
COUPLING OF REINFORCEMENT LEARNING AND

DEM BASED DIGITAL TWINS FOR MACHINE

CONTROL AND OPTIMIZATION

Von der Fakultät für Ingenieurwissenschaften,
Abteilung Elektrotechnik und Informationstechnik

der Universität Duisburg-Essen

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von

Fabian Westbrink
aus

Ahlen

Gutachter: Prof. Dr.-Ing. Steven X. Ding
Gutachter: Prof. Dr.-Ing. Andreas Schwung

Tag der mündlichen Prüfung: 11.10.2022

Diese Dissertation wird via DuEPublico, dem Dokumenten- und Publikationsserver der
Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor.

DOI: 10.17185/duepublico/77042
URN: urn:nbn:de:hbz:465-20230329-073457-4

Alle Rechte vorbehalten.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/77042
https://nbn-resolving.org/urn:nbn:de:hbz:465-20230329-073457-4

Acknowledgments

First of all, I would like to sincerely thank Prof. Dr.-Ing. Andreas Schwung of the South
Westphalia university of applied sciences for giving me the opportunity to take this special path.
Over the last six years, I appreciated his continuous support, guidance, encouragement and
hours of insightful discussions. His constructive suggestions to my research allowed me to give
meaningful contributions to science and to complete this work satisfactorily. I would also like to
thank Prof. Dr.-Ing. Steven X. Ding of the Institute for Automatic Control and Complex Systems
(AKS) at the University of Duisburg-Essen, who always supported me with helpful advice and
discussions and made it possible for me to complete this Ph.D.

Furthermore, I would like to thank my colleagues of the department of Automation Technol-
ogy, starting with Gavneet Singh Chahda, Fernando Arévalo, Jan Niclas Reimann and all the
others for the incredibly exciting and terrific time with you. I will always look back at this great
time. Many thank to the AKS colleagues for an interesting and intensive exchange of knowledge,
too.

At last, I am deeply indebted to my Pia who not only supported me during this demanding
period but also revised this work with great effort.

Münster, October, 2022 Fabian Westbrink

I

Contents

Contents III

Abstract VII

List of Figures VIII

List of Tables X

List of Notations XI

1 Introduction 1
1.1 Objectives of the Dissertation . 4

1.2 Outline of the Dissertation . 5

2 State of the Art 7
2.1 Subject: Reinforcement Learning . 7

2.2 Subject: DEM Coupling . 9

2.3 Subject: DEM Optimization . 10

3 Theoretical Basics 13
3.1 Feedforward Neural Networks . 13

3.2 Reinforcement Learning . 15

3.2.1 Markov Decision Process . 15

3.2.2 Value-Based Reinforcement Learning 17

3.2.3 Policy-Based Reinforcement Learning 21

3.2.4 Actor-Critic Reinforcement Learning 23

3.2.5 Multi-Objective Reinforcement Learning 25

III

3.2.6 Hierarchical Reinforcement Learning 26

3.3 Digital Twin . 29

3.4 Discrete Element Method . 31

3.4.1 Basics of the Discrete Element Method 31

3.4.2 Particle Descriptions . 34

3.4.3 DEM Software Tool . 37

4 Machine Control of the PSM 39
4.1 Peristaltic Sortation Machine . 39

4.1.1 Peristaltic Principle . 40

4.1.2 Development of the PSM . 41

4.2 Digital Twin of the PSM . 44

4.2.1 Mechanical Parts . 45

4.2.2 Parcel Approximation . 46

4.2.3 Flexible Transport Film . 48

4.2.4 PSM Simulation . 50

4.3 Methodology . 51

4.3.1 Coupling the DEM . 51

4.3.2 Iterative Learning Schedule . 54

4.3.3 Distributed ACRL . 57

4.3.4 Hierarchical RL Framework . 59

4.4 Single-Actuation Transportation Task . 62

4.4.1 Single-Actuation Transportation Environment 63

4.4.2 Single-Actuation Transportation MDP 66

4.4.3 Training of the Single-Actuation Transportation 67

4.4.4 Summary . 70

4.5 Multi-Actuation Transportation Task . 71

4.5.1 Multi-Actuation Transportation Environment 71

4.5.2 Training of the Multi-Actuation Transportation 79

4.5.3 Summary . 83

4.6 RL-PLC Implementation . 84

4.6.1 Example Training with the IPC-RL Implementation 87

5 DEM Parameter Optimization 91
5.1 Calibration Procedures . 92

5.2 Calibration Unit . 94

5.2.1 Materials . 95

5.3 Methodology . 97

IV

5.3.1 Multi-Objective DEM Optimization 97
5.3.2 Pre-training Strategy for MORL Optimization 99

5.4 Optimization Procedure . 102
5.4.1 DEM Environments . 104

5.5 Optimization Results . 106

6 Conclusion and Future Work 115
6.1 Conclusion . 115
6.2 Future Work . 118

Bibliography 119

List of Publications 139

V

Abstract

This dissertation deals with the coupling of reinforcement learning (RL) algorithms with digital
twins based on the discrete element method (DEM). These digital twins are developed to act as
environments to solve RL problems of machine control and parameter optimization. Due to the
remarkable performance of modern RL algorithms and the versatility of DEM simulation, the
coupling of these two fields opens up possibilities for solutions to many problems of modern
machines or processes. In order to achieve a suitable coupling and handle the computationally
slow DEM simulations, appropriate methodologies are developed. By applying these methodolo-
gies and state-of-the-art RL algorithms to two specific applications, the applicability of the entire
approach is presented. In the first application, RL is used to solve the single- and multi-actuation
task of the novel peristaltic sortation machine. Therefore, a DEM based digital twin is developed
to properly represent the complex interaction of the individual parts of this machine. The second
application deals with the problem of the DEM input parameter optimization which is always
required to research new materials are researched with the DEM. A newly developed approach to
optimize the parameters using RL leads to remarkable results and lower computation times. The
developed approaches and methodologies of this dissertation are generally adaptable to other
problems and contribute to the usage of the combination of RL and DEM in many other research
fields.

VII

List of Figures

3.1 Structure of a feedforward DNN. 14
3.2 Reinforcement learning structure. 15
3.3 Actor-Critic architecture. 23
3.4 Digital Twin evolving along the phases of the product life cycle. 30
3.5 DEM Cycle. 32
3.6 Simple spring-damper contact-model with friction. 33
3.7 Multi-sphere approach with the original shape (left) and the approximation (right). 34
3.8 Different shapes of superquadric particles, based on the blockiness parameter. . . . 35
3.9 Simulated beam with modeled bonds. 36

4.1 Side view of the peristaltic principle with transportation and singulation functionality. 41
4.2 Design of the Peristaltic Sortation Machine. 42
4.3 Mechanical design of the actuator-unit. 43
4.4 Digital Twin framework of the PSM. 45
4.5 End-Effector, left: Original CAD, right: Simplified STL. 46
4.6 Parcel approximation, left: Multi-sphere, right: Superquadric. 47
4.7 Parcel transportation mechanism. 48
4.8 Simulation of the flexible transport film. 49
4.9 Digital twin of the PSM as environment. 51
4.10 DEM-Python coupling structure. 53
4.11 Framework of the iterative RL approach. 55
4.12 Structure of the distributed version of ACRL . 57
4.13 Developed HRL framework for e.g. machine control tasks. 59
4.14 PSM mechanics. 64
4.15 Single-actuator transportation environment. 66
4.16 Result of the training with the simplified environment. 68

VIII

4.17 Result of the distributed ACRL approach with 12 PSM-DEM environments. 69

4.18 Multi-actuation transportation task. 71

4.19 HRL framework for the multi-actuation transportation task. 72

4.20 Training results of the first sub-agent. 76

4.21 Training results of the second sub-agent. 77

4.22 DEM environment of the multi-actuation transportation task. 79

4.23 Pre-training results of the master-agent. 80

4.24 Baseline results of the pre-trained PPO master-agent performed with the DEM
environment. 81

4.25 Results of the re-training of the master-agent with the DEM environment. 82

4.26 Results of the re-trained PPO master-agent with the DEM environment. 83

4.27 Communication framework of the RL-PLC implementation. 85

4.28 Flowchart of the RL-PLC implementation. 86

4.29 Pre-training with the RL-PLC implementation. 88

4.30 Baseline results of the pre-trained PPO agent with the PLC environment. 88

4.31 Results of the re-trained PPO agent with the PLC environment. 89

4.32 Results of the re-trained PPO agent with the PLC environment. 89

5.1 Static AoR measured using the lifting cylinder experiment. 92

5.2 Dynamic AoR measured using the rotating drum experiment. 93

5.3 Determination of the coefficient of friction with the inclined plane test. 93

5.4 Validation experiment with the draw-down test. 94

5.5 Overview of the mobile DEM-Calibration unit. 95

5.6 Calibrated materials, from left to right: Plastic Granulate; Wood Pellets; Wet Sand. 96

5.7 MORL-A2C framework for DEM optimization. 98

5.8 Pre-training strategy of the DEM parameter optimization. 101

5.9 DEM optimization procedure. 103

5.10 Lifting cylinder environment. 105

5.11 Rotating drum environment. 105

5.12 Automatic determination of the static AoR. 106

5.13 Automatic determination of the dynamic AoR. 107

5.14 Results of the pre-training of the wet sand material. 108

5.15 Calibration process of plastic granulate and results for the dynamic AoR (top), static
AoR (middle) and parameter values. 109

5.16 Calibration of the plastic granulate without pre-training. 110

5.17 Comparison of the validation experiment with plastic granulate (left: DEM simula-
tion, right: Physical test in calibration unit. 110

IX

5.18 Calibration process of wood pellets and results for the dynamic AoR (top), static
AoR (middle) and parameter values. 111

5.19 Comparison of the validation experiment with wood pellets (left: DEM simulation,
right: Physical test in calibration unit. 112

5.20 Calibration process of wet sand and results for the dynamic AoR (top), static AoR
(middle) and parameter values. 113

5.21 Comparison of the validation experiment with wet sand (left: DEM simulation, right:
Physical test in calibration unit). 113

List of Tables

4.1 Resulting dynamics of the axes of the actuator-unit. 43
4.2 PSM simulation parameters. 48
4.3 Bond parameters of flexible transport film. 50

5.1 Material simulation properties and target AoRs. 97
5.2 Material properties used in the simulation. 104
5.3 General simulation parameters. 105
5.4 Results of the calibration optimization of the three materials. 108
5.5 Validation test results: Plastic Granulate. 111
5.6 Validation test results: Wood Pellets. 111
5.7 Validation test results: Wet Sand. 112

X

List of Notations

Abbreviations

Abbreviation Expansion

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

ACER Actor-Critic with Experience Replay

ACRL Actor-Critic Reinforcement Learning

ANN Artificial Neural Network

AoR Angle of Repose

BP Backpropagation

CEP Courier Express Parcel

CFD Computational Fluid Dynamics

COF Coefficient of Friction

COR Coefficient of Restitution

CORF Coefficient of Rolling Friction

CPS Cyber-Physical System

DDPG Deep Deterministic Policy Pradient

DEM Discrete Element Method

XI

DNN Deep Neuronal Network

DoE Design of Experiments

DPG Deterministic Policy Gradient

DQN Deep Q-learning

ER Experience Replay

FEM Finite-Element Method

FIFO First In First Out

FMI Functional Mockup Interface

FRL Feudal Reinforcement Learning

HIL Hardware-In-the-Loop

HMI Human Machine Interface

HRL Hierarchical Reinforcement Learning

IIoT Industrial Internet of Things

IPC Industrial PC

LAMMPS Large-Scale Atomic/Molecular Massively Parallel Simulator

LS LIGGGHTS

MBD Multi-body Dynamic

MDP Markov Decision Process

MLP Multilayer Perceptron

MORL Multi-Objective Reinforcement Learning

MuJoCo Multi-Joint dynamics with Contact

ODK Open Development Kit

PDE Partial Differential Equations

PLC Programmable Logic Controller

pph parcels per hour

XII

PPO Proximal Policy Optimization

PSM Peristaltic Sortation Machine

RL Reinforcement Learning

SARSA State-Action-Reward-Sate-Action

SGD Stochastic Gradient Decent

SPH Smooth Particle Hydrodynamics

SQ-Function Synthetic Q-Function

STL Stereo Lithography

TD Temporal Difference

TRPO Trust Region Policy Pptimization

Mathematical notations

Notation Description

∀ For all

∈ Belongs to

⊆ A subset of

≈ Approximately equal to

→ Assignment

.
= Equality relationship that is true by definition

max{·} Maximum of {·}

min{·} Minimum of {·}

argmax
x

f(x) A value of x at which f(x) is maximal

P{·} Probability of {·}

Rn Space of n-dimensional vectors

Rn×m Space of n by m matrices

E[·] Expection of [·]

XIII

Ex[·] Expection of [·] with respect to x

x A scalar

x A vector

x̂ Estimate of vector x

X A matrix

R A set of real numbers

XIV

1. INTRODUCTION

1

Introduction

The increasing complexity and advancement of recent products and processes require special
interdisciplinary developments in research and academics. One of them is the interdisciplinary
combination of mechanical, electronic and information technologies which emerges to a smart
mechatronic system, known as Cyber-Physical System (CPS) [1]. CPS is a combination of
physical and computational resources which control and monitor the physical part of the system
and affect each other. Considering the conventional control of the physical process with feedback-
loops, the controller design must be based on appropriate models of the entire CPS with all
its subsystems. The generation of these complex models for the model-based approach with
deterministic formulas is often obtained by physical laws in Partial Differential Equations (PDE)
[2]. Unfortunately, this generation can turn into a tedious task due to the nested and complex
structure of CPS.

Therefore, advanced simulation-based modeling approaches and suitable simulation meth-
ods are developed. Simulations based on these methods virtually representing the physical
counterpart of the CPS, provide an accurate and time-dependent description and are better
known as digital twins [3]. Digital twins consist of simulation methods that rely on PDEs of
the individual disciplines and can cover certain aspects of the CPS. But rather than solving the
PDEs analytically, recent simulation methods solve the equations numerically. The modelling of
CPS with these simulation methods results into a holistic simulation-based solution and can be
integrated into advanced control schemes. To name some prominent examples, the Multi-Body
Dynamics (MBD), the Finite Element Method (FEM), the Computational Fluid Dynamics (CFD),
or the Discrete Element Method (DEM) are specialized for their specific subjects and are able to
generate precise models of the desired system. Each of these methods has been developed to

1

1. INTRODUCTION

optimally compute the models by defining a certain finite mesh or even meshless, whereby the
degree of discretization decides about the accuracy of the model and the resulting computation
time. In particular, the DEM as a meshless method has featured recently with good results
in many different areas, is able to model large simulation domains and is therefore used and
considered in this work to generate a simulation based solution of the desired problems [4].

The DEM was originally developed to simulate roundish particles scaling from atoms up
to huge rocks. Instead of microscopically simulating the precise and tedious interaction and
movement of each particle, the DEM has been developed to handle a large number of particles
and their numerous interactions and collisions on a macroscopic level with sufficient accuracy
[5]. The DEM is nowadays applied in various fields of the material handling or process industry
to simulate, predict and optimise applications. But, instead of only using the DEM standalone,
there is a trend to couple it with other methods in order to extend the scope of the DEM. For
instance, a multi-way coupling of the DEM to the CFD or MBD allows to simulate the complex
landing of a lunar lander, but also gives insights into the broad applications fields of the DEM
[6].

By numerically computing high-dimensional PDEs, the DEM allows to simulate a large
number of independent, but colliding bodies and is able to generate precise models of desired
applications. However, the control of high-dimensional PDEs is constrained by standard control
approaches and requires more advanced approaches [7]. Therefore, instead of simplifying the
simulation model and reducing the dimensionality, which cause inaccuracies and additional
efforts concerning following the later real-world implementation, this work defines a different
way. The developed methodologies incorporate a simulation-based approach that is capable of
dealing with highly complex simulations in their original state. In particular, the established
methodologies are able to handle complex simulation methods and are applied to DEM simula-
tions models which act as wholesome representations of certain applications modeled as digital
twins. In specific, Reinforcement Learning (RL), as one leading-edge data-based approach, is
incorporated to fully operate with the DEM-based digital twins.

RL, known as one branch of machine learning, is characterized by learning from conse-
quences of self-made decisions rather than from recorded data. In RL a so-called agent observes
and interacts with a dynamic environment and is trained to update its policy to make decisions
that yield the highest rewards. Therefore, it suits perfectly for for problems where reliable train-
ing information are difficult, expensive or impossible to obtain [8]. Approaches and applications
of RL have been investigated for decades and scientific research in this field accelerated even
more by using deep neural networks as function approximators and corresponding computational
power which results in acceptable training times. Following this trend, recent RL approaches
have shown that they are able to achieve excellent training results in many application areas,
for example successfully beating human experts in board games or achieved unprecedented

2

1. INTRODUCTION

high-score playing advanced video games [8]. Current developments yield to achieve even more
effective algorithms and are being rolled out to a myriad of applications to further establish RL
[9].

By combining the DEM with its enormous possibilities and RL with its superior performances,
this work creates a novel coupling that can be used for many types of applications for which
there has been no acceptable solution until now. The applications of DEM models acting as
digital twins may differ from large bulk good to complex parcel handling situations, in which
RL supports the optimization of standard routines or allows to solve high-dimensional control
tasks. However, the coupling of DEM and RL faces two major issues which need to be solved to
allow a successful training of the RL approaches. First, the DEM simulations act as complex
dynamic environments in the RL context. These environments consist of very detailed and
high-dimensional models, are therefore difficult to train, require advanced learning algorithms
and a vast number of training episodes. Second, the inherent slow DEM solver yields significant
computation times for single time-steps. These computation times scale considerably concerning
the training of RL algorithms with thousands of episodes, which makes holistic training with
DEM simulation models impracticable.

Therefore, in this work several novel approaches and methodologies are developed which
allow the optimization of digital twins consisting of DEM models with RL. In order to generally
allow the use of DEM simulation models as dynamic environments that are integrated into the RL
structure, a suitable DEM-RL coupling framework is developed. Furthermore, five methodologies
are developed to feasibly train RL algorithms with very complex and slow DEM simulations.
In combination these methodologies allow the training of RL algorithms with complex DEM
based digital twins in reasonable computation times and thus yield to sophisticated results. The
developed methodologies are also adaptable to other techniques and allow the incorporation of
other simulation-based modelling approaches.

In order to verify the developed methodologies, they are carried out on two different applica-
tions, namely the control of the developed parcel transportation machine and the DEM parameter
optimization problem. These applications not only show the applicability of the developed
approaches, but also the usefulness and superiority of the DEM to generate digital twins of real
applications and RL to solve sophisticated problems.

As a demonstrator of using the bionic principle of peristalsis and establish a novel way to
gently transport and singulate parcels in bulk constellations, the Peristaltic Sortation Machine
(PSM) has been developed. This machinery is a by-product of the presented work and was
developed from scratch. The PSM has been fundamentally designed and is now acting as a
functioning prototype. During the development and prototyping, the DEM was found to be an
ideal tool to simulate the intricate behavior of this machine interacting with parcels. Therefore,
the DEM is enhanced to simulate not only bulk behavior, but also the complex interaction of this

3

1. INTRODUCTION

new type of machinery for parcel transportation. To correctly process parcels with this machine,
a control system with the described methodologies is developed that takes the inherent special
features and complex interactions of the peristaltic movements into account. Since the real
machine is controlled by a Programmable Logic Controller (PLC), a RL-PLC implementation is
developed additionally and provides the ability to deploy and train the developed RL frameworks
on the real PSM.

As already mentioned, the DEM is primarily known in the fields of molecular to heavy
bulk simulations and offers the possibility to simulate a broad range of different materials and
processes. Nevertheless, the simulation of individual goods always requires proper calibration
of the DEM input parameters to realistically simulate the real material. Since there is no
universal quasi-standard for the DEM calibration and especially no optimization algorithm
established, this works shifts the DEM optimization problem into the world of machine learning.
More specifically, a reinforcement learning is applied to this second application and used to
optimize DEM material parameters. A suitable multi-objective RL structure with a novel pre-
training strategy is developed and trained to find optimal DEM input parameters which lead to
a comparably fast calibration process. This is also the first attempt of using RL in the field of
DEM parameter optimization. To reduce the number of required DEM simulations within the
optimization process and thus save time during the entire calibration and optimization procedure,
the developed pre-training strategy is applied to this problem.

The methodologies developed to manage the machine control of the highly complex peristaltic
sorting machine as well as to significantly increase the performance of modern DEM optimization
are fundamentally described. Applying the developed methodologies to the outlined applications
shows fast training times and exceptional results. Apart from that, the developed methodologies
are adaptable to other problems, especially in the field of simulation coupling, handling slow
DEM simulations or generally applying reinforcement learning on various challenges.

1.1 Objectives of the Dissertation

The main objective of this work is the development of managing highly complex DEM simulation
models by utilizing reinforcement learning methodologies. Virtual models of real applications
are created using the DEM simulation and allow the use of corresponding digital twins as
environments in the RL context. In order to achieve proper results and tackling the high-
dimensional DEM environments a large number of training episodes are required intrinsically.
In addition, the inherently computationally slow DEM solver results in an unfeasible training
situation. Therefore, in this work, multiple methodologies are developed to control complex
DEM simulations coupled as digital twins by reducing the complexity of the environments and
speeding up the entire training with appropriate strategies.

4

1. INTRODUCTION

More specifically the objectives of this work are stated as:

• Incorporation of DEM simulation-based digital twins in a suitable optimization framework.
Handling of highly complex simulation models and the slow computational DEM solvers.

• Coupling of DEM simulations with RL. Generation of event-based interactions of DEM
simulation environments through high-level language programming. Enabling RL algo-
rithms to interact with dynamic DEM environments.

• Development of suitable methodologies to speed up the training of RL agents with parallel
computing and pre-training strategies.

• Elaboration of methodologies to reduce the complexity of high-dimensional control tasks
while adapting curriculum and hierarchical learning strategies.

• Simulation-based modeling of the demonstrator application mimicking the real PSM.
Modeling of individual components with various novel DEM approaches. Development of
suitable environments which properly reflect the dynamics and behavior of the machine.

• Development of a RL approach for optimizing the parameters for the problem of the DEM
material parameter calibration. Development of an automated mobile calibration unit and
determination of standard DEM calibration tests. Modeling of DEM environments for
solving the optimization problem using modern RL approaches.

1.2 Outline of the Dissertation

The entire dissertation consists of six chapters. The individual content, objectives and contribu-
tions of each chapter are briefly described in the following.

Chapter 1: Introduction: This chapter introduces and describes the motivation for this
work. Furthermore, the main objectives, desired contributions and the organization of this work
are defined.

Chapter 2: State of the Art: In this chapter, the relevant works are reviewed and divided
into the subjects of RL and DEM optimization. Since RL is becoming a vast and popular
field, only the most influencing literature and works are described, which review the recent RL
algorithms, benchmarks and industrial applications. In the subject of the DEM optimization, the
general need for DEM calibration, suitable physical calibration tests and the current optimization
strategies are discussed.

Chapter 3: Theoretical Basics: This chapter forms the fundamental basis of the rest of the
work. It is divided into the sections of the feedforward neural networks, the broad sections of
RL and the DEM as well as the basics of digital twins. Together with the previous chapter, all

5

1. INTRODUCTION

basic works in the different areas are reviewed and consider the necessary literature and basic
knowledge.

Chapter 4: Machine Control of the PSM: This chapter concentrates on defining and
applying the developed methodologies to different tasks of the machine control of the PSM.
Therefore, the development of the PSM and the machine characteristics are briefly explained. The
digital twin of the PSM made by the DEM simulation is described while facing the mechanical
parts, the parcel and transport film approximation and the entire composed digital twin. The
developed novel methodologies of coupling the DEM, the iterative learning schedule, distributed
actor-critic RL and hierarchical RL framework are fundamentally explained. Afterwards the
training of RL agents with the developed methodologies to solve the single- and multi-actuation
transportation tasks and the results of the training are shown. Finally, to allow the use of RL in
real applications, the development of an RL-PLC implementation is described and discussed
regarding a small example.

Chapter 5: DEM Parameter Optimization: This chapter is dedicated to the DEM pa-
rameter optimization as the second application for the coupling of RL and DEM. There, the
different calibration procedures and the novel calibration unit are described. The developed
optimization procedure is tested on three different materials using digital twins of real calibration
tests. Therefore a novel multi-objective RL framework incorporating the developed pre-training
strategy is applied to search for optimal material input parameters. Last but not least, the results
also show the remarkable performance of the developed approach.

Chapter 6: Conclusion and Future Work: This chapter summarizes the entire work, spec-
ifies the major developments and contributions. Finally, possible future works that subsequently
use the outcomes of this work are proposed.

6

2. STATE OF THE ART

2

State of the Art

This chapter reviews recent literature and methodologies dealing with the relevant topics of
this work. Therefore the subjects are divided into the main categories of RL, DEM coupling
and DEM optimization. The state-of-the-art of the subject of RL is defined of established RL
algorithms, benchmarks and a few industrial applications. Recent works of coupling the DEM to
other tools and software, as one integral part required in this work, is described in the second
subject. In the subject of DEM optimization the state-of-the-art of physical calibration tests and
optimization procedures are presented.

Some of the relevant literature are discussed later in the theoretical basics or in the individual
sections in detail.

2.1 Subject: Reinforcement Learning

Artificial intelligence and machine learning recently got pushed using deep learning techniques
and achieved prominent results in processing images, video, speech, etc. [10]. Reinforcement
learning as one of the machine learning methodologies has also made impressive breakthroughs
in various fields and moreover was able to beat professional human counterparts in many games
[11]. Current research focus on developing effective algorithms, better performance in competing
benchmarks and novel application fields, especially for industrial use cases.

The deep, in deep RL, firstly contributed by [12] with the developed deep Q-learning (DQN)
algorithm is able to deal with continuous states and discrete actions and shows remarkable
performances in many Atari games. Due to this development, many researchers focus on new
algorithms such as deterministic policy gradient (DPG) using Monte Carlo methods by [13] or

7

2. STATE OF THE ART

deep deterministic policy gradient (DDPG) as one actor-critic algorithm by [14]. Both algorithms
have opened up the possibility to handle continuous action spaces. Additionally, DDPG has
shown remarkable performance with the then established Multi-Joint dynamics with Contact
(MuJoCo) physics environment. In [15] the advantage actor-critic (A2C) and asynchronous
actor-critic (A3C) algorithms with remarkable performance are presented. In the following
the trust region policy optimization (TRPO) has been developed and is very effective for high-
dimensional control tasks [16]. In comparison to TRPO, the proximal policy optimization (PPO)
by [17] is much simpler to implement, has improved the data-efficiency and is one of the most
promising RL algorithms for recent applications.

Results and performance benchmarks of RL algorithms and methods are often highlighted
by applying them in prominent games. The works of [12], [18] are very popular in which agents
were able to successfully play the popular Atari games. A RL agent playing the traditional
but very complex game Go was published by [19] and defeated the world’s best Go player.
The so-called algorithm Alpha Go initially used supervised learning to gain fundamental game
knowledge from amateurs players and learn advanced strategies from professional players. By
purely self-playing, Alpha Go Zero as an enhancement of Alpha Go, speed up the training
considerably and also achieved superior performance in playing Go [20]. Based on Alpha Go
Zero AlphaZero was released which was able to defeat the world champions in the games of
Chess, Shogi and Go [21]. To show the applicability of RL for real-time games AlphaStar was
released by Deepmind and achieved superior performances by playing strategy games [22]. In
response to this, OpenAI developed Five which is based on PPO to demonstrate its performance
in the strategy game Dota 2 [23]. The Agent57, one of the latest developments of Deepmind, is
able to remarkably perform not just in one game, but in all 57 Atari games by incorporating a
batch of relevant methodologies in RL of the recent years [7].

Regardless of the remarkable performances in the described games, RL applications in
industrial environments or sensitive areas e.g. interacting with heavy machinery or humans
are still restrained. The usage of neural networks as function approximators always require
proper tuning and the results are not always repeatable because of the random initialization of
the networks. Even when assuming that the network is tuned properly two major hurdles of
deep RL are postulated in [24]. First, the stochastic and black-box nature of the control policy
causes uncertainties and makes it nearly impossible to understand why and how the agent has
learned the control policy. Even in properly validated cases, the highly non-linear function
approximation can still result in very different behaviors when the input conditions change
slightly. Second, there exists no standardized RL software to directly deploy the agent for many
industrial applications at the moment. Long and unfeasible training times or e.g. communication
delays in the desired system cause problems of gaining sufficient performances [24]. In [25] the
three bottlenecks of RL approaches are described, which are the sample efficiency, exploration &

8

2. STATE OF THE ART

exploitation and the generalization & reproducibility. Regardless of the desired application these
bottlenecks need to be solved to achieve appropriate results and performances

However, researchers of various branches have discovered RL as a promising tool for explicit
industrial applications and could thus overcome the aforementioned hurdles. Some industrial
applications are robotic manipulation [26], incorporating vision systems [27], increasing of the
energy efficiency with RL [28], RL based control of the temperature of heating, ventilation and
air conditioning systems [29] or control of complex soft and flexible robotics [30]. Another
successful example is the reduction of electrical energy of the Google data-centre by an average
of 30% using recent machine learning and RL techniques [31]. Also in the field of advanced
control engineering many contributions using types of RL have been made [32], [33]. To name
some explicit examples of the control domain, the learning of state feedback controllers [34],
optimal control of nonlinear systems [35], [36] or adaptive optimal control algorithms [37] have
been investigated. In sum, RL techniques are applicable in various fields, but require suitable
algorithms and environments which often consist of complex simulation models.

Especially the control of industrial robots with their manifold application areas is a prominent
example for using RL. Besides very simple examples, the control of any type of robot is a tedious
task and deals with influences caused by multiple contacts, frictions, or soft materials. These
influences are difficult to model with first-order physics and therefore successfully tackled with
RL, often in combination with conventional controller design [38]. When training with real-
world environments, these influences are directly learned by the agent but tend to be problematic
because of the slow data generation, resetting of environments and safety issues. Due to that,
the training of RL agents has mainly focused only on simulation-based modeling. However,
when applying the trained agents from the simulation to real-world environments, the reality gap

between both environments produces inconvenient results [39]. Therefore, recent works focus on
the sim-to-real transfer by reducing this gap by adding noise in the simulation with the domain
randomization method, or train the agent with sources of the same feature space with the domain
adaption method [40], [41].

However, sufficient handling of computational slow and complex environments is still an
unsolved problem and leads to unfeasible long training durations. Therefore, this work is based
on the state-of-the-art and develops methodologies to directly incorporate the computational
slow and complex DEM simulation models. These methodologies ease the training of RL-DEM
coupling by reducing the complexity of the RL task and also expedite the training significantly.

2.2 Subject: DEM Coupling

Usually, developed DEM simulations entirely run in the back-end of the used simulation tool.
These encapsulated simulations are optimized to provide good results but are limited in sharing

9

2. STATE OF THE ART

these information. Commonly, plots and animations are used to evaluate and share the results.
An automatic evaluation or an exchange of the interim results with appropriate tools is often
not foreseen or hardly possible. Therefore the research is focused on the exchange of the DEM
results with other simulation methods. DEM simulations have been coupled in co-simulation
with e.g. the Multi-Body Dynamics (MBD) in [42]–[44], the (FEM) [45], [46] or often with the
CFD in [47]–[49]. Another approach described in [50] defines a duality of particles and artificial
neural networks and mimics equations of the DEM into neural network structures. In [51], a
coupling of the DEM with industrial controllers such as PLC or Industrial PC (IPC) allows for
virtual commissioning of e.g. bulk good processes.

In recent works especially the coupling of FEM-DEM has been further developed. This
coupling closes the gap of analyzing structural mechanics with the FEM interacting with materials
made of a large number of discrete elements such as soils or concrete [52], [53]. Since there
is no commercial software available that consecutively gives the possibility to simulate both
simulation methods together, corresponding couplings methods are developed to combine these
different domains [54].

In [55] three different approaches are formalized which lead to a suitable coupling with the
DEM, or with any other simulation methods. The first and simplest approach is the integrated
coupling, in which inbuilt functions allow for corresponding coupling possibilities i.e. multiple
simulation methods are integrated into one entire software tool. The second approach, mainly
focusing on hardware optimized systems, such as special Hardware-In-the-Loop (HIL) devices, is
achieved by network-based coupling. There, a data-exchange, e.g. via TCP/IP between multiple
participants is established. The third approach is called program based, which means the local
coupling of methods on the software level on the same machine. Program based coupling can be
achieved by using simple exchange files, more sophisticated object-oriented coupling or by the
standardized Functional Mockup Interface (FMI) [56], [57].

The described works show the state-of-the-art possibilities to couple the DEM with other
simulation methods and tools. Nevertheless, to allow to use of the DEM in a data-based and
machine learning context a suitable coupling framework is required and developed in this work.

2.3 Subject: DEM Optimization

The state-of-the-art of the DEM optimization is basically determined by developed calibration
tests and suitable optimization strategies. Generally, the established tests are independent of
the developed strategies and are also interchangeable. The basics of the DEM and the relevant
literature are discussed in Section 3.4.

To ensure qualitative DEM simulations with conclusive results it is essential to sufficiently
calibrate and optimize the DEM input parameters. Only calibrated parameters lead to consistent

10

2. STATE OF THE ART

results between the real applications and the DEM simulation models. But this parameter
calibration and optimization requires expert knowledge and a significant computation time.
Therefore, researchers developed a data-base for certain materials, which is unfortunately very
limited and only suitable for a specific DEM tool [58]. Even though there are contributed values
available for many materials, the approximation of the shape of the particles and the used contact
models require a determination of the relevant material parameters. In [59] the internal coefficient
of friction, the coefficient of restitution or the coefficient of rolling-friction are denoted as the
relevant material parameters of the calibration.

Since the material parameters describe the behavior on the microscopic level, there are
certain ways to directly measure them e.g. with Atomic Force Microscopy [60] or High-speed
cameras [61]. But often these measurements are not feasible. As a result, macroscopic tests with
meaningful measurements and an additional calibration procedure are used to define suitable
parameters [62].

Typically, a DEM calibration starts with general analysis of the material to be examined.
Important characteristics like the particle size, size distribution, the bulk density or friction values
between the desired material and relevant surfaces are measured [63]. Furthermore, to find
suitable DEM input parameters, a number of different laboratory tests are conducted, important
key parameters are determined and the results are compared to surrogate DEM simulations. An
optimization algorithm is then used to iteratively change the input parameters to find a suitable
input parameter set which yields to matching results to the physically obtained results. However,
there is no unique solution for the desired material. Instead, in [64], [65] the DEM calibration is
denoted as an ambiguous problem, where multiple DEM input parameter sets yield to similar
results.

In the calibration a variety of established physical tests are used to identify relevant material
characteristics. Depending on the examined material, a batch of different tests is used. One
important characteristic of powder and bulk material is the resulting Angle of Repose (AoR)
[66]–[68]. This angle can be determined by performing experiments with e.g. a lifting cylinder,
a rotating drum [69], a tilting box [70], a shear box [71] or a funnel tester [72]. A combination
of some of the aforementioned tests is also known as draw-down test [64], which can identify
multiple characteristics in a single test run. To measure the specific discharge behavior and the
mass flow of the desired materials a hopper discharge [73] or auger dosing experiment [65] are
used. Another methodology to analyze the material behavior is the shear test applied by the
Jenike shear tester or the ring shear test [74]. The entire calibration procedure is either based on
a single test or a variety of tests to identity different material characteristics.

Regardless of the applied physical tests, suitable surrogate DEM simulations and optimization
procedure, models have to be developed to determine appropriate DEM input material parameters.
The very basic optimization procedure is the trial-and-error method which almost always requires

11

2. STATE OF THE ART

a high number of iterations and long computation times. To find optimal input parameter sets
with only a small number of iterations, sophisticated optimization algorithms are developed.
These algorithms are e.g. based on the Design of Experiments (DoE) method in [75]–[77] or
made with generic algorithms [78]. When combining DoE with the multivariate regression
analysis a calibration of cohesion materials can be achieved [79]. But this optimization requires
approximately 100 iterations to find suitable parameters, where the number of input-parameters
decide about the number of necessary simulations. In [80] the developed generalized surrogate
modeling-based calibration is used to calibrate materials within 21 simulation runs, but only
considers two different material parameters. Another approach uses surrogate models for
optimization purposes and is described in [81]. Optimization procedures based on machine
learning techniques with scope of supervised learning and using artificial neural networks are
presented in [81]–[84]. Another approach applying support vector machines to optimize the
parameters is described in [85]. Approaches using Kriging also have been developed to further
decrease the required number of iterations and therefore the entire computation time.

The state-of-the-art of the subject DEM optimization is defined by a variety of established
DEM calibration tests and optimization strategies. However, DEM optimization is still a
challenging task and requires a lot of computation time. Therefore, this work contributes
the development of the automated mobile DEM calibration and optimization procedure which
speeds up the process considerably and is based on the developed DEM-RL methodologies.

12

3. THEORETICAL BASICS

3

Theoretical Basics

In this chapter the fundamentals of the relevant subjects used in this work are described. The the-
oretical basics are divided into the sections of RL, with the relevant formulations and algorithms,
a brief introduction into the topic of the digital twin and in the basics of the DEM explaining
the complete simulation method. But first, the fundamentals of feedforward neural networks are
explained which are a necessary standard tool in RL.

3.1 Feedforward Neural Networks

Artificial Neural Networks (ANN) consist of several layers i.e. input layer, hidden layer and
output layer, where the information are propagated through all layers. If there is more than one
hidden layer, the network is called Deep Neural Network (DNN). Within one layer there are
one or multiple neurons which are connected to the surrounding layer with weights. In a fully
connected feedforward network, also known as Multilayer Perceptron (MLP), built with a specific
width (number of neurons per layer) and depth (number of hidden layers) as the very fundamental
architecture, the information flow is only one-directional through the network [86]. DNNs can
consist of multiple inputs x and one or multiple outputs y, as shown in Figure 3.1. Feedforward
networks are often used as function approximators, mapping inputs to corresponding outputs
following the desired function [87]. But there are also other types of ANN architectures, for
example convolutional neural networks and recurrent neural networks or many other sub-types
which are used for various applications[88].

Each of the layers in the deep feedforward neural network is defined by the expression

13

3. THEORETICAL BASICS

Figure 3.1: Structure of a feedforward DNN.

h(i) = Θ(i)(h(i−1),W(i)), (3.1)

for i = 1, ...,m where m is the number of layers. h(i−1) denotes the input and h(i) the output
of the current layer, W(i) corresponds to the weight parameter and Θ(i) is the chosen layer
architecture or activation function. The activation function could be, for example, the Rectified
Linear unit (ReLu), the hyperbolic tangent, the sigmoid or the the softmax function [86]. When
considering m layers, the representation of each layer is given by

h(1) = Θ(1)(h(0),W(1)),

h(2) = Θ(2)(h(1),W(2)),

...

h(m) = Θ(m)(h(m−1),W(m)),

(3.2)

with the weight matrices W(i) which size depends on the number of neurons of the current and
the following layer. The input x = h(0) is passed trough the network layers which approximates
the desired output y = h(m). The learning of the network is accomplished by minimizing a
certain loss function L for example determined by the squared error or the cross-entropy object
function [86]. During the entire training, it is tried to minimize a specific cost function J ,
which is obtained by adding the losses and some kind of regularization term. Due to that, e.g.
Backpropagation (BP) is used to compute the gradients of the loss function with respect to each

14

3. THEORETICAL BASICS

weight. The basic idea of BP is that the partial derivative of the loss with respect the weight
parameters can be decomposed and thus the error can propagates back through the network [89].
The weights are then updated with gradient decent methods like Stochastic Gradient Decent
(SGD) to minimize the loss [86]. In SGD not the true gradient as in Gradient Decent (GD), but
instead a stochastic estimator of the gradient is used. Since SGD usually only uses minibatches
of the entire training samples, it converges much faster compared to GD, but the minimizing of
the error not as well as in GD [86].

3.2 Reinforcement Learning

Reinforcement Learning (RL) is the training of machine learning models and decision making
while interacting with dynamic environments. Based on [90], RL can be also seen as the approach
of computationally mimicking the intrinsic animal learning behavior which is based on trial-and-
error learning. While interacting with an environment and taking actions, a learner/controller,
also called the agent, learns to maximize the reward signal. For this process, not the immediate
but rather the long term rewards are of interest. As shown in Figure 3.2 the agent receives
an observation of the environment encoded in the state st = s at each discrete time step
t = 0, 1, 2, ..., T . Based on these information the agent decides for an action at = a and as a
consequence the environment updates at the time step t+ 1 to the subsequent state st+1. At the
same time the agent receives a reward rt+1 = r ∈ R.

3.2.1 Markov Decision Process

Figure 3.2: Reinforcement learning structure [90].

The basics of RL are formulated by considering an agent observing a specific environment
which is modeled as a simple Markov Decision Process (MDP) [91]. The agent takes actions
depending on its strategy, or also called policy, which maps observations to actions. The agent
learns from these interactions while obtaining the rewards as shown in Figure 3.2. In the MDP
the probability of reaching a new state and receiving a reward is given by a probability function

15

3. THEORETICAL BASICS

depending on the previous state and action. The overarching goal of the agent and the learning
process is to maximize the cumulative reward.

In [90] the dynamics of the MDP are generally formalized as a 5-tuple (S,A, P, r, γ) with:

• the set of all non-terminal states s ∈ S,

• the set of all actions a ∈ A,

• P (st+1|st = s, at = a) as the probability transitioning into state st+1 coming from state s
and taking the action a at the time t,

• r(s, a) as the immediate reward receiving advancing from state s to the following state
st+1 due to the action a,

• γ ∈ (0, 1] as the discount factor presenting the different importance of future and immedi-
ate rewards.

In the learning process the agent observes the environment, often not fully observable, but
only partially encoded in the state s. Based on this observation the agent takes an action a from
the action set at each time step. The mapping of states to actions π : S → A is defined as the
policy of the agent. The stochastic policy

πs(a|s) = P (at = a|st = s), (3.3)

is defined as the probability of taking an action a at a certain state s. The main objective of
RL is to maximize the total discounted reward, also denoted as the return, valid for all timesteps
t < T and defined by

Gt =
∞∑
k=0

γkrt+k+1, (3.4)

with 0 ≤ γ ≤ 1 as the discount factor [90]. This discount factor is usually set to be γ < 1 and
leads to future rewards being less valuable compared to immediate results.

To achieve the maximum future discounted reward the optimal policy π∗(s) has to be found.
A policy π is defined to be better than another policy π′ if the expected return is greater for all
states and thus the optimal policy π∗(s) is defined as

π∗(s) = argmax
π

Eπ[Gt]. (3.5)

To describe RL algorithms in detail, important definitions are to be explained. First, there is
is a distinction between model-free and model-based learning methods. Generally, the methods

16

3. THEORETICAL BASICS

attempt to solve different problems, so that model-free methods rely on learning as their primary
component while model-based methods rely on planning [90]. Model-based methods attempt
to learn the transition probability and the reward function to plan trajectories without directly
interacting with the environment. In model-free RL, for example temporal difference learning,
the agent directly learns from experience while interacting with the environment but gains no
knowledge about the environmental dynamics itself. In contrast, model-based methods construct
a model of the environment to then learn indirectly within this constructed model.

Additionally, in RL two major approaches are distinguished, namely the value-based and
policy-based RL which are explained in the following sections.

3.2.2 Value-Based Reinforcement Learning

RL using the value function for decision making has been established as a prominent approach
and as a basis for modern RL techniques. The value function estimates how good it is for the
agent to be in a given state and future rewards that can be expected. Therefore, value-based
estimate the future rewards by evaluating the value function V π(s) as the expected return from
the state s following the policy π. Formally V π, also called the state-value function for the policy
π is defined as

V π(s) = Eπ[Gt|st = s], (3.6)

= Eπ

[
∞∑
k=0

γkrt+k+1|st = s]

]
∀s ∈ S, (3.7)

in which Eπ denotes the expectation over the episodes with the policy π [90]. Based on that,
there exists an action-value function for a policy π, which defines the value of taking an action a
in the state s under the policy π. This action-value function is similarly defined as

Qπ(s, a) = Eπ[Gt|st = s, at = a], (3.8)

= Eπ

[
∞∑
k=0

γkrt+k+1|st = s, at = a]

]
. (3.9)

To practically formalize the connection between the value of a state and future possible states,
the return is recursively written as the immediate reward plus the discounted return. By that, as a
form of dynamic programming, the value function results in

17

3. THEORETICAL BASICS

V π(s) = Eπ[Gt|st = s], (3.10)

= Eπ[Rt+1 +Gt|st = s], (3.11)

=
∑
a

π(a|s)
∑
st+1

∑
r

P (st+1, r|s, a) [r + γEπ[Gt+1|st+1]] , (3.12)

=
∑
a

π(a|s)
∑
st+1,r

P (st+1, r|s, a) [r + γvπ(st+1)]∀s ∈ S, (3.13)

where the actions a ∈ A(s), the next states st+1 ∈ S , the rewards r ∈ R. The probability
P (st+1, r|s, a), which is also known as the dynamics of the MDP, describes the one-step dy-
namics of the environment and is completely specified by this probability distribution for the
next values of the state, reward given with the current state and action value. The equation 3.13
expresses a relationship between the value of a state and is known as the Bellman equation for
V π [90].

There exists at least one value function that maximizes the value of every state and is thus
denoted as optimal value function

V ∗(s) = max
π

V π(s)∀s ∈ S, (3.14)

and the optimal action-value function

Q∗(s, a) = max
π

Qπ(s, a)∀s ∈ S, a ∈ A, (3.15)

which gives the expected return for taking action a in the state s and thereafter following an
optimal policy. Q∗ can also be written in terms of V ∗ as follows

Q∗(s, a) = E[rt+1 + γV ∗(st+1)|st = s, at = a]. (3.16)

The optimal value function in Equation (3.14) obeys a special policy and must satisfy the
self-consistency condition. Additionally, as an important property it maximizes the expected
value following from any action. Therefore, based on [90] the recursively Bellman optimality
equation is expressed as

V ∗(s) = max
a∈A

∑
st+1,r

P (st+1, rt+1|s, a)[r + γV ∗(st+1)]. (3.17)

The training algorithm of value-based RL follows the iterative cycle of policy evaluation
and policy improvement. Within the policy evaluation the value function V (s) ≈ V π(s) or
Q(s, a)≈Qπ(s, a) is estimated for the current policy of the agent [92], which is then used to

18

3. THEORETICAL BASICS

improve the policy, following different strategies, for example greedily selecting actions with
respect to the new value function. The improved policy is then evaluated and the cycle starts
again. This procedure is the fundamental basis of value-based reinforcement learning [90].

The value function is accordingly updated with an appropriate backup operator. Model-free
RL algorithms, such as Monte-Carlo or temporal-difference learning, update the value function
by a sample-backup. There, the chosen action based on the current policy, the single state
transition, and the reward are sampled from the environment which are then used to accordingly
update the value function [92].

Following which strategy or choosing which action is another important definition of RL and
is well-known as exploration-exploitation dilemma [90]. While training the agent, knowledge
about the environment is accumulated and the agent has to decide between exploring the unknown
parts of the environment (exploration) or pursuing the most promising strategy with the already
gathered experience (exploitation). Suitable strategies carefully explore the environment and
ensure that lesser-known parts of the environment are not as promising and then seek to increase
the reward within the expected valuable parts.

Temporal Difference Learning

To allow an online policy update at the time step t, the so-called Temporal Difference (TD)
method is explained. It uses the immediate reward to update the current policy without waiting
for finishing the episodes. Hence, the TD method immediately updates the estimate of V with

V (st)← V (st) + α [rt+1 + γV s+ 1− V (st)] , (3.18)

on the transition from s to st+1 and receiving rt+1 with the learning rate α > 0. The target of TD
methods can be seen as an approximation of the Bellman Equation in (3.17) incorporating the
immediate and discounted reward. In [90] the pseudo-code of TD methods in Algorithm 1 is
described.

19

3. THEORETICAL BASICS

Algorithm 1 TD(0) algorithm
Input: The Policy π to be evaluated
Data: Policy π, α ∈ (0, 1]
Initialize V (s), for all s ∈ S arbitrarily, except V (T) = 0
loop for each episode:

Initialize st
loop for each step of episode:

at ← action given by π for st
Take action at, observe rt+1 and st+1

V (st)← V (st) + α [rt+1 + γV (st+1)︸ ︷︷ ︸
TD-target

−V (st)]

︸ ︷︷ ︸
TD-error

st ← st+1

end loop
until s is not terminal

end loop

In each episode, for the current state st an action at is selected based on the policy π.
The environment executes the action, gives the reward rt+1 and advances to the subsequent
state st+1. The estimated value V (st) is updated with the learning rate α and the TD-error,
which is measured between the value at state st, the subsequent state st+1 and any reward rt+1

accumulated along the way [92]. This TD method is called TD(0) or one-step TD because it
estimates, contrary to n-step prediction, the following step only.

The classical TD method uses a look-up table consisting of the corresponding values and
is thus computationally limited and only suitable for relatively small state spaces. In contrast
to that, in deep RL, this table is replaced by function approximators e.g. feedforward neural
networks estimating the value function.

SARSA algorithm

As a natural extension of the TD(0), the on-policy SARSA (State-Action-Reward-Sate-Action)
using function approximators is described. On-policy learning algorithms are evaluated and
improve the same policy which is used to gain the experience. In contrast to this, off-policy
learning algorithms improve a policy that is different to the one which is used for choosing the
actions.

The SARSA algorithm updates the value function according

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1 −Q(st, at)], (3.19)

20

3. THEORETICAL BASICS

with the learning rate α for all non-terminal states st. The choice of action is often based on the
ε-greedy-policy. ε-greedy is a combination of exploring by selecting random actions with the
probability ε and exploitation selecting argmax

a
Q(s, a) with the probability 1− ε [90].

In the presented SARSA algorithm the action-value function Qπ ≈ Q̂ is represented by
a parameterized function using a DNN. In RL the objective of using DNN is to approximate
the value function V π(s) ≈ V̂ (s; w) or state-action function Qπ(s, a) ≈ Q̂(s, a; w) with a
parameterized function with respect to the weights w ∈ Rd which is a finite-dimensional weight
vector. By adjusting the values of the parameter w, the target function is ideally approximated.

The SARSA algorithm is based on the general gradient-descent update for action-value
predictions with the target Ut

wt+1
.
= wt + α[Ut − Q̂(st + at; wt], (3.20)

where Ut can be any approximation of Qπ(st, at), whereas for the semi-gradient SARSA
algorithm it follows

wt+1
.
= wt + α[rt+1 + γQ̂(st+1, at+1,wt)− Q̂(st + at; wt]. (3.21)

The pseudo-code of the entire one-step SARSA is shown in Algorithm 2 [90].

Algorithm 2 SARSA algorithm for Estimating Q̂ ≈ Q∗

Input: Differentiable action-value function parameterization Q̂(st, at; w)
Algorithm parameters: step size α > 0, small ε > 0
Initialize weights w ∈ Rd arbitrarily (e.g. w = 0)

loop for each episode:
st, at ← initial state and action episode (e.g. ε-greddy)
loop for each step of episode:

Take action at, observe rt+1, st+1

if st+1 is terminal then
w← w + α[rt+1 − Q̂(st, at; w)]∇Q̂(st, at; w)]
Go to next episode

end if
Choose at+1 as a function of Q̂(st, at; w) (e.g., ε-greddy)
w← w + α[rt+1 + γQ̂(st+1, at+1; w)− Q̂(st, at; w)]∇Q̂(st, at; w)
st ← st+1

at ← at+1

end loop
end loop

3.2.3 Policy-Based Reinforcement Learning

In contrast to value-based methods, policy gradient methods directly optimize the policy π(a|s,θ)

with gradient ascent to directly increase the reward per step. A value function can be learned as

21

3. THEORETICAL BASICS

well but is not required to determine the action. The policy π(a|s,θ) = P (at = a|st = s,θt = θ)

describes the probability of taking an action a in the state s at the time step t with the parameter
θ ∈ Rd [90]. Additionally, these methods typically are of higher variance and therefore
less efficient but they have a better convergence than value-based methods and can learn a
parameterized policy even for continuous action spaces [92]. These methods seek to maximize
the performance measure J(θ) with the objective function

θ∗ = argmax
θ

J(θ), (3.22)

and updating the parameter θ with gradient ascent

θt+1 = θt + α∇J(θt), (3.23)

where ∇J(θt) is the stochastic estimate of the gradient of the performance measure with
respect to the parameter θ [90].

The REINFORCE algorithm as one of the first policy-based RL algorithms is used to describe
this approach [93]. Instead of using an entire episode, it uses a trajectory τ = st, at, st+1, at+1, ...

to compute the performance measure

J(θ) = E

[∑
τ

R(τ)πθ(τ)

]
, (3.24)

with the cumulative reward over the trajectory assuming γ = 1

R(τ) =
∑
τ

rt+1, (3.25)

and under the policy πθ. By using the policy gradient theorem which is described in detail in
[90], the derivative of J(θ) results in

∇J(θ) = E

[∑
τ

R(τ)∇θ log πθ(τ)

]
. (3.26)

The parameter θ is then updated using gradient ascent according to Equation (3.23).

Methods that combine the approximation of policy and value functions are called actor-critic
methods, where the actor is a reference to the learned policy while the critic estimates the value
function [94].

22

3. THEORETICAL BASICS

3.2.4 Actor-Critic Reinforcement Learning

The actor-critic method combines the advantages of policy-gradient methods and the efficiency
of value-based RL [92]. The Actor-Critic Reinforcement Learning (ACRL) architecture is shown
in Figure 3.3 and consists of both actor and critic. The actor representing the policy determines
an action at for the given state st. Additionally, the critic represents the value function and
estimates the value V (s) of the current state with the parameterized function of w, so that the
actor defines the chosen action while the critic evaluates this action. Using the policy gradient
theorem by [90] it follows

Figure 3.3: Actor-Critic architecture.

∇θJ(θ) =
T∑
t=0

Aπθ(st, at)∇θ log πθ(at|st), (3.27)

with the advantage function Aπθ to be

Aπθ(st, at) = Qπ(st, at)− V π(st), (3.28)

which is approximated with the TD-error [94]

Aπθ(st, at) = rt+1 + γV π(st+1)− V π(st). (3.29)

Finally the policy parameter θ is updated using gradient ascent. The actor selects an action at,
advances in the subsequent state st+1, receives a reward rt+1 and updates the weight vector w
according to Section 3.2.2.

23

3. THEORETICAL BASICS

Actor-critic methods incorporating the advantage function are called A2C and are suitable
for discrete as well as continuous state and action spaces. A2C and the asynchronous version of
it, A3C, which uses multiple independent agents interacting with copies of the environment in
parallel, are stable and trained faster compared to other algorithms [15]. Based on the standard
ACRL architecture several modern algorithms are developed which show improved performance
in many RL tasks. One promising algorithm is the PPO which is characterized by ease of tuning
and implementation, but comparably high-performance [17].

Proximal Policy Optimization

Generally, policy-gradient methods are prominent to sufficiently solve RL tasks using DNN for
control or video games like Atari [12], but tend to be very sensitive to the chosen step-size. Small
time steps dramatically increase the training time, whereas time steps could cause dramatic drops
in the performance, if chosen to large. Thus, the strategy of constraining the size of the policy
update is researched and adopted in algorithms like TRPO [16] or Actor-Critic with Experience
Replay (ACER) [95]. But these methods are comparably complex and require intensive coding.
Therefore, PPO is introduced which shows similar performance but with significantly lower
implementation effort.

In PPO the policy update is limited in a small range using the clipped surrogate objective
function. This objective function is an enhancement of the surrogate objective function used in
TRPO which maximizes

LCPI(θ) = E[rt(θ)Ât], (3.30)

with θ as the policy parameter,

rt(θ) =
πθ(at|st)
πθold(at|st),

(3.31)

as the ration between the new and old policy and Ât as the estimated advantage at the time t
[17]. The old policy πθold is the probability of taking an action at in the state st given the policy
parameter θold from the previous epoch and new policy π is therefore the probability given by the
updated policy parameter θ. As a consequence of Equation (3.30), considering the new policy
is much more probable compared to the old one, this leads to a large gradient step and policy
update respectively. TRPO counteracts this massive update using the complex Kullback–Leibler
(KL) divergence constraint [16]. In contrast to that, in PPO the surrogate object function simply
clips the probability ratio of the surrogate model with

LCLIP (θ) = E[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)], (3.32)

24

3. THEORETICAL BASICS

where ε is the hyperparameter of the clipping function. The minimum operator ensures
that the updates are lower bound or pessimistic bound. Equation (3.32) handles two possibility
ratios, a non-clipped and a clipped one, in the range of 1− ε, 1 + ε. If the advantage function is
Ât > 0, which refers to a comparatively good action choice, the probability will be increased to
a maximum of 1 + ε to stabilize the training. If Ât < 0, the ratio will be decreased consequently
to a minimum of 1− ε and the chosen action becomes less likely in the future. In general, PPO
avoids updates which shift the policy too far away from the old policy.

The entire PPO algorithm as pseudo-code is given in Algorithm 3, using a fixed length
of sampled mini-batches to accordingly update the policy [17]. In each iteration, each of the
N actors collects data over the timesteps T . The NT data is sampled in mini-batches and is
accordingly updated using SGD for K epochs [17]. As a result, PPO performs well in different
benchmark tests, but compared to other algorithms requires with lower implementation effort
and little use of hyperparameters.

Algorithm 3 PPO, Actor-Critic Style
for iteration=1,2,... do

for actor=1,2,... do
Run policy πθold in environment for T timesteps
Compute advantage estimates Â1,...,ÂT

end for
Optimize surrogate L wrt θ, with K epochs and mini-batch size M ≤ NT
θold ← θ

end for

3.2.5 Multi-Objective Reinforcement Learning

In Multi-Objective Reinforcement Learning (MORL) the optimization is not based on single but
on multiple either conflicting, complementary, or independent objectives. The goal of MORL is
to find one or more policies that optimize the multiple criteria simultaneously [96]. Enhancing
the general form of the MDP, into a multi-objective optimization provides a vector of rewards
instead of a scalar reward resulting in

r(s, a) = (r1(s, a)...rmo(s, a)), (3.33)

where mo represents the number of objectives [96]. One approach for single policy MORL
is the weighted sum or linear scalarization approach [97] generating a Synthetic Q-function
(SQ-function) with

SQ(s, a) =
mo∑
i=1

wiQi(s, a), (3.34)

25

3. THEORETICAL BASICS

where the weight vector satisfies the equation

mo∑
i=1

wi = 1. (3.35)

Based on the SQ-function in Equation (3.34) the action which results in the maximal summed
value is chosen. An adjustment of the individual weights sets the relevance for each objective.
Additionally there exist a variety of different MORL approaches for single policies. As for
example, [98] distinguishes between the W-learning, the analytic hierarchy process, the ranking
and the geometric approach.

In the multi-policy MORL approaches tackle to find an optimal solution on the Pareto
front incorporating trade-offs among multiple conflicting objectives [99]. The Pareto front
represents the optimal set of a compromise solution which is dominating over other weak
solutions. Establishing the true front of a multi-objective problem is rather impractical, thus the
goal is to approximate. Therefore, a good approximation yields to solutions that are close to
and evenly distributed along the front [99]. Hence, several RL algorithms employ an extended
version of the Bellman equation and maintain the convex hull of the Pareto front as in [100],
[101].

3.2.6 Hierarchical Reinforcement Learning

Solving highly complex problems, especially given the computational limits nowadays, requires
suitable strategies. To solve a superior task, the Roman emperor Julius Caesar already stated
Divide et impera, i.e. divide it into smaller sub-tasks and solve them successively. This strategy
is inherently adapted in modern applications like positioning control of electrical drives with
a cascade controller. This controller consists of different loops from the current control over
speed control to the position control. This strategy is also applied to complex or long-horizon
RL problems by dividing the task into levels of different ranks which are collectively referred to
as the Hierarchical Reinforcement Learning (HRL). This approach has the potential to abstract
multi-level control tasks and allows for transferability and interpretability of learned skills within
the HRL structure [102].

As there are numerous of different HRL approaches developed, a formal definition generalizes
and describes the different levels of the hierarchical structure [103]. The main complex task
which is then divided into several levels and sub-tasks is denoted as Γ, its policy as πΓ and one
sub-task is denoted as ω. Thus, the policy of the sub-task is defined as πω and maps the states of
the environment to the primitive actions or subjacent sub-tasks. Further, rω denotes the specific
reward to train the policy of the sub-task πω, is individually defined and typically different from
the reward associated with the main task. The reward is assigned to perform a certain sub-goal

26

3. THEORETICAL BASICS

gω which might be a state s ∈ S itself or an abstraction from a state [103]. Additionally, each
sub-task has initiation conditions Iω which may be a set of states in which ω can be chosen for
execution and has certain termination conditions denoted as βω. The termination condition may
be defined as the state to reach the sub-goal gω, as set of states in which ω should terminate if its
being executed or a fixed time limit.

Considering any hierarchical structure, the sub-task of a certain level l is denoted as ωl,
which could also have an indicator if there are more than one sub-task per level. The policy of
this sub-task is defined as

πlω : S × Ωl → [0, 1], (3.36)

and chooses therefore a sub-tasks of the subsequent level [103]. Due to that, the action space
referred to this sub-task is given by Ωl, which is a set of sub-tasks of the lower level as for
example ωl−1 ∈ Ωl. If the sub-task is on the lowest level the set of sub-tasks is equal to the
primitive action space as Ω1 = A.

Due to the different time episodes of the main task and the individual sub-tasks, HRL
frameworks are usually based on the Semi-Markov Decision Processes (SMDP), which is an
extension of the MDP, but involving the concept of different times for executions of sub-tasks or
primitive actions [104]. Assuming starting from a state st ∈ S, the agent chooses an action to
achieve the sub-task ωlt ∈ Ωl. The transition function of the SMDP is defined as

P (st+c
ωl
t

, cωl
t
|st, ωlt) = P (st+c

ωl
t

|st, ωlt, cωl
t
)P (cωl

t
|st, ωlt), (3.37)

where cωl
t

denotes the number of timesteps ωlt is executed starting from st [102]. The reward
obtained by performing a certain sub-task R(st, ω

l
t) is calculated with

R(st, ω
l
t) = E

 c
ωl
t∑

i=0

γir(st+1, at+1)|st, at = πωl
t
, (st)

 , (3.38)

which indicates that the reward of a sub-task is equal to the expected cumulative reward
accomplishing the sub-task while following the policy πlω [103]. Finally, the optimal task policy
would lead to the following desired Q-value with

Q(st, ω
l
t) = R(st, ω

l
t) +

∑
st+c

ωl
t

,c
ωl
t

γcωl
t
P (st+c

ωl
t

, cωl
t
|st, ωlt) max

ωt+cωl
t

Q(st+c
ωl
t
,c

ωl
t

, ωlt+c
ωl
t

), (3.39)

∀s ∈ S and ∀ωl ∈ Ωl.

27

3. THEORETICAL BASICS

In HRL there exists a sub-task space as a super-set of all sub-tasks of the different levels
which is summarized in

ΩHRL = {Ω2,Ω3, ...,ΩΓ}. (3.40)

To accomplish the main task, one or more agents must recursively train the policies to
accomplish the subtasks through each layer. There is one policy πHRL which maps the states
from the highest level to the primitive actions following

a = πHRL(s), (3.41)

and is also called the state-to-sub-task-to-action mapping [103]. The discounted cumulative
reward of the entire HRL agent can be defined as

QHRL(st, at) = Ea∼πHRL|ΩHRL

[
∞∑
i=0

γt+ir(st+1, at+1)|st, at

]
, (3.42)

where a ∼ πHRL|ΩHRL indicates that a primitive action a is sampled following πHRL to
accomplish the available sub-task space ΩHRL [103]. Hence, the optimal policy π∗HRL and the
optimal sub-task space Ω∗HRL can be found with

Ω∗HRL, π
∗
HRL = argmax

ΩHRL

argmax
πHRL|ΩHRL

QHRL(st, at),∀s ∈ S, a ∈ A. (3.43)

Based on the previous definitions, several approaches are established which form the basis
for recent developments. The main HRL approaches are the Options framework, [105], the
feudal reinforcement learning (FRL) [106], the MAXQ decomposition [107] and the hierarchical
abstract machines [108]. Here, only brief explanations of the options framework and FRL
are given which are necessary to describe the developed HRL framework in this work. The
principal idea of Options is the generalization of the concept of actions as a composition of
sub-actions. In [105], Options is described with an agent interacting with a semi MDP, which
is an extension of the general term of the MDP, but allows inconstant times between actions.
Options consist three components, an intra-policy πo, a termination condition β : S → [0, 1]

and an initiation set I ⊆ S. This defined triple (I, πo, β) is available in the state st if and only if
st ∈ I [105]. In options, the new states are observed and the initiation set is constantly checked.
If the initiation set belongs to the current state, the option starts and the action is determined by
the policy πo instead of the global policy. As long as the termination condition β is false the
action is determined by the global policy. Otherwise, the option stops, actions are determined

28

3. THEORETICAL BASICS

by the global policy and the initiation is checked for the next option. Therefore, the Options
framework consists of a two-level hierarchy. In [109], the Options framework is enhanced with
the policy-gradient theorems and thus the option-critic architecture is developed which is able to
learn both, the internal policies and the termination conditions of options.

In FRL so-called super-managers lead managers and these managers, which again lead
sub-managers etc. which represents the shape of a classical hierarchy pyramid. The managers of
each level are allowed to set tasks, rewards or even give penalties to their sub-managers. In FRL
two key principles form the basis of the feudal rules which are reward hiding and information
hiding [106]. The rule of reward hiding defines that sub-managers have to obey their managers
whether or not it satisfies the super-managers. Information hiding means that the superordinate
level does not know the tasks which were defined by the lower levels for their subordinate, i.e.
the super-manager does not know the of task of the manager for the sub-manager etc. The
super-manager at the top-level decomposes the problem into smaller tasks which are then again
split into even smaller sub-tasks. A novel approach facing FRL is developed by [110] and uses
FeUdal Networks to automatically learn the sub-task while considering soft-conditions based on
reward and information hiding.

3.3 Digital Twin

The digital twin, firstly introduced by NASA, is denoted as an integrated multi-physics, multi-
scale, probabilistic simulation of a vehicle or system that uses the best available physical models,
sensor updates, etc., to mirror the behavior of its twin [111]. It is further known as a set of virtual
information constructs that fully describes a potential or actual physical product of any type
and size [112]. Creating a digital twin is an interdisciplinary challenge of generating surrogate
models combining the physics, mechanics, electronics and information systems of the desired
application.

Taking these surrogate models, [113] further distinguishes them into three categories namely
the digital model, the digital shadow and the actual digital twin. The distinction is based on the
assumption of the existence of a physical and its representing digital object. The digital model
can contain a comprehensive description of the physical object but does not have an automated
data exchange with the digital object. A possible state-change of the physical or digital object is
thus not forwarded to the counterpart. In that regard the digital shadow in that regard exists of
one-way data flow between the physical and digital objects in which the digital object follows
the state of the physical one. Finally, the digital twin, based on a fully integrated data-exchange
leads to a direct change of the state between the physical and digital objects and vice versa,
where the two objects are mutually dependent.

Nowadays, the importance of a digital twin is crucial and especially required to reduce the

29

3. THEORETICAL BASICS

time-to-market and assist the development in all life cycles of the desired product. Today, a
digital twin does not only consist of pure data, it rather is a combination of simulation models,
structures, geometries, algorithms and machine learning which describe and simulate the real
counterpart [113]. In the industry, the digital twins are usable for different kinds of research
and development, life cycle estimation and manufacturing planning. While reflecting the status,
performance, health or other specific characteristics of the physical counterpart, digital twins
help to e.g. schedule preventive maintenance, understand how the system is performing, or
observe the system dynamics for control purposes [114].

Digital twins support products over the complete life cycle. In each phase of the cycle, the
digital twin can be used for different kinds of purposes from simulation-based modeling to
remaining useful life estimation. [115] defines the digital twin as part of the digital world which
is developed in parallel with the physical system or product and shown in Figure 3.4. Especially
during the design and engineering phase the digital twin is an essential part and constantly
developed and compared to the engineering process of the physical system. Even before a
physical system is existent, the digital twin is used for pre- and feasibility studies. During
the transition of the operation and service phase, digital twins become extremely important to
gather and store product data, but it might happen that not all priorly developed models will be
transferred into the new phase or have to be redesigned to solve the new tasks. However, special
parts might be incorporated into the physical system for example or as an executable simulation
as an assistant system [115].

Figure 3.4: Digital Twin evolving along the phases of the product life cycle [115].

As an extension of the general term digital twin, i.e. as a one-to-one virtual replica, [116]
proposes a combination of simulation technologies, model-based engineering and industry 4.0 to
so-called experimental digital twins. These twins are supposed to close the gap between system
engineering and complex simulations to ensure virtual test-beds, e.g. the development of suitable
control algorithms [117].

To use digital twins in a machine learning or data-driven context, [118] formalizes the
requirements and needs of standardized functions and interfaces. More specifically, to allow the

30

3. THEORETICAL BASICS

digital twin to be applicable as an environment in RL applications, a data exchange of states and
rewards as well as interfaces for step or reset functions are necessary. Some promising works
combining digital twins with RL are for instance learning of lifting weights with a humanoid
robot and expedite the training through a virtual digital twin [119], deploying RL to inner loop
flight control of an unmanned aerial vehicle [120] or [121] which create a digital twin for a RL
based scheduler in a manufacturing environment.

3.4 Discrete Element Method

The simulation of surrogate models with multiple bodies, which are linked with constraints,
independently movable, applied with forces, or in contact with static or dynamic structures is a
challenging and complex task. Therefore, different simulation methods were developed, each
of them specialized for a specific scope. On the one hand there are methods partially solving a
problem in a predefined mesh as the Finite-Element Method (FEM), or the Computational Fluid
Dynamics (CFD). On the other hand meshless methods like Smooth Particle Hydrodynamics
(SPH) and the Discrete Element Method (DEM) [4] are used. Mesh-based methods face the
problem of being dependent on the mesh size and structure and can therefore lead to differing
results. As opposed to this, the DEM proves to be an ideal tool for creating a surrogate model
with a huge number of independent but contacting bodies. But its weakness lies in its limited
performance and its long computation times [122].

3.4.1 Basics of the Discrete Element Method

The Discrete Element Method (DEM) was originally developed by Cundall and Strack in the
1970s ,as a numerical method, capable of simulating particle behavior with an underlying contact
model [123], [124]. Due to the historical background, the observed goods in the DEM are
typically called particles, the term is therefore adopted in this dissertation. Regarding the
computational power in the 1970s, the number of particles in the simulation domain was limited
to a few thousands. Nowadays, due to increasing computational power, larger systems with
millions of particles can be calculated. The DEM is commonly used to simulate the behavior of
a broad range of materials. Simulations ranging from atoms and molecules [125], over typical
bulk material like stones or coals [126]–[128], concrete fracture behavior determination [129],
mechanical applications [55], [130], to the soil of the moon [131], [132], or even parcels and
packages [133] are made by the DEM. Additionally, the DEM supports to analyze particular
material behavior and therefore assists to optimize e.g. dosing of bulk good materials [134].

Inherently, the DEM provides valuable data about translational and rotatory particle move-
ments as well as information about interactions with neighboring particles or walls. Likewise the
particle mass-flow, the occurring velocities and forces, bridging, or the wearing of mechanical

31

3. THEORETICAL BASICS

parts can be determined [135], [136]. Additionally, the DEM can obtain trajectories, transient
forces, or heat transfer of specific particles as well as atom charge. Information about damaging
and a breaking behavior can be simulated in the DEM, too [137], [138].

DEM Cycle and Contact Model

Figure 3.5: DEM computation cycle [139].

The fundamental methodology of the DEM follows the calculation cycle shown in Figure 3.5
and described in [139]. First the calculations require a valid, finite timestep which ensures the
numerical stability of the model. The timestep is determined to properly calculate the behavior
of contacting particles and is also used in the contact determination. The Rayleigh- and Hertz
criteria, considering the material properties and presuming velocities, are used to obtain an
optimal timestep [140]. In the next step, the positions and velocities of all particles are updated
by Newton’s laws of motion considering force and momentum calculations of the previous
cycle. After that the timestep is accordingly advanced, and the current position of all particles in
the simulation domain is checked by a contact detection algorithm creating a neighboring list
consisting of close particles or obstacles. Possible contacts are calculated using certain contact
models. Then forces and moments are updated regarding the force-displacement law [141]. This
DEM cycle is repeated until the maximum timestep is reached.

The mathematical background of the DEM is the Lagrangian method. The trajectory of each
particle inside the simulation domain is computed and updated accordingly. The force balance of
each particle and the new position and orientation, described in [142] is given with

miẍi = Fi,n + Fi,tg + Fi,f + Fi,b, (3.44)

Iiω̇i = ri,c × Fi,tg + Ti,r. (3.45)

The index i represents the corresponding particle with its mass mi, tangential acceleration ẍi,
inertia Ii, angular acceleration ω̇ and the radius ri,c in the simulation domain. In Equation

32

3. THEORETICAL BASICS

(3.44) and (3.45), Fi,n represents the normal force between particles, Fi,tg is the force which acts
tangential on the particles, Fi,f describes the influence of surrounding fluids on the particles and
Fi,b summarises additional forces which act on the particles, e.g. gravity or magnetic forces.
Eventually, torque which acts on the particles, is represented by Ti,r.

Geometrical shapes like spheres or well-defined volumes represent the mathematical particle.
Since there is usually more than one particle in the simulation setup, contacts between particles
could occur. Generally, the contact definition is distinguished and described considering either
the hard- or soft-sphere model [143]. Unlike the contact of hard particles, soft particles allow
slight overlap. The resulting force can be then derived from the overlap depth δn between the
particles i, j and the velocity at the contact point ∆un. Figure 3.6 shows a simple example of a

Figure 3.6: Simple spring-damper contact-model with friction.

spring- damper soft-sphere model with friction. Within this model the normal and tangential
forces Fn and Ftg are given by

Fn = −knδn + cn∆un, (3.46)

Ftg = min
{∣∣∣∣ktg

∫ t

tc,0

∆utg + ctg∆utg

∣∣∣∣, µFn

}
, (3.47)

where ∆utg describes the relative tangential velocity the of contacting particles. The normal and
tangential coefficients of spring and damper are represented by kn, ktg, cn and ctg. The Equations
(3.46) and (3.47) are valid for particle-particle and particle-wall contacts. The coefficient of
friction is represented by µ. Equation (3.47) consists of two parts. An integral part, which
describes the elastic tangential motion stored in the spring. It allows to represent the deformation
of the surface of the particle that occurs when the particles touch at t = tc,0. The second part
describes the damper system and thus the tangential energy dissipation. The Coulomb friction
limits the tangential force. The exceedance of this limit leads the particles to slide over each
other [142].

33

3. THEORETICAL BASICS

3.4.2 Particle Descriptions

From its origin of simulating atoms and molecules, the standard shapes of particles in the DEM
are circles in the two dimensional and spheres in the three-dimensional space [126]. But the
upcoming trend of using the DEM for various branches and technologies requires modeling
besides simple roundish objects.

Shape Approximations

One simple solution is the usage of the rolling friction parameter to mimicry slightly non-circular
objects. However, in nature, particles are mostly non-spherical and behave completely differently
from spherical particles and thus are not possible to map with rolling friction only[144].

Therefore, there are several established approximation methods to allow the DEM to simulate
complex shapes. Two of them are known by name as the multi-sphere approach and the
approximation with superquadrics. The multi-sphere approach follows the idea of clumping
several spheres to a conglomerate approximating a desired complex shape [145]. These clumped
spheres, possibly varying in diameter and overlapping each other, are fixed at a distinct position
in a local coordinate system. Sine the multi-sphere is an extension to the normal spheres in
the DEM, the standard equations of the contact definition, Equations (3.46) and (3.47), and the
contact detection of spherical objects in the simulation domain are retained. A multi-sphere

Figure 3.7: Multi-sphere approach with the original shape (left) and the approximation (right).

approximation is depicted in Figure 3.7 in which a stone, represented in an STL (Stereo-
Lithography) format is approximated by just 37 clumped spheres. But approximating the desired
shapes with a high resolution using the multi-sphere approach could end in a large number
of required spheres per conglomerate. Subsequently, with an raising number of spheres, the
computation time of the DEM increases and thus a realistic approximation with multi-spheres is
often not feasible.

Finding an optimal number of spheres, fitting diameters and positions of single spheres
within the conglomerate require appropriate methods and algorithms. One method which fills
the desired shape with a random number of spheres and clusters them to a smaller number of
resulting spheres is described in [146]. Another promising method to cluster to an optimal
number of spheres with the off-volume criteria, a ratio between the calculated off-volume of the

34

3. THEORETICAL BASICS

resulting conglomerate and the original volume of the input shape, as well as fuzzy c-means
clustering is introduced in [147].

The second method using superquadrics makes it possible to approximate shapes with only
one particle. Combining concave and convex forms allows to model a high range of possible
complex shapes. Superquadric particles are introduced and described in [144], [148], [149] with

f(x) =
(∣∣∣x
a

∣∣∣n2

+
∣∣∣y
b

∣∣∣n2
)n1

n2 +
∣∣∣z
c

∣∣∣n2

− 1 = 0, (3.48)

x = (x, y, z)T ,

Figure 3.8: Different shapes of superquadric particles, based on the blockiness parameter.

where a, b, c are the half-lengths of the particles along their principle axes and n1 and n2

are blockiness parameters. Thus superquadric particles have five parameters which define the
shape of the particle and lead to a balance between shape flexibility and model complexity.
However, the usage of superquadric particles comes with the restriction of approximating solely
ellipsoidal, box-like and cylinder-like objects. In Figure 3.8 several examples of different shapes,
with respect to their blockiness are given. Furthermore, superquadrics particles are in contrast to
simple spheres more computationally expensive due to the underlying contact model and the
more complex contact detection [144]

Bonding Particles

As an enhancement to the classical DEM, the usage of bond forces in between at least two
particles and the creation of bonded particles allow the simulation of liquid bridges, flexible
behavior and possible breakages [150]. An example of a flexible conglomerate is shown in
Figure 3.9, in which particles are boned in pairs to a bending beam [151]. The elastic bonds are
connected in between two spheres, where the bond is fixed to the centers of the two spheres,
respectively. Due to that the elastic bond rotates and translates along with the movement of the
spheres, constituting to the deformation of the bonds and the particle itself. Based on [152] the
forces and moments in normal and tangential direction acting on the bond are given by

35

3. THEORETICAL BASICS

Figure 3.9: Simulated beam with modeled bonds [151].

Fb,n =
∑
∀i

δF ′b,n,i + 2βb

√
MeAbKnvn, (3.49)

Fb,tg =
∑
∀i

δF ′b,tg,i + 2βb

√
MeAbKtgvtg, (3.50)

Mb,n =
∑
∀i

δM ′
b,n,i + 2βb

√
JsKtgIpωn, (3.51)

Mb,tg =
∑
∀i

δM ′
b,tg,i + 2βb

√
JsKnIωtg, (3.52)

where Fb,n, Fb,tg are the normal and tangential bond forces while Mb,n,Mb,tg describe the
normal and tangential bond moments, respectively. In addition, the incremental forces and
incremental moments caused by the linear spring are calculated by

δF ′b,n,i = KnAbvn∆t, (3.53)

δF ′b,tg,i = KtgAbvtg∆t, (3.54)

δM ′
b,n,i = KtgIpωn∆t, (3.55)

δM ′
b,tg = KnIωtg∆t, (3.56)

where δF ′b,n,i, δF
′
b,tg,i are the incremental normal and tangential force and δM ′

b,n,i and δM ′
b,tg

are the torsional and bending moment calculated with the time step ∆t [153], [154]. Kn, Ktg

are the normal and tangential bond stiffness constants, Ab is the cross section of the bond area
and βb is the local bond damping coefficient. Me and Js describe the mass and moment of
inertia of the corresponding particles, whereas vn, vtg and ωn, ωtg are the normal and tangential
translational and rotational velocity between these. I and Ip are the second area moment and
polar area moment of inertia, respectively [152]. The two stiffness constants which are mainly
responsible for bond behavior are determined by

Kn =
Y

lb
, (3.57)

Ktg =
Kn

2(1− ν)
, (3.58)

36

3. THEORETICAL BASICS

in which Y is the bond Young’s module, ν is the Poisson’s ratio and lb the equilibrium bond
length [152].

3.4.3 DEM Software Tool

Since the computational power increased and appropriate software tools and calibration pro-
cedures ensured qualitative and valid simulations, the DEM has become well established in
academics and industry [126], [155]. There are many DEM tools available for 2D, as well as
3D simulations with different scopes, with either CPU or GPU computation abilities. Commer-
cial software tools like EDEM [58], PFC [139] or Rocky-DEM [156] are often more intuitive
and provide professional support. Contributed open-source software tools like Yade [157] or
LIGGGHTS [142] allow a broad community of researchers working with the DEM and develop
e.g. new applications or coupling methods.

In this work, the DEM software tool LIGGGHTS(R)-PUBLIC v3.8 of the DCS GmbH
[142] is used which is provided as open-source and under the terms of the GNU General Public
License. LIGGGHTS (LS) is an abbreviation for "LAMMPS improved for General Granular
and Granular Heat Transfer Simulations" and based on the software for molecular dynamics
LAMMPS (Large-Scale Atomic/Molecular Massively Parallel Simulator) [158]. Since LS has
been implemented on a multi-processor basis, simulations of several million particles in an
appropriate time were made possible [159].

LS is a text-based software tool and allows to call compute commands to calculate specific
simulation parameters or fix commands to for example move geometries in the simulation domain.
By importing standard STL files of the desired geometries, LS enables the rapid development
of DEM simulations. The available source code is written in C++ and the knowledge transfer
within the community allows modifying and adapting the software to the special needs of the
individual developers. By changing the source code of LS, new contact models, specific geometry
movements, new shapes, or bonding particles are implementable. The post-processing of the
obtained DEM results is implemented with third party animation tools such as Paraview [160],
where 3D animations or relevant plots are created to analyze the simulation behavior.

37

4. MACHINE CONTROL OF THE PSM

4

Machine Control of the PSM

In this chapter the developed methodologies are applied to the first RL application. It is the
machine control of the novel PSM. In this chapter the principle idea, the development and digital
twin of the PSM are described. Additionally, two parcel transportation tasks demonstrate the
applicability of the developed methodologies and the combination of DEM simulation models as
digital twins with RL. It is shown that the control of complex and high-dimensional DEM-based
digital twins is made possible with the help of the developed methodologies of increasing the
training speed and reducing the complexity. Finally, to create the possibility to use the developed
RL frameworks for the real machine, a RL-PLC implementation is developed and presented
exemplary.

4.1 Peristaltic Sortation Machine

The Peristaltic Singulation Machine (PSM) is mainly developed for the needs of the Courier
Express Parcel (CEP) industry. However, the principle design and locomotion of the machine
are also transferable to other goods and different industries. Over the last year the CEP industry
underwent a constant growth especially fueled by the rising demand in E-commerce. In Germany
alone, 83 % of 2.95 billion items were delivered as parcels in 2015 [161].The increasing number
of parcels overwhelms the capacities of the participating industry partners and calls for higher
performance especially in the distribution centres. One bottleneck in the distribution centres is
the in-feed area where the discharged bulk parcel flow needs to be singulated i.e. each parcel
is uniformly separated, spaced and aligned before entering the downstream sortation system
[162]. Typically human unload operators singulate the bulk flow into a one-dimensional flow of

39

4. MACHINE CONTROL OF THE PSM

separated parcels with a throughput of approx. 850− 900 pph (parcels per hour).

To increase the performance throughput and get rid of manual labor, a special machinery is
developed. These so called singulators, mainly based on conventional roller and belt conveyor
technologies, as closed or open-loop systems, are commercially available and offered by at
least three providers. Beumer’s automatic parcel singulator consists of a combination of belt
conveyors operated at different speeds and aligned rollers and is indicated with a throughput of
up to 3, 500 pph [163]. The singulator Visicon by Siemens detects parcels with a camera system
and yields to a throughput of 12, 000 pph with help of small belt conveyor units [164]. The
Visicon singulator impresses with its high throughput but is only suitable for 2D bulk singulation.
A three-dimensional bulk singulation is achieved by the use of inclined conveyor belts by Fives
Accord and outputs up to 6, 000 pph, but is built as an open-loop system [165].

The developed PSM presents a system concept of a closed-loop singulator which is supposed
to be able to separate two-dimensional and three-dimensional bulks into a single stream of
parcels. It combines the functionalities of singulation, sortation and transportation of parcels in a
single machine. Additionally, the used components and the peristaltic principle itself lead to a
gentle and smooth transport of parcels compared to conventional systems.

4.1.1 Peristaltic Principle

The peristaltic or peristalsis is known as the flow generation by the propagation of waves along
flexible walls [166]. Peristaltic action is an inherent neuromuscular property of any tubular
smooth muscle structure e.g. in the human gastrointestinal tract or the locomotion of earthworms
[167]. Inspired by this bionic principle, technical systems reproducing peristaltic movements
are frequently developed and used. For example developments of peristaltic pumps are derived
from this principle. These pumps are widely used with different designs and for a broad field of
varying fluids [168], [169]. Furthermore, the adaption of the peristaltic principle enables new
types of moving or crawling devices in the field of robotics [170], [171].

To use the peristalsis for transportation and singulation tasks, or particularly to manipulate
the position of parcels, the principle has to be transferred onto a planar surface. In [172]–[175]
a machine design which manipulates objects in several degrees of freedom while adapting the
locomotion of the caterpillar into a XY-table has been developed. There, a closed loop-system,
driven by inflatable air-chambers, manipulates objects at low speeds. In [176] air chamber
actuators were exchanged by a mechatronic system to further improve the performance of the
system. A conveyance table for roundish objects using linear actuation units and generic control
algorithms has been developed by [177]. A manipulation by pneumatic actuators is reflected in
[178] or by using three-dimensional displays in [179], [180]. To tackle the fault-tolerant control
problem, [181] uses a flexible transport system based on linear actuators as well. A promising but

40

4. MACHINE CONTROL OF THE PSM

only theoretical work about an open-loop system demonstrates the usage of peristaltic movement
to singulate parcels for the CEP-industry [182].

4.1.2 Development of the PSM

Following the idea of a horizontal sorting table and using peristaltic waves for singulation and
transportation of parcels, requirements and design ideas for the peristaltic sortation machine
have been made [183].

• The PSM must meet the requirements of the CEP industry and be able to transport,
singulate and sort parcels of a certain size and weight using peristaltic movements.

• The system design shall be completely modular so that the system is scalable for the
desired application. This scalability shall be achieved by adding or removing modules,
scaling the size of individual parts and adjusting the number of actuators per module.

• To realize the peristaltic movements, multiple actuators shall be installed. By using moving
instead of static actuators the maximum number of required units in the system shall be
reduced.

Considering these requirements, a completely new construction of a peristaltic sortation
machine has been designed. The machine design is distinguished into two individual parts, the
actuation system with multiple actuator-units and the carrying system consisting of a flexible and
resistant transport film. The actuation system is located beneath the flexible transport film and
is able to manipulate the shape and structure of it. This manipulation is used to create certain
moving waves with the film. By changing the height and speed of these waves or performing
distinct motion patterns, the parcels are transported and singulated as shown in Figure 4.1.

Figure 4.1: Side view of the peristaltic principle with transportation and singulation
functionality.

To adapt the machine to the desired throughput and the special needs of the CEP industry,
the size of the whole system is modifiable. Therefore, the design of the PSM is based on a

41

4. MACHINE CONTROL OF THE PSM

modular basis, where the actuation-system consisting of the table-unit which carries multiple
actuator-units is extendable lengthwise. By adding multiple table-units, the width of the system
is changeable, too. In this work one table-unit with a maximum two actuator-units and the
flexible transport film is considered. This setup, depicted in Figure 4.2, can be loaded with
multiple parcels and the machine is the able to perform singulation and transportation tasks
simultaneously. The flexible transport film has a length of 4, 500 mm, a width of 2, 000 mm, is
made of 1 mm PVC and therefore returns in its original state after manipulation. The contrast
between the black material of the film and the color of common parcels allows a camera system
to clearly identify parcels on the transport film. This camera system, consisting of three Cognex
Insight 9012 cameras detects single and bulky parcels, transmits their position to the high-level
PLC and is also able to read the barcodes of the parcels.

Figure 4.2: Design of the Peristaltic Sortation Machine.

The mechanical design of one actuator-unit is shown in Figure 4.3 and allows the unit to
move in three different directions. The slide servo drive (2) equipped with a rack and pinion
linear unit moves the whole unit along the X-axis across the table (1). To move in the YZ-plane,
the unit has a tilting servo drive (3) with a linear unit which tilts the lifting drive (4). This lifting
linear drive, made with a ball screw drive, can lift the end-effector (5) up to 550 mm. The two
freewheeling and auto-align wheels of the end-effector are the only parts of the PSM which are
in direct contact with the transport film and ensure a low friction. Considering the expected load
and the mass of the entire system, the controllers of the individual servo drives are adjusted to
ensure a constant acceleration and stable velocity. All drives are equipped with appropriate gears

42

4. MACHINE CONTROL OF THE PSM

to apply the necessary torque. These configurations generate individual dynamics for each axis
which are shortly called slide, tilt and lift axis. The slide and lift axes move translational while
the tilt axis moves rotatory, caused by the joint on top of the linear unit. The resulting dynamics
of the axes are described in Table 4.1.

Table 4.1: Resulting dynamics of the axes of the actuator-unit.

Axis Acceleration Max. Velocity
Slide 1,000 mm/s2 1,000 mm/s
Tilt 0.9 rad/s2 0.36 rad/s
Lift 500 mm/s2 360 mm/s

The entire machine is equipped with a state-of-the-art PLC. This high-level PLC, a Siemens
427e IPC, provides a Human-Machine-Interface (HMI), receives the current status of the machine
with a variety of sensor equipment and controls the position of the individual actuator units. It
obtains information about the absolute position of the actuator-units, gathers information about
the parcels on the transport film with the camera system and activates certain singulation and
transportation tasks which are performed with the help of suitable algorithms.

Figure 4.3: Mechanical design of the actuator-unit.

43

4. MACHINE CONTROL OF THE PSM

4.2 Digital Twin of the PSM

As already stated in Section 3.3, a digital twin is the virtual replica of the desired process or
product. Depending on the current development phase, ranging from designing to service and
after-sales, the content and complexity of the digital twin can vary. During the development of
the PSM, the digital twin was essentially and especially required in the early development phase
even before a mechanical or a prototype was designed. Furthermore, for a suitable machine
control, the digital twin is necessary to model the real behavior of the machine parts and the
parcels.

The purpose of the digital twin of the PSM is to replace the real machine and use it as a
surrogate model of the physical PSM to develop and train RL approaches for different machine
control tasks. Changing of individual components or parameters and observations of the general
behavior of the actuator-units, transport film and parcels are obtainable in the simulation without
the costs for real hardware or operators. Besides, in episodic scenarios like in RL, the training
can run 24/7 with several parallel instances and the environments can be reset automatically.
However, it must be ensured that the model represents the real PSM within certain limits. In
[184], the parcel transportation behavior of the simulation and real machine were sufficiently
tested and validated. The measurable dynamics of the actuator-units are properly validated while
the behavior of the flexible film and the parcels dynamics were empirically tuned and tested. Due
to the fact, that the machine is still in the prototyping phase and the design is not yet finished, the
simulation might differ but nevertheless assists to develop machine control algorithms.

The inherent complexity of this machine, due to the interaction between moving mechanical
parts of the actuator-units, the intrinsic behavior of the flexible transport film and the rigid body
dynamics of moving parcels, has to be modeled accordingly. While the motion of the actuator-
units can be described analytically with laws of motion, the composition of these many different
objects leads to an analytical consideration that is hardly feasible. The moving peristaltic waves
which manipulate various parcels in a bulky condition and occurring mutual collisions of these
are difficult to treat analytically and require highly complex simulation models [185]. That is
why the DEM, essentially made for handling colliding objects, is here used as a promising tool
to simulate most aspects of the PSM in this work. This DEM-based digital twin then needs to be
coupled with an appropriate RL framework.

The usability of standard machine learning libraries such as PyTorch [186] is made possible
by embedding the DEM into a Python 3 framework as described in Section 4.3.1. The data-driven
DEM model is therefore integrated as a dynamic environment in the RL context. Due to that
suitable interfaces to exchange observations or actions as shown in Figure 4.4 are defined. The
required RL agent parameters like the agent structure, learning rate, etc. as well as the necessary
simulation parameters such as the time step, simulation, number of parcels, etc. are directly in
Python adjustable.

44

4. MACHINE CONTROL OF THE PSM

Considering the previous explanations of the DEM, this section outlines the individual parts
of the digital twin of the PSM and its realization in the simulation domain. The PSM is analyzed
and divided into the mechanical parts, the approximation of parcels and the flexible transport
film.

Figure 4.4: Digital Twin framework of the PSM.

4.2.1 Mechanical Parts

The DEM originates from the field of particle and molecule simulations, but is also able to
simulate static or moving objects which are in contact with the researched material. These objects,
also called geometries, can be directly imported from the original CAD in STL-format. However,
only the parts which could be in direct contact with the desired material are modeled, whereas
the other parts are neglected. Usually, only the surfaces of objects are approximated, imported in
the DEM and freely movable inside the simulation domain. Then they can be then moved linear,
rotational are even be oscillated. Upcoming forces trough material impacts or possible wearing
of the geometries is detectable with the node-wise resolution of the STL-file [142]. Importing of
original CAD files, especially in the beginning of the development phase, supports the use of
digital twins with the DEM as a tool for rapid prototyping. Even before the new machine or plant
is designed, individual parts can be tested fast and analyzed e.g. regarding expected velocities or
possible wearing [128]. Potential redesigns in an early stage of the development phase are thus
easily adaptable and can be reevaluated. However, to simulate acting forces on geometries and
model the resulting counteractions, coupled multi-body simulations are required [57].

With regard to the PSM design, only the end-effectors which are at the very end of each
actuator-unit are of interest for the DEM simulation. Figure 4.5 shows the end-effector in
CAD as well as in the simplified STL-file format. The kinematic of the two freewheeling
and auto-aligned wheels is replaced by an ellipsoid representing the actual radius of action.

45

4. MACHINE CONTROL OF THE PSM

Moreover, a simplified conversion with a small number of nodes fastens the computation and
barely influences the simulation results. However, the complete kinematics of the actuator-units
have to be simulated as well. Derived from the mechanical design and the performance of the
electrical drives and gears, the trajectories of the axes are implemented. Especially the limits
of the system, the maximum velocities and acceleration ramps are calculated in the high-level
programming language Python and the transferred to the DEM simulation, which is explained in
Section 4.3.1. The derived kinematics, dependencies between the three axes and velocity profiles
are explained later in Section 4.4.1.

Figure 4.5: End-Effector, left: Original CAD, right: Simplified STL.

4.2.2 Parcel Approximation

As already mentioned in Section 3.4.2, the classical DEM uses spherical particles to simulate real
world behavior. Roundish but not completely spherical particles can be simulated by adapting
the coefficient of rolling-friction (CORF) to mimicry a shape-like behavior. Apart from this,
more complex shapes are approximated by e.g. the multi-sphere or superquadric technique.

It is assumed that parcels or packages mostly have a cuboid shape, therefore Figure 4.6
shows the approximation with both approaches. To sufficiently represent a cuboid using the
multi-sphere approach a large number of particles is required. Even though the computation
time therefore theoretically increases, the computation of the superquadric approach is not
substantially faster. The more complex and time-costly contact detection of superquadrics puts
the speed savings into perspective. But, as with all multi-sphere approximations, the interlocking
problem, which is a mutual locking of shapes with their microstructures, significantly affects
the interaction of the bodies [187]. In summary, the approximation of parcels in the DEM using
the superquadric approach, without the presence of sharp edges, yields to sufficient results and
has also been tested with standard conveyor belts [133]. To adjust superquadrics to represent
cuboid particles, the blockiness parameters are set to n1 = n2 = 10. It should be noted that,
considering the processing of parcels in distribution centers, information about the weight of
parcels is typically neither measured nor stored as data on the parcel as a bar-code, etc. Moreover,

46

4. MACHINE CONTROL OF THE PSM

the exact position of the center of gravity in the local coordinate system of the parcel is not given.
Therefore, it is assumed that the center of gravity is set at the point of origin of the parcel and the
weight of the parcel individually defined.

Figure 4.6: Parcel approximation, left: Multi-sphere, right: Superquadric.

For a suitable representation of the behavior of the parcels, the contact model of the DEM has
to be calibrated in addition to the shape approximation and the size of the parcels. The behavior
of the parcels is tuned to realistically perform on the flexible transport film as well as interacting
with other parcels. The calibration of parcels differs from commonly applied DEM calibration
procedures [183]. Apart from the Young’s and shear modulus, the coefficient of friction (COF)
and the coefficient of restitution (COR) fully describe the contact behavior in the simulation.
Here, the value of the coefficient of friction can be directly measured with the inclined plane
procedure. The COF can be calculated with

µr = arctan(αr), (4.1)

where αr is the measured angle with the inclined plane at which the parcel starts moving
downwards.

The approximation of parcels in the DEM requires the determination of a suitable contact
model and calibrated material parameters. The used contact model for this simulation is defined
by the Hertz-Mindlin tangential history model with rolling friction described with the epsd2

model and adjusted for superquadrics. The atom style is set to hybrid-superquadric, with
one type of bonds and five bonds per atom. All material parameters are shown in Table 4.2.
Due to the fact that parcels can not be calibrated by standard calibration scenarios, e.g. the
AoR tests, the material values are calibrated empirically. Therefore, the simulation results are
compared to the behavior of the real machine interacting with parcels and continuously updated
or tuned, respectively. Additionally, the results underline the correctness of the simulation
and validate the material parameters. In [184] the behavior of parcels, varying in size, weight
and surface roughness, was analyzed and the settings for a suitable parcel transport with the
PSM were determined. A successful parcel transport dependents on the height and speed of the

47

4. MACHINE CONTROL OF THE PSM

transportation wave as well as on the weight of the parcels. As seen in Figure 4.7, the height of
the wave creates a resulting angle α. When reaching a specific angle the parcel overwhelms the
static friction to the transport film and surfs downwards or is transported in forward direction,
respectively. Since heavier parcels are pushed deeper into the transport film, the resulting angle
changes. Additionally, the height of the transport wave is adjusted individually considering the
inertia of the parcels and to achieve a desired transport velocity.

Table 4.2: PSM simulation parameters.

Property Symbol Unit Value
Time step ∆t s 5e-5
Young’s module Y Pa 5e6
Poisson’s ratio ν - 0.3
COR e - 0.055
COF (parcel-parcel) µpp - 0.02
COF (parcel-effector) µpe - 0.02
COF (parcel-film) µpf - 0.6
CORF (parcel-parcel) µr,pp - 0.01
CORF (parcel-effector) µr,pe - 0.05
CORF (parcel-film) µr,pf - 0.9

Figure 4.7: Parcel transportation mechanism.

4.2.3 Flexible Transport Film

The flexible transport film of the real machine is made of 1 mm PVC and requires a suitable
modelling of its flexible behavior and a simulation of its interaction with the end-effectors and the
parcels. Flexibility in terms of the DEM, apart from rigid body simulation, can be achieved by
combining particles with a flexible conglomerate. In contrast to the multi-sphere approach, where
particles are fixed in a local coordinate system, the combination with the bond functionality
forms a wholly flexible body. Thus, the particles can move freely in the conglomerate, but are

48

4. MACHINE CONTROL OF THE PSM

limited by the applied bond forces. The possibility of a bond breakage can be activated and set
with suitable values, too [152].

It should be noted that this is the first time that the DEM is used to simulate a partially fixed
and flexible PVC film, interacting with geometries and other rigid bodies. The simulation of
the flexible transport film is formed with one conglomerate consisting of one layer of particles
which are bonded together. Figure 4.8 depicts the film in the DEM simulation. As shown, the
film is approximated with spherical particles, which are actual superquadrics, which blockiness
parameters n1 = n2 = 2 are adjusted to be spherical. Tests with other shapes caused interlocking
problems and internal overlapping of the film. The diameter of the individual spheres and
thus the total number of spheres within the flexible film is a trade-off between the accuracy
of the approximation and the required computation time. Spheres with a diameter of 5 mm
yield to an acceptable simulation time and show sufficient results. Admittedly, smaller particles
could achieve more accurate results. But, especially with regard to the deploying the DEM as a
reinforcement learning environment which needs to be repeatedly simulated hundreds of times, a
time saving approximation is desired.

Figure 4.8: Simulation of the flexible transport film.

As there is no standardized calibration procedure for DEM particles with bond forces
established and this is the first time of mimicking the behavior of a PVC transport film with the
DEM, an empirical calibration is conducted. Usually, bonding particles freely move through
the simulation domain. In this simulation through the flexible transport film is kept at a distinct
height above the actuator-unit and has to be able to carry the load of multiple parcels. Thus, the
outer particles in X-direction are frozen and unable to change their position. Each particle of the
film is bounded to a maximum of 5 neighbouring particles and the bond parameters are tuned.
The simulation of the general behavior and flexibility of the PVC film achieved a high degree of
reality with the parameters shown in Table 4.3.

Especially the initialization phase of the film in the simulation is a tedious task. First, a lattice
consisting of one layer of particles is generated and the bonds between the relevant particles
are activated. Then the edges of the film are slightly moved together without the influence of
gravity. After that, the relevant particles at the edges are frozen. With incipient gravity, the film
stretches and it reaches its idle state after a certain settling time. This entire initialization ensures

49

4. MACHINE CONTROL OF THE PSM

a realistic model of the film but requires additional computation time at the beginning of each
simulation.

The length and width of the film are accordingly changeable. In this work, the edges in
Y-direction are not frozen, but open-ended. In contrast to the real-machine where all edges are
mounted, in the simulation only a section of the film is considered. A mounting all-around or
freezing respectively would cause reflection waves. Therefore, as seen in Figure 4.8, both ends
are simulated as loose ends to avoid unrealistic reflections. Changes of the length and width
of the film as well as the weight of the film might require adjustments of the bond parameter
because of the internal strength of the film and bonds, respectively.

Table 4.3: Bond parameters of flexible transport film.

Property Symbols Unit Value
Particle diameter d mm 5.0
Bond length diameter d mm 5.0
Bond Young’s module Y Pa 4e5
Bond Shear modulus G Pa 1e5

4.2.4 PSM Simulation

The formerly described individual components are composed into one DEM simulation. A
qualitative comparison of the simulation with the real PSM validates the simulation parameters
and allows to use of the PSM simulation as a digital twin. This simulation is integrable into a RL
framework and properly usable as an environment. As described in Section 4.3.1 the simulation
can be instantiated for multiple environments with distinct pre-parameters. Depending on the
actual task, the size of the transport film, the number of actuator-units or the number and kind
of the parcels are adjustable. Figure 4.9 shows an entire environment with two actuator-units
and one single parcel. This simulation innovatively combines superquadric and bonded particles
within one simulation domain and the mechanical drive control relocated in Python.

According to the described coupling method, this simulation is callable in Python, the digital
twin is applicable as an environment and easily adjustable with a few hyperparameters. Regarding
the dynamics of the electrical drives and linear units, the acceleration, velocity and position
of the actuator-units are changeable according to the desired action-space. To computationally
observe the PSM simulation, the parcel properties like the position, velocity, angular velocity,
etc. are directly analyzable within the Python framework. Additionally, an exceeding of the
machine limits and impossible parcel movements are automatically handled and considered

The full integration into Python results in a fast and easy implementation of DEM environ-
ments into an object-oriented architecture. There, standardized properties and pre-parameters

50

4. MACHINE CONTROL OF THE PSM

are easily changeable and the coupling facilitates the call of several parallel instances to speed
up the training process. The post-processing of the results is either conducted directly in Python
i.e. observing the gathered rewards per episode or via Paraview to visualize the PSM simulation
and generate three-dimensional animations.

Figure 4.9: Digital twin of the PSM as environment.

4.3 Methodology

Running DEM based digital twins together with reinforcement learning algorithms requires
certain methodologies to couple DEM simulations with machine learning and handle the compu-
tationally slow but very complex DEM simulation models. Therefore, as a first methodology,
coupling the DEM describes a novel way of the integration of DEM simulations into RL frame-
works. To successfully enable the agent to handle complex and high dimensional tasks, the
iterative learning schedule is developed. This schedule is able to manage multi-complex envi-
ronments with increasing complexity, expedite the entire training and compute suitable network
structures of the agent. Additionally, the developed distributed ACRL methodology no only
allows to train an agent with multiple instances of the same environment to speed up the training
significantly, but also to properly use DEM based digital twins as RL environments. Finally, by
splitting up very complex and extensive tasks into smaller sub-tasks, an adapted hierarchical
RL approach is developed which perfectly suits to DEM environments by activating predefined
deterministic sub-controls.

4.3.1 Coupling the DEM

To allow to use the DEM in a data-based or machine learning context, it is required to develop a
suitable coupling framework is developed. Therefore, the coupling methodology for the DEM
is developed to achieve two functionalities. First, the results of DEM simulation models are
supposed to be exchangeable with and evaluable by RL agents. Second, the DEM simulation

51

4. MACHINE CONTROL OF THE PSM

shall be enhanced, from originally self-contained, to be event-based and sequentially executable.
The coupling shall also enable usage of different DEM simulation models as environments which
dynamically interact with RL agents.

To be able to use RL in combination with DEM simulation models, as described in Section
2.2, a program based with an event or episode wise bidirectional coupling needs to be established.
Embedding the DEM into a broadly used high-level programming language allows to link the
simulation details and results to other applications. Hence, the programming language acts as a
coupling element and allows the exchange of data between e.g. RL algorithms and the DEM
simulations. Therefore, the co-simulation framework describing the coupling of DEM simulation
models with RL algorithms is setup with an embedding of LS into Python 3.

Python is one of the most popular programming languages in science which imported a large
number of contributed and open-source libraries, especially in the field of machine learning
[188]. The interpreter language Python is not the most powerful programming language but
nevertheless results in fast computation while using the extension for tensor-based calculations
or highly parallel computation with GPUs e.g. using CUDA [189]. To facilitate the use of
machine learning and allow fast algorithm developments, researchers use contributed libraries
containing relevant functionalities and documentations. One promising library, also for RL, is
Pytorch which has the advantages of a very logical structure and appropriate performance and
was mainly boosted by OpenAI [190].

In this work the DEM tool LIGGGHTS(R)-PUBLIC v3.8 (LS) is used which does not
inherently support the integrated usage of the required machine learning techniques, but can be
coupled to other applications over the network or program based. The standard LS inherently
supports the possibility of a coupling with Python 2 which is however discontinued in the year
2020. In this work, the coupling is therefore enhanced by changing the provided LS open-source
code to be able to couple with Python 3 and preferably use state-of-the-art tools and libraries.
In [191] a coupling between LS and Python 3 is developed and focused on an object-oriented
architecture. There, multiple LS instances are called and the final results post-processed via
standard python libraries. But to use the DEM as an environment in a RL context, interim results
as states and action commands affecting the simulation during run-time, have to be bidirectionally
exchanged.

The developed methodology of the DEM-Python coupling is shown in Figure 4.10. LS is
wrapped as an external library and can be called as a Python LS object. The mainframe calls
the objects with individual or similar pre-parameters which define e.g. simulation properties,
material parameters, etc. In the depicted case, three LS objects are called, where two of them
are initialized with the same parameters. The LS objects are either called only on one or
decentralized on n-different threads of the CPU. This approach is only constrained by the
computational power of the used machine and generally adaptable to any number of LS objects.

52

4. MACHINE CONTROL OF THE PSM

Figure 4.10: DEM-Python coupling structure.

The bidirectional communication between the mainframe and LS is achieved by executing typical
LS commands and reading particle-wise data like positions or forces. With these commands
simulation properties can be exchanged, particles inserted, or geometries moved in the simulation
domain.

Typically, DEM simulations are defined once, then executed and the results observed after
the simulation is finished. The developed coupling methodology however also allows to run
the DEM simulation sequentially. As a result, the DEM simulation automatically stops after
the last execution, the main program observes the current results and adds certain commands
to continue the simulation. Therefore, this method offers event-based and dynamic interaction
with the DEM simulation which is required to use the DEM as a RL environment. Theoretically,
data exchange is possible for every time step of the DEM and thus the main program could
interrupt the simulation at any time. Although LS is wrapped into Python, the data exchange is
computationally time-consuming so that a data-exchange in certain time-slots is foreseen. By
coupling LS into a RL framework, actions with a discrete time step are performed while the
data-exchange is executed afterwards.

A developed standard interface allows to use of the DEM-based environments in the Python
framework and can exchange n-dimensional states, continuous or discrete actions. The reward
signal is automatically forwarded to the Python RL agent. Furthermore, the developed approach
to asynchronously updates the Python RL agent while one or multiple environments are executing
actions.

Apart from applying machine learning libraries, the DEM-Python coupling also offers further
advantages and extends the possibilities of LS. Especially while simulating machine motions
and moving mechanical parts, LS reaches certain limits. It inherently does not support motion
equations based on accelerations, but constant velocities over certain time steps. To move bodies
with a constant acceleration, it is necessary to discretize the velocity profiles in Python which
then results in small deviations to the ideal acceleration ramps. Additionally, the coupling
offers the possibility to suitably handle the LS parameters, save simulation results, or visualize

53

4. MACHINE CONTROL OF THE PSM

important simulation characteristics. Regarding these advantages LS is solely executed and
managed via Python in this work.

4.3.2 Iterative Learning Schedule

The iterative learning schedule as one type of a curriculum learning approach is developed to
alternate between environments and tasks of increasing complexity. In specific, the learning is
split into at least two stages using one simplified and one complex environment. By gradually
increasing the complexity of desired tasks, the curriculum learning approach generally benefits
by decreasing the speed of convergence and therefore of the entire training process [192]. These
benefits are incorporated in the developed iterative learning schedule which is especially applied
to complex tasks where a hyperparameter search with the desired environment is unfeasible due
to too long computation times.

The iterative learning schedule is built as a two stage curriculum learning approach. As
described in [193], curriculum learning is addressed to tasks that are too difficult to learn from
scratch. Therefore, by following a certain curriculum, the accomplishment of tasks in ascending
order is learned in RL using transfer learning. Gained knowledge and experience of previous
leanings are transferred to leverage the training of the final task. Curriculum learning can be
used supportively to successfully learn to accomplish a set of tasks T with varying MDPs e.g. in
the state or action space, or the reward function.

More formally, the task i as an MDP is defined as

mi = (Si,Ai, Pi, ri) ∈ T , (4.2)

where the state space of task i is defined as a subspace of the whole state space, i.e. Si ⊆ S.
In case of complex and very detailed environments, the state space is continuous and high-
dimensional which leads to an intense complex RL task. To reduce the complexity and fasten
the training, simplified environments with a reduced state space for the individual sub-tasks are
derived from it. Similarly, the action space Ai ⊆ A can be reduced to fasten the training, as
well. By defining a subset of the state space Si for the individual tasks i the transition probability
P (st+1|st = s, at = a) yields to a restriction to Si with

Pi = P |Si , (4.3)

and a restriction of the reward function r(s, a) to Si

ri = r|Si , (4.4)

where the reward function might not be shared between different tasks. In the iterative
learning schedule the agent is trained first with a small subset of the state space with a simplified

54

4. MACHINE CONTROL OF THE PSM

environment and the knowledge is transferred to the next complex stage. Therefore, the training
of the entire main task is expedite by splitting up into smaller task with faster convergence.
However, the dimensionality of the state space and the complete action space of the complex
environment remain equal in the simplified environment. That is way the simplified environment
forms an extract of the original state space and behaves consistently. The level of reduction
depends on the actual environment and application and has to be set individually.

The developed iterative learning schedule assists the agent to learn highly complex tasks
and also determines suitable hyperparameters of the used DNN in the RL algorithm with multi-
complex environments. Within the schedule, the determination of the network structure of the
DNN and the learning parameters are shifted to the training with simpler environments of much
faster computation. Especially the network size and the depth of actor- and critic-networks of
the RL agent have to be adjusted properly to ensure high-quality training results. It is known that
the final structure of the DNN and the setting of the hyperparameters strongly affect the learning
of the RL algorithm. Therefore, in [194], a vast grid search of all relevant hyperparameters has
been conducted to investigate the major influences. There, the network size was recognized as
an important parameter that needs to be set carefully for the individual task and environment.
The adam optimizer [195] and he_uniform initialization [196] of the network weights appear to
sufficiently perform for all tasks and are therefore used for all function approximators in this
work.

Figure 4.11: Framework of the iterative RL approach.

As depicted in the framework of the iterative learning RL approach illustrated in Figure 4.11,
the agent is trained first with the simplified environment and a proper network structure is
computed. Since the dimensionalities of the simplified and complex environment are equal, the
computed network structure fits for the complex environments, too. The determination of the
ideal size and structure of a feed-forward neural network is a crucial task. As the size depends
on the desired task and the training data, a manual adaption of the network size is the norm.

55

4. MACHINE CONTROL OF THE PSM

Since very wide and deep neural networks consists of a huge set of trainable parameters, they
aim to take long training times compared to small and shallow networks. Therefore, the width
and depth of the desired network are ideally as small as possible. Two general approaches to
adapt the width and depth of a DNN are denoted as growing and pruning [197]. Since small
networks tend to underfitting and large networks to overfitting, an ideal network size is desired.
In growing, a comparatively small network is trained and accordingly increased in width and
depth to find an optimal network structure. Contrary to this, the pruning method starts with a
relatively large network and decreases the network size by pruning individual neurons.

In this work, the growing method forms the basis of the network adapting procedure of the
iterative learning schedule. These update rules are set by default, but the rules can be adjusted
manually, e.g. for large networks. Considering a state space with Rd and the dimensionality
d of the input space, the default network width starts with n = d neurons per hidden layer m.
The number of neurons per layer is kept constant in each layer. Considering an actor-critic RL
agent with two separate networks for actor and critic, the default number of hidden layers for
the actor is aimed to be ma = 2 and for the critic mc = ma − 1. Note that these values are set
arbitrary, but in the case of existing expert knowledge, the default values are adjustable to reduce
the number of required iterations.

The iterative learning schedule in Figure 4.11 starts with the training of the agent with the
simplified environment and the default network structure. If the training with the simplified envi-
ronment is not successful and the task can not be accomplished until the maximum episodes are
reached, the network structure will be adapted. The number of neurons per layer is automatically
updated with n = n+ 2 and the training with the simplified environment repeated. A hyperpa-
rameter then decides about the maximum number of neurons per layer and is set to nmax = 128

neurons per default. If this threshold is reached and the task can not be accomplished, the number
of hidden layers will be increased with ma = ma + 1 and the number of neurons set in the new
layer to the default value of n = d. The number of neurons in the previous layers remain. When
the task is finally accomplished the iterative learning schedule remains with the current network
structure and switches to the second stage with the complex environment automatically.

Similar to other curriculum learning approaches, the gained knowledge of the training with
the simplified environment is transferred to the training with the complex environment. If the
desired task can also be accomplished with the complex environment, the iterative learning
schedule is finished and the RL agent is trained with a proper network structure. If the task can
not be accomplished, the network structure is updated accordingly and the schedule is looped
back with the simplified environment as depicted in the framework of the iterative RL approach.

56

4. MACHINE CONTROL OF THE PSM

4.3.3 Distributed ACRL

The complex DEM based digital twin of the PSM requires significant computational resources
and thus enormous computation times. Parallelism helps to reduce the computation time in
various applications and is also researched in the area of RL to decrease training times. In
A3C for example, multiple parallel agents are trained with instances of the same environment
contributing their knowledge to a global network[15]. There, each agent, called worker, interacts
with its environment, calculates the values and policy losses and finally updates the global
network individually. Thus, A3C helps to stabilize the training and finally reduces the entire
training time [15].

Figure 4.12: Structure of the distributed version of ACRL

Based on the A3C approach a novel distributed ACRL approach is developed which generally
speeds up the exploration of the state space using one agent and multiple parallel environments.
This parallelism, especially developed for slow solvers, also drastically reduces the required
computation time of the entire training. The developed approach is shown in Figure 4.12 with
one main ACRL agent connected to multiple distributed parallel environments. The number
of parallel environments depends on the complexity of the desired tasks and the computational
resources. The environments run asynchronously and the agent can alternate between them.
It is important to note, that the agent has no information about the number or presence of the
parallel environments. The k parallel environments run on different CPU threads of a single
machine and allow an efficient parallel computation without communicating with external
objects. However, parallelism through multiple machines is feasible, too. Every environment is
initialized individually, receives actions akt from the main agent based on the current policy and
the observations skt . Also, the agent receives rewards rkt which are individually assigned by the
environments. In every step of one of the environments k the advantage function is calculated

57

4. MACHINE CONTROL OF THE PSM

with

Aπθ(skt , a
k
t) = rkt + γV π(skt+1)− V π(skt), (4.5)

and the policy parameter θ is updated.
The entire distributed ACRL algorithm is shown below. It is worth to note, that the one

ACRL agent alternates between all the environments and is updated immediately after each step
of every of the environments. The complete training is performed with a distinct number of total
episodes for each environment. The episodes run either until the maximum number of steps T or
a terminal state is reached.

Since the agent interacts with the environments asynchronously a certain timing is necessary.
The timing considers the required time to update the policy tπ and the computation time of the
environment to advance to the next step tcmp. Typically, when dealing with computationally slow
environments tπ << tcmp, the timing is not crucial, but the agent has to hold a waiting position
to receive new state information.

Algorithm 4 Distributed ACRL
Initialize ARCL agent
Run k parallel environments for ε episodes:

Environment k:
Randomly initialize environment k
while t < T || st is terminal state do

Randomly initialize environment k
Take action with policy πθ and sample skt , a

k
t , s

k
t+1, r

k
t

update V π with r + γV π(skt+1)
Calculate advantage Aπθ(skt , a

k
t) = rkt + γV π(skt+1)− V π(skt)

Compute∇θJ(θ) ≈ Aπθ(skt , a
k
t)∇θ log πθ(akt |(skt)

Update the ARCL agent θ ← θ + α∇θJ(θ)
Advance to next step t = t+ 1

end while

The distributed ACRL approach drastically increases the sampling rate compared to using
only one single environment. To stabilize the training of a single agent asynchronously interacting
with multiple environments, Experience Replay (ER) is introduced [95]. In ER a replay buffer
is filled with the sampled experience of one or multiple environments. The agent replays the
samples of the replay buffer, updates its policies accordingly and thus increases the sample
efficiency [198]. ER also prevents overfitting and tends to converge faster during the training.
Especially with computationally slow environments and thus relatively fewer data per time,
ER allows to use the available data more efficiently. In this approach a replay buffer of a
certain length n is filled with samples of the environments represented by their experience
ek = st, at, rt, st+1, at+1, rt+1... using the First-In-First-Out (FIFO) principle.

58

4. MACHINE CONTROL OF THE PSM

This approach is applicable onto any computationally slow environment and can be easily
integrated into other methodologies or different replay buffers. The strategy of the distributed
ACRL approach in combination with an ER buffer lead to efficient training times, was suc-
cessfully tested with comparatively slow DEM simulations [185] and is therefore used in the
following of this work.

4.3.4 Hierarchical RL Framework

In RL an agent is trained to search for a policy that maximizes the cumulative reward. This
tends to be challenging especially with large state spaces and long term horizons with standard
learning approaches. Therefore, additionally to the iterative learning schedule, the developed
HRL framework abstracts and reduces the complexity of difficult tasks to further decreases
the convergence speed and thus the overall training time. Based on the idea of decomposing
a complex task into smaller sub-tasks and solving these individually or simultaneously, the
developed approach consists of a hierarchy pyramid which is shown in Figure 4.13. This
approach involves two novelties namely the using of deterministic polices instead of learning
agents and the distinct reduction of the state and action space per level.

Instead of using different managers as described in Section 3.2.6, the top level is performed
by one single master-agent. This agent observes the environment of the specific problem entirely
and monitors the lower levels to achieve the desired goal. Depending on the temporal state, the
master-agent activates one or multiple sub-agents of this pyramid. As an innovation, this HRL
approach includes deterministic policies that act as sub-controls within the hierarchical structure
for sub-tasks that do not require any self-learning mechanics and thus reduce the overall training
time. By defining a generalized hierarchical formalism the developed approach is also adaptable
to any other hierarchical structure.

Figure 4.13: Developed HRL framework for e.g. machine control tasks.

The agent on the highest level L0 chooses a sub-task ωL0 , which is executed by one of the

59

4. MACHINE CONTROL OF THE PSM

sub-agents on level L1. This sub-agent then chooses sub-task ωL1 ∈ ΩL1 , which is executed by
the sub-sub-agent or one of the sub-sub-controls on level L2 which finally gives primitive actions
to the environment. Sub-tasks ω always refer to sub-goals gω ∈ Gω and primitive actions are
denoted as a ∈ A. Every agent, except the lowest-level agent on level L2, iteratively chooses
a sub-goal gω, processes it through a sequence of actions a until completion and receives a
new sub-goal [199]. Unlike other approaches, the developed HRL framework defines the state
space and thus the MDP of the different levels individually. As described in Bellmann’s "curse
of dimensionality" the problem representation grows exponentially in the number of state and
action variables [200]. Therefore, the developed approach aims to reduce either the dimensions
of the states or actions level-wise. Thus, the master-agent observes the environment extensively
and lower levels only partially the environment with a reduced dimensionality where

st ∈ RdL0 > RdL1 > RdL2 . (4.6)

By that, the number of information about the environment decreases as the hierarchy level
descends. However, the composition of the states as well as the level of information of each state
element can differ between the levels and also one certain level and is designed to accordingly
achieve a certain sub-goal gω. In the developed HRL framework the states can either be discrete,
continuous, or a combination of both. Contrary to that, the dimension of the level-wise action
selection decreases ascendingly from the lowest hierarchical level with

at ∈ RdL2 > RdL1 > RdL0 , (4.7)

and is also indicated in Figure 4.13. Except for the lowest level, the action space is determined
to be discrete and the agent has the choice between different sub-goals respectively sub-agents,
or sub-controls. The action space on the lowest level can either be discrete, continuous, or a
combination of both. The RL agents on the lowest level are designed as common MDPs and
transit to the next state after each time-step, whereas the actions of the higher hierarchical agents
persist for an extended period of time. By that, these agents are formalized as a SMDP which
allows to temporarily extend actions by denoting the random variable N [200]. The transition
probability of a SMDP is thus extended to P (st+N |st, at), where N can either be a fixed period
of time-steps or is determined by the time that is needed to reach a sub-goal. To allow the entire
structure to find an optimal path trough the different levels. The individual rewards of the master
agent and sub-agents etc. are manually designed to assists the agents to accomplish the overall
task or the individual sub-goals.

Depending on the complexity of the actual task, the decomposition into hierarchical levels
and the number of sub-goals can differ. Assuming the structure in Figure 4.13, there is one

60

4. MACHINE CONTROL OF THE PSM

master agent on the highest level, two sub-agents on the middle level, where one is connected to
one sub-sub-agent and a sub-sub-control and the other one to one sub-sub-control.

Based on the idea of macro-actionsM, which are predefined deterministic sequences of
primitive actions, sub-controls in the context of HRL are developed. One macro is defined as
mi = {ai,1, ..., ai,n} and triggers n total primitive actions [201]. Marco-actions are beneficial for
problems, where the agent requires to perform a distinct number of actions in a row repeatedly.
Macro-actions can be seen as local policies which are active in certain regions of the state space
and thus reducing the entire state space available for agent [202]. The drawback of macro-actions
is indeed, that they are additional actions, thus increase the action space and worsens the effect
of high dimensionality [201]. Building on that, the developed sub-, or sub-sub-controls etc.
embed deterministic polices to allow the agents to not only refer to underlying sub-tasks ω, but
also forcing distinct complex behaviors. When the agent in the HRL structure decides to take
an underlying sub-control, a deterministic policy Πsc is activated which gives for every state a
distinct action as

Πsc(st) = a∀st ∈ S. (4.8)

Different to the macro-actions, the sub-control policies are not only based on primitive
actions, but rather can be any discrete action or arbitrary continuous functions with respect to
single values of the state vector. The length or duration of the activated sub-control can be
selected as necessary. The assignment of sub-controls offers benefits for clear and simple task
which do not require a certain sub-task with a learning system for accomplishment. It is worth
noting that fully trained sub-agents with no further re-training behave like to sub-controls and
can then be viewed as deterministic policies.

Unlike other HRL approaches, in this structure the master-agent and sub-agents, etc. are
not trained simultaneously to avoid long training times and stability problems. In contrast a
simultaneous learning, the training is phased from the bottom to the top L2 → L0. Agents
on the same level can be trained individually, but decoupled from each other. Ideally, the sub-
agents are trained to an extent that they can henceforth be viewed as sub-controls. Since the
framework is developed to deal with real-world or environments with long computation times
as occurring with the DEM, the environments of the lower-level agents are simplified and only
consist of the relevant components to speed up the computation. Depending on the simplification,
as comparable to the previous iterative learning schedule, the sub-agents are pre-trained with
simplified environments and later require a re-training while deploying them in the training of
the superior agent.

The developed HRL framework is suited for very complex tasks and reduces the complexity
by decomposing the task into multiple levels, environments with distinct state and action space
and individual sub-goals. By reducing the dimensionality of the state and action space per level,

61

4. MACHINE CONTROL OF THE PSM

sufficient training times can be achieved. In this HRL framework, the dimensions of the state
space are reduced in ascending order of the hierarchical levels and the action space vice versa.
The usage of predestined deterministic sub-control policies reduces the complexity even further
and also assists to reduce the overall training time. While training the entire task, a bottom to
top training is foreseen, whereas the training yields to convert sub-agents to sub-controls. The
number of hierarchical levels, as well as the total amount of sub-agents, sub-controls, etc., is
defined individually by the complexity of the desired task and must be specially designed.

4.4 Single-Actuation Transportation Task

The PSM is substantially managed with conventional control architecture and main parts are
processed with the PLC or e.g. the positioning of the decentralized drives is made with proprietary
controllers. But especially the core functionalities of manipulating parcels and the complex
triple interaction between kinematics of the actuator-units, the flexible transport film and the
parcels require a data-driven control approach. The proposed controller needs to observe high-
dimensional states and give complex actions to successfully manage the manipulation of parcels
with peristaltic waves.

With regard to the general operating principle of the PSM in the infeed line of distribution
centres, the following mode of actions are supposed to be achieved in the future. Incoming
parcels in a bulk constellation are unloaded at the front of the PSM. One actuator-unit singulates
distinct parcels, passes them to the subsequent actuator-unit which then transports the parcels to
the other end of the transport film, where the parcels are handed over to the attached downstream
sortation system. This parallelization of the singulation and transportation process provides
the advantage of a fast and gentle operation. Due to the modular basis of the PSM, extensive
functionalities with cross transportation and sortation tasks could be achieved as well. This work
however focuses on a PSM with one table and two actuator-unit to show the feasibility of the
peristaltic principle and the possibilities to solve sophisticated RL tasks with DEM based digital
twins.

To show the applicability of the developed methodologies on the one hand and the general
usability of DEM for simulating complex machine processes on the other hand, the transportation
task of the PSM is presented using two different approaches. Both approaches use the developed
RL strategies and recent RL algorithms to achieve reasonable performances. In the first approach,
one actuator-unit is controlled to move one parcel along the film. So that, the agent intuitively
learns how to move parcels with peristaltic waves. To significantly speed up the training of the
RL agent, the distributed ACRL methodology with multiple instances is used. In the second
approach, a transportation scenario with one parcel and two actuator-units is described. In a
developed HRL framework the two units are controlled to not only move the parcel forward,

62

4. MACHINE CONTROL OF THE PSM

but also to hand-over the parcel to the second unit. Therefore, the iterative learning strategy is
used to identify the correct DNN structure and learning parameters for the relevant task in both
approaches. Additionally, the multi-complex environments of this schedule are used reduce the
complexity of the proposed problem and learn the fundamental behavior of the specific task or
e.g. learn how to generally move the actuator-unit of PSM within the machine limits.

The elaboration and the results of both approaches are explained in the following and thus
underline the particular relevance of coupled DEM-RL approaches. Afterwards, in order to use
the developed RL approaches with the real machine, a RL-PLC implementation is discussed.

The single-actuation transportation task as the very fundamental core functionality of the
PSM, is required to develop prospective functions and tasks. The challenge of this task is twofold.
First, the agent learns to generally move the actuator-unit with its dynamics within the given
machine boundaries. Second, the actuator-unit generates a moving wave in combination with
the transport film which then manipulates the parcels. As this approach is the very first attempt
to move parcels with peristaltic waves there in no variation of the parcel properties or initial
parcel position. A successful transportation task is determined by the movement of a parcel
from a starting position to the defined end of the transport film. In the following, the developed
environments, RL algorithm and results are explained.

4.4.1 Single-Actuation Transportation Environment

The environment of the specific single-actuation transportation is defined by the desired observa-
tions and possible actions. Considering the environment as a black-box, it emits a state and can
advance to the following state by receiving any action. For the agent, the actual implementation
of the environment is not relevant. Since the real PSM cannot be used for the training process
sufficiently, a model that similarly behaves to the real application is desired. As previously
discussed, the developed digital twin of the PSM modeled with the DEM is used as environment
and can properly substitute the real machine. But, before discussing the explicit training, the
dynamics of the mechanics of the PSM have to be derived.

Considering the dynamics of the combination of servo drives, gears and linear units of the
axes the resulting acceleration and velocity limits are stated in Table 4.1. The change of velocity
is therefore given by

∆vslide = aslide∆t, (4.9)

∆vlift = alift∆t, (4.10)

∆ωtilt = αtilt∆t, (4.11)

for the translational velocity of the slide vslide, lift axis vlift and the rotary velocity ωtilt, with

63

4. MACHINE CONTROL OF THE PSM

Figure 4.14: PSM mechanics.

their constant accelerations aslide, alift, αtilt and the considered time step ∆t, respectively. Thus,
the change of position is equally computed with

∆sslide =
1

2
aslide∆t

2 + v0,slide, (4.12)

∆slift =
1

2
alift∆t

2 + v0,lift, (4.13)

∆φtilt =
1

2
αtilt∆t

2 + ω0,tilt, (4.14)

for all of the three axes. These movements of the drives have to be transformed into the
mechanics of the PSM. Since the slide axis directly influences the current position of the
actuator-unit in X-direction, it follows

Px = Px,old + ∆sslide, (4.15)

so that the actual position can be computed. In contrast to that, the positions in Y- and
Z-direction depend on the stroke of the lift cylinder and the tilting angle influenced by the

64

4. MACHINE CONTROL OF THE PSM

tilt drive. Figure 4.14 shows the mechanics of one actuator-unit, where the total length of the
lifting-unit and the angle around the joint influence the actual position in both directions. If the
unit is tilted, so that the lift cylinder is no longer parallel to the Z-axis, further tilting or lifting
will cause a change of the position in Y- and Z-direction. The entire length of the lifting-unit is
given by

l = lend + lcylinder + lcylinder, (4.16)

with lend = 150 mm, lcylinder = 966 mm and the length of the stroke which is equal to the
actual lifting height lstroke = ∆slift + slift,old. Therefore, the position in Y-direction is given by

Py = sin(φtilt)l, (4.17)

with the tilting angle φtilt = ∆φtilt + φtilt,old. The stroke of the lifting cylinder is constrained
to a maximum 550 mm, the tilting angle can vary between −20◦ ≤ φtilt ≤ 20◦. The origin of
the PSM coordinate system is defined at the very front of the PSM in X-direction, the middle of
the PSM in Y-direction and the ground floor for the Z-direction. Under certain circumstances,
the origin in Z-direction is changed to e.g. the height of the film or the lowest possible stroke.
Therefore, to determine the position in Z-direction with the mounting height of the joint of
hjoint = 350 mm, it follows

Pz = cos(φtilt)l + hjoint. (4.18)

These derived position update equations must be programmed to properly control the actuator-
unit in the simulation model. The DEM software tool LS can move certain geometries but
does not support special motion packages. In LS it is only possible to move linearly, rotary,
or oscillating for a distinct number of time steps. Velocity changes caused by accelerations
and positioning to the relative or absolute position are thus not directly implementable in LS.
Therefore, the dynamics of the PSM are modeled in Python and the required movements of the
end-effector in the DEM are computed by the super-ordinate system. Small deviations caused
by the approximation of the acceleration ramps, as explained in Section 4.3.1, are read back to
Python to eliminate an integration error.

The described dynamics of the actuator-unit are computed in Python and coupled with the
DEM to move the end-effector in the simulation domain. In combination with the discussed indi-
vidual components as the parcel and the transport film the single-actuator transport environment
is set up and shown in Figure 4.15.

As for all developed PSM environments, the initial position of the end-effector and the
parcel are freely definable. The length of the transport film is set to 3, 500 mm and the width to

65

4. MACHINE CONTROL OF THE PSM

Figure 4.15: Single-actuator transportation environment.

2, 000 mm which corresponds to the real PSM. Also, the size and weight of the parcel can be
freely defined.

4.4.2 Single-Actuation Transportation MDP

The task of the single-actuation transportation is defined as the successful transport of a parcel
from a fixed position to the end of the transport film. Therefore, the agent has to create a moving
wave which transports the parcel along the film. To allow the agent to successfully solve the task,
the state and action space and the reward signal of the MDP are following defined. The state is
encoded as the current actuator-unit position (Px, Py, Pz), the current velocities of the axis of the
actuator-unit (vslide, vlift, ωtilt) and the position of the parcel with (Ppx, Ppy, Ppz), concatenated
into a single state vector. This definition results in a continuous state space and consequently
requires the use of function approximators and suitable RL algorithms. In this task a discrete
action space of setting the accelerations of the three drives, namely slide, lift and tilt, is defined.
The possible actions for each axis are fully accelerate (1), fully decelerate (−1) and keeping
velocity (0) which defines an action set of 33 = 27 possible combinations. The time step for
deploying an action is set to 0.2 s, which yields to a dynamic movement of the three axes and the
entire actuator-unit.

The initial condition and also the initial state of the environment is defined as the position
of the actuator-unit where Px = 600 mm, Py = −100 mm and Pz = 1, 250 mm. The parcel
position is fixed to Ppx = 1, 300 mm, Ppy = 0 mm and Ppz = 1, 450 mm and the velocities of all
axes are initially set to zero. The parcel has a size of (L x W x H) 200 mm x 400 mm x 100 mm,
where the longest edge is parallel to the Y-axis and has a weight of 700 g.

Within the single actuation transportation task, the agent is supposed to learn to move the
actuator-unit in the given PSM machine limits. The limits are defined by both ends of the linear
unit in X-direction, the maximum lifting height and the maximum tilting angle. Additionally,
since the accelerations of the three axes are presented by the agent, an exceeding of the maximum
velocities shall be avoided. The transport behavior is learned by giving a positive reward signal
for a movement of the parcel compared to the previous time step and also a high reward after
successfully finishing the episode. Therefore, an episode is evaluated to be successful when

66

4. MACHINE CONTROL OF THE PSM

the parcel is transported into the target area which is defined as the end of the film in positive
X-direction. The rewarding is defined by the reward signal of the individual time step with

rt =

1, if: Ppx,t > Ppx,t−1 (4.19)

−10, if: exceeding machine boundaries ∨ maximum velocities (4.20)

10, if: Ppx,t > 3, 000 mm , (4.21)

where Ppx,t is the position of the parcel in X-direction in the current time step. An exceeding
of the machine boundaries is therefore penalized with a negative reward. In this task, the
environment does not allow the parcel to leave the simulation domain which would be equated
to fall off the film and is thus not evaluated. If the boundaries or velocities are exceeded, the
episode will be canceled and restarted with the initial conditions. Additionally, the maximum
number of steps is set to 200. If the agent reaches this limit the episode will be canceled and the
agent will receives the negative reward, too. If the parcel is moved into the target area which
means the position of the parcel is Ppx,t > 3, 000 mm, the episode will end successfully. This
sparse rewarding requires suitable training of the RL agent. The agent has to independently learn
how to move the parcel and also obtain a positive transport behavior.

4.4.3 Training of the Single-Actuation Transportation

The used RL algorithm for this task is the A2C algorithm which is explained in detail in
Section 3.2.4. To allow the agent to sufficiently learn and also to generalize the desired task,
a suitable DNN structure is required. To speed up the training and limit the total number of
parameters, the network size should be as small as possible. However, the complex task and
high-dimensional state space requires a particular RL training approach. Therefore to reducing
the complexity, the explained iterative learning schedule with the multi-complex environments
of Section 4.3.2 is deployed. In the iterative learning schedule, the developed DEM simulation
represents the complex environment while the simplified environment is based only on the
actuator dynamics. The simplified environment, executed in Python, is mainly based on the
Equations (4.12, 4.13,4.14) and able to realistically simulate the actuator movement. The
transport film and the parcel are not directly simulated in the environment, but the parcel
movement is roughly approximated. If the end-effector moves in an area in front of the parcel,
described by the parcel position, the position of the parcel is artificially moved forward a little.
This movement randomly changes between 55 mm to 250 mm. That is why not only the agent
learns to move in the machine boundaries but also to transport a parcel in the forward direction.
However, for the agent there is no difference between the simplified and complex environment in
the state and action space or concerning the rewarding.

By alternating between the simplified and complex DEM environment with the iterative
learning schedule, an optimal DNN structure and learning parameters of the agent are determined.

67

4. MACHINE CONTROL OF THE PSM

The training starts in the simplified environment until the training is successful and the task is
accomplished. If after 5, 000 episodes the training is not successful, the DNN structure will
be increased in depth and width with the described update rules. After a successful training,
the agent is re-trained with the complex DEM environment for 150 episodes. If the agent can
not achieve successful runs with it, the DNN structure is increased again and restarted with
the simplified environment. By performing this iterative learning schedule, starting with one
layer and 5 neurons, the following DNN structure for the actor and critic path yield to sufficient
results. Both, actor and critic, consist of two hidden layers with 30 and 35 neurons, respectively
and the ReLu activation function. The output layer of the actor is set to the softmax activation
function to define the discrete actions space. The critic output layer is set to the linear activation
function. Additionally, to increase the sample efficiency, ER with a replay buffer of size n = 100

is applied. According to Section 4.3.3, the replay buffer is filled with experience of previous
state-action transitions using the FIFO principle. In the used ER, a batch of 50 randomly chosen
samples out of these 100 is used to train the agent accordingly. The discount factor is set to
γd = 0.99 and the learning rate is set to αlr = 5e−5 for the actor and critic network.

Figure 4.16: Result of the training with the simplified environment.

The final results of the training with the simplified environment are shown in Figure 4.16.
During the iterative learning schedule and alternating between both environments, the DNN
size has been accordingly adjusted. Over within the training duration of 3, 375 episodes the
agent gradually increases the cumulative rewards and successfully transports the parcel in the
simplified environment. As shown, the simulated parcel behavior is noticeable in the stairs-like

68

4. MACHINE CONTROL OF THE PSM

course of the average reward. Every time the agent moved the actuator-unit in front of the parcel,
it is pushed forwards and the agent received a positive reward. This rewarding helps the agent to
fundamentally learn how to transport a parcel. As foreseen in the iterative learning schedule,
the episode length is fixed, but a successful training episode stops the training and alternates to
the next step. As anticipated in the schedule, the agent is now shifted to interact with the DEM
environment. Considering the environments as black-boxes, the agent is not able to distinguish
between the multi-complex environments and interacts using the same state and action space.

Figure 4.17: Result of the distributed ACRL approach with 12 PSM-DEM environments.

In this second phase of the iterative learning schedule, the distributed ACRL, described in
Section 4.3.3, is used to properly re-train the agent. There, k = 12 individual environments, each
consisting of the described DEM environment, asynchronously interact with one ACRL agent.
The replay buffer is thus accordingly filled with the experience of all of these environments.

69

4. MACHINE CONTROL OF THE PSM

The advantages of applying the distributed ACRL are twofold. First, the number of samples
using multiple environments is increased significantly, which is of particular importance in
the exploring phase at the beginning of the re-training. Second, in combination with ER, the
training is stabilized and the performance of sample efficiency is increased which leads to faster
convergence. The agent is trained over 150 episodes for each environment which results in
1, 800 episodes of re-training. The cumulative rewards of certain environments are depicted in
Figure 4.17. It is shown that the re-training benefits from the pre-training because there are
barely episodes that end with the penalty of −10. It is assumed that the agent previously learned
to control the actuator-unit in its boundaries, which is indeed a complex task considering that the
agent has to learn to stop the unit before it exceeds any boundaries with the resulting mechanics
and constraints. Besides, the general trend in all the subplots of the environments indicates a
similar course. Although the individual environments are at different stages within the episode,
the agent can decide for sufficient actions. Finally, the last 10− 15 episodes are all successful
runs which correspond to a converged learning process.

4.4.4 Summary

The described approach of solving the single-actuation transportation problem with RL provides
the basic work of a successful RL-DEM coupling. The developed digital twin of the PSM
consisting of the three main parts - the mechanical design, transport film and parcel realistically
simulates the PSM behavior. This digital twin is successfully coupled with the RL framework
and the DEM entirely controlled via Python.

The single-actuation transport task is tackled using the iterative learning schedule with a
simplified environment, mainly modeled with the actuator dynamics, and with the complex
DEM environment facing all details of this complex task. The actuator-unit is controlled by
changing the accelerations of the three axes to properly move in the machine boundaries and
transport the parcel to the target area, which is located at the end of the film. By using the
iterative learning schedule the size of the DNN structure and the learning parameters are defined.
Additionally, the iterative learning schedule reduces the complexity of the sophisticated and high-
dimensional control task and is particularly beneficial in the exploring phase of the RL training.
The deployed distributed ACRL approach together with ER yield to promising results and fast
convergence. The chosen rewarding allows the agent to properly learn the transportation of
parcels with peristaltic waves and thus solve the desired task. Manual tests with the environment
have determined 5− 8 s for comparable fast transportation of the parcel in this configuration.
The agent has achieved to control the actuator-unit to transport the parcel in the target area in
7.3 s. The entire computation of the iterative learning schedule and the re-training with the
150 episodes per environment took 72 h in sum. Assuming the agent is trained from scratch with
the same number of episodes, but without pre-training with the simplified environment, it would

70

4. MACHINE CONTROL OF THE PSM

approximately take 30 days. Considering that in this period of time the DNN size of the agent
has to be tuned and the environment tested, the training time would be further extended and this
would yield an unfeasible training situation.

4.5 Multi-Actuation Transportation Task

The second application of the machine control of the PSM not only focuses on the transport of a
parcel with multiple actuators, but also provides the basis of incorporating future tasks of the
PSM. The challenges of this transportation task are the interaction between two actuator-units,
avoidance of possible collisions and the orchestration of the two units. For further purposes the
developed control approach is supposed to be extendable to nact units. Furthermore, a generalized
behavior of transporting a parcel in a random parcel position is developed. Similar to the previous
chapter, a digital twin of the PSM is used to train the RL agent. However, incorporating multiple
actuator-units again increases the state space significantly which requires the deployment of a
hierarchical RL structure as explained in the Section 4.3.4. Additionally, the iterative learning
schedule with multi-complex environments to train individual RL agents is used to solve this
very complex task.

4.5.1 Multi-Actuation Transportation Environment

To outline the multi-actuation transport environment plus the relevant state information and
actions, the explicit task and the general structure of the HRL framework are described first. In
the environment two actuator-units initially start at both ends of the transport film. One parcel is
randomly placed on this film. As learned from the previous approach and also described in [184],
a parcel movement is generated by lifting up the unit, creating a wave in front of the parcel which
then moves it forwards. This means, a parcel transportation is given when the actuator-units are
in front of the parcel and meet a corresponding lifting height.

Figure 4.18: Multi-actuation transportation task.

71

4. MACHINE CONTROL OF THE PSM

The whole multi-actuator transport environment is shown in Figure 4.18, with the first (blue)
and the second actuator-unit (red). In the initial condition the positions of the actuator-units
and the parcel are determined and a master-agent tries to find the fastest strategy to move the
parcel along the film. Hence, the position of the parcel plus the maximum allowed velocities
of the actuator-units are of importance. In the developed HRL framework one master-agent
is responsible for activating one of the units which then moves to the transportation position
accordingly and transports the parcel along the film. The master agent learns to decide to use only
the second actuator-unit or a parcel exchange between both units to transport the parcel as fast as
possible along the film. Therefore, the entire multi-actuation transposition problem is divided
into four sub-tasks which can be activated by the master-agent. In the sub-tasks one and two
the explicit actuator-units are forced to reach suitable transport positions in front of the parcel.
The movement of the activated actuator-unit is controlled by one specific sub-agent, whereas
the other is controlled by another sub-agent. If one of the units reach the transport position,
the master-agent will decide to actively transport the parcel forwards, which is implemented
by a hard-coded moving of the unit in positive X-direction for both of the units. The forward
movements are assigned to the sub-task three for the first actuator-unit and the fourth for the
second, respectively. These forward movements then transport the parcel along the film for
a certain time-step. Depending on the current state with the actual position of the parcel, the
fastest transportation can be achieved by only using the second actuator-unit. In other cases it is
advantageous if the parcel is handed over from the first to the second actuator-unit which then
transports the parcel to the end of the film.

Figure 4.19: HRL framework for the multi-actuation transportation task.

Based on the described multi-actuation transportation problem and the four sub-tasks, the
developed HRL framework is composed of one master-agent, two sub-agents and two sub-
controls. Therefore the set of sub-task policies is defined as

Ω = {ω1, ω2,Πsc1 ,Πsc2}, (4.22)

with ω1, ω2 as the learned policies of the sub-agent and Πsc1 ,Πsc2 as the deterministic
functions of the sub-controls.

72

4. MACHINE CONTROL OF THE PSM

The framework shown in Figure 4.19 has two levels with individual MDPs and independent
state and action spaces. Since the HRL framework of this task is designed to control nact

actuator-units of the PSM, parallel tasks might be necessary, too. But, to limit the complexity
and show the general applicability of the developed approach, only one sub-task referred to one
actuator-unit is always active. The master- and sub-agents can be trained separately and are
interchangeable when the problem description changes. To speed up the training with the DEM
environment, the sub-agents are purely, and the master-agent is pre-trained with a simplified
Python environment. To achieve an appropriate performance with the DEM environment and
the complex interaction of the units, transport film and the parcel, the master-agent is re-trained.
As described in the developed novel HRL framework, sub-agents which are completely trained
are deployed as deterministic functions. This further reduces the total number of iterations and
computation time along with the re-training phase of the master-agent which incorporates the
complex DEM environment.

The explanation of the entire multi-actuation transport environments follows the subdivision
into the two layers of the HRL framework, starting with the environment and MDPs of the
first and second sub-agent and finally the master agent. Additionally, the implementation and
definition of the sub-controls is explained as well.

Environment of Sub-Task 1 and 2

The sub-goals of both sub-tasks gω1 , gω2 are to move the first respectively the second actuator-unit
in front of the parcel. The kinematics of the environments for both sub-tasks are equal to the
previous single actuation transportation task. Both environments are called as two instances with
individual pre-parameters and communicate over the standardized interface to the coupled RL
sub-agents. Therefore, the continuous state space for both tasks is defined as the position of the
actuator-unit and the parcel position But, to directly force the agent to control the unit in front of
the parcel, the target position in X-direction is set to at least Ptx = Ppx − 300 mm in front of the
actual parcel position. The parcel position is randomized in the ranges of

−800 mm <Ppx < 3, 000 mm,

−500 mm <Ppy < 500 mm,

1, 000 mm <Ppz < 1, 300 mm,

(4.23)

to allow the agent to reach every parcel located at any place on the film. Therefore, it is pre-
checked if the end-effector of the actuator-unit is able to reach the target position considering the
given constraints. If it is not possible to reach the position, another random parcel position will
be computed. The initial position of the first actuator-unit, more precisely the end-effector of it,
is set to Px,1 = 500 mm, Py,1 = 0 mm and Pz,1 = 500 mm. The initial position of the second
actuator-unit is set to Px,2 = 3, 000 mm, Py,2 = 0 mm and Pz,2 = 500 mm.

73

4. MACHINE CONTROL OF THE PSM

MDP of Sub-Task 1 and 2

The concatenated continuous state vector consists of six elements representing the position of the
individual actuator-unit and the desired target parcel position. Instead of to control the velocity
of the three axes of the actuator-unit, which in indeed a highly complex task, while predicting
an exceeding of the machine boundaries etc., in this task the actions are defined as a relative
positioning in the three-dimensional space. In the relative positioning the desired position of the
actuator-unit is computed with the Equations (4.12, 4.13, 4.14). The axes are positioned with a
total time step of 0.5 s. During this time step the individual servo drives accelerate and decelerate
for 0.25 s to reach the new position and always end up with zero velocity for all the axes. To
allow a continuous relative movement, the acceleration values of the drives are proportionally set
by the primitive actions. The continuous action space is therefore defined by a vector of three
elements ax, aω, az ∈ [−1, 1] for the slide, tilt and lift drive, and is then accordingly transformed
to meaningful acceleration values in the environment. By this transformation and incorporation
of the accelerations limits of the three drives, the dynamics of the actuator-unit and the time step
yield a maximum range of movement per axis in

−62.5 mm <∆sslide,1 < 62.5 mm,

−0.03125 rad <∆slift,1 < 0.03125 rad,

−9.375 mm <∆φtilt,1 < 9.375 mm,

(4.24)

for the first actuator. To increase the difficulty of the multi-actuation transportation task,
the range of the relative positioning of the second actuator-unit is increased by changing the
pre-parameter set. This means that both actuator-units can move different distances in a certain
time which is recognized by the master-agent. The range of the relative positioning of the second
actuator-unit is set to

−125 mm <∆sslide,2 < 125 mm,

−0.05625 rad <∆slift,2 < 0.05625 rad,

−18.75 mm <∆φtilt,2 < 18.75 mm.

(4.25)

As a result the actuator-units are controlled by the sub-agents to move as fast as possible
in front of the position of the parcel. If the target position is reached, the master-agent will
then switch to a sub-control and transport the parcel forwards. That is why, a rewarding for the
proper reaching of the target position has to be defined. The reward signal is mainly influenced
by the distance between the positions of the actuator-unit and the target, measured in the three
directions and rewarded with

74

4. MACHINE CONTROL OF THE PSM

rdis,t

1, if: actuator moves away from the target along all 3 axes (4.26)

2, if: actuator moves towards target along at least 1 axis (4.27)

3, if: actuator moves towards target along at least 2 axes (4.28)

4, if: actuator moves towards target along at least 3 axes, (4.29)

with e.g. the evaluation in X-direction computed with |Px,t − Ppx,t| < |Px,t−1 − Ppx,t−1|.
Additionally, a flag dlimits evaluates a possible exceeding of the machine limits. If the relevant
actuator-unit moves in the valid area and no exceeding is detected this flag will be set to
dlimits = 0. In sum the final reward signal is composed to

rt =

−3 + rdis,t, if: dlimits = 0 (4.30)

−10, if: dlimits = 1 (4.31)

100, if: ddone = 1. (4.32)

If the actuator-unit does not move closer to the parcel in all three axis, it will receive a
small negative reward, which hence forces the agent to take the shortest way to the target. The
done-flag indicates the successful ending of an episode and is thus the final goal of this task. The
done-flag will be set to one, if the actuator-unit is moved into a buffer zone in front of the parcel.
In contrast to a crisp target value, the buffer zone facilitates the training process. The buffer is
defined as cubic zone around the target parcel position with an edge length of 30 mm in X- and
Z-direction and an edge length of 10 mm in Y-direction.

Training of the Sub-Agents

Before discussing the training of the sub-agents, the used RL algorithm is explained. For solving
the sub-tasks and moving the actuator-units in the right position in front of the parcel, a PPO RL
algorithm is used. As already discussed in Section 3.2.4, PPO performs well compared to state-
of-the-art RL algorithms and is easy to tune and implement, too. PPO is based on the actor-critic
architecture consisting of two individual DNNs for the actor and the critic part, as many other
model-free RL algorithms. Knowing that there are also approaches of multi-head RL algorithms
with partly shared networks for actor and critic as in [203], separate networks are discussed in
this work. The actor-network is build of three hidden layers each having 512, 1024, 512 neurons
and ReLU activation functions in between the layers. The output activation function is set to
hyperbolic tangent (tanh) to limit the actions in the range of [−1, 1]. The critic network is made
of two hidden layers each with 256 neurons, ReLu activation functions between the layers and
a linear output layer. The selection of the number of layers, neurons and intermediate layer
activation function is a crucial task and strongly affects the performance of the developed RL
agent [204]. In an empirical process, the discussed DNN structure yields the best performances

75

4. MACHINE CONTROL OF THE PSM

in the test series. The hyperparameters for both networks are empirically determined and set to
the discount factor of γd = 0.9 and the learning rate of αlr = 1e−5. The clipping factor is set
to εclip = 0.2, the number of epochs of training the model with sampled data is set Kepoch = 7

epochs and the model update is instigated after every 500 time steps.

The sub-agents for both tasks are individually trained since they start from different initial
positions and reach different maximum relative movements per step. Since the agent aims to
move to the parcel position and no interaction between the mechanics, film and parcel is necessary,
the training is completely conducted with the described Python environment. In each episode,
the parcel position is randomly selected and after each step slightly changed while adding a
small noise signal. This noise is supposed to increase the robustness of the agent, especially
later in the DEM environment considering a moving and flexible transport film. The maximum
number of steps is set to 1, 000 to ensure a proper exploration of the entire state space and finally
reaching the target position in front of the parcel. The agents are trained for 15, 000 episodes,
but as shown in Figure 4.20, the first sub-agent converged after ≈ 5, 000 episodes. The reward
course gradually increases after a short exploration phase collecting negative rewards.

Figure 4.20: Training results of the first sub-agent.

The training of the second sub-agent differs in the initial position of the second actuator-unit
and in the optimal episode which is larger compared to the first one. The second actuator-unit
has to move beneath and along the position of the parcel to reach the desired target position. This
behavior also appears in the training of the second sub-agent as depicted in Figure 4.21 with the
first 500 episodes where nearly no positive episode could be achieved. Within the total duration
of 15, 000 episodes the training converges after ≈ 3, 000 episodes. The training results and the

76

4. MACHINE CONTROL OF THE PSM

Figure 4.21: Training results of the second sub-agent.

trained agents respectively, are saved and later deployed in the re-training of the master-agent
with the DEM environment.

From the prospective of the master-agent, the fully trained sub-agents and sub-controls are
assumed as deterministic functions. Therefore, the step-wise training of the different levels of
the hierarchical pyramid is beneficial speeds up the training drastically.

Sub-Controls

Assuming, that the sub-agents move the actuator-units to an ideal transport position in front
of the parcel, the purpose of the sub-controls is to successfully transport the parcel forwards
along the film. In certain cases it might not be necessary to define a subsequent sub-task with
a sub-goal and a deterministic action is sufficient. Since the sub-control requires no additional
training and sub-controls reduce the available state space for the agent, the usage of sub-controls
is a means to reduce the entire training time.

Both sub-controls Πsc1 ,Πsc2 can be chosen by the master-agent in the HRL framework and
cause a distinct movement of the first and second actuator-unit. With these sub-controls the
master-agent is not only able to chose a subsequent sub-task, but immediately force a distinct
behavior acting to the environment. Here, Πsc1(st) = aact1∀st ∈ S and Πsc2(st) = aact2∀st ∈ S
results always to the fixed actions aact1 or aact2, respectively.

In this implementation aact1 or aact2 are defined as a positive movement of the certain
actuator-units in X-direction. Thus, the relevant unit is moved based on the defined limits in the
Equations (4.24, 4.25), in positive X-direction for either 62.5 mm or 125 mm in one time-step
and reaches a new position.

77

4. MACHINE CONTROL OF THE PSM

In future works, the simple sub-control can be exchanged by more sophisticated algorithms
like a transport control which observes the parcel and controls the desired trajectory.

Environment of Master-Agent

In Figure 4.22 the entire DEM environment of the multi-actuation transportation task is shown.
In general, numerous actuator-units in row, or parallel on other tables are implementable and
simulateable considering the modular design of the PSM. However, if more than one actuator-unit
manipulates the transport film, the real behavior of the film drastically changes compared to
the single-actuator transportation. The wave created by one unit is not locally bounded but
extends over the entire film and influences the waves of possible other actuator-units. Hence, the
prediction of a successful parcel transport is more complex. Therefore, generating a simplified
environment with a good approximation of this behavior is only possible to a certain extend
while the DEM simulation is fully capable of simulating the behavior of the film and the parcels.

The main task Γ to be accomplished followed be the policy πΓ=̂πHRL is defined as the parcel
transport over the length of the film incorporating at least one actuator-unit. Depending on
the current position of the parcel, the master agent hat to orchestrate the actuator-units to find
the fastest route to move the parcel along the film. Since the DEM environment consisting of
the two actuator-units, the flexible film and the parcel is very complex and computationally
slow, the iterative learning schedule with a simplified environment is used as well, to reduce the
complexity of the desired task and decrease the training time.

Since the dynamics of the actuator-units are already available in Python due to the previous
training of the sub-agents, the environments of the sub-agents can be merged and adapted. Only
the parcel behavior needs to be extra approximated. It is assumed, that if one of the actuator-units
is in the buffer zone in front of the parcel and the master-agent decides to take the allocated
sub-control of this unit, the parcel will be moved in positive X-direction. The parcel is transported
in the same range of the actuator-unit being moved forwards. Considering a perfectly aligned
parcel and a suitable lifting height of the actuator-unit, these assumptions approximate a positive
transport. Nevertheless, the agent needs to be properly re-trained in the DEM simulation to
achieve a multi-actuator parcel transport with the complex environment.

MDP of Master-Agent

The master-agent, as the overall supervisor in HRL framework of the multi-actuation transport
task, has to observe the complete task and decide about the activation of the sub-agents or
sub-controls. Therefore, the continuous state transmitted to the master-agent consists of the
position of the first and second actuator and the parcel position, which yields a state vector
of nine elements. The action space is defined to be discrete and individually activates the
four sub-tasks based on the Equation 4.22 namely the sub-agent actuator-unit one, sub-agent

78

4. MACHINE CONTROL OF THE PSM

Figure 4.22: DEM environment of the multi-actuation transportation task.

actuator-unit two, sub-control transport actuator-unit one and sub-control transport actuator-unit
two. The activated sub-tasks are then performed for a time step of 0.5 s and the state advanced
accordingly. Since the sub-agents and sub-controls only partially observe the environment and
have no information about the other actuator-unit, the master-agent has to orchestrate the units
and ensure a collision-free transportation.

To allow the master-agent to learn an appropriate behavior with the multi-actuator transport
environment and successfully solve the task, a proper rewarding structure is necessary. The
reward signal is based on the approach of the parcel transportation position, the parcel movement
and avoiding collisions between the actuator-units with the following structure

rt =

−10, if: |Px1,t − Px2,t| < 500 mm (4.33)

1, if: Ppx,t > Ppx,t−1 (4.34)

100, if: Ppx,t > 3, 000 mm. (4.35)

The agent receives a negative reward when the actuator-units in X-direction are too close to each
other gets a positive reward when the parcel is moved forward compared to the previous time
step and a very high reward when transporting the parcel to the end of the film. Additionally, in
order to provide the fastest parcel transport with both units, the agent receives a negative reward
of −2 for actions which do not yield the aforementioned rewards.

4.5.2 Training of the Multi-Actuation Transportation

The training of the master-agent of the multi-actuation transportation task is applied using the
iterative learning schedule in which the training with the simplified environment is used to
pre-train the agent and identify suitable DNN structure of the used RL algorithm. Besides a PPO
algorithm with a separate network for actor and critic path is selected for the master-agent. As
in output of iterative learning schedule the final actor-network is built of three hidden layers
each having 512, 1024, 1024 neurons and ReLU activation functions in between the layers. The
output activation function is set to softmax for choosing the action of the highest probability.
The critic network is made of two hidden layers with 128 neurons, ReLu activation functions

79

4. MACHINE CONTROL OF THE PSM

between the layers and a linear output layer. These configurations achieved promising results
in the pre-training and also later in the re-training procedure. The learning rate of the PPO
master-agent is set to αlr = 1e−5 and the clipping factor to εclip = 0.2. The network update is
applied every 500 time steps, for Kepoch = 7 epochs and with the sampled data in a batch of the
size of nbatch = 64 steps.

In cases where the first actuator-unit picked up the parcel and the master agent then decided
to hand over the parcel to the second one, both units were close to a collision and the episodes
were canceled. In RL, and in particular with new developed environments, the chosen rewarding
structure or environmental peculiarities can prevent a successful training. To avoid collisions in
this scenario and enable a parcel transfer between the units, a special functionality is implemented
in the environment. When the parcel is transported by the first actuator-unit and the parcel
position becomes Ppx > 1.5 m, a reverse function is activated. When the parcel passes this limit,
the first actuator-unit is moved back for 0.5 m in X-direction and allows the master-agent to use
the second actuator-unit to overtake the parcel and transport it to the end of the film.

Figure 4.23: Pre-training results of the master-agent.

While running the training multiple times with a total number of 500 time steps per episode
and a maximum of 10, 000 episodes, all hyperparameters are alternated to yield promising results.
The final reward course of the pre-training of the master-agent is shown in Figure 4.23 and starts
with very high negative rewards. In order to increase the exploration especially in the beginning,
the episodes up to 1, 000 are only terminated when the maximum number of steps is reached.
Therefore, collisions of the units cause big negative rewards, but the agent can continue and
explore the state space in the beginning. Subsequently the reward course gradually increases and

80

4. MACHINE CONTROL OF THE PSM

reaches satisfying performance in the last 2, 000 episodes. The master-agent learned to deal with
the reverse function and transfer the parcel between both units most of the times.

There is a chance that the performance could be increased with further pre-training, but since
the simplified environment is only an approximation, the re-training with the DEM environment
is still mandatory. Due to the high-dimensional state space a the optimal strategy, indicating the
best solution for all cases cannot be determined. Therefore, the agent is tested for 30 episodes
with the complex DEM environment after the pre-training and later compared to the re-trained
agent. Only a small number of test episodes are carried out because the computation time with
the DEM of the multi-actuation transport environment very long and shall only show the current
performance of the training progress. In each episode the parcel position is randomly set.

Figure 4.24: Baseline results of the pre-trained PPO master-agent performed with the DEM
environment.

After the pre-training with the simplified environment and achieving sufficient performance,
the agent is deployed in the DEM environment. In the simplified environment no interactions of
the flexible transport film or the parcel behavior are simulated. It only roughly approximates
the parcel movement in one direction, but allows the master-agent to handle multiple units and
decide between the sub-agents and sub-controls. Thus, it is not assumed that the agent copes well
with the DEM environment, nevertheless it might still be able to transport the parcel sufficiently.
To test the performance of the pre-trained agent with the complex DEM environment, the agent
is deployed to transport 30 randomly set parcels. The reward course of this baseline test is shown
in Figure 4.24. Since the reward is mainly connected to the successful parcel transport, which
is defined by a positive change of the parcel position in X-direction per time step, the bias of

81

4. MACHINE CONTROL OF THE PSM

the rewards with the DEM environment is higher compared to the pre-training. The simplified
environment only contains of a finite number of positive discrete transport steps while with
the DEM simulation a continuous parcel movement is rewarded. However, the baseline results
show that the parcel could only be transported sufficiently two times. In all other cases the
episode was terminated due to a collision of the units or reaching the maximum number of steps.
To increase the performance of the master-agent, it is re-trained with the DEM environment.

Figure 4.25: Results of the re-training of the master-agent with the DEM environment.

Since the average time for a single episode with the Intel Xeon CPU E5-2697 with 32 cores and
64 GB RAM takes approximated 3 h, the re-training includes 100 episodes to limit the required
computation time. In future work the distributed ACRL method can be applied to speed up the
training considerably. The training results are depicted in Figure 4.25 and clearly show a learning
behavior during this small number of training epochs. The master-agent starts with considerably
small rewards and increases them over the number of episodes. Besides, it is shown that the
number of failed episodes appear more frequently in the first quarter of the entire training. At
the end of the re-training the master-agent successfully finished the multi-actuation transport
task most of the times.

The re-trained agent is subsequently deployed again with the DEM-environment for 30 episodes
for comparison with the baseline results. In Figure 4.26 the reward course after the re-training is
shown, which clearly consists of higher rewards compared to the baseline. The master-agent
achieved a successful transportation 25 times. Since the parcel is randomly set in every episode,
the individual episodes between the baseline and re-trained results are not comparable, but the
overall trend shows that the re-training significantly increased the performance of the master-
agent. However, the agent could not successfully transport the parcel with both actuator-units

82

4. MACHINE CONTROL OF THE PSM

three times, which could be improved by a further re-training with more episodes. Also, it is
important to note, that the sub-agents, which manage the low-level control of the actuator-units
are not re-trained with the DEM simulation and are deployed as deterministic functions based on
their gained knowledge with the simplified environments. Poor actions in the low-level control
also lead to insufficient performance on the higher level.

Figure 4.26: Results of the re-trained PPO master-agent with the DEM environment.

4.5.3 Summary

The described approach of tackling the multi-actuation transportation task uses the developed pre-
training methodologies of the iterative learning schedule with multi-complex environments and
also the hierarchical RL framework. Dividing the whole task into different levels of complexity
and assigning them to sub-tasks, facilitates to solving the entire complex problem. Since training
the agent from scratch for the multi-actuation transportation task with the DEM environment is
not feasible due to the long computation times, the developed methodologies results in a suitable
learning behavior and reduce the training time.

The HRL framework of the multi-actuation transportation task consists of two levels with
one master-agent, two low-level sub-agents and two sub-controls. The actual control of the
position of the actuator-units is shifted to a low-level control with individual sub-agents for each
unit. These sub-agents observe the machine constraints and move the unit into the target area.
The novel incorporation of sub-controls available for both units, require not training time and
consist of hard-coded software. These controls simply moves the units forwards and therefore

83

4. MACHINE CONTROL OF THE PSM

transports the parcel in the desired direction. The master-agent observes the whole environment
and orchestrates both actuator-units to successfully transport a randomly placed parcel along the
film. The used environment for this task is an enhancement of the developed digital twin of the
PSM of single-actuation transportation task of the previous section. The whole training of the
master and sub-agents with the pre-training with simplified environments and the re-training with
the complex DEM environment achieves promising results. After the training, the agent is able to
control the machine to successfully transport a parcel with multiple actuator-units. The developed
and contributed methodologies of the pre-training and the HRL framework are adaptable to any
other RL problems, but are especially useful when training agents in computationally intensive
environments.

4.6 RL-PLC Implementation

Even with new developments of industry 4.0 and keywords like Industrial Internet of Things
(IIoT), edge computing, cloud computing, etc. the PLC still forms the backbone of modern
CPS [205]. However, PLCs of different brands are programmed with proprietary programming
languages and only offer limited possibilities for incorporating modern machine learning libraries.
But using machine learning and especially RL could improve the performance of CPS drastically
and is thus under investigation [206]. That is why, a common trend is to shift the programming
and execution of any kind of machine learning to edge or cloud computing devices. These devices
offer the possibility to communicate with the desired application and have sufficient capacities to
train and deploy algorithms. Cloud services in particular are cautiously accepted in the industry
due to data security, privacy and governance issues [206]. One approach to overcome this
problem is to shift the computing within the machine network for example to edge computing or
as in [207], while directly communicating via the fieldbus level. However, these solutions could
face disadvantages regarding relatively fast processes due to the communication delays of the
network. Thus a machine learning approach close to the main processing unit, PLC respectively,
is desired. To name two well-known examples, Siemens developed the neural processing unit
[208], a special hardware to deploy DNN on the PLC side and Beckhoff developed the TF3810
[209], a special machine learning library module. These approaches can only deploy trained
networks, support only certain programming languages and do not offer possibilities to train
with process data etc.

Therefore, training of advanced RL approaches with real environments controlled by PLCs
is not developed, yet. Furthermore, there is no comprehensive approach on the PLC level to
deploy trained RL agents in real-time i.e. without required slow communication to external
components and online training of RL agents. That is why this approach is developed to close
the gap between existing machine learning approaches and environments and data on the PLC

84

4. MACHINE CONTROL OF THE PSM

level.
To implement machine learning and reinforcement learning directly on the PLC side and use

state-of-the-art libraries e.g. Python with Pytorch, a RL-PLC implementation is explained in
the following. To enable machine learning on the PLC, appropriate hardware is required. The
hardware must be sufficiently powerful, which strongly depends on the desired application and
machine learning approach. The described approach is applied to Siemens IPCs, but basically
adaptable to any other soft-PLC.

Figure 4.27: Communication framework of the RL-PLC implementation.

Generally, the approach is based on the communication structure shown in Figure 4.27, where
a RL agent communicates with a ODK (Open Development Kit)-1500S object on the IPC side
and then exchanges data of the application with the PLC side. The data can consist of sensor
input data, process data, any kind of actuation commands, etc. The encoded state information are
gathered on the PLC side and propagated trough the communication structure to the RL agent.
Based on the policy of the agent, an action is chosen and returned back. Besides, additional
information like the reward signal or possible done flags are transmitted.

The Siemens ODK establishes the intercommunication of the IPC side, usually based on a
Windows operation system, with the PLC side. Therefore, Siemens ODK is used to generate
files and functions executable on both sides of the system. Functions, written in C++ are thus
converted into function blocks and accessible in PLC run-time in real time mode [210]. However,
Siemens ODK-1500S only supports the Siemens 15xx CPU family. The RL agent is trained
and deployed in a Python interpreter, the Siemens ODK is programmed in C++ programming
language and allows to directly communicate with the PLC. Therefore, a connection between
Python↔ODK↔PLC is investigated.

Developed functions, written in C++, allow the data exchange between both systems while
generating and manipulating handshake and communication files. General, multiple approaches
could be developed to manage the internal communication, but in this work text-files were used
to exchange the state, action, etc. information. One text-file contains the state, reward and
possible done-flags and on the other one describes the chosen action. On the one hand, the files
are read by the agent to determine the current state of the PLC, the PLC reads the chosen action

85

4. MACHINE CONTROL OF THE PSM

of the agent and advances to the next state accordingly. On the other hand, the PLC writes the
current state, reward and done flag while the agent does the same with the chosen action. The
reading and writing is triggered by the PLC but outsourced to ODK and executed in C++. The
entire flowchart of the RL-PLC implementation is depicted in Figure 4.28.

Figure 4.28: Flowchart of the RL-PLC implementation.

The check Keyfile exists is used as a handshake file and guarantees consistent data. The
agent generates the keyfile after the action has been chosen and the PLC deletes it after it has
completely performed the action and wrote the state file. To ensure the correct data-type in
the PLC a conversion is conducted and the data is saved into Data Blocks (DB). By following
this developed flow-chart, RL can be applied to Siemens PLCs while using state-of-the-art
machine learning libraries. The exchange of data is completely performed by the IPC itself so
that no connections to third party devices are required. The approach ensures a fully secure
operation of machine learning regarding data security. Generally, all kinds of RL algorithms are
implementable and the amount of exchanged data is only temporally limited by the conversion-
and manipulating-time of the text files.

Using a trained agent that has been previously trained by any type of simulation model is
feasible with the described approach. It can also be applied on training from scratch or even a
re-training of RL agents with the PLC. However, in contrast to train with simulation models, the
PLC interacts with certain hardware e.g. servo drives, brakes, etc. in real-time. That is why it
is imperative not to interrupt the PLC runtime while waiting for new actions to avoid possible
damage or injury. Depending on the actual implementation of the RL algorithm, a policy update
causes a certain communication delay which is not acceptable for highly dynamic environments.

86

4. MACHINE CONTROL OF THE PSM

Therefore, mid-episodic updates of the policy are inappropriate and updates are only valid at the
end of episodes when the real environment is in a secure state.

4.6.1 Example Training with the IPC-RL Implementation

To show the general applicability of the developed RL-PLC implementation a simplified PSM
task is trained on a Siemens IPC. Therefore, an environment based on a three-dimensional grid
in the size of the PSM impact area with (L x W x H) 400 x 200 x 100 elements is developed.
The task describes the movement of the actuator-unit from a random position to a target position
in this discrete grid. The state is defined as a vector of three elements representing the three-
dimensional grid. The action-space is defined as six discrete actions resulting in a movement to
subsequent elements in positive or negative direction of one axis. The reward is defined as the
ratio of the current Euclidean distance between the actuator unit and the target and the initial
distance between the two at the beginning of the episode. If the actuator-unit reaches its machine
boundaries, the episode will be terminated and the agent will receive a reward of −200. If the
agent moves the actuator-unit and reaches the target position with a margin of ±2 elements,
the agent will receive a reward of 1, 000. The environment is directly programmed in Python
and simulated on the PLC as well. The environment of the PLC additionally incorporates some
noise which imitates deviations in the state caused by the communication delay between the
Python-PLC data exchange. Considering that the environment on the PLC interacts with real
hardware in accordance with a certain movement time, the iterative learning schedule with the
multi-complex environments is applied here, too.

The iterative learning schedule is applied and determines the following hyperparamters for
the used PPO agent. The PPO agent consists of one hidden layer with 64 neurons for the actor
and critic network and the ReLu activation function between the layers. The output layer of
the actor network is equipped with the softmax and the critic network with the linear activation
function. The learning rate of the PPO master-agent is set to αlr = 2e−3, the clipping factor to
εclip = 0.2 and the policy update is done over Kepoch = 4 epochs. The pre-training of the PPO
agent with a maximum number of 1, 000 steps over 9, 000 episodes in the Python environment is
shown in Figure 4.29.

The difference of the Python and PLC environment consists of a noise signal added to the
actions which leads to slightly different states. Small deviations of the environments and in
particular while deploying pre-trained agents on real hardware can have drastic consequences. As
explained in Section 2.1 the usage of neural networks as function approximators and stochastic
control policies creates a black-box behavior which is impossible to predict. Therefore, to
minimize this problem the re-training allows the agent to generalize and behave accordingly
even in a slightly different environment. To create a baseline, the pre-trained agent is deployed
on the PLC environment for 1, 000 episodes which is shown in Figure 4.30. It can be seen, that

87

4. MACHINE CONTROL OF THE PSM

Figure 4.29: Pre-training with the RL-PLC implementation.

the agent is not able to perform well in this environment and never reaches the target position.

Figure 4.30: Baseline results of the pre-trained PPO agent with the PLC environment.

To increase the performance of the PPO agent a re-training is conducted with the developed
RL-PLC implementation. By keeping the hyperparameters similar, but exchanging the environ-
ment from Python to the PLC environment, the agent is re-trained again for 10, 000 episodes. In
Figure 4.31, the entire reward course is shown, and after approximately 3, 000 episodes the agent
can not increase the performance anymore. Further, it is shown that the agent poorly behaves in
the beginning of the episodes and then gradually increases the rewards.

Since the PLC environment is made just with a simulation on PLC there is nearly no time
required for advancing to the next state. In real applications with any kind of periphery, the
execution of actions could take a certain amount of time and re-training with this large number
of episodes is not feasible. However, the results after the pre-training, tested again with 1, 000

88

4. MACHINE CONTROL OF THE PSM

Figure 4.31: Results of the re-trained PPO agent with the PLC environment.

episodes, are shown in Figure 4.32. There, the agent significantly increases the performance
compared to the previous baseline and the re-training reduces unintended action choices of the
agent. After the re-training the agent is able to reach the target in 96% of the episodes and
another re-training could increase the performance even more.

Figure 4.32: Results of the re-trained PPO agent with the PLC environment.

This simple example of the developed RL-PLC implementation is generally adaptable to
other applications and shows the applicability of the developed approach. Until now, this novel
approach offers the only possibility to deploy RL agents which run in Python to directly train
with real machines operated by Siemens IPCs. It allows the deployment and asynchronous
update of RL agent dealing with PLC data without external components. Future work on running
the PSM with RL and real hardware will end up in the three stages of training, starting with

89

4. MACHINE CONTROL OF THE PSM

the pre-training with the simplified environment→ DEM environment and finally re-train and
deploy the agent with the RL-PLC implementation on the real PSM.

90

5. DEM PARAMETER OPTIMIZATION

5

DEM Parameter Optimization

In this chapter, the prominent DEM optimization problem is tackled with the coupled RL-DEM
approach and digital twins of the corresponding calibration tests. Nowadays, the comparison of
multiple physical calibrations tests with DEM simulation models attempts to solve the problem
of the inherent ambiguous solution of DEM simulation based on a batch of different parameters.
However, this high dimensional calibration problem requires a sophisticated optimization ap-
proach to reduce the number of iterations of comparing real with simulated results and increase
the quality and accuracy of the entire optimization approach. Therefore, in this optimization
approach, a RL agent is used to efficiently find suitable DEM material input parameters to then
realistically simulate desired materials.

A novel defined MORL approach concerning two objectives iteratively optimizes the material
parameters of the target material by observing suitable DEM simulation environments [211].
The desired target material is automatically evaluated with the developed the automated mobile
calibration unit to enable precise results and a high level of repeatability. Since the computation
of DEM simulations requires significant resources and time, the number of iterations should
be kept as small as possible. Therefore, the approach incorporates the developed methodology
of the pre-training strategy for DEM parameter optimization and thus significantly reduces the
necessary optimization runs and thus the required computation time. The pre-training strategy
uses a simplified MDP where the action is the change of the states itself and thus allows agents
to learn the task rapidly. Additionally, the agent learns the reward function which combines all
non-quantifiable material parameters combined into Θ0 of a proxy material. In this pre-training
the agent learns to solve the optimization with the desired targets, but interacts with a proxy
material which results in a fast computation. By that the trained agent is then able to transfer its

91

5. DEM PARAMETER OPTIMIZATION

knowledge to other materials with a short re-training process.
The combination of gathering the material properties with the developed automated mo-

bile calibration unit and optimizing the material parameters with the almost fully automated
calibration procedure creates a novel and remarkable DEM parameter optimization approach.

5.1 Calibration Procedures

As already briefly explained in Section 2.3, the calibration of DEM parameters yields to match-
ing results of the physical tests and surrogate models in the simulation. By observing target
key parameters and varying the input DEM material parameters at least one suitable material
parameter set is to found.

Figure 5.1: Static AoR measured using the lifting cylinder experiment [211].

In this work two target key parameters, the static and dynamic AoR, which essentially describe
the bulk material behavior, are investigated. The static AoR, commonly used to characterize
the flowability of bulk materials [66], is determined with the lifting cylinder experiment as
depicted in Figure 5.1. There a hollow cylinder is filled with the desired material and while
continuously lifting the cylinder the AoR is formed by the resulting heap. Then the static AoR
αs is measured between the horizontal plane and the material surface. Depending on the specific
material behavior this angle varies 0◦ ≤ αs ≤ 90◦.

The dynamic AoR, the second target key parameter, is obtained by using the rotating drum
experiment, shown in Figure 5.2. There a horizontal cylinder, previously filled with the material,
rotates with a slow constant rotational velocity. The resulting dynamic AoR is then measured
between the horizontal plane and the material surface. To ensure an evaluable AoR, the diameter
of the rotating drum and the speed are adjusted considering the researched material. Ideally, the
speed and the diameter are adjusted to obtain a dynamic AoR in the range of 20◦ ≤ αd ≤ 50◦.

92

5. DEM PARAMETER OPTIMIZATION

Figure 5.2: Dynamic AoR measured using the rotating drum experiment [211].

To conclusively characterize the material properties it is necessary to evaluate the two AoR
key values and a third measurement. The inclined plane as the third measurement is used
to obtain the coefficient of friction between the material and relevant surfaces. The inclined
plane tester, shown in Figure 5.3, determines the coefficient of static friction µs. Generally, this
coefficient describes the relation between the friction force and the normal force of two not
moving bodies with

µs =
Ff

Fn

, (5.1)

µs = tan(αmax). (5.2)

The angle αmax is measured by placing the desired material on the relevant surface and lifting
one site until the specimen starts sliding downwards.

Figure 5.3: Determination of the coefficient of friction with the inclined plane test [211].

To finally validate the results after the optimization process, a modified draw-down test
according to [64], is conducted and the results are compared to the simulation. As shown in
Figure 5.4, this validation test consists of an upper box filled with the desired material, a flap
that opens to let the material flow in the two lower layers, the middle platform and the lower box.

93

5. DEM PARAMETER OPTIMIZATION

This test allows to measure the resulting shear angle α in the upper box and the AoR β of the
poured heap on the middle platform.

Figure 5.4: Validation experiment with the draw-down test [211].

To avoid statistical weaknesses the aforementioned tests are performed several times. Ad-
ditionally, standardized measurement equipment, meaningful descriptions of the experiments
and traceable test results improve the calibration quality and are entirely embedded into the
developed automated mobile calibration unit.

5.2 Calibration Unit

The developed automated mobile calibration unit is equipped with a variety of different physical
which are used for the calibration. The calibration unit is equipped with the lifting cylinder
and rotating drum calibration procedure, the inclined plane tester to measure the coefficients
of friction, a bulk density measurement and the validation test. Sensor equipment measures
the individual target key parameters and a camera system records the tests for possible post-
processing. Due to its mobility, the novel unit offers possibility to directly analyze the desired
material at site, which brings advantages when the outside temperature or humidity must be
taken into account [212]. Assisted with state-of-the-art automation technology, the unit ensures
high quality and reproducible measurements.

Figure 5.5 shows the entire calibration unit and with the HMI, which guides the operator
through the different calibration tests and allows for an operator-independent calibration. The
gathered material data are saved in the unit itself on a flash drive, or directly in a cloud. The

94

5. DEM PARAMETER OPTIMIZATION

data consist of general material information, measurement results of the different tests and
supplementary material. Together with shape and particle size distribution information, these
data are transferred to a local machine that accordingly performs the optimization algorithm.

Figure 5.5: Overview of the mobile DEM-Calibration unit [211].

5.2.1 Materials

To show the applicability and performance of the developed optimization algorithm three different
bulk materials have been tested and validated by the automated mobile calibration unit. The three
materials are plastic granulate, wood pellets and wet sand. They differ in size, shape and general
bulk behavior. Since there are no valid materials parameters available, these materials require a
proper DEM calibration. As shown in Figure 5.6, the plastic granulate consists of almost spherical
particles with a diameter of 3-4 mm and has an average bulk density of ρb,p = 367 kg/m3. The
wood pellets, made of pressed sawdust, have a cylindrical shape with a diameter of 4 mm, a
length of 5-35 mm and a determined average bulk density of ρb,w = 481 kg/m3. With a moisture
of ≈ 10% the wet sand is measured with a bulk density of ρb,s = 1, 617 kg/m3 and has roundish
particles with an average diameter of 1 mm.

95

5. DEM PARAMETER OPTIMIZATION

Figure 5.6: Calibrated materials, from left to right: Plastic Granulate; Wood Pellets; Wet Sand
[211].

Other important material characteristics are the shape approximation and modelling in the
DEM, the size of the particles and the particle size distribution. In the developed calibration
procedure the shape approximation is intended to set manually. In the manual setting, the shape
can be distinguished between simple spheres, multi-spheres, or superquadrics. Plastic granulate
and wet sand are approximated by simple spheres while the wood pellets are simulated using a
multi-sphere template consisting of four overlapping spheres in a row. The individual particle
size and the particle size distribution are measured with sieves. However, to save computation
time and limit the maximum number of particles in the simulation domain, the particle size is
artificially increased, which is also denoted as coarse-graining. The level of coarse-graining is
defined by the up-scaling factor and described by the scaling law [213]. The up-scaling factor
Sup needs to be set for different materials and the desired applications, individually. In recent
works, the maximum scaling factor has been defined to be 4 to properly simulate the dynamic
AoR with a rotating drum [214] or between 3 and 5 using the Hertz-Mindlin contact model
[215]. In another work, the original size of the particles has remained and instead the test-rig has
been up-scaled accordingly [216]. The approach in [216] has been successfully tested for the
determination of the static AoR with an up-scaling factor less than 4. In [217] the influence of the
up-scaling factor in the calibration is described. For calibrated parameters, the used up-scaling
factor must therefore also be specified.

The shape approximation and the coarse-graining cause a deviation of the bulk density in the
simulation and require an adjustment of the particle density. Therefore, a cylinder of a certain
size is filled with the desired material and the total mass of the material is then determined in the
simulation. The deviation of the mass, considering the ideal bulk density, is measured and the
particle density is interpolated and then adjusted. Additionally, to entirely describe the material
properties, the COF between the materials and the relevant surfaces i.e. stainless steel as ground
material and painted surface inside the rotating drum are measured. A summary of the relevant
material properties including the measured target AoR of the static and dynamic test scenarios
which are used in the simulation are shown in Table 5.1.

96

5. DEM PARAMETER OPTIMIZATION

Table 5.1: Material simulation properties and target AoRs.

Parameter Symbol Plastic Granulate Wood Pellets Wet Sand
Particle shape - Sphere Multi-Sphere Sphere
Up-scaling factor Sup 1.3 1.0 4.0
Particle radius rp 3.9− 5.2 · 10−3 m 4 · 10−3 m 1− 4 · 10−3 m

Bulk density ρb 579.03 kg
m3 664.7 kg

m3 3104 kg
m3

COF (stainless steel) µst 0.383 0.325 0.561
COF (painted surface) µps 0.624 0.582 0.485
Target static AoR αgs 25.7◦ 36.6◦ 60.7◦

Target dynamic AoR αgd 30.6◦ 42.8◦ 40.0◦

Tolerance Tn ±1◦ ±1◦ ±3◦

5.3 Methodology

Solving the DEM parameter optimization problem, by iteratively evaluating multiple objectives
yields to solve two major problems. First, by combining multiple objectives, the dimensionality
of the problem grows drastically and thus requires an advanced and sophisticated optimization
approach. Second, an iterative optimization approach is accompanied by the necessary DEM
simulations in every iteration, which results into long computation times. MORL is generally
applicable to this kind of problem, but needs to be adapted to properly solve the DEM opti-
mization problem and is therefore methodologically processed in the following multi-objective
DEM optimization approach. However, training of a MORL agent from scratch needs too
many training episodes and is therefore not practically applicable along with DEM simulations.
Therefore, the developed method of the pre-training strategy assists the agent to gain knowledge
and thus reduces the entire training time.

5.3.1 Multi-Objective DEM Optimization

The comparison of different real calibration tests with surrogate DEM based models requires a
holistic optimization approach which evaluates multiple tests scenarios with regard to an optimal
parameter set. Therefore the developed multi-objective optimization seeks to find an optimal
material parameter set to match the two target AoRs and is based on MORL multi-objective
reinforcement learning as explained in 3.2.5. Based on the mentioned scalarization approach, a
single policy MORL for mo = 2 objectives, incorporating the A2C RL algorithm is developed.
The approach is, however, also extendable for more objectives or other RL algorithms. The entire
MORL-A2C framework for the DEM optimization with both environments, the individually
obtained angles and the scalarization is shown in Figure 5.7.

In the MORL-A2C framework one A2C agent simultaneously interacts with two DEM

97

5. DEM PARAMETER OPTIMIZATION

Figure 5.7: MORL-A2C framework for DEM optimization.

environments represented by the digital twins of both AoR experiments, but which are combined
into only one MDP. The discrete state st represents the current material properties as a vector of
the four concerned properties which are the coefficient of friction, - rolling friction, - restitution
and the cohesion parameter. According to the current state, the agent decides an action at
which represents the discrete change of one parameter of the state vector. This positive or
negative parameter change limited with a given step-sizes yields consequently in a vector of
eight elements. To allow the agent to find a suitable solution for multiple objectives, the reward
signal rt is composed of a rewarding which transposes both objectives into one scalar reward. To
this end, the linear scalarization is given by

rt =
1

n

n∑
i=1

(ωiri), (5.3)

where the individual rewards of the objectives ri,t ∈ {rd,t, rs,t} are individually computed
with

rd,t =

(
1− |αgd − αd,t|

αgd

)2

, (5.4)

rs,t =

(
1− |αgs − αs,t|

αgs

)2

. (5.5)

By adjusting the weighting factor ωi individual objectives can be prioritized. In the DEM
optimization approach, the goal of the agent is to find suitable parameters which match the
measured target angles of the static AoR αgs and the dynamic AoR αgd. Therefore, the reward is
based on evaluating the deviation of the obtained static and dynamic AoRs αs,t(Θ), αd,t(Θ) in

98

5. DEM PARAMETER OPTIMIZATION

the simulation to the measured targets as well as the boundaries of the material properties. These
simulated AoRs depend on the used input parameters and the intrinsic material characteristics
(Θ). These characteristics can be manifolded by any dimension and are e.g. the exact shape and
size of individual particles. The rewarding is thus determined for each time step by

rt =

5, if: |αs,t − αgs| ≤ Tn ∧ |αd,t − αgd| ≤ Tn (5.6)

1

m

m∑
i=1

(ωiRi), if: |αs,t − αgs| ≥ Tn ∧ |αd,t − αgd| ≥ Tn (5.7)

−1, if: αs,t = 0 ∨ αd,t = 0 , (5.8)

where Tn is the tolerance of the desired material. The tolerance Tn also described in the Table 5.1
are manually defined and describe the accuracy of the repeatability of the measurements of a
certain material. In this approach, the weighting factors ω1 = β, ω2 = γ are set to 0.5 for both
objectives, because both objectives have the same importance. The described rewarding allows
the agent to learn to sufficiently move through the state space and find a solution which fits for
both objectives equally. If the agent chooses and action which exceeds the parameter boundaries
the resulting AoR will be set to zero and the agent will receive a negative reward.

5.3.2 Pre-training Strategy for MORL Optimization

Along with supervised learning, RL is also affected in terms of overfitting and generalization
[218]. Usually, to avoid overfitting and enable the agent to generalize, the training of the agent
is conducted with a large number of training episodes and incorporating some kind of noise.
Similar to supervised learning the training samples are separated into a training and testing
set. Hence, at the generalization or memorization ability of agents is achieved when a policy
is trained on an initial set of training trajectories and performs well on a set of different testing
trajectories [219].

However, if the task is very complex and the environment is represented by a continuous
and high-dimensional state space, the required neuronal network structure and thus the training
time to generalize well in all sub-spaces of the environment increases drastically. Additionally,
while working with real or computationally very slow environments the training time becomes
problematic and requires a sophisticated pre-training strategy. Since a pre-training strategy has to
be individually set and requires a deep knowledge of the desired process, it is not only described
in general, but also demonstrated using the explicit example of the DEM parameter optimization.
Nevertheless, the strategy is adaptable and utilizable for any other high-dimensional tasks.

The pre-training strategy is developed to successfully optimize the DEM parameters by using
a unified material. This material acts as a proxy, is used to learn the behavior of any other
materials and supports the RL agent to generalize well. To counteract the large computation
times caused by the long simulation times of the relatively slow DEM solver, the training

99

5. DEM PARAMETER OPTIMIZATION

is expedited with proper pre-training, in which the agent is trained with a pre-recorded and
simplified pre-training data-set. For optimizing the parameters of different materials, the final
goal of the RL agent is not to maximize the total return but to reach a final state which gains a
maximum single reward. By that, the agent learns to calibrate the reward function itself.

Since the state-space of the optimization problem consists of the current material parameters
and the actions are defined as the parameter change itself, the transition probability P (st+1|st, at)
of the MDP of the DEM optimization problem is simplified with

at = ∆s, (5.9)

s+1 = st + ∆s, (5.10)

where the action value is equal to the deviation of the state. Thus, the transition probability is
always P (st+1|st, at) = 1 and is easily learnable.

Additionally, the reward function of the MDP of the optimization problem is defined as

rt(st, at,Θ), (5.11)

where the state-space consists of all quantifiable material properties like Young’s module
or the coefficient of restitution and Θ summarizes all the intrinsic material characteristics. The
reward signal generated by the environment by simulating a certain material is obtained by
measuring the deviation between the simulation and the particle behavior of the real target with

|αt − αx| → rt(st, at,Θ), (5.12)

where αt and αx represent a quantifiable indicator of the particle behavior. If αt ≈ αx the final
state is reached and the reward is maximum. Since the material characteristics combine several
discrete and continuous parameters, the learning of the reward function from scratch for various
materials is tedious. Therefore, the developed pre-training strategy trains the agent to learn the
reward function of a unified material with its characteristics Θ0. This material can be considered
as a proxy for other materials. Especially when changing single material parameters the proxy
material behaves fundamentally similar to other materials.

The aim of the pre-training strategy for the DEM parameter optimization problem is to train
the agent to find material parameters of the proxy material which behave similarly to the desired
material. Therefore, the agent is trained to find the maximum reward considering the reward
function of the proxy material rt(st,Θ0), but the simulation results are evaluated using the αx
of the desired material. The entire pre-training strategy is shown in Figure 5.8 and consists of

100

5. DEM PARAMETER OPTIMIZATION

Figure 5.8: Pre-training strategy of the DEM parameter optimization.

the pre-training and subsequent re-training with the actual material characteristics of the desired
material.

To speed up the pre-training considerably the behavior of the proxy material with all possible
material parameter sets has been simulated completely and recorded accordingly. By iterating all
material parameters, the entire state-space st∀S and the behavior αt(st) of the material are saved
in one look-up table. When the agent chooses a certain action at, the subsequent state st+1 and
the reward rt, based on the obtained indicator value αt are picked from the look-up table. That is
why the pre-training can be repeated any number of times for different desired materials without
the need of simulating the material with the computationally slow DEM model repeatedly.

In the pre-training strategy, the agent starts with a random initial parameter set s0 and learns to
find suitable parameter sets for the proxy material in each episode until the maximum number of
timesteps tmax is reached. The agent then repeats the episodes until a suitable material parameter
set has been found or the maximum number of episodes εmax is reached.

After the pre-training, the agent is re-trained with the actual desired material, i.e. represented
by the actual particle shape, size and particle distribution. The pre-trained agent is therefore
transferred to the re-train task and thus learns the reward function rt(st,Θx) while finding the
maximum reward by interacting with the desired material in DEM simulation environments. The

101

5. DEM PARAMETER OPTIMIZATION

combination of the pre-training and re-training in one single strategy significantly expedites the
required training time compared to learning from scratch with the desired material. Ideally, after
pre-training, the agent requires only one episode with a few steps to find an optimal material
parameter set which is shown in Chapter 5. By choosing a proper proxy material that behaves
similarly to the desired material following the expression

rt(st,Θ0)

rt(st,Θx)
∀st ∈ S, (5.13)

the total amount of re-training is reduced drastically. If the Equation (5.13) becomes 1, there
will be no re-training necessary at all.

This pre-training strategy is also adaptable to other optimization problems or any problem
concerning a high-dimensional state space. The strategy benefits of learning the reward function
by considering only one parameter which concatenates all not quantifiable material characteristics.
Instead of using a look-up table, function approximators can be used to represent the recorded
data of the proxy material. In case of a big variance of the desired materials, an upstream learning
process can additionally decide about the best fitting proxy material.

5.4 Optimization Procedure

The entire optimization procedure including the aforementioned methodologies of the multi-
objective DEM optimization and pre-training strategy is enclosed in a single routine following
certain steps as depicted in Figure 5.9. It is designed to have a minimum set of input parameters
and to almost automatically compute suitable material parameter-sets. The first step presupposes
the analysis of the desired material, defining the shape and size of the particles and gathering all
required information as shown in Table 5.1. In the second step of the initialization of the RL
agent the developed MORL-A2C, explained in detail in the following section, is parameterized
with required hyperparameters like the learning rate and the DNN structures, etc. In the third step
the material parameters are initialized, starting with the shape approximation, particle sizes and
size distribution. Additionally, the bulk density of the shape approximated and coarse-grained
material is determined and adapted by a suitable DEM simulation model. In the fourth step, the
agent is pre-trained with a recorded pre-training data-set as explained in Section 5.3.2. This
developed pre-training allows the agent to learn the fundamental behavior of the material, to
generalize and then apply the learned behavior on other similar optimization tasks. Here, the
motivation of the pre-training is twofold. First, the training with a recorded pre-training data set
significantly saves computation time and also limits the required number of subsequent DEM
simulations. Second, it highly generalizes the training results to allow the agent to condition to
arbitrary materials with varying properties within reasonable limits.

Therefore, the pre-training data-set consists of data recorded with digital twins and arbitrary
material. The material acts as a proxy while all non-quantifiable parameter like the particle shape,

102

5. DEM PARAMETER OPTIMIZATION

precise size and size distribution are considered as one single parameter Θ0 which influences
the reward function. While the transition probability of MDP of the optimization problem is
simplified, the agent only has to learn the reward function in the pre-training.

The choice of the proxy material is irrelevant but must be entirely simulated with all possible
input parameter combinations. The digital twins are modeled as surrogate DEM simulation
models of the real physical tests. The collected results, i.e. the static and dynamic AoR, are
saved into a CSV-file. The file consists of both target AoRs, COF COR, etc. of the relevant
and complete input-parameter space shown in Table 5.2. There, four material parameters are
varied while the Young’s module and Poisson ratio remain constant to keep the state space as
small as possible. Considering the given step-sizes of the four parameters, the entire pre-training
data-set consists of 10, 648 elements. An increasing number of relevant parameters or reducing
the step-size is indeed possible, but requires adjustments of the network capacities.

During the pre-training, the agent learns to match the target AoRs of the analyzed material.
First, the agent starts with a random parameter set and while taking actions, it moves through the
state space. The action space is defined as the change of one material parameter in the given step
size in positive or negative direction. In sum, this results in eight discrete actions. The episodic
pre-training ends when reaching the target AoRs and is followed by the re-training with actual
material.

Figure 5.9: DEM optimization procedure [211].

In the fifth step of the optimization procedure, the actual calibration of the DEM parameters
is started. The pre-trained agent is retrained by interacting with the developed DEM simulation
environments and the desired material. In the re-training the agent has to learn the reward
function of the desired material with the material characteristics Θx. Further information about

103

5. DEM PARAMETER OPTIMIZATION

Table 5.2: Material properties used in the simulation.

Material property Symbol Unit Dimension Step-size
Young’s modulus Y Pa 5 · 106 0
Poisson ratio ν 0.45 0
COF µf 0...1 0.1
COR e 0.1...0.8 0.1
CORF kr 0...1 0.1
Cohesion kc J/m3 0...1 · 105 1 · 104

the environments and the rewarding is given in the following sections. Ideally, the agent can find
a suitable input material parameter set within just a few iterations which yields to match with the
target AoRs. The more similar proxy and desired material and Θ0 ≈ Θx are, the faster the agent
is able to learn the new reward function and to find an optimal set of parameters. If there is no
sufficient result after 30 iterations, the calibration will be restarted with a random initial state. At
the same time the successful calibration is further validated with the validation test in the next
step. In the validation test, the shear and angle of repose are measured and used to prove the
quality of the calibration and completes the optimization procedure.

5.4.1 DEM Environments

The optimization algorithm based on MORL is trained to find an optimal solution for two
competing objectives. In this approach, these objectives are the static and dynamic AoR,
represented by the lifting cylinder and rotating drum experiment. Therefore, both experiments
are true to scale and realistically modeled in the DEM as digital twins and functioning as the
environments. When the agent conducts an action, both experiments start with the defined
material input parameters. The resulting angles are automatically measured and used for the
rewarding as well as for the determination of the optimization progress. Both environments
are depicted and show the lifting cylinder in Figure 5.10 and the rotating drum experiment in
Figure 5.11. The lifting cylinder experiment and simulation use a hollow cylinder with a diameter
of 100 mm and a constant lifting speed of 12 mm/s. The drum of the rotating experiment has a
diameter of 210 mm, a length of 275 mm and rotates with 10 rpm. However, if needed, the size of
the drums and the velocities are adaptable for the desired materials. As previously explained in
Chapter 4, the mechanical parts are simplified to speed up the simulation process. To summarize
all necessary information for the simulation, Table 5.3 completes the remaining simulation
settings and displays the total number of the simulated particles in the simulation domains for
the different materials.

The angles to be determined in both experiments depend on the shape of the approximated
particles, the particle size and distribution and especially the given material parameters. With

104

5. DEM PARAMETER OPTIMIZATION

Figure 5.10: Lifting cylinder environment [211].Figure 5.11: Rotating drum environment [211].

every new action, both simulations are repeated and the angles are measured automatically.
After a first initialization of the environments, the conditions are saved and used for subsequent
runs which significantly reduces the simulation time. Since the DEM is entirely embedded into
Python, information of the positions of particles are exchanged and the angle is automatically
measured in Python.

Table 5.3: General simulation parameters.

Static AoR Env. Dynamic AoR Env.
Time step 1e-5 s 1e-5 s
Simulation time 30 s 15 s
Total number of Par-
ticles
Plastic Granulate 3021 2347
Wood Pellets 5640 4852
Wet Sand 43504 22482

The static AoR is determined by measuring the angle of four sides of the heap. Therefore,
the particles are represented by their positions and divided height-wise into different groups. The
outer particles of each layer are determined and linearly fitted to analyze the AoR of the heap as
shown in Figure 5.12. The dynamic AoR in the rotary drum is analyzed equally but only from
the two face sides as shown in Figure 5.13.

The validation test which proofs the correctness of the determined input parameters is also
simulated by the DEM and compared to the real tests. A manual comparison of the resulting
angles is foreseen and further described in the results section.

105

5. DEM PARAMETER OPTIMIZATION

Figure 5.12: Automatic determination of the static AoR [211].

5.5 Optimization Results

The entire optimization procedure of calibrating DEM input parameters is deployed and validated
using the three described materials plastic granulate, wood pellets and wet sand. The optimization
procedure aims to find suitable parameters for each of these materials with the initialization,
pre-training and calibration phase. The procedure is then finally validated with the validation
test. The hyperparameter of the MORL-A2C agent and DNNs are equally set for all materials.

The DNN structure is defined by two hidden layers each having 32 neurons and equipped
with the ReLu activation function between the layers for the actor and critic network. The output
activation function of the actor network is set to softmax to choose a discrete action, the output
function of the critic network is set to linear. The discount factor is set to γd = 0.9 and the
learning rate is set to αlr = 1e−3 for both networks. The maximum number of episodes in the
pre-training is set to 200 and the maximum steps per episode are set to 100. If the agent reaches
a final state, i.e. matching the target AoRs or reaching the parameter boundaries respectively, the

106

5. DEM PARAMETER OPTIMIZATION

Figure 5.13: Automatic determination of the dynamic AoR [211].

episode ends before the maximum number of steps is reached.

The complete pre-training, solely interacting with the pre-training data-set and the individual
target AoRs takes approx. 4-5 min on an Intel Xeon CPU E5-2697 with 32 cores and 64 GB
RAM. After the pre-training, the agent has learned to move as fast as possible through the
state space and to find a suitable input parameter set that matches the static and dynamic AoR
experiment by starting from a random state. Thus the agent has learned the reward function
which depends on the proxy material and its intrinsic material characteristics Θ0. Figure 5.14
shows an exemplary reward course of the pre-training of the wet sand and shows the cumulative
reward which gradually increases over the episodes. For all three materials, the agent has been
able to sufficiently learn to solve the task and to converge within the 200 episodes.

In the following, the individual results of the optimization of the three materials are discussed.
It is important to note that only one optimization run which outputs a single data-set is shown,
but nevertheless different parameter-sets could generate similar results due to the ambiguous

107

5. DEM PARAMETER OPTIMIZATION

Figure 5.14: Results of the pre-training of the wet sand material [211].

behavior, too. The materials differ in the material characteristics, which are the complex shape,
the particle sizes and size distribution. These characteristics are combined into Θx and influences
the resulting AoRs.

Table 5.4: Results of the calibration optimization of the three materials.

Material property Symbol Plastic Granulate Wood Pellets Wet Sand
COF µf 0.1 0.4 0.1
Cor e 0.4 0.4 0.2
CORF kr 0.4 0.3 0.6
Cohesion [J/m3] kc 0.1 0.1 1.0
Dynamic AoR [◦] αd 31.4 42.6 42.9
Static AoR [◦] αs 25.2 35.6 59.6
Dev. Dynamic AoR
[◦]

∆αd +0.8 -0.2 +2.9

Dev. Static AoR [◦] ∆αd -0.5 -1.0 -1.1

Plastic Granulate: The optimization of the DEM input parameters of the plastic granulate
is shown in Figure 5.15. The result plot depicts the measured AoR of the dynamic test (top plot),
the AoR of the static test (middle plot) and the used material parameters (bottom plot). The
agent was able to find suitable parameters for the plastic granulate within the tolerance after
just 13 iterations. It is apparent that the agent first reduces the cohesion parameter and then
adjusts the remaining coefficients. The total number of the required iterations depends on the
pre-training and the random initial material parameters. To avoid long computation times due
to a poorly chosen initial state, the optimization restarts in a new random state after reaching

108

5. DEM PARAMETER OPTIMIZATION

30 steps. The pre-training allows the agent to generalize and to find a suitable parameter set in

Figure 5.15: Calibration process of plastic granulate and results for the dynamic AoR (top),
static AoR (middle) and parameter values [211].

the re-training phase within a few iterations. To underline the essential need for pre-training the
agent attempts to optimize the parameters for the plastic granulate without pre-training and is
therefore initialized from scratch. As shown in Figure 5.16 the agent failed to find a suitable
parameter-set in the given period. The agent randomly selects actions and is exploring the
state space. The successful training from scratch leading to appropriate results with the actual
DEM environments would take several hundred steps and is therefore not feasible. Hence, the
pre-training is mandatory to achieve an optimization of the DEM parameters in a reasonable
time.

The resulting parameters for all the materials obtained by the entire optimization are depicted
in Table 5.4. The table shows the resulting input parameters, the obtained AoRs as well as
the deviations to the target angles. Additionally, all materials are validated by the described
validation test and confirm the results. The results of both, the real and the simulated draw-drown
test, are visually compared in Figure 5.17. For a quantified evaluation the shear angle αsa and the
angle of repose βaor are measured. For the plastic granulate this validation results in just minor
deviations and therefore confirms the correctness of the determined DEM input parameters.

Wood Pellets: The optimization procedure of the wood pellets is shown in Figure 5.18. It is
important to note that although the pre-training is made with a training data-set simulated with
spherical particles, the optimization of multi-sphere wood pellets still leads to appropriate results.

109

5. DEM PARAMETER OPTIMIZATION

Figure 5.16: Calibration of the plastic granulate without pre-training [211].

Figure 5.17: Comparison of the validation experiment with plastic granulate (left: DEM
simulation, right: Physical test in calibration unit) [211].

110

5. DEM PARAMETER OPTIMIZATION

Table 5.5: Validation test results: Plastic Granulate.

Shear Angle α [◦] Angle of Repose β [◦]

Physical Test 30 34
Simulation Result 29.4 31.2

Figure 5.18: Calibration process of wood pellets and results for the dynamic AoR (top), static
AoR (middle) and parameter values [211].

The agent is trained to generalize and optimizes the parameters of a different material. This is
also underlined by the results in Table 5.4. The validation of the wood pellets, visually shown in
Figure 5.19 and also measurable in Table 5.6 proves the results.

Plastic granulate as well as the wood pellets show a cohesionless, real behavior which was
also learned by the agent. The used SJKR contact model provides no benefits for simulating
such materials but is used to increase the general applicability of the developed approach and
calibrate slight cohesion materials, too.

Table 5.6: Validation test results: Wood Pellets.

Shear Angle α [◦] Angle of Repose β [◦]

Physical Test 40 54
Simulation Result 41.8 55.5

Wet Sand: The results of the wet sand, representing a standard material with cohesion

111

5. DEM PARAMETER OPTIMIZATION

Figure 5.19: Comparison of the validation experiment with wood pellets (left: DEM simulation,
right: Physical test in calibration unit) [211].

behavior, is shown in Figure 5.20. Within just 7 iterations the agent was able to find suitable
input-parameters that match the target AoRs. Here, the actions strongly affect the AoRs and a
decreasing of the step-sizes would further reduce the deviations . However, the validation test
shows comparatively good results and approves visually the results of the DEM simulation as
shown in Figure 5.21. The angle of repose as written in Table 5.7 confirms the correctness of the
optimized parameters while the shear angle could not be measured accurately.

Table 5.7: Validation test results: Wet Sand.

Shear Angle α [◦] Angle of Repose β [◦]

Physical Test - 66
Simulation Result - 63.3

Summary

The novel DEM optimization procedure is the first attempt to use RL to obtain suitable DEM
input parameters for desired materials. By using the developed automated mobile calibration
unit materials can be calibrated at site. Moreover, the unit consists of all required calibration
scenarios where the automation software guides through the different tests and assists the
operator. Furthermore, the results and supplementary material are reliably saved into proper
files. Afterwards, the developed optimization procedure is started and, depending on the desired

112

5. DEM PARAMETER OPTIMIZATION

Figure 5.20: Calibration process of wet sand and results for the dynamic AoR (top), static AoR
(middle) and parameter values [211].

Figure 5.21: Comparison of the validation experiment with wet sand (left: DEM simulation,
right: Physical test in calibration unit) [211].

material, the shape is approximated and the bulk density, etc. are measured. The developed

113

5. DEM PARAMETER OPTIMIZATION

MORL-A2C, capable of combining at least two different objectives is then applied to train
the agent with the pre-training data-set. This data-set, gathered by fully iterating through the
state space, allows to fundamentally train the agent. After the sufficient pre-training with the
proxy material and its intrinsic characteristics Θ0, the agent switches to the DEM calibration
by interacting with suitable digital twins of the physical tests and the desired material with Θx.
Finally, the validation tests confirm the results and are used to evaluate the obtained parameters.

This novel procedure is able to find suitable DEM input parameters with the smallest number
of required trials compared to the state-of-the-art approaches. In particular, the developed
pre-training allows the agent to generalize and hence requires for the re-training only a few time-
costly DEM simulations. The optimization of the three different materials yields to satisfying
results and the approach contributes to remarkably improve future DEM optimizations.

114

6. CONCLUSION AND FUTURE WORK

6

Conclusion and Future Work

In this dissertation the coupling of RL with DEM-based digital twins and appropriate training
methodologies are developed. The coupling and suitable methodologies are demonstrated on
two examples, namely, the machine control of the PSM and the parameter optimization of DEM
simulation input parameters and show overall remarkable results.

This chapter not only summarizes the entire work, methodologies and findings, but also gives
an overview of possible subsequent future works.

6.1 Conclusion

To encounter the increasing complexity of modern machines and processes appropriate simulation
models and suitable control algorithms are essential. Therefore, digital twins representing the
physical counterpart in detail are used to develop sophisticated algorithms. Often digital twins
are already available in the early stages of the product life-cycle and assist to develop algorithms,
optimize the entire product and save commissioning time [121]. When it comes to control
very complex processes, deep learning, and especially RL as a machine learning technique,
has achieved remarkable results in many areas [86]. In order to manage machine control
and parameter optimization tasks, this dissertation combines both, the digital twins and RL
frameworks. The specialty of this work is the novel use of digital twins, which were modeled
using the DEM simulation and are combined with RL. Therefore, this work discusses possible
solutions for the defined main objectives, develops suitable methodologies and shows their
applicability in multiple approaches.

After defining the state-of-the-art of the main subjects of the RL and the DEM, the required

115

6. CONCLUSION AND FUTURE WORK

basics are reflected in the theoretical basics, by explaining the feedforward neural networks,
RL basic formulations and algorithms, the digital twin as well as the DEM computing, particle
description and software. These fundamentals form the basis of the development of suitable
methodologies to achieve convincing results in the following two applications.

The first application is the control of the newly developed PSM and in particular the control
of two different parcel transport constellations. At fist the novel design and development of the
entire PSM are presented. Derived from this design the digital twin of the PSM with the DEM is
created. The PSM is conceptualized to transport and singulate parcels in modern logistic centers
in the early stage of the sortation process. Using peristaltic waves as movement pattern, the PSM
allows for gentle and versatile parcel transport. The DEM turns out to be an ideal tool to model
the digital twin incorporating the dynamics of the mechanical parts and the trilateral interactions
with the transport film and parcels. Due to the complex design of the PSM and interactions of the
individual components a conventional control design is not very suitable and a machine learning
approach is developed. However, the training of the RL agents from scratch while interacting
with the DEM digital twin as a dynamic environment in order to achieve the control of the PSM
solving transportation tasks with parcels, is hardly possible. The simulation time of the DEM
models is too long to feasibly tune the required DNN structure, since the required training time
would take weeks of computation. These drawbacks require special methodologies to deal with
very complex and slow simulation models acting as environments in a RL control structure.

The first developed methodology describes the coupling of the DEM while wrapping it as
a Python library which allows the use of the DEM in an object-oriented manner. By using
Python, the DEM is extended to operate sequentially and event-based as well as to communicate
with standard interfaces which are required for the further development of DEM models as
dynamic environments. Additionally, Python inherently supports state-of-the-art machine learn-
ing libraries and therefore allows the integration of the DEM into RL frameworks. Two other
methodologies namely the iterative learning schedule and the HRL approach are developed to
reduce the complexity of high-dimensional control tasks and therefore reduce the entire training
time of RL agents. Additionally, the novel methodology of the distributed ACRL learning allows
to train on multiple DEM instances at the same time and speeds up the training supportively. All
these methodologies allow to properly use RL in combination with DEM-based digital twins
as environments for complex control tasks and parameter optimization. In order to validate the
developed methods and to show the applicability and performance, they are used in two different
control tasks namely the single- and multi-actuation transportation of parcels.

Applied to the first single-actuation transportation task, the iterative learning schedule with
multi-complex environments and the parallel computation with the distributed ACRL learning,
allow to successfully train the RL agent with the complex DEM environment in a reasonable time.
By dividing the multi-actuation transportation task into different levels of the HRL framework,

116

6. CONCLUSION AND FUTURE WORK

the actuator-unit control and the orchestration of multiple units can be considered differently. In
the HRL framework, the master-agent activates certain sub-agents or distinct sub-controls, so
that the low-level sub-agents control the movement of the actuator-units individually. A proper
pre-training in a simplified environment and a re-training for a few episodes with the DEM
environment yield to a successful parcel transport. To conclusively shift the developed RL agents
from the simulation environment to the real machine, a RL-PLC implementation is developed.
This implementation allows the deployment and training of RL agents developed in Python,
which are then directly used on Siemens IPCs and interact with real hardware. An exemplary
adapted PSM task shows the applicability of pre-and re-training RL agents on the PLC.

The second application deals with the DEM parameter optimization and also requires espe-
cially developed methodologies. For valid DEM simulations of desired materials, it is mandatory
to calibrate and subsequently optimize the DEM material input parameters. By considering
the different targets which have to be fulfilled to reach a proper optimization, a special multi-
objective RL approach is developed. Together with the developed pre-training strategy an
optimization routine is developed which significantly reduces the required iteration of the entire
optimization procedure. This procedure initially starts with the specially designed automated
mobile calibration unit to calibrate and analyze the material characteristics. This unit, equipped
with all relevant test procedures and supporting automation technology is used to analyze three
different materials. While observing two important key parameters, namely the static and dy-
namic AoR the developed MORL-A2C agent learns to find suitable input parameters for different
materials. The developed digital twins of the physical calibration tests are modeled and act
as dynamic environments. Due to a pre-training that uses a pre-trained data-set, the agent is
forced to generalize its learned knowledge to apply it on other materials. With a short re-training
phase and only a few iterations the agent is then able to find optimal material parameters. The
developed optimization procedure is able to analyze a broad range of different materials and
shows remarkable performances and short computation times compared to other works.

This dissertation combines the two research fields of RL and the DEM. The work contributes
methodologies for the coupling and handling of the training of RL agents with the computation-
ally slow and high-dimensional DEM simulations. Therefore, the DEM-RL approach can be
used to simulate and control or optimize complex problems and machines, even in areas which do
not refer to bulk good handling. The developed methodologies are adaptable to other simulation
methods and help to solve optimization tasks with high-dimensional and computationally slow
environments.

117

6. CONCLUSION AND FUTURE WORK

6.2 Future Work

Since this work describes the basis for coupling RL and DEM approaches, the following deliber-
ations based on these contributions are well worth considering. First of all, the development of
the PSM could be continued in a way that the developed RL algorithms are tested on the real
machine. Therefore, the trained agents of the single- and multi-actuation transportation task
could be directly re-trained with the real machine and the developed RL-PLC implementation in
a third phase. Therefore the iterative learning schedule could be enhanced to three stages with
according update-rules to find proper DNN structures. The observations for both tasks can be
obtained by the used camera system to detect the position of the parcel and take the positioning
information of the used servo drives. Additionally, other tasks of the PSM like the singulation of
bulky parcels or the transportation of multiple parcels could be focused.

By adjusting the step-size of the material parameter changes of the optimization procedure
the accuracy of the developed approach could be increased. Furthermore, the use of e.g. the
PPO instead of the A2C RL agent, could decrease the required training episodes and thus the
entire training time. The pre-training data-set could be enhanced to a batch of different material
types to reduce the variance between the pre-trained and researched materials. Using variants of
pre-training data-sets could also simplify the degree of generalization of the agents and facilitate
the pre-training.

Further, the developed combination of RL and the DEM can be used to optimize different
kinds of machine types or processes. The DEM as powerful tool allows to simulate discrete
and discontinuous materials, model complex movements of geometries, offer the possibility
to approximate arbitrary shapes or forms bonds to generate a flexible behavior. In particular,
in combination with Python, the applicability of the DEM is even more enhanced and can be
used for any kind of data-driven approaches. Furthermore, the developed methodologies can be
adapted to other simulation methods like the FEM or CFD and help to solve tasks in the fields of
structural analysis or flow dynamics.

118

BIBLIOGRAPHY

Bibliography

[1] R. Baheti and H. Gill, “Cyber-physical systems”, The impact of control technology,
vol. 12, no. 1, pp. 161–166, 2011.

[2] Z. Long, Y. Lu, X. Ma, and B. Dong, “PDE-net: Learning PDEs from data”, in Proceed-

ings of the 35th International Conference on Machine Learning, J. Dy and A. Krause,
Eds., ser. Proceedings of Machine Learning Research, vol. 80, PMLR, 2018, pp. 3208–
3216. [Online]. Available: https://proceedings.mlr.press/v80/long18a.html.

[3] L. Wright and S. Davidson, “How to tell the difference between a model and a digital
twin”, Advanced Modeling and Simulation in Engineering Sciences, vol. 7, no. 1, pp. 1–
13, 2020.

[4] A. P. Markopoulos, N. E. Karkalos, and E.-L. Papazoglou, “Meshless methods for the
simulation of machining and micro-machining: A review”, Archives of Computational

Methods in Engineering, vol. 27, no. 3, pp. 831–853, 2020.

[5] A. B. Yu, “Discrete element method”, Engineering Computations, vol. 21, no. 2/3/4,
pp. 205–214, 2004.

[6] S. Ji and S. Liang, “DEM-FEM-MBD coupling analysis of landing process of lunar lander
considering landing mode and buffering mechanism”, Advances in Space Research, 2021.

[7] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, D. Guo, and C.
Blundell, Agent57: Outperforming the atari human benchmark, 2020.

[8] A. G. Barto, P. S. Thomas, and R. S. Sutton, “Some recent applications of reinforcement
learning”, in Proceedings of the Eighteenth Yale Workshop on Adaptive and Learning

Systems, 2017.

119

https://proceedings.mlr.press/v80/long18a.html

BIBLIOGRAPHY

[9] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L.
Sifre, D. Kumaran, T. Graepel, et al., “A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play”, Science, vol. 362, no. 6419, pp. 1140–
1144, 2018.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[11] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and D. Hassabis,
“Reinforcement learning, fast and slow”, Trends in cognitive sciences, vol. 23, no. 5,
pp. 408–422, 2019.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning”, arXiv preprint arXiv:1312.5602,
2013.

[13] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic
policy gradient algorithms”, in International Conference on Machine Learning, 2014,
pp. 387–395.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning”, arXiv preprint arXiv:1509.02971,
2015.

[15] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu, “Asynchronous methods for deep reinforcement learning”, in International

conference on machine learning, 2016, pp. 1928–1937.

[16] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization”, in International conference on machine learning, 2015, pp. 1889–1897.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy

optimization algorithms, 2017.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning”, nature, vol. 518, no. 7540, pp. 529–533, 2015.

[19] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of go with deep neural networks and tree search”,
nature, vol. 529, no. 7587, pp. 484–489, 2016.

120

BIBLIOGRAPHY

[20] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche,
T. Graepel, and D. Hassabis, “Mastering the game of go without human knowledge”,
nature, vol. 550, no. 7676, pp. 354–359, 2017.

[21] Deepmind. (2020). Alphazero: Shedding new light on the grand games of chess, shogi
and go, [Online]. Available: https://deepmind.com/blog/article/alphazero-shedding-new-
light-grand-games-chess-shogi-and-go (visited on 04/01/2022).

[22] Deepmind. (2020). Alphastar: Mastering the real-time strategy game StarCraft II, [On-
line]. Available: https://deepmind.com/blog/article/alphastar-mastering- real- time-
strategy-game-starcraft-ii (visited on 04/01/2022).

[23] B. Chan, “OpenAI Five”, OpenAI, vol. 2018, 2018.

[24] Rui Nian, Jinfeng Liu, and Biao Huang, “A review on reinforcement learning: Introduc-
tion and applications in industrial process control”, Computers & Chemical Engineering,
vol. 139, p. 106 886, 2020.

[25] H. Nguyen and H. La, “Review of deep reinforcement learning for robot manipulation”, in
2019 Third IEEE International Conference on Robotic Computing (IRC), 2019, pp. 590–
595.

[26] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey”,
The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[27] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al., “Qt-opt: Scalable deep reinforcement learning
for vision-based robotic manipulation”, arXiv preprint arXiv:1806.10293, 2018.

[28] H. Fan, L. Zhu, C. Yao, J. Guo, and X. Lu, “Deep reinforcement learning for energy
efficiency optimization in wireless networks”, in 2019 IEEE 4th International Conference

on Cloud Computing and Big Data Analysis (ICCCBDA), 2019, pp. 465–471.

[29] Y. Wang, K. Velswamy, and B. Huang, “A long-short term memory recurrent neural
network based reinforcement learning controller for office heating ventilation and air
conditioning systems”, Processes, vol. 5, no. 3, p. 46, 2017.

[30] S. Bhagat, H. Banerjee, Z. T. Ho Tse, and H. Ren, “Deep reinforcement learning for soft,
flexible robots: Brief review with impending challenges”, Robotics, vol. 8, no. 1, p. 4,
2019.

[31] Deepmind. (2020). Safety-first AI for autonomous data centre cooling and industrial
control, [Online]. Available: https : / / deepmind . com / blog / article / safety - first - ai -
autonomous-data-centre-cooling-and-industrial-control (visited on 04/01/2022).

121

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-cooling-and-industrial-control
https://deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-cooling-and-industrial-control

BIBLIOGRAPHY

[32] D. Bertsekas, Reinforcement learning and optimal control. Athena Scientific, 2019.

[33] S. X. Ding, Advanced methods for fault diagnosis and fault-tolerant control. Springer,
2021.

[34] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming
for feedback control”, IEEE circuits and systems magazine, vol. 9, no. 3, pp. 32–50,
2009.

[35] A. Heydari, “Stability analysis of optimal adaptive control using value iteration with
approximation errors”, IEEE Transactions on Automatic Control, vol. 63, no. 9, pp. 3119–
3126, 2018.

[36] K. G. Vamvoudakis and F. L. Lewis, “Online actor–critic algorithm to solve the continuous-
time infinite horizon optimal control problem”, Automatica, vol. 46, no. 5, pp. 878–888,
2010.

[37] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line learning and opti-
mization based on adaptive dynamic programming”, Neurocomputing, vol. 78, no. 1,
pp. 3–13, 2012.

[38] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea, E. Solowjow,
and S. Levine, “Residual reinforcement learning for robot control”, in 2019 International

Conference on Robotics and Automation (ICRA), 2019, pp. 6023–6029.

[39] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, Domain ran-

domization for transferring deep neural networks from simulation to the real world,
2017.

[40] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke,
Sim-to-real: Learning agile locomotion for quadruped robots, 2018.

[41] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep reinforcement
learning for robotics: A survey”, in 2020 IEEE Symposium Series on Computational

Intelligence (SSCI), 2020, pp. 737–744.

[42] W. Chen, M. van Etten, T. Donohue, and K. Williams, “Application of the coupled
discrete element modelling and modelica based multi-body dynamics in system-level
modelling”, in International Conference on Discrete Element Methods, 2016, pp. 571–
578.

[43] S. Lommen, G. Lodewijks, and D. L. Schott, “Co-simulation framework of discrete
element method and multibody dynamics models”, Engineering Computations, vol. 35,
no. 3, pp. 1481–1499, 2018.

122

BIBLIOGRAPHY

[44] G. K. P. Barrios and L. M. Tavares, “A preliminary model of high pressure roll grinding
using the discrete element method and multi-body dynamics coupling”, International

Journal of Mineral Processing, vol. 156, pp. 32–42, 2016.

[45] M. Michael, F. Vogel, and B. Peters, “DEM-FEM coupling simulations of the interactions
between a tire tread and granular terrain”, Computer Methods in Applied Mechanics and

Engineering, vol. 289, pp. 227–248, 2015.

[46] N. Guo and J. Zhao, “A coupled FEM/DEM approach for hierarchical multiscale mod-
elling of granular media”, International Journal for Numerical Methods in Engineering,
vol. 99, no. 11, pp. 789–818, 2014.

[47] T. Tsuji, K. Yabumoto, and T. Tanaka, “Spontaneous structures in three-dimensional bub-
bling gas-fluidized bed by parallel DEM-CFD coupling simulation”, Powder Technology,
vol. 184, no. 2, pp. 132–140, 2008.

[48] C. Goniva, C. Kloss, A. Hager, and S. Pirker, “An open source CFD-DEM perspective”,
in Proceedings of OpenFOAM Workshop, Göteborg, 2010, pp. 22–24.

[49] D. Liu, C. Bu, and X. Chen, “Development and test of CFD-DEM model for complex ge-
ometry: A coupling algorithm for fluent and dem”, Computers & Chemical Engineering,
vol. 58, pp. 260–268, 2013.

[50] A. Alexiadis, M. J. Simmons, K. Stamatopoulos, H. K. Batchelor, and I. Moulitsas, “The
duality between particle methods and artificial neural networks”, Scientific RepoRtS,
vol. 10, no. 1, pp. 1–7, 2020.

[51] F. Westbrink and A. Schwung, “Virtual commissioning approach based on the discrete
element method”, in 2018 IEEE 16th International Conference on Industrial Informatics

(INDIN), IEEE, 2018, pp. 424–429.

[52] Adam Kešner, Rostislav Chotěborský, Miloslav Linda, Monika Hromasová, Egidijus
Katinas, and Hadi Sutanto, “Stress distribution on a soil tillage machine frame segment
with a chisel shank simulated using discrete element and finite element methods and
validate by experiment”, Biosystems Engineering, vol. 209, pp. 125–138, 2021.

[53] A. Munjiza, H. Smoljanović, N. Živaljić, A. Mihanovic, V. Divić, I. Uzelac, Ž. Nikolić,
I. Balić, and B. Trogrlić, “Structural applications of the combined finite–discrete element
method”, Computational Particle Mechanics, vol. 7, no. 5, pp. 1029–1046, 2020.

[54] W. Song, B. Huang, X. Shu, J. Stránský, and H. Wu, “Interaction between railroad ballast
and sleeper: A DEM-FEM approach”, International Journal of Geomechanics, vol. 19,
no. 5, p. 04 019 030, 2019.

123

BIBLIOGRAPHY

[55] C. Richter, “Gekoppelte Diskrete Elemente und Mehrkörpersimulation am Beispiel von
Becherförderern”, PhD thesis, Otto-von-Guericke-Universität Magdeburg, Fakultät für
Maschinenbau, 2020.

[56] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauss, H. Elmqvist, A. Junghanns,
J. Mauss, M. Monteiro, T. Neidhold, et al., “The functional mockup interface for tool
independent exchange of simulation models”, in Proceedings of the 8th International

Modelica Conference, 2011, pp. 105–114.

[57] Christian Richter, Thomas Roessler, Hendrik Otto, and André Katterfeld, “Coupled
discrete element and multibody simulation, part i implementation, verification and
validation”, Powder Technology, 2020.

[58] EDEM Simulation. (2019). Generic EDEM material model (GEMM) database, [Online].
Available: https://community.altair.com/community?id=community_Blog&sys_id=
cce0331cdbef2410e8863978f49619e4 (visited on 04/01/2022).

[59] C. M. Wensrich and A. Katterfeld, “Rolling friction as a technique for modelling particle
shape in DEM”, Powder Technology, vol. 217, pp. 409–417, 2012.

[60] S. C. Thakur, J. P. Morrissey, J. Sun, J. F. Chen, and J. Y. Ooi, “Micromechanical analysis
of cohesive granular materials using the discrete element method with an adhesive elasto-
plastic contact model”, Granular Matter, vol. 16, no. 3, pp. 383–400, 2014.

[61] K. Tanaka, M. Nishida, T. Kunimochi, and T. Takagi, “Discrete element simulation and
experiment for dynamic response of two-dimensional granular matter to the impact of a
spherical projectile”, Powder Technology, vol. 124, no. 1-2, pp. 160–173, 2002.

[62] Asaf, Z and Rubinstein, D and Shmulevich, I, “Determination of discrete element model
parameters required for soil tillage”, Soil and Tillage Research, vol. 92, no. 1-2, pp. 227–
242, 2007.

[63] C. J. Coetzee, “Review: Calibration of the discrete element method”, Powder Technology,
vol. 310, pp. 104–142, 2017.

[64] T. Roessler, C. Richter, A. Katterfeld, and F. Will, “Development of a standard calibration
procedure for the DEM parameters of cohesionless bulk materials–part I: Solving the
problem of ambiguous parameter combinations”, Powder Technology, vol. 343, pp. 803–
812, 2019.

[65] B. El Kassem, N. Salloum, T. Brinz, Y. Heider, and B. Markert, “A semi-automated
DEM parameter calibration technique of powders based on different bulk responses
extracted from auger dosing experiments”, KONA Powder and Particle Journal, 2020.

124

https://community.altair.com/community?id=community_Blog&sys_id=cce0331cdbef2410e8863978f49619e4
https://community.altair.com/community?id=community_Blog&sys_id=cce0331cdbef2410e8863978f49619e4

BIBLIOGRAPHY

[66] Y. C. Zhou, B. H. Xu, A.-B. Yu, and P. Zulli, “An experimental and numerical study of
the angle of repose of coarse spheres”, Powder Technology, vol. 125, no. 1, pp. 45–54,
2002.

[67] H. M. B. Al-Hashemi and O. S. B. Al-Amoudi, “A review on the angle of repose of
granular materials”, Powder Technology, vol. 330, pp. 397–417, 2018.

[68] T. Roessler and A. Katterfeld, “DEM parameter calibration of cohesive bulk materials
using a simple angle of repose test”, Particuology, vol. 45, pp. 105–115, 2019.

[69] G. Lumay, N. M. Tripathi, P. Scientist, and F. Francqui, “How to gain a full understanding
of powder flow properties, and the benefits of doing so”, ONdrugDelivery Mag, vol. 102,
pp. 42–46, 2019.

[70] H. N. Pitanga, J.-P. Gourc, and O. M. Vilar, “Interface shear strength of geosynthetics:
Evaluation and analysis of inclined plane tests”, Geotextiles and Geomembranes, vol. 27,
no. 6, pp. 435–446, 2009.

[71] C. J. Coetzee, “Calibration of the discrete element method and the effect of particle
shape”, Powder Technology, vol. 297, pp. 50–70, 2016.

[72] Z. Chen, C. Wassgren, E. Veikle, and K. Ambrose, “Determination of material and
interaction properties of maize and wheat kernels for DEM simulation”, Biosystems

Engineering, vol. 195, pp. 208–226, 2020.

[73] D. Höhner, S. Wirtz, and V. Scherer, “Experimental and numerical investigation on
the influence of particle shape and shape approximation on hopper discharge using the
discrete element method”, Powder Technology, vol. 235, pp. 614–627, 2013.

[74] D. Schulze, Powders and bulk solids: Behavior, characterization, storage and flow.
Berlin: Springer, 2008.

[75] A. V. Boikov, R. V. Savelev, and V. A. Payor, “DEM calibration approach: Design of
experiment”, in Journal of Physics: Conference Series, vol. 1015, 2018, p. 032 017.

[76] S. Zhang, M. Z. Tekeste, Y. Li, A. Gaul, D. Zhu, and J. Liao, “Scaled-up rice grain mod-
elling for DEM calibration and the validation of hopper flow”, Biosystems Engineering,
vol. 194, pp. 196–212, 2020.

[77] S. B. Turkia, D. N. Wilke, P. Pizette, N. Govender, and N.-E. Abriak, “Benefits of virtual
calibration for discrete element parameter estimation from bulk experiments”, Granular

Matter, vol. 21, no. 4, p. 110, 2019.

[78] H. Q. Do, A. M. Aragón, and D. L. Schott, “A calibration framework for discrete element
model parameters using genetic algorithms”, Advanced Powder Technology, vol. 29,
no. 6, pp. 1393–1403, 2018.

125

BIBLIOGRAPHY

[79] B. El-Kassem, N. Salloum, T. Brinz, Y. Heider, and B. Markert, “A multivariate regres-
sion parametric study on DEM input parameters of free-flowing and cohesive powders
with experimental data-based validation”, Computational Particle Mechanics, pp. 1–25,
2020.

[80] C. Richter, T. Rößler, G. Kunze, A. Katterfeld, and F. Will, “Development of a standard
calibration procedure for the DEM parameters of cohesionless bulk materials–part II:
Efficient optimization-based calibration”, Powder Technology, vol. 360, pp. 967–976,
2020.

[81] F. Ye, C. Wheeler, B. Chen, J. Hu, K. Chen, and W. Chen, “Calibration and verification
of DEM parameters for dynamic particle flow conditions using a backpropagation neural
network”, Advanced Powder Technology, vol. 30, no. 2, pp. 292–301, 2019.

[82] L. Benvenuti, C. Kloss, and S. Pirker, “Identification of DEM simulation parameters by
artificial neural networks and bulk experiments”, Powder Technology, vol. 291, pp. 456–
465, 2016.

[83] M. Alnaggar and N. Bhanot, “A machine learning approach for the identification of the
lattice discrete particle model parameters”, Engineering Fracture Mechanics, vol. 197,
pp. 160–175, 2018.

[84] R. Kumar, C. M. Patel, A. K. Jana, and S. R. Gopireddy, “Prediction of hopper discharge
rate using combined discrete element method and artificial neural network”, Advanced

Powder Technology, vol. 29, no. 11, pp. 2822–2834, 2018.

[85] Z. Hu, X. Liu, and C. Chu, “DEM data-driven modeling of repose angle of granular
materials”, in 2020 2nd International Conference on Industrial Artificial Intelligence

(IAI), 2020, pp. 1–6.

[86] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[87] K. Hornik, “Approximation capabilities of multilayer feedforward networks”, Neural

networks, vol. 4, no. 2, pp. 251–257, 1991.

[88] E. Charniak, Introduction to Deep Learning. The MIT Press, 2019.

[89] C. C. Aggarwal, Neural Networks and Deep Learning: A Textbook. Cham: Springer
International Publishing, 2018.

[90] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning. MIT press
Cambridge, 1998, vol. 2.

[91] J. R. Norris, Markov chains. Cambridge University Press, 1998.

[92] D. Silver, “Reinforcement learning and simulation-based search in computer go”, PhD
thesis, University of Alberta Libraries, 2009.

126

BIBLIOGRAPHY

[93] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist rein-
forcement learning”, Machine Learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[94] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor–critic algo-
rithms”, Automatica, vol. 45, no. 11, pp. 2471–2482, 2009.

[95] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas,
“Sample efficient actor-critic with experience replay”, arXiv preprint arXiv:1611.01224,
2016.

[96] K. van Moffaert and A. Nowé, “Multi-objective reinforcement learning using sets of
pareto dominating policies”, The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 3483–3512, 2014.

[97] K. van Moffaert, M. M. Drugan, and A. Nowé, “Scalarized multi-objective reinforcement
learning: Novel design techniques”, in 2013 IEEE Symposium on Adaptive Dynamic

Programming and Reinforcement Learning (ADPRL), 2013, pp. 191–199.

[98] C. Liu, X. Xu, and D. Hu, “Multiobjective reinforcement learning: A comprehensive
overview”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 3,
pp. 385–398, 2015.

[99] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker, “Empirical evaluation
methods for multiobjective reinforcement learning algorithms”, Machine Learning,
vol. 84, no. 1-2, pp. 51–80, 2011.

[100] H. Iima and Y. Kuroe, “Multi-objective reinforcement learning for acquiring all pareto
optimal policies simultaneously-method of determining scalarization weights”, in 2014

IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2014, pp. 876–
881.

[101] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for multi-objective
reinforcement learning and policy adaptation”, in Advances in Neural Information

Processing Systems, 2019, pp. 14 636–14 647.

[102] H. Dong, Z. Ding, and S. Zhang, Deep reinforcement learning: Fundamentals, research

and applications. Singapore: Springer, 2020.

[103] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek, “Hierarchical reinforcement learning:
A comprehensive survey”, ACM Computing Surveys (CSUR), vol. 54, no. 5, pp. 1–35,
2021.

[104] M. Baykal-Gürsoy, “Semi-markov decision processes”, Wiley Encyclopedia of Opera-

tions Research and Management Science, 2010.

127

BIBLIOGRAPHY

[105] Richard S. Sutton, Doina Precup, and Satinder Singh, “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning”, Artificial Intelligence,
vol. 112, no. 1, pp. 181–211, 1999.

[106] P. Dayan and G. E. Hinton, Feudal reinforcement learning. nips’93 (pp. 271–278), 1993.

[107] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ value function
decomposition”, Journal of artificial intelligence research, vol. 13, pp. 227–303, 2000.

[108] R. Parr and S. Russell, “Reinforcement learning with hierarchies of machines”, Advances

in neural information processing systems, vol. 10, pp. 1043–1049, 1997.

[109] P.-L. Bacon, J. Harb, and D. Precup, The option-critic architecture, 2016.

[110] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K.
Kavukcuoglu, FeUdal networks for hierarchical reinforcement learning, 2017.

[111] M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne, and L. Wang,
“Modeling, simulation, information technology & processing roadmap”, National Aero-

nautics and Space Administration, 2012.

[112] M. Grieves and J. Vickers, “Digital twin: Mitigating unpredictable, undesirable emergent
behavior in complex systems”, in Transdisciplinary perspectives on complex systems,
Springer, 2017, pp. 85–113.

[113] Werner Kritzinger, Matthias Karner, Georg Traar, Jan Henjes, and Wilfried Sihn, “Dig-
ital twin in manufacturing: A categorical literature review and classification”, IFAC-

PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018.

[114] A. Madni, C. Madni, and S. Lucero, “Leveraging digital twin technology in model-based
systems engineering”, Systems, vol. 7, no. 1, p. 7, 2019.

[115] S. Boschert and R. Rosen, “Digital twin—the simulation aspect”, in Mechatronic futures,
Springer, 2016, pp. 59–74.

[116] M. Schluse, M. Priggemeyer, L. Atorf, and J. Rossmann, “Experimentable digital twins—
streamlining simulation-based systems engineering for industry 4.0”, IEEE Transactions

on Industrial Informatics, vol. 14, no. 4, pp. 1722–1731, 2018.

[117] M. Schluse, L. Atorf, and J. Rossmann, “Experimentable digital twins for model-based
systems engineering and simulation-based development”, in 2017 Annual IEEE Interna-

tional Systems Conference (SysCon), 2017, pp. 1–8.

[118] F. Jaensch, A. Csiszar, C. Scheifele, and A. Verl, “Digital twins of manufacturing systems
as a base for machine learning”, in 2018 25th International Conference on Mechatronics

and Machine Vision in Practice (M2VIP), 2018, pp. 1–6.

128

BIBLIOGRAPHY

[119] I. Verner, D. Cuperman, A. Fang, M. Reitman, T. Romm, and G. Balikin, “Robot
online learning through digital twin experiments: A weightlifting project”, in Online

Engineering & Internet of Things, M. E. Auer and D. G. Zutin, Eds., ser. Lecture Notes
in Networks and Systems, Springer International Publishing, 2017, pp. 307–314.

[120] W. Koch, R. Mancuso, R. West, and A. Bestavros, “Reinforcement learning for UAV
attitude control”, ACM Transactions on Cyber-Physical Systems, vol. 3, no. 2, pp. 1–21,
2019.

[121] Kaishu Xia, Christopher Sacco, Max Kirkpatrick, Clint Saidy, Lam Nguyen, Anil Kir-
caliali, and Ramy Harik, “A digital twin to train deep reinforcement learning agent
for smart manufacturing plants: Environment, interfaces and intelligence”, Journal of

Manufacturing Systems, 2020.

[122] M. Fritz, A. Wolfschluckner, and D. Jodin, “Simulation von Paketen im Pulk”, Logistics

Journal, vol. 2013, no. 11, 2013.

[123] P. A. Cundall, “A computer model for simulating progressive, large-scale movement in
blocky rock system”, Proceedings of the International Symposium on Rock Mechanics,
pp. 129–136, 1971.

[124] P. A. Cundall and O. D. L. Strack, “A discrete numerical model for granular assemblies”,
geotechnique, vol. 29, no. 1, pp. 47–65, 1979.

[125] H. P. Zhu, Z. Y. Zhou, R. Y. Yang, and A. B. Yu, “Discrete particle simulation of
particulate systems: A review of major applications and findings”, Chemical engineering

science, vol. 63, no. 23, pp. 5728–5770, 2008.

[126] L. Jing and O. Stephansson, Fundamentals of discrete element methods for rock engi-

neering: Theory and applications. Elsevier, 2007, vol. 85.

[127] R. Bharadwaj et al., “Using DEM to solve bulk material handling problems”, Chemical

Engineering Progress, vol. 108, no. 9, pp. 54–58, 2012.

[128] D. Ilic, A. Roberts, and C. Wheeler, “Modelling bulk solid interactions in transfer chutes:
Accelerated flow”, Chemical engineering science, vol. 209, p. 115 197, 2019.

[129] D. Wei, R. C. Hurley, L. H. Poh, D. Dias-da-Costa, and Y. Gan, “The role of particle
morphology on concrete fracture behaviour: A meso-scale modelling approach”, Cement

and Concrete Research, vol. 134, p. 106 096, 2020.

[130] F. Fleissner, T. Gaugele, and P. Eberhard, “Applications of the discrete element method
in mechanical engineering”, Multibody system dynamics, vol. 18, no. 1, p. 81, 2007.

129

BIBLIOGRAPHY

[131] H. Nakashima, H. Fujii, A. Oida, M. Momozu, H. Kanamori, S. Aoki, T. Yokoyama,
H. Shimizu, J. Miyasaka, and K. Ohdoi, “Discrete element method analysis of single
wheel performance for a small lunar rover on sloped terrain”, Journal of Terramechanics,
vol. 47, no. 5, pp. 307–321, 2010.

[132] Y. Li, W. Wu, X. Chu, and W. Zou, “Effects of stress paths on triaxial compression me-
chanical properties of QH-E lunar soil simulant studied by DEM simulation”, Granular

Matter, vol. 22, no. 2, pp. 1–10, 2020.

[133] D. Prims, J. Kötz, S. Göttlich, and A. Katterfeld, “Validation of flow models as new
simulation approach for parcel handling in bulk mode”, arXiv preprint arXiv:1901.08482,
2019.

[134] G. S. Chadha, F. Westbrink, T. Schütte, and A. Schwung, “Optimal dosing of bulk
material using mass-flow estimation and DEM simulation”, in 2018 IEEE International

Conference on Industrial Technology (ICIT), 2018, pp. 256–261.

[135] J. Horabik, P. Parafiniuk, and M. Molenda, “Stress profile in bulk of seeds in a shallow
model silo as influenced by mobilisation of particle-particle and particle-wall friction:
Experiments and DEM simulations”, Powder Technology, vol. 327, pp. 320–334, 2018.

[136] P. W. Cleary, “Predicting charge motion, power draw, segregation and wear in ball mills
using discrete element methods”, Minerals Engineering, vol. 11, no. 11, pp. 1061–1080,
1998.

[137] S. Lobo-Guerrero and L. E. Vallejo, “Discrete element method analysis of railtrack
ballast degradation during cyclic loading”, Granular Matter, vol. 8, no. 3-4, p. 195, 2006.

[138] Y. P. Cheng, Y. Nakata, and M. D. Bolton, “Discrete element simulation of crushable
soil”, geotechnique, vol. 53, no. 7, pp. 633–641, 2003.

[139] Itasca Consulting Group, Inc. (2018) PFC, Particle flow code, ver. 6.0. minneapolis:

Itasca.

[140] M. Otsubo, C. O’Sullivan, and T. Shire, “Empirical assessment of the critical time
increment in explicit particulate discrete element method simulations”, Computers and

Geotechnics, vol. 86, pp. 67–79, 2017.

[141] D. Rathbone, M. Marigo, D. Dini, and B. van Wachem, “An accurate force–displacement
law for the modelling of elastic–plastic contacts in discrete element simulations”, Powder

Technology, vol. 282, pp. 2–9, 2015.

[142] C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker, “Models, algorithms and vali-
dation for opensource dem and CFD-DEM”, Progress in Computational Fluid Dynamics,

an International Journal, vol. 12, no. 2-3, pp. 140–152, 2012.

130

BIBLIOGRAPHY

[143] H. Kruggel-Emden, E. Simsek, S. Rickelt, S. Wirtz, and V. Scherer, “Review and
extension of normal force models for the discrete element method”, Powder Technology,
vol. 171, no. 3, pp. 157–173, 2007.

[144] B. Soltanbeigi, A. Podlozhnyuk, S.-A. Papanicolopulos, C. Kloss, S. Pirker, and J. Y. Ooi,
“DEM study of mechanical characteristics of multi-spherical and superquadric particles
at micro and macro scales”, Powder Technology, vol. 329, pp. 288–303, 2018.

[145] H. Kruggel-Emden, S. Rickelt, S. Wirtz, and V. Scherer, “A study on the validity of the
multi-sphere discrete element method”, Powder Technology, vol. 188, no. 2, pp. 153–165,
2008.

[146] M. Price, V. Murariu, and G. Morrison, “Sphere clump generation and trajectory compar-
ison for real particles”, Proceedings of Discrete Element Modelling 2007, 2007.

[147] F. Westbrink and A. Schwung, “Improved approximation of arbitrary shapes in DEM
simulations with multi-spheres”, in COMPLAS XIV: proceedings of the XIV International

Conference on Computational Plasticity: fundamentals and applications, 2017, pp. 854–
865.

[148] A. Podlozhnyuk, S. Pirker, and C. Kloss, “Efficient implementation of superquadric
particles in discrete element method within an open-source framework”, Computational

Particle Mechanics, vol. 4, no. 1, pp. 101–118, 2017.

[149] A. H. Barr, “Superquadrics and angle-preserving transformations”, IEEE Computer

graphics and Applications, vol. 1, no. 1, pp. 11–23, 1981.

[150] D. O. Potyondy and P. A. Cundall, “A bonded-particle model for rock”, International

journal of rock mechanics and mining sciences, vol. 41, no. 8, pp. 1329–1364, 2004.

[151] T. T. Nguyen and B. Indraratna, “Hydraulic behaviour of parallel fibres under longitudinal
flow: A numerical treatment”, Canadian Geotechnical Journal, vol. 53, no. 7, pp. 1081–
1092, 2016.

[152] M. Schramm, M. Z. Tekeste, C. Plouffe, and D. Harby, “Estimating bond damping
and bond young’s modulus for a flexible wheat straw discrete element method model”,
Biosystems Engineering, vol. 186, pp. 349–355, 2019.

[153] Y. Guo, J. Curtis, C. Wassgren, W. Ketterhagen, and B. Hancock, “Granular shear flows
of flexible rod-like particles”, in AIP Conference Proceedings, vol. 1542, 2013, pp. 491–
494.

[154] Y. Guo, C. Wassgren, B. Hancock, W. Ketterhagen, and J. Curtis, “Validation and time
step determination of discrete element modeling of flexible fibers”, Powder Technology,
vol. 249, pp. 386–395, 2013.

131

BIBLIOGRAPHY

[155] A. Katterfeld and C. Wensrich, “Understanding granular media: From fundamentals and
simulations to industrial application”, Granular Matter, vol. 19, no. 4, p. 83, 2017.

[156] F. P. André, A. Potapov, C. Maliska Jr, and L. M. Tavares, “Simulation of single particle
breakage using non-round particles in Rocky DEM”, in 26th Int. Min. Congr. Exhib.

Turkey, Antalya, vol. 1, 2019, pp. 981–990.

[157] V. Smilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, N. Dyck, J. Elias, B. Er,
A. Eulitz, A. Gladky, N. Guo, C. Jakob, F. Kneib, J. Kozicki, D. Marzougui, R. Maurin,
C. Modenese, L. Scholtes, L. Sibille, J. Stransky, T. Sweijen, K. Thoeni, and C. Yuan,
Yade Documentation 2Nd Ed. Zenodo, 2015.

[158] C. Kloss and C. Goniva, “LIGGGHTS – open source discrete element simulations of
granular materials based on Lammps”, in Supplemental Proceedings, John Wiley & Sons,
Ltd, 2011, pp. 781–788.

[159] R. Berger, C. Kloss, A. Kohlmeyer, and S. Pirker, “Hybrid parallelization of the
LIGGGHTS open-source DEM code”, Powder Technology, vol. 278, pp. 234–247,
2015.

[160] J. Ahrens, B. Geveci, and C. Law, “Paraview: An end-user tool for large data visualiza-
tion”, The visualization handbook, vol. 717, 2005.

[161] E. Zákorová, “E-commerce and its impact on logistics requirements”, Open Engineering,
vol. 7, no. 1, pp. 121–125, 2017.

[162] T. Brown. (2019). Choosing a singulation method, [Online]. Available: https://parcelindustry.
com/article-4901-Choosing-a-Singulation-Method.html (visited on 04/01/2022).

[163] Beumer Group. (2019). Automatisierte Paket-Vereinzelung - BEUMER Group, [Online].
Available: https://www.beumergroup.com/de/i/automatic-parcel-singulator-23674/
(visited on 04/01/2022).

[164] Siemens. (2018). Siemens offers innovative products for efficient singulation and splitting
of parcel, [Online]. Available: https://www.siemens- logistics.com/en/news/press-
releases/siemens-offers-innovative-products-for-efficient-singulation-and-splitting-of-
parcel-flows.

[165] Fives Group. (2019). Accord singulator, [Online]. Available: https://www.fivesgroup.
com / smart - automation - solutions / technologies / singulators / the - accord - packet -
singulator (visited on 04/01/2022).

[166] C. Pozrikidis, “A study of peristaltic flow”, Journal of Fluid Mechanics, vol. 180,
pp. 515–527, 1987.

[167] M. Y. Jaffrin and A. H. Shapiro, “Peristaltic pumping”, Annual Review of Fluid Mechan-

ics, vol. 3, no. 1, pp. 13–37, 1971.

132

https://parcelindustry.com/article-4901-Choosing-a-Singulation-Method.html
https://parcelindustry.com/article-4901-Choosing-a-Singulation-Method.html
https://www.beumergroup.com/de/i/automatic-parcel-singulator-23674/
https://www.siemens-logistics.com/en/news/press-releases/siemens-offers-innovative-products-for-efficient-singulation-and-splitting-of-parcel-flows
https://www.siemens-logistics.com/en/news/press-releases/siemens-offers-innovative-products-for-efficient-singulation-and-splitting-of-parcel-flows
https://www.siemens-logistics.com/en/news/press-releases/siemens-offers-innovative-products-for-efficient-singulation-and-splitting-of-parcel-flows
https://www.fivesgroup.com/smart-automation-solutions/technologies/singulators/the-accord-packet-singulator
https://www.fivesgroup.com/smart-automation-solutions/technologies/singulators/the-accord-packet-singulator
https://www.fivesgroup.com/smart-automation-solutions/technologies/singulators/the-accord-packet-singulator

BIBLIOGRAPHY

[168] J. Klespitz and L. Kovács, “Peristaltic pumps — a review on working and control possi-
bilities”, in 2014 IEEE 12th International Symposium on Applied Machine Intelligence

and Informatics (SAMI), 2014, pp. 191–194.

[169] Y. C. Fung and C. S. Yih, “Peristaltic transport”, Journal of Applied Mechanics, vol. 35,
no. 4, pp. 669–675, 1968.

[170] N. Saga and T. Nakamura, “Development of a peristaltic crawling robot using magnetic
fluid on the basis of the locomotion mechanism of the earthworm”, Smart materials and

structures, vol. 13, no. 3, p. 566, 2004.

[171] Y. Mano, R. Ishikawa, Y. Yamada, and T. Nakamura, “Development of high-speed type
peristaltic crawling robot for long-distance and complex-line sewer pipe inspection”,
in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 8177–8183.

[172] Z. Deng, M. Stommel, and W. Xu, “Pneumatic system and low-level control of a soft
machine table inspired by caterpillar locomotion”, in 2016 IEEE 14th International

Workshop on Advanced Motion Control (AMC), 2016, pp. 364–369.

[173] Z. Deng, M. Stommel, and W. Xu, “Mechatronics design, modeling, and characterization
of a soft robotic table for object manipulation on surface”, IEEE/ASME Transactions on

Mechatronics, vol. 23, no. 6, pp. 2715–2725, 2018.

[174] M. Stommel and W. Xu, “Learnability of the moving surface profiles of a soft robotic
sorting table”, IEEE Transactions on Automation Science and Engineering, vol. 13, no. 4,
pp. 1581–1587, 2016.

[175] M. Stommel and W. Xu, “Optimal, efficient sequential control of a soft-bodied, peristaltic
sorting table”, IEEE Transactions on Automation Science and Engineering, vol. 13, no. 2,
pp. 858–867, 2016.

[176] R. Hashem, B. Smith, D. Browne, W. Xu, and M. Stommel, “Control of a soft-bodied
xy peristaltic table for delicate sorting”, in 2016 IEEE 14th International Workshop on

Advanced Motion Control (AMC), IEEE, 2016, pp. 358–363.

[177] R. M. McKenzie, J. O. Roberts, M. E. Sayed, and A. A. Stokes, “Perisim: A simulator
for optimizing peristaltic table control”, Advanced Intelligent Systems, vol. 1, no. 8,
p. 1 900 070, 2019.

[178] Festo. (2014). Wavehandling | festo corporate, [Online]. Available: https://www.festo.
com/group/en/cms/10225.htm (visited on 04/01/2022).

[179] W. Lee, N. Lee, J.-W. Kim, M. Shin, and J. Lee, “MoleBot’: An organic user-interface-
based robot that provides users with richer kinetic interactions”, Interacting with Com-

puters, vol. 25, no. 2, pp. 154–172, 2013.

133

https://www.festo.com/group/en/cms/10225.htm
https://www.festo.com/group/en/cms/10225.htm

BIBLIOGRAPHY

[180] S. Follmer, D. Leithinger, A. Olwal, A. Hogge, and H. Ishii, “InFORM: Dynamic
physical affordances and constraints through shape and object actuation”, in Uist, vol. 13,
2013, pp. 2 501 988–2 502 032.

[181] K. Schenk and J. Lunze, “Fault tolerance in networked systems through flexible task
assignment”, in 2019 4th Conference on Control and Fault Tolerant Systems (SysTol),
2019, pp. 257–263.

[182] L. Cao, K. Richter, C. Richter, and A. Katterfeld, Simulation der peristaltischen Förderung

von Stückgütern als Schüttgut. Wissenschaftliche Gesellschaft für Technische Logistik,
2014.

[183] F. Westbrink, R. Sivanandan, T. Schütte, and A. Schwung, “Design approach and simula-
tion of a peristaltic sortation machine”, in 2019 IEEE/ASME International Conference

on Advanced Intelligent Mechatronics (AIM), 2019, pp. 1127–1132.

[184] F. Westbrink, A. Schwung, and S. X. Ding, “How to get a parcel surfing”, in 2020

IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),
2020, pp. 1619–1624.

[185] F. Westbrink, A. Schwung, and S. X. Ding, “Data-based control of peristaltic sortation
machines using discrete element method”, in IECON 2020 The 46th Annual Conference

of the IEEE Industrial Electronics Society, 2020, pp. 575–580.

[186] N. Ketkar, “Introduction to pytorch”, in Deep learning with python, Springer, 2017,
pp. 195–208.

[187] Luc Scholtès and Frédéric-Victor Donzé, “A DEM model for soft and hard rocks: Role of
grain interlocking on strength”, Journal of the Mechanics and Physics of Solids, vol. 61,
no. 2, pp. 352–369, 2013.

[188] S. Raschka, Python machine learning. Packt publishing ltd, 2015.

[189] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,
Y. Zhang, and V. Volkov, “Parallel computing experiences with CUDA”, IEEE Micro,
vol. 28, no. 4, pp. 13–27, 2008.

[190] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance deep
learning library”, in Advances in neural information processing systems, 2019, pp. 8026–
8037.

[191] A. Abi-Mansour, “Pygran: An object-oriented library for DEM simulation and analysis”,
SoftwareX, vol. 9, pp. 168–174, 2019.

134

BIBLIOGRAPHY

[192] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning”, in Pro-

ceedings of the 26th annual international conference on machine learning, 2009, pp. 41–
48.

[193] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone, “Curriculum
learning for reinforcement learning domains: A framework and survey”, Journal of

Machine Learning Research, vol. 21, no. 181, pp. 1–50, 2020.

[194] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin, R. Marinier, L.
Hussenot, M. Geist, O. Pietquin, M. Michalski, S. Gelly, and O. Bachem, What matters

in on-policy reinforcement learning? a large-scale empirical study, 2020.

[195] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

[196] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification”, in Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2015.

[197] H. Z. Alemu, W. Wu, and J. Zhao, “Feedforward neural networks with a hidden layer
regularization method”, Symmetry, vol. 10, no. 10, p. 525, 2018.

[198] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Hasselt, and D.
Silver, “Distributed prioritized experience replay”, arXiv preprint arXiv:1803.00933,
2018.

[199] H. Le, N. Jiang, A. Agarwal, M. Dudik, Y. Yue, and Daumé, III, Hal, “Hierarchical imi-
tation and reinforcement learning”, in Proceedings of the 35th International Conference

on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 80, PMLR,
2018, pp. 2917–2926.

[200] B. Hengst, “Hierarchical reinforcement learning”, in Encyclopedia of Machine Learning,
C. Sammut and G. I. Webb, Eds., Springer US, 2010, pp. 495–502.

[201] I. P. Durugkar, C. Rosenbaum, S. Dernbach, and S. Mahadevan, “Deep reinforcement
learning with macro-actions”, arXiv preprint arXiv:1606.04615, 2016.

[202] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. L. Dean, and C. Boutilier, “Hierar-
chical solution of markov decision processes using macro-actions”, arXiv preprint

arXiv:1301.7381, 2013.

[203] Y. Flet-Berliac and P. Preux, MERL: Multi-head reinforcement learning, 2019.

[204] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos,
Larry Rudolph, and Aleksander Madry, “Implementation matters in deep RL: A case
study on PPO and TRPO”, in International Conference on Learning Representations,
2020.

135

BIBLIOGRAPHY

[205] R. Langmann and L. F. Rojas-Peña, “A PLC as an industry 4.0 component”, in 2016 13th

International Conference on Remote Engineering and Virtual Instrumentation (REV),
2016, pp. 10–15.

[206] Alberto Diez-Olivan, Javier Del Ser, Diego Galar, and Basilio Sierra, “Data fusion and
machine learning for industrial prognosis: Trends and perspectives towards industry 4.0”,
Information Fusion, vol. 50, pp. 92–111, 2019.

[207] F. Westbrink, G. S. Chadha, and A. Schwung, “Integrated IPC for data-driven fault
detection”, in 2018 IEEE Industrial Cyber-Physical Systems (ICPS), 2018, pp. 277–282.

[208] Siemens Global Website. (2020). Simatic s7-1500 tm npu | simatic s7-1500 | siemens
global, [Online]. Available: https://new.siemens.com/global/en/products/automation/
systems/industrial/plc/simatic- s7-1500/simatic- s7-1500- tm-npu.html (visited on
04/01/2022).

[209] Beckhoff. (2020). Beckhoff new automation technology, [Online]. Available: https :
//www.beckhoff.com/de-de/produkte/automation/twincat/tfxxxx-twincat-3-functions/
tf3xxx-tc3-measurement/tf3810.html (visited on 04/01/2022).

[210] H. Berger, Automatisieren mit SIMATIC: Hardware und Software, Projektierung und

Programmierung, Datenkommunikation, Bedienen und Beobachten, 6. Aufl. s.l.: Publicis,
2016.

[211] F. Westbrink, A. Elbel, A. Schwung, and S. X. Ding, “Optimization of DEM parameters
using multi-objective reinforcement learning”, Powder Technology, vol. 379, pp. 602–
616, 2021.

[212] F. Westbrink, A. Elbel, and A. Schwung, “Development of an automated mobile DEM
calibration unit”, Proceedings of the 8th International Conference on Discrete Element

Methods, 2019.

[213] J. M. Tiscar, A. Escrig, G. Mallol, J. Boix, and F. A. Gilabert, “DEM-based modelling
framework for spray-dried powders in ceramic tiles industry. part I: Calibration proce-
dure”, Powder Technology, vol. 356, pp. 818–831, 2019.

[214] C. J. Coetzee, “Particle upscaling: Calibration and validation of the discrete element
method”, Powder Technology, vol. 344, pp. 487–503, 2019.

[215] S. Lommen, M. Mohajeri, G. Lodewijks, and D. Schott, “DEM particle upscaling for
large-scale bulk handling equipment and material interaction”, Powder Technology,
vol. 352, pp. 273–282, 2019.

[216] T. Roessler and A. Katterfeld, “Scaling of the angle of repose test and its influence on the
calibration of DEM parameters using upscaled particles”, Powder Technology, vol. 330,
pp. 58–66, 2018.

136

https://new.siemens.com/global/en/products/automation/systems/industrial/plc/simatic-s7-1500/simatic-s7-1500-tm-npu.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc/simatic-s7-1500/simatic-s7-1500-tm-npu.html
https://www.beckhoff.com/de-de/produkte/automation/twincat/tfxxxx-twincat-3-functions/tf3xxx-tc3-measurement/tf3810.html
https://www.beckhoff.com/de-de/produkte/automation/twincat/tfxxxx-twincat-3-functions/tf3xxx-tc3-measurement/tf3810.html
https://www.beckhoff.com/de-de/produkte/automation/twincat/tfxxxx-twincat-3-functions/tf3xxx-tc3-measurement/tf3810.html

BIBLIOGRAPHY

[217] J. Grobbel, S. Brendelberger, M. Henninger, C. Sattler, and R. Pitz-Paal, “Calibration
of parameters for DEM simulations of solar particle receivers by bulk experiments and
surrogate functions”, Powder Technology, vol. 364, pp. 831–844, 2020.

[218] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A study on overfitting in deep rein-
forcement learning”, arXiv preprint arXiv:1804.06893, 2018.

[219] A. Zhang, N. Ballas, and J. Pineau, “A dissection of overfitting and generalization in
continuous reinforcement learning”, arXiv preprint arXiv:1806.07937, 2018.

137

BIBLIOGRAPHY

List of Publications

Journal Paper

1. F. Westbrink, A. Elbel, A. Schwung, et al., “Optimization of DEM parameters using
multi-objective reinforcement learning”, Powder Technology, vol. 379, pp. 602–616, 2021

Conference Papers

1. F. Westbrink, A. Schwung, and S. X. Ding, “Data-based control of peristaltic sortation
machines using discrete element method”, in IECON 2020 The 46th Annual Conference of

the IEEE Industrial Electronics Society, 2020, pp. 575–580

2. F. Westbrink, A. Schwung, and S. X. Ding, “How to get a parcel surfing”, in 2020

IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2020,
pp. 1619–1624

3. F. Westbrink, A. Elbel, and A. Schwung, “Development of an automated mobile DEM
calibration unit”, Proceedings of the 8th International Conference on Discrete Element

Methods, 2019

4. F. Westbrink, R. Sivanandan, T. Schütte, et al., “Design approach and simulation of a
peristaltic sortation machine”, in 2019 IEEE/ASME International Conference on Advanced

Intelligent Mechatronics (AIM), 2019, pp. 1127–1132

5. F. Westbrink and A. Schwung, “Virtual commissioning approach based on the discrete
element method”, in 2018 IEEE 16th International Conference on Industrial Informatics

(INDIN), IEEE, 2018, pp. 424–429

139

BIBLIOGRAPHY

6. F. Westbrink, G. S. Chadha, and A. Schwung, “Integrated IPC for data-driven fault
detection”, in 2018 IEEE Industrial Cyber-Physical Systems (ICPS), 2018, pp. 277–282

7. G. S. Chadha, F. Westbrink, T. Schütte, et al., “Optimal dosing of bulk material using
mass-flow estimation and DEM simulation”, in 2018 IEEE International Conference on

Industrial Technology (ICIT), 2018, pp. 256–261

8. F. Westbrink and A. Schwung, “Improved approximation of arbitrary shapes in DEM
simulations with multi-spheres”, in COMPLAS XIV: proceedings of the XIV International

Conference on Computational Plasticity: fundamentals and applications, 2017, pp. 854–
865

140

	Contents
	Abstract
	List of Figures
	List of Tables
	List of Notations
	Introduction
	Objectives of the Dissertation
	Outline of the Dissertation

	State of the Art
	Subject: Reinforcement Learning
	Subject: DEM Coupling
	Subject: DEM Optimization

	Theoretical Basics
	Feedforward Neural Networks
	Reinforcement Learning
	Markov Decision Process
	Value-Based Reinforcement Learning
	Policy-Based Reinforcement Learning
	Actor-Critic Reinforcement Learning
	Multi-Objective Reinforcement Learning
	Hierarchical Reinforcement Learning

	Digital Twin
	Discrete Element Method
	Basics of the Discrete Element Method
	Particle Descriptions
	DEM Software Tool

	Machine Control of the PSM
	Peristaltic Sortation Machine
	Peristaltic Principle
	Development of the PSM

	Digital Twin of the PSM
	Mechanical Parts
	Parcel Approximation
	Flexible Transport Film
	PSM Simulation

	Methodology
	Coupling the DEM
	Iterative Learning Schedule
	Distributed ACRL
	Hierarchical RL Framework

	Single-Actuation Transportation Task
	Single-Actuation Transportation Environment
	Single-Actuation Transportation MDP
	Training of the Single-Actuation Transportation
	Summary

	Multi-Actuation Transportation Task
	Multi-Actuation Transportation Environment
	Training of the Multi-Actuation Transportation
	Summary

	RL-PLC Implementation
	Example Training with the IPC-RL Implementation

	DEM Parameter Optimization
	Calibration Procedures
	Calibration Unit
	Materials

	Methodology
	Multi-Objective DEM Optimization
	Pre-training Strategy for MORL Optimization

	Optimization Procedure
	DEM Environments

	Optimization Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	List of Publications

