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Summary

Viruses replicate intracellularly, which means that they are well hidden from the humoral
arm of the immune system. However, evolution brought up mechanisms to combat viral
infections: All cells with active protein biosynthesis continuously present peptides on
the cell surface via Human Leukocyte Antigen (HLA) molecules. Cytotoxic T cells are
selected to not bind to peptides originating from the human proteome, but –facilitated
by the vast T cell receptor repertoire– may bind to viral epitopes and induce killing of
the virus infected cell. In this way, cytotoxic T cells are sharp weapons to combat viral
infections and exert strong selection pressure towards virus variants that escape that
immune recognition pathway.

HLA escape may occur through many mechanisms, for example through point muta-
tions that reduce binding of the epitope to HLA molecules. The identification of these
HLA-associated mutations (HAMs) is not only important for understanding viral evo-
lution, but also impacts the development of broadly effective anti-viral treatments and
vaccines against variable viruses. Unfortunately, experimental methods to detect HAMs
are prohibitively expensive and too time-consuming for large-scale use. A promising al-
ternative are methods that detect HAMs through the statistical analysis of viral sequence
data annotated with host HLA information. Existing methods fail to take confounding
effects like phylogeny and important prior knowledge like epitope prediction into account.
This necessitates an improved model, which accounts for confounding effects and combines
as much information as possible into a single coherent statistical model.

I introduce this thesis with a brief description of the immunological concepts that are
important to understand the challenges of identifying HLA-associated mutations through
statistical analysis (chapter 1) and an introduction to Bayesian modeling (chapter 2),
which provides the statistical basis for the main work. Chapter 3 provides the main
results of this thesis, which are summarized in two publications. Chapter 4 concludes
with a discussion of the contributed articles.

In the first publication (section 3.1), I present HAMdetector, a regression model to
identify HLA-associated mutations in HLA-annotated viral sequence data. The main
feature of this model is the Bayesian framework, which allows including prior information
in a principled way and takes sources of uncertainty into account. The model includes
knowledge about the distributional properties of HLA-associated mutations and the fact
that HAMs preferentially lie within the boundary of epitopes, which can be predicted
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using epitope prediction software. On a large collection of HIV, HBV and HDV datasets,
HAMdetector identified many potential HAMs that are currently unknown, which implies
that a significant fraction of interactions between viruses and T cell based immunity is
yet to be discovered, an exciting discovery for immunology and virology.

In the second publication, I transfer the general statistical principle of including as
much information as possible in a single coherent model to the field of cancer research:
Merkel cell carcinoma is an aggressive type of skin cancer, which can be treated using
novel antibody-based therapies. However, these therapies are sometimes not effective, and
the risk factors leading to therapeutic failure are not well understood. Using a relatively
small dataset of 114 patients characterized by therapy outcome on an ordinal scale (pro-
gressive disease, stagnant disease, partial response and complete response), I could show
in this collaborative project that out of 17 different patient- and tumor characteristics,
immunosuppression and spread of the tumor to multiple organs appear to be linked most
strongly to treatment non-response. The main feature of this model is that it takes the
ordinal nature of the response into account, an important piece of information that is
often discarded in statistical models. This work puts a strong emphasis on model testing,
highlighting benefits of the Bayesian workflow to learn as much from the available data
as possible and accurately account for model uncertainty.
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Zusammenfassung

Viren vermehren sich intrazellulär und sind vor dem humoralen Arm des Immunsystems
deshalb gut verborgen. Die Evolution hat jedoch Mechanismen zur Bekämpfung von
Virusinfektionen hervorgebracht: Alle Zellen mit aktiver Proteinbiosynthese präsentieren
über Human Leukocyte Antigen (HLA) Moleküle ständig Peptide auf der Zelloberfläche.
Zytotoxische T-Zellen sind so selektiert, dass sie nicht an Peptide aus dem menschlichen
Proteom binden, sondern –unterstützt durch das große Repertoire an T-Zell-Rezeptoren–
an virale Epitope binden können und die Abtötung der virusinfizierten Zelle induzieren.
Auf diese Weise sind zytotoxische T-Zellen scharfe Waffen zur Bekämpfung von Virus-
infektionen und üben einen starken Selektionsdruck auf Virusvarianten aus, die diesem
Immunmechanismus entgehen.

Ein solcher HLA-Escape kann durch viele verschiedene Mechanismen erfolgen, zum
Beispiel durch Punktmutationen, die die Bindung des Epitops an HLA-Moleküle ver-
ringern. Die Identifizierung dieser HLA-assoziierten Mutationen (HAMs) ist nicht nur
wichtig für das Verständnis viraler Evolution, sondern hat auch Auswirkungen auf die En-
twicklung von wirksamen antiviralen Behandlungen und Impfstoffen gegen variable Viren.
Leider sind experimentelle Methoden zum Nachweis von HAMs unerschwinglich teuer
und zu zeitaufwändig für einen breiten Einsatz. Eine vielversprechende Alternative sind
Methoden, die HAMs durch die statistische Analyse von mit Wirts-HLA-Informationen
annotierten viralen Sequenzdaten aufspüren. Vorhandene Methoden berücksichtigen Ef-
fekte wie Phylogenie und wichtiges Vorwissen wie Epitopvorhersagen nicht. Dies macht
ein besseres Modell erforderlich, das Störvariablen berücksichtigt und so viele Informatio-
nen wie möglich in einem kohärenten statistischen Modell zusammenfasst.

Ich leite diese Arbeit mit einer kurzen Beschreibung der immunologischen Konzepte
ein, die wichtig sind, um die Herausforderungen bei der Identifizierung von HLA-assoziierten
Mutationen durch statistische Analysen zu verstehen (Kapitel 1), sowie eine kurze Ein-
führung in die Bayes’sche Modellierung, die die statistische Grundlage für die Hauptarbeit
bildet. Kapitel 3 enthält die Hauptergebnisse dieser Arbeit, die in zwei Veröffentlichungen
zusammengefasst sind. Kapitel 4 umfasst eine Diskussion dieser Ergebnisse.

In der ersten Veröffentlichung (Abschnitt 3.1) stelle ich HAMdetector vor, ein Regres-
sionsmodell zur Identifizierung von HLA-assoziierten Mutationen in HLA-annotierten vi-
ralen Sequenzdaten. Das Hauptmerkmal dieses Modells ist das Bayes’sche Framework, das
es erlaubt, Vorwissen direkt in das Modell einzubeziehen und Quellen von Unsicherheit
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zu berücksichtigen. Das Modell nutzt Informationen über die Verteilungseigenschaften
von HLA-assoziierten Mutationen und die Tatsache, dass HAMs bevorzugt innerhalb
von Epitopen liegen, welche mit Hilfe von Epitopvorhersagesoftware vorhergesagt wer-
den können. Anhand einer großen Sammlung von HIV-, HBV- und HDV-Datensätzen
identifiziert HAMdetector viele derzeit noch unbekannte HAMs, was darauf hindeutet,
dass ein erheblicher Teil der Wechselwirkungen zwischen Viren und der T-Zell-basierten
Immunität noch nicht entdeckt wurde - eine spannende Entdeckung für die Immunologie
und Virologie.

In der zweiten Veröffentlichung übertrage ich das allgemeine statistische Prinzip, so
viele Informationen wie möglich in ein kohärentes Modell einzubeziehen, auf den Bereich
der Krebsforschung: Das Merkelzellkarzinom ist eine aggressive Form von Hautkrebs, die
mit neuartigen antikörperbasierten Therapien behandelt werden kann. Diese Therapien
sind jedoch nicht immer wirksam, und die Risikofaktoren, die zu einem Therapieversagen
führen, sind nicht gut erforscht. Anhand eines relativ kleinen Datensatzes von 114 Pa-
tienten, bei denen der Therapieausgang auf einer ordinalen Skala erfasst wird (fortschre-
itende Erkrankung, stagnierende Erkrankung, teilweises Ansprechen und vollständiges
Ansprechen), konnte ich in diesem Kollaborationsprojekt zeigen, dass von 17 verschiede-
nen Patienten- und Tumormerkmalen die Immunsuppression und die Ausbreitung des
Tumors auf mehrere Organe am stärksten mit dem Nichtansprechen auf die Behandlung
zusammenhängen. Das Hauptmerkmal dieses Modells besteht darin, dass es die ordinale
Skala der Beobachtungen berücksichtigt, eine wichtige Information, die in statistischen
Modellen oft unberücksichtigt bleibt. Diese Arbeit legt einen starken Schwerpunkt auf
das Testen von Modellen und verdeutlicht die Vorteile des Bayes’schen Workflows, der es
erlaubt so viel wie möglich aus den verfügbaren Daten zu lernen und Modellunsicherheit
zu berücksichtigen.
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Chapter 1

The HLA system

Viral replication requires synthesis of viral proteins. One mechanism how virus-infected
cells can be identified is through continuous survey of intracellular proteins: All nucleated
cells present peptides via Human Leukocyte Antigen (HLA) molecules on the cell surface,
which function as snapshots of currently expressed proteins. In this way, these peptides
act as possible antigens to cytotoxic T cells, which are selected to not bind to peptides
originating from the usual human proteome, but may bind to epitopes stemming from viral
proteins. The pathway from intracellular protein to presented epitope involves antigen
processing and presentation and consists of multiple steps (figure 1.1):

1. Proteasomal degradation of intracellular proteins

2. Loading of peptides onto HLA molecules

3. Transport of the HLA/peptide complex to the cell surface

In the next section, these three steps are described in greater detail (section 1.1).
The following sections in this chapter describe the molecular properties of HLA molecules
and the nomenclature of HLA alleles (section 1.2), the development of cytotoxic T cells
(section 1.3), and the mechanisms by which cytotoxic T cells kill virus-infected cells
(section 1.4).

1.1 Antigen processing

1.1.1 Proteasomal degradation of intracellular proteins

Cytosolic proteins have a limited half-life, typically ranging from 10 to 140 hours (Cam-
bridge et al., 2011), and are continuously synthesized and degraded. The degradation
is achieved by specialized enzyme complexes called proteasomes (Adams, 2003), which
cleave proteins at cleavage sites (Saxová et al., 2003) after they have been marked for
degradation, usually by appending poly-ubiquitin chains, a cascade-like process initiated
by ubiquitin activating enzymes (Buetow and Huang, 2016; Grice and Nathan, 2016).
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Figure 1.1: Cytosolic and nuclear proteins are degraded by the proteasome into peptides.
The transporter for antigen processing (TAP) then translocates peptides into the lumen
of the endoplasmic reticulum (ER) while consuming ATP. MHC class I heterodimers wait
in the ER for the third subunit, a peptide. Peptide binding is required for correct folding
of MHC class I molecules and release from the ER and transport to the plasma membrane,
where the peptide is presented to the immune system. TCR, T-cell receptor.

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer
Nature, Making sense of mass destruction: quantitating MHC class I antigen presentation,
Yewdell, J., Reits, E. & Neefjes, J. (2003)
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The proteasome complex consists of several subunits, which carry out important func-
tions (Bard et al., 2018) like binding to ubiquitinated proteins (ADRM1, Husnjak et al.
(2008)), ATP-mediated unfolding of proteins (PSMC1-PSMC6, Martin et al. (2008)) and
cleavage of the substrate (20S core, Zwickl et al. (1999)). The proteasome is shaped like
a tunnel (Groll et al., 1997) and the interior of that tunnel provides a finely controlled
environment to facilitate cleavage of the substrate (Borissenko and Groll, 2007).

Recent findings suggest that proteasomes also splice peptides generated from the same
protein. These proteasome-generated spliced peptides account for about one-fourth of the
entire HLA class I immunopeptidome in terms of abundance (Liepe et al., 2016).

After proteasomal degradation, the resulting peptides have a length of about 3 to 25
amino acids (Kisselev et al., 1999). Most of them are further processed to amino acids
and used for protein biosynthesis (Vabulas, 2007). However, some peptides are, possibly
after further processing (Reits et al., 2004), translocated into the endoplasmatic reticulum
and loaded onto HLA molecules.

1.1.2 Loading of peptides onto HLA molecules

The translocation of cytosolic peptides into the endoplasmatic reticulum is facilitated by a
specialized hetero-dimer called the transporter associated with antigen processing (TAP,
(Abele and Tampé, 2004)). It is ATP driven (Androlewicz et al., 1993; Neefjes et al.,
1993; Shepherd et al., 1993) and mostly transports peptides with a length between 8 and
16 amino acids (van Endert et al., 1994), although peptide lengths of 6 to 30 amino acids
have also been reported (Koopmann et al., 1996). Peptides with aromatic, hydrophobic or
positively charged amino acids near the C-terminus are preferred (Uebel et al., 1997), but
the TAP complex lacks any true peptide-specificity (Androlewicz and Cresswell, 1994).

Formation of peptide-loaded HLA molecules (also called MHC I in other vertebrates)
is a complex process and involves many steps (Bouvier, 2003): Newly synthesized MHC
I α chains are translocated to the ER and associate with Calnexin (Degen and Williams,
1991). After binding of β2-microglobulin, Calnexin dissociates and the MHC I chains form
the so-called peptide-loading complex (Murphy, 2017), consisting of TAP, the oxidoreduc-
tase ERp57, calreticulin and tapasin (Blees et al., 2015). Through a process called peptide
editing, weakly bound peptides on HLA molecules are exchanged for peptides with higher
affinity (Fisette et al., 2016). Binding of peptides with sufficiently high affinity leads to
disassembly of the peptide-loading complex and the loaded HLA molecules are ready for
transport to the cell surface. Figure 1.2 shows a model of the peptide-loading complex.

The genes encoding for most HLA molecules are very polymorphic (see section 1.2) and
differ in their binding affinity to different peptides. Peptides loaded onto HLA molecules
typically have a length of about 8-11 amino acids (Rist et al., 2013), but peptides up to 33
residues have been observed (Stryhn et al., 2000). Peptide binding to HLA often depends
on anchor residues (Grey et al., 1995), and computational software exists that predicts
HLA allele specific binding affinity (O’Donnell et al., 2020; Reynisson et al., 2020).

3



Figure 1.2: The model of the PLC editing module docked into the cryo-EM density
(center) highlights important interactions between the ER chaperone network and the
MHC-I client. a-e, Interactions of calreticulin and ERp57 (a), MHC-I heavy chains and
tapasin (b), calreticulin and MHC-I heavy chains (N-core glycan) (c), calreticulin (acidic
helix) and tapasin (C-terminal domain) (d), and tapasin (C-terminal domain) and MHC-I
heavy chains (α3) (e).

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer
Nature, Structure of the human MHC-I peptide-loading complex, Blees, A., Januliene,
D., Hofmann, T. et al. (2017)
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1.1.3 Transport of the HLA/peptide complex to the cell surface

As other transmembrane surface proteins, peptide-loaded HLA molecules bud as COPII-
coated vesicles from the ER membrane and are transported to the ER/Golgi intermediate
compartment (ERGIC) and then via the Golgi apparatus to the cell surface (Adiko et al.,
2015; Barlowe and Miller, 2013). The C-terminal amino acids valine or alanine act as
export signals (Cho et al., 2010) and HLA molecules with suboptimally bound peptides
are recycled between the ER and Golgi (Hsu et al., 1991). Inside the Golgi apparatus,
glycans on the surface are modified (Wolfert and Boons, 2013). The glycosylation pattern
has been shown to be important for immune function (Ryan and Cobb, 2012). Following
glycan modifications at the Golgi apparatus, transport to the cell surface is facilitated
by CD99 (Sohn et al., 2001). Once on the cell surface, HLA molecules can be recycled
through endosomal internalization (Montealegre and van Endert, 2019).

The macro- and microeconomics of antigen presentation are complex: Measured on
L929 cells, to maintain 2.6 × 109 proteins, each cell’s 6 × 106 ribosomes produce around
4× 106 proteins per minute. The total number of proteasomes in a cell is around 8× 105,
each degrading about 2.5 substrates per minute. Focusing on a single peptide, degradation
of 2000 substrates on average is required to result in a single HLA molecule with that
peptide on the cell surface (Princiotta et al., 2003).

In total, the reported median number of HLA molecules per cell ranges from about
5000 to 150000 (Schuster et al., 2017) and up to 3 million (Lanoix et al., 2018), allowing
for up to 30000 different peptides to be presented on the cell surface (Kuznetsov et al.,
2020).

1.2 Molecular structure of HLA molecules and nomen-
clature of HLA alleles

HLA class I molecules are heterodimers consisting of a heavy chain (α) and a light chain
called β2 microglobulin (Li et al., 2016). The α chain consists of three domains, an
immunoglobulin-like domain near the cell membrane and two other domains that to-
gether form the peptide binding groove. Only the α chain is encoded by the MHC gene
cluster and polymorphic. The β2 microglobulin is non-covalently attached to the α chain
and is not involved in peptide-binding and also does not have a transmembrane domain
(Bjorkman et al., 1987). Figure 1.3 shows the 3-dimensional structure of an HLA class
I molecule consisting of the α chain (blue), the non-covalently bound β2 microglobulin
(orange), and a bound peptide (red).

The molecular interactions that facilitate peptide binding are complex (Rammensee
et al., 1993b): The peptides are held in place by the free carboxy- and amino termini
at both ends of the peptide. Synthetic peptides lacking these terminal groups fail to
bind in a stable manner to HLA molecules (Bouvier and Wiley, 1994; Murphy, 2017).
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Figure 1.3: Peptide-loaded MHC class I molecule. The α chain is shown in blue, β2

microglobulin is shown in orange, the bound peptide is shown in red. The image on the
left shows a view from the side, the image on the right shows a view onto the peptide
binding groove. PDB: 6P23 (Li et al., 2019)
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Figure 1.4: HLA nomenclature. Each HLA allele has a unique number denoted by up to
four sets of digits. Image taken from http://hla.alleles.org/nomenclature/naming.html,
accessed April 22, 2022.

Longer peptides are accommodated by bulging the peptide backbone or –less common–
by a protrusion mechanism (Murphy, 2017; Stryhn et al., 2000). The C-terminal amino
acid is usually hydrophobic or charged, and strong binding is typically facilitated by two
anchor residues (Ibe et al., 1996; Rammensee et al., 1993a).

The MHC genes are the most polymorphic genes in the human genome (Reche and
Reinherz, 2003; Robinson et al., 2017, 2019). In humans, there are three genes encod-
ing for HLA class I α chains, called HLA-A, HLA-B, and HLA-C (The MHC sequencing
consortium, 1999). The number of alleles for these genes is immense, with 6921 alle-
les for HLA-A, 8182 alleles for HLA-B, and 6779 alleles for HLA-C known as of June
2021 (Robinson et al., 2019). MHC genes are present in all (jawed) vertebrates (Klein
et al., 1993) and are most likely developed by gene duplication from a common vertebrate
ancestor (Nei and Rooney, 2005).

Historically, HLA molecules were serologically defined (Thorsby, 2009). Since 1968,
HLA nomenclature is standardized by the Nomenclature for Factors of the HLA System
(Marsh et al., 2010). HLA alleles follow the pattern HLA-X*Y:Z, where HLA- is the prefix
designating HLA alleles, X is the HLA gene (e.g. A-, B- or C for classical HLA class I
genes), Y is the allele group (digits roughly corresponding to serotypically defined HLA
antigens) and Z are digits to specify the specific HLA allele. Further fields separated by a
colon may denote synonymous DNA substitutions in the coding region, DNA substitutions
in the non-coding region and a suffix may be used to denote changes in expression. An
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example of a valid HLA allele according to this nomenclature is HLA-A*02:110:01:02N,
Figure 1.4 shows a graphical representation of the HLA nomenclature.

1.3 Development of cytotoxic T cells

T cells originate from a common lymphopoietic precursor in the bone marrow (Heinzel
et al., 2007; Serwold et al., 2009). These precursor cells migrate to the thymus, guided
by –among other factors– P-selectins and CCL25 (Gossens et al., 2009; Zlotoff and Bhan-
doola, 2011), where they undergo a series of selection steps (Klein et al., 2014), see figure
1.5.

Histologically, the thymus consists of a cortex and medulla region. Using standard
hematoxylin and eosin staining, the cortex appears darker, as it is the region of cell
proliferation and early differentiation, whereas a series of negative selection steps occurs
primarily in the medulla (Pearse, 2006).

T cell development has been most extensively studied in mice. Large differences
between the T cell development in mice and humans exist (Kumar et al., 2018; Mestas
and Hughes, 2004): For example, humans are born with a fully functional complement
of T cells (Burt, 2013), whereas mice are born lymphopenic (Min et al., 2003). Similarly,
the pool of naive T cells in mice is almost exclusively replenished from thymic output,
whereas the majority of human naive T cells is derived from peripheral T cell division
(den Braber et al., 2012).

Upon arrival in the thymus, commitment of the progenitor cells to the T cell lineage is
mediated by Notch1 signaling (Pui et al., 1999). These immature thymocytes undergo a
series of differentiation steps. These steps are characterized by the expression of different
receptors and surface molecules, most importantly CD3, CD4, CD8, CD25 and CD44
(Godfrey et al., 1993). Thymocytes at the beginning of this differentiation process are
called double-negative, because they lack both CD4 and CD8, as well as CD3 (Fowlkes
et al., 1985). Double negative thymocytes can give rise to two important T cell lineages:
The α:β T cells (Nikolić-Žugić, 1991), called after their T cell receptor consisting of an
α and a β chain, and γ:δ T cells (Adams et al., 2015), a minority T cell lineage which
neither expresses CD4 nor CD8 (Lew et al., 1986). In contrast to α:β T cells, γ:δ T cells
have innate immune functions (Beetz et al., 2008).

Similar to B cells, somatic VDJ recombination is responsible for the vast T cell receptor
repertoire (Schatz et al., 1992). In a first step, Dβ and Jβ genes are being recombined. In
a following step Vβ genes are concatenated to the DJβ fragment, resulting in a complete
gene of the β chain of the T cell receptor (Bassing et al., 2002). This newly formed β

chain is expressed together with a pre-α chain, forming the pre-T cell receptor (pTCR)
(von Boehmer and Fehling, 1997). Intracellular signaling eventually leads to expression of
the CD8 and CD4 receptors (Yamasaki et al., 2005), which act as co-receptors and bind
to constant regions of MHC class I and MHC class II molecules, respectively (Li et al.,
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Figure 1.5: Overall scheme of T-cell development in the thymus. Hematopoietic precur-
sor cells migrate from the bone marrow into the thymus, where they undergo a series of
differentiation and selection steps. Thymocytes at the beginning of these differentiation
steps are called double-negative (DN), because they lack both CD4 and CD8. During
maturation, the T-cell receptor is formed through VDJ-recombination. CD4 and CD8 is
expressed, and the thymocytes are now called double-positive (DP). These double-positive
cells undergo both positive- and negative selection: Cells failing to bind either MHC class
I or MHC class II undergo apoptosis, whereas cells that do bind to MHC class I or MHC
class II emigrate to the periphery after further maturation steps.

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer
Nature, T-cell development and the CD4–CD8 lineage decision, Germain, R. (2002). Fig-
ure caption modified from the original.
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2013).
After a series of proliferation steps, the VJ genes of the α chain genes start recombina-

tion to form a fully functional T cell receptor (Huang and Kanagawa, 2001). In contrast
to B cells, rearrangement is not a one-time process, but can occur until successful rear-
rangement has taken place (Petrie et al., 1993).

In this double-positive stage, positive selection and negative selection occurs (Klein
et al., 2014; Takaba and Takayanagi, 2017). To ensure that mature T cells can recognize
antigen, double positive thymocytes are positively selected, where cells failing to bind to
either MHC class I or MHC class II molecules undergo apoptosis (Surh and Sprent, 1994).
This process has shown to enhance repertoire recognition of foreign antigens (Mandl et al.,
2013). Negative selection also occurs during or after the double positive stage. In this step,
cells binding too strongly to MHC are destroyed, as they might elicit strong autoimmune
responses (Enouz et al., 2012; Klein et al., 2014).

1.4 Effector functions of cytotoxic T cells

T cells with a matching T cell receptor are able to bind to foreign epitopes and trigger
cytotoxic effector functions. Because accidental activation of cytotoxic T cells can have
devastating consequences (Liblau et al., 2002), this process is tightly regulated (Goronzy
and Weyand, 2008; Mustelin and Taskén, 2003): Binding of the TCR and CD8 to MHC
class I molecules is usually not enough to activate cytotoxic T cells (Bretscher and Cohn,
1970; Mueller et al., 1989), successful activation is dependent on co-stimulatory signals
from CD4+ T helper cells and professional antigen-presenting cells like dendritic cells
(Feau et al., 2012), for example via the release of IL-2 (Luckheeram et al., 2012; Ross and
Cantrell, 2018) and CD28 ligation (H Sepulveda and Dutton, 1999). Binding of the TCR
to MHC class I molecules without co-stimulation leads to T cell anergy (Schwartz, 2003).

Upon T cell activation, an intracellular signaling cascade (Smith-Garvin et al., 2009)
is triggered through phosphorylation of immunoreceptor tyrosine-based activation motifs
(ITAMs) on the TCR-associated protein-complex CD3 (Samelson et al., 1986) via the
tyrosine-protein kinase Lck (Barber et al., 1989).

Ligand-binding induces a series of rapid expansion (Curtsinger et al., 2003). The re-
sulting effector T cells have heterogeneous phenotypes and differ in their effector functions
(Han et al., 2011). Effector mechanisms are also broad, ranging from the release of inflam-
matory cytokines like IFN-γ and TNF-α (Bhat et al., 2017; Brehm et al., 2005), ligand-
mediated apoptosis through Fas/FasL (Kagi et al., 1994) and release of pro-apoptotic
molecules like perforins and granzymes (Trapani and Smyth, 2002). The time-span be-
tween TCR/MHC I binding and cell death ranges from 6 to 30 hours (Bhat et al., 2014).

After pathogen clearance, most of the effector T cells die through apoptosis, but a
small fraction of about 5% differentiates into memory T cells (Cui and Kaech, 2010;
Williams and Bevan, 2007), an important constituent of T cells-based adaptive immunity.
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Chapter 2

Bayesian Data Analysis

The publications in section 3 rely on a branch of statistics called Bayesian statistics, whose
defining property is the description of model parameters using probability distributions.
I will introduce the main idea behind Bayesian statistics first, before contrasting it to
classical (hereafter called frequentist) statistics, which is a branch of statistics most com-
monly taught in statistics courses. In the following sections, I will highlight the Bayesian
workflow, with special consideration to model testing. The following sections will also
introduce Pareto-smoothed importance sampling, a method used to estimate model per-
formance on unseen data without refitting the model, and average predictive comparisons,
which can be used to make the output of some statistical models more easily interpretable.

2.1 Bayesian statistics

2.1.1 The notion of probability

Before describing Bayesian statistics in further detail, it might be helpful to take some
moment to reflect what probability is. Perhaps surprisingly, there is no universal “correct”
definition of probability, the notion of probability depends on the context and can mean
different things. “From a purely abstract, mathematical perspective, probability is simply
a positive conserved quantity that can be distributed across a given space – in particular
it does not necessarily refer to anything inherently random or uncertain.” (Betancourt,
2018). This is the so-called axiomatic interpretation of probability, famously outlined by
Kolmogorov (1933), who laid the foundations of modern probability theory.

However, when statisticians talk about probability, they usually do not refer to the
abstract mathematical definition, but use the term to describe uncertain events. The
perhaps easiest of these more practical interpretations of probability is the Laplacian
definition of probability, which defines the probability of an event as the ratio of the
number of favorable cases to the number of all cases possible (Laplace, 1814). The scope
of this interpretation of probability is quite limited: It requires that the number of all
possible outcomes can be enumerated, and that they are equally likely (otherwise we run
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into a circular argument).
Another interpretation of probability, that also covers events in which the number of

all possible outcomes is not known in advance, is the so-called frequentist definition of
probability, which interprets probability as the frequency of occurrences in a (hypotheti-
cally) infinite number of random trials (Venn, 1888). But what about events that do not
fit into the framework of repeated random trials? Can we reason about the probability of
the earth getting destroyed by an asteroid? This is related to the famous sunrise problem,
introduced by Laplace (1814) to show limitations of inductive reasoning. In cases like
this, it might be helpful to adapt a Bayesian interpretation of probability, that is more
loose and focuses on using probability (in the mathematical sense) as a way to quantify
uncertainty (Cox, 1946; de Finetti, 1974; Savage, 1972).

It should be noted that the concepts of the Bayesian and frequentist interpretation of
probability do not directly map to Bayesian and frequentist inference, e.g. we frequently
employ frequentist interpretations of probability in Bayesian models when talking about
calibration or when viewing parameter priors or posteriors as giving information about
what is known about the “true” parameter values (Gelman and Hennig, 2017). It is im-
portant to keep in mind that these distinctions are not merely philosophical, but have
fundamental implications on the way statistical models are built in practice. In partic-
ular, viewing model parameters as fixed but unknown quantities (corresponding to the
frequentist interpretation of probability) leads to convenient theoretical guarantees (Ney-
man and Pearson, 1933), whereas viewing model parameters as uncertain quantities that
are described probabilistically allows for a workflow of repeated cycles of model inference,
model critique and model improvement (Gelman et al., 2020).

The Bayesian interpretation of probability is sometimes criticized as “subjective”, in
the sense that, compared to the frequentist interpretation, it does not “allow locating
probabilities in an objective world that exists independently of the observer” (Gelman
and Hennig, 2017). This point is addressed in greater detail in the section 2.4.

2.1.2 Bayes’ theorem

Bayesian inference is named after Thomas Bayes, an English mathematician and pastor.
His work “An essay towards solving a problem in the doctrine of chances.” was published
posthum in 1763 and describes a special case of what is today known as Bayes’ rule or
Bayes’ theorem.

Bayes’ theorem is a way to invert conditional probabilities: Consider two random
variables A and B. The probability of B, given that A occurred can be written as p(B|A)
(”probability of B given A”). If one were interested in the probability of A given B instead,
it is possible to use Bayes’ rule to invert this conditional probability:

p(A|B) =
p(B|A)p(A)

p(B)
(2.1)
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In introductory statistics textbooks, Bayes’ rule is often introduced using the example
of a diagnostic test. Assume a diagnostic test is performed with the following properties:
If a person is affected by the tested disease, the test shows a correct positive result in 99%
of the cases, when the person does not have the disease, the test shows a false-positive
result in 5% of the cases. The disease is quite rare, with a frequency of 0.3% in the
population. Given a positive test result, what is the probability that a person does have
this disease?

The result to the above question can be calculated by plugging in the appropriate
values into Bayes’ theorem:

p(ill|positive) = p(positive|ill)p(ill)
p(positive)

(2.2)

where p(positive|ill) is 99%, p(ill) is 0.3% and p(positive) can be calculated by com-
bining the probability of true- and false positive results:

p(positive) = p(positive|ill)p(ill) + p(positive|healthy)p(healthy) =

0.99× 0.003 + 0.05× 0.997 ≈ 0.053 (2.3)

Plugging in all the values into the Bayes’ rule gives:

p(ill|positive) = 0.99× 0.003

0.053
= 0.056 (2.4)

A probability of about 5.6% given a positive test result might seem low at first, but
can be understood in the context of the disease being rare compared to the false positive
rate.

It is important to realize that the application of Bayes’ rule in Bayesian statistics is not
as narrow as presented here: Instead of applying Bayes’ rule solely to event probabilities,
its definition can be expanded to model parameters and observed data.

Consider being interested in the frequency of an HLA allele in a population. You are
taking a random sample from the population of interest and perform genetic sequencing.
Out of 100 samples, 20 persons have that allele. Denote the observed data as y, and the
allele frequency as θ. Bayes’ rule can then be written as:

p(θ|y) = p(y|θ)p(θ)/p(y) (2.5)

In Bayesian statistics, each individual component of Bayes’ rule has a special name:
p(θ|y) is called the posterior, because it reflects the information about the model param-
eter(s) conditioned on the observed data. p(y|θ) is called the likelihood and describes the
probabilistic relationship between the observed data and the model parameters. Part of
the process of model building is mapping the complexity of the real world to a simpler
mathematical model, usually using probability distributions as building blocks. p(y) is
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called the evidence and is the probability distribution of the data. It can be calculated
as the integral of the likelihood over all possible parameter values. In most real-world
applications, calculating this integral is computationally infeasible, so sampling based
approaches are used instead that generate samples from the posterior distribution.

Therefore, the application of Bayes’ rule in Bayesian statistics deviates in two impor-
tant aspects from the application of Bayes’ rule in most introductory statistics books:

1. It is not limited to simple event probabilities, but is applied to data and model
parameters.

2. The plugged in values are not limited to probabilities, prior and likelihood are often
probability distributions.

2.1.3 A primer in Bayesian modelling

Equation 2.5 also holds when θ is not a single parameter, but a collection of parameters
(similar to how y is the whole observed data and not just a single data point). Consider
the following example:

The efficacy of an antitumor treatment is studied in mice. In total, the sample consists
of 10 mice in the control group, and 10 mice in the treatment group. After a set number
of days, the mice are killed and the tumor mass is measured for each animal.

One way to quantify the treatment effect would be to model the tumor mass for each
mouse as coming from a normal distribution with mean µi and standard deviation σ.

yi ∼ Normal(µi, σ) (2.6)

µi = α + βxi (2.7)

The mean µi is then modelled as the sum of two parameters: A general intercept α,
which denotes the “baseline” tumor mass for both groups, and a treatment effect β, which
denotes the mean tumor mass difference between the treatment and control group. xi is a
binary indicator variable with xi = 0 if mouse i belongs to the control group, and xi = 1

if mouse i belongs to the treatment group.
Equation 2.6 is the likelihood (p(y|θ)), as it is a probabilistic description of the data,

given the model parameters. What’s missing for full Bayesian inference is the prior.
The prior can serve many purposes, for example to regularize estimates or induce spar-

sity. For the purpose of introducing Bayesian inference I settle for a weakly-informative
prior, which can be thought of as a relatively safe default choice in a lot of situations.
The goal of weakly-informative priors is to rule out unreasonably large estimates, but still
allow for the estimates to be mostly governed by data. If we expect the mean tumor mass
in the control group to be about 20 g, but unlikely 10 g or 30 g, a weakly informative
prior on α could be α ∼ Normal(20, 5). This is because the normal distribution allocates
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most (about 95%) of the probability mass within 2 standard deviations, so values above
30 g or below 10 g would be unlikely. Similarly, if we expect the treatment effect to be
on the order of about 20% (e.g. from 20 g to 15 g), a weakly informative prior could
be something like β ∼ Normal(0, 5). Note that we still center the prior for β on 0 to
convey the expectation that we are skeptical about any possible treatment effect. For the
standard deviation, we chose a positively constrained normal distribution with standard
deviation 10, which allows for considerable differences in tumor mass between the animals.

α ∼ Normal(20, 5) (2.8)

β ∼ Normal(0, 5) (2.9)

σ ∼ Normal(0, 10) (2.10)

The prior is the joint distribution of all the parameters, but in practice it is often
convenient to define the prior in terms of marginals (that is, a distribution for α and a
distribution for β), because it can be unwieldy to reason about the joint distribution of
α and β.

This section is only intended as a short introduction, and although section 2.4 ex-
pands on the prior model a bit more, an in-depth treatment of prior modeling is given in
Betancourt (2021).

Instead of relying purely on mathematical notation to set up a model, diagrams can
be helpful to clarify the relationship between different parameters. In these diagrams,
the observed data y is often shown at the bottom, with the dependency graph of the
parameters and link functions shown above. Figure 2.1 shows a diagram of the model
described in equations 2.6 to 2.10.
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Figure 2.1: Diagram of the model described in equations 2.6 to 2.10. Reading from the
bottom up, the observed data y is modelled as coming from a normal distribution with
mean µi and standard deviation σ. The mean for each sample µi is calculated as the sum
of an intercept α and a treatment effect β. In this model the intercept α can be interpreted
as the mean tumor mass in the control group (because for the control group, xi = 0 and
therefore µi = α), and the treatment effect β can be interpreted as the difference in tumor
mass between the control group and the treatment group. Diagram template from Bååth
(2016).

2.2 Frequentist statistics

It is well possible to learn Bayesian statistics without a background in frequentist statistics.
One might even argue that it is easier this way, since some concepts common in frequentist
statistics do not apply in Bayesian settings.

An example for this is the inclusion of “non-significant” variables in a regression model.
Common guidelines suggest excluding any non-significant variables in a regression model
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in order to reduce the standard error of the estimates. This goes against good practice
in a Bayesian setting, because the fact that the data is consistent with no effect of the
predictor on the outcome does not necessarily mean that it is not useful for prediction.
In general, including additional predictors in a regression model does not harm inference
in a Bayesian setting, because all correlations between parameters are captured in the
posterior.

In a perhaps more extreme example, some authors even advocate against checking
model assumptions, because “using the data twice” might lead to inflated type I errors
(Rochon et al., 2012). On the other hand, model checking is a cornerstone of the Bayesian
workflow and necessary for building good statistical models (Gelman et al., 2020).

Nevertheless, it might be beneficial to also briefly introduce frequentist statistics,
simply because this is what is taught in most statistics classes and what most people
applying statistics are used to. Being able to build upon something may help to better
understand the differences in Bayesian and frequentist thinking.

2.2.1 Null hypothesis significance testing

A statistical method which is often used to test scientific hypotheses is null hypothesis
significance testing (NHST). In NHST, the researcher does not use the observed data
to make inferences about the hypothesis of interest directly. Instead, a null hypothesis
is formed, which typically conveys the assumption that none of the measured quantities
have an effect on the outcome. This null hypothesis is compared to a (often favored)
alternative hypothesis, that is assumed to be a better description of the data generating
process. Both null hypothesis and alternative hypothesis are mathematical models that
describe how the observed data could have been originated in a probabilistic fashion,
where the alternative hypothesis is often the negation of the null hypothesis.

By calculating the probability of the observed data under the null hypothesis, the
researcher tries to make deductions about the real world: If the probability of the observed
data under the assumption of the null hypothesis being true is low, this is taken as
evidence that the null hypothesis is not a good description of the real world, which is
usually interpreted as evidence for the alternative hypothesis.

In this aspect, NHST is like a thought experiment: One imagines a state of the world
as being true (the one formulated in the null hypothesis) and compares how compatible
this state is with the observed data.

The probability of observing the observed (or more extreme) data, under the assump-
tion of the null hypothesis being true is called the p-value.

2.2.2 Common mistakes in interpreting p-values

From the above description, common mistakes in interpreting p-values become apparent.
In the following, common misinterpretations of p-values are listed, along with a description
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of why these statements are false. The p-value is not:

• the probability of the null hypothesis being true.
The p-value is the probability of observing the observed data under the assumption
that the null hypothesis is correct. As it is the probability of observing data, it is
not the probability of the null hypothesis being true.

• a statement about the favored, alternative hypothesis.
As the p-value is strictly conditioned on the null hypothesis being true, it does not
make statements about other hypotheses. For example, the mathematical model
behind the data generating process could be a poor description of the real world.
In this case, low p-values would occur even in the absence of any effect. Similarly,
there might be several possible alternative hypotheses, and rejection of the null
model does not necessarily mean that the favored alternative has to be correct.

• the probability that the observed result has occurred by chance.
The p-value is calculated under the assumption that the null hypothesis is correct.
However, even in the absence of any treatment effect the underlying mathematical
model can still be a poor description of the real world. Often, there are also several
possible phrasings of the idea of “no effect”, which means that the mathematical
model underlying the null hypothesis might just be one of many and other equally
reasonable explanations would result in different p-values.

• a summary for the magnitude of an effect.
The p-value is only a statement about the compatibility of the observed data with
the null hypothesis. Being incompatible with the null hypothesis does not mean that
the difference between groups has to be large: For example even small, biologically
irrelevant differences might result in very low p-values if the data-generating process
is not a good description of the data. Even if the null model is a good description
of the real world, low p-values can still occur when the data is large. In this case,
even small, meaningless deviations from the null model can result in extremely low
p-values.

2.2.3 Issues with p-values and null hypothesis significance test-
ing

Aside from these issues of interpreting p-values, there are also several, more fundamental
issues when using null hypothesis significance testing as a method to gain insight about
the real world: The formal view of the p-value as a probability conditional on the null
is mathematically correct but typically irrelevant to research goals (Gelman, 2013). Re-
searchers are usually not concerned about the probability of observing certain data under
the assumption of some hypothesis being true, but want to gain insight into how strong
the hypothesis is supported by the observed data. In mathematical notation, the former
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can be expressed as p(D|H), that is the probability of data given the hypothesis, whereas
what is usually desired is p(H|D), that is, a statement about the hypothesis of interest,
given the data (conditioned on a mathematical model).

Other issues exist: An important property of p-values is often ignored, which is that
they are dependent on the data collection process. As they are the probability of observing
the observed data, it is crucially important how the sampling procedure is framed into a
mathematical model (in statistical terms called the sampling distribution). The p-value
for evaluating the null hypothesis of ”a coin is unbiased” when the stopping criterion is
to throw the coin 50 times is different from the p-value obtained by the stopping criterion
”throw until the coin showed heads 25 times”. It is easy to construct examples in which
the p-value under one data collection procedure is significant (using a typical threshold of
0.05), while being far away from that threshold under another data collection procedure,
even if the observed data is identical in both cases.

The dependence on p-values on the data collection procedure has important implica-
tions on the scientific process: Consider a researcher who, after collecting data, obtains
a p-value of 0.1. Still being unsure about the scientific relevance of this finding, the re-
searcher then decides to collect more data. The eventuality of collecting data was not
accounted for in the first analysis, so the obtained p-values lose all meaning. The effect of
optional stopping on statistical inference through p-values is described in Pocock (1983),
and the author shows that with just two additional data collections, the probability of
obtaining statistical significance when the null hypothesis is in fact true in their exam-
ple is 11% (instead of 5% using a significance threshold of 0.05). The point is not that
researchers might cheat the system to achieve statistical significance, but that collecting
more evidence in light of unclear data is such an integral part of science that statistical
procedures should easily allow that, even when not initially planned.

Statistical issues of using p-values for scientific questions are well described in the
literature, for selected examples along with some opposing views see: Altman and Bland
(1995); Gelman (2013); Gelman and Stern (2006); Greenland (2019); Ioannidis (2005).

2.3 Advantages and disadvantages of Bayesian statis-
tics

The interpretation of probability as a means to express partial knowledge about a sys-
tem, as opposed to the definition of probability based on repeated sampling, has several
advantages:

• Bayesian statistics provides a full, probabilistic description of all model parameters,
along with their correlation and uncertainty
This does not only provide more information about the main quantity of interest in
many data analyses, but also provides an extremely useful way of model checking:
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By repeatedly sampling from the likelihood function for different model parameter
values, it is possible to generate replicated data sets from a probabilistic model.
In other words, instead of going from the usual direction of data to parameter
values, the information about the distribution of model parameters can be used to
generate new data under the model’s assumptions. This method is called posterior
predictive check (Gabry et al., 2019). By comparing these simulated data to the
actual observed data it is possible to implicitly check the assumptions of a statistical
model. This has the advantage over explicit checks of being more sensitive and
exhaustive: Statistical models make many assumptions, some of which cannot be
quantified easily. By carefully analyzing in which ways replicated data deviates from
the observed data, it is possible to gradually improve a model until it is consistent
with the observed data in the degree that is necessary for the model to be useful.

• The results of Bayesian inference are not dependent on the stopping criterion of the
data collection procedure
As the Bayesian definition of probability does not rely on hypothetical repeated
sampling, the results only depend on the actual observed data and not on hypo-
thetical unobserved data. This makes it possible that a researcher might collect
data, determines that the gathered evidence is not sufficient and gathers more data
later on. While frequentist statistics allows for data collection procedures like this
if they are specified in advance, this is seldom the case in real world scenarios. It is
important to note that this is only true when the decision criterion is the width of
the posterior distribution. Using other stopping criteria, e.g. the tail probability of
a parameter being larger/smaller than 0, still biases estimates towards that criterion
(Deng et al., 2016; Kruschke, 2013).

• Bayesian statistics allows for the principled integration of prior information.
Prior information is an integral part of science and might come in the form of prior
studies or additional sources of information, e.g. a mutation in a viral genome is
more likely to be an HLA escape mutation if we know that an epitope around that
position in the multiple sequence alignment is restricted by that particular HLA
allele. Making use of prior information does not always mean to gather additional
data, prior information almost always exist in the form of physical constrains and
general knowledge about the problem structure. For example, the proportion of lym-
phocytes in a tissue sample of a tumor is unlikely to exceed 50%, or the transmission
speed of a neuron will not exceed the speed of light. While seemingly unimportant,
ruling out these extreme values in a statistical model provides a useful way to get
more stable estimates and greatly reduces the probability of overestimating effect
sizes (type M error) or estimating the direction of an effect in the wrong direction
(type S error) (Gelman and Carlin, 2014).

• In Bayesian statistics it is easy to include data containing uncertain measurements
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or missing information
Not only model parameters can be quantified using probability distributions, it
is also possible to treat data as uncertain, e.g. because of measurement error or
completely missing data values. In this case, the uncertainty of the measurements
directly translate into uncertainty of the estimates.

• Bayesian statistics focuses on quantification of uncertainty. Bayesian statistics
places a strong focus on quantifying the magnitude of an effect. A probability
distribution conveys more (relevant) information than a point estimate with con-
fidence intervals. Compared to NHST, “how much and how uncertain” is usually
a better data summary than a binary rejection/non-rejection of a null hypothesis.
There is the possible objection that NHST also provides point estimates along with
confidence intervals, but these are not statements about inferential uncertainty, but
bounds defined under the assumption of repeated sampling. Therefore, a Bayesian
posterior distribution, summarized as a 95% posterior interval, usually provides
more relevant information.

Despite these advantages, Bayesian statistics is also confronted with a series of draw-
backs, which are the focus of current research efforts:

• Bayesian inference relies on approximate Markov chain Monte Carlo methods and
is often subjected to numerical difficulties.
In most real world scenarios, closed-form solutions of a Bayesian posterior distribu-
tion do not exist. Therefore, Bayesian inference relies on Markov chain Monte Carlo
methods, which generate samples from the posterior distribution. The drawback of
these methods is that it is sometimes difficult to generate representative samples
from the posterior distribution due to numerical difficulties. This can occur for
example due to strongly correlated parameters or tight “ridges” in the posterior
geometry. For these reasons, diagnostic checks have been developed that help to di-
agnose sampling related issues. Nevertheless, a significant proportion of time spent
building Bayesian models is working around sampling related issues.

• Running large models may be computationally expensive.
As Bayesian inference relies on gradient based methods, obtaining samples from
the posterior involves repeated gradient calculations, which can be computationally
expensive for models with many parameters. Additionally, Markov Chain Monte
Carlo is hard to parallelize, therefore it is not straight forward to tackle complex
models with more computing power.

• Bayesian statistics is a quickly moving field.
Many algorithms and computational tools have only been developed in recent years,
and best practices have not been formed conclusively. This makes it difficult to keep
up for people who are primarily interested in using statistics as a research tool.
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2.4 Bayes and Subjectivity

The need to specify a prior distribution over the model’s parameters is sometimes met with
unease, out of concern for making a statistical analysis become subjective (Gelman and
Hennig, 2017). Indeed, one of the main objectives of science is to learn something about
the objective reality we live in, so what place do apparently “subjective” procedures have?
Wouldn’t it be possible to choose a prior distribution in such a way that any analysis could
support any research hypothesis? I believe this fear is unfounded, for several reasons:

The prior is not the only model component where a researcher has to make
conscious decisions

The guiding principle of statistical modeling is to map relevant aspects of reality onto a
simpler model. The simpler model allows drawing conclusions that can then be mapped
back to the real world. By design, this means that a statistical model is a (non-reversible)
abstraction of the real world and many possible such mappings exist. Any statistical
procedure therefore necessarily has to make some assumptions, e.g. which variables to
include in a model, how to handle outliers or how to model missing data. The prior is
not special in that regard.

Adding prior information can help to better describe the observed data

Bayesian and frequentist methods alike are often likelihood-based, that is, they formulate
a probabilistic description of the data given the model parameters. And while it is true
that the prior can only be understood in the context of the likelihood (Gelman et al., 2017),
the likelihood can also be understood as being embedded into the proper context through
the prior. Or more clearly: The prior restricts the effect of the likelihood to a region of
reasonable parameter values and therefore lets it match objective reality more closely by
removing obvious mismatches between the model and the real world. I would argue that a
model that includes prior information is actually more objective than a model which does
not, simply because it is a better description of the real world. Prior information does not
always have to mean expert knowledge, even information about the order of magnitude
of measurements can be useful information. Under these considerations, I think it is
unjustified to hold the prior to a different standard than the likelihood. One might object
that in contrast to the prior, the choice of a particular likelihood function can be validated
in the limit of infinite data, but arguing based on the hypothetical existence of infinite
data does not seem like a strong counterargument to the observation that both the prior
and the likelihood can be somewhat arbitrary.

A prior does not need to be subjective

When methods are being labelled as subjective or objective, these terms generally do not
follow a precise definition. Most often, the word subjective is used to describe methods
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that rely on information not included in the data.
Bayesian statistics can follow different schools of thought. A “subjective” interpreta-

tion of Bayesian statistics follows the idea of de Finetti (1974) that probabilities are based
on personal belief and can be quantified by considering how a rational decision maker
would bet on the occurrence of an event. On the other extreme, “objective Bayesians”
try to set up objective prior distributions by focusing on the idea that the prior should
convey no information. A popular example of such a prior is Jeffrey’s prior (Jeffreys,
1946), which defines a prior in such a way that it is invariant to all transformations of a
parameter.

However, a prior does not necessarily have to be based on the concept of “no informa-
tion”. The popular R-package rstanarm (Goodrich et al., 2020) uses priors that depend
on the data by default, e.g. for a regression model, the prior on the regression coefficients
is βk ∼ Normal(0, 2.5sy/sx), where sy is the standard deviation of the outcome and sx is
the standard deviation of the predictor xk. This prior is not subjective in the sense that
it is not based on any information but the observed data.

Objective methods often only appear objective

One may object that such a rule is arbitrary, but so are estimators in frequentist statis-
tics: Estimators in frequentist statistics usually follow the principle of unbiased minimum
variance. These are certainly reasonable properties, but the unbiasedness does not come
for free, as these estimators typically have higher variance than methods that introduce a
small bias. From a practical perspective, being right on average (this is what it means to
be unbiased) does not have to be best if all we have is a single dataset. This can be seen
from the recent increase in popularity of regularization methods in frequentist statistics,
like Lasso (Santosa and Symes, 1986; Tibshirani, 1996) or ridge regression (Hoerl and
Kennard, 1970). These methods produce biased estimates in the sense that estimates
are pulled towards 0, which is a desirable feature in many applications. Their popularity
shows that estimators do not necessarily have to be unbiased, and that the criterion of
unbiased minimum variance is just one of many possible trade-offs.

A similar trade-off is the focus on the type I error in null hypothesis significance
testing. It is possible to show that certain hypotheses tests are optimal (Robinson, 1979),
that is, they provide the minimum possible type II error (failing to reject a null hypothesis
that is actually false) while controlling for the type I error (rejecting a null hypothesis
that is actually true). These methods are objective in the sense that they are optimal
when the objective is to minimize the type II error while controlling for the type I error,
but this requires that (just) controlling the type I error is desired in the first place.
When effect sizes are small and the variance between measurements is large, like it is
often the case in Biology, statistical significant results can often be in the wrong direction
and greatly overestimate an effect (Gelman and Carlin, 2014). A researcher is definitely
interested producing fewer estimates that are in the wrong direction, so the narrow focus
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on statistical significance is again just one of many possible trade-offs.
The example of unbiased estimators and type I errors in hypothesis tests share a

common problem: they try to decouple decision analysis and statistical analysis; or framed
differently, they imply certain preferences of decision-making. This is what makes them
appear to be objective: Under the implied cost-benefit profile, they are optimal decision
rules. Unfortunately, these implied preferences rarely match the actual preferences. This
means that it does not make sense to completely decouple a statistical analysis from
the decision-making process behind it. If a certain drug is known to have little to no
side effects, it might make sense to administer it even if the effectiveness is not shown
conclusively.

There is no statistics police

One might agree with the stance that it is not useful to label statistical methods as
subjective or objective, but that it is still helpful to follow a generally agreed upon set
of default tools that provide a “level playing field” for scientists, so that a scientist who
wishes to publish a certain finding cannot simply choose the method according to the
desired result. This view considers statistics as a “gatekeeper” to protect against scientific
misconduct. Methods should therefore allow for as little individual impact on the result
as possible.

There are two important issues with this view: The first is that even if we would
impose strict rules on which statistical methods to use, researcher’s degrees of freedom
would still be an issue. In fact, even when using statistical significance as a filter, flexibility
in data collection and analysis allows presenting anything as significant (Simmons et al.,
2011). It is simply impossible to impose such strict rules that a malicious actor would not
be able to find plausible evidence for any research hypothesis. Statistics therefore cannot
function as a gatekeeper to protect against scientific misconduct.

The second issue is that the idea of a single hypothesis that is being tested goes
against scientific reality. Research hypotheses rarely arise in a vacuum, they are the
result of previous hypotheses and explorative data analysis. If we view science as more of
an iterative process, adhering to strict rules therefore hides important elements of scientific
learning.

Guiding principles

Once we realize that objectivity is a weak criterion by which to select a statistical method,
is it time to despair and lose all hope? How do we make choices in data analysis when
all of them seem arbitrary? A starting point may be to reflect why “objective” methods
are so appealing: they limit individual impact. If a statistical procedure does not have
any tuning parameters, it is not possible to set them to the wrong value. If we limit
individual impact, it makes it less likely for a reviewer to disagree with our decisions. In
some aspects, this is the statistical manifestation of choice overload (Iyengar and Lepper,
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2000), a (controversial, (Chernev et al., 2015)) phenomenon in psychology.
I argue that one important aspect for the drive towards objectivity is the circumstance

that many statistical methods offer little additional information beyond the inference,
they are not testable. If the analysis is a black box, it makes sense to prefer methods
that have as few knobs to turn as possible. This leads to the first principle that one
could follow when choosing between several statistical methods: Use methods that provide
feedback on how well they worked for a specific analysis. This naturally leads to preferring
Bayesian models, because treating model parameters as probabilistic helps tremendously
with model checking.

A list of “guiding principles” I follow in my own work looks like this:

• Prefer methods that are testable. When we view statistical models as abstractions
of the real world, a useful model requirement is to explain the observed data. If a
model is unable to explain the observed data in some relevant aspect, this means
that the abstraction was too coarse, and we did not capture some important aspect
of the real world. While this is only a necessary (and not a sufficient) condition,
requiring that a statistical model explains the observed data already drastically
reduces the model space.

This does not mean that a model that does not describe the observed data well
cannot be useful, one could easily imagine a case were a model does not explain
the observed data but works fine on future data. However, there should also exist
a model that works well on observed and future data, so restricting ourselves to
models that do explain the observed data can be interpreted as a safety measure
against those models that work poorly on both observed and future data.

One possible concern when selecting models in this fashion is overfitting. When
iteratively searching for models that work well on the observed data, our design
decisions are driven by the observed data and models might perform poorly on
unseen, future data. This point is discussed in section 2.5.

• Fail fast. Prefer methods that are sensitive to misspecifications. For example when
comparing samples on the group level, it might make sense to build the model on the
layer of individual observations and aggregate the individual effects to group effects
later on, instead of estimating the group effects directly. This helps to make model
misspecifications become apparent more easily, for example because some individ-
uals systematically differ from others in the same group. This point is particularly
relevant for hypothesis testing, because the probability of the observed data is often
evaluated by calculating test statistics that summarize data sets by a single num-
ber. These reduced models have the advantage of being widely applicable, but the
drawback is that it is difficult to test them and find unexpected patterns in the
observed data.
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• Build models iteratively. Iterative model building is a cornerstone of Bayesian model
building. This point is addressed in section 2.5.

• Include as much relevant information as possible. Occam’s razor tells us to prefer
simple explanations. But when building statistical models, simplicity is often seen as
a disadvantage. For example, we often have to argue why certain relevant predictors
were not included, why we did not model non-response when analyzing a survey or
why we did not adjust for confounding variables. So why does statistics seemingly
go against the scientific ideal of simplicity? I believe this is a matter of perspective:
When we view models as abstraction machines that capture some aspect of actuality,
a “simple” model is a model that abstracts less. Unfortunately, the world is complex
and we understand little, so abstraction is a necessary requirement for a model to
be useful.

So how do we find the Goldilocks model, one that provides enough abstraction, so
we can understand what is happening, but is close enough to reality, so we can learn
something? A good starting point is usually to consider the information we want
to make use of and how we can include that information in a statistical model. As
an example, consider HAMdetector (section 3.1). When presented with the task of
identifying HLA-associated mutations, information can come in different ways: The
obvious source of information are the sequence counts, e.g. how often we observe
a replacement in hosts with and without that respective allele. But we also have
access to sequence data, so it is possible to infer a phylogenetic tree. Additionally,
we have (implicit) information of epitope binding affinity from epitope prediction
tools.

So how can we piece all of this information together? We expect mutations within
the boundary of a certain epitope to be more likely HLA-associated, so we use a
prior that allows us to model the expected degree of sparsity (the number of HLA-
associated mutations compared to the total number of alignment positions). The
phylogenetic tree tells us something about the relationship between the sequences, so
we adapt the likelihood to not treat all sequences as independent. In this way, each
piece of additional information helps us to come up with a suited model structure.

Including as much information as possible also helps with model testing. The more
we know, the easier it is to systematically test for discrepancies between the model’s
expectation and our knowledge. This makes it more difficult to build a model that
is consistent with all information, but also increases our confidence in the model if
we do find a model that is consistent with all of our domain knowledge.

• Prefer mechanistic models, sometimes even when you just care about prediction.
Statistical models have many use cases: Sometimes, a model is built to provide
predictions about the future. At other times, the goal of a model is to interpret the
inferred model parameters and learn something about the underlying process. Of
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course, these goals are not completely separate, sometimes we are interested in a
model that predicts as well and yields useful parameter estimates.

When the main goal is prediction, and we are lucky to have a lot of data, a popular
class of models are neural networks. This kind of machine learning approach is at-
tractive because these models are able to learn the model structure from the data.
For example when confronted with the task of identifying neutrophils in microscopic
images, we don’t have to explicitly include the properties of neutrophils (e.g. seg-
mented nuclei) in the model, it is enough to provide the model with examples of how
a neutrophil looks like. This approach is not without downsides however, because
they lack in interpretation, e.g. after fitting the model, it is difficult to learn how
neutrophils differ from other cells. The issue of interpretability is an active area of
research in the machine learning community.

There is another downside however, which is the required amount of data. Learning
the structure of a neural network is a difficult task and requires many data points.
Sometimes the advantages clearly outweigh the disadvantages, for example when
we cannot specify the required model structure because we do not know which
information to include or because we cannot list them all. This is often the case
in the field of computer vision. Including all properties of the objects a statistical
model needs to identify would be a laborious task. It is also brittle because objects
may look different from another angle, e.g. a cylinder is just a circle when viewed
from above. Models like neural networks are sometimes called non-parametric, not
because the models do not have parameters, but because the inferred parameters
do not have a direct interpretation.

So in which situations should we choose non-parametric methods, and when should
we use parametric approaches? The obvious situation in which we should use a
parametric model is when we care about the parameter estimates. But specifying
additional structure is also useful when all we care about is prediction: A model
that includes important prior information is usually more precise than a model that
does not have access to this piece of information.

When deciding between parametric methods, mechanistic models are often preferred
over more general models. Mechanistic models are models that include some mech-
anistic understanding of how the observed data may have come about. A good
example for this is the golf putting model in Gelman et al. (2020). When modelling
the probability of success in golf putting as a function of distance from the hole, we
could consider a logistic regression model of the form y = logistic(a+ bxj), where y
is the probability of success, xj is the distance from the hole, logistic is the logistic
link function and a and b are the model parameters.

This model does not include much information about the problem structure though,
and indeed logistic regression fits the observed data quite poorly. Another way to
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model this data is to try to include some mechanistic knowledge about golfing: One
can imagine a successful golf put as the result of two events: The golfer has to
hit the ball at the correct angle, and the golfer has to hit the ball with a certain
strength. A ball closer to the hole is easier to put than a ball further away because
the range of angles that would lead to the ball going inside the hole is larger.

Mechanistic models are useful because they are rooted in domain knowledge. If we
find such a model that fits the observed data, it is more likely for such a model
to generalize to future data than for a model that does not include mechanistic
information.

Another nice property of mechanistic models is that we can learn more from model
misfits: If a mechanistic model provides a poor fit to the data, this definitely means
that our understanding about the process of interest lacks some important piece of
information. If including some piece of information improves the model fit, we can
conclude that this additional input is an important factor for prediction. Parameters
of mechanistic models are also often easier to interpret (and allow for more precise
priors), because they are directly linked to the real world. For example just from
thinking about the problem it becomes obvious that a golfer has to hit the ball
within an interval of maximum 45◦, whereas the range of possible parameter values
for a and b are not directly apparent.

• Be skeptical by default. It is usually beneficial to use methods that are conservative
in their estimates, e.g. when constructing a prior with marginal distributions for
each parameter, it might make sense to use distributions that are centered around
0 for the effect size parameters. This makes a statistical model more skeptical by
default and helps to not overestimate possible effects.

• Keep the folk theorem in mind. The folk theorem of statistical computing (Gelman,
2008) states that problems with a statistical model often manifest as computational
problems, for example as convergence issues when using Markov chain Monte Carlo
methods. These computational problems often suggest changes in the model struc-
ture, e.g. re-parameterizing a model because of strong posterior correlations or
including additional prior information.

• Think about how the model is used later on. Different models are suited for different
applications and section 2.4 addressed the point that one drawback of strictly con-
trolling the type I error is that it implies a certain cost-benefit trade-off which might
not coincide with the actual intentions. Consider the area of preventive maintenance
in industry: Large machinery relies on constant service of its parts and while ser-
vicing is expensive, a complete failure might have disastrous consequences. When
building a statistical model to predict when to replace a component of a machine,
one might be presented with the scenario that measuring some properties of that
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component requires shutting the machine off, whereas other properties can be con-
tinuously measured using sensors. A model that includes all predictors might work
much better than a model that just relies on sensor data, but the cost-benefit trade-
offs are drastically different. Which model to build depends on the specific trade-offs
which can (and should) be included into the decision analysis.

2.5 Bayesian workflow

This section loosely follows the Principled Bayesian Workflow in Betancourt (2020).
The Bayesian workflow is iterative: Starting from an initial model, repeated cycles of

model building, model evaluation and model improvement are used to come up with a
model that is consistent with our domain expertise and can explain the observed data in
all aspects we care about. This section gives an example of this workflow: Starting with
the prior model, I introduce the concepts of prior push-forward checks and prior predictive
checks

Up until this point, all steps in the Bayesian workflow are applied before collecting (or
analyzing) any data. I then introduce Bayesian sample size calculation and experimental
design, which are useful to determine which and how much data to collect.

The next steps focus on model evaluation: Posterior predictive checks are used to
ensure that our model catches all relevant aspects of the observed data, and Pareto-
smoothed importance sampling can be used to compare statistical models with each other.
Once we are happy with the model, I briefly touch on general aspects of model visualization
and introduction average predictive comparisons, a method that can help to interpret
model parameters.

All these aspects of the Bayesian workflow are best explained with a specific example.
The goal of this example is to be simple enough to not require any deep domain knowledge,
while still being rich enough to illustrate all aspects of Bayesian modelling.

2.5.1 Example: Diabetes in dogs

The data presented in this example are entirely fictional and are not based on
experimental data.

As in humans, the hormone insulin is also produced in dogs by beta cells in the
pancreas. Insulin regulates the blood glucose level by increasing the intake of glucose
of other cells of the body. If beta cells do not produce enough insulin, e.g. after being
destroyed by an autoimmune reaction, the blood glucose levels cannot be sufficiently
controlled and chronic hyperglycemia leads to the classic symptoms of diabetes: increased
thirst, frequent urination, weight loss and increased hunger.

Diabetes in dogs can be treated in the same way as in humans: Injections of insulin,
which has been extracted from pig pancreas or produced by recombination, lowers the
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blood glucose concentration and –together with dietary adjustments– help to treat dia-
betes. Unfortunately, administration of insulin does not always reduce the blood glucose
concentration reliably and a switch to a different insulin product might be necessary.

Imagine you are developing a new insulin product to treat canine diabetes. Because
your insulin is recombinant and much closer to the insulin naturally present in dogs, you
expect it to have a greater efficacy than the competitor product, which is known to lower
blood glucose levels in 50% of the treated dogs. A clinical relevant increase in efficacy
over the competitor product is expected to be 5%.

2.5.2 Conceptual analysis

The first step of any statistical analysis is conceptual analysis. What are the relevant
aspects our model needs to capture? What are the units of measurements? In this par-
ticular example, we care about the efficacy of the developed insulin product compared
to the competitor product. The units of measurement are individual dogs, and the out-
come is therapy success or failure. One could also imagine a continuous outcome, e.g. by
measuring the reduction in blood glucose level after administration of the insulin. This is
usually advantageous because it does not discard information (and we can always binarize
the output later on), but for this example we assume that the output is therapy success
or failure defined by some clinical criterion.

We then have to decide what measurements to include. Usually, this is constrained
by the data we have access to or by financial considerations. However, thinking about
what we measure and how it relates to the outcome of interest is a crucial step, because
if our measurements are not connected to the outcome of interest, all of our modelling
efforts will be in vain. For the purpose of this example, let’s assume that we have access
to veterinary records that include information about height (m), weight (kg), age (years)
and breed.

In the next step we have to decide on how to relate the measurements to the outcome
of interest for our initial model. This is of course an open-ended question and depends
on personal preference, but the list in section 2.4 can give some guidance. For this
example, we will stick with a logistic regression model, which is often a default choice
when modelling binary outcomes. Our likelihood can be set up like this:

yi ∼ Bernoulli(logistic(α + β1 × height+ β2 × weight+ β3 × age)) (2.11)

yi is the outcome for dog i (0 for therapy failure, 1 for therapy success), logistic is
the logistic link function, which is defined as logstic(x) = exp(x)/(1 + exp(x)), α is the
intercept that can be interpreted as the baseline efficacy of the insulin, and β1, β2 and β3

quantify the effect of our other predictors on the outcome.
Regression coefficients in logistic regression can be interpreted as expected changes in
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log-odds, e.g. a parameter value of 0.4 for β2 would mean that on average, a dog that
weighs 1 kg more than another dog with otherwise identical measurements has increased
log-odds of therapy success of 0.4, where log-odds is the logarithm of the ratio p / (1 - p).
Measuring regression coefficients on the scale of log-odds has the advantage that effects
can be interpreted like other regression coefficients, e.g. 0 means no effect and negative
values mean that the variable is negatively associated with the outcome of interest, but
have the disadvantage of being a bit harder to interpret, i.e. it is not immediately clear if
a change in log-odds of 1 correspond to a large or small effect. A helpful approximation is
the so-called “divide by 4” rule, which says that a change in log-odds of x approximately
correspond to a change of x/4 on the probability scale, e.g. a coefficient of 0.4 means that
a 1 unit change in the input is associated with an increase in probability by 10%.

2.5.3 Prior model

In addition to the likelihood function, we also need a prior model for Bayesian inference,
that is, we need a joint distribution of the parameters that then gets updated in the light of
new data. As with the likelihood function (and all parts of modelling), there is no universal
correct choice. But we do have some guidelines: The prior should be consistent with our
domain knowledge. For example, we know that other insulin treatments are effective
about 50% of the time. Considering that our insulin is recombinant and resembles the
canine insulin more closely, we also expect it to be more effective. Of course, it could also
be less effective, but probabilities near 0 and 1 are quite unlikely.

The process of coming up with prior distributions that accurately reflect domain ex-
pertise is called prior elicitation. In general, an effective and relatively easy way to elicit
priors is by deciding on thresholds that separate unlikely from implausible parameter
values. We require that a prior that is consistent with our knowledge only places little
probability mass on parameter values that we deem implausible.

In our example, our domain knowledge is most easily described on the level of treat-
ment success probabilities, but the model parameters are on the level of log odds. As it is
generally difficult to reason about coefficients on a log-odds scale, one might be inclined
to use broad priors that cover a wide range of possible parameter values. A possible prior
could therefore be:

β1, β2, β3, β4 ∼ Normal(0, 10)

Note that the prior is always a joint distribution of all model parameters, but in
practice it is often difficult to define such a joint distribution directly. Even with just 4
parameters, we have to reason about a 4-dimensional space. It is therefore often convenient
to assume prior independence between parameters and define the joint prior in terms of
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its marginal densities.
Our fully specified model can be described by the following diagram:

y i

~      

θi

logistic (β0+β1 xi1+β2 x i 2+β3 x i3)⏟

μ=0
σ=10

μ=0
σ=10

μ=0
σ=10

μ=0
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Figure 2.2: Diagram of the complete example model. Reading from the bottom up, the
observed data yi is modelled as coming from a Bernoulli distribution with success proba-
bility θi. The success probability is modelled with a regression term that is transformed
to the interval [0, 1] with the inverse logistic function. Diagram template from Bååth
(2016).

2.5.4 Prior push-forward checks

As stated previously, we have a good intuition about the expected treatment success
probability θi, but it is difficult to reason about which treatment success probabilities
we imply with our prior model. The implications of the prior model on transformed
parameters can be investigated with prior push-forward checks, which push the prior
probability density forward towards a summary function of our choice. This lets us
explore if our prior model is consistent with what we know about different summaries of
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the model parameters. In this particular example, we can treat the estimated treatment
success probability thetai as a summary function of our parameters: θi = logistic(α +

β1 × xi1 + β2 × xi2 + β3 × xi3).
We can easily simulate values of p(α, β1, β2, β3), but the summary function also requires

us to plug in some values of xi1, xi2, xi3. If we already collected some data we could use the
observed inputs as an approximation to the distribution of input values, but if we have
not collected any data yet we can always investigate the push-forward distribution for
“representative” data points. Figure 2.3 shows the expected treatment success probability
for a dog with a height of 30 cm, a weight of 7 kg and an age of 5 years.
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Figure 2.3: Implied distribution of treatment success probabilities for a dog with a height
of 30 cm, a weight of 7 kg and an age of 5 years.

The plot shows that the implied prior on the treatment success probability is indeed
in conflict with our domain knowledge, as it strongly concentrated around values of 0 and
1. The prior distribution that was supposed to be “weakly-informative” turns out to only
allocate little probability mass at the region of 50%, where we expect the therapy success
probability of our insulin to be.

This occurs because the regression term gets transformed by the logistic link function,
which quickly reaches 0 or 1 for large negative and positive values, respectively (see Fig.
2.4).
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Figure 2.4: The logistic function f(x) = exp(x)/(1 + exp(x)) transforms inputs on the
whole line of real numbers to an interval [0, 1].

We have to adapt the prior so that it is not in conflict with our domain knowledge
anymore. Figure 2.4 shows that our inputs to the logistic function need to be closer
towards 0 to allocate more probability mass in the region of around 50%.

We therefore change the marginal densities to:

α ∼ Normal(0, 1)

β1 ∼ Normal(0, 1)

β2 ∼ Normal(0, 0.2)

β3 ∼ Normal(0, 0.1)

One might be hesitant to use such a prior because it seems to be too narrow, but when
applying the “divide by 4” rule we can see that such a prior is still consistent with very
large effect sizes: The normal distribution allocates most probability mass within two
standard deviations from the mean, the marginal prior on β1 is consistent with parameter
estimates up to around 2. While a height difference of 1 m is a large difference for dogs,
the divide by 4 rule tells us that a change in height by 1 meter can correspond to a change
in treatment success probability by 50% (2/4) in either direction.

For weight, a difference of 1 kg can correspond to a change in treatment success
probability by up to 10% and for age, a difference of 1 year can correspond to a change in
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treatment success probability by up to 5%. The updated prior push-forward distribution
is shown in Figure 2.5
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Figure 2.5: Updated implied distribution of treatment success probabilities for a dog with
a height of 30 cm, a weight of 7 kg and an age of 5 years.

This implied distribution of treatment success probabilities is not in conflict with our
domain knowledge anymore, as it allocated enough probability mass to treatment success
probabilities around 0.5.

2.5.5 Prior predictive checks

Prior push-forward checks are used to study the implications of the prior on summary
functions of the model parameters, but we can also go one step further and check the
implications on the prior predictive distribution itself. This is helpful because it also
includes the likelihood function in the model check. Looking at the prior predictive
distribution is particularly useful for continuous observations. Consider for a moment that
we had measured blood glucose concentrations instead of a binary treatment outcome.
Our prior model would imply a distribution of changes in blood glucose levels, and we
could compare this distribution with our domain knowledge. For example, if our prior
model would imply blood glucose concentrations that are not in agreement with living
dogs, that would mean we would have to update our prior. We can also compute arbitrary
summary functions, e.g. compare 99% quantiles with expected extreme values.
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2.5.6 Sample size determination

Bayesian model building is an iterative process, which is best applied before data has
been collected. When data collection is expensive and time-consuming, as it is often
the case in fields like biology and chemistry, simulated data can be used to determine
the number of samples required to achieve parameter estimates of the desired accuracy.
The required sample size may depend on several factors: In general, models that include
problem-specific structure need less data than models that do not take this information
into account. Additionally, prior knowledge can help to reduce the necessary amount of
data. An often overlooked aspect is the quality of measurements: If the measured variables
are not well-connected to the outcome of interest, no amount of data can help to yield
useful estimates. Effect size is another important contributing factor, a low signal-to-noise
ratio means that fewer data is required to get estimates that are precise enough.

Simulations might reveal that the budget is not large enough to yield useful estimates
and can therefore help to reduce costs by not conducting an experiment that would not
be useful. The simulations might also help to avoid using too many samples, which in
addition to the economical benefit is particularly import for animal-based research.

Simulating data under a hypothetical model requires assumptions about the distribu-
tion of the data and a (preliminary) probabilistic model that links the observed data to
the quantities of interest. Simulations are still useful however, because a.) the main goal
of these simulations is to get a rough idea about the required amount of data, b.) the pre-
liminary models are a useful foundation for the model building step and c.) simulations
can be run for different candidate models and candidate data sets, so that the uncertainty
about these assumptions translates into uncertainty about the required sample size.

A frequentist approach to determine sample sizes is called power calculation, which
determines the required sample size by assuming an effect of a specific magnitude and then
calculating the sample size required to obtain statistical significance in x% of hypothetical
data collections, where x is a large number, usually 80%. These power calculations can
also be applied in a Bayesian context, i.e. how many samples are required so that a
posterior interval excludes 0 with a specified probability. Here, we are interested in the
required number of samples to achieve estimates with a certain precision. To achieve this
goal, we employ the following strategy:

1. Simulate observed inputs, i.e. height, weight and age values of dogs.

2. Draw a set of model parameter values from the prior distribution.

3. Simulate a set of observations based on the model parameters.

4. Fit the model.

5. Draw samples from the posterior predictive distribution.
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6. Calculate the width of the distribution of treatment success probabilities based on
the posterior predictive distribution.

Figure 2.6 shows the resulting required sample size to obtain 80% posterior intervals
based on quantiles with a given interval width.
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Figure 2.6: Width of 90% posterior intervals based on quantiles for a given sample size.
Dog heights were simulated from x1 ∼ Uniform(0.3, 1.2), weights were simulated from
x2 ∼ x1/4 + Normal(0, 1), age values were simulated from x3 ∼ Uniform(1, 15) (rounded
to the nearest integer). The plot shows that in order to achieve posterior intervals with a
width of about 10%, a sample size of about 300 is needed.

2.5.7 Posterior predictive checks

One of the main aspects of the Bayesian workflow is model testing. Bayesian models
belong to a class of models called generative models, which means that they can be run
“backwards”, i.e. instead of going from data to estimated parameters, parameter estimates
can be used to generate new data under the model’s assumptions. This allows for an
extremely powerful form of model testing: By comparing data generated by the model
to the actual observed data, shortcomings of the model can be identified. This method
is called posterior predictive check. The goal is to find data summaries that highlight
important aspects of the data: For example when working on a model that accesses failure
risks of machine parts, getting the tails of the observations right is extremely important.
A useful data summary could then be the 1% and 99% quantiles. A histogram of 99%
quantiles of data sets generated under the model’s assumption could be compared to the
actual observed quantile. If the 99% quantile of the observed data does not lie within
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the range of 99% quantiles expected under the model’s assumptions, this highlights a
potential issue for drawing conclusions based on the model results.

Consider we collected the height, weight, age and breed of 400 dogs and now want
to compare the observed treatment outcomes to the treatment outcomes expected under
the model’s assumptions. One simple summary could be the observed proportion of
treatment successes compared to the proportion of treatment successes of simulated data
from the posterior predictive distribution. Figure 2.7 shows a histogram of the proportion
of treatment successes from the draws of the posterior predictive distribution with a line
showing the true proportion of treatment successes observed in the data. The line lies
well within the region of the histogram, showing no deviations between the expected and
observed data.
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Figure 2.7: Posterior predictive check of the expected proportion of treatment successes
under the model (histogram) and observed proportion of treatment successes in the data
(vertical line).

Such a posterior predictive check does not provide much information however, because
the summary statistic (the observed proportion of treatment successes) is quite insensitive
towards model misfits. The Bernoulli likelihood function reaches its maximum around the
observed mean of the data, therefore just about any logistic regression model should get
the mean right. A more helpful posterior predictive check may be achieved by plotting
different subsets of the data. Our model does not make use of information about the
dog breeds (implicitly assuming that breed is not associated with treatment success). We
can check if this assumption holds by comparing the total number of successfully treated
dogs for each breed in the observed dataset compared to the expected total number of
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successfully treated dogs for each breed in draws from the posterior predictive distribution
(Figure 2.8).
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Figure 2.8: Posterior predictive check of the total number of successfully treated dogs
under the model’s assumptions (histograms) and observed total number of successfully
treated dogs (vertical lines).

The plots show that for all recorded dog breeds the observed total number of success-
fully treated dogs is well within the range of values expected by model, with one exception:
pugs. We observe only 3 successfully treated pugs in the dataset, but the model expects
at least 15. How to deal with this discrepancy depends on the circumstances: A check of
the data might reveal data entry errors for pugs (which should prompt another check for
all data points), or we might simply deem that the observed discrepancy is irrelevant for
our research goals (because we don’t care about the treatment efficacy in pugs). However,
it might also prompt us to revise the model. This is especially the case if we also want to
estimate the effect of the insulin product in pugs. Maybe there is a biological difference
between pugs and the other dog breeds that could explain why the insulin does not seem
to be effective in dogs, for example because of changes in the insulin receptor.

For this example, we simply allow the model some additional flexibility and include
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a binary indicator variable that is 1 for pugs and 0 for all other dog breeds. This gives
the model the required flexibility to predict lower treatment success probabilities for pugs
than for the other dog breeds. Our updated model therefore is:

α ∼ Normal(0, 1)

β1 ∼ Normal(0, 1)

β2 ∼ Normal(0, 0.2)

β3 ∼ Normal(0, 0.1)

β4 ∼ Normal(0, 1)

yi ∼ Bernoulli(logistic(α + β1 × height+ β2 × weight+ β3 × age+ β4 × pug))

Figure 2.9 shows the posterior predictive check for the updated model. When including
the pug indicator variable, the model is able to correctly capture the number of successfully
treated pugs. Note how the improved model also better captures some other breeds, e.g.
German Shepherd, Great Dane and Shih Tzu. Whether including a binary indicator
variable for pugs is reasonable depends on our domain knowledge: If we really expect a
biological reason why pugs are not responding to the insulin treatment it might make
sense, otherwise it would probability be better to allow the treatment effect to vary for
all dog breeds.
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Figure 2.9: Posterior predictive check of the total number of successfully treated dogs
under the model’s assumptions (histograms) and observed total number of successfully
treated dogs (vertical lines). The model including a binary indicator variable for pug
shows no discrepancy between the expected and observed number of successfully treated
pugs.

2.5.8 Pareto-smoothed importance sampling

After we have come up with a model that fits the observed data sufficiently, does not
show any sampling issues and retrieves correct parameter values based on simulated data,
the next step in Bayesian workflow is model evaluation. At this stage, the goal is to
evaluate how well the model does perform according to metrics relevant to the application.
For example in a prediction task, one might be interested in the proportion of correctly
predicted data points, or in a regression task, a measure of accuracy like mean-squared
error might be of interest. Metrics like classification accuracy and mean-squared error are
closely related to model comparison: If a newly developed model is to replace a previous
one, it is important to ensure that the new model actually outperforms the current model.

A straight-forward way to evaluate and compare models is to gather additional data:
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If the models are applied to the new data, the obtained performance metrics are a good
estimate of the model performance on future data. However, simply collecting more data
is often not feasible, for example because it is too expensive. One might be inclined to
test the models on the data they were fit on. Unfortunately, the obtained performance
metrics are a poor estimate of the model performance on future data. This is because
the observed data might not be representative enough, and future data has features that
deviate from the current data. This phenomenon is most pronounced for very flexible
models, e.g. models that have a lot of parameters to adapt to the observed data. In this
case, a model might have stellar performance on the observed data, but poor performance
on future data. Models like this are said to not generalize, and one term used to describe
this issue is called overfitting.

One trick to alleviate this issue is called leave-one-out cross-validation (LOO-CV). In
LOO-CV, a single data point is held out and the model is fit on all remaining data. The
evaluation is then done on the held out data point, and this procedure is repeated until
every data point is being held out once. As LOO-CV requires fitting the model multiple
times (i.e. once for each data point), alternative approaches like k-fold cross-validation
are sometimes used. In k-fold cross-validation, the data set is split into k groups (e.g.
10), and instead of one data point, one group is held out. This has the advantage that
it requires less refitting of the model, but has the drawback that the model is also fit on
fewer data.

In Bayesian statistics, the cost of refitting the model is often particularly high, because
the methods used to draw samples from the posterior distribution are more computation-
ally expensive. Fitting large models with many parameters might take hours, days, or
even weeks. Therefore, computational methods have been developed that approximate
the leave-one-out posterior based on the posterior obtained from the full data set. At its
core, most of these methods are based on importance sampling, which is a method that
can generate samples from one probability distribution (here: the leave-one-out posterior)
based on samples obtained from a distribution that approximates the target distribution
(here: the full posterior). The most important requirements for importance sampling to
work are that a.) both distributions are valid on the same range of values (i.e. it is not
possible to approximate a distribution that is defined for values between 0 and 1 with a
distribution that is defined for all real values) and b.) that the density can be computed
for arbitrary points.

Consider the following example that shows how importance sampling works: Suppose
you have a computer program that is able to generate samples from a standard uniform
distribution, but you need to generate samples from a Beta(2, 2) distribution instead.
The most obvious solution is to use a sampling algorithm that specifically generates
samples from a Beta distribution, but imagine these algorithms would not exist. One
could then use the samples from the approximating distribution (in this case the standard
uniform distribution) and use importance sampling to generate samples from the target
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distribution, which is done by weighted resampling. Intuitively speaking, sampling from
the target distribution is achieved by calculating the density ratio between the target
and approximating distribution. Samples for which the target distribution has a higher
density than the approximating distribution are sampled more frequently (with a weight
determined by the ratio), and regions were the target distribution has less density than
the approximating distribution are sampled less often. As a concrete example, consider
the samples obtained from the standard uniform distribution are 0.1, 0.5 and 0.9. The
density of the uniform distribution f(x) is 0.1 for all values, and the density of the
Beta(2, 2) distribution g(x) at locations 0.1, 0.5 and 0.9 is 0.54, 1.5 and 0.54, respectively.
Therefore, the ratio of the densities g(x)/f(x) are 5.4, 15, 5.4. Many programming
languages have built-in functions for weighted resampling, e.g. in R, weighting resampling
of 100 weighted draws can be achieved by sample(c(0.1, 0.5, 0.9) , 100, prob = c(5.4, 15, 5.4)).
Of course, resampling based on 3 data points is not useful. Figure 2.5.8 shows samples
of a Beta(2, 2) distribution generated by resampling a uniform distribution based on 100
data points. The obtained histogram already follows the true density quite closely.
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Figure 2.10:

The likelihood function of many Bayesian models can be written as the product of the
individual point wise likelihoods, e.g. for a parameter vector θ, the posterior density (up
to a constant) for many models can be written as p(θ)qθ(1)qθ(2), where p(θ) is the prior
distribution and qθ(1) is the likelihood for data point 1 given θ, qθ(2) is the likelihood for
data point 2 given θ and so on. Consider a model with 3 data points. The importance
ratio for holding out data point 2 can therefore be computed as:
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r =
p(θ)qθ(1)qθ(3)

p(θ)qθ(1)qθ(2)qθ(3)
=

1

qθ(2)
(2.12)

Calculating importance ratios therefore only involves computing the likelihood func-
tion p(yi|θ) at the observed data points. Importance sampling is useful because it allows
evaluating models on held-out data points without refitting the model N times. However,
like all approximations it might fail. This happens when the approximating distribution
is not similar enough to the target distribution, so the importance ratios get really large
or small and the resulting resampling becomes too noisy. Pareto-smoothed importance
sampling (PSIS) improves this issue by fitting a Pareto distribution to the importance
ratios and replacing the 20% largest importance ratios with importance ratios according
to this Pareto distribution. This greatly stabilizes the importance sampling procedure
because it is less sensitive to overly large importance ratios. It also has the advantage of
providing an easy diagnostic metric: The parameter k of the Pareto distribution is use-
ful to determine when Pareto-smoothed importance sampling might fail: Empirical data
shows that PSIS is very accurate for k values below 0.7. For data points with k above
0.7, it is advised to refit the model and use the true leave-one-posterior instead.

We can use Pareto-smoothed importance sampling to compare our improved version
of the insulin model which includes the pug predictor to the previous version. Table
2.1 shows the expected log-predictive density (elpd) for each model. The expected log-
predictive density is a measure of model performance on future data. It denotes the
expected probability density (or probability mass for discrete outcomes) that the model
allocates to future data points, and we therefore generally prefer models with the highest
elpd possible, because they are expected to predict future data best. The expected log-
predictive density has the advantage over other measures of model performance that it not
only takes the location of the estimates into account, but also the width of the predictive
distribution (see Figure 2.11).

Table 2.1: Expected log-predictive density for the initial model and the model with the
pug indicator variable. The elpd shows that the model with the additional predictor is
expected to have a much better predictive performance on future data, as the difference
in elpd between that model (-189.01) and the initial model (-232.63) is much higher than
the standard errors of the estimates.

elpd estimate standard error
without pug predictor -232.63 8.33

with pug predictor -189.01 10.41
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Figure 2.11: Expected log point-wise predictive density in four hypothetical scenarios.
The vertical lines show an observed data point in the future (x = 5), the distributions show
the posterior predictive distributions for that new data point. Expected log-predictive
density combines the location and the uncertainty of the estimates: The highest elpd is
achieved for models that produce estimates near the observed data point with little uncer-
tainty (model A). Models that get either the location wrong or produce wider estimates
(model B and model C) have lower elpd. The predictions of model D and model B have
the same location, but because the posterior predictive distribution is wide enough, it has
higher elpd than model B.

2.5.9 Model visualization

A common way to summarize the results of a regression model are tables of regression
coefficients with uncertainty intervals. These tables have the advantage of displaying
important information about the model in a compact manner, but the disadvantage that
a.) it is not possible to compare regression coefficients in a large table at a glance, b.)
regression coefficients alone are often difficult to interpret.

An immediate solution to a.) is to plot uncertainty intervals as horizontal or vertical
bars. In this way, it is often much easier to compare different coefficients to each other.
Possible solutions to the problem outlined in b.) are not as apparent: Consider a linear
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model like the previous regression of body height on weight: body weight (in kg) = β0 +

βheight × body height (in cm). In this model, the regression coefficient for body height
βheight can be interpreted in two possible ways: In the first interpretation, the regression
coefficient is seen as the associated change in outcome for a (hypothetical) one-unit change
in the input. For the body weight example, this means that the coefficient βheight is the
expected increase in body weight (in kg), if body height would increase by 1 cm. In the
second interpretation, the regression coefficient is seen as the average difference between
two groups that differ by one unit in their predictors. For the body weight example,
this means that βheight is the average body weight difference (in kg) between two groups
of people, where one group is on average 1 cm taller than the other. Which of the two
interpretations is more useful is context specific: For models in which a change in one of
the inputs is impossible (like in the body height example) the difference-between-groups
interpretation might make more sense, for models in which a more causal interpretation
is desired, the one-unit-change interpretation might be preferred.

These two ways of interpreting regression coefficients also work for models with mul-
tiple inputs. Consider adding a binary variable for sex to the body weight model:
body weight (in kg) = β0 + βheight × body height (in cm) + βsex × sex (1 female / 0 male).
The regression coefficient for βheight can still be interpreted as the associated change in
weight for an increase in height by 1 cm, and it can also be interpreted as the average
difference between groups that differ in their average height by 1 cm. However, both
interpretations now require the additional assumption that all other inputs are held con-
stant, e.g. βheight is the average difference between two groups that differ in their average
height by 1 cm, with the additional requirement that these groups are either all male or
all female.

Regression coefficients for models with non-linear link functions like logistic regression
models can also be difficult to interpret: In logistic regression models, the regression
coefficients are on the log-odds scale, which means that a one unit change in one of the
inputs is associated with an increase in log-odds of observing the outcome denoted yi = 1

by the value of the regression coefficient. Log-odds are defined as log(p/1− p). Defining
the model in terms of log odds has the advantage that the individual predictors contribute
additively to the outcome, but the disadvantage that it is difficult to reason about odds,
as we are more used to probabilities in our every day life.

A method that can make the interpretation of regression coefficients easier for models
with interactions, non-linear predictors or regression coefficients in unwieldy units like in
logistic regression is called Average Predictive Comparisons (Gelman and Pardoe, 2007).
Predictive Comparisons denote the expected change in the output by a one unit change
in one of the inputs. This in general depends on the beginning and end points of the
hypothesized change, the values of the other inputs and the parameters of the model. Av-
erage Predictive Comparisons average over these changes to obtain the expected change
in the output by a one unit change in one of the inputs. For linear models without interac-
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tion terms average predictive comparisons are equal to regression coefficients. Figure 2.12
shows regression coefficients (on the scale of log-odds) and average predictive comparisons
(on the probability scale).
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Figure 2.12: Density plots showing the regression coefficients for each parameter (top) and
average predictive comparisons for each input (bottom). For logistic regression models,
the regression coefficients are on the scale of log-odds, i.e. for pugs, the log-odds of
treatment success is decreased by about 3 compared to the other dog breeds. If we use
the model parameters and data to reframe this in terms of average predictive comparisons,
pugs are about 70% less likely to respond to the treatment, compared to the other dog
breeds. It is usually much easier to reason about effects on the probability scale than on
the log-odds scale.
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2.5.10 Summary

This example showed a brief overview of a Bayesian workflow. A full description of the
Bayesian workflow can be found in Betancourt (2020); Gabry et al. (2019); Gelman et al.
(2020). It is important to realize that the “Bayesian workflow” is not set in stone, parts
of it can be left out and the focus can be changed according to the needs of the specific
analysis.

The Bayesian workflow can be seen as a shift in perspective: Instead of applying a
statistical method to data like a recipe from a cookbook, we focus on repeated cycles
of model fitting and model evaluation, being guided by principles that follow from our
research goals. We lose some rigor in the sense that we let our decisions be informed by
the observed data, but in practice, this drawback is easily compensated by the fact that
we end up with models that do not exhibit strong misfits to the data.

However, following this principle also has some downsides: It cannot be applied blindly
and requires statistical knowledge and might therefore be not as easily applicable as
standard methods. This downside can also be an advantage however, because practitioners
who use statistics as a research tool can obtain valuable feedback if the applied methods
are valid to answer the research question. After some initial training, Bayesian methods
can actually be more accessible, because a.) following the workflow does not require the
same background in probability theory as designing a hypothesis test from the grounds
up does, and b.) after some time, the pieces just “all fit together” and applying a new
procedure is as simple as reordering parts that are already known. This reduces the black-
box character of statistics and while certainly not a panacea, can greatly help to obtain
more reliable insights from data.
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Chapter 3

Contributed Articles

3.1 HAMdetector: A Bayesian regression model that
integrates information to detect HLA-associated
mutations

This section is based on the following publication:

Daniel Habermann, Hadi Kharimzadeh, Andreas Walker, Yang Li, Rongge Yang, Rolf
Kaiser, Zabrina L. Brumme, Jörg Timm, Michael Roggendorf, Daniel Hoffmann (2022).
HAMdetector: A Bayesian regression model that integrates information to
detect HLA-associated mutations.
https://doi.org/10.1093/bioinformatics/btac134
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1 Introduction

1.1 The human leukocyte antigen system
The human immune system recognizes viral infections through two

pathways: The innate and adaptive immune response. T-cell, or ‘cel-
lular’, immunity, which represents one major arm of the adaptive
immune system, is modulated by human leukocyte antigen (HLA)

molecules (Germain, 1994): Briefly, proteins that are synthesized
within the cell—which will include viral proteins if the cell is
infected—are degraded in proteasomes to peptides (Goldberg et al.,
2002). Some of these peptides are presented as epitopes on the cell
surface by HLA class I molecules. These viral peptide-HLA com-

plexes can then be recognized by circulating CD8þ cytotoxic T-lym-
phocytes (CTLS) through their T-cell receptor (Murata et al., 2007).
Following this recognition, the CTL can eliminate the infected cell

(Harty et al., 2000).
HLA class I molecules are encoded at three loci, HLA-A, -B and

-C and these genes are very polymorphic with more than 20 000
known alleles in humans (Robinson et al., 2015). HLA molecules

vary drastically in their affinities to given epitopes so that cells from
different individuals, in general, present different peptides on the
cell surface. In other words, the HLA class I alleles expressed by a

given individual will determine their CTL response to a given viral
pathogen.

1.2 Immune escape is reproducible based on host HLA

allele expressed
Virus variants arise continuously through mutation. Because the

HLA system modulates CTL responses through viral epitope presen-
tation, it exerts strong selection pressure toward virus variants that

escape CTL recognition (Borrow et al., 1997). Such variants could,
for example, carry mutations that reduce binding of viral epitopes to
HLA, or that reduce recognition of the epitope/HLA complex by the

CTL’s T-cell receptor, or that alter peptide processing so that epito-
pes are no longer presented on the infected cell surface (Yewdell et
al., 2002). The latter type of mutation can occur within (Yokomaku

et al., 2004) or outside (Draenert et al., 2004) CTL epitopes.
Immune escape is a major driver of viral evolution, particularly

for highly variable viruses such as HIV or HBV (Alizon et al., 2011;
Allen et al., 2005; Lumley et al., 2018; Rousseau et al., 2008).

Whether and how quickly a given escape mutation is selected in a
host depends on a number of factors including the viral genomic
background, the magnitude of the reduction in viral replication

caused by changes in the viral proteins, the selection of compensa-
tory mutations that recover fitness, and the strength of immune re-

sponse targeting the presented epitope (Kløverpris et al., 2015).
Despite the complexity of these factors, the mutational pathways of
immune escape in certain viruses such as HIV are nevertheless

broadly reproducible, and thus predictable, based on the HLA
alleles expressed by the host. For example, about 75% of people liv-

ing with HIV who carry the HLA-B*57 allele, will select a T242N
substitution in the HIV structural protein Gag in the first weeks to
months of infection (Brumme et al., 2008b; Leslie et al., 2004).

In addition to driving viral evolution at the individual level,
HLA pressures also drive viral evolution in human populations, as

circulating viruses adapt to HLA alleles commonly expressed in that
population (Kawashima et al., 2009). Upon transmission to a new
host with different HLA alleles, HLA escape mutations may revert,

particularly if they are associated with a reduction in viral replica-
tion capacity (Matthews et al., 2008), but they can also persist, lead-

ing to their population-level accumulation (Kawashima et al.,
2009).

Methods to accurately and comprehensively identify HLA-
associated immune escape mutations in HIV and other viruses are
therefore critical for the study of viral evolution and immune escape.

An improved understanding of immune escape can aid in the devel-
opment of treatments and vaccines that rely on effective immune

responses.

1.3 Identifying HLA escape mutations
There are several experimental methods available to study HLA es-
cape (Altman et al., 1996; Brunner et al., 1968; Czerkinsky et al.,
1983; Lamoreaux et al., 2006). However, these methods are rela-
tively slow and costly, especially for screening purposes.
Theoretically, an option to identify escape mutation could be the use
of epitope prediction tools (Mei et al., 2020). At their core, these
tools identify epitopes as peptides with high predicted affinities to
HLA molecules. One could envisage applying such tools to com-
binatorially mutated epitopes to identify substitutions that reduce
predicted affinities significantly and therefore would be good candi-
dates for escape mutations. However, these tools can be rather in-
sensitive to escape mutations (Acevedo-Sáenz et al., 2015), which is
not unexpected because they have been developed to recognize epit-
opes as a whole. A more promising approach that makes efficient
use of frequently available data is to combine viral genome sequenc-
ing, host HLA determination, computational identification by statis-
tical association analysis and targeted experimental validation
(Carlson et al., 2012).

As the selection pressure exerted by cytotoxic T cells depends on
successful recognition of viral peptides bound to HLA molecules on
the infected cell surface, escape mutations are HLA allele specific
and can therefore be detected as HLA allele dependent amino acid
substitutions, or ‘footprints,’ in sequence alignments of viral pro-
teins (Moore, 2002). Amino acid substitutions enriched in viral
sequences from hosts with a specific HLA allele are termed HLA-
associated mutations (HAM).

One way of quantifying this enrichment is Fisher’s exact test
(Fisher, 1922): For a given substitution Si at alignment position i
and HLA allele H, a 2-by-2 contingency table is constructed con-
taining the absolute counts of the number of sequences in the four
possible categories (Si, H), (Si, :H), (:Si, H) and (:Si; :H), where
:Si denotes any substitution except Si, and :H denotes any HLA al-
lele except H.

Fisher’s exact test is a conventional null hypothesis significance
test (NHST) that generates P-values. In this case, the null hypothesis
is that HLA allele H and substitution Si are independent, and the P-
value is the probability of observing a deviation from independence
that is at least as extreme as in the data at hand under the assump-
tion that the null hypothesis is true.

Fisher’s exact test has the advantage of being fast and easy to
apply (Budeus et al., 2016), but it also has several disadvantages
(Carlson et al., 2008). The most striking one is that viral sequences
share a common phylogenetic history, and, therefore, treating
sequences as independent and identically distributed samples may
under- or overestimate effect sizes. In the context of hypothesis test-
ing, this leads to increased false-positive and false-negative rates
(Osborne et al., 2002; Scariano et al., 1987).

Another issue with Fisher’s exact test is the genomic proximity
of human HLA class I loci (Francke et al., 1977) leading to linkage
disequilibrium—inheritance of HLA alleles can be correlated.
Therefore, spurious HAMs can occur if associations of substitutions
with individual HLA alleles are tested: if HLA allele H1 is associated
with an amino acid substitution R because of immune escape, but
H1 is in linkage disequilibrium with allele H2, then this leads to an
association of R and H2, even without being an escape mutation
from H2.

Carlson et al. (2008) developed the Phylogenetic Dependency
Network, a method that accounts for several of the aforementioned
problems, in particular phylogenetic bias and HLA linkage disequi-
librium. However, it is based on null hypothesis significance testing.

1.4 Issues with P-values for screening
There are fundamental statistical issues with P-values as a screening
tool (Amrhein et al., 2018): with small effect sizes and high variance
between measurements, as is often the case with biological data,
statistically significant results can be misleading, can have the wrong
direction (type S error), or can greatly overestimate an effect (type
M error) (Gelman et al., 2014). Such problems are more and more
appreciated in the context of the current ‘replication crisis’—in the
life sciences scientific claims with seemingly strong statistical

2 D.Habermann et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac134/6541628 by U

niversitaetsbibliothek D
uisburg-Essen user on 01 April 2022



support often fail to replicate (Baker, 2016; Begley et al., 2012;
Ioannidis, 2005).

These problems are exacerbated if P-values are used for screen-
ing purposes (multiple testing problem). The probability of obtain-
ing a statistically significant result increases with each additional
test, even in absence of any real effect. When using P-values as a fil-
ter, it is therefore likely to obtain significant effects that are in fact
not real. A common strategy to mitigate this problem is to control
the false discovery rate (Benjamini et al., 1995). The downside of
such adjustment procedures is that only the very largest effects re-
main if large datasets are screened.

Instead of performing many hypothesis tests and trying to adjust
for them, we prefer to fit a single, multilevel model that contains all
comparisons of interest. Multilevel models can make the problem of
multiple comparisons disappear entirely and yield more valid esti-
mates (Gelman et al., 2012).

2 Materials and methods

Our general approach for HAMdetector is to fit a Bayesian regres-
sion model that captures relationships between host HLA alleles and
substitutions in viral proteomes.

This Bayesian approach is advantageous because it allows use of:
(i) prior information (e.g. knowledge of effect magnitudes), (ii) rele-
vant additional information (phylogeny, epitope information), (iii) a
problem-specific structure and (iv) partial pooling (Gelman, 2010).

2.1 Model backbone
We chose a logistic regression model as backbone because it is easily
extensible, and because coefficients can be interpreted in the familiar
way as summands on the log-odds scale. This is the core of
HAMdetector, which models the strength of association between
substitutions in viral sequences and host HLA alleles.

yik � BernoulliðhikÞ (1)

hik ¼ logisticðb0k
þ
XD
j¼1

XijbjkÞ; (2)

where yik is the binary encoded observation of substitution k in viral
sequence i (each observed amino acid state k contributes a separate
column to yik); hik is the estimated probability that we observe sub-
stitution k in sequence i; b0k is an intercept for substitution k, corre-
sponding to the overall log-odds for substitution k; Xij is 1 if
sequence i comes from host individual with HLA allele j and 0 other-
wise; bjk is the HLA regression coefficient of HLA allele j for substi-
tution k; D is the number of HLA alleles in the dataset; the logistic
inverse link function transforms the linear model in parentheses to
the probability scale of hik.

The main parameters of interest for HAMdetector are the regres-
sion coefficients bjk, as they quantify the strength of association be-
tween the occurrence of substitution k and each of the observed
HLA alleles. The bjk are on the log-odds scale, i.e. if we go from
viral sequences from hosts without HLA allele j to those from hosts
with j, the log-odds logðpk=ð1 � pkÞÞ of observing substitution k in-
crease by addition of bjk.

Reasoning about coefficients on the log-odds scale can some-
times be unintuitive. A useful approximation to interpret logistic re-
gression coefficients on the probability scale is the so-called divide-
by-4 rule, which means that a regression coefficient of 2 corresponds
to an expected increase on the probability scale of up to 2/4¼50%.

2.2 Inclusion of additional information
On top of the paired data of viral sequences and host HLA alleles
modeled by the backbone (Eq. 1), we extend the model to include
further information of relevance to improve HAM detection, namely
phylogenetic information and predictions of epitope peptide proc-
essing and major histocompatibility complex I (MHC I) affinity, as
described in the following.

2.2.1 Phylogeny

Viral strains have a common phylogenetic history. Thus substitu-
tions are not independently and identically distributed, and there-
fore violate a common assumption of standard statistical methods.
In fact, Bhattacharya et al. (2007) demonstrated the importance of
correcting for the phylogenetic structure in identifying HLA
associations.

A popular approach in phylogeny-aware regression of binary
variables is to estimate an additional multivariate normally distrib-
uted intercept, where the covariance matrix is based on the branch
lengths of a given phylogenetic tree (Ives et al., 2010, 2014). This
approach turned out to be too computationally expensive in our
model, hence we chose a strategy similar to the one in Carlson et al.
(2008):

Consider a phylogenetic tree W obtained from standard max-
imum likelihood methods for a given multiple sequence alignment.
We are interested in estimating Pðyik ¼ 1jWÞ, that is, the probability
of observing the substitution k in sequence i based on the underlying
phylogenetic model. A quantity that can be readily computed using
phylogenetic software like RAxML-NG (Kozlov et al., 2019) is
PðWjyik ¼ 1Þ. For this, we keep the tree topology fixed, annotate the
tree with the binary observations yik at its leaves and optimize the
branch lengths. PðWjyik ¼ 1Þ is then the likelihood of the annotated
phylogenetic tree. Similarly, we can also compute PðWjyik ¼ 0Þ by
flipping the annotation of sequence i from 1 to 0 (keeping all other
observations). With PðWjyik ¼ 1Þ and PðWjyik ¼ 0Þ known and the
relative frequencies of 0 and 1 as priors, we can estimate Pðyik ¼
1jWÞ by applying Bayes’ theorem. The estimated probabilities based
on phylogeny are then included in the model as additional intercepts
(second term of logistic argument):

yik � BernoulliðhikÞ
hik ¼ logisticðb0k

þ clogit
�
Pðyik ¼ 1jWÞ

�

þ
XD

k¼1

XikbjkÞ
(3)

The logit transform is used because it cancels out with the logis-
tic inverse link function. The phylogeny term acts as a baseline in ab-
sence of any HLA effects. As this baseline itself is not certain but
subject to errors of the phylogenetic probabilities Pðyik ¼ 1jWÞ, we
introduce an additional parameter c.

2.2.2 Inclusion of CTL epitope predictions

As outlined earlier, escape mutations often appear as HAMs. Given
the underlying mechanism, it is not surprising that escape mutations
are enriched in CTL epitopes, i.e. in those viral peptides presented
by MHC I to TCRs (Bronke et al., 2013). This suggests that know-
ledge of epitope regions can be used to boost HAM detection.
Fortunately, availability of large experimental datasets (Vita et al.,
2019) has enabled the development of computational tools that pre-
dict with good accuracy the binding of peptides to MHC I molecules
encoded by various HLA alleles (Mei et al., 2020).

Not only mutations in CTL epitopes can lead to failure to pre-
sent epitopes to T cell receptors, but also mutations at epitope-
flanking positions that interfere with pre-processing of peptides, not-
ably proteasomal cleavage of viral proteins (Le Gall et al., 2007;
Milicic et al., 2005).

In HAMdetector, we use MHCflurry 2.0 (O’Donnell et al.,
2020) to predict epitopes that are properly processed and presented
by MHC I. For this, we create an input matrix of dimensions R�D,
where R is the number of evaluated substitutions and D is the num-
ber of observed HLA alleles in the dataset. The elements of this ma-
trix are binary encoded and contain a 1 if that position is predicted
to be in an epitope, and 0 otherwise. Given an amino acid sequence,
MHCflurry provides a list of possible epitopes (9–13 mers) and
HLA allele pairs and calculates a rank based on comparisons with
random pairs of epitopes and HLA alleles. For the binarization, we
use the rank threshold of 2% suggested by MHCflurry.

We use epitope prediction as information about the expected de-
gree of sparsity, i.e. if we know that there is an epitope restricted by

HAMdetector 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac134/6541628 by U

niversitaetsbibliothek D
uisburg-Essen user on 01 April 2022



a given HLA allele at that location, we expect that this HLA allele is
more likely to be associated with substitutions at that position than
the other HLA alleles. This idea is implemented by increasing the
scale of the local shrinkage parameters kjk depending on epitope
information:

kjk � Cauchyþð0; rj expðZjkbepiÞÞ
bepi � Normalþð1; 2Þ; (4)

where Zjk is 1 if HLA allele j is predicted to restrict the alignment
position corresponding to substitution k, and 0 otherwise. The par-
ameter bepi governs the increase in scale of the corresponding local
shrinkage parameters. The larger the estimated values of bepi are, the
more likely it is to see non-zero regression coefficients for these
HLA alleles.

2.2.3 Sparsity-inducing priors

Sparsity-promoting priors (Piironen et al., 2017b) can drastically im-
prove predictive performance, because the model is better able to
differentiate between signal and noise. These priors convey the a pri-
ori expectation that most coefficients in a regression model are close
to 0, i.e. that non-zero coefficients are sparse. This assumption is
likely correct for HAMs: the dominating mechanism that leads to
HLA association of mutations is probably selection of mutations
that mediate escape from MHC I presentation of epitopes; however,
we know that these epitopes are sparse, i.e. the number of actual
epitopes that are restricted by a given HLA allele is typically small
compared to the number of all conceivable epitopes. Thus, for most
pairs of HLA allele and substitution, the association is likely truly
zero. Note that this reasoning does not preclude associations outside
of epitopes as sometimes observed for compensatory mutations
(Ruhl et al., 2012) but just implies that these are more rare.

There is a range of sparsity-promoting priors with slightly differ-
ent properties. They share the common structure of placing most
probability mass very close to 0, with heavy tails to accommodate
the non-zero coefficients. For our model, we use the so-called regu-
larized horseshoe prior (Piironen et al., 2017b), which is an im-
provement of the original horseshoe prior presented by Carvalho
et al. (2010), in that it additionally allows some shrinkage for the
non-zero coefficients. The original horseshoe prior is given by:

bjk � Normalð0; s2k2
jkÞ

kjk � Cauchyþð0;1Þ
s � Cauchyþð0; s0Þ;

(5)

where bjk are the regression coefficients; s and kjk are the so-called
global and local shrinkage parameters, respectively; Cauchyþ is the
positively constrained Cauchy distribution; s0 is the overall degree
of sparsity. Shrinkage of the non-zero coefficients in the regularized

horseshoe prior is achieved by replacing k2
jk with ~k

2

jk ¼ c2
k
k2
jk

c2
k
þs2

k
k2
jk

, where

the additional parameter c governs the magnitude of shrinkage for
the non-zero coefficients.

With Eq. 5, the global shrinkage parameter s is typically very
small and shrinks most of the regression coefficients close to 0,
whereas the local shrinkage parameters kjk can occasionally be very
large to allow some coefficients to escape that shrinkage.

The overall degree of sparsity s0 can be chosen based on the
expected number of non-zero coefficients (Piironen et al., 2017a).

The full model specification together with a prior justification is
given in Supplementary Information.

2.3 Model implementation
A Julia (Bezanson et al., 2017) package is available at https://github.
com/HAMdetector/Escape.jl to run the model on custom data. Due
to restrictions of dependencies (MHCflurry and RAxML-ng),
HAMdetector is currently only available on Linux, but can be run
on Windows using the Windows Subsystem for Linux (WSL2). All
models were implemented in Stan 2.23 (Stan Development Team,
2021), a probabilistic programming language and Hamiltonian

Monte Carlo sampler for efficient numerical computation of poster-
ior distributions. The Stan code is available in two versions: One
optimized for readability and one optimized for speed by utilizing
Stan’s multithreading and GPU capabilities.

2.4 Model diagnostics
2.4.1 Convergence diagnostics

We use the split-R̂ convergence diagnostic to identify Markov chain
convergence issues (Gelman et al., 1992, 2013). We require a value
of R̂ below 1.1 for all model parameters. Additionally, we require
that the effective sample size Neff (Stan Development Team, 2021) is
above 200 for all model parameters and that sampling occurs with-
out any divergent transitions (Betancourt, 2018).

2.4.2 Posterior predictive checks

In posterior predictive checks, we simulate new data from the
inferred posterior distribution and the likelihood, and we compare
these simulated data with representative real data (Gabry et al.,
2019). A good model should predict data that are consistent with
real data. This general idea was employed in two ways to test our
models.

For a first posterior predictive check we used calibration plots
(Supplementary Fig. S1): two binned quantities were plotted against
each other, the observed relative frequencies of substitutions
f ðyik ¼ 1Þ, and the predicted probabilities Pðyik ¼ 1jmodelÞ. In such
a plot, a well-calibrated model should yield points following the di-
agonal. Technically, all observations were first sorted by increasing
estimated probability Pðyik ¼ 1jmodelÞ and grouped into n bins. For
each bin, the fraction of observations with yik ¼ 1 (observed event
percentage) was then plotted against the midpoint of each bin. The
cutpoints of the bins are indicated by error bars.

Second, we assessed the abilities of different models and methods
to discover HAMs with HAM enrichment plots. These plots are
based on the observation that CTL escape mutations are enriched in
epitopes (Bronke et al., 2013). Hence, the degree by which methods
for HAM prediction recover this trend is a measure of model per-
formance. To implement this measure, we first ranked all evaluated
substitutions according to their respective credibility of being a
HAM, computed as integral of the marginal posterior Pðbjk > 0Þ.
For comparison with established methods, namely Fisher’s exact test
and Phylogenetic Dependency Network (Carlson et al., 2008),
ranked lists based on P-values were computed. Then we calculated
for each rank r the accumulated number NeðrÞ of predictions of this
rank or better ranks were located inside known epitopes. The higher
the curve NeðrÞ, the higher the enrichment of predicted HAMs in
epitopes, see e.g. Figure 1.

2.4.3 Leave-one-out cross-validation

Another performance measure is the ability to generalize to unseen
data. To examine this ability for the different model variants we per-
formed leave-one-out cross-validation (LOOCV), using the efficient
Pareto-smoothed LOOCV (Vehtari et al., 2017).

From the LOOCV, we obtain the Expected Log-Predictive
Density (ELPD)

Pn
i¼1 log ð

Ð
pðyijhÞpðhjyi�1ÞdhÞÞ for samples

i ¼ 1; . . . ; n, ith observation yi, data yi�1 with the ith data point left
out, and model parameters h. Thus, the ELPD is the average log pre-
dictive density of the observed data points based on the leave-one-
out posterior distributions. This measure has the advantage over
other performance measures like classification accuracy of not only
taking into account the location of the predictive distribution (the
number of correct predictions) but also the width, i.e. how confident
the model is in its predictions. For a description of ELPD in the con-
text of LOOCV, see Vehtari et al. (2017) and Gneiting et al. (2007).

2.5 Data
The model was fit with several datasets consisting of viral sequences
paired to host HLA class I data:
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• A large HIV dataset consisting of a subset of sequences from the

HOMER (Brumme et al., 2007, 2008a) cohort, the Western

Australian HIV Cohort Study (WAHCS, Bhattacharya et al.,

2007; Moore, 2002) and participants of the US AIDS Clinical

Trials Group (ACTG) protocol 5142 (John et al., 2008) who also

provided Human DNA under ACTG protocol 5128 (Haas et al.,

2003) (total N ¼ 1383). These data were in part also used in the

Phylogenetic Dependency Network study (Carlson et al., 2008).

The dataset contains sequences spanning the gag, pol, env, nef,

vif, vpr, vpu, tat and rev genes.
• A set of 351 HIV sequences mostly spanning the pol gene from

the Arevir database (Roomp et al., 2006).
• A set of 544 Hepatitis-B-Virus sequences (Timm et al., 2021).

The dataset contains sequences of the preC/core, LHBs, Pol and

HBx proteins.
• A set of 104 Hepatitis-D-Virus sequences containing the HDV-

antigen (Karimzadeh et al., 2018).
• A set of 41 HIV sequences spanning the gag and pol genes.

Lists of known epitopes were collected from the Immune
Epitope Database (IEDB, Vita et al. (2019)). For HBV and HIV, we
added data from the Hepitopes database (Lumley et al., 2016) and
the Los Alamos HIV Molecular Immunology Database (Yusim
et al., 2018), respectively. In total, we obtained 20 epitopes for
HDV, 339 for HBV and 2684 epitopes for HIV. The counts refer to
unique pairs of epitope and HLA alleles.

2.6 Data preparation
For all sequences, we applied the following preparation steps:

1. For each dataset, the sequences were split into subsequences, ei-

ther by protein or gene.

2. If not already present in this format, sequences were translated

into their amino acid representations.

3. Multiple sequence alignments were produced with MAFFT

(Katoh et al., 2013) (default parameters). In the few cases when

the alignment introduced frameshifts, these were corrected

manually.

4. RAxML-NG (Kozlov et al., 2019) version 1.0.0 was used to gen-

erate a maximum likelihood phylogenetic tree for each gene/pro-

tein using the –model GTRþGþI option with all other

parameters set to default values. If available, we used RNA or

DNA sequences for this step, rather than protein sequences.

3 Results

In order to understand what the different building blocks of
HAMdetector contribute, we applied four different Bayesian models
of increasing complexity to each dataset, starting with the standard
logistic regression model (Equation 1) and adding then the further
components, i.e. the horseshoe prior (Equation 5), phylogeny
(Equation 3) and epitope prediction, resulting in the full model
(Supplementary Equation S1). For comparisons to existing methods,
we also applied Fisher’s exact test and the Phylogenetic Dependency
Network Carlson et al. (2008) to the same data.

3.1 Run times and convergence
For a standard office computer, run times of HAMdetector on the
smaller HDV dataset were of the order of minutes and on the order
of hours for the Hepatitis B dataset. For the large HIV dataset, the
models were run overnight. Run times scale approximately linearly
with the product NK, where N is the number of sequences and K is
the number of substitutions. All model fits showed no signs of infer-
ence issues. In total, samples were drawn from four Hamiltonian
Markov chains with 1000 iterations each after 300 warm-up itera-
tions. The effective sample size exceeded 200 for all model parame-
ters, R̂ convergence diagnostic values were below 1.1 in all cases.

3.2 Posterior predictive checks
The model yields well-calibrated posterior predictive probabilities of
substitutions. This is exemplified in Supplementary Figure S1 for
HBV core protein, but also holds true for the other datasets
(Supplementary Fig. ‘Calibration plots’).

The predictions of the tested models are enriched in epitopes
over baselines for almost all tested datasets (Fig. 1 for HBV preC/
core protein and Supplementary Fig. ‘HAM enrichment plots’ for
other datasets). Although the relative and absolute performance
varies by protein (see Supplementary Fig. ‘HAM enrichment sum-
mary’), HAMdetector consistently outperforms all other methods in
all but two datasets, and performs on-par with the other methods in
these two cases. For the best ranked HAMs, Fisher’s exact test per-
forms about as well as the HAMdetector backbone logistic regres-
sion model (model 1 in Fig. 1). Each of the following three model
stages of HAMdetector increases HAM enrichment further. The
horseshoe prior alone (model 2) is a drastic improvement over
model 1, even though it does not include any specific external infor-
mation. The logistic regression model with horseshoe prior works
roughly as well as the Phylogenetic Dependency Network Carlson
et al. (2008), which includes much more information. Model 3 with
its additional inclusion of phylogeny has higher enrichment than
model 2, and finally, the full model 4 with the inclusion of epitope
prediction leads to a further improvement. Note that, model 4 only
uses epitope prediction software and does not use any information
of experimentally confirmed epitopes. The latter are here only used
for model evaluation.

The Bayesian approach lends itself to incorporation of prior
knowledge which usually helps in accurate modeling and prediction.
In fact, a considerable effect is confirmed by the HAM enrichment
plots with their ladder of improvements with increasing inclusion of
information. It may be particularly surprising that the sparsifying
horseshoe prior has such an impact although it does not use specific
prior information. However, this is in principle the same mechanism
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Fig. 1. HAM enrichment plot for HBV preC/core protein: number Ne of associations

inside the boundary of known epitopes versus rank r. D: Phylogenetic Dependency

Network; F: Fisher’s exact test; 1: simple logistic regression model with broad

Student-t priors; 2: logistic regression model with horseshoe prior; 3: logistic regres-

sion model with horseshoe prior and phylogeny; 4: full model with epitope predic-

tion. Unannotated gray lines at the bottom of the graph are HAM enrichment

curves for random permutations of the list of HLA allele—substitution pairs and act
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as for the other information components: it is known that HAMs
are sparse per HLA allele, and therefore supplying this information
to the inference improves predictions. Figure 2 illustrates the effect
of the sparsifying prior with an example, the substitution 11D in
HIV integrase (Arevir dataset). There is no evidence for an associ-
ation of HLA-A*01 with this substitution, whereas for HLA-B*44
the data is consistent with a strong association. The horseshoe prior
has the effect of shrinking toward 0 specifically those regression
coefficients with weak evidence of an association (A*01 in Fig. 2).
This reduces the standard error for the remaining coefficients, lead-
ing in our example to narrowed histogram for the association with
B*44 in the model with horseshoe prior.

3.3 Leave-one-out cross-validation
To quantify the ability of the four different model stages of
HAMdetector to generalize to unseen cases, we computed the ELPD
with Pareto-smoothed leave-one-out cross-validation. Table 1 shows
results for the HBV preC/core protein in terms of ELPD changes
with each new model stage. Each new model stage adds ELPD, i.e. is
better at generalizing than the simpler model stages.

The model with horseshoe prior alone already has a much higher
ELPD than the standard logistic regression model, even though it
does not use any specific external data. This is because including the
sparsity assumption allows the model to better separate signal from
noise and the uncertainty of the close-to-zero coefficients does not
propagate into uncertainty of predictions.

Including phylogeny further improves model performance a lot,
as the assumption of independent and identically distributed data is
replaced with specific information from the shared phylogenetic
history.

While addition of sparsity and phylogeny has an effect on all
substitutions and samples, epitope prediction only influences those
substitutions that are restricted by a given HLA allele and only those
samples that are annotated with the allele. Therefore, inclusion of
epitope prediction does not improve ELPD as much as inclusion of

phylogeny and the sparsity assumption. However, inclusion of epi-
tope prediction is highly useful for determining which HLA alleles
are associated with a substitution, as shown in the previous section.

3.4 HAMs in HDV as test case
The hepatitis D virus (HDV) dataset (Karimzadeh et al., 2019) is an
excellent test case: we have (i) a set of paired HDV sequences and
patient HLA alleles, (ii) HAM predictions by Fisher’s exact test as
implemented in SeqFeatR (Budeus et al., 2016) and (iii) an in vitro
assay to quantify the effect of the predicted HAMs on IFN-c release
of CD8þ T cells (IFN-c production assays, Karimzadeh et al., 2019).
This allows us to see whether HAMdetector decreases the false posi-
tive rate in comparison to the simpler Fisher’s exact test, and we can
make bona fide predictions on previously undetected HAMs. We
have 15 HAMs predicted in HDV by Fisher’s exact test at signifi-
cance level 5 � 10�3 (Supplementary Table S1) as published
(Karimzadeh et al., 2019). The corresponding P-values have no clear
relation to experimental confirmation, i.e. P-values for confirmed
HAMs are not generally lower than those of non-confirmed ones.

For HAMdetector, we use in Supplementary Table S1 the poster-
ior probability of a positive regression coefficient (Pðbjk > 0Þ as
measure for the confidence in having detected a HAM. HAMs with
strong support have a posterior probability close to 1, associations
with no support a probability close to 0.5 (corresponding to a re-
gression coefficient centered around 0). The five predicted HAMs
with top posterior probabilities (all � 0:90) have all been experi-
mentally confirmed. There is only one outlier with posterior prob-
ability 0.75 (P89T and B*37).

HAMdetector strongly supports 15 substitution—allele pairs
that have previously not been identified (question marks in last col-
umn of Supplementary Table S1). All of them have association prob-
abilities of 0.90 or higher, while their P-values from Fisher’s exact
test exceed the significance level of 5 � 10�3 used in Karimzadeh
et al. (2019). Given the superior performance of HAMdetector on
the experimentally tested HAMs, these 15 bona fide predictions sug-
gest that most true HAMs may still to be discovered. A striking ex-
ample is K43R—A*02 with a P-value of 0.22 in Fisher’s exact test
but a HAM-probability of 0.90 and location inside an A*02
restricted epitope.

3.5 Linkage disequilibrium
For three of the false positives proposed by Fisher’s exact test
(Supplementary Table S1), HAMdetector identifies associations
with the same substitution but a different allele (P49L—B*13 in-
stead of P49L—A*30; K43R—A*02 instead of K43R—B*13; and
D33E—B*13 instead of D33E—A*03). One possible explanation
for this observation is HLA linkage disequilibrium: If a certain HLA
allele selects for a specific HAM and there is another HLA allele
that co-occurs with that HLA allele, any method that relies on the

without horseshoe prior

0 2 4
β HLA-A*01

0 2 4
β HLA-B*44

with horseshoe prior

0 2 4
β HLA-A*01

0 2 4
β HLA-B*44

Fig. 2. Marginal posterior distributions of regression coefficients for the association

of substitution 11D of the HIV integrase with HLA alleles A*01 and B*44. Top

half: inferred with logistic regression model, bottom half: inferred with logistic re-

gression with sparsifying horseshoe prior

Table 1. Prediction performance changes in terms of ELPD as

HAMdetector components are added

ELPDdiff sediff

Logistic regression (baseline) 0.0 0.0

þHorseshoe prior 949.8 65.2

þPhylogeny 4440.9 94.4

þEpitope prediction 63.1 18.9

Note: Values computed for HBV preC/core protein. Each value in the col-

umn ELPDdiff is the ELPD difference to the model in the previous row, e.g.

the ELPD difference between the model with epitope prediction and the previ-

ous one is 63.1. Models with larger ELPD have better predictive performance,

e.g. the model with all components, including epitope prediction, has better

predictive performance than the model lacking epitope prediction. All differ-

ences are several times the estimated standard error (column sediff ) away from

zero, indicating that models that include more information have better pre-

dictive performance.
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statistical analysis of pairs of HLA allele and substitution alone will
also detect these associations. Due to random sampling variation,
the HLA allele that selects for a mutation might not necessarily have

the strongest correlation. Inclusion of additional information like
epitope prediction can help to identify associations that are other-

wise confounded by noise.
Indeed, out of the 12 times P49L is observed in sequences anno-

tated with A*30, B*13 is also present in 5 of those cases
(Spearman’s rank correlation coefficient q ¼ 0:5). A similar observa-
tion can be made for K43R and D33E, although the correlation be-

tween the respective alleles is much weaker. A*30 and B*13 have
been shown to be in strong linkage disequilibrium (Brumme et al.,
2007, Supplementary Table S2).

Figure 3 shows regression coefficients of the HLA alleles A*30

and B*13 for substitution P49L. With the simplest logistic regres-
sion model (model 1), both A*30 and B*13 have medium evi-
dence of being associated with substitution P49L. However, with

phylogeny and sparsity-promoting prior (model 3) both regres-
sion coefficients shrink close to 0—the associations are not con-
vincingly supported by the data. Using epitope prediction as

additional source of information (model 4) allows to disentangle
the association of the correlated alleles with P49L and identify

B*13 as likely associated with P49L. The association between
P49L and A*30 (predicted by Fisher’s exact test) remains shrunk
toward 0.

3.6 HAMs outside epitopes
It is important to consider that biologically relevant HAMs do not
necessarily have to lie within or close to the boundary of an epitope.
In Supplementary Section S5, we outline that the model is still able

to identify associations outside predicted epitopes and that epitope
information augments evidence obtained from sequence data.

4 Discussion

HAMdetector follows a general paradigm of Bayesian modeling,
namely to map all information that is available about a system of
interest onto a probabilistic model, and then to apply Bayesian infer-
ence to learn about probable parameter values of that model, e.g.
about bjk, the association of HLA j with substitution k. The more
relevant information we infuse into the model, the sharper the infer-
ence. HAMdetector outperforms other methods as it includes an un-
precedented amount of relevant information.

We have demonstrated that the logistic regression backbone is a
platform that can be extended by model components that contribute
new information. We have selected such modules guided by widely
accepted knowledge, such as phylogeny or epitope location.
However, even knowledge that is rarely stated explicitly may be
helpful in inference, as in the case of sparsity of HLA associations.
Since the included knowledge is generic for interactions of variable
viruses with CTL immunity, HAMdetector performance does not
depend on the virus.

Yet, HAMdetector is far from perfect. For instance, the outlier in
Supplementary Table S2 could point to missing information in
HAMdetector. Another deficiency is that it currently works only
with two-digit HLA alleles. We are currently exploring models for
4-digit HLA alleles that exploit partial pooling so that we can at-
tenuate effects of the increased data fragmentation.

Generally, the platform character of HAMdetector model allows
optimization of prediction performance by replacing components by
more powerful ones, for example replacing a single epitope predict-
or by an ensemble predictor (Hu et al., 2010). Another extension of
our model would be to better account for phylogenetic uncertainty
by using a Bayesian method to estimate a posterior distribution over
possible tree topologies. The uncertainty over the tree topologies
and the underlying parameters of the phylogenetic model would
then propagate into uncertainty of the estimated probabilities
Pðyik ¼ 1jWÞ. However, the good performance of the current version
of HAMdetector makes it already a valuable tool for the study of
interactions between viruses and T-cell immunity.
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1 Full model specification
The full model specification is given by:

yik ∼ Bernoulli(θik)

θik = logistic
(
β0k + γklogit (P (yik = 1|Ψ))

+
D∑

k=1

Xijβjk

)
β0k ∼ Normal(0, 1002) (*)
γk ∼ Normal(µphy, σ

2
phy)

µphy ∼ Normal(1, 1) (*)
σphy ∼ Normal+(0, 0.5) (*)
βepi ∼ Normal+(1, 2) (*)
βjk ∼ Normal(0, τ2k λ̃2

jk)

λ̃2
jk =

c2kλ
2
jk

c2k + τ2kλ
2
jk

c2k ∼ Inv-Gamma(3.5, 3.5) (*)
λjk ∼ Cauchy+(0, σjexp(Zjkβepi))

τk ∼ Cauchy+(0, τ0k) (*)

τ0k =
10

D − 10

2√
N

(1)

– yik is the binary encoded observation of substitution k in viral sequence i (each observed
amino acid state k contributes a separate column to yik).

– θik is the estimated probability that we observe substitution k in sequence i.



– β0k is an intercept for substitution k, corresponding to the overall log-odds for substitution
k in absence of any HLA-specific effects.

– Xij is 1 if sequence i comes from host individual with HLA allele j and 0 otherwise.

– βjk is the HLA regression coefficient of HLA allele j for substitution k.

– D is the number of HLA alleles in the dataset.

– the logistic inverse link function transforms the linear model in parentheses to the prob-
ability scale of θik.

– γk are (hierarchical) phylogeny coefficients accounting for uncertainty of the phylogenetic
model.

– βepi governs the increase in scale of the corresponding local shrinkage parameters, which
means that HLA regression coefficients for positions inside predicted epitopes are more
likely to be non-zero.

– βjk is the HLA regression coefficient of HLA allele j for substitution k.

– c governs the magnitude of shrinkage for the non-zero coefficients

– τ and λjk are the so-called global and local shrinkage parameters, respectively.

– Cauchy+ is the positively constrained Cauchy distribution.

– τ0 is the overall degree of sparsity.

– N is the total number of annotated sequences.

The full model specification includes some aspects that were not covered in the main manuscript.
In particular, the overall phylogeny-weight γ in Eq 1 of the manuscript is replaced by hierar-
chically modelled γk, which allows partial pooling across substitutions (even with a global
parameter γ the model works reasonably well). The final additional parameters λ̃2

jk and τ0k are
explained in detail in [1]. Briefly, λ̃2

jk allows some regularization for the non-zero coefficients
and the parameterization of τ0k allows to place a prior on the expected number of non-zero
coefficients. This is particularly useful for logistic regression models, as some shrinkage helps
to deal with issues of separability and collinearity that commonly occur with logistic regression
models.



2 Prior justification
Prior distributions are labeled with an asterisk in Eq 1. They are weakly informative, which
means that they effectively limit posteriors to realistic magnitudes of parameters. One exception
to this are the intercepts β0k , which are essentially flat because they are well identified by the
data alone.
The hierarchical mean and standard deviation of the phylogeny coefficients γk place most

probability mass on γk values around 1. In absence of any HLA effects, a γk = 1 would mean
that the estimate for the probability of observing substitution k is identical to the probability
based on the phylogenetic model. This treats phylogeny as a baseline, and any observations
not attributed to phylogeny must be explained by HLA alleles or noise.
The prior on c2k implies a Student-t prior with 7 degrees of freedom and a scale of 1 on

the non-zero HLA regression coefficients βjk. A Student-t prior with these parameters is a
reasonable default choice for logistic regression models [2].
The value of τ0k implies 10 effective non-zero HLA regression coefficients per substitution.

The rationale behind this parameterization is again outlined in [1]. The value of 10 corresponds
to a generously estimated magnitude based on available HIV epitope maps [3]. The model is
also parameterized in a way that assumes an equal degree of sparsity across all alignment
positions a priori. We also tried to model τk hierarchically, but observed sampling issues due
to the resulting unfavorable geometry of the posterior.

3 HBV PreC/core calibration plot

Figure 1: Calibration plot for the HBV PreC/core protein.



4 HAMs in HDV as a test case

Table 1: List of HAMs predicted by Fisher’s exact test (FET). In the last column “+” and
“-” mark experimentally confirmed or rejected HAMs, respectively; “?” below the
horizontal line indicate untested bona fide predictions. “post.prob.” are posterior
probabilities for positive associations computed with HAMdetector.

substitution allele p-value (FET) post. prob. confirmed
S170N B*15 3 · 10−8 0.99 +
D101E B*37 0.0002 0.96 +
R105K B*27 0.0011 0.93 +
R139K B*41 0.0034 0.92 +
E47D B*18 0.0027 0.90 +
D33E B*13 0.0001 0.86 -
T134A A*68 0.0045 0.82 -
K43R B*13 0.0021 0.77 -
P89T B*37 0.0011 0.75 +
D47E A*30 0.0010 0.76 -
K113R B*13 0.0043 0.76 -
A107T B*14 0.0028 0.70 -
P49L A*30 0.0031 0.63 -
Q100L B*13 0.0018 0.60 -
D96E B*13 0.0035 0.51 -
E46D A*02 0.0054 0.97 ?
V81I A*68 0.0073 0.97 ?
K113N B*08 0.0063 0.96 ?
A71T B*41 0.0065 0.96 ?
L188I A*68 0.0632 0.94 ?
T95S A*01 0.0285 0.93 ?
D33E A*03 0.0226 0.93 ?
P49L B*13 0.0035 0.92 ?
A74S A*68 0.0123 0.91 ?
E29D B*44 0.0559 0.91 ?
D46E B*57 0.0190 0.91 ?
R88K A*68 0.0123 0.91 ?
T149P B*52 0.0281 0.91 ?
K43R A*02 0.2158 0.90 ?
N22S B*08 0.0405 0.90 ?



5 HAMs outside epitopes
The epitope and processing predictions that HAMdetector uses are imperfect, as the underlying
tools extrapolate binding affinities for new epitopes based on necessarily incomplete experimen-
tal data. Bayesian statistics provides a coherent framework to make use of imperfect data. In
HAMdetector, this is achieved by an additional parameter βepi that governs how strongly the
model takes an apparent association between a substitution and the corresponding HLA allele
into account. By default, the regression coefficients that quantify the strength of association
between allele and substitution are shrunk towards 0, and only in the presence of considerable
evidence in favor of an association (e.g. because the substitution often co-occurs with a certain
HLA allele), this shrinkage is overcome by the observed data.
If the epitope prediction happens to be reliable, i.e. when the presence of a predicted epitope

correlates strongly with the probability observing the substitution in a host with the respective
HLA allele, the parameter βepi is estimated to be large and less evidence by the sequence
data is enough to escape the shrinkage and estimate a non-zero association between allele and
substitution, compared to associations that do not lie inside a predicted epitope. Likewise,
if the epitope prediction turns out to be non-reliable, βepi is estimated to be close to 0 and
the presence of a predicted epitope does not strongly affect the conclusions drawn from the
sequence data.
However, it is important to consider that biologically relevant HAMs do not necessarily have

to lie within or close to the boundary of an epitope. For instance, compensatory mutations
can occur far away from the epitope they are associated with, as they might be the result
of improved physical interactions with another amino acid in the folded, three-dimensional
protein [4]. Such compensatory mutations [5, 4, 6, 7] can confer a strong selection advantage,
e.g. by partially restoring replicative capacity that would otherwise be impaired by the exclusive
presence of a certain HLA escape mutation.
We therefore also expect HAMs outside epitopes and one possible concern is that the model

focuses too strongly on associations with substitutions that lie within the boundary of predicted
epitopes.

0.4
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Figure 2: Integral of the marginal posterior P (βjk > 0) for the HAMdetector model with epitope
prediction (model 4) and without epitope prediction (model 3) for all substitutions
in the preC/core protein (HBV dataset).

Figure 2 shows posterior probabilities P (βjk > 0) for substitution–HLA allele pairs as cal-
culated by HAMdetector with (model 4) and without (model 3) epitope prediction. Each



substitution–HLA allele pair is represented by a dot and colored according to whether or not
that position lies within a predicted epitope. For substitutions that do not lie within a pre-
dicted epitope, both models provide similar estimates (points along the diagonal). However,
some substitutions–HLA pairs that have only weak evidence of association in model 3 have
strong support in model 4, which is explained by the additional evidence provided by epi-
tope prediction. The figure shows that the model is still able to identify associations outside
predicted epitopes and that epitope information augments evidence obtained from sequence
data.
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7 HAM enrichment plots
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For each model and protein, an enrichment metric is computed according to the following
algorithm: We first ranked all evaluated substitutions according to their respective credibility
of being a HAM (integral of the marginal posterior P (βjk > 0) for HAMdetector, p-values for
PhyloD and Fisher’s exact testr). Let r be the rank in that sorted list, e.g. rank 10 is the
substitution–allele pair at position in that sorted list. Let Ne(r) be the cumulative number of
predictions of this rank or better that are located inside known epitopes. Let mr be the ratio
between Ne(r) for model m and Ne(r) for the top performing model. The enrichment metric
m is then computed as m = 1

N

∑N
r=1mr for ranks 1 to N = 1000.



8 Model 3 vs. model 4 scatter plots
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9 LOO comparisons

HIV HOMER+

gag
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 741.4 46.3
+ phylogeny 3613.5 90.5
+ epitope prediction 13.8 8.1

gp41
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 7626.7 140.4
+ phylogeny 34068.3 276.5
+ epitope prediction 64.7 16.3

gp120
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 14068.0 180.1
+ phylogeny 13189.9 172.4
+ epitope prediction -3.2 20.3

nef
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 5065.2 119.4
+ phylogeny 28433.4 255.1
+ epitope prediction 51.5 20.1

pol
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 9627.4 163.4
+ phylogeny 40489.0 321.7
+ epitope prediction 131.8 26.6

rev
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 3400.4 97.6
+ phylogeny 21225.3 215.9
+ epitope prediction 17.0 9.9

tat
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 3135.0 91.3
+ phylogeny 19120 205.5
+ epitope prediction 16.5 8.9

vif
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 4343.0 108.1
+ phylogeny 21254.6 221.3
+ epitope prediction 38.8 16.2



vpr
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 1714.2 71.1
+ phylogeny 10488.2 155.3
+ epitope prediction 23.4 12.4

vpu
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 2877.5 85.4
+ phylogeny 20004.2 199.7
+ epitope prediction 50.1 12.8



HBV

preC/core
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 971.5 65.2
+ phylogeny 4427.8 94.6
+ epitope prediction 65.7 19.5

HBx
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 637.8 52.8
+ phylogeny 8343.2 127.2
+ epitope prediction 8.5 7.9

LHBs
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 1744.2 84.6
+ phylogeny 30120.1 223.8
+ epitope prediction -7.6 14.7

Pol
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 3157.7 127.7
+ phylogeny 69561.1 343.5
+ epitope prediction 98.8 19.0

HDV

delta
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 455.5 37.5
+ phylogeny 1746.9 63.1
+ epitope prediction 32.1 12.2



HIV Arevir

gp120
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 5453.0 113.1
+ phylogeny 12535.4 167.6
+ epitope prediction -256.6 33.3

integrase
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 1278.7 58.7
+ phylogeny 6144.4 118.2
+ epitope prediction 1.1 9.9

protease
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 793.7 46.7
+ phylogeny 3883.3 88.3
+ epitope prediction -19.0 5.7

reverse transcriptase
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 1653.7 65.7
+ phylogeny 7034.2 127.5
+ epitope prediction -6.1 10.7



HIV CRF project

gag
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 352.2 36.4
+ phylogeny 2893.1 73.1
+ epitope prediction 1.5 13.6

integrase
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 94.4 18.4
+ phylogeny 564.8 36.7
+ epitope prediction 0.0 6.5

pol
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 543.9 42.4
+ phylogeny 3686.2 86.9
+ epitope prediction -1.9 14.4

protease
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 27.7 13.4
+ phylogeny 297.7 24.5
+ epitope prediction 5.1 4.5

reverse transcriptase
elpddiff sediff

logistic regression (baseline) 0.0 0.0
+ horseshoe prior 198.9 27.3
+ phylogeny 1668.9 56.3
+ epitope prediction 1.7 9.4



10 Software usage
The input for HAMdetector model is aligned viral sequence data that is annotated with the
host’s HLA type. Optionally, a phylogenetic tree based on the sequence alignment can be used
as additional input. An example of (shortened) valid input files is shown below:

alignment.fasta

>HLA-A32_HLA-A03_HLA-B52_HLA-B14_HLA-C16_HLA-C16
MG-RASVMG-RAV
>HLA-A68_HLA-A31_HLA-B44_HLA-B08_HLA-C07_HLA-C07
MGARASVMG-RTV
>HLA-A24_HLA-A24_HLA-B15_HLA-B46_HLA-C12_HLA-C12
MSARASVMGSRSSV
>HLA-A02_HLA-A03_HLA-B58_HLA-B44_HLA-C14_HLA-C06
MSARASVMG-RRSV
>HLA-A03_HLA-A31_HLA-B55_HLA-B40_HLA-C16_HLA-C03
MSARASVMG-RMSV

phylogeny.tree

((2:0.03,1:0.11):33.61,(3:0.10,5:0.85):0.10,4:0.24);
Assuming the files were saved as /home/user/Desktop/alignment.fasta and home/user/Desktop/phylogeny.tree,

HAMdetector can be run using the following commands:

using Escape

data = HLAData(
alignment_file = "/home/user/Desktop/alignment.fasta",
tree_file = "/home/user/Desktop/phylogeny.tree"

)

result = run_model(data)

summary_df = replacement_summary(result)

The output returned by the replacement_summary function is a table like the one printed
blow:



allele position replacement posterior_p log_odds_lower_95 log_odds_upper_95
HLAAllele Int64 Char Float64 Float64 Float64

HLA-B*55 12 M 0.64375 -1.29526 2.69504
HLA-B*46 12 S 0.6125 -1.43746 2.67338
HLA-B*15 12 S 0.60825 -1.44681 2.54448
HLA-B*40 12 M 0.60175 -1.05725 1.9695
HLA-B*58 12 R 0.59875 -1.62281 2.41285
HLA-A*02 12 R 0.591 -1.55972 2.44342
HLA-C*03 12 M 0.59025 -0.996611 2.03937
HLA-A*31 12 M 0.58875 -1.58969 2.32103
HLA-C*16 12 M 0.5705 -1.62612 2.24687

... ... ... ... ... ...

The table contains a list of all observed replacements, sorted by decreasing estimated proba-
bility of being associated with an HLA allele. The column posterior_p denotes the posterior
probability of the HLA regression coefficient being larger than 0, conditioned on the model
and the observed data. Posterior probabilities close to 1 denote a strong positive association
between the allele and replacement, posterior probabilities close to 0 denote a strong nega-
tive association between the allele and replacement. Biologically, this means: the higher the
posterior probability, the stronger the evidence for immune escape.
A posterior probability of 0.5 means that there is no evidence of the replacement being HLA-

associated (0.5 because a regression coefficient centered around 0 allocates equal probability to
negative and positive values).



3.2 Clinical and molecular characteristics associated
with response to therapeutic PD-1/PD-L1 inhi-
bition in advanced Merkel cell carcinoma

This section is based on the following publication:

Ivelina Spassova, Selma Ugurel, Linda Kubat, Lisa Zimmer, Patrick Terheyden, Annalena
Mohr, Hannah Björn Andtback, Lisa Villabona, Ulrike Leiter, Thomas Eigentler, Carmen
Loquai, Jessica C. Hassel, Thilo Gambichler, Sebastian Haferkamp, Peter Mohr, Claudia
Pfoehler, Lucie Heinzerling, Ralf Gutzmer, Jochen S Utikal, Kai Horny, Hans-Ulrich
Schildhaus, Daniel Habermann, Daniel Hoffmann, Dirk Schadendorf, Jürgen Christian
Becker (2022).
Clinical and molecular characteristics associated with response to therapeutic
PD-1/PD-L1 inhibition in advanced Merkel cell carcinoma
http://dx.doi.org/10.1136/jitc-2021-003198
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ABSTRACT
Background  Based on its viral-associated or UV-
associated carcinogenesis, Merkel cell carcinoma (MCC) is 
a highly immunogenic skin cancer. Thus, clinically evident 
MCC occurs either in immuno-compromised patients or 
based on tumor-intrinsic immune escape mechanisms. 
This notion may explain that although advanced MCC 
can be effectively restrained by treatment with PD-1/
PD-L1 immune checkpoint inhibitors (ICIs), a considerable 
percentage of patients does not benefit from ICI therapy. 
Biomarkers predicting ICI treatment response are currently 
not available.
Methods  The present multicenter retrospective study 
investigated clinical and molecular characteristics in 
114 patients with unresectable MCC at baseline before 
treatment with ICI for their association with therapy 
response (best overall response, BOR). In a subset of 21 
patients, pretreatment tumor tissue was analyzed for 
activation, differentiation and spatial distribution of tumor 
infiltrating lymphocytes (TIL).
Results  Of the 114 patients, n=74 (65%) achieved 
disease control (BOR=complete response/partial response/
stable disease) on ICI. A Bayesian cumulative ordinal 
regression model revealed absence of immunosuppression 
and a limited number of tumor-involved organ systems 
was highly associated with a favorable therapy response. 
Unimpaired overall performance status, high age, normal 
serum lactate dehydrogenase and normal serum C reactive 
protein were moderately associated with disease control. 
While neither tumor Merkel cell polyomavirus nor tumor 
PD-L1 status showed a correlation with therapy response, 
treatment with anti-PD-1 antibodies was associated with 
a higher probability of disease control than treatment with 
anti-PD-L1 antibodies. Multiplexed immunohistochemistry 
demonstrated the predominance of CD8+ effector and 
central memory T cells (TCM) in close proximity to tumor 
cells in patients with a favorable therapy response.
Conclusions  Our findings indicate the absence of 
immunosuppression, a limited number of tumor-affected 
organs, and a predominance of CD8+ TCM among TIL, as 

baseline parameters associated with a favorable response 
to PD-1/PD-L1 ICI therapy of advanced MCC. These factors 
should be considered when making treatment decisions in 
MCC patients.

INTRODUCTION
Merkel cell carcinoma (MCC) is a rare, highly 
aggressive neuroendocrine skin cancer. MCC 
carcinogenesis is associated either with the 
Merkel cell polyomavirus (MCPyV), predom-
inantly in cases occurring in the northern 
hemisphere, or with chronic UV-exposure.1 
MCC is highly immunogenic due to the pres-
ence of either MCPyV-derived antigens or 
UV-associated neoantigens. Thus, clinically 
manifest advanced MCC is mostly observed 
in immunocompromised and immunose-
nescent patients or occurs based on tumor-
intrinsic immune escape mechanisms. Still, 
a high therapeutic activity of PD-1/PD-L1 
immune checkpoint inhibitors (ICIs) with 
durable objective responses in about 50% 
of patients has been observed.2 Despite this 
major improvement in the therapy outcome 
of advanced MCC patients, this observa-
tion also implies that half of the patients do 
not experience a long-term benefit from 
ICI therapy. Clinically applicable predic-
tive biomarkers of ICI therapy response are 
just starting to emerge: (1) in a trial testing 
neoadjuvant nivolumab, both pathological 
complete response (CR) and radiographic 
tumor regression at the time of surgery were 
correlated with improved recurrence-free 
survival,3 and (2) Kacew et al reported that 
a limited disease stage at ICI therapy start 
was associated with a favorable response.4 
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However, the study also showed that, unlike in other 
cancers, neither tumor mutational burden nor copy-
number alterations in MCC tumor tissue predicted ICI 
therapy outcome. Similarly, a recent study by us character-
izing 41 MCC patients receiving PD-1/PD-L1 ICI demon-
strated that predictive markers of ICI therapy response 
established in other cancer entities such as neutrophil-
to-lymphocyte ratio, metastatic stage and site of the 
primary were not associated with ICI response in MCC.5 
However, our comprehensive dynamic molecular anal-
ysis of pretreatment tumor tissue demonstrated that not 
only the density of the immune cell infiltrate, but rather 
its functional properties correlated with the response to 
ICI therapy. In particular, the predominance of central 
memory T (TCM) cells with a diverse T-cell receptor (TCR) 
repertoire were associated with a favorable treatment 
outcome.5 On the other hand, we did not observe any 
predictive potential on previously suggested molecular 
biomarkers such as tumor PD-L1 expression or MCPyV 
status.2 5 6 Thus, with the present study we aimed at testing 
clinically well applicable predictive biomarkers in a 
larger patient cohort (114 MCC patients, although these 
included 41 patients from our earlier study5 by expanding 
our initial oligocentric approach to a multicentric study, 
but also limiting the complexity of the molecular anal-
yses to those showing the highest predictive value in our 
previous study.

MATERIALS AND METHODS
Patients and samples
One hundred and fourteen (n=114) patients treated 
between May 2018 and July 2020 at 11 MCC referral 
centers (Bochum, Buxtehude, Erlangen, Essen, Heidel-
berg, Homburg, Lübeck, Mainz, Regensburg, Stockholm, 
Tübingen) were retrospectively identified according 
to the following selection criteria: histopathologically 
confirmed diagnosis of MCC, treatment with PD-1/PD-L1 
ICI for unresectable advanced disease, and complete 
follow-up documentation of ICI therapy outcome 
including best overall response (BOR), progression-free 
(PFS) and overall (OS) survival. BOR was determined 
according to RECIST V.1.1.7 PFS and OS were defined 
as time from therapy start until disease progression or 
death, respectively; if no such event occurred, the date of 
the last patient contact was used as endpoint of survival 
assessment (censored observation). Detailed clinical 
parameters at baseline of ICI therapy were collected from 
the patients’ medical charts; it is important to note that a 
subgroup of 41 patients had already been described in an 
earlier study5 (online supplemental table S1). Immuno-
suppression was assigned to patients suffering from hema-
tological neoplasia or to patients treated with multiple 
drugs for multiple cancers or immunosuppressive medi-
cations. If available, pretreatment samples of formalin-
fixed paraffin-embedded (FFPE) tumor tissue from the 
studied patients were collected for molecular analysis.

Detection of MCPyV DNA
Detection of MCPyV DNA was performed as previously 
described by TaqMan Real-Time qPCR using the following 
large T-antigen (LTA) specific primers and TaqMan 
probe: forward primer; CCA AAC CAA AGA ATA AAG 
CAC TGA; reverse primer, TCG CCA GCA TTG TAG TCT 
AAA AAC, and probe: FAM-AGC AAA AAC ACT CTC 
CCC ACG TCA GAC AG-BHQ1.5

Multiplex immunofluorescence staining
Multiplex immunofluorescence staining of FFPE tumor 
tissue was performed using the Opal chemistry (Perkin-
Elmer, Waltham, USA, Cat.No.: OP7TL4001KT) with two 
panels of antibodies, ie, against CD4, CD8, CD20, Foxp3 
and CD68 (panel 1), or CD27, GZMB, TCF1, CD45RA 
and CD45RO (panel 2). Synaptophysin served as tumor 
marker in either panels. Briefly, after deparaffinization 
and fixation, 3 µm tumor sections were processed with 
retrieval buffers for 15 min in an inverter microwave 
oven. Thereafter, sections were incubated with the anti-
body diluent for 10 min at room temperature, followed 
by incubation with the primary antibody for 30 min. 
After applying Opal polymer HRP secondary antibody 
and Opal fluorophore solution each for 10 min, anti-
bodies were removed by microwave treatment before a 
further round of staining. The antibodies, their dilutions, 
the respective retrieval buffers as well as the sequence 
of usage are described in detail in online supplemental 
table S2. Visualization of the different fluorophores was 
achieved on the Mantra Quantitative Pathology Imaging 
System (PerkinElmer). For each tumor sample, quan-
tification of the different cell types was performed at 
medium magnification on three randomly selected 
areas located either in the juxtatumoral or intratumoral 
region in a semiautomatic fashion with the InForm 
Tissue Analysis software (Akoya Biosciences, Menlo Park, 
USA). Since tumor samples were received from different 
pathology institutes, the quality of the FFPE material was 
not uniform, resulting in variations in fluorescence inten-
sity from sample to sample. To avoid quantification errors 
due to these intensity variations, the InForm tissue anal-
ysis software was trained on tumor tissue samples from the 
respective sources, thus developing an algorithm based on 
the median of the determined intensities. Subsequently, 
training of the software was performed on five different 
MCC tissue samples to recognize staining patterns/cell 
types. Finally, a principal components analysis was used 
to visualize possible pattern of the immunofluorescence 
staining results across the samples as suggested by Shen et 
al.8 Annotation by the different pathology institutes the 
samples were received from no significant batch effect 
was observed indicating the initial training of the InForm 
software was sufficient.

Two independent observer, blinded to ICI response, 
monitored the quantification analysis and classified 
the respective cell types in relation to all nucleated 
cells per sample into five categories: 0%, >1%, 1%–5%, 
5%–10% and  >10%. Disagreements were resolved by 
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taking the opinion of a third observer into consider-
ation. Markers used for the quantification of the different 
immune cell types are listed in online supplemental 
table S3 and the raw data of the quantification analysis 
by InForm Tissue Analysis software is provided in online 
supplemental table S4 and S5 for panel 1 and panel 2, 
respectively.

STATISTICAL ANALYSES
A Bayesian cumulative ordinal regression model was 
applied for predicting PD-1/PD-L1 ICI therapy response 
in MCC patients. The model was fit with a dataset consisting 
of 114 patients and 15 clinical parameters; year of treat-
ment and participation in a clinical trial were considered 
as possible confounders (table  1). Model parameters 
were described with probability distributions that take 
into account the uncertainty of the estimates. Treatment 
response was classified into CR, partial response (PR), 
stable disease (SD) and progressive disease (PD) on an 
ordinal scale. We applied a cumulative ordinal regression 
model to the data, which takes the ordinal nature of the 
response variable into account. Compared with other 
approaches that incorrectly treat the response variable 
as metric (such as linear regression) or nominal (eg, by 
binarizing the response variable), this may lead to more 
precise inference and therefore reduces over- or underes-
timation of effect sizes.9 The cumulative regression model 
regards the tendency of a patient to respond to treatment 
as a latent (=unobserved) variable that is determined by 
the patient characteristics. The model is described by 
the following formula: ‍i = βage.xi,age + βLDH.xi,LDH . . . .‍ ; in 
which ‍‍ is the location of the latent variable for patient 
i, ‍βage‍ is the β coefficient for the predictor age and ‍xi,age‍ 
is the indicator variable of patient i for age. The β coef-
ficient of the predictor provides information on whether 
or not a predictor is associated with a higher probability 
of treatment response. Student t-priors with 7 degrees of 
freedom and a SD of 1 were chosen as weakly informa-
tive priors for the β coefficients. Model fit is performed 
numerically by Markov chain Monte Carlo.10 The width of 
the distribution gives an impression of the uncertainty of 
the estimate: a distribution tightly concentrated around a 
value means that the dataset allows for a precise estimate 
of that parameter, while a broader distribution means 
that the data is consistent with a wide range of parameter 
values. Average predictive comparisons are calculated 
as expected changes in response associated with a unit 
difference in one of the inputs. They were calculated with 
respect to having at least a PR to treatment, for example, 
for immunosuppression, values between −0% and −40% 
denote that comparing a patient with immunosuppres-
sion to an otherwise identical patient without immuno-
suppression, the patient with immunosuppression has (on 
average) a 0%−40% lower probability of having at least 
a PR to treatment. Fitting the model to the dataset was 
done with the R software package ‘brms’, which utilizes 
‘Stan’ in the background.11 Missing values were estimated 

by multiple imputation with the R package ‘mice’.11–13 
The imputed data values are consistent with the observed 
data (online supplemental figure 1). Using leave-
one-out cross-validation (LOO), this model has a similar 
(expected log-predictive density (ELPD), a measure of its 
ability to generalize to unseen data) as a sequential model 
without category-specific effects, meaning that including 
category-specific effects does not improve model perfor-
mance and the proportional odds assumption does not 
have a strong effect on the model conclusions. In the 
following, we report the detailed results for LOO and 
ELPD for completeness (online supplemental figure 2). 
A detailed description is given in online supplemental 
materials and methods. Transparent Reporting of a multi-
variable prediction model for Individual Prognosis or 
Diagnosis reporting guidelines were followed to develop 
the predictive model, including patient selection.14

Kaplan-Meier plots were generated with R V.3.5.1 using 
the package ‘survival’ (V.2.44–1.1 and survminer V.0.4.6). 
All patients with PFS and/or OS of more than 36 months 
are censored without having a respective event, because 
the data beyond this period is very sparse. Log rank test is 
used to calculate p values.

For statistical testing of T-cell abundance in MCC tumor 
tissue, p values were determined by beta regression with 
R V.4.0.2 and packages ‘lmtest’ and ‘betareg’ (V.0.9–38 
and V.3.1–4).

For statistical testing of the distance between tumor 
cells and CD8+ T cells in tumor tissue, the unpaired two-
tailed Student’s t-test, calculated in GraphPad Prism V.5 
(San Diego, USA) was applied.

RESULTS
Patient characteristics, response to ICI and survival outcomes
A total of 114 patients treated with PD-1/PD-L1 ICI 
(avelumab, n=57; nivolumab, n=13; pembrolizumab, 
n=44) for unresectable advanced MCC were identified 
at 11 MCC referral centers in Germany and Sweden. 
Detailed patient characteristics are given in table  1. Of 
114 patients, 54 (47%) experienced an objective response 
(BOR=CR/PR), and 74/114 patients (65%) a disease 
control (BOR=CR/PR/SD) on ICI (figure 1A). When the 
entire patient cohort was divided by type of therapy, in the 
cohort treated with the anti-PD-L1 antibody avelumab, 
22/57 patients (39%) experienced an objective response 
and 33/57 patients (58%) disease control; in the cohort 
treated with the anti-PD-1 antibodies pembrolizumab or 
nivolumab, an objective response was observed in 32/57 
patients (56%) and disease control in 41/57 patients 
(72%). Of 114 patients, 37 (32%) died within a median 
follow-up time of 12.0 (±2.41, 95% CI) months. Kaplan-
Meier estimates for PFS and OS categorized by BOR (CR, 
n=24; PR, n=30; SD, n=20; and PD, n=40) revealed a clear 
separation of the curves for patients experiencing disease 
control (CR/PR/SD) as BOR compared with those 
presenting a primary progression on therapy (online 
supplemental figure 3). The median PFS and OS in the 
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Table 1  Patient and tumor characteristics at baseline of anti-PD-1/PD-L1 therapy

All patients n=114 (100%)
Disease control (BOR=CR/PR/
SD) n=74 (100%)

Disease progression (BOR=PD) 
n=40 (100%)

Patient characteristics

Gender

 � Male 82 (72%) 54 (73%) 28 (70%)

 � Female 32 (28%) 20 (27%) 12 (30%)

Age

 � <70 40 (35%) 24 (32%) 16 (40%)

 � ≥70 74 (65%) 50 (68%) 24 (60%)

Overall performance status (ECOG)

 � 0 64 (56%) 47 (64%) 17 (43%)

 � ≥1 49 (43%) 26 (35%) 23 (57)

 � Not available 1 (1%) 1 (1%) 0 (0%)

Immunosuppression

 � No 92 (81%) 64 (86%) 28 (70%)

 � Yes 22 (19%) 10 (14%) 12 (30%)

LDH (blood)

 � Normal 43 (38%) 32 (43%) 11 (28%)

 � Elevated 67 (59%) 39 (53%) 28 (70%)

 � Not available 4 (3%) 3 (4%) 1 (2%)

CRP (blood)

 � Normal 30 (26%) 21 (28%) 9 (23%)

 � Elevated 55 (48%) 31 (42%) 24 (60%)

 � Not available 29 (26%) 22 (30%) 7 (16%)

NLR (blood)

 �  4 54 (47%) 36 (49%) 18 (45%)

 � ≥4 35 (31%) 20 (27%) 15 (38%)

 � Not available 25 (22%) 18 (24%) 7 (17%)

Tumor characteristics

Localization of primary

 � Head and neck 24 (21%) 17 (23%) 7 (17%)

 � Extremities 44 (39%) 27 (36%) 17 (43%)

 � Trunk 19 (17%) 12 (16%) 7 (17%)

 � Unknown primary 15 (13%) 9 (12%) 6 (15%)

Metastatic stage (AJCC)

 � M0 17 (15%) 11 (15%) 6 (15%)

 � M1a 36 (32%) 23 (31%) 13 (32%)

 � M1b/M1c 61 (53%) 40 (54%) 21 (53%)

Organs involved

 � 1 51 (45%) 38 (51%) 13 (32%)

 � >1 63 (55%) 36 (49%) 27 (68%)

MCPyV status (tumor)

 � Negative 10 (9%) 6 (8%) 4 (10%)

 � Positive 32 (28%) 20 (27%) 12 (30%)

 � Not available 72 (63%) 48 (65%) 24 (60%)

PD-L1 (tumor)

 � Negative 17 (15%) 11 (15%) 6 (15%)

Continued
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control group were 12.1 and 15.9 months, and 1.4 and 3.9 
months, respectively, in the progression group.

On the finding of this clear separation in survival 
probabilities between patients responding with disease 
control (BOR=CR/PR/SD) and patients responding with 
disease progression (BOR=PD), we performed all further 
molecular analyses on the association of clinical and 
molecular characteristics with therapy response based 
on the discrimination between these two patient groups 
(ie, disease control group vs disease progression group). 
Due to the limited number of samples, we refrained from 

forming further subclusters taking the degree of response 
into account.

Baseline clinical parameters are associated with a favorable 
response to ICI therapy
Most predictive models dichotomize response to therapy, 
which neglects the extent of the response. To over-
come this limitation, we developed a Bayesian model 
that instead of dichotomizing the therapy response into 
two groups, that is, regression versus progression, rather 
reflects the established clinical response evaluation 

All patients n=114 (100%)
Disease control (BOR=CR/PR/
SD) n=74 (100%)

Disease progression (BOR=PD) 
n=40 (100%)

 � Positive 21 (18%) 12 (16%) 9 (23%)

 � Not available 76 (67%) 51 (69%) 25 (62%)

Therapeutic interventions

 � Previous radiotherapy

 � No 55 (48%) 35 (47%) 20 (50%)

 � Yes 59 (52%) 39 (53%) 20 (50%)

Previous chemotherapy

 � No 83 (73%) 53 (72%) 30 (75%)

 � Yes 31 (27%) 21 (28%) 10 (25%)

PD-1/PD-L1 inhibitor therapy

 � Avelumab 57 (50%) 33 (45%) 24 (60%)

 � Nivolumab 13 (11%) 10 (13%) 3 (8%)

 � Pembrolizumab 44 (39%) 31 (42%) 13 (32%)

AJCC, American Joint Committee on Cancer; BOR, best overall response; CRP, C reactive protein; ECOG, Eastern Cooperative 
Oncology Group; LDH, lactate dehydrogenase; MCPyV, Merkel cell polyomavirus; NLR, neutrophil to lymphocyte ratio.

Table 1  Continued

Figure 1  Response of n=114 advanced MCC patients on PD-1/PD-L1 immune checkpoint inhibition therapy. Waterfall plot 
depicting the best overall response (BOR) as change in the sum of the longest diameters of target lesions from baseline to BOR. 
Each bar, color coded by therapeutic antibody, represents an individual patient. The pointed vertical line discriminates patients 
with disease control (BOR=CR/PR/SD) from patients with disease progression (BOR=PD). CR, complete response; MCC, Merkel 
cell carcinoma; PD, progressive disease; PR, partial response; SD, stable disease.
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criteria in solid tumors (RECIST): CR, PR, SD, and PD.7 
Resulting from this Bayesian model, we found the absence 
of immunosuppression as well as a limited number of 
organs (1 vs>1) involved into disease spread as the stron-
gest predictors of a favorable response to PD-1/PD-L1 
ICI therapy (figure 2). Interestingly, the involved organ 
type, for example, soft tissue versus visceral, showed less 
predictive power. These calculations indicate that immu-
nocompetent patients or patients with only one affected 
organ have probability to achieve disease control on ICI 
treatment, that is by about 20% higher (0%–40% increase 
contains almost all the probability). Additionally, an 
unimpaired overall performance status (Eastern Coop-
erative Oncology Group (ECOG)=0), patient age of 70 
years and above, as well as normal lactate dehydrogenase 
(LDH) and C reactive protein (CRP) serum levels were 
associated with a higher probability of disease control 
on ICI, but to a lower extent. Interestingly, patients’ sex, 
localization of the primary, pretreatment with radiation 
or chemotherapy, and MCPyV status or PD-L1 expres-
sion of the tumor revealed no relevant association with 
ICI therapy response. Similarly, when we tested if year 
of treatment and participation in a clinical trial were 
possible confounders, no impact on the therapeutic 
outcome was observed. Surprisingly, in our investigated 
patient cohort with an equal distribution of PD-L1 and 
PD-1 ICI therapies (see table 1), the use of anti-PD-1 anti-
bodies for ICI therapy was associated with a higher prob-
ability of a favorable therapy response (figure 2). Notably, 
the distribution of relevant patient and tumor character-
istics, particularly immunosuppressive state, number of 
organs involved with disease, impaired ECOG status, and 
elevated serum LDH and CRP were equally distributed 
among the two treatment cohorts, that is, anti-PD-1 and 
anti-PD-L1 antibody ICI (online supplemental table S6).

Pretreatment dense intratumoral infiltrates of CD8+ TCM are 
associated with a favorable response to ICI
We recently demonstrated by transcriptomics, spatial 
proteomics and TCR sequencing of sequential tumor 
biopsies under PD-1/PD-L1 ICI therapy that a predom-
inance of TCM with a diverse TCR repertoire and the 
ability to expand on ICI is associated with a favorable 
therapy response.5 This approach allows a good under-
standing of the complex immune biology of MCC, but 
is difficult to use in the clinical routine of patient care. 
In order to establish clinically well applicable predic-
tive biomarkers, we here limited the complexity of our 
molecular investigations to multiplexed immunohisto-
chemistry of pretreatment FFPE tumor tissue in order to 
extract the most important cell type characteristics for 
therapy response, which can be realistically analyzed as 
predictive biomarker in the future. Phenotyping of the 
immune infiltrate of pretreatment tumor tissue samples 
of 21 patients, including some tumors from our earlier 
report,5 (11 patient with disease control, 10 patients with 
disease progression) for the expression of CD4, CD8, 
CD20, Foxp3, and CD68 showed that dense immune cell 

infiltration, particularly by CD8+ T cells, correlated with a 
favorable ICI therapy response (figure 3A,B). Significantly 
more CD8+ T cells were infiltrating the juxtatumoral area 
(p=0.02) and higher number of cytotoxic T cells were 
present in the intratumoral area (p=0.16) of patients 
achieving disease control (figure 3C, online supplemental 
figure 4). Figure 3D illustrates how the spatial distribution 
of the tumor-infiltrating CD8+ T cells was measured as the 
distance between the nuclei of CD8+ T cells and synapto-
physin+ MCC cells. For distance analysis, tumor samples 
with CD8+ T cells that were less than 1% of total cells had 
to be excluded, because in these cases it was not possible 
to measure the distance of at least 20 different tumor/T--
cell pairs. In patients with disease control, CD8+ T cells 
were in direct and close contact with the tumor cells with 
a mean distance length of 13.24 µm, whereas the mean 
distance length was significantly higher in patients with 
disease progression (22.00 µm, p=0.009) (figure  3E). 
Moreover, in patients showing disease progression, the 
CD8+ T cells were mostly restricted to the juxtatumoral 
stromal space, and only rarely within the tumor tissue. We 
did not detect significant differences in the amount or 
distribution of regulatory T cells (CD4+FoxP3+), B cells 
(CD20+), and monocytes/macrophages (CD68+) between 
tumor tissues of patients with disease control and patients 
with disease progression. However, with respect to 
CD20+ B cells within the cellular immune infiltrate, it is 
important to note that their frequency varied strongly 
between samples.

Staining for CD27, GZMB, TCF1, CD45RA and 
CD45RO allows a precise distinction of TCM and effector 
T cells with TCM characterized by colocalization of CD27, 
TCF1 and CD45RO. Indeed, only in pretreatment tumors 
from patients with disease control, we observed a clear 
co-localization of these TCM markers (figure  4). More-
over, quantification of T-cell subtypes confirmed a higher 
percentage of TCM of total tumor infiltrating lymphocytes 
(TILs) number in the intratumoral infiltrate as well as 
in the juxtatumoral area (table 2). Effector T cells char-
acterized by colocalization of GZMB and CD45RA were 
also more frequently observed in the cellular tumor 
infiltrate of pretreatment tumor tissue of patients with 
disease control than in those with disease progression; 
however, the difference was less evident (p=0.07; online 
supplemental figure 5). It should be noted that CD45RA 
re-expression has also been described in terminally differ-
entiated T cells characterized by decreased proliferative 
capacity, increased senescence signaling in vitro.15

DISCUSSION
To find predictors, which assess the individual probability 
of success of PD-1/PD-L1 ICI in MCC, we collected clin-
ical information on 114 accordingly treated patients and 
established the spatial distribution of tumor infiltrating T 
cells as well as their activation and differentiation status 
in pretreatment FFPE tumor tissue samples by two IHC 
panels. We developed a Bayesian cumulative ordinal 
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Figure 2  Best overall response (BOR) to anti-PD-1/PD-L1 therapy in correlation to baseline clinical patient and tumor 
characteristics. The correlations are visualized by average predictive comparisons calculated by a Bayesian cumulative ordinal 
regression model. While the presented data refer to the full model using four categories of response: CR, PR, SD, and PD, to 
ease interpretation we mapped the obtained results by average predictive comparisons on a single probability scale for disease 
control (BOR=CR/PR/SD) and disease progression (BOR=PD) as a probability distribution, given as the percentage of average 
predictive comparison. The 95% credibility intervals are colored in light blue. Distinct parameters are marked as reference (Ref), 
described as vertical blue lines set at 0% average predictive comparison. CR, complete response; CRP, C reactive protein; 
ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; MCPyV, Merkel cell polyomavirus; NLR, neutrophil 
to lymphocyte ratio; PD, progressive disease; PR, partial response; SD, stable disease.
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Figure 3  High density of tumor-infiltrating CD8+ central memory T cells in close proximity to tumor cells in MCC patients 
showing disease control (CR/PR/SD) on PD-1/PD-L1 ICI phenotyping of the cellular immune infiltrate present in MCC tumor 
lesions obtained at baseline of ICI therapy of a representative patient responding with disease control (A) and disease 
progression (B) was done by multiplexed immunohistochemistry-based staining using antibodies against CD4 (green), CD8 
(yellow), CD20 (red), FOXP3 (orange), CD68 (magenta), and the MCC marker synaptophysin (SYN) (cyan); nuclei are stained 
with DAPI (blue). depicted are merged images at ×20 magnification. (C) Percentage of CD8+ T cells in pretreatment tumor 
tissue from patients showing disease control and those showing disease progression in the juxtatumoral and intratumoral 
area. P values were determined using beta regression. (D) Measurement of the distance between CD8+ T cells and tumor cells. 
(E) Mean value of the distance between CD8+ T cells and tumor cells for patients showing disease control and those showing 
disease progression. P values were determined using unpaired, two-tailed Student’s t-test. CR, complete response; ICI, immune 
checkpoint inhibitor; MCC, Merkel cell carcinoma; PR, partial response; SD, stable disease.
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regression model that includes the distance between clin-
ical characteristics and thereby appropriately accounts 
for category order. This model avoids problems such 
as dichotomizing the outcome or treating the distance 
between the categories as equal, and thus uses the avail-
able data efficiently. It revealed the absence of immuno-
suppression and the metastatic involvement of a limited 
number of organ systems as characteristics predicting 
disease control on PD-1/PD-L1 ICI therapy with the 
highest probability. Additional characteristics associated 
with treatment response were age, overall performance 
status, serum LDH and serum CRP, as well as a brisk intra-
tumoral infiltrate by TCM (figure  5). However, both the 
data model and the missing data model rely on assump-
tions about the data generating process, for example, 
that data are missing at random. Even if the implications 
of these assumptions have been evaluated carefully, all 
results are still conditioned on the underlying model and 
should be interpreted with this in mind.

The expanded patient cohort under investigation 
of n=114 that allowed fitting a more complex Bayesian 
model supported our previously published observations 
in 41 patients.5 The positive effect of an intact immune 
system observed in either study was also reported from 
the avelumab expanded access program for metastatic 
MCC patients in which immunocompromised patients 
achieved a lower response rate with shorter durations of 
response.16 It should be noted that other characteristics 

associated with a lower probability of response, such as 
a limited performance status (ECOG >0) or an elevated 
serum CRP, are also likely to reflect an impaired immune 
status of the respective patient. Similarly, an elevated 
serum LDH level and a higher number of involved organs 
are not to be interpreted only as markers of a higher 
tumor load. Notably, in our previous report, we dichoto-
mized the number of involved organs up to two or more, 
these groups did not show a clear association with the 
probability of response but had broad posterior intervals; 
in contrast, the larger cohort is consistent with the involve-
ment of only one organ being a strong positive predictive 
marker. Patient age of 70 years and above was also found to 
be associated with a higher probability of disease control, 
but to a lesser extent. A positive correlation of response to 
anti-PD-1 therapy and patient age ≥60 years was described 
in melanoma.17 In this respect, it is important to note that 
chronological age does not necessarily reflect immuno-
logical age. One factor that correlates better with biolog-
ical/immunological age than chronological age is frailty, 
which directly describes a person’s health status.18 For 
example, the process of inflammation is a predictor for 
frailty and one of the key cell types believed to facilitate 
an inflammatory phenotype are tumor-infiltrating macro-
phages, which are often detected in MCC tissue.19 Other 
clinical characteristics such as sex, primary site, prior radi-
ation or chemotherapy, PD-L1 expression by tumor cells, 
and tumor MCPyV status did not show relevant associa-
tion to PD-1/PD-L1 ICI response. These observations are 
in line with the results from a study scrutinizing 37 MCC 
patients receiving ICI.20

Functional characterization of the immunological infil-
trate of pretreatment tumor tissue revealed that in partic-
ular the presence of TCM in close proximity to tumor cells 
was associated with a favorable response to ICI therapy. It 
is important to note that because the tumor samples were 
received from different pathology institutes, the quality 
of the FFPE material was not uniform, resulting in vari-
ations in fluorescence intensity from sample to sample. 
To avoid quantification errors due to these intensity vari-
ations, the InForm tissue analysis software was trained on 
tumor tissue samples from the respective sources, thus 
developing an algorithm based on the median of the 
determined intensities. Moreover, the observation was 
consistent with our previous work, where we performed 
transcriptomics, spatial proteomics and TCR sequencing 
of sequential tumor biopsies before and under ICI therapy 
of rather uniform quality. These observations confirm the 
robustness of the chosen approach and the importance of 
TCM as one of the effectors of response to ICI therapy. The 
superior antitumor efficacy of TCM cells can be explained 
by their low activation threshold, rapid proliferative and 
differentiation capacity on cognate activation, as well as 
their capacity for long-term persistence facilitating immu-
nologic memory.21 22 Indeed, since TCM cells are the major 
source of secondary effector cells during a recall response, 
the duration of anti-tumor immune responses depends 

Figure 4  Predominance of central memory T cells (TCM) 
among tumor-infiltrating lymphocytes of patients showing 
disease control (CR/PR/SD) on PD-1/PD-L1 ICI therapy. 
Multiplexed immunofluorescence staining of pretreatment 
tumor tissue from a representative patient showing disease 
control (A) and disease progression (B) using antibodies 
against CD27 (green), GZMB (yellow), TCF1 (red), CD45RA 
(orange), CD45RO (magenta), and the MCC marker 
synaptophysin (SYN) (cyan); nuclei are stained with DAPI 
(blue). Depicted are merged images at ×20 magnification. To 
visualize the colocalization of CD27, TCF1 and CD45RO, an 
enlarged image view is shown. CR, complete response; ICI, 
immune checkpoint inhibitor; MCC, Merkel cell carcinoma; 
PR, partial response; SD, stable disease.
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on their presence.23 This is consistent with our present 
and recent findings as well as with further studies showing 
TCM characteristics to be effectively reactivated.24–27 Toews 

et al demonstrated that TCM-derived CAR T cells showed 
an augmented antitumor immunity against neuroblas-
toma cells under PD-1 blockade and subsequently formed 

Table 2  Quantification of the cellular tumor infiltrate characterized by multiplex immunohistochemistry staining

Pretreatment MCC tumor tissue samples

Response to CPI

Total leucocyte no per observed area
TCM in % of total lymphocyte no per 
observed area

Juxtatumoral Intratumoral Juxtatumoral Intratumoral

Disease control PR 2121 731 4.7 2.2

CR 1510 989 3.0 2.7

CR 1813 3519 0.0 22.0

SD 5436 9405 18.0 11.7

PR 1902 2162 6.7 8.0

PR 1451 97 13.0 26.7

SD 115 283 23.0 33.0

CR 1 14 0.0 0.0

PR 1846 6030 0.0 11.0

PR 1681 2080 13.0 11.7

CR 2261 428 33.0 36.7

Mean value 1831 2340 10.4 15.1

Disease 
progression

PD NA 0 NA 0.0

PD 44 54 0.0 0.0

PD 1125 124 0.0 0.0

PD 239 170 12.0 15.0

PD 3831 2478 22.0 13.0

PD 316 376 17.0 10.0

PD 0 13 0.0 0.0

PD 2438 287 3.7 0.5

PD 403 62 2.0 1.7

PD 159 66 0.0 0.0

Mean value 950 363 6.3 4.0

Tumor tissue samples were obtained from MCC patients prior to the start of PD-1/PD-L1 immune checkpoint inhibitor therapy. Lymphocytes 
were identified based on CD45RA+ or CD45RO+ staining and the sum of both signals were used for the quantification of the total lymphocyte 
number per sample per observed area. TCM were determined based on the triple CD27+TCF1+CD45RO+ staining.
CPI, checkpoint inhibition; CR, complete response; MCC, Merkel cell carcinoma; PD, progressive disease; PR, partial response; SD, stable 
disease; TCM, central memory T-cells.

Figure 5  Schematic overview on relevant clinical and molecular parameters determined before treatment and their predictive 
value on PD-1/PD-L1 ICI therapy response. CRP, C reactive protein; ECOG, Eastern Cooperative Oncology Group; ICI, immune 
checkpoint inhibitor; LDH, lactate dehydrogenase.
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a resident memory T-cell subset following tumor chal-
lenge.28 In non-small cell lung cancer patients treated with 
nivolumab, a longer PFS was observed in patients with 
a high TCM/TEFF-cell ratio in the circulation, suggesting 
an enrichment of peripheral circulating TCM subpopula-
tions also as a potential positive predictive marker.29 Simi-
larly, in hepatocellular carcinoma patients, according 
to midterm clinical trial results, an extended median 
relapse-free survival was associated with an increased TCM-
subpopulation.22 Moreover, Siddiqui et al reported the 
presence of a TCF1+PD-1+CD8+ T-cell subpopulation in 
the circulation of melanoma patients and among TILs of 
primary melanomas. In conclusion, the success of PD-1/
PD-L1 ICI therapy seems not to depend on the rejuvena-
tion of differentiated exhausted T cells, but rather on the 
proliferation of the less-differentiated memory-like CD8+ 
T cells.30

Long-lived memory T-cell formation and maintenance 
are driven by transcription factors like FOXO1, EOMES 
and TCF1. In particular, TCF1 was identified as the master 
regulator of genes, inducing serial T-cell reactivation and 
self-renewal. With respect to the limited predictive value 
of the presence of granzyme-expressing T cells in the 
tumor infiltrate, recently a granzyme-positive subpopula-
tion of CD8+ T cells associated with age-related dysfunc-
tion of the immune system has been described.31 These 
cells are characterized by a pronounced tissue-homing 
capacity and a high clonality, that is, expressing only a 
limited diversity of TCRs, which might be of particular 
relevance for MCC, since this tumor affects mainly the 
elderly population. Indeed, we have shown in previous 
studies that high clonality of TIL in MCC is both a nega-
tive prognostic and predictive biomarker.5 32

In conclusion, our results provide a number of clini-
cally well applicable baseline biomarkers associated with 
PD-1/PD-L1 ICI therapy response in patients suffering 
from advanced MCC. On a functional level, we confirmed 
the predominance of TCM among TILs in patients with 
a favorable ICI therapy response; a factor which can be 
determined on FFPE tissue.
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Supplementary Table S1. Detailed patient characteristics at baseline, during anti-PD-1/PD-L1 therapy, and follow-up. 

Pat 

ID 

 

Age 

(years) 

at 

baseline 

Sex 

ECOG  

at 

baseline 

Immuno-

suppression  

Serum 

LDH at 

baselin

e 

Serum 

CRP at 

baseline 

neutro 

lympho 

ratio at 

baseline 

Locali-

sation of 

primary 

M stage 

at 

therapy 

start 

Organs 

involved 

MCPyV 

status 

(tumor) 

PD-L1 

expression 

(tumor) 

Previous 

chemo-

therapy 

Previous 

radio-

therapy 

Immune 

Checkpoint 

Inhibitors 

Best 

Response 

Trial of 

partici-

pation 

Year  

of 

treatment 

1 86 M 0 No normal elevated ≥4 head + neck M0 1 nd nd No No Avelumab PD No 2018 

2 81 M 1 

Yes (CLL; 

Prostate Cancer) elevated elevated nd extremities M1a 2 positive negative No No Avelumab PD               No 2018 

3 79 F 1 No normal normal <4 head + neck M1c 1 positive negative Yes Yes Pembrolizumab PD No 2016 

4 70 M 1 No elevated elevated <4 extremities M0 2 positive nd No No Avelumab PD No 2019 

5 83 M 1 No normal normal <4 head + neck M1a 2 negative positive No No Avelumab PD No 2018 

6 68 F 1 

Yes 

(azathioprine, 

corticosteroids 

(rheumatoid 

arthritis, 

systemic lupus 

erythematodes, 

Hashimoto 

thyroiditis)) elevated normal ≥4 extremities M1c 2 positive negative No Yes Avelumab PD No 2017 

7 66 M 0 No normal elevated <4 trunk M1a 1 nd nd No No Avelumab PD Yes 2017 

8 62 M 0 No elevated normal <4 unknown M0 1 positive positive No No Avelumab PD Yes 2017 

9 76 M 1 No elevated elevated ≥4 unknown M1a 1 nd nd Yes No Avelumab PD Yes 2015 

10 71 F 4 

Yes (tacrolimus, 

corticosteroids 

(kidney 

transplantation)) elevated elevated <4 head + neck M1c 2 

 

 

 

negative positive No No Nivolumab PD   2015 

11 76 F 0 No normal nd ≥4 trunk M1c 3 nd nd No Yes Pembrolizumab PD No 2017 

12 75 M 1 Yes (CLL) normal nd nd unknown  M1b 2 positive nd No No Pembrolizumab PD No 2018 

13 77 F 1 No elevated nd nd unknown  M1b 2 nd nd No No Pembrolizumab PD Yes 2019 

14 86 M 0 No elevated nd nd unknown  M1c 3 nd nd No No Pembrolizumab PD Yes 2019 

15 67 F 1 No elevated elevated ≥4 head + neck M1a 1 positive positive No Yes Pembrolizumab PD No 2016 

16 66 F 1 No elevated elevated <4 unknown M0 2 nd nd Yes Yes Pembrolizumab PD No 2016 

17 72 M 1 No elevated elevated <4 extremities M1a 1 positive negative Yes Yes Pembrolizumab PD No 2016 

18 62 M 0 No elevated elevated ≥4 extremities M1c 2 nd nd No Yes Avelumab PD Yes 2016 

19 79 M 0 No elevated elevated <4 trunk M1c 3 nd nd No No Avelumab PD No 2018 

20 68 M 1 

Yes (azathioprine 

(myasthenia 

gravis)  
elevated elevated nd head + neck M0 1 positive negative No Yes Nivolumab PD No 2017 

21 64 M 0 

Yes (NH-

Lymphom) normal nd <4 extremities M1c 4 nd nd No Yes Avelumab PD No 2018 

22 77 M 0 Yes (CLL) elevated normal <4 extremities M1a 1 nd nd No No Avelumab PD No 2019 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer

 doi: 10.1136/jitc-2021-003198:e003198. 10 2022;J Immunother Cancer, et al. Spassova I



23 83 M 1 No elevated elevated ≥4 extremities M0 1 nd nd Yes No Avelumab PD Yes 2015 

24 75 M 2 No normal elevated ≥4 extremities M1c 2 negative nd No Yes Avelumab PD No 2018 

25 56 M 1 No normal nd <4 extremities M1a 2 nd nd No Yes Pembrolizumab PD No 2016 

26 74 M 0 No elevated elevated ≥4 extremities M1c 5 nd nd Yes Yes Avelumab PD Yes 2015 

27 75 F 1 No elevated normal ≥4 unknown M1a 1 positive negative Yes No Pembrolizumab PD No 2016 

28 82 F 1 No elevated normal <4 extremities M1a 2 nd positive No Yes Avelumab PD No 2018 

29 83 M 3 No elevated elevated ≥4 unknown M1c 2 nd nd No Yes Avelumab PD No 2019 

30 59 M 0 Yes (CLL) normal normal <4 extremities M1a 2 positive positive No No Nivolumab PD No 2017 

31 66 F 2 No elevated elevated <4 trunk M1a 1 nd nd No No Avelumab PD Yes 2017 

32 56 F 0 No elevated normal <4 extremities M1c 3 nd nd No Yes Avelumab PD Yes 2016 

33 78 F 0 No nd nd nd trunk M1c 3 nd nd Yes Yes Avelumab PD No 2017 

34 37 M 0 No normal elevated <4 trunk M1b 2 nd positive Yes Yes Avelumab PD Yes 2015 

35 85 M 1 No elevated elevated <4 extremities M1c 4 positive positive No No Pembrolizumab PD No 2017 

36 66 M 1 Yes (CLL) elevated elevated nd trunk M1a 1 negative positive No No Pembrolizumab PD No 2018 

37 53 M 1 

Yes (MTX in 

clippers 

syndrome and 

steroids) elevated elevated ≥4 extremities M1c 3 nd nd No Yes Avelumab PD No 2018 

38 80 M 0 No elevated elevated ≥4 unknown M1c 2 nd nd No Yes Avelumab PD Yes 2017 

39 80 M 0 

Yes (rheumatoid 

arthritis (until 

11/2016 MTX + 

Ankinra, 

prednisolone 

5mg daily)) elevated elevated ≥4 head + neck M1c 5 nd nd Yes Yes Pembrolizumab PD   2016 

40 69 M 0 

Yes (CML, 

osteomyelofibros

is) elevated elevated ≥4 extremities M1c 2 nd nd No No Avelumab PD   2017 

41 68 M 0 Yes (CLL) elevated elevated nd unknown M1a 1 nd nd Yes No Pembrolizumab SD No 2017 

42 77 M 1 

Yes (CLL, 

melanoma) normal elevated ≥4 head + neck M1c 1 negative positive Yes Yes Pembrolizumab SD No 2016 

43 75 M 0 No elevated elevated <4 extremities M0 1 nd nd Yes No Avelumab SD No 2018 

44 78 M 1 No elevated elevated <4 extremities M1c 3 nd negative Yes No Avelumab SD Yes 2015 

45 48 F 0 No normal normal <4 unknown M1a 1 positive positive Yes Yes Pembrolizumab SD No 2017 

46 76 M 0 No normal normal <4 head + neck M1c 3 negative positive No No Avelumab SD No 2018 

47 72 F 0 No elevated elevated ≥4 head + neck M1a 1 positive negative Yes Yes Nivolumab SD Yes 2015 

48 60 F 0 No normal nd <4 extremities M1c 4 nd nd No No Avelumab SD No 2019 

49 83 M 1 No elevated elevated <4 unknown M1c 4 nd nd Yes Yes Pembrolizumab SD No 2014 

50 82 M 0 No normal elevated <4 head + neck M0 1 nd nd Yes No Avelumab SD Yes 2016 
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51 63 M 0 No elevated nd <4 extremities M1c 4 nd nd No Yes Avelumab SD No 2018 

52 90 F 2 No elevated elevated nd head + neck M0 1 nd nd No No Avelumab SD No 2017 

53 80 F 0 

Yes (non-

Hodgkin 

lymphoma 

(cyclophosphami

de, doxorubicine, 

vincristine, 

prednisone); anal 

carcinoma) 
normal normal <4 head + neck M1c 2 negative negative No No Nivolumab SD No 2017 

54 78 M 0 

Yes (CLL, 

melanoma) elevated normal <4 extremities M1c 2 positive nd No Yes Pembrolizumab SD No 2017 

55 79 M 0 No elevated elevated ≥4 extremities M1c 3 nd nd No Yes Pembrolizumab SD   2017 

56 83 F 1 

Yes (multiple 

myeloma, 

polycythemia 

vera) elevated elevated <4 extremities M1c 2 nd nd No Yes Avelumab SD   2017 

57 73 M 1 No elevated elevated ≥4 trunk M1c 4 negative positive Yes Yes Avelumab SD Yes 2016 

58 68 M 0 No normal nd <4 unknown M1a 1 nd nd No No Avelumab SD No 2018 

59 70 M 0 No elevated elevated <4 extremities M1a 1 positive positive Yes Yes Pembrolizumab SD No 2016 

60 69 F 2 No normal normal <4 head + neck M1c 2 nd nd No No Avelumab SD No 2018 

61 82 M 1 No normal nd <4 head + neck M1c 3 nd nd No No Avelumab PR No 2017 

62 86 M nd No normal normal <4 extremities M0 1 nd nd No No Avelumab PR No 2018 

63 71 M 0 No elevated normal <4 extremities M1a 2 positive positive No Yes Pembrolizumab PR No 2017 

64 89 M 0 

Yes (non-small 

cell lung cancer; 

prostate cancer ) normal normal <4 trunk M1c 3 positive negative No Yes Pembrolizumab PR No 2017 

65 65 M 0 No normal nd <4 extremities M1a 1 positive negative No Yes Nivolumab PR Yes 2016 

66 73 M 0 No normal normal ≥4 extremities M1a 1 nd nd No Yes Nivolumab PR No 2015 

67 90 M 1 No elevated elevated ≥4 head + neck M1c 2 nd nd No Yes Pembrolizumab PR   2017 

68 74 M 1 No elevated elevated ≥4 extremities M1c 2 positive negative Yes Yes Pembrolizumab PR No 2015 

69 57 F 0 No normal normal <4 extremities M1a 1 nd nd No No Avelumab PR No 2018 

70 68 M 0 No normal normal ≥4 head + neck M1c 3 negative negative Yes No Avelumab PR Yes 2015 

71 59 M 0 no normal nd nd unknown  M1b 3 nd nd Yes Yes Pembrolizumab PR No 2017 

72 55 M 0 No elevated elevated ≥4 unknown M1c 2 nd nd No Yes Pembrolizumab PR No 2016 

73 85 M 0 No elevated nd <4 trunk M1c 1 nd nd No Yes Pembrolizumab PR No 2016 

74 76 M 0 No elevated elevated <4 extremities M1c 2 nd positive Yes No Pembrolizumab PR No 2015 

75 86 M 1 No elevated elevated ≥4 trunk M1c 2 positive positive No No Pembrolizumab PR   2017 
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76 84 M 1 No elevated normal ≥4 trunk M1c 4 positive positive No Yes Avelumab PR No 2018 

77 61 M 0 No elevated normal <4 head + neck M1c 3 nd nd No Yes Avelumab PR Yes 2016 

78 76 M 0 No normal elevated <4 unknown M1a 1 nd nd No Yes Pembrolizumab PR    2017 

79 48 M 1 

Yes 

(promyelocytic 

leukemia) elevated elevated <4 trunk M0 1 positive negative No Yes Avelumab PR No 2018 

80 85 M 1 No elevated nd nd unknown  M1c 3 positive nd No Yes Pembrolizumab PR Yes 2019 

81 50 M 1 No elevated elevated ≥4 extremities M0 1 positive positive Yes No Nivolumab PR No 2016 

82 71 F 1 No normal nd nd unknown  M1a 1 nd nd No No Pembrolizumab PR Yes 2019 

83 52 M 0 No elevated elevated ≥4 trunk M1a 1 nd nd No Yes Avelumab PR No 2018 

84 82 M 1 

Yes (renal cell 

carcinoma, 

urothelial 

carcinoma) elevated elevated <4 extremities M1a 1 nd negative No Yes Avelumab PR   2018 

85 76 M 1 Yes (CLL) nd nd nd unknown  M1a 1 nd nd Yes No Nivolumab PR No 2016 

86 82 F 2 No elevated nd nd unknown  M1c 3 nd nd No No Pembrolizumab PR No 2017 

87 82 M 0 No elevated nd nd unknown  M1c 2 positive nd No No Pembrolizumab PR No 2019 

88 77 M 0 No normal elevated ≥4 head + neck M1c 1 nd nd No Yes Pembrolizumab PR   2016 

89 75 F 1 No elevated elevated ≥4 extremities M1b 1 nd nd No No Avelumab PR   2018 

90 87 M 1 No elevated elevated <4 extremities M0 1 nd nd No No Avelumab PR No 2017 

91 65 M 0 No normal normal <4 head + neck M1c 1 nd nd No No Avelumab CR Yes 2017 

92 59 M 1 No normal normal <4 unknown M1c 2 nd positive Yes Yes Pembrolizumab CR No 2016 

93 96 M 1 No normal nd ≥4 trunk M0 1 nd nd No No Avelumab CR No 2018 

94 64 M 0 No normal elevated <4 trunk M1c 1 nd nd No Yes Pembrolizumab CR No 2016 

95 61 F 0 

Yes (azathioprine 

(myasthenia 

gravis)) elevated elevated <4 trunk M1c 1 nd nd No Yes Pembrolizumab CR No 2016 

96 69 M 1 No elevated normal <4 extremities M1a 2 positive negative Yes Yes Avelumab CR Yes 2016 

97 79 M 0 No elevated normal ≥4 extremities M1a 1 nd nd No Yes Nivolumab CR Yes 2016 

98 57 F 0 No normal nd ≥4 unknown M1c 3 positive negative No Yes Nivolumab CR Yes 2015 

99 76 M 0 No elevated elevated <4 extremities M1a 1 negative nd No No Pembrolizumab CR No 2017 

100 72 F 0 No normal elevated ≥4 extremities M1a 1 nd positive Yes Yes Avelumab CR No 2017 

101 71 M 0 No normal normal <4 extremities M0 2 nd nd No Yes Avelumab CR No 2018 

102 79 F 0 No elevated normal <4 trunk M1a 2 positive nd No Yes Avelumab CR Yes 2016 

103 83 F 1 No elevated elevated ≥4 unknown M1a 2 nd nd No No Pembrolizumab CR   2017 

104 80 M 0 No normal normal <4 head + neck M1c 1 nd nd No Yes Avelumab CR   2017 
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105 60 M 0 No elevated elevated nd extremities M1c 5 nd nd Yes Yes Pembrolizumab CR No 2016 

106 82 F 0 No nd nd nd extremities M1c 2 nd nd No No Avelumab CR No 2018 

107 62 M 0 No normal nd nd extremities M1c 1 nd nd No No Pembrolizumab CR No 2016 

108 75 F 1 No normal nd nd head + neck M1c 2 nd nd Yes No Pembrolizumab CR No 2017 

109 83 F 0 No normal nd nd head + neck M0 1 nd nd No No Avelumab CR No 2018 

110 83 M 0 No normal normal nd head + neck M0 1 nd nd No No Avelumab CR No 2018 

111 79 M 0 No nd nd nd trunk M1a 1 nd nd No Yes Avelumab CR No 2017 

112 77 M 0 No elevated nd nd unknown  M1c 2 positive nd No No Nivolumab CR No 2016 

113 77 F 0 No elevated nd nd unknown  M1a 1 positive nd No No Pembrolizumab CR No 2017 

114 64 M 0 No normal nd nd unknown  M1a 1 positive nd No No Nivolumab CR No 2017 

Characteristics of total patient cohort (n=118). Best response is related to the anti-PD-1/PD-L1 therapy. Patients are sorted according to their change in sum of longest 

diameters of target lesions from baseline to best response (see Figure 1). Abbreviations: M – male; F – female; CLL – chronic lymphocytic leukemia; CML – chronic 

myelogenous leukemia; CR – complete response, PR – partial response; SD – stable disease; PD – progressive disease; nd – no data available. 
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Supplementary Table S2. Antibodies and procedures used for multiplex immunohisto-
chemical staining  

Position Antibody Clone/Company Dilution Incubation AG
1
 

retrieval  

TSA
3 

dye 

Panel 1       
1 CD4 PerkinElmer 1:50 30 min AR2 9 520 
2 CD8 PerkinElmer 1:100 30 min AR 9 570 
3 CD20 PerkinElmer 1:200 30 min AR 6 540 
4 FoxP3 PerkinElmer 1:400 30 min  AR 6 620 
5 CD68 PerkinElmer 1:1000 30 min AR 6 650 
6 SYN SP11/Abcam 1:1000 Over night AR 6 690 
Panel 2       
1 CD27 EPR8569/Abcam 1:2000 30 min AR 9 520 
2 GZMB ab4059/Abcam 1:100 30 min AR 6 570 
3 TCF7 C63D9/Cell Signaling 1:100 30 min ÂR 6 540 
4 CD45RA 4KB5/Santa Cruz 1:500 30 min AR 6 620 
5 CD45R0 UCHL1/Novus Bio. 1:1000 30 min AR 9 650 
6 SYN SP11/Abcam 1:1000 Over night AR 6 690 
 

1AG: antigen; 2AR: antigen retrieval buffer with pH 6 (AR6) and pH 9 (AR9); SYN: synaptophysin; 3TSA: 
Tyramide Signal Amplification 
 
 
Supplementary Table S3. Markers for detection/quantification of immune cell types in MCC 
tissue. 
  

Cell type Used markers for detection/quantification 

Leukocytes CD45RA(+) or CD45RO(+) 
Regulatory T cells CD4(+)FoxP3(+) 

Central memory T cells CD27(+)TCF1(+)CD45RO(+) 
Effector T cells GZMB(+)CD45RA(+) 

Monocytes/macrophages CD68(+) 
B cells CD20(+) 
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Supplementary Table S4. Mean percentage of positively stained cells to total cell number per analysed area for each analyzed MCC samples. For quantification 

analysis three randomly chosen tissue regions at the juxta-tumoral area as well as in the intra-tumoral area were processed in a semi-automatic fashion by InForm 

Tissue Analysis software.  
 
 

Response 
to ICI 

total cell number  
(in three tissue 

regions) 

% to total cell number for all three fields 

Ø CD4(+)  ØFoxP3(+)  Ø CD4(+)FoxP3(+)  Ø CD8(+)  Ø CD20(+)  Ø CD68(+)  

Juxta-

tumoral 

 

Intra-

tumoral 

 

Juxta-

tumoral 

Intra-

tumoral 

Juxta-

tumoral 

Intra-

tumoral 

Juxta-

tumoral 

Intra-

tumoral 

Juxta-

tumoral 

Intra-

tumoral 

Juxta-

tumoral 

Intra-

tumoral 

Juxta-

tumoral 

Intra-

tumoral 

PR 7034 6042 1,94 0,83 1,98 0,69 1,97 0,68 7,97 4,63 5,40 2,60 3,20 1,99 

CR 7019 6710 0,94 14,22 6,26 3,91 3,27 2,13 30,20 20,57 16,77 13,01 2,05 1,54 

SD 5845 6390 0,63 0,90 1,76 1,32 0,03 0,03 10,50 12,79 4,41 4,14 2,94 3,91 

PR 5443 5167 1,52 1,38 1,60 1,23 0,49 0,55 12,46 10,52 2,76 2,11 4,14 4,47 

PR 5160 7304 3,60 0,09 2,75 0,26 1,47 0,19 3,58 0,23 2,01 0,03 3,51 0,64 

SD 6414 8940 0,16 0,02 1,76 1,32 0,43 0,00 2,58 0,20 1,27 0,18 1,89 0,29 

CR 3196 4847 1,02 1,05 2,61 3,38 0,83 0,83 3,30 7,27 0,21 0,40 1,55 3,60 

PR 4703 7812 5,37 0,00 0,00 0,00 0,00 0,00 31,20 7,33 0,00 0,00 3,73 0,30 

PR 3604 4782 0,50 2,25 0,00 0,00 0,00 0,00 11,92 9,04 0,40 1,00 1,75 1,00 

CR 4434 5039 0,25 0,30 0,00 0,00 0,00 0,00 14,21 2,65 0,00 0,00 3,50 0,45 

PR 3005 2707 9,30 3,90 0,90 1,10 0,90 1,10 42,62 15,88 4,65 0,22 4,98 3,56 

PD - 5114       - 0,00          - 0,15      - 0,00    - 0,96        - 0,00           - 0,60 

PD 4366 5065 0,11 0,00 0,13 0,00 0,08 0,00 0,00 0,07 0,00 0,00 0,28 0,39 

PD 4302 4052 1,46 0,33 2,53 1,79 0,81 0,23 3,30 0,63 0,20 0,08 2,27 1,57 

PD 3184 4720 2,86 2,66 3,35 2,30 2,80 2,02 6,63 3,12 6,04 2,06 1,76 1,12 

PD 7849 6980 1,32 1,91 0,49 0,24 0,27 0,14 6,23 7,90 7,47 4,32 1,18 2,10 

PD 2644 6392 11,20 3,45 0,00 0,00 0,00 0,00 8,00 7,88 0,10 1,05 18,30 9,10 

PD 3518 3648 2,00 0,10 0,00 0,00 0,00 0,00 9,04 6,15 0,00 0,00 1,73 0,35 

PD 4531 5983 0,15 0,05 0,00 0,00 0,00 0,00 19,50 6,50 6,25 0,00 7,95 0,40 

PD 4227 5709 0,40 0,00 0,00 0,00 0,00 0,00 2,59 0,96 0,00 0,00 5,50 0,20 

PD 3218 3146 0,20 0,55 0,00 0,00 0,00 0,00 8,00 1,05 0,10 0,10 4,45 0,75 
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Supplementary Table S5. Mean percentage of positively stained cells to total cell number per analysed area for each analyzed MCC samples. For 

quantification analysis of three randomly chosen tissue regions at the juxta-tumoral area as well as in the intra-tumoral area were processed in a semi-

automatic fashion by InForm Tissue Analysis software.  
 
 

Respon
se to ICI 

total cell 
number  

(in three tissue 
regions) 

% to total cell number for all three fields  

Ø CD45RO(+)  Ø CD45RA(+)  Ø CD27(+)  Ø TCF7(+)  
Ø 

CD27(+)TCF7(+)
CD45RO(+)  

Ø GZMB(+)  
Ø 

GZMB(+)CD
45RA(+) 

Juxta-

tumoral 

 

Intra-

tumoral 

 

Juxta-

tumor

al 

Intra-

tumoral 

Juxta-

tumoral 

Intra-

tumoral 

Juxta-

tumoral 

Intra-

tumoral 

Juxta-

tumoral 

Intra-

tumoral 

Juxta-

tumoral 

Intra-

tumoral 

Juxta-

tumoral 

Intra-

tumor

al 

Juxta-

tumoral 

Intra

-

tum

oral 

PR 7182 6571 26,33 9,19 3,20 1,94 13,63 11,41 7,30 2,62 1,39 0,24 0,17 0,07 0,00 0,00 

CR 6943 7694 15,92 10,72 5,83 2,14 5,54 4,68 3,97 2,33 0,65 0,35 4,19 3,77 0,99 0,64 

SD 6992 6464 0,06 34,64 25,87 19,80 11,97 41,78 5,57 23,73 0,00 11,98 0,30 3,40 0,10 1,73 

PR 5727 7196 46,29 68,40 48,63 62,30 19,53 17,59 66,97 64,60 17,09 15,29 6,40 4,39 3,50 2,63 

PR 5665 6431 30,33 29,15 3,25 4,46 48,10 17,83 8,07 8,45 2,25 2,69 2,58 1,53 0,11 0,08 

SD 4908 6575 22,27 0,87 7,30 0,60 12,76 0,60 15,73 0,30 3,84 0,39 0,43 0,23 0,23 0,17 

CR 6234 6641 1,05 3,20 0,79 1,06 2,43 4,23 1,93 2,87 0,42 1,41 1,43 5,21 0,30 0,76 

PR 3370 3178 0,03 0,43 0,00 0,00 0,00 0,33 0,00 0,27 0,00 0,00 0,67 7,66 0,00 0,00 

PR 7442 7688 10,30 40,73 14,50 37,70 0,07 3,00 0,00 0,03 0,00 8,63 2,40 0,63 0,10 0,20 

CR 4622 5001 25,33 34,20 11,03 7,39 4,70 3,57 14,57 18,61 4,73 4,87 2,53 4,15 1,01 1,52 

PR 6429 5660 17,33 5,98 17,83 1,58 8,45 1,07 23,96 2,33 11,61 2,77 0,77 1,77 0,52 0,22 

PD  - 3758  - 0,00    - 0,00     - 0,00    - 0,00  0,00     - 0,00   - 0,00 

PD 4379 4131 0,90 0,70 0,10 0,60 0,17 0,23 0,03 0,03 0,00 0,00 0,20 0,80 0,05 0,60 

PD 5559 5342 8,60 1,05 11,63 1,27 0,87 1,60 0,00 0,00 0,00 0,00 2,10 0,17 2,03 0,17 

PD 3324 4748 4,39 0,98 2,80 2,60 15,40 9,39 7,07 6,49 0,86 0,54 1,53 0,73 0,37 0,30 

PD 7149 6999 25,12 13,47 28,47 21,93 17,97 7,35 5,80 2,65 11,79 4,60 0,27 0,13 0,03 0,07 

PD 4178 4513 5,20 7,23 2,37 1,10 1,80 1,17 10,33 3,87 1,29 0,83 0,45 0,13 0,12 0,07 

PD 6552 8078 0,00 0,17 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

PD 6834 6977 31,99 3,09 3,69 1,03 32,37 3,22 8,69 0,28 1,32 0,02 24,42 3,70 2,26 0,46 

PD 6422 6715 5,97 0,67 0,30 0,26 3,22 1,48 5,33 0,42 0,13 0,02 3,08 1,48 0,14 0,08 

PD 4835 4637 2,30 0,87 0,99 0,55 0,47 0,48 0,42 0,51 0,00 0,00 1,80 1,33 0,51 0,43 
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Supplementary Table S6: Clinical variable values comparing patients with PD-1 blockade to those 

with PD-L1 blockade. 

  

All patients       

N=114 (100%) 

PD-1 inhibitor therapy  

n=57 (100%) 

PD-L1 inhibitor therapy      

n=57 (100%) 

Patient characteristics       

Sex       

male 82 (72%) 40 (70%) 42 (74%) 

female 32 (28%) 17 (30%) 15 (26%) 

Age       

˂ 70 40 (35%) 19 (33%) 21 (37%) 

≥ 70 74 (65%) 38 (67%) 36 (63%) 

Overall performance status 

(ECOG)       

0 64 (56%) 32 (56%) 32 (56%) 

≥1 49 (43%) 25 (44%) 24 (42%) 

Immunosuppression       

no 92 (81%) 44 (77%) 48 (84%) 

yes 22 (19%) 13 (23%) 9 (16%) 

LDH       

normal 43 (38%) 21 (37%) 22 (39%) 

elevated 67 (59%) 35 (61%) 32 (56%) 

CRP       

normal 30 (26%) 11 (19%) 19 (33%) 

elevated 55 (48%) 27 (47%) 28 (49%) 

NLR       

˂ 4 54 (47%) 22 (39%) 32 (56%) 

≥ 4 35 (31%) 17 (30%) 18 (32%) 

Tumor characteristics       

Localization of primary       

head and neck 24 (21%) 11 (19%) 13 (23%) 

extremities 44 (39%) 17 (30%) 27 (47%) 

trunk 19 (17%) 7 (12%) 12 (21%) 

unknown  15 (13%) 10 (18%) 5 (9%) 

Metastatic stage (AJCC)       

M0 17 (15%) 3 (5%) 14 (25%) 

M1a 36 (32%) 21 (37%) 15 (26%) 

M1b/M1c 61 (53%) 33 (58%) 28 (49%) 

Organs onvolved       

1 51 (45%) 26 (46%) 25 (44%) 

> 1 63 (55%) 31 (54%) 32 (56%) 

MCPyV status (tumor)       

negative 10 (9%) 5 (9%) 5 (9%) 

positive 32 (28%) 24 (42%) 8 (14%) 

n.d. 72 (63%) 28(49%) 44 (77%) 

PD-L1 (tumor)       

negative 17 (15%) 10 (17%) 7 (12%) 

positive 21 (18%) 13 (23%) 8 (14%) 

n.d. 76 (67%) 34 (60%) 42 (74%) 

Therapeutic interventions       

Previous radiotherapy       

no 55 (48%) 24 (42%) 31 (54%) 

yes 59 (52%) 33 (58%) 26 (46%) 

Previous chemotherapy       

no 83 (73%) 38 (67%) 45 (79%) 

yes 31 (27%) 19 (33%) 12 (21%) 

Therapy response       

CR 24 (21%) 13 (23%) 11 (19%) 

PR 30 (26%) 19 (33%) 11 (19%) 

SD 20 (18%) 9 (16%) 11 (19%) 

PD 40 (35%) 16 (28%) 24 (43%) 

Abbreviations: AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; 

LDH, lactate dehydrogenase; MCPyV, Merkel cell polyomavirus; NLR, neutrophil to lymphocyte ratio. 
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Supplementary Figure 1

Scatter plots comparing the actually observed data with 30 imputed data sets of clinical parameters with missing

values in the Bayesian ordinal regression model. CRP – C-reactive protein; LDH – Lactate dehydrogenase; 

MCPyV – Merkel cell polyomavirus.
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Supplementary Figure 5

A

B

CD45RA

Excerpt of the multiplexed immunofluorescence staining of pre-treatment tumor tissue from a 

representative patient with disease control (A) and disease progression (B). Left: Co-expression 

of CD45RA (orange) and GZMB (yellow) displays high abundance of effector T cells in disease 

control. Right: Overall elevated presence of CD45RA positive cells in therapy responding 

patients.(20x magnification, DAPI counterstain) 
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Applying a cumulative ordinal regression model to

infer possible biomarkers associated with response

to PD-1/PD-L1 inhibition in Merkel cell carcinoma

Summary

Merkel cell carcinoma a is type of neuroendocrine skin cancer that in some cases can be treated with

anti-PD-1/PD-L1 antibodies that act as immune checkpoint inhibitors and therefore enhance immune

response against tumor cells. In an effort to identify biomarkers that distinguish treatment responders

from non-responders, data of 114 patients had been collected and analyzed using a cumulative ordinal

regression model. Conditioned on the model and the observed data, there is moderate statistical

evidence that absence of immunosuppression, usage of anti-PD-1 antibodies (as opposed to anti-

PD-L1 antibodies), and limited spread of the main tumor are associated with a higher probability of

responding to the treatment.
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1. Dataset

The dataset had been collected from 4 patients with

Merkel cell carcinoma. All patients were either treated

with anti-PD-1 or anti-PD-L1 antibodies and treatment

response was classified into progressive disease (PD),

stable disease (SD), partial response (PR) and complete

response (CR). In total, there are 19 different predictors:

– gender (categorical: male, female)

– primary localisation

(categorical: head + neck, occult, extremities,

trunk)

– immunosuppression (binary)

– tumor PD-L1 expression (binary)

– MCPyV+ status (binary)

– prior chemotherapy (binary)

– prior radiotherapy (binary)

– checkpoint inhibition (categorical: PD-1, PD-L1)

– metastasic stage (categorical: M0, M1a, M1b/M1c)

– ≥ 2 organs involved (binary)

– elevated LDH levels (binary)

– elevated CRP levels (binary)

– neutrophil count at therapy start (numeric)

– lymphocyte count at therapy start (numeric)

– neutrophil/lymphocyte ratio (NLR) ≥ 4 (binary)

– ECOG performance status ≥ 1 (binary)

– age ≥ 70 years (binary)

– year of therapy start (ordered categorical)

– participation in a clinical trial (binary)

2. Introduction

To analyze these data, we fit a Bayesian model. This has

several advantages:

A unique feature of Bayesian statistics is that it al-

lows to describe model parameters with probability dis-

tributions. This means that instead of point estimates

(with more or less reliable standard deviations) we obtain
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the latent variables nor the tresholds are fixed values (as

shown in Fig. 1), but follow some distribution of values

that are consistent with the observed data.

In formula notation, the model can be written as:

µi = βage · xi, age +βLDH · xi, LDH . . .

p(PD)i =
∫ τ1

−∞

logistic distribution(µi,1)dx

p(SD)i =
∫ τ2

τ1

logistic distribution(µi,1)dx

p(PR)i =
∫ τ3

τ2

logistic distribution(µi,1)dx

p(CR)i =
∫

∞

τ3

logistic distribution(µi,1)dx

(1)

,

where

– µi is the location of the latent variable for patient

i,

– βage is the β coefficient for the predictor age,

– xi, age is the indicator variable of patient i for age

(in this case, 0 if patient i’s age is ≥ 70 years, 1

otherwise),

– p(PD)i is the probability of a progressive disease

response

– τ1, τ2, τ3 are the three estimated tresholds.

The β coefficients of the predictors are of main inter-

est in this analysis, as they give information on whether

or not a predictor is associated with a higher probability

of responding to the treatment. A more comprehensive

explanation of ordinal regression models that is also

accessible without a background in statistics is given

in [2].

3.2 Model fitting

Fitting the model to the dataset was done with the R

software package ’brms’ [3], which utilizes ’Stan’ [4]

in the background. Student t priors with 7 degrees of

freedom and a standard deviation of 1 were chosen as

weakly informative priors for the β coefficients. This

is in line with the Stan prior choice recommendations 1.

The t distribution has a similar shape as the normal dis-

tribution, but with higher density in the tail areas. In this

1https://github.com/stan-dev/stan/wiki/Prior-Choice-

Recommendations

way, we rule out unreasonably large parameter values

(e.g. anything larger than 10-15 for coefficients on the

log-odds scale), but the model is still flexible enough

to allow for values that might make sense. Model fit is

performed numerically by Markov chain Monte Carlo.

In total, 2000 samples from 4 different Markov chains

were generated. We use the split-R̂ diagnostic [5, 6] to

identify possible Markov chain convergence issues. All

parameters satisfied R̂ < 1.01, the effective sample size

Neff [7] exceeded 1000 in all cases.

4. Model results

Figure 2 shows marginal posterior distributions of the

estimated β coefficients. Values larger than 0 denote

that these predictors favor a response to the treatment,

whereas values less than 0 favor treatment non-response.

The width of the distribution gives an impression of

the uncertainty of the estimate: A distribution tightly

concentrated around some value means that the dataset

allows for a precise estimate of that parameter, while

a broader distribution means that the data is consistent

with a wide range of parameter values.

Please note that all these estimates are conditioned

on the model and the observed data, which means that

they are not a statement about the general population of

patients with Merkel cell carcinoma.

Most of estimates include 0, which means that the

absence of association between that predictor and the

treatment response is a reasonable explanation for the

observed data. The widths of the distributions are also

broad, so while no effect is a possible explanation, it

could also be quite large.

Notable exceptions are the predictors immunosup-

pression and organs involved, where most of the proba-

bility mass is located at values less than 0 (denoting they

are associated with a decreased probability of treatment

response); and the use of an anti-PD-1 antibody, where

most of the probability mass is located at values greater

than 0 (denoting it is associated with an increased proba-

bility of treatment response), as compared to checkpoint

inhibition with an anti-PD-L1 antibody.

4.1 Average Predictive Comparisons

As with logistic regression models, the β coefficients of

cumulative ordinal regression models are in units of log-

odds, which means that a value of 1 of the corresponding

predictor increases the expected log-odds of the next

higher response category by 1.
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This has the disadvantage that it is difficult to have

an intuition about the effect size, i.e. whether an increase

in the log-odds by 1 corresponds to a large, moderate or

small change. To circumvent this issue, we show aver-

age predictive comparisons in addition to the regression

coefficients.

Briefly, average predictive comparisons are calcu-

lated as the expected change in the response associated

with a unit difference in one of the inputs. A technical

description of average predictive comparisons is given

in [8]. In this analysis, it allows us to reinterpret the

regression coefficients (which are in units of log-odds)

into a summary that is on the probability scale.

Figure 2 shows average predictive comparisons for

each of the model inputs. They were calculated with

respect to having at least a partial response to the treat-

ment, e.g. for immunosuppression, values between -0%

and -40% denote that comparing a patient with immuno-

suppression to an otherwise identical patient without

immunosuppression, the patient with immunosuppres-

sion has (on average) a 0% to 40% lower probability of

having at least a partial response to treatment.

As a result of the limited sample size, the uncertainty

around the estimates is rather large. It also shows that

just because a predictor includes 0%, it should not be

confused with having no association with the treatment

response, because the data is still consistent with large

effect sizes in either direction.

5. Imputing missing values

The dataset contains missing values in some of the pre-

dictors. Standard practice is usually to delete them, either

by row-wise exclusion (removing all samples that con-

tain any missing value), or by removing the predictors

that contain missing values.

With only 114 patients, removing all samples that

contain missing values would mean to remove import

information.

As a more sensible approach, multiple imputation

with the R package mice [9] was used instead. In multi-

ple imputation, several imputed versions of the dataset

are created where the missing values are replaced with

plausible values. The imputed datasets are identical for

the non-missing entries, but differ in the imputed values.

The uncertainty about the missing values is reflected in

the degree of variation between the datasets.

To translate these different datasets into as single

estimate, we simply fit the model independently on each

dataset and combine the posterior samples of each model

fit. In this way, the uncertainty of the missing values

propagates directly into uncertainty of the estimates.

6. Model testing

A useful way to test Bayesian models is called poste-

rior predictive check. In posterior predictive checks, the

inferred parameter estimates are used to sample an arbi-

trary number of new datasets that are generated under

the model’s assumptions. By comparing these datasets

to the actually observed dataset, it is possible to identify

aspects of the data that the model fails to capture.

One possible way to perform a posterior predictive

check for the model described here is to compare the

observed proportion of the different treatment response

categories to the proportion of treatment response cat-

egories expected under the model’s assumptions. Fig-

ure 3 shows a histogram of the proportion of patients

with progressive disease, stable disease, partial response

and complete response in the generated datasets with the

actually observed proportions highlighted in blue. The

observed proportions lie directly in the center of what is

expected by the model.

Another form of posterior predictive check focuses

on individual predictions instead. For each patient, the

expected probability that a given patient has at least a

partial response to the antibody treatment is calculated.

If the model produces reasonable estimates, we expect

that patients with a higher estimated probability really do

respond more frequently to the treatment than patients

with a lower estimated probability.

Figure 4 shows a so-called calibration plot. All 114

patients were sorted according to their expected probabil-

ity of having at least a partial response to the treatment

and placed into 7 distinct bins. For each bin, the mean

probability of having a partial response is plotted against

the observed proportion of patients in that bin which at

least partially respond to the treatment. As each uncer-

tainty interval around the observed proportion touches

the diagonal line, this type of posterior predictive check

shows again no large discrepancies between expected

and observed data.

In conclusion, the posterior predictive checks show

that the clinical data is consistent with data expected

under the model’s assumptions.
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3.3 Predominance of Central Memory T Cells with
High T-Cell Receptor Repertoire Diversity is As-
sociated with Response to PD-1/PD-L1 Inhibi-
tion in Merkel Cell Carcinoma

This section is based on the following publication:
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Schadendorf, Jürgen C. Becker (2020).
Predominance of Central Memory T Cells with High T-Cell Receptor Reper-
toire Diversity is Associated with Response to PD-1/PD-L1 Inhibition in
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Predominance of Central Memory T Cells with High T-Cell
Receptor Repertoire Diversity is Associated with
Response to PD-1/PD-L1 Inhibition in Merkel Cell
Carcinoma
Ivelina Spassova1, Selma Ugurel2, Patrick Terheyden3, Antje Sucker2, Jessica C. Hassel4, Cathrin Ritter1,
Linda Kubat1, Daniel Habermann5, Farnoush Farahpour5, Mohammadkarim Saeedghalati5,
Lukas Peiffer1,6, Rajiv Kumar6,7, David Schrama8, Daniel Hoffmann5, Dirk Schadendorf2, and
J€urgen C. Becker1,2,6

ABSTRACT
◥

Purpose: Merkel cell carcinoma (MCC) is an aggressive neuro-
endocrine skin cancer, which can be effectively controlled by
immunotherapywith PD-1/PD-L1 checkpoint inhibitors.However,
a significant proportion of patients are characterized by primary
therapy resistance. Predictive biomarkers for response to immu-
notherapy are lacking.

Experimental Design:We applied Bayesian inference analyses
on 41 patients with MCC testing various clinical and biomolec-
ular characteristics to predict treatment response. Further, we
performed a comprehensive analysis of tumor tissue–based
immunologic parameters including multiplexed immunofluores-
cence for T-cell activation and differentiation markers, expres-
sion of immune-related genes and T-cell receptor (TCR) reper-
toire analyses in 18 patients, seven objective responders, and 11
nonresponders.

Results: Bayesian inference analyses demonstrated that among
currently discussed biomarkers only unimpaired overall perfor-

mance status and absence of immunosuppression were associated
with response to therapy. However, in responders, a predomi-
nance of central memory T cells and expression of genes associ-
ated with lymphocyte attraction and activation was evident. In
addition, TCR repertoire usage of tumor-infiltrating lymphocytes
(TILs) demonstrated low T-cell clonality, but high TCR diversity
in responding patients. In nonresponders, terminally differenti-
ated effector T cells with a constrained TCR repertoire prevailed.
Sequential analyses of tumor tissue obtained during immunother-
apy revealed a more pronounced and diverse clonal expansion of
TILs in responders indicating an impaired proliferative capacity
among TILs of nonresponders upon checkpoint blockade.

Conclusions: Our explorative study identified new tumor
tissue–based molecular characteristics associated with response
to anti–PD-1/PD-L1 therapy inMCC. These observations warrant
further investigations in larger patient cohorts to confirm their
potential value as predictive markers.

Introduction
Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine

skin cancer, which occurs predominantly in the elderly, fair-skinned
population. The mortality rate after primary diagnosis is reported to
range from 33% to 46% (1). Known risk factors for MCC include

chronic UV exposure and any type of immunosuppression (2). More-
over, an association with the Merkel cell polyomavirus (MCPyV) has
been established predominantly for cases occurring in the northern
hemisphere (3). Key feature of MCC is its high immunogenicity based
on either its virus- or UV-associated carcinogenesis, causing either
presentation of MCPyV-derived epitopes (4) or neo-epitopes by UV-
associated mutations (5). Indeed, a high therapeutic activity of
immune checkpoint inhibitors (CPIs) resulting in durable objective
responses (ORs) in about 50% of patients has been observed (6, 7).
Predictive biomarkers of therapy outcome to differentiate responders
from nonresponders at treatment baseline have not been established.
On the basis of the experience in melanoma, clinical features like
overall performance status, metastatic stage, and previous therapies,
as well as blood-derived parameters, for example, neutrophil-to-
lymphocyte ratio, elevated lactate dehydrogenase (LDH) and C-reac-
tive protein, are currently discussed as possible predictive mar-
kers (8, 9). However, their predictive power could so far not been
indisputably confirmed (10). Similarly, potential predictive biomar-
kers determined on tumor tissue such as PD-L1 expression orMCPyV
status could not be confirmed either (6, 7).

This study provides an extensive workup of both, clinical as well as
immunologic and molecular features of 41 patients with MCC treated
with CPIs for advanced disease in the real-world setting. The latter
were based on T-cell receptor (TCR) repertoire usage, as well as gene
and protein expression determined in a subgroup of patients on
formalin-fixed, paraffin-embedded (FFPE) tumor tissue obtained at
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baseline before start of anti–PD-1/PD-L1 therapy. These unbiased
multidimensional analyses were performed to improve our under-
standing of MCC immunology and to identify new candidates for
predictive biomarkers. To further extend this aim, some of the
patients' sequential samples obtained before and under therapy
were analyzed.

Our results demonstrate that among previously discussed clin-
ical and molecular biomarkers, only an unpaired performance
status and the absence of immune suppression were strongly
associated with a favorable clinical response to immunotherapy.
More important, however, not the mere density of the immune
infiltrate, but rather its functional properties correlated with
response to CPI treatment. Specifically, tumor-infiltrating lympho-
cytes (TILs) with a predominance of central memory T cells and a
diverse TCR repertoire were associated with a favorable treatment
outcome.

Materials and Methods
Patients and samples

Patients treated at the Departments of Dermatology, University
Hospitals of Essen, Heidelberg and L€ubeck, were retrospectively
identified for this biomarker study according to the following
selection criteria: diagnosis of MCC confirmed by histopathology,
metastatic disease not amendable to surgery, and systemic therapy
with anti–PD-1/PD-L1 antibodies. Treatment response to anti–PD-1/
PD-L1 CPI was categorized as best overall response according to
RECIST v1.1 (11). The study was approved by the ethics committee of
the University Duisburg-Essen (11-4715; 17-7538-BO) and was con-
ducted in accordance with the Declaration of Helsinki—Ethical Prin-
ciples for Medical Research Involving Human Subjects. Informed
written consent was obtained from each subject.

Detection of MCPyV DNA
Detection of MCPyV DNA was performed as described previous-

ly (12). Briefly, DNA from FFPE tissue samples was isolated byAllPrep
DNA/RNA FFPE Kit (Qiagen) according to the manufacturer's
instructions. Presence of MCPyV DNA was determined by TaqMan
Real-Time qPCR using large T-antigen–specific primers and TaqMan
probe: forward primer: CCA AAC CAA AGA ATA AAG CAC TGA;
reverse primer: TCG CCA GCA TTG TAG TCT AAA AAC; and
probe: FAM-AGC AAA AAC ACT CTC CCC ACG TCA GAC AG-
BHQ1. The PCR reaction had a final volume of 10 mL, consisting of
DNA (10 ng), primers and probe (5 mmol/L each), and reaction buffer
(LuminoCt ReadyMix, Sigma-Aldrich). Annealing was performed at
60�C for 15 seconds. CFX Manager (Bio-Rad) was used for data
analysis.

IHC quantification of PD-L1 expression
PD-L1 expression was assessed in FFPE tumor tissue sections with

the use of a rabbit monoclonal anti-human PD-L1 antibody (clone 28-
8) and an analytically validated automated IHC assay (PD-L1 IHC 28-
8 pharmDx for Autostainer Link 48; Dako), as described previous-
ly (13). PD-L1 positivity was defined as at least 1% of living tumor cells
showing specific cell surface staining of any intensity in a section
containing at least 100 evaluable tumor cells. Positive staining of
tumor-infiltrating inflammatory cells or other cells of the tumor
stroma was excluded from evaluation.

TCR beta-chain clonotype mapping
The TCR repertoire usage of TILs was determined by amplifying the

highly variable CDR3 of the different TCR beta-chain (TCRB) families
by a multiplexed PCR and subsequent high-throughput sequencing
using the immunoSEQ hsTCRB Kit (Adaptive Biotechnologies,
catalog No. ISK10101). After DNA was isolated from FFPE tumor
tissue in a first PCR reaction, all recombined TCRB CDR3 sequences
were amplified by a mix of V- and J-gene primers. After labeling the
obtained amplicons in a second PCR amplification, the resulting
library was sequenced on an Illumina MiSeq using the MiSeq Reagent
Kit v3 (Illumina, catalog No. MS-102-3001).

Multiplex immunofluorescence staining
Multiplex immunofluorescence staining of FFPE tumor tissue was

performed using the OpalTM Chemistry (PerkinElmer, catalog No.
OP7TL4001KT) with two panels of antibodies, that is, against CD4,
CD8, CD45RA, CD45RO, and CK20 (panel 1), or CD27, CD45RA,
CD45RO, and Synaptophysin (panel 2). Briefly, after deparaffinization
and fixation, 3-mm tumor sections were processed with retrieval
buffers for 15 minutes in an inverter microwave oven. Thereafter,
sections were incubated with the antibody diluent for 10 minutes at
room temperature, followed by incubation with the primary antibody
for 30minutes. After applying Opal Polymer HRP secondary antibody
solution for 10 minutes, antibodies were removed by microwave
treatment before another round of staining was performed. The
antibodies and retrieval buffers used are described in detail in Sup-
plementary Table S1. Visualization of the different fluorophores was
achieved on the Mantra Quantitative Pathology Imaging System
(PerkinElmer).

Gene expression analysis
mRNA from FFPE tissue samples was isolated using the AllPrep

DNA/RNA FFPE Kit (Qiagen, catalog No. 80234) according to the
manufacturer's instructions. Gene expression was quantified using the
HuV1 Cancer Immune Panel (NanoString Technologies, catalog No.
XT-CSO-HIP1-12). After 100 ng of mRNA was used for the hybrid-
ization reaction at 65� C for 24 hours, the complex was further
processed in the nCounter Prepstation for immobilization to the
cartridge, which was processed in the nCounter Digital Analyzer.

Statistical and bioinformatic analyses
ABayesian logistic regressionmodel was applied for predicting PD-

1/PD-L1 blockade treatment response. It was built on a dataset
consisting of 41 patients and 15 clinical parameters (Supplementary
Table S2). The observed data were described in a probabilistic manner,
also known as likelihood function. The probability that a given sample
belongs to one of the two possible outcomes, responding to CPI
therapy or not, was computed via the following formula:
�j ¼ logisticðb0þbparameterX � xj;parameterX . . .Þ; in which uj is the

Translational Relevance

Immunotherapy of advanced Merkel cell carcinoma by anti–
PD-1/PD-L1 antibodies has greatly improved the prognosis of this
highly aggressive neuroendocrine skin cancer. Unfortunately,
about half of the patients have no durable benefit from immune
checkpoint blockade. Thus, reliable predictive biomarkers are
needed. Here, we report that tumor-infiltrating lymphocytes with
a central memory phenotype and a diverse T-cell receptor reper-
toire correlate with a favorable response to immunotherapy.

Spassova et al.
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probability of responding to the treatment for patient j, b0 is the base
frequency of responders in the dataset, bparameterX is the effect of
parameter X on the treatment response, and xj,prameterX is 1 if for
patient j parameter X is applicable and 0 otherwise (14). In addition,
HRs for each clinical parameter were calculated as mean of the
credibility (posterior) interval. Fitting the model to the dataset was
done with the R software package “brms,” which utilizes “Stan” in the
background. Missing values were approached with multiple imputa-
tion with the R package “mice” (15–17). For additional details, please
see Supplementary Materials and Methods.

Normalization of the rank-abundance-distribution (RAD) of T-cell
clonality was done by MaxRank normalization as implemented in R
package RADanalysis (18). Here, the MaxRank is the minimum
dimension of rank abundance vectors for all tested samples (18). The
plotted normalized RADs are the results of 50-fold averaging. The
distribution of T-cell numbers over T-cell clones was quantified by
Pielou's Evenness Index J ¼ H/Hmax, with Shannon entropy H, and
theoretically possible maximum Shannon entropy Hmax. J ranges
between 0 and 1, where 1 represents completely even distribution of
T cells over clones (19). Observed richness indicates the number of
unique T-cell clones, and the Chao index iChao1 is used as an
estimator of TCR clone richness for rare clones (20). Simpson Diver-
sity Index (also known as, Simpson D) represents the probability that
two T cells taken at random from a specimen represent the same
clone (19).

We implemented the Grouping of Lymphocyte Interactions by
Paratope Hotspots (GLIPH) analysis method (21) to uncover TCR
antigen specificities shared between clones and patients: CDR3
sequences of TCR clonotypes were clustered according to their local

and global similarities; global similarity was assumed if only one amino
acid was exchanged; and local similarity was assumed if specific motifs
of three amino acids in the CDR3 region were more frequently present
than in the reference database. The software R v3.4.1 and nSolver3
(NanoString Technologies) were used for gene expression data anal-
ysis. For P value adjustment the Benjamini–Hochberg algorithm was
used. The respective correlation coefficients were calculated by the
method of Pearson. Gene ontology (GO) analysis was performed using
the online platform Metascape (http://metascape.org; ref. 22), where
differentially expressed genes are assigned to a set of predefined terms
(Kyoto Encyclopedia of Genes and Genomes Pathway, GO Biological
Processes, Reactome Gene Sets, Canonical Pathways, and CORUM).
For estimation of term similarity, the agreement calculator Cohen
kappa coefficient was deployed; a kappa value > 0.3 was set as a
threshold for selecting the terms for clustering.

For statistical testing of the TCR repertoire characteristics, gene
expression analysis, and central memory T (TCM) cells abundance in
MCC tumor tissue, P values were determined using the unpaired two-
tailed Student t test, calculated in GraphPad Prism 5.

Results
Overall performance status and absence of immunosuppression
predict response to CPI

Forty-one patients treated with PD-1/PD-L1–blocking antibodies
for advanced MCC were identified in three clinical centers. To
determine the impact of the clinical and standard immunologic
parameters on therapy response, we performed chart review. The
extracted parameters were correlated by Bayesian inference with

Figure 1.

Best overall response to anti–PD-1/PD-L1 therapy in correlation to baseline characteristics. Waterfall plot depicting best tumor response upon anti–PD-1/PD-L1
therapy as change in the sum of the longest diameters of target lesions from baseline to best response. Data for n ¼ 41 patients with each bar, color-coded
by therapeutic antibody, representing an individual patient are depicted. Pointed lines discriminate responders (CR and PR) from nonresponders (SD and PD)
and the 30% decrease of the tumor volume classifying for OR. Clinical parameters at baseline and their correlation to therapy outcome are visualized by forest plots
and HRs with 95% credibility intervals (CIs) calculated by Bayesian logistic regression model.

Diverse TCM Infiltrates on MCC Favor Outcome of CPI Therapy
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clinical response to therapy. Patients showing an OR to anti–PD-1/
PD-L1 therapy, that is, complete (CR) or partial response (PR), were
classified as responders, and patients with a stable (SD) or progressive
disease (PD) as nonresponders. At database closure (November 2018),
the median follow-up time after onset of checkpoint inhibition was
13.5 months. Detailed patient characteristics are provided in Supple-
mentary Table S2.

Bayesian inference demonstrated that only an unimpaired overall
performance status [Eastern Cooperative Oncology Group (ECOG)
¼ 0] is associated with a positive response to CPI treatment,
whereas any form of immunosuppression was identified as a

negative predictor (Fig. 1). However, even for the unimpaired
performance status, the 95% credibility interval overlaps with the
region of zero effect. For all other currently discussed predictive
biomarkers for response to CPI such as metastatic stage, neutrophil-
to-lymphocyte ratio, serum LDH and C-reactive protein, as well as
PD-L1 expression and MCPyV status, we could not identify a
relevant association to therapy response. This observation is in-
line with recently published study on 37 patients with MCC treated
with CPI. Their multivariate analysis of clinical parameters includ-
ing molecular subtype, age, prior radiotherapy, and PD-L1 expres-
sion did not show any predictive function (23).

Table 1. Baseline characteristics of patients included in the immunologic work-up.

All patients
N ¼ 18 (100%)

Responders (CR/PR)
n ¼ 7 (100%)

Nonresponders (SD/PD)
n ¼ 11 (100%)

Gender
Male 11 (61%) 6 (86%) 5 (45%)
Female 7 (39%) 1 (14%) 6 (55%)

Age
≤70 years 10 (56%) 5 (71%) 5 (45%)
>70 years 8 (44%) 2 (29%) 6 (55%)

Localization of primary
Extremities 8 (44%) 4 (57%) 4 (36%)
Head and neck 5 (28%) 1 (14%) 4 (36%)
Trunk 1 (6%) 1 (14%) 0 (0%)
Unknown primary 4 (22%) 1 (14%) 3 (27%)

Metastatic stage (AJCC)
Skin, soft tissue, LN (M0) 3 (17%) 1 (14%) 2 (18%)
Skin, soft tissue, LN (M1a) 8 (44%) 2 (29%) 6 (55%)
Lung (M1b) 0 (0%) 0 (0%) 0 (0%)
Other organs (M1c) 7 (39%) 4 (57%) 3 (27%)

Organs involved 15 (83%) 5 (71%) 10 (91%)
1–2 3 (17%) 2 (29%) 1 (9%)
3–5

Overall performance status (ECOG)
0 8 (44%) 3 (43%) 5 (45%)
≥ 1 10 (56%) 4 (57%) 6 (55%)

Previous chemotherapy
Yes 11 (61%) 4 (57%) 7 (64%)
No 7 (39%) 3 (43%) 4 (36%)

Previous radiotherapy
Yes 10 (56%) 4 (57%) 6 (55%)
No 8 (44%) 3 (43%) 5 (45%)

LDH (blood)
≤ULN 6 (33%) 3 (43%) 3 (27%)
>ULN 12 (67%) 4 (57%) 8 (73%)

MCPyV status (tumor)
Positive 16 (89%) 6 (86%) 10 (91%)
Negative 2 (11%) 1 (14%) 1 (9%)

PD-L1 (tumor)
Positive (≥1%) 8 (44%) 2 (29%) 6 (55%)
Negative (<1%) 10 (56%) 5 (71%) 5 (45%)
Not specified 0 (0%) 0 (0%) 0 (0%)

PD-1/PD-L1 inhibitor therapy
Avelumab 4 (22%) 2 (29%) 2 (18%)
Nivolumab 6 (33%) 3 (43%) 3 (27%)
Pembrolizumab 8 (44%) 2 (29%) 6 (55%)

Best overall response to anti-PD-1/PD-L1
CR 2 (11%) 2 (29%) 0 (0%)
PR 5 (28%) 5 (71%) 0 (0%)
SD 4 (22%) 0 (0%) 4 (36%)
PD 7 (39%) 0 (0%) 7 (64%)

Abbreviations: AJCC, American Joint Committee on Cancer; ULN, upper limit of normal.
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Lower T-cell clonality, but higher TCRB diversity of TILs is
associated with response

Given the limited value of clinical, blood-based, and standard tissue-
based biomarkers, we next performed a comprehensive, unbiased
analysis to elucidate the impact of immunologic processes and
immune cells characteristics on response to CPI. Given the need for
sufficient amounts and quality of pretherapeutic tissue samples, these
analyses were restricted to a subgroup of patients. The flow of the
patients is detailed in Supplementary Fig. S1. To this end, 18 of
the above-described patients with MCC were identified to meet these
selection criteria to allow an in-depth immunologic and molecular
work-up; this group consisted of seven responders and 11 nonrespon-
ders. Three of the 18 patients withMCCwere stage III, not amenable to
surgery or radiation and the other 15 were stage IV. Patients' char-
acteristics are given in Table 1.

On the basis of the T-cell function and its attainment, the TCR
repertoire usage is a mirror of immune response and differences in its
usage have been suggested as a possible biomarker for the efficacy of
immunomodulating therapies. Thus, we established the TCRB rep-
ertoire of TILs from MCC tumor samples obtained before and under
anti–PD-1/PD-L1 therapy by high-throughput sequencing of the
preamplified highly variable CDR3 sequences of the different TCR
beta families. With their diverse repertoire of TCRs, T cells can be
regarded as a generalized community, in which diversity reflects both
richness and evenness. Using the Normalized Rank Abundance Dis-
tribution (NRAD; ref. 18), a descriptor for quantitative comparison of
generalized communities, we compared the TCR repertoire usage with
respect to response to CPI, revealing that TILs of responders had a
more even clone size distribution, whereas in nonresponders the T-cell
communities were dominated by a limited number of strongly expand-
ed clones, corresponding to a high clonality (Fig. 2A). This observation
is consistent with a higher richness for both strongly as well as weakly

expanded T-cell clonotypes, the latter measured by the Chao index
(Fig. 2B and C, respectively) and a higher evenness (Fig. 2D).
Consequently, using the Simpson diversity reciprocal index to account
for the clonal dominance hierarchy within each patient, TILs of
responders is characterized by a higher diversity than those of non-
responders (Fig. 2E). Even though differences between both groups
were not reckoned as significant by frequentist statistics, applying
Bayes inference model supported the predictive value of the TCR
repertoire richness and diversity for a favorable response to CPI
treatment (Supplementary Fig. S2). The observed TCR repertoire
richness showed the highest probability to be associated with therapy
response.

T-cell attraction and activation genes are highly expressed in
tumors of responders

Differences in TCR repertoire usage are likely to reflect func-
tional differences of T cells. Analogous to other tissue types, T cells
live through various stages of their differentiation, which are
associated with variation of their function and proliferative capac-
ity. Notably, these stages are discernable by gene expression. Thus,
we performed NanoString-based gene expression analysis on
770 genes, characteristic for different immune cell types and their
differential activation. A major advantage of these techniques, it is
providing robust and reproducible results from FFPE tissues;
however, sufficient integrity of RNA is still required to generate
valid results. Thus, those pretherapeutic FFPE tissue samples that
failed quality controls were excluded from analysis (Supplementary
Fig. S1). In the remaining samples from n ¼ 6 patients, the
expression of immune-related genes clearly separated responders
(n ¼ 3) from nonresponders (n ¼ 3; Fig. 3A; Supplementary
Table S3). This discrimination was largely driven by approximately
100 genes involved in adaptive immunity, lymphocyte activation,

Figure 2.

High TCRB diversity among TILs predicts response to PD-1/PD-L1 blockade. A, Rank abundance distributions of TCRB clonotypes identified in TILs of responders
(n ¼ 7) and nonresponders (n ¼ 11). Nonresponders are characterized by a larger expansion of T-cell clones. The rank-abundance distribution is normalized to the
minimum TCRB richness and the number of individual TCRB clones. The averaged NRAD of each group is plotted as a bold line; shaded regions indicate 90%
confidence intervals. B,Observed richness is a measure of different TCRB clones in each MCC tumor lesion. C, Estimated richness by iChao1 for rare clones. D, Pielou
evenness reflects equal distribution of TCRB clones among specimens. E, Simpson diversity (Simpson D) represents the probability that two T cells taken at random
from a specimen represent the same clone. P values were determined using the unpaired, two-tailed Student t test.

Diverse TCM Infiltrates on MCC Favor Outcome of CPI Therapy
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leukocyte migration, and cytokine signaling pathways as computed
by GO analysis (Fig. 3B). In detail, genes related to T-cell attrac-
tion (e.g., CCL5, CXCL9, IL16, CXCL11, CCL3, CXCL10, CCL21,
and CCL4; Fig. 3C) and T-cell activation (such as IL2RB, IL2RG,
IL15RA, LCK, CD97, JAK3, and NFATC2; Fig. 3D) were highly
expressed in tumor tissue from responders. Whereas the cell-cycle–
related CDK1 (#103) and the apoptosis regulation gene BCL2
(#106) were strongly expressed in tumors of nonresponders
(Fig. 3A). Notably, both genes have been linked to T-cell
differentiation (24).

TILs of responders are dominated by central memory T cells,
TILs of nonresponders by terminally differentiated T cells

The TCR repertoire usage and gene expression pattern in respon-
ders and nonresponders suggest disparate differentiation states of the
respective predominant T-cell infiltrates. While memory T cells are
characterized by their ability to exert a fast and sustained proliferative
response to stimulation, exhausted and terminally differentiated
T cells show an impaired proliferative capacity (25). Notably, for
patients with melanoma it has been reported that predominance of
memory T cells among TILs is associated with a favorable outcome of

Figure 3.

High expression of genes related to T-cell attraction and activation predicts response to PD-1/PD-L1 blockade. NanoString gene expression analysis using the
PanCancer Immune Profiling Panel at baseline from responders and nonresponders. A, Heatmap of differentially expressed genes; gene #1–101 are upregulated in
responders and gene #102–108 are downregulated (details are given in Supplementary Table S3). Gene expression was normalized using the method of the
geometric mean to the 32 most stable expressed genes. B, GO analysis of differentially expressed genes. The 20 top-score clusters with the lowest P values are
depicted and each node represents an enriched term. The thickness of node connections represents term similarity, calculated by Cohen kappa coefficient.
Expression level of selected genes related to T-cell attraction (C) and activation (D) for responders and nonresponders.P valueswere determined using the unpaired,
two-tailed Student t test (� , P < 0.05; �� , P < 0.005).
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CPI treatment (26–28). To test this hypothesis in our MCC patient
cohort, we performed multiplexed immunofluorescence staining for
memory (CD45ROþ) and effector (CD45RAþ) CD4þ and CD8þ T
cells, revealing that in tumors of responding patients memory T cells
had higher abundance and with respect to their spatial distribution
they were located closer to the tumor cells, whereas in nonresponders
such cells were rare and mostly present in the stromal compartments
(Fig. 4A and B). A similar pattern was seen for effector T cells
(CD45RAþ; Fig. 4A and B). To scrutinize the memory T cells in
more detail, we included also the central memory T-cell marker CD27
in the staining panel (n ¼ 8). The colocalization of CD27 with
CD45ROdemonstrated that TCM cells aremore frequent in responders
(Fig. 4C–E; Supplementary Fig. S3; ref. 29). This notion was backed by

gene expression signatures demonstrating higher abundance of genes
such asTCF-7, CCR7, CCL21, CD62L, and IL7R in responders (Fig. 4F;
refs. 29, 30).

Expression dynamics of genes related to lymphocyte activation,
differentiation, migration, and presence of TCM cells upon CPI
treatment

Clustering of genes due to their functional relevance demonstrated
that in responders, genes important for lymphocyte activation, dif-
ferentiation, and migration, as well as cytokine-mediated signaling of
T cells were not only more abundant at baseline, but also during
therapy, indicating that this gene expression patternwasmaintained or
even boosted by CPI treatment (Fig. 5A). Furthermore, reflected by

Figure 4.

Predominance of TCM cells among
TILs of responders. Multiplexed
immunofluorescence staining of
baseline tumor tissue obtained from
responders (A and C) and nonrespon-
ders (B andD) using either antibodies
against CD4 (green), CD8 (yellow),
CD45RA (orange), CD45RO (magen-
ta), and the MCC marker CK20 (cyan;
A and B) or against CD27 (green),
CD45RA (orange), CD45RO (magen-
ta), and theMCCmarker Synaptophy-
sin (cyan; C and D); nuclei are stained
with DAPI (blue). Depicted are
merged images at 20�magnification
for all colors and single-channel
images translated into pathology
view for CD45RA and CD45RO or
CD27, respectively, from one repre-
sentative section. To visualize the
colocalization of CD27 and CD45RO,
an enlarged image is shown; white
arrows highlight CD27þCD45ROþ T
cells (C and D). E, Percentage of
CD27þCD45ROþ T cells to total of
nucleated cells for responders and
nonresponders. F, Heatmap of exp-
ression of genes characteristic for TCM
cells in baseline tumor tissue.
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increased gene expression of CCR7, CD62L, TCF-7, CD27, IL-7R, and
IL-2RA a higher presence of TCM cells was detected in tumor tissues,
which also persisted upon therapy (Fig. 5B). In contrast, nonrespon-
ders showed no expression dynamics for the above-described genes
upon treatment, that is, persistently low gene expression.

Dynamics of TCR repertoire usage upon PD-1/PD-L1 blockade
Next, we quantified the dynamics of TCR repertoire usage upon

therapy (Fig. 6A–F). In accordance with the above-described results,
the TCRB repertoire usage of TILs of a responder were distributed over
a larger number of smaller clones than in a nonresponder. Notably, in
the nonresponder the expansion of T-cell clones were up to one order
ofmagnitude larger, indicating a substantial previous clonal expansion
(Fig. 6A and D). On the other hand, upon PD-1/PD-L1 blockade,
induced clonal T-cell expansions weremore prominent among TILs of
the responder (Fig. 6A, B, D, and E), suggesting a more pronounced
proliferative capacity of T cells. Extending the comparative analyses of
the TCRB repertoire from the dynamics of identical T-cell clones to
newly emerging clones under therapy further confirmed that the
number of newly emerging clones was higher among TILs of the
responding patient (Fig. 6C and F).

An alternative way to construe the TCR repertoire usage is to cluster
TCRs into convergence groups based on the CDR3 amino acid
sequences that are predicted to bind the same or a similar MHC-
restricted epitope using the recently published GLIPH algorithm (21).
GLIPH predicts convergence groups calculating the probability that a
cluster of similar TCRs has appeared by selection of a collectively
recognized epitope/MHC complex. Representative examples for con-
vergence group clustering by GLIPH for a responder and a nonre-
sponder are depicted in Fig. 6G and H; for consistency, we chose the
same two patients for which the multiplexed immunofluorescence
staining results are presented. In the responder, three major TCRB
clusters consisting of a multitude of different TCRs were present; this
observation suggests that a large proportion of TILs characterized by
a diverse TCR repertoire in responders are still recognizing a defined
set of antigens. Notably, when we subjoined established MCPyV
epitope-reactive TCR sequences, these were joined in two of these
larger clusters (4). Of note, in both patients' tumorsMCPyVDNAwas
detected (Supplementary Fig. S1). Upon treatment, there were no
major changes in TCRB diversity and only someminor shifts in cluster
formation (Fig. 6G). For the nonresponder, the limited TCR repertoire
was characterized by almost complete absence of such convergence
groups of TCR clonotypes. It should be noted that only TCRs within
convergence groups, regardless of the individual expansion of a given
TCR clonotype are depicted. After CPI treatment, the most obvious
change was a further expansion of the two largest T-cell clones, which
is represented by the increased size of the blue circles (Fig. 6H). Thus,
in the patient with MCC with a favorable response to PD-1/PD-L1
blockade, we detected a substantial number of different T-cell clono-
types, which are recognizing a limited set of antigens. Results from the
GLIPH analysis of further patients with MCC are depicted in Sup-
plementary Fig. S4.

Discussion
The introduction of immunotherapywithCPIdramatically improved

the hitherto poor prognosis of patients with advanced MCC. For either
PD-1- or PD-L1–blocking antibodies, OR rates between 30% and 60%
have been reported. Conversely, this means that almost half of the

Figure 5.

Gene expression dynamics in MCC tumors upon PD-1/PD-L1 blockade. A,
Circular plot displaying the expression dynamics of immune-related genes
under CPI therapy. Lymphocyte activation, leukocyte migration, lympho-
cyte differentiation, and TCM cells and cytokine-mediated signaling genes
are grouped together. The sum of expression of grouped genes in respon-
ders and nonresponders is depicted on the circular axis before (mint and
grey) and upon (blue and black) CPI therapy, respectively. B, Circular plot
displaying the expression dynamics of genes characteristic for TCM cells for
an individual responder (Pat ID 28) and nonresponder (Pat ID 25) before
and upon therapy. The expression of each gene is depicted on the circular
axis before and upon anti–PD-1/PD-L1 therapy in green and blue (respond-
er) and in purple and beige (nonresponder), respectively.
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patients do not benefit from CPI and predictive biomarkers of therapy
response are still lacking (6, 7, 31). In this study, we compiled clinical
characteristics of 41 patients with MCC treated with CPI and tested
currently presumed biomarkers, such as performance status, immuno-
suppression, previous therapies, serum LDH, neutrophil/lymphocyte
ratio, PD-L1 expression, and MCPyV status. We chose to apply a
Bayesian logistic regression model instead of classical least squared
regression due to the given study character. Specifically, the study
comprises a limited sample size and a large number of variables to be
analyzed for potential effects on treatment response. In classical statistics

these features lead to overfitting (14). Among the analyzed parameters,
only performance status and immune suppression correlated with
response to therapy. Thus, we next performed a comprehensive immu-
nologic work-up of MCC tumor tissues taken at therapy baseline and
additionally in a subgroup of patients after initiation of therapy. This
work-up comprised high-throughput sequencing-based TCR clonotype
mapping, multiplexed immunofluorescence staining, and immune gene
mRNA expression. Thereby, we established that a prevalence of TCM

cells expressing a highly diverse TCRB repertoire among TILs is
associated with a favorable therapy response. Notably, even though

Figure 6.

Higher TCRB diversity recognizing a
limited set of antigens is associated
with response to PD-1/PD-L1 blockade.
Frequency and size of TCRB clono-
types in TILs of a responding (A) and
a nonresponding (D) patient before
and upon treatment, frequencies are
given as function of log-clone size. The
TCRB frequency before therapy is
depicted in a darker color, the frequen-
cy upon therapy in a lighter color, start-
ing from the x-axis but being partly
covered by the darker color. B and E,
Frequencies in percent of the top 100
shared productive TCRB rearrange-
ments before and under therapy. C and
F, Pie charts for fractions of newly
emerging TCRB clones as compared
with preexisting clones. GLIPH analysis
of TILs for TCRB clustering the CDR3
sequences into convergence groups
assumed to react with the same pep-
tide/MHC class I complex for a
responder (G) and nonresponder (H).
Global similarity of TCRs is represented
by orange, local similarity by blue con-
necting lines. TCRBCDR3 sequences of
previously established reactivity to
known MCPyV epitopes are subjoined
as red circles. Clone size is represented
by the size of themagenta (responder)
and blue (nonresponder) circles; only
TCRBs within convergence groups are
shown.
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these parameterswere established fromonly a subgroup, Bayes inference
revealed that theirpredictive value is comparablewith goodperformance
status and absence of immune suppression of the complete group
(Supplementary Fig. S2).

Because clonal expansion is one fundamental event in effector T-cell
development, the TCR repertoire reflects both the previous history and
future prospects of adaptive cellular immune responses (32). The
TCRB repertoire of responders was characterized by higher richness,
an indicator accounting not only for the number of individual TCRBs,
but also for their heterogeneity. Greater richness was associated with a
higher evenness of TCRB clonotype, thus resulting in a high T-cell
clonotype diversity. The nature of this T-cell diversity was further
analyzed by clustering the respective TCRB CDR3 regions by simi-
larity. GLIPH analysis revealed that in responders the highly diverse
TCR repertoire was readily grouped in a limited number of conver-
gence groups. Notably, when artificially joining in established TCR
CDR3 sequences of T cells specifically reacting with MCPyV epi-
topes (4), thesewere also clusteredwithin these convergence groups. In
TILs of nonresponding patients, despite larger expansion of individual
clones, such convergence groups were virtually absent. The positive
predictive value of a diverse TCR repertoire for response to CPI
therapy was recently also observed in melanoma (33). Consistent with
the predictive value of a high TCR-repertoire evenness, our NRAD
analysis demonstrated that TILs of nonresponders were dominated by
a few, largely expanded T-cell clones. Thus, our findings indicate that
in responding patients, immune-inhibiting conditions prevented clon-
al expansion of T cells, which could be abrogated by anti–PD-1/PD-L1
therapy, whereas in nonresponders' reactive T cells were previously
expanded reaching their proliferative capacity, thus a state not amend-
able by immune checkpoint blockade. To test this, we additionally
addressed dynamic changes of the TCR repertoire usage upon CPI
therapy revealing that both size and number of T-cell clones increased
in responders, whereas in nonresponders the already large T-cell
clones at baseline did not undergo the same relative expansion and
the number of newly emerging clones was substantially smaller.
Moreover, the TCR-repertoire diversity in nonresponders remained
low, suggesting an irreversible T-cell dysfunction, for example, by
terminal differentiation. To this end, the age-related involution of the
thymus is associated with a shift of the T-cell pool from na€�ve to
effector memory T cells (34, 35). As a result, the na€�ve T-cell repertoire
is increasingly curtailed, which is evidenced by a loss of TCR-repertoire
diversity (36). The notion appears to be particularly important for
MCC, characterized by an elderly patient population (1). These
observations stress the importance of the TCR-repertoire diversity as
a pivotal feature of a functional immune system. In-line with this
concept, functional characterization of the immune microenviron-
ment in MCC before initiation of CPI treatment by gene expression
analyses demonstrated a very low or no expression of genes related to
T-cell attraction or activation in nonresponders; on the other hand,
these genes were highly expressed in tumors of responders. Similarly,
recent studies of TILs in melanoma demonstrated a correlation of
TCR clonality and the fraction of dysfunctional T cells (37).

Deconvolution of the molecular immune phenotype derived from
gene expression data revealed higher numbers of TCM cells in respond-
ing patients. Immunofluorescence detection of high numbers of CD27þ

CD45ROþTcells amongTILs of responders confirmed this notion. The
amount of TCM cells remained stable upon CPI treatment, which was
also observed in a preclinical therapy model of colon cancer (38). This
maintenance of TCM cells may be explained by the strong expression of
the transcription factor TCF7, which is crucial for differentiation, self-
renewal, and persistence of memory CD8þ T cells. Indeed, TCF7

expression remained high during treatment. Similarly, studies in mel-
anoma demonstrated that TCF7 is linked to an effective CD8þ T-cell
response upon immunotherapy and elevated frequencies of
TCF7þCD8þ T cell are predictive for therapy response (38, 39). In
contrast, TILs of nonresponders were characterized by a high preva-
lence of terminally differentiated, nonfunctional T cells, characterized
by expression of BCL-2. Terminally differentiated T cells have to be
distinguished fromexhaustedTcells. T-cell exhaustion is a consequence
of continuous stimulation causing a gradual loss of effector capabilities
and expression of inhibitory receptors. Exhausted T cells, however, can
be readily reactivated by therapeutic interventions such as inhibition of
PD-1/PD-L1 pathway (40). Terminally differentiated T cells, in con-
trast, are induced by overstimulation causing excessive proliferation
resulting in critically shortened telomeres (41–43). Thus, terminally
differentiated T cells have reached the final phase of their activation
cycle, and can no longer be reactivated even by immune checkpoint
blockade or epigenetic modifiers (29).

In conclusion, we identified immunologic and molecular charac-
teristics measurable in tumor tissue at treatment baseline associated
with clinical response to anti–PD-1/PD-L1 therapy of advanced
MCC. In patients with a favorable response, TILs had a rich and
diverse TCR repertoire as well as a phenotype of TCM cells, whereas a
predominance of largely expanded, terminally differentiated T cells
was associated with an impaired response.
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Chapter 4

Discussion

The contributed articles show that Bayesian statistics can be useful for a wide range of
applications: In HAMdetector, Bayesian statistics is used mainly as a tool to integrate
information from different sources. Phylogeny, epitope prediction and HLA alleles all
add different pieces of information that can be combined in a larger model that accounts
for uncertainty in the inputs. The phylogenetic tree is used to relax the assumption of
independent samples, epitope prediction provides information on the a-priori probability
of a given replacement being HLA associated, and the observed counts of replacements
and HLA alleles provide the ”hard data” to update the likelihood.

In the MCC articles, Bayesian statistics is used as a flexible tool to adapt a statistical
model to the observed data. In Spassova et al. (2020), the limited data led us to fit a
model that ignores the ordinal character of the categories, and we therefore fit a logistic
regression model that bins the categories ”progressive response” and ”partial response”
into a ”response” group, and the categories ”stable disease” and ”progressive disease” into
a ”non-response” group. While binning does go against the general principle of including
as much data as possible into a statistical model, in this case it can be seen as impos-
ing the assumption that the categories in each bin behave similarly as a function of the
predictors. The resulting posterior intervals for the regression coefficients are necessarily
broad, but the data did suggest that some risk factors are more strongly linked to therapy
non-response than others. As more data was collected (Spassova et al., 2022), it became
possible to fit a larger model that includes the ordinal character of the data. Such mod-
els are difficult to fit in a non-Bayesian setting, as some regularization helps to reduce
overestimating possible effects, and it is also relatively easy to account for missing data
in some of the inputs.

To summarize, the contributed articles highlight Bayesian statistics in a wide range
of applications: Habermann et al. (2022) focuses on the aspect of integrating information
from different sources, whereas Spassova et al. (2020) shows that it is possible to get rea-
sonable inferences when data are sparse and noisy. This is achieved by applying methods
that are skeptical by default (e.g. by using a regularizing prior), and account for miss-
ing data in such a way that uncertainty in the inputs translates into uncertainty of the
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inferences. Additionally, Spassova et al. (2022) also highlights some model visualization
techniques: Regression coefficients for models with non-linearities like logistic regression
are difficult to interpret, as they make statements about predictors on the log-odds scale.
Average predictive comparisons instead make statements about the expected change in
the outcome with a unit difference in one of the inputs (Gelman and Pardoe, 2007). This
can help to present results of statistical models in a way that is more easily interpretable.
While this idea is not limited to Bayesian models per se, describing model parameters with
probability distributions has the advantage that we can also express average predictive
comparisons in terms of distributions.
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Appendix B

Glossary of Probability Distributions

Continuous distributions

Table B.1: List of continuous probability distributions, with their probability density
functions and parameters; exp is the exponential function; R set of real numbers; R+

set of positive real numbers excluding 0; R+
0 set of positive real numbers including 0. Γ

is the Gamma function Γ(x) =
∫∞
0

ux−1 exp(−u)du; B is the Beta function B(u, v) =
Γ(u)Γ(v)

Γ(u) + Γ(v)
for u ∈ R+ and v ∈ R+.

Distribution Notation and pdf Data and parameters
Normal p(y) = Normal(y|µ, σ)

=
1√
2πσ

exp

(
− 1

2σ2
(y − µ)2

) y ∈ R, µ ∈ R, σ ∈ R+

Gamma p(y) = Gamma(y|α, β)

=
βα

Γ(α)
yα−1 exp(−βy)

y ∈ R+, α ∈ R+, β ∈ R+

Exponential p(y) = Exponential(y|β)
= β exp(−βy)

y ∈ R+
0 , β ∈ R+

Cauchy p(y) = Cauchy(y|µ, σ)

=
1

πσ

1

1 + ((y − µ)/σ2)

y ∈ R, µ ∈ R, σ ∈ R+

Beta p(y) = Beta(y|α, β)

=
yα−1(1− y)β−1

B(α, β)

y ∈ [0, 1], α ∈ R+, β ∈ R+
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Discrete distributions

Table B.2: List of discrete probability distributions, with their probability mass functions
and parameters; N set of natural numbers including 0; R set of real numbers; R+ set of
positive real numbers excluding 0; Γ is the Gamma function Γ(x) =

∫∞
0

ux−1 exp(−u)du;

B is the Beta function B(u, v) =
Γ(u)Γ(v)

Γ(u) + Γ(v)
for u ∈ R+ and v ∈ R+.

Distribution Notation and pmf Data and parameters
Poisson p(y) = Poisson(y|λ)

=
1

y!
λy exp(−λ)

y ∈ N, λ ∈ R+

Binomial p(y) = Binomial(y|n, θ)

=

(
n

y

)
θy (1− θ)n−y

y ∈ 0, . . . , n, θ ∈ [0, 1], n ∈ N

Beta-Binomial p(y) = Beta-Binomial(y|n, α, β)

=

(
n

y

)
B(y + α, n− y + β)

B(α, β)

y ∈ 0, . . . , n, α ∈ R+, β ∈ R+, n ∈ N
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