strong coupling
between the electrons (in particular, those in the quantum well
state near EF ) and phonon modes normal to the film, in which
both the top and bottom layers of the film are moving in phase
(frequency interval [�1,�2]) or out-of-phase (frequency in-
terval [�3,�4]), both shown as shaded areas in Fig. 1. In
addition, there is somewhat weaker coupling to phonons of
mixed character in the intermediate frequency range [�2,�3].
The highest peak in the frequency range [�4,�5] stems from
surface phonons involving the in-plane motion of Pb atoms.
This characterization of the phonons remains essentially un-
changed when considering more realistic atomic structures,
e.g., a 5 ML Pb film grown on Si(111) and DFT calculations
of this system employing a (

√
3 × √

3) supercell [34].

B. Experimental results

A Pb film of 5 ML thickness has been prepared on
the Si(111) surface, as described previously [35,36]. Time-
resolved photoemission spectroscopy is performed on this
sample using femtosecond laser pulses from a Ti:sapphire
laser producing IR pulses at 1.5 eV photon energy. The tempo-
ral duration of the pump pulse was 50 fs. The overall absorbed
fluence (Pb film and underlying Si substrate) has been deter-
mined to 1.1 mJ/cm2.

Photoemission spectra recorded with a frequency-
quadrupled probe pulse of 6 eV photon energy and 100 fs
duration at various pump-probe delays are shown in Fig. 2.
The experimental details are similar to those reported in
Refs. [37,38]. Figure 2(a) depicts the detected photoemission
intensity in normal emission as a function of energy above EF

and as a function of time delay �t . Shortly before and after
�t = 0, photoemission intensity is recorded almost up to the
pump photon energy within a narrow time window of 100 fs
which is determined by the pump pulse photon energy and
the probe pulse duration. Relaxation dynamics appears at first
glance to occur at energies below 0.7 eV. Figure 2(b) shows
the identical data as spectra on a logarithmic intensity scale
at selected time delays. Here, excitations up to 1.5 eV are
clearly identified and the relaxation proceeds with increasing
�t over all energies. The three peaks in these spectra are
caused by an enhanced electron density of states and originate
from formation of quantum well states due to confinement
of the 6pz wave function to the film [36,37]. The peak
at E − EF = −0.3 eV is the highest occupied quantum
well state, the peak at E − EF = 0.4 eV originates from
a fractional 6 ML coverage within the illuminated sample
surface [37], and the peak at E − EF = 1.1 eV is the first
unoccupied quantum well state at resonance with an optical
excitation by pump photons with the occupied quantum well
state. These peaks are populated according to the transient
electron distribution and, at first glance, these spectra in Fig. 2
show a thermal distribution of electrons. Their temperature
Te(t ) decays on a timescale of approximately 1 ps.

To investigate the electronic distribution near EF in further
detail, we zoom into a small part of the data and normalize the
signal at EF to 1/2, the value of the Fermi function at EF . The
symbols plotted in Fig. 3(a) show these experimental data.
When fitting the spectra, we include the above-mentioned
sample-specific density of states effect by an asymmetric
Gaussian peak added to a smooth (for practical purposes con-
stant) density of states g(EF ). The fitting function is

g(E ) ×
(

1

exp
( E−EF

kBTe(t )

) + 1
+ h(E , t )

)
, (29)

with h(E , t ) given by Eq. (3) and

g(E ) = g(EF )
(
1 + (E − EF ) g0 e−[(E−Epeak )/w]2)

, (30)

with g0 = 27, Epeak = 0.550 eV, and w = 0.2 eV. The main
part of the fitted distribution comes from a thermal distribution
with a temperature Te(t ) fitted to the slope of the measured
distribution functions for each time t . We note that a thermal
distribution alone is not sufficient to reproduce the measured
spectra. In particular, at energies 0.1–0.2 eV above EF it falls
off too quickly to properly describe the data. The fit is much
improved by using the distribution from Eq. (3) taking into
account the excess nonthermal electrons. The parameter h0 is
chosen as 0.005. This amounts to about 1% of the electrons
belonging to the nonthermal component.

C. Simulations

Next we solve the system of rate Eq. (9) numerically for
the specific initial conditions at time t0 = 70 fs. The lattice
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FIG. 2. (a) Time-dependent photoemission intensity at energies above the Fermi energy EF in a false color representation obtained in
normal emission geometry in a pump-probe experiment with pump and probe photon energies of 1.5 and 6.0 eV, respectively, on 5 ML
Pb/Si(111). The absorbed pump fluence F is indicated. Data were taken at a sample temperature of 80 K. (b) Selected photoemission spectra
on a logarithmic intensity scale extracted from data in panel (a) at the indicated time delay �t . The inset depicts a scheme of the pump-probe
experiment.

vibrations of the Pb film have been described by five dif-
ferent phonon groups, each with a separate time-dependent
occupation ni(t ). Both for Te(t0) and for ni(t0), we assume
thermal equilibrium at the sample temperature T0 = 80 K. All
material parameters entering into the rate equation model have
been obtained from first-principles calculations: The Eliash-
berg functions and its moments were taken from the DFT
calculations described above. The density of states near the
Fermi energy in bulk Pb was obtained from separate DFT
calculations to be 2.7 × 1022 eV−1cm−3. For a (1 × 1) surface
unit cell of a film with Nc = 5 atoms, this yields g(EF ) =
4.2 × 10−3meV−1 used for the simulations. The only param-
eter that could not be determined from first principles is the
relaxation time τ due to e-e scattering, for which a value of
τ = 6 ps was assumed. Since τ in our model describes the
equilibration by electron-electron scattering, this value may
appear rather high. However, since its purpose is the modeling
of low-lying electronic excitations with an energy comparable
to phonons (see the discussion in Ref. [2]) and the electronic
lifetime is known to diverge as (E − EF )−2, a lifetime of
several picoseconds seems reasonable.

The outcome of our simulations with the rate-
equation model are presented in Figs. 4–6. We obtain
the functions Te(t ) and ni(t ) from a numerical solution of
the system of rate Eq. (9) using MATHEMATICA12. The
microscopic description enters into Eq. (9) via the kinetic
coefficients obtained from Eqs. (21)–(23), (10), and (14).
In these coefficients, the Eliashberg function enters via its
moments λ〈ω j〉, see Eq. (7). In Fig. 4, we show the total
electronic energy, Eq. (12) with Te(t ) as obtained from the
simulations inserted. The first term in Eq. (12), that is the
thermal contribution determined by the temperature Te(t )
alone, is also shown. As expected from our inclusion of the
non-thermal distribution h we find that there is excess energy
in the electronic system for several hundred femtoseconds. Up
to this time, the e-e scattering processes have not yet managed
to establish an equilibrium temperature in the electronic

system. Subsequently, an exponential decay of the energy is
observed with a time constant of 0.59 ps.

Moreover, we compare the simulation results to the tem-
poral evolution of the electronic energy as observed in
experiment. This curve has been obtained by numerical inte-
gration of the measured photoemission spectra, weighted by
a factor E − EF , for all energies above EF . Normalization
by a constant factor has been used to show both the sim-
ulated and measured energy curves in the same plot. Since
the photoemission experiment was not calibrated, the absolute
number for the electronic energy could not be obtained from
the measurements. The experimentally determined electronic
energy shows an exponential decay with a time constant of
0.56 ps, i.e., the simulated and measured decay are in good
agreement. However, the temporal behavior near the experi-
mentally observed maximum is reproduced in the simulations
only if the excess contribution hk (t ) is taken into account.

It is noteworthy that reproducing the experimental results
simply by a multitemperature model, without any excess
contribution, would require an initial electronic temperature
Te(t0) ∼ 1200 K. This is significantly higher than the maxi-
mum Te of 1000 K found in our analysis of the experimental
data. Thus, the multitemperature model tends to overestimate
the initial electronic temperature.

If the ab initio-determined Eliashberg function is used
to calculate the cooling rate directly via Eq. (6), 780 K/ps
is obtained for the present system. Thus, according to the
multitemperature model, the electronic system would reach
the final temperature T∞ after about τcool = 1.5 ps. This is in
contrast to our simulation, where a nearly exponential decay
and a long-time tail of Te(t ) are obtained. If one attempted
to extract the parameter γT from a direct (two-temperature
model) fit to the experimental data, the slope of 780 K/ps
would be obtained at 460 K, i.e., at about one-half of the
electronic temperature maximum. We provide this informa-
tion because if one attempts to match experimental data with
the (unphysically linear) temperature decay taken from a
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FIG. 3. (a) Logarithmic plot of the time-dependent population of
excited states from time-resolved photoemission (symbols) and from
a fit (lines) with Eqs. (29) and (3) using h0 = 0.005 and τ = 6ps.
(b) Comparison of the complete fit (full lines) with a fit by a thermal
distribution f (0)(Te(t )) (dashed lines) in which the electronic temper-
ature has been matched at the Fermi energy. In both cases, the peak
in the electronic density of states at 0.55 eV has been considered.

two-temperature model, a considerable uncertainty of the fit,
and hence an incorrect determination of the electron-phonon
coupling constant, may result, depending on the time at which
the measured data and the model are brought to match.

Figure 5 shows the phonon population ni(t ) in the different
groups of phonons that is obtained by integrating the differ-
ential Eq. (9) It is seen that the low-lying acoustic modes
already have a high population in the initial stage, since they
are easily excited thermally due to their low energy. However,
the population of these modes increases only slightly because

FIG. 4. Electronic energy obtained by integrating the experimen-
tal spectra (blue line), thermal contribution using Te(t ) from the
simulation (dashed), and full simulation result including both thermal
and nonthermal contributions (light green line).

their coupling to the electronic system is weak. The phonon
modes between 2.57 and 3.58 meV, however, couple strongly
to the electronic system, and we observe a steep rise of their
population. Both findings can already be understood from
Fig. 1 by comparing the Eliashberg function to the phonon
density of states. The strong enhancement of the former in
the range of 2.57 and 3.58 meV indicates a strong coupling
of the electronic states to breathing modes of the Pb film. A
similar observation, selective coupling to high-lying phonons,
has been observed if unoccupied quantum well states are
initially populated by the laser pulse. Both the experiment [38]
and simulations [15] observe the population of a 2 THz
(=8.3 meV) phonon in the Pb film subsequent to laser ex-
citation of the electronic system.

Note that the acoustic modes still change their population
even at times of 4 ps and beyond; they have not reached
thermal equilibrium. From the electronic temperature Te(t )
obtained by integrating the differential Eq. (9) and plotted
in Fig. 6, one can see a small but notable amount of excess
energy in the electronic system even at these long times.
This excess energy of the electronic system is hardly visible
in electronic spectra [cf. the small differences near EF in
Fig. 3(b)]. However, even electrons just a few meV above EF

FIG. 5. Average number of phonon quanta ni(t ) in various ranges
of the phonon spectrum, as obtained from the rate equations.
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FIG. 6. Effective temperatures Ti(t ) of various frequency ranges
in the phonon spectrum and electronic temperature Te(t ), as obtained
from the rate equations.

have sufficient energy to excite phonons. We also note that
such a long-lived electronic excitation can be sustained since
the phonons with energies between 2.57 and 3.58 meV that
overshoot their equilibrium occupation already after 0.5 ps are
able to feed energy back into the electronic system.

In summary, this leads us to the conclusion that strongly
different timescales for the population of different phonon
modes appears to be a rather general phenomenon that
has been observed in a number of systems, including thin
metallic films, e.g., Au (Ref. [39]) and Ni (Ref. [40]) and
two-dimensional materials, e.g., graphene [12] and phospho-
rene [41]. Thus, incomplete equilibration between multiple
subsystems should routinely be taken into account in future
modeling.

IV. CONCLUSION

In this paper, we studied, both theoretically and experimen-
tally, the relaxation of photoexcited electrons in metals under
the combined influence of electron-electron and electron-
phonon scattering. Femtosecond time-resolved photoemission
data for thin films of Pb are used to verify the theoretical
modeling results. The lifetime of hot electrons with respect
to electron-electron scattering is strongly energy dependent,
with much enhanced lifetime of electrons close to the Fermi
energy. For this reason, one cannot say that the timescales for
relaxation due to e-e and e-ph scattering are strictly separated.
While e-e scattering is dominant at short times <0.3 ps, some
excess distribution of hot electrons that cannot be captured
by a quasithermal Fermi-Dirac distribution survives even up
to several ps. These hot carriers, albeit their energy being in
the meV range, are still able to excite phonons, in particular,
in heavy metals such as Pb. Moreover, considering an elec-
tronic contribution including nonthermal carriers allows for an
improved description of the electronic energy and electronic
temperature at short times <0.3 ps. In the lattice degrees of
freedom, we observed that the coupling to medium-range
phonons is more efficient as compared to the coupling of
low-lying acoustic phonons. Therefore, the effective lattice
temperature of these phonon modes rises quickly, while the
acoustic modes lag behind and are not fully equilibrated even
after several ps. The interplay between the nonthermal excess
electrons and the phonon system can lead to an effective
transfer of energy from the quickly excited high-lying to the
slow acoustic modes.
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APPENDIX: DERIVATION OF HOT-ELECTRON
CONTRIBUTION

As a general starting point, the energy change of the lattice
vibrations in the ith interval [�i−1,�i] is given by

dEi(t )

dt
=

∫ �i

�i−1

dω h̄ω α2F (ω)
∫ ∞

−∞
dε

∫ ∞

−∞
dε′δ(ε − ε′ + h̄ω)

× 2πNcg(EF )[( f (ε) − f (ε′))nω(t )

− f (ε′)(1 − f (ε))]. (A1)

The electronic distribution function f (ε) is the sum of the
quasiequilibrium term [at temperature Te(t )] and the excess
term h(ε, t ). This gives rise to three sources of energy change
in Eq. (A1):

dEi(t )

dt
= 2πNcg(EF )

∫ �i

�i−1

dω h̄ω α2F (ω) (J0(ω, t )

− J1(ω, t ) + J2(ω, t )). (A2)

In the second term in the square bracket in Eq. (A1), describ-
ing spontaneous emission of phonons by the hot carriers, we
need to split f into f (0) and h to proceed. The first term, how-
ever, representing phonon absorption and induced emission,
can be brought to a simple form

J0(ω, t ) =
∫ ∞

−∞
dε

∫ ∞

−∞
dε′ δ(ε − ε′ + h̄ω)

× ( f (0)(ε) − f (0)(ε′))(ni(t ) − nB(ω, Te(t ))), (A3)

since the value of the integral remains unchanged when re-
placing f by f (0), as explained in the main text above. Note
that the thermal distributions f (0) carry an implicit time de-
pendence via their dependence on Te(t ), which is not spelled
out but taken into account in the calculations. Further simpli-
fication is achieved by using Eq. (20). The resulting terms,
proportional to ni and Te, respectively, are taken into account
via the matrix elements r j j and r0 j in the rate Eq. (9).

The nonequilibrium terms J1(ω, t ) and J2(ω, t ) in Eq. (A2)
need special attention. We obtain a mixed term, linear in both
f (0) and h,

J1(ω, t ) =
∫ ∞

−∞
dε

∫ ∞

−∞
dε′ δ(ε − ε′ + h̄ω)[h(ε′, t )

× (1 − f (0)(ε)) − h(ε, t ) f (0)(ε′)], (A4)

and a term quadratic in h:

J2(ω, t ) =
∫ ∞

−∞
dε

∫ ∞

−∞
dε′ δ(ε − ε′ + h̄ω)h(ε′, t )h(ε, t ).
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To carry out the double integral, a change of variables,∫ ∞

−∞
dε

∫ ∞

−∞
dε′ �→

∫ ∞

−∞
d

(
ε + ε′

2

) ∫ ∞

−∞
d (ε − ε′),

is useful. The second integration over the energy difference
can be carried out exploiting the property of the δ function,
and one obtains

dEi(t )

dt
= 2πNcg(EF )

∫ �i

�i−1

dω α2F (ω) h̄ω

×
∫ ∞

−∞
d ε̄

2∑
m=0

Im(ε̄, ω, t )(h0e−t/τ )m,

with ε̄ = (ε + ε′)/2. For the remaining integral over ε̄, various
strategies are used: For the thermal part I0, one can make use
of the observation that the two energies ε and ε′ must both
fall into a narrow interval of width kBTe to get any significant
contribution. Hence one can use a Taylor expansion of the
occupation number difference,

I0(ε̄, ω, t ) ≈ −kBTe(t )
∂ f (0)(ε̄, Te(t ))

∂ε̄

∣∣∣∣
ε=ε̄

,

which is, to leading order, independent of ω, see also Eq. (20).
For the mixed term we employ integration by parts. To this
end, we define

H (ξ, t ) = h0
π2τ

2t
kBT∞ exp

(
− t

τ

(
1 + ξ 2

π2

))
,

such that H ′(ξ, t ) = −h(ξ, t ), the prime denoting differen-
tiation with respect to energy. Using integration by parts,
exploiting the fact that h vanishes for ξ → ±∞, I1 can be
written as

I1(ε̄, ω, t ) = H (ε̄ − h̄ω/2, t )
∂ f (0)(ε + h̄ω/2)

∂ε

∣∣∣∣
ε̄

− H (ε̄ + h̄ω/2, t )
∂ f (0)(ε − h̄ω/2)

∂ε

∣∣∣∣
ε̄

.

Since the ε̄ integration extends over the whole real axis, we
have the freedom to introduce integration variables shifted
differently by ±h̄ω/2 for both terms, allowing us to split off a
common prefactor:

I1(ε̄, ω, t ) = π2τ

2t
kBT∞ exp

(
− ξ 2t

π2τ

)

×
(

∂ f (0)(ε̄ + h̄ω)

∂ε
− ∂ f (0)(ε̄ − h̄ω)

∂ε

)
. (A5)

Next, we use a Taylor expansion in the parameter β =
h̄ω/kBT∞:

f ′(ε̄ ± h̄ω) = f ′(ε̄) ± h̄ω f ′′(ε̄) + 1
2 (h̄ω)2 f ′′′(ε̄) + · · · .

The prime denotes derivation of the Fermi function with re-
spect to energy. The term linear in h̄ω multiplying the odd
function f ′′(ε̄) drops out after being integrated over ε̄. Thus,
the integral J1(ω, t ) entering in Eq. (A2) has a leading term
which does not depend on ω, followed by a quadratic term in
the expansion parameter β, and hence in ω,

J1(ω, t ) =
[
−π2τ

4t
J (0)

1 (t ) + β2J (2)
1 (t ) + O(β4)

]
h0e−t/τ ,

with

J (0)
1 (t ) = kBT∞

∫ ∞

−∞
dη exp

(
− Te(t )2t

π2T 2∞τ
η2

)
1

cosh2 η/2
,

J (2)
1 (t ) = 1

4
J (0)

1 (t ) − t

2π2τ

Te(t )2

T 2∞

×
∫ ∞

−∞
dη exp

(
− Te(t )2t

π2T 2∞τ
η2

)
η2

cosh2 η/2
.

In the last integral, again integration by parts has been used.

Finally, we describe the evaluation of the term J2(ω, t ) quadratic in h. It has has the explicit form

h(k′, t )h(k, t ) = h2
0 exp

(
−

(
2 + (h̄ω)2

2π2(kBT∞)2

)
t

τ

)
(ε̄ − EF )2 − (h̄ω/2)2

(kBT∞)2
exp

(
− 2t (ε̄ − EF )2

π2τ (kBT∞)2

)
.

The Gaussian integral over the average energy ε̄ can be carried out analytically, and one obtains

J2(ω, t ) = h2
0e−2t/τ π7/2

25/2

(τ

t

)3/2
(

1 − 4t

π2τ

(
h̄ω

2kBT∞

)2)
exp

(
− (h̄ω)2t

2π2τ (kBT∞)2

)
.

To be compatible with the approximation used for J1, we finally expand the exponential in powers of β = h̄ω/(kBT∞) and obtain

J2(ω, t ) ≈ h2
0e−2t/τ π7/2

25/2

(
τ

t

)3/2[
1 − 6t

π2τ

(
h̄ω

2kBT∞

)2]
+ O(β4).

This allows us to evaluate all contributions via the moments of the Eliashberg function defined in Eq. (19). Eventually, the
integration over ω, involving the Eliashberg function, is carried out for all three contributions Jm(ω, t ), m = 0, 1, 2. The
contributions from J1 and J2 show up in the coefficients σi,1(t ) and σi,2(t ) in Eqs. (24) and (25), respectively.
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