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1 Abstract 1

1 Abstract
A precise knowledge of microscopic processes in solids is key for the fundamental under-
standing of material properties. Those are determined by a complex interplay between
the lattice, the electrons and other degrees of freedom. The dynamics of the different
degrees of freedom upon ultrashort stimuli is of special interest, since it determines the
reaction to energy deposition into such systems on ultrafast timescales. This defines the
behavior of nano-scale devices, which are the backbone of our modern society dominated
by electronics.

A very important aspect of this behavior is the dynamics of the lattice on ultrafast
timescales. Structural dynamics are an inherent response of solid systems upon ultrashort
stimuli. Whenever energy is deposited in a solid, it changes the stress inside the system.
This leads to the excitation of strain waves, which represent a coherent superposition of
acoustic phonons. Since stress and strain alter material properties, acoustic excitation
allows for their transient modification or even manipulation.

A deeper understanding of the underlying microscopic processes opens the opportu-
nity to generate tailored strain pulses. However, this requires a systematic quantitative
knowledge over the important processes in relevant material systems.

In this work, the transient response of different metal/semiconductor heterostructures
is investigated via time-resolved X-ray diffraction using a laser-plasma based X-ray source.
Ultrashort optical pulses excite the electronic system of thin metal layers, whose properties
define the shape of the excited acoustic pulse. An optical pump - X-ray probe scheme
enables their direct time-resolved observation by monitoring the induced changes in the
angle-resolved diffraction intensity.

By modeling the acoustic response and comparing the numerically calculated X-ray
diffraction patterns to the experimental data, we aim to disentangle and quantify the
relevant microscopic mechanisms. This thesis focuses on two metals - gold and palladium
- with different properties in terms of electron-phonon coupling strength and transport
on top of the technologically relevant semiconductor GaAs. Our analysis shows, that an
interplay of these two mechanisms leads to a very different acoustic response.

Even though it is a proven tool for the analysis of picosecond acoustics, modeling of
the acoustic response suffers from various problems. It is often challenging due to the
high amount of potential microscopic influences and gets even more complicated for more
complex systems and geometries.

Therefore, a new method for direct strain retrieval from time-resolved X-ray diffraction
patterns based on deep neural networks is presented in this work. The described algorithm
does not require an a priori physical model or any assumptions of the relevant mechanisms.
By combining this new analysis tool with the modeling approach, we want to open new
perspectives for the analysis of time-resolved X-ray diffraction experiments and their
extension to more complex and non-ideal situations.
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2 Zusammenfassung
Eine genaue Kenntnis der mikroskopischen Prozesse in Festkörpern ist der Schlüssel zum
grundlegenden Verständnis ihrer Materialeigenschaften. Diese werden durch ein komplexes
Wechselspiel zwischen dem Gitter, den Elektronen und anderen Freiheitsgraden bestimmt.
Die Dynamik der verschiedenen Freiheitsgrade nach ultrakurzen Stimuli ist von beson-
derem Interesse, da sie die Reaktion auf die Energiedeposition in solchen Systemen auf
ultraschnellen Zeitskalen bestimmt. Dies definiert das Verhalten von nanoskaligen Bau-
teilen, die das Rückgrat unserer modernen, von der Elektronik dominierten Gesellschaft
sind.

Ein sehr wichtiger Aspekt dieses Verhaltens ist die Dynamik des Gitters auf ultraschnel-
len Zeitskalen. Strukturelle Dynamik ist eine inhärente Reaktion von Festkörpersystemen
auf ultrakurze Stimuli. Wann immer Energie in einen Festkörper eingebracht wird, ändert
sich die Spannung innerhalb des Systems. Dies führt zur Anregung von Verformungswel-
len, die eine kohärente Überlagerung von akustischen Phononen darstellen. Da Spannung
und Dehnung die Materialeigenschaften verändern, ermöglicht die akustische Anregung
eine transiente Änderung oder sogar Manipulation dieser Eigenschaften.

Ein tieferes Verständnis der zugrunde liegenden mikroskopischen Prozesse eröffnet die
Möglichkeit, maßgeschneiderte Verformungsimpulse zu erzeugen. Dies erfordert jedoch ein
systematisches quantitatives Wissen über die wichtigen Prozesse in relevanten Material-
systemen.

In dieser Arbeit wird die transiente Reaktion verschiedener Metall/Halbleiter-Hetero-
strukturen mittels zeitaufgelöster Röntgenbeugung unter Verwendung einer Laser-Plasma-
basierten Röntgenquelle untersucht. Ultrakurze optische Pulse regen das elektronische
System von dünnen Metallschichten an, deren Eigenschaften die Form des angeregten
akustischen Pulses bestimmen. Ein Schema aus optischer Anregung zusammen mit Rönt-
genabfrage ermöglicht deren direkte zeitaufgelöste Beobachtung durch Messung der indu-
zierten Änderungen in der winkelaufgelösten Beugungsintensität.

Durch die Modellierung der akustischen Antwort und den Vergleich der numerisch be-
rechneten Röntgenbeugungsmuster mit den experimentellen Daten werden die relevanten
mikroskopischen Mechanismen entschlüsselt und quantifiziert. Diese Arbeit konzentriert
sich auf zwei Metalle - Gold und Palladium - mit unterschiedlichen Eigenschaften in Bezug
auf die Stärke der Elektron-Phonon-Kopplung und den Transport auf dem technologisch
relevanten Halbleiter GaAs. Unsere Analyse zeigt, dass ein Zusammenspiel dieser beiden
Mechanismen zu einem stark unterschiedlichen akustischen Verhalten führt.

Obwohl sie ein bewährtes Werkzeug für die Analyse der Pikosekundenakustik ist, hat
die Modellierung der akustischen Antwort verschiedene Probleme. Sie ist aufgrund der
großen Anzahl potenzieller mikroskopischer Einflüsse oft eine Herausforderung und wird
bei komplexeren Systemen und Geometrien noch komplizierter.

Daher wird in dieser Arbeit eine neue Methode zur direkten Ermittlung von Verfor-
mungen aus zeitaufgelösten Röntgenbeugungsmustern auf Grundlage von tiefen neuro-
nalen Netzen vorgestellt. Der beschriebene Algorithmus erfordert kein physikalisches a
priori Modell und keine Annahmen über die relevanten Mechanismen. Durch die Kom-
bination dieses neuen Analysewerkzeugs mit dem Modellierungsansatz wollen wir neue
Perspektiven für die Analyse von zeitaufgelösten Röntgenbeugungsexperimenten und de-
ren Erweiterung auf komplexere und nicht-ideale Situationen eröffnen.
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3 Introduction and Motivation
Elementary processes in solids such as electron-electron scattering, electron-phonon scat-
tering or nuclear motion in general happen on ultrashort timescales [13]. The advent of
sub-picosecond lasers has allowed for the direct observation of such processes leading to
a constant growth of the field of pico- to femtosecond physics. These microscopic pro-
cesses determine the macroscopic properties and the behavior of solids. Hence, a good
understanding of condensed matter requires the precise exploration of these processes.

This is important from both a fundamental as well as a technological point of view.
Our modern high-tech computers and communication devices depend on nanostructures
operating at high frequencies. Technological progress aims to further miniaturize and
accelerate devices. To allow for this, certain important questions have to be answered:
How do nanostructures respond to ultrafast stimuli? How does energy relax on ultrashort
time scales? How does heat in nanostructures flow and how can it be minimized? How
can we trigger processes at increasing frequencies?

The lattice structure and its dynamics are an essential part of those microscopic pro-
cesses. Thus, a good understanding of the lattice degrees of freedom is crucial for solid
state physics. The motion of the lattice atoms is in general described by the excitation of
acoustic or optical phonons, which can be incoherent as in the case of heating or coher-
ent with a fixed phase relation. Picosecond acoustics, the coherent excitation of acoustic
phonons, is an important aspect in this fields for various reasons.

Firstly, picosecond acoustic waves (PAW) can be thought of as the propagation of
disturbances of the equilibrium lattice. A change of the lattice constant, also known as
strain, travels in form of a wave. Strain is long known to alter material properties such
as band structure, deformation potentials or carrier mobility [12, 30]. Accordingly, PAW
are considered as a means to dynamically manipulate and control material properties and
a deep understanding of them is key to get insight into the functionality of solid devices
under non-equilibrium conditions.

Secondly, PAW are an important aspect for energy flow in nanostructures after impul-
sive excitation. Whenever energy is locally deposited into a system, this leads to heating.
If the stimulus is short, this heating may happen on a timescale, on which the volume
of the system cannot follow. Subsequently, the lattice relaxes to a new equilibrium state
by emission of PAW [17]. These waves transport energy in the specific material at the
speed of sound [46]. Therefore, PAW have to be taken into account, when investigating
the energy flow in a structure after ultrafast excitation [75].

Thirdly, picosecond acoustics are an interesting tool to either investigate material prop-
erties or to control them. For instance, Brüggemann et al. and Czerniuk et al. have shown
that they can use a PAW to trigger a layer of quantum dots and by that transiently en-
hance the photoluminescence efficiency of quantum dot lasers by more than two orders of
magnitude [15, 22]. PAW also change the X-ray reflectivity of a sample. This can be de-
ployed for the construction of ultrafast X-ray switches to cut out ultrashort X-ray pulses
out of much longer ones [24, 45, 51, 70]. Even other disciplines than physics can benefit
from knowledge in ultrafast acoustics. For example, mechanical properties of living cells
can be studied non-invasively in their natural environments, which deepens our knowledge
about the building blocks of life [91, 102]. This enumeration is far from complete and
many more examples could be given (see e.g. [74, 110, 116]).

Consequently, picosecond acoustics is an active field of research for more than three
decades. However, the combination of short time and microscopic length scales makes the
investigation challenging.

First research has been done with all optical methods, namely optical reflectivity [129],
interferometry [87] and deflectometry [138]. However, such methods can only indirectly
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probe the lattice behavior. Assumptions have to be made about the strain dependencies
of the optical properties. This makes it difficult to achieve quantitative information as is
discussed exemplary in references [14, 38].

Moreover, optical methods are limited to the penetration depth of the deployed light. In
metals for example this limits the achievable depth information to some tens of nanometers
depending on the wavelength.

This changed, when ultrashort X-ray and electron pulses became available. In contrast
to optical pulses, X-rays can penetrate solids up to the micrometer or even centimeter
scale. Accordingly, ultrafast diffraction was established as a powerful complementary tool
to all optical methods. It can combine ultrafast (ps/fs) temporal with picometer spatial
resolution. By that, they allow for direct probing and quantitative analysis of lattice
dynamics.

Early work was done on simple materials to understand the elementary processes start-
ing with common semiconductor materials. Rose-Petruck et al. measured the PAW
excited in bulk GaAs after optical excitation with 800 nm pulses of 30 fs pulse duration
with X-ray diffraction [100]. They could follow the atomic motion due to the excited
strain pulse and were able to explain their results using the thermo-elastic model devel-
oped by Thomsen et al. [129]. Furthermore, they could also describe their experimental
data by numerically reconstructing the strain pulse using a genetic algorithm. However,
the agreement to the data was slightly worse than the result of the modeling.

Chin et al. have performed early work on InSb crystals and found evidence for a delayed
onset of the lattice response due to energy relaxation processes and the acoustic traveling
time [20]. Experiments with higher resolution by Lindenberg et al., Reis et al. and Larsson
et al. allowed for a more detailed analysis [69, 96, 63]. They measured the oscillations of
the coherent acoustic phonons directly and showed that a finite electron-phonon coupling
time in InSb has to be assumed to describe the diffraction data.

Ge was studied in bulk as well as in thin films. DeCamp et al. used anomalous
transmission as a bulk sensitive probe and isolated the effects of electron-phonon coupling
and diffusion to be dominant for the relaxation of the excitation energy into stress and
subsequently acoustic waves [24, 25].

A new degree of freedom is introduced into the problem, if the confinement of the
excitation into a thin film creates a discontinuity, namely an interface, which changes the
excitation dynamics of PAW. Cavalleri et al. have studied Ge films on Si crystals [17].
By systematically varying the excitation fluence, they could compare different sources
of energy loss in the film. They found loss of energy due to PAW transmission across
the interface to be dominant for low fluences, while mode conversion due to anharmonic
interactions becomes important for higher fluences.

By going to even higher fluences, non-thermal melting of the Ge sets in. For carefully
chosen experimental conditions, this happens only for a fraction of the film. The addi-
tional interface between molten and solid Ge provides another source for reflection and
transmission and leads to additional acoustic signatures in the ultrafast X-ray diffraction
signals [132].

Early work on metals was done by Chen et al. with experiments on gold in 1996 [19].
However, they were only able to analyze the surface strain, because of their limited res-
olution. More detailed studies were performed by Nicoul et al. who used high temporal
and angular resolution experiments of a single crystalline Au film on a Mica substrate to
investigate the rocking curve shift. They concluded that a fully thermal model is not suffi-
cient to describe the oscillation of the rocking curve shift and deduced, that a combination
of electronic and thermal stress contributions together with a finite electron-phonon cou-
pling time of τ = 5 ps was responsible for the measured changes to the oscillation offset
and frequency [83].
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Lu et al. looked at a freestanding polycrystalline gold film. They have demonstrated
that an analysis of the underlying acoustics is also possible in thin samples in the Debye-
Scherrer geometry. They showed, that the results of Nicoul et al. could describe their
measurements. Even though, the resolution of the experiment was not sufficient to dis-
criminate the model introduced by Nicoul et al. from a simpler one with an instantaneous
increase of the phononic stress [72].

Gao et al. looked at similar Au films on Ge [33]. Their discussion focused on the
phonon modes present in the PAW. These depend on the thickness of the films as well as
on the relation between the acoustic properties of the film and the substrate. This was
shown in a similar manner for Ni films on InSb [88, 89]. Again, the inclusion of diffusion
processes was crucial to explain the experimental findings.

Jarnac et al. studied Au films on InSb [51]. They applied a model of masses and
springs to understand the stress and strain generation and found their sample system to
be suitable for the construction of an X-ray switch [113].

Park et al. [86] and Nie et al. [84] have investigated the lattice response of optically
excited Al films using ultrafast electron diffraction. They could show, that a thermal
as well as an electronic stress contribution is required to describe the observed lattice
vibrations and could by that determine the electronic Grüneisen constant of Al.

Experiments on Cu films found similar effects to gold [66]. The combination of a
two temperature model with a finite electron-phonon coupling time and diffusion effects
describes the energy relaxation and strain generation.

Aside of that, more complex materials are also accessible for investigations of coherent
acoustic phonons using time-resolved X-ray diffraction and yield new insights into such
technologically relevant materials. For example, heterostructures of GaAs and AlGaAs
can be used for mode selective excitation of strain waves [9]. The periodicity of the
superlattice determines the dominantly excited phonon wave vectors.

The coupling of different phonon modes in a heterostructure was systematically studied
by Bach and Schäfer by calculating the strain wave propagation after optical excitation in
a Pt/Si bilayer for different configurations of the elastic properties [7]. Their theoretical
approach allowed for the variation of different material properties and hence gave insight
into the coupling of the modes for various configurations.

Magnetic materials give access to another degree of freedom: The spin system and cor-
responding magnetic components to the stress generation. For instance, this can be seen
in the ferromagnets nickel [136] and gadolinium [57] or in heterostructures of TbFe2/Nb.
Excitation of spins can lead to magnetostriction stress, which has the special property,
that it can have both signs. It can therefore induce rarefaction as well as compression of a
material upon optical excitation in contrast to electronic or thermal stress. This opens up
new perspectives and makes these materials an interesting field of study [133, 134, 141].

Another important class of materials are oxides. For their work on LuMnO3, Lee et al.
extended the theory of coherent phonon propagation by taking into account the hexagonal
crystal structure of this perovskite. A strong coupling between the strain propagation axis
and the perpendicular plane presents an additional loss channel for the excitation energy
and results in damping [65].

Coupling to in-plane modes is also important in the structurally imperfect films of
PbZr0.2Ti0.8O3 studied by Schick et al. [112]. However, in this case the coupling strength
depends on the sign of the strain. Rarefaction parts cannot further expand the small
crystallites in plane, but they can be compressed. Therefore only compression waves can
couple.

It is not straight forward to quantitatively measure the strain distribution locally. Feist
et al. have used ultrafast convergent beam electron diffraction to probe optically excited
graphite membrane nanostructures [28]. By combining their observations with numerical
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simulations, they were able to extract the relevant transient elements of the strain tensor
with high temporal and spatial resolution.

Wen et al. and Schick et al. studied the response of BiFeO3 and found surprisingly
long relaxation times. BiFeO3 is a multiferroic material, which means that it combines
ferroelectric with ferromagnetic properties, making it an interesting candidate for possible
applications. Wen et al. proposed a new mechanism for the energy relaxation to explain
their findings. They assume that the excited electrons stay localized due to the polariza-
tion field in the unit cell, while they rest in states at the bottom of the conduction band
for a long time. The interplay of these electrons with the polarization field yields a long
lasting strain (on the order of nanoseconds) in the material [115, 137].

A last example to be mentioned here is the combination of SrRuO3 with SrTiO3. This is
a good model system for the study of PAW, because due to the nearly matched acoustic
impedances of the two materials, there is no relevant reflection at the interface. This
allows for systematic experiments as by Schick et al., where they varied the film thickness
in comparison to the relevant excitation length and studied the effect on the ultrafast
diffraction signal [114]. By careful preparation of the surface and interface, this system
also allows for the investigation of high frequency phonons at the boundary of the Brillouin
zone [119].

In a different sample geometry, Shayduck et al. deployed a superlattice of the two
materials and by that were able to emit a quasi-monochromatic strain wave [120]. They
could analyze the damping of this wave and showed, that it can be well described by
Akhiezer’s 1

ω2 sound attenuation law [3].
For the controlled emission of PAW waves into arbitrary materials, for instance mate-

rials which are transparent for the applied laser light, so called opto-acoustic transducers
are an interesting class of heterostructures. They are composed of a thin film, often a
metal, on top of the material of interest. By carefully choosing the film material and its
properties, the emission of designed acoustic pulses into various substrates is possible.

This work reports about time resolved X-ray diffraction experiments on the transient
acoustics of different metal films on a semiconductor substrate. By "forward" modeling
the acoustic response upon ultrafast optical excitation, the underlying physical processes
of strain generation are disentangled and the influence of transport and electron-phonon
coupling on the resulting shape of the PAW are identified.

The approach of forward modeling is widely used in the literature discussed so far. It
starts from simulating the physics upon laser excitation and subsequently compares the
calculated diffraction signals to corresponding experimental data. The best physical model
is identified by the iterative application of this scheme. Contrary, a direct retrieval of the
acoustic behavior would circumvent the requirement for a microscopic model, initially.

The wide use of the modeling approach originates from the fact, that diffraction exper-
iments suffer from the phase problem [41]. In experiments, where the intensity of a wave
is measured, the phase information is lost and, therefore, a direct retrieval of the wave is
challenging.

Translated to ultrafast acoustics this means that on the one hand it is comparably easy
to calculate the diffracted X-ray intensity for a known strain distribution using dynamical
X-ray diffraction theory (see chapter 4.1.3). On the other hand, it is challenging to
calculate back to the strain distribution from a measured diffraction pattern.

One way to work around this is the forward modeling approach described previously.
This has proven to be a successful way of analyzing the results of diffraction experiments
on PAW in solids. Nevertheless, it suffers from some major problems.

Firstly, different physical processes such as subsystem coupling, electronic and thermal
transport or acoustic damping might play a role and have to be taken into account.
This often requires a lot of iterations to differentiate between important and negligible
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effects. Additionally, the modeling is often based on simplifying models such as the two
temperature model (TTM) [6], which may be only valid for certain conditions. Secondly,
physical constants necessary to model the acoustics may be unknown for certain materials
or may have some complicated dependencies on other parameters like the temperature.

Therefore, it would be desirable to have a complementary method to determine the
strain directly from a measured diffraction pattern. This would not replace the modeling,
but could increase its efficiency. In the following, such an approach will be called direct
strain retrieval.

There have already been proposals to retrieve the transient strain after optical excita-
tion. Gao et al. separated the strain pulse into single phonon modes and tried to extract
their amplitude and phase from the Fourier transform of the time dependent X-ray diffrac-
tion intensity [32]. Lai et al. exploited the Fano resonance of an acoustic wave at a free
surface in an all optical pump-probe scheme to reconstruct the underlying strain pulse
[61]. Since, their method requires the acoustic wave to be reflected inside the sample to
travel back to the free surface in order to be reconstructed, it is not generally applicable.

Moreover, both methods require to make assumptions on the underlying physics. Here,
we propose a new method based on deep neural networks trained by artificial strain
pulses and corresponding calculated X-ray diffraction patterns to analyze the results of
time-resolved X-ray diffraction experiments.

Deep neural networks have proven to be very efficient in various fields such as speech
recognition [47], language translation [125], particle physics data analysis [21], drug de-
velopment [73] and image recognition [59, 27, 130]. In fact, the field of image recognition
deals with analyzing tasks on 2-dimensional input data. The basic idea of our approach is,
that the input data cannot only be real images, but also other 2D data, e.g. time-resolved
X-ray diffraction data. We therefore want to build on that and take advantage of the
accomplishments already achieved in the field of deep learning.

In this work it is shown, that deep neural networks can be trained to analyze transient
diffraction signals from optically excited solids. For training a deep neural network, large
sets of already labeled data pairs are required. As has been discussed, calculating the
X-ray diffraction pattern for a known strain distribution is possible. We use randomly
created strain pulses and corresponding calculated diffraction patterns to train a neural
network specialized on image recognition.

Deep neural networks use representation learning. This means, that the features of the
input data (e.g. structures in the diffraction pattern) which are important for classification
are not defined beforehand by the programmer, but are independently extracted by the
network. Hence, the model does not require any "knowledge" on the physical processes to
interpret the diffraction data.

The discussed points are elaborated in the course of this thesis. It is structured as fol-
lows: Chapter 4 introduces the relevant theoretical concepts. Most importantly, these are
the basics of X-ray diffraction and dynamical X-ray diffraction theory, picosecond acous-
tics in solids and deep neural networks with a focus on image analysis. In chapter 5, the
experimental setup for time-resolved X-ray diffraction measurements is introduced. The
experimental results are subsequently discussed in the result sections 6 and 7 with a focus
on two model systems with very weak and very strong electron-phonon coupling: Gold
and palladium. In chapter 6, the experiments are interpreted quantitatively by develop-
ing a model for the microscopic processes upon ultrashort optical excitation. Transient as
well as fluence dependent analysis of the underlying mechanisms and a comparison to the
experimental data justify the given model. In chapter 7 a novel algorithm for the analysis
of picosecond acoustic experiments is developed and investigated on artificial as well as
on experimental data. Finally, the findings are summarized and an outlook is given in
part 8.
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4 Theoretical Background
In this section, a brief theoretical background is given, which provides the foundation to
understand the content of this dissertation. An exhaustive treatment of all these topics
is beyond the scope of this work. Further information can be found in the literature cited
in the respective sections.

4.1 X-Ray Diffraction
This introduction into structural analysis with X-ray diffraction is based on the books of
Ibach and Lüth, Charles Kittel as well as Als-Nielsen and McMorrow [5, 50, 55]. It gives
a short overview of the basic properties of X-rays and their application in the analysis of
the atomic structure of matter. Additionally, the generation of ultrashort X-ray pulses is
discussed, which allows for the time resolved investigation of structural dynamics.

4.1.1 X-Rays

Since the discovery of X-rays by Wilhelm Conrad Röntgen in 1896 [107], they have become
a powerful tool in different fields of research and technology: For example in modern
medicine, X-rays are an indispensable tool for diagnostics, in engineering, they allow for
non-invasive material testing (e.g. quality of welds, bonds in microelectronics...) and in
physics they have opened the opportunity to investigate the structure of matter on an
atomic scale. The latter one will be the focus of this work.

X-rays are electromagnetic waves positioned between ultraviolet and gamma radiation
in the electromagnetic spectrum. Their wavelength covers a huge range from 10 nm down
to 1 pm. This corresponds to photon energies of approximately 100 eV up to 1 MeV.

The exploration of the structure of matter is one of the most important applications of
X-rays in natural sciences and will be described in the following.

4.1.2 Crystal Structure and Diffraction

Crystals are of special interest in many fields. A crystal is a very symmetric form of con-
densed matter, where a general building block, the so called base, is repeated periodically.
The positions of all the bases in the crystal are called the lattice. A crystal is therefore
defined by its base and its lattice. The base can consist of one atom as for many metals, or
it can consist of several atoms as in GaAs or NaCl. Even complex molecules like proteins
can crystallize and form crystals with bases of thousands of atoms.

The lattice is spanned by the base vectors x⃗, y⃗ and z⃗. They are defined by the fact,
that every lattice vector r⃗ can be written as a linear combination of the base vectors:

r⃗ = ax⃗+ by⃗ + cz⃗, (1)

with a, b, c ∈ Z. The volume spanned by the base vectors is called a unit cell. The unit
cell with the smallest possible volume is named the primitive unit cell.

Crystals normally contain a lot of differently oriented lattice planes. The so called Miller
indices are a common solution for labeling these families of planes. They are denoted as
(hkl) and are defined such that the plane intersects the axes spanned by the base vectors
x⃗, y⃗ and z⃗ at position (x

h
, y

k
, z

l
), where x, y, and z are the lengths of the base vectors.

There are different sets of numbers fulfilling this condition. The Miller indices are the set
with the smallest possible integer numbers out of these.

Crystals distinguish themselves from other forms of matter like amorphous solids or
liquids by their long range order. The strain waves investigated in this work are pertur-
bations of that order and their extension is large in comparison to the lattice constant.
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Therefore, we use diffraction to study these phenomena, which is well suited for measuring
long range periodicity and its perturbations.

Crystals are of immense importance, since our modern technology is largely built on
crystalline semiconductors like silicon. Because of that, it is essential to understand the
structure of crystals and its transient response to short stimuli.

To start with, the structural analysis of equilibrium solids by diffraction will be dis-
cussed. Successively, this will be extended to transient effects in chapter 4.2.

To analyze the atomic structure of solids, one has to use a probe with a wavelength in
the order of the interatomic distances in the specimen of interest. This could either be
high energetic particles with their De Broglie wavelength

λB = hc

E
, (2)

where h = 6.63 × 10−34 J s is Planck’s constant, c = 2.998 × 108 m
s is the speed of light

and E is the energy of the particles. For diffraction experiments, electrons and neutrons
are common choices.

The other option is the use of photons. The interatomic distances between lattice planes
in solids are in the order of an angstrom, so the suitable electromagnetic waves are X-rays.
This is also the experimental tool in this work. For that reason, the following discussion
will focus on the diffraction with X-rays.

Imagine an X-ray beam incident on a crystal. Some X-rays may be scattered at atoms
of the first lattice plane, while some others are scattered at the second. As can be seen in
figure 1, the path difference (shown in red) of the two beams is given by ∆s = 2d sin(θ).
The X-rays scattered at the atoms of different lattice planes interfere constructively, if the
path difference is an integer multiple of the X-ray wavelength λ. Therefore, the condition
for constructive interference is:

2d sin(θB) = nλ, (3)

with the lattice constant d, the Bragg angle θB and the order of the diffraction peak n.
This is the famous law formulated by William Lawrence Bragg in 1912.

Figure 1: Derivation of the Bragg equation from geometrical considerations.
Incoming X-rays, which are reflected by atoms of different lattice planes, in-
terfere constructively, if the path difference is an integer multiple of the X-ray
wavelength. The path difference is connected to the geometrical parameters by
sin θ =

1
2 ∆s

d
.
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It is instructive to also formulate the diffraction condition in reciprocal space, which is
the Fourier transformed real space. The result is the so called Laue equation. The path
difference between two rays scattered at lattice points with distance vector R⃗ = r⃗ − r⃗ ′ is
given by ∆s = R⃗ · ( k⃗

k
− k⃗ ′

k ′ ). Inserting ∆s = nλ and the wave vector definition k = 2π
λ

yields:

R⃗ · (k⃗ − k⃗ ′) = 2πn. (4)

This equation can only be fulfilled, if the difference of the incoming and outgoing wave
vectors equals a reciprocal lattice vector G⃗, which is defined by eiR⃗·G⃗ = 1. With this, one
gets the Laue equation:

k⃗ − k⃗ ′ = G⃗. (5)

The Laue equation can be represented graphically using the Ewald sphere as depicted
in two dimensions in figure 2. The Ewald sphere is a sphere with radius |⃗k| in three
dimensions and a circle in two dimensions. The points represent the lattice in reciprocal
space. Whenever two points of the reciprocal lattice lie on the sphere, a Bragg peak
connected to the reciprocal lattice vector between these two points occurs. The wave
vectors of the incoming and the diffracted wave k⃗ and k⃗ ′ start at the center of the Ewald
sphere and end on the two reciprocal lattice points on it.

Figure 2: Diffraction in reciprocal space: The Ewald sphere. A Bragg peak occurs,
when two reciprocal lattice points lay on the Ewald sphere spanned by the k-
vector of the incoming and outgoing X-rays. The diffraction peak position is
given by the reciprocal lattice vector G⃗ connecting the two points.

Equations 3 and 5 only predict at which angles or wave vectors, respectively, a Bragg
peak occurs. But they do not make any statement about the intensity distribution of the
diffracted X-rays. This will be examined in the following.

In a solid, X-rays are scattered by electrons. Therefore, if one wants to calculate the
intensity of scattered X-rays, one has to look at the electron distribution. Usually, most
of the electrons in a solid are located close to the atom cores, the so called inner shell
electrons. Accordingly, the positions of the atoms in the lattice are relevant for the
diffraction signal.

The structure factor F is a quantity, which describes how rays are scattered by a
material. It is normally given as a function of the scattering vector Q⃗, which is defined
by:



4 Theoretical Background 11

Q⃗ = k⃗ − k⃗ ′ (6)

with the wave vectors of the incoming and outgoing waves k⃗ and k⃗′, respectively. It is
the momentum transfer during the scattering event.

For a crystal, the structure factor for a given scattering vector can be written as:

F crystal(Q⃗) =
∑
rj

F atom
j (Q⃗)eiQ⃗·r⃗j

∑
Rn

eiQ⃗·R⃗n . (7)

In this equation, the first sum is the so called unit cell structure factor and describes
the scattering of X-rays by a unit cell of the crystal. The sum goes over all the atoms
building the unit cell, which are located at the positions rj. It contains the structure
factor of the single atoms F atom

j , which is essentially the Fourier transform of the electron
distribution of the specific atom, and a phase factor eiQ⃗·r⃗j .

The second summation goes over all lattice sites Rn, which are the positions where all
the bases are located. It sums up their contributions, which also have to be weighted by
a phase factor. This factor gives the maximum contribution, when equation 4 is fulfilled
and thus it depicts the Bragg and Laue condition. Only then, the contributions of all the
atoms add up.

Equation 7 has to be evaluated in order to describe the intensity in a diffraction ex-
periment. There are two theories dealing with that: The kinematical and the dynamical
theory of X-ray diffraction. The kinematical description is a limiting case of the dynami-
cal one, which neglects multiple scattering events, extinction, absorption and refraction.
It is therefore only applicable for "small" samples (e.g. thin films), where the probability
of multiple scattering events is sufficiently low.

In dynamical diffraction, all these effects are taken into account. The following dis-
cussion will focus on dynamical X-ray diffraction theory, since the experiments in this
work are done on bulk samples. The thickness of these samples is much larger than the
penetration depth of the utilized X-rays and multiple scattering, extinction, absorption
and refraction are therefore not negligible.

4.1.3 Dynamical X-Ray Diffraction

There are two ways of solving the problem of diffraction from a thick crystal. The first
one is to describe the crystal as a stack of a large number of layers and calculate the
reflected and transmitted waves for each of these layers. This approach was described by
Darwin in 1914.

An equivalent way is, to view the crystal as a dielectric medium and solve Maxwell’s
equations with the appropriate boundary conditions. This was first done by Ewald (1916
- 1917) and reformulated by Laue in 1931. This theory was extended to distorted crystals
by Takagi and Taupin, who formulated the so called Takagi-Taupin equation [127, 128].
Klar and Rustichelli [56] have introduced a new formulation, which was further elaborated
by Larson et al. [62]. They have shown, that the scattering amplitude X fulfills the
differential equation:

i
dX

dA
= X2(1 + ik) − 2X(y + ig) + (1 + ik). (8)

X(A), the complex scattering amplitude, is a function of the reduced spatial coordinate,
which is given by:

A = rekpolf
′(ψ)e−Mλt

Vc

√
|γ0γH|

, (9)
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where re = 2.82 × 10−15 m is the classical electron radius, f(ψ) is the structure factor
for the scattering angle ψ with its real part f ′(ψ) and its imaginary part f ′′(ψ), e−M is
the Debye-Waller factor, which describes the reduction of the scattering intensity due to
thermal vibrations, λ is the wavelength of the X-rays, t is the depth inside the crystal, Vc
is the volume of a unit cell and γ0 and γH are the projections of the incident and diffracted
wave vector on the surface normal, respectively.
kpol is the polarization factor of the X-rays, which is defined by:

kpol =

1 for s-polarization
cos(ψ) for p-polarization

(10)

Equation 8 can be separated into two differential equations for the real and imaginary
part:

dX1

dA
= k(X2

1 −X2
2 + 1) + 2X2(X1 − y) − 2gX1

dX2

dA
= −(X2

1 −X2
2 + 1) + 2X1(X2k + y) − 2gX2

(11)

Prior to solving these equations, the included parameters have to be calculated. Ab-
sorption of X-rays is described by the parameters g and k, which are defined by:

g = − f ′′(0)(1 + b)
2kpolf ′(ψ)e−M

√
|b|
,

k = f ′′(ψ)
f ′(ψ) .

(12)

In this equations, b = γ0
γH

is a measure of the asymmetry of the reflection.
The dimensionless parameter y gives the deviation of the angle from the Bragg angle:

y = bπVc sin(2θB)(∆θ + η(A) tan(θB))
kpolλ2ref ′(ψ)e−M

√
|b|

− (1 + b)f ′(0)
2kpolf ′(ψ)e−M

√
|b|
. (13)

∆θ = θ− θB is the deviation from the Bragg angle and η(A) is the strain of the sample
at depth A.

Given all these results, the system of equations 11 can be solved numerically. The
reflectivity of the crystal is then given by:

R = |X(0)|2. (14)

One gets the diffraction pattern I(θ), if this is done for all angles of interest and a given
strain distribution. The code for the numerical solution of equation 11 can be found
in the appendix of the dissertation of Afshari [1]. The calculated unpumped diffraction
patterns have been compared to the ones obtained with the XOP-package [108] to verify
the correctness of the code.

The described procedure can be extended to transient effects easily. A time dependent
strain distribution η(A, t) is assumed instead of a static one. The problem is therefore
reduced to the knowledge of the transient strain distribution.
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4.2 Ultrashort X-Ray Pulses
Pump-probe schemes are a commonly used tool to investigate transient phenomena in the
fs- to ps-time range, because they allow to directly follow the evolution of such phenomena
in time. A first short pulse excites the specimen to a non-equilibrium state and a second
pulse probes the state after a time delay ∆t. This yields a stroboscopic movie of the
specimen’s evolution in time by repetition with systematical variation of the time delay.

The pump pulse is often an optical or near infrared pulse. Such pulses are commonly
generated in a Ti:Sa-oscillator, which uses a titanium doped sapphire (Al2O3) crystal as
the laser medium. The broad range of supported frequencies in this material allows for
the production of very short laser pulses. However, different wavelengths, e.g. UV-pulses
or THz-pulses, or even something different like a particle pulse can also serve as the pump.
The choice of pump depends on the kind of excitation one wants to make.

The probe pulse has to be chosen regarding the subject of investigation. X-rays are a
suitable tool to study structural dynamics, because their wavelength is in the order of the
interatomic distances and, therefore, they allow to directly probe lattice dynamics.

The time resolution of a pump-probe experiment is defined by the duration of the probe
pulse. Therefore, in order to achieve sufficient time resolution, one has to use correspond-
ingly short pulses. The time scale of the acoustic phenomena studied in this work can
be estimated to t = s

c
≈ 2 ps by assuming a typical length scale to be the penetration

depth of light in metals of s ≈ 10 nm and a typical sound velocity in solids of c ≈ 5 nm
ps .

Hence, X-ray pulses with sub-picosecond duration are well suited for investigating ultra-
fast acoustics.

In this work, X-rays produced on a laboratory scale in a so called laser-plasma based
source are utilized. The general operating principle will be explained in the following. A
more detailed description of the actual source can be found in chapter 5.

The principle idea for the generation of ultrashort X-ray pulses is to use a triggering
process, which is ultrashort itself. It is long known, that an intense laser pulse creates a
high-density surface plasma, when focused onto a solid target [23]. Such a plasma contains
free electrons. Some electrons are accelerated to kinetic energies up to a few tens of keV
by interaction with the laser field and are often referred to as "hot" electrons [103]. The
intensity of the pulse has to be on the order of 1016–1018 W

cm2 to make the creation of "hot"
electrons an effective process [2, 95].

If these "hot" electrons penetrate the "cold" solid underneath the surface, X-rays with a
spectrum comparable to a common X-ray tube are produced. It contains Bremsstrahlung
and characteristic radiation [107]. The process is depicted in figure 3.

Bremsstrahlung is generated by the acceleration of electrons in the vicinity of ion cores
and yields a continuous spectrum, which can extend up to the maximum kinetic energy of
the laser-accelerated electrons. Characteristic radiation is produced, when hot electrons
kick out inner shell electrons from the atoms. For that, their energy has to be higher
than the impact ionization threshold. Subsequently, outer shell electrons fall into the
empty states and emit X-rays. The energy of that kind of radiation is determined by the
shell energies of the solid material and the involved transitions. The following notation
is usually used to specify a particular transition. A Latin letter indicates the final shell
and a Greek letter the initial shell of the transition. For example, Kα describes radiation
emitted in a transition from an L-shell (quantum number 2) to a K-shell (quantum number
1). This can be further divided into two lines with slightly different energy, since the L-
orbitals experience a spin-orbit split. This is denoted by an additional subscript number
e.g. Kα1.

If the duration of the utilized laser pulse is short enough, it is plausible that also
the emitted X-ray pulse’s duration is in the order of the laser pulse duration. Indeed,
Reich et al. [94] have studied the temporal length of such X-ray pulses for different
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Figure 3: Production mechanism for X-rays in a laser plasma source. The X-
rays are produced by hot plasma electrons, accelerated by the laser field and
subsequently hitting the solid target.

excitation conditions as well as the expected photon yield. They found, that generation of
approximately 100 fs short X-ray pulses is possible using a 60 fs laser pulse. The difference
is attributed to the so called afterglow: Even when no more electrons get accelerated after
the laser pulse has terminated, X-rays are emitted as long as some hot electrons still have
energies above the ionization threshold [1, 94].

Anyway, pulse durations well below a picosecond are possible as has been shown in
many time-resolved X-ray diffraction experiments [2, 29, 40, 71, 81, 142]. This is more
than sufficient for studying ultrafast acoustics.

4.3 Picosecond Acoustics
This section introduces the principles of picosecond acoustics, the connection of elasticity
theory and phonon picture and how picosecond acoustic waves change X-ray diffraction
patterns.

4.3.1 Acoustic Waves

Solid matter can be deformed by internal and external stimuli, e.g. mechanical stimuli,
temperature variations or changes of the potential energy landscape of the lattice. This
section introduces the necessary physical quantities to describe such deformations and the
propagation of local deformations as waves, namely acoustic or strain waves. These can
be described in the linear theory of elasticity. The discussions in this chapter are based
on the books of Bedford and Drumheller [10] and Gross [39].

The shape of a rigid solid can be fully characterized by the position vector r⃗ for every
material point. A deformation can then be described by the displacement vector u⃗, which
is defined as the change of position of every material point:

u⃗(r⃗) = r⃗ − r⃗ ′. (15)

If a solid is deformed, the distances between two points might change. The strain tensor
η is a measure for the change of the length of a line element. It is a second order tensor
and its elements can be calculated as
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ηkm(r⃗) = 1
2( ∂uk

∂xm

+ ∂um

∂xk

), (16)

where xi are the respective spatial coordinates.
In general, an object gets strained, if there are internal forces changing the equilibrium

positions of the atoms. The significant quantity is the stress tensor σ which describes the
internal forces per area. For continuous elastic materials, the stress and strain tensor are
connected via Hooke’s law

σ = Eη, (17)

where E is the so called elasticity tensor. This fourth order tensor is a material property.
It can be shown, that in an isotropic material equation 17 can be written as:

σij = ληkkδij + 2µηij (18)

using the Einstein summation notation. λ and µ are the Lamé constants and δij is the
Kronecker delta.

So far, this equation only covers mechanical strain. But strain can also occur for other
reasons, for instance volume expansion upon heating. This is taken into account by
introducing an additional stress term σnm including the non-mechanical effects:

σ = Eη + σnm. (19)

This work focuses on one dimensional problems. By convention, this dimension is the
z-direction. In this case, equations 16, 17 and 19 can be further simplified and yield:

σzz = 31 − ν

1 + ν
Bηzz − 3Bβ∆T (z),

ηzz = ∂uzz

∂z
.

(20)

In this equations, ν is the Poisson’s ratio, B is the bulk modulus, β is the linear thermal
expansion coefficient and ∆T (z) is the temperature change at position z.

A deformation is a perturbation of the equilibrium state of an object. As such, it
propagates through the solid. Applying momentum conservation yields the displacement
equation of motion:

ρ0
∂2um

∂t2
= (λ+ µ) ∂2uk

∂xk∂xm

+ µ
∂2um

∂xk∂xk

(21)

with the unperturbed mass density ρ0. This is also known as the Navier-Cauchy equa-
tion. In combination with equations 16 and 18 and reduced to one dimension, this gives

∂2u

∂t2
− c2∂

2u

∂z2 = 1
ρ0

∂σ

∂z
, (22)

the one dimensional wave equation for the displacement, where c is the sound velocity.
The left hand side of this equation is a homogeneous wave equation. The right hand
side is the source term and identifies the gradient of stress as the source for displacement
waves.

A similar wave equation can be obtained for the strain by taking the spatial derivative
according to equation 20:
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∂2η

∂t2
− c2∂

2η

∂z2 = 1
ρ0

∂2σ

∂z2 . (23)

By combination of equations 20 and 23 together with boundary conditions at surfaces
and interfaces, the strain evolution inside solids following the creation of stress can be
calculated. In general, an analytical solution is impossible and numerical methods are
required. However, for certain situations analytical solutions can be found.

A special case of wave propagation is the transition into another material. Whenever
an acoustic wave hits the interface between two different materials, it will be partly
transmitted and partly reflected. It is helpful to define the acoustic impedance Z = ρc of
an acoustic medium. With that, the transmission1 and reflection coefficients for a strain
wave traveling across an interface from medium 1 to medium 2 are:

R = Z2 − Z1

Z1 + Z2
,

T̃ = c1

c2

2Z1

Z1 + Z2
.

(24)

In the special case of the reflection at a free surface, the transmission is zero and the
reflection coefficient gets R = −1, meaning that the strain changes its sign upon reflection
at a free surface.

4.3.2 Coherent Acoustic Phonons

Going from the continuous elastic model to a microscopic picture of the solid gives a
complementary view of acoustic waves. If one looks onto the motion of the atoms forming
the object, their movement is normally described in terms of phonons. Phonons are
collective movements of the lattice atoms.

They have a wavelength λ and an oscillation frequency f . It is often more convenient
to talk about the wave vector q = 2π

λ
and the angular frequency ω = 2πf . The two

quantities are connected via the dispersion relation ω = ω(q). For acoustic phonons close
to the center of the Brillouin zone, which are the relevant ones for describing acoustic
waves, the dispersion relation is:

ω = cq, (25)

with the sound velocity c as the proportionality constant.
In that sense, acoustic waves can be described as a coherent superposition of acoustic

phonons. Therefore, they are often referred to as coherent acoustic phonons.

4.3.3 X-Ray Diffraction from Acoustic Waves

The phonon picture of picosecond acoustic waves yields an intuitive way of understanding
the diffraction of X-rays at transiently strained crystals. The Laue equation 5 can easily
be expanded to introduce phonons. Instead of scattering with a reciprocal lattice vector
only, the incoming wave additionally scatters with a phonon of wave vector q⃗. Therefore,
the phonon momentum has to be included in the momentum balance:

k⃗ − k⃗ ′ = G⃗± q⃗ (26)
1The transmission coefficient is usually named T in the literature. Since T is used for the time in this

work, it is named T̃ instead.
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This can be depicted graphically in reciprocal space as shown in figure 4. The incoming
and outgoing wave vectors now have to match the reciprocal lattice vector plus the phonon
wave vector. This gives rise to additional intensity components apart from the actual
Bragg peak.

Figure 4: Scattering with phonons in reciprocal space. If scattering with phonons
is taken into account, the two reciprocal lattice points on the Ewald sphere are
connected by the sum of the phonon wave vector and a reciprocal lattice vector.

The relation between the deviation of the diffraction angle from the Bragg angle and the
phonon wave vector can be derived with the help of figure 5 comparing the reflection at
a reciprocal lattice vector with the situation involving a phonon. Geometrical arguments
yield:

sin(θB) = G

2k ,

sin(θB + ∆θ) = G+ q

2k .

(27)

The combination of these equations and performing a Taylor expansion of the trigono-
metrical function gives:

q = 4π
λ

cos(θB)∆θ. (28)

In the following, the qualitative impact of the presence of coherent acoustic phonons
on X-ray diffraction patterns is shortly discussed. A pure phonon is an infinite sinusoidal
dislocation of the atoms in a sample. In this work, we study coherent acoustic phonons in
substrate materials, which have a surface coated with a metal. The closest approximation
to a pure phonon in this system is a half-infinite sinusoidal strain distribution. Such kinds
of acoustic waves have been created by multi-pulse excitation schemes and are discussed
in the literature [44].

Figure 6 a) shows such a monochromatic phonon with a wavelength of 100 nm for three
different times after an arbitrary time zero. A simulation of the transient diffraction
pattern for a GaAs (400) sample with such a strain wave in it is shown in part b).
According to equation 28, an oscillation in the diffraction intensity occurs at angles of
± 0.34◦ additional to the unaffected main peak. This is even clearer in part c), where
the upper graph shows the rocking curves for the three snapshots depicted in a) and the
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Figure 5: Derivation of the connection between phonon wave vector and diffrac-
tion angle. The relation between an angular deviation ∆θ and the correspond-
ing scattering phonon’s wave vector can be derived from geometrical consider-
ations for the experimental configuration.

bottom graph shows the transient intensity oscillation at the angular position marked by
the black line in the upper graph.

Hence, X-ray diffraction at acoustic phonons can be interpreted as inelastic scattering
with the respective phonon mode2. For each wave vector, the diffraction intensity is
modulated at an angle connected to q via equation 28. As can be seen in part c) of
figure 6, the response in the diffraction pattern is not a δ-function at the specific angle,
as one would expect for a pure phonon. This has different reasons. First, the oscillation
is located in a half-space in contrast to a pure phonon.

Second, X-rays have a finite penetration depth. In the vicinity of the Bragg peak, this
is mainly caused by extinction, while absorption is the dominant effect further apart. The
finite penetration depth of the X-rays further restricts the extent of the probed region
and, therefore, of the probed oscillation leading to a broadening.

The diffraction patterns change drastically, if instead of an infinite oscillation a strain
wave only consisting of one cycle of the sine is traveling into the substrate. Mathemati-
cally, this corresponds to multiplying the sine with a gate function which has a value 1
for the cycle and 0 elsewhere. Therefore, the pulse is not monochromatic anymore, but
the amplitude is distributed over a an extended range of phonon wave vectors. This can
be seen in graph e). In contrast to b), oscillations occur at all angles in the transient
rocking curves. This is also obvious in the single rocking curves of graph f). The oscilla-
tion frequency is related to the corresponding wave vector via the sound velocity of GaAs
c(100) = 4.73 nm

ps and yields an increasing frequency at higher angles.
If one compares the intensity at the fixed angle in the lower part, two differences to

graph c) are visible. First, the intensity oscillation does not appear instantaneously, but
it builds up within the first tens of picoseconds. The reason is, that the acoustic wave
just starts to enter the sample at time zero and has fully entered only after 47 ps. Second,
the oscillation is damped after reaching a maximum amplitude. Since the acoustic wave

2Since the energy of the X-ray photons is much higher than that of the phonons, the energy transfer is
negligible in this case. The important aspect is the transfer of momentum.
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Figure 6: Influence of pure phonons and gated phonon pulses on transient
diffraction patterns. The left hand side shows the influence of a "pure" phonon
mode on the time resolved diffraction pattern of the (400) GaAs Bragg peak.
The strain profile of the mode is shown for several points in time in a). b) shows
the calculated diffraction pattern in 2D false color representation. c) depicts
rocking curves for particular time points and the time dependent diffraction
intensity at the angular position, where the signal of the phonon mode occurs
(black line). The right hand side graphs show the same for a single cycle of the
same sine. The strain enters the system at T = 0.



4 Theoretical Background 20

travels deeper into the substrate with time, the X-ray intensity is reduced by absorption
and extinction before getting diffracted at the strained part. Therefore, the diffracted
signal is reduced accordingly.

In general, any acoustic pulse after laser excitation is a superposition of a spectrum of
different phonon modes. Their relative strength defines the shape of the acoustic pulse as
well as the X-ray diffraction response. It is therefore possible to learn something about
the acoustic behavior of the system and the microscopic processes after optical excitation
by analyzing the transient X-ray diffraction intensity.

4.4 Deep Neural Networks (DNN)
This section introduces the concept of deep neural networks, which are used in chapter 7
to directly retrieve the strain distribution induced by optical excitation from transient
diffraction patterns. It is structured as follows: First, the general concept of deep neural
networks and the training of such networks are discussed. Second, a more detailed dis-
cussion of the specific network architecture used in this work, the convolutional neural
network, is given.

4.4.1 General Aspects

Deep neural networks are a subclass of artificial neural networks (ANN). ANNs are com-
putational models consisting of layers of neurons. Neurons are building blocks, which can
receive, process and pass data on to the next layer. The output of a neuron is called an
activation and is delivered to the next neurons via connections named synapses. Every
synapse has a weight and a bias determining, how strongly the upcoming neurons input
is influenced by a specific previous neuron [34]. It should be noted, that the terminology
is based on the human brain, even though it is known today, that the function of the real
brain is more complex than the architectures described here.

Each ANN consists of an input layer, an output layer and hidden layers in between.
Accordingly, the contained neurons are called input, output and hidden neurons. The first
one receive data, e.g. images, from the outside world. The second one present a result,
e.g. the classification probabilities for the object in the image, and the hidden layers
process the information (compare figure 7). An artificial neural network is called a deep
neural network, when it consists of many hidden layers. In general, the deeper a layer
is located inside the network, the more abstract the features it processes are. However,
there is no strict border for a network being called deep.

Deep neural networks are a method of machine learning. By training the network with
pairs of input data and corresponding output data, one can adjust the internal parameters
in such a way that the network learns to analyze unknown data. This approach is known
as supervised learning. Since the features of the input data used for the prediction of the
output data are not predetermined, the system has to define them on its own, which is
called representation learning.

The first ideas for the use of neural networks have been proposed as early as 1958, when
Frank Rosenblatt published the idea of a Perceptron, the first shallow neural network as a
model of information processing in the brain [101]. However, for the efficient use of deep
neural networks, three requirements have to be fulfilled:

1. An efficient method for adjusting the network parameters,

2. the computational power to train the network in a feasible time,

3. a sufficient amount of training data.
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Figure 7: Basic concept of an artificial neural network. The colored circles represent
neurons, which are connected by synapses indicated by black lines. Each synapse
carries a weight and a bias. The network consists of an input and output layer
together with three hidden layers. Training data is used to adjust the parameters
of the network. The number of neurons in each layer is part of the network
architecture.

Number 1. and 2. are solved problems: The backpropagation algorithm [85, 105]
together with a suitable parameters update rule discussed in the next chapter and the
adaption of graphic processing units (GPU) allow for efficient training of networks with
billions of parameters on personal computers. Bullet point 3. has to be tackled for every
single application individually.

4.4.2 Training Neural Networks

To train a neural network means updating the free parameters such that the output of
the network for a given input comes closer to the ’real’ output. The training is steered
by so called hyperparameters, which are fixed prior to the training in contrast to the
continuously adapted parameters.

Imagine, having a set of training data pairs consisting of inputs xi together with correct
outputs y(xi). To quantify the performance of the network, some kind of error has to be
defined. A commonly used error metric, which is also used in this work, is the mean
squared error (MSE) defined as:

E(p) = 1
N

N∑
i=1

(y(xi) − ai(p))2, (29)

where E is the error of the network, p is the vector of network parameters, N is the
size of the training data set and ai is the output vector of the network for the input xi.
For the ideal case of ai(p) = y(xi) the error vanishes. Therefore, the problem reduces to
the minimization of the error function with respect to the network parameters p.

A simple approach to this problem is the gradient descent algorithm [99]. Let pl be
the parameter vector of the l-th training iteration. The parameters are then optimized
by moving a small step into the opposite direction of the gradient of the error. Since
the gradient points in the direction of the steepest increase of a function, the opposite
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direction decreases the value of the objective function. The (l+ 1)-th parameter vector is
therefore given by:

pl+1 = pl − α∇E(pl). (30)

The parameter α is called the initial learning rate and is a hyperparameter of the
network training. It can be optimized to increase the network performance. The principle
of gradient descent is shown for a simple example in figure 8.

Figure 8: Optimization in a 2D parameter landscape. The graph shows an arbitrary
error function landscape with two independent parameters x1 and x2. At each
point in the parameters space, the error function has a specific value (black
dot) and the negative gradient shows in the direction of the steepest descent
(red arrow). Following this direction, the minimum value of the error function
can be found. However, there is no guarantee that the global minimum can
be found efficiently and that the optimization does not get stuck in the saddle
point on the left hand side of the visualization.

In practice, training data sets can become very large and the calculation of equation 29
for large N can make the network training inefficiently slow. To overcome this problem a
small mini-batch of the data is used for each training iteration instead of calculating the
error function for the whole data set. This is called stochastic gradient descent and can
be interpreted as a noisy approximation to the full batch gradient descent.

Even though stochastic gradient descent can be useful for specific cases, it has some
issues. Firstly, it can be inefficient, when partial derivatives of the error function with
respect to one parameter are much smaller than to another parameter. In that case
the parameter vector oscillates around the parameter with the steepest descent and the
optimization needs much longer to converge. Secondly, the optimization gets stuck in
saddle points and thirdly it can by no means overcome a local minimum. Lastly, it suffers
strongly from noise due to the stochastic character of the method.

There are several more advanced optimization techniques used for the training of neural
networks such as stochastic gradient descent with momentum (sgdm) [79] or the adam
optimizer (adaptive moment estimation) [54], which overcome these problems. The latter
one will be used in this work and is therefore shortly discussed in the following.

When the adam optimizer is applied, the discussed issues are solved by adjusting the
update rule of stochastic gradient descent with the first two moments of the gradient
(average and uncentered variance):
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ml = β1ml−1 + (1 − β1)∇E(pl),
vl = β2vl−1 + (1 − β2)[∇E(p1)]2.

(31)

where βi are the gradient decay rates, which are also hyperparameters of the network
training3.

A network parameter is then updated as following:

pl+1 = pl − αml√
vl + ϵ

. (32)

Equations 31 describe a moving average of the gradient over the iterations. The first
equation can be interpreted as the equivalent of a velocity in a parameter landscape. It
helps to overcome saddle points or local minima and reduces the influence of noise on the
error optimization, because the movement through the parameter space ’remembers’ the
previous movement. In a 2D-parameter space, this is analog to the trajectory of a particle
in a hilly 2D-landscape.

The second momentum is placed in the denominator of the update rule and ensures
that the learning rate is effectively decreased for large gradients and increased for small
gradients. This damps out oscillations and increases efficiency. ϵ is a small number,
normally chosen around 10−7 − 10−8 and is introduced to prevent division by 0.

It should be noted that the described optimization procedures do not necessarily con-
verge to global minima. They can also get stuck in local minima. This problem can be
overcome by repeating the optimization with different starting points and comparing the
results.

Figure 9: Principle of Backpropagation. The gradient of the error function with re-
spect to a parameter xi of the network can be calculated by backpropagating
the gradients through the network using the chain rule.

The only problem left is how to efficiently calculate the gradient of the error function
with respect to the adjustable parameters of the network, namely the partial derivatives.
This challenge was solved by the introduction of the backpropagation algorithm [105]. The
general idea is to backpropagate the gradient through the network by inverse application
of the chain rule. Let f be a neuron performing some kind of calculation. It has two inputs
x1 and x2 and an output z. This is depicted in figure 9. Suppose that the gradient of the

3In fact, there is an additional transformation m̂l = ml/(1 − βl
1) and v̂l = vl/(1 − βl

2) to account for an
initialization bias, which is not really relevant for the understanding of the mechanism and is therefore
not discussed in detail, here. For further information see [54].



4 Theoretical Background 24

error function E with respect to the output variable ∂E
∂z

is known and we are interested in
the gradient regarding the input variables. According to the chain rule, this is given by:

∂E

∂xi

= ∂E

∂z

∂z

∂xi

= ∂E

∂z

∂f(xi)
∂xi

.

(33)

The error can therefore be propagated back through the network, presuming, that the
gradients of the single computations of the network with respect to the inputs ∂f(xi)

∂xi
are

known, which is legitimate for common deep learning architectures. Equation 33 together
with a suitable optimization algorithm as described in equations 31 and 32 allows for
efficient training of a deep neural network.

Finally, this leads to the following training scheme for a DNN:

1. Sample a mini-batch,

2. forward it through the network and calculate the error,

3. backpropagate the gradient,

4. update the network parameters.

In the end, the network should not only learn to analyze the training data, but to work
on unknown data sets. To check for that during the training process, a part of the training
data is randomly chosen and separated as a validation set. After a certain number of
training iterations, the network is evaluated on the validation data. This training scheme
is repeated until the validation error does not decrease anymore or reaches a sufficiently
low value.

4.4.3 Convolutional Neural Networks (CNN)

Convolutional neural networks are the most successful method for image classification
[59, 126, 43] and other visual analysis tasks such as image tagging [52] or image segmen-
tation [139]. Many convolutional neural networks consist of five types of layers. Figure 10
shows a typical succession of the first three layer types.

Figure 10: Operating principles of the basic CNN building blocks. The figure
shows an exemplary processing of a 5x5 input matrix by sequence of a convo-
lutional, a ReLu and a max pooling layer. The output of the sequence would
be a scalar with value 9 in this case.
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Convolutional Layer Convolutional layers are the main building blocks and the name-
sake of this architecture. They consist of filter kernels which are moved across the dis-
cretized 2D input data horizontally and vertically. At each position, the dot product
between the input and the kernel is calculated. Mathematically, this is equivalent to
taking the convolution between the input and the kernel. The values of the kernel are
trainable parameters of the network.

A convolutional layer preserves the spatial connectivity of adjacent image points (pixels)
and is therefore capable of identifying local structures in the input data. Due to that,
CNNs are superior to other network architectures in image analysis. Thus, the kernels of
the network are feature maps scanning for typical shapes in the input data allowing for
pattern recognition.

ReLu Layer Relu is the abbreviation for rectified linear unit. A ReLu layer is an acti-
vation function, which is defined by [59]:

f(x) = max(0, x). (34)

It is shown in figure 11.
The idea of an activation function is that it only forwards inputs that surpass a certain

threshold. This is inspired by neurons in our brain, which only fire, if the applied potential
exceeds a limit value. For shifting the threshold away from 0, a bias is introduced as an
additional training parameter of the network.

An activation function introduces nonlinearity to a deep neural network. Nonlinearity
is necessary, because otherwise a fully linear deep neural network could be replaced by
a single linear function with suitable parameters. In that case, one would lose all the
advantages of deep neural networks learning to analyze more and more abstract features in
the hidden layers. There are lots of other possible activation functions such as hyperbolic
tangent or the sigmoid function [64]. However, ReLu has shown to produce good results
[36] by simultaneously being effective to train and is therefore used in the architectures
of this work.

Figure 11: ReLu activation function. The ReLu activation function is 0 for x ≤ 0 and
x elsewhere.

Pooling Layer Pooling is a method of down sampling the data. A regularly employed
method is average pooling, where the input is divided into rectangles and the average
value of a rectangle is passed to the next layer [43]. Another important method is max
pooling, where only the highest value of a rectangle is passed [111].



4 Theoretical Background 26

The underlying concept behind pooling is that not the exact position of a detected
feature is important but its relation to other features. This comes with several advantages.
Pooling reduces the size of the input and therefore the number of parameters of the
network. This often results in faster training. At the same time it prevents overfitting,
meaning that the network learns to analyze the training data too good and subsequently
fails to generalize.

Batch Normalization Layer Batch normalization layers are introduced to increase the
stability and speed of deep neural networks. For that purpose, the input to the layer is
re-centered and re-scaled. All output of the neurons throughout the entire mini-batch
are normalized to have the same mean and variance. Even though, batch normalization
is widely used and has proven to be very effective in improving the performance of deep
neural networks, it is still an open debate, what the actual reason for this is [109].

Fully Connected Layer The fully connected layer is normally the last layer of a deep
neural network. As the name states, all neurons of this layer are connected to all neurons
of the previous layer, which are typically the outputs of the whole network. A fully
connected layer at the end ensures, that all outputs can be affected by every part of the
previous analysis.

All in all, a general convolutional neural network is build up of sequences of convolu-
tional layers, ReLu layers, pooling layers and batch normalization layers closed by a fully
connected layer.

4.4.4 Residual Neural Networks

When going to deeper networks, it turns out that the training with current algorithms
is not effective anymore and that deeper networks even get outperformed by shallower
networks [42, 123], which is called the degradation problem. This is not based on a
principle disadvantage of deeper networks. Imagine having a shallow network, where a
few layers are added. We assume that by a suitable choice of the parameters, each layer
can approximate any nonlinear function. Thus, the parameters can also be adjusted such,
that the additionally added layers are equal to the identity. By doing so, the deeper
network should at least reach the performance of the shallower network. This leads to
the conclusion, that the problem is not the structure of the network, but the commonly
applied training procedures.

Figure 12: Residual neural networks. Residual layers shortcut the training problem
in deeper neural networks by passing an identity parallel to the layers of the
network (taken from [43] © [2016] IEEE).

A very successful proposal for overcoming this problem is the use of residual neural
networks. The idea is to introduce shortcuts as shown in figure 12. In the case described
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above, the network could easily reach the performance of the shallower network by ad-
justing the parameters of the layer sequence such that F(x) = 0. It has turned out, that
residual neural networks allow for the efficient training of deeper neural networks reaching
better results in a shorter training time, while having less parameters than comparable
deep networks without residual building blocks [43].

The described network architecture of residual convolutional neural networks has proven
to be very successful in solving image analysis tasks. In chapter 7, it will be described
how this architecture can be adapted to the problem of strain retrieval from transient
diffraction patterns.
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5 Experiments
5.1 Setup
The time resolved X-ray diffraction experiments of this work were performed at the mod-
ular laser-plasma based X-ray source at the University of Duisburg-Essen. The following
section gives an overview about the details of the setup, the investigated samples, the
experimental routines and the subsequent data analysis. The general working principle
of the source has been described in chapter 4.2. Further details can be found in the work
of Afshari et al. [1, 2].

5.1.1 Laser System

The modular X-ray diffraction setup is "driven" by a self-built 10 Hz TW fs laser system.
The basis is a Ti:Sa oscillator (see chapter 4.2) generating 5 nJ pulses with a duration
of 30 fs full width half maximum (FWHM) at 80 MHz repetition rate centered around
782 nm. The pulses are stretched to 200 ps to be further amplified based on the chirped-
pulse amplification (CPA) principle [124].

Amplification is done within two stages: An 8-pass pre-amplifier, pumped by a fre-
quency doubled Nd:YAG laser with a maximum energy of 80 mJ per pulse increases the
pulse energy to 0.6 mJ. Prior to that, a pockels cell picks pulses with 10 Hz repetition
rate out of the pulse train delivered by the oscillator. In a second amplification stage, a
booster amplifier with 4 passes increases the pulse energy up to the optimal working point
of 200 mJ. The Ti:Sa crystal of this amplification stage is cooled down to −170 ◦C in a
vacuum of 5 × 10−7 mbar, which significantly increases the thermal conductivity and thus
strongly reduces thermal lensing and avoids damage due to thermal load. The crystal is
pumped from both sides with frequency doubled Nd:YAG lasers of 450 mJ pulse energy
to ensure homogeneous excitation conditions inside the crystal.

Before recompression, the beam diameter is increased to 25 mm to avoid non-linear
effects in air. These would occur due to the high intensities, if the pulse is compressed
in time and space simultaneously. At a last step, the pulse is temporally recompressed
in a grating compressor. The output pulses have a duration4 of approximately 100 fs at
an energy of 120 mJ. The contrast ratio, which is defined as the ratio of the maximum
intensity to the intensity 2 ps before the maximum, is 107.

There are three important parameters for the efficiency of the X-ray production:

• Pulse duration

• Intensity

• Contrast ratio

The pulse duration limits the achievable X-ray pulse duration. At the same time, it is
one parameter determining the intensity. High peak intensities are only accessible with
short pulses.

The intensity is important for the X-ray production process. A sufficient yield of the
characteristic X-ray radiation can only be reached, if a surface plasma is created and if
this plasma contains enough hot electrons with an energy above the impact ionization
threshold. As discussed in chapter 4.2, this is optimal at intensities in the order of 1016 –
1018 W

cm2 , but this depends on the target material.
A high contrast ratio is important for the characteristics of the surface plasma and thus

for the X-ray yield. Intensity peaks, which arrive prior to the main pulse, can already
4The oscillator actually delivers shorter pulses, but the system is not operated at maximum compression.
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ignite the plasma. When the main pulse finally arrives, the plasma scale length might be
larger than the optimum scale length for X-ray emission.

5.1.2 X-Ray Setup

The thus compressed pulse is used for pump-probe experiments in the X-ray setup. A
sketch of the X-ray setup is shown in figure 13. It consists of the optical pump path and
the X-ray probe part. Before these two are separated, the center part of the the beam
is cut out by a holey mirror (M1). This beam part is called the pre-pulse and contains
around 3 % of the total energy. It is passed over a delay stage (D1) before it gets spatially
recombined with the main pulse through another holey mirror (M2) allowing for a variable
time delay between the two pulses. The delay stage is adjusted such that the pre-pulse
arrives a few ps before the main pulse. The role of the pre-pulse is to ignite the plasma
before the main pulse arrives, giving it the time to evolve to an optimal plasma scale
length. For the given conditions, a time delay of 2 ps has proven to give the maximum
Kα yield [2].

Figure 13: X-ray setup. This figure shows the paths of the beams in the X-ray setup.
Holey mirrors (HM1 – HM3) divide the beam, delay stages (D1 & D2) allow
to impose delays between the different parts, apertures (A1 & A2) shape the
pulse, lenses (L2 & L2) focus it and a motorized mirror (MM) is used to create
spatial overlap of pump and probe. The diffraction images are taken with a
CCD-camera, an avalanche photodiode (APD) and a photo diode (PD) ensure
constant experimental conditions.

Optical Part By another holey mirror (M3), a part from the side of the beam is separated
to serve as the pump. A second delay stage (D2) imposes the possibility to vary the time
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delay ∆t between the pump and probe beam. A λ/2-plate together with a dielectric
Brewster polarizer allows for adjusting the pump pulse energy. Due to the operation
principle of the polarizer, the pump is s-polarized. The beam is focused onto the sample
by a f = 95 cm lens (L2) down to a size of 560 µm (FWHM). It hits the sample under an
angle of incidence of 36°.

Behind the Brewster polarizer, a small portion of the beam energy is reflected at a
one-side anti-reflection coated glass plate. This part is sent to a photo diode, which
monitors the beam energy on a pulse-to-pulse basis. Monitoring the pulse energy allows
for the correction of mid to long term instabilities of the laser energy and small pointing
instabilities. Two apertures (A1 & A2) in the beam path act as spatial filters and ensure
that the focused pump beam is Gaussian to a good approximation at the position of the
sample.

X-Ray Part The main part of the beam is reflected by the third holey mirror (M3) and
is focused into the X-ray chamber by a f = 30 cm lens (L1). The X-ray generation has
to be done in vacuum, because otherwise nonlinear interactions of the focused laser beam
with the surrounding air would disturb it [143]. A moving titanium wire serves as the
solid target. A motor placed outside the chamber pulls the wire through special teflon
gaskets to provide a fresh surface for every shot. This is necessary, because irradiation of
the wire with only two pulses at the same position already breaks it.

X-rays are emitted into the whole solid angle as described in chapter 4.2. The spectrum
of the source can be seen in figure 14. It contains Bremsstrahlung as well as characteristic
radiation.

Figure 14: Spectrum of the emitted X-rays. The spectrum of the emitted X-rays [2]
consists of two components: A background of Bremsstrahlung and discrete
peaks of characteristic lines (shown in (a)). The energy of the characteristic
lines is typical for the element emitting the X-rays; in this case titanium. The
Kα-line is separated into two peaks due to spin orbit coupling (shown in (b)).
The blue line is a guide to the eye. The bent crystal optics of the setup isolates
the Kα1-line at an energy of 4.511 keV and diffracts it onto the sample.

The X-rays leave the chamber through two Kapton foil covered windows. Behind the
first one, a toroidally bent Ge crystal collects X-ray photons and focuses them onto the
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sample [8, 81, 82]. The crystal is bent such that the Bragg condition of the Ge (400)
Bragg reflection is fulfilled at every point of the surface. A 1:1 imaging of the source
onto the sample is achieved by putting the source, the crystal and the sample in the so
called Rowland-circle geometry as is depicted in figure 15 [78, 82]. The X-ray spot size
is approximately 80 µm on the sample, which is much smaller than the pump spot size.
This ensures, that the probed region is homogeneously pumped.

The bent crystal optics has a second important function: It monochromatizes the emit-
ted X-rays. This is necessary in order to achieve high angular resolution. Since the
working principle of the bent crystal optics is Bragg diffraction, only photons in a small
energy window get diffracted and focused on the sample. By careful adjustment, the
crystal is aligned such that the Kα1-line of Ti is deflected on the sample with an energy
resolution of ∆E

E
= 10−4.

Figure 15: Bent crystal optics. The X-ray optics consists of a toroidally bent crystal
in a Rowland-circle geometry. RV

RH
= sin2(ΘB) has to be fulfilled to ensure a

1:1 imaging of the source onto the sample (taken from [82]).

The bent crystal also determines the angular region, in which the X-ray diffraction
patterns can be recorded. The X-rays are diffracted onto the sample with a convergence
angle of approximately 1.4°. This is the maximum angular range, in which the diffraction
patterns can be recorded at a time.

The path from the source to the sample is covered with He filled pipes. This reduces
the loss of X-rays due to absorption in air. The photons get partially diffracted by the
sample at a Bragg angle of θB = 76.5° and are detected by a Si based X-ray CCD. The
CCD is cooled to −30 ◦C, which reduces the dark current. To avoid condensation of water
on the cooled chip, the camera is pumped to a vacuum of 1×10−2 mbar. A pipe extension
in front of the CCD is pumped to the same pressure and reduces the absorption of the
diffracted X-rays.

A second window of the chamber allows the detection of X-rays for normalization to
account for fluctuations in the X-ray production, e.g. due to laser fluctuations on short
and long terms. An X-ray sensitive Si avalanche photodiode (APD) measures the Kα1
photons diffracted by a GaAs crystal at that output. The APD signal is proportional to
the emitted Kα1 flux. Therefore, it is ideal for normalization of the diffraction images.
By that, the diffraction signals can be normalized with an accuracy better than 2 % [2].
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5.2 Samples
The samples studied in this work are heterostructures consisting of a thin metal film
deposited on a semiconductor substrate, namely GaAs. Thin means film thicknesses in
the order of 100 nm (see figure 16). The film thicknesses given in this work are measured
via atomic force microscopy (AFM).

Such material systems are frequently used as so called optoacoustic transducers for the
launch of picosecond acoustic waves. The metal film is excited with an ultrashort laser
pulse and the absorption solely takes place in the metal since typical penetration depths
are in the order of 10 nm. The shape of the acoustic pulse is therefore determined by the
metal film and its microscopic properties. Hence, such a structure allows for the emission
of picosecond acoustic pulses into various bulk materials, for instance even transparent
substrates.

The metal films are either deposited by electron beam deposition or anodic vacuum arc.
Since we are interested in the propagation of the acoustic pulse in the substrate, X-ray
diffraction of a substrate Bragg peak, the (400) of GaAs, is performed.

Figure 16: Sample geometry. The investigated samples consist of a thin metal film on
top of a GaAs substrate. The substrate has a (100) surface orientation.

5.3 Measurements
The measurements for this work are performed using the pump-probe scheme. The sample
surface is excited with an optical pump pulse and subsequently probed with a time-delayed
X-ray pulse. The size of the pump beam on the sample is much larger than that of
the probe beam. This provides homogeneous excitation conditions and since the lateral
dimensions of the excitation are much bigger than the probed longitudinal length scales,
the investigated problem reduces to one dimension.

The probe pulse is diffracted by the sample and measured by the CCD camera. If it
arrives before the pump pulse, the unperturbed diffraction pattern is measured. By sys-
tematically varying the time delay ∆t between the two pulses, snapshots of the sample at
different times after the excitation are taken. As discussed in section 4.3.3, the excitation
of picosecond acoustic waves alters the diffraction pattern, which can be measured with
the pump-probe technique.

Before taking measurements the sample, pump and probe beam have to be arranged.
The X-ray focal spot position is determined by the location of the source and the X-ray
optics and therefore fixed in the setup. The sample is carefully positioned to the point of
minimal X-ray spot size to avoid the so called "acoustic artifact" [121].

The spatial overlap between the pump and probe beam is found in a two step approach.
This complicated procedure is necessary, because the X-rays are invisible and cannot be
overlapped with the infrared pulse by visual inspection. First, rough overlap of the two
beams is established using a phosphor screen next to the sample. For that the phosphor
is illuminated by the X-rays. The weak luminescence is recorded and visualized with a
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camera at a long exposure time of 30 s. The pump beam is then moved to a coarse overlap
with the X-ray spot using the motorized last mirror (MM).

Second, the fine adjustment is done by going to a time delay, where there is a clear,
pump induced effect on the diffracted intensity. The pump beam is scanned around a
grid surrounding the X-ray spot until the position of maximum change in the diffraction
pattern is found, which is the perfect spatial overlap of the two beams.

A proper overlap is important to ensure that the measured fluence is actually deposited
homogeneously in the probe area. If the two beams are displaced, the X-ray beam will
probe a region with reduced fluence. Moreover, when positioned at the edge of the
Gaussian pump beam, even small pointing instabilities/drifts of the beam positions over
the duration of the measurement would lead to a significant change of the excitation
fluence (see figure 17).

Figure 17: Importance of spatial overlap. Precise spatial overlap of pump and probe
beam is necessary to ensure homogeneous excitation conditions.

The measuring procedure is as follows: At every given time delay, five images are
recorded. Because the diffracted intensity is rather weak, the signal has to be integrated
over an exposure time of around 1 min to achieve sufficient data quality.

The first one is an unpumped image, which means that no pump pulse excites the
sample. This is taken for reference, to ensure that the experimental conditions remain
constant during a typical duration of the measurement of 5 – 10 h. For instance, a spatial
drift of the source or a degradation of the sample would lead to a change of the unpumped
image curve and could be detected with the reference image. The second one is a dark
image without pump and probe, which is used for background correction in the analysis.
In principle, it would be sufficient to record one background image. However, having an
up to date image for every time step rules out changes of the background.

Afterwards, three images with a pump pulse exciting the specimen at a fixed time delay
to the probe pulse are taken. Because of the low repetition rate of the laser system, the
deposited energy can fully dissipate between the pulses and every pulse excites a relaxed
sample. The final pumped image is a sum of the three single ones.

For every image, the APD signal is measured. This allows for the normalization of all
images with respect to the X-ray flux. Additionally, for the pumped images a photo diode
is used to measure the integrated pulse energy and adjust the fluence via the motorized
λ/2-plate if necessary.
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Figure 18: Cause of bending. The geometry of the setup leads to bent "rocking curves"
on the detector, because the measured curve is the intersection of two cones
(taken and adapted from [1]).

5.4 Data Analysis

The diffraction patterns ("rocking curves") are recorded on a 2-dimensional CCD detector.
Because of the special geometry, they are bent. The incoming convergent X-ray beam has
the shape of cone. What is actually measured is the intersection of this cone with the so
called Kossel cone, which is oriented perpendicular to the sample surface for symmetric
Bragg diffraction and whose opening angle is equal to (180° - 2θB). The intersection of
these two cones is shown in figure 18.

As a first step in the data analysis, the background images are subtracted from the
diffraction images. Secondly, the bending has to be corrected to increase angular resolu-
tion. The procedure is shown in figure 19. For this, the image is divided into 24 sections
in vertical direction (white lines). A cross section of each one is calculated and a Gaus-
sian function is fitted to the peaks. Fitting a parabola through the maximum position of
these Gaussians (purple circles) yields a measure for the shift. The bending is corrected
by shifting each line by this amount. Finally, a cross section in y-direction yields the
diffraction pattern.

Figure 19: Bending correction. Schematic of the bending correction algorithm. The
left hand side image shows the bent "rocking curve", the middle image the
corrected one. The curve on the right hand side is the cross section in y-
direction.
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After the unbending procedure, two more steps are executed. For a better noise reduc-
tion the average intensity is determined in a region far apart from the main peak, where
all intensity recorded is clearly attributed to noise. This background noise is subtracted
from the diffraction pattern. At last, the images are normalized to the number of incident
photons using the APD signal.
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6 Results, Discussion and Modeling
In this section, the results of the previously described experiments are presented and dis-
cussed. It is structured as follows: First, the general shape of acoustic pulse trains in the
investigated sample geometry is explained. Second, the experimental results are shown
and some general features are discussed. Third, the mechanisms of stress generation after
optical excitation are described. In the last part of the chapter, a detailed quantitative
model is presented for two of the material systems and the simulated diffraction patterns
are compared to the experimental results. A comparison with fluence dependent exper-
iments shows the general applicability of the presented model over the observed fluence
range.

6.1 Picosecond Acoustic Waves in Metal Semiconductor
Heterostructures

The general layout of the metal-on-semiconductor heterostructures studied in this work
has been described in chapter 5.2. In the following, the emission of an acoustic pulse in
these heterostructures is illustrated with an example.

The simplest possible example of acoustic pulse generation in such a material system is
that of a spatially homogeneous and temporally constant stress in the metal film and no
stress in the substrate. This is depicted in Fig. 20. Imagine a metal film with thickness
tM, which is excited with an ultrashort laser pulse at T = 0. The absorbed energy is
distributed homogeneously over the whole film, which leads to a constant stress. Direct
excitation of the substrate and transport across the interface is omitted, thus there is no
stress in the substrate. The characteristic time of the system is given by the traveling
time of an acoustic wave through the film: Tc = tM

c
with the metal sound velocity c.

According to equation 23, a non-vanishing second derivative of stress is a source of
strain waves. Hence, strain waves are emitted at the surface and the interface between
the materials. From a simple thermoelastic point of view this scenario can be understood
as an ultrafast heating of the film, which subsequently leads to rarefaction waves starting
at the surface and the interface. Correspondingly, since the metal film expands, the GaAs
substrate is compressed leading to a compression wave. These strain waves are shown in
the third row of figure 20 at a point in time shortly after excitation.

After T = tM
2c

the waves meet in the middle of the film and add up for an even higher
rarefaction (fourth row). The next picture shows the waves at T = Tc. The metal film
is homogeneously strained, because the two expansion waves have reached the surface
and the interface, respectively. The strain waves are reflected at the surface and partly
reflected and transmitted at the interface. This leads to an expansion wave propagating
into the substrate. Meanwhile, the compression wave has propagated into the GaAs
substrate. Its length is determined by the ratio of the sound velocities cGaAs, cM and the
thickness of the film tM:

tGaAs = cGaAs

cM
tM (35)

At T = 2Tc, a first compression and expansion part have fully entered the GaAs sub-
strate. This combination will be called a "bipolar pulse", because it consists of parts with
both signs of strain. The film is homogeneously strained again, but with a decreased
strain level, because of the finite transmission of the interface.

The waves in the metal film are repeatedly reflected back and forth. At every cycle a
part of the energy is transmitted into the GaAs. This results in a pulse train of alternating
compressions and expansions. The amplitude of the single parts decreases with time due
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Figure 20: Emission of picosecond acoustic waves. The series shows the time evo-
lution of a picosecond acoustic wave in a metal-semiconductor heterostructure
for a simple configuration of a spatially homogeneous stressed metal film, which
is time independent. Expansion is shown in red and compression is shown in
blue. The characteristic time scale of the problem is the acoustic traveling
time of a pulse through the film Tc = tM/c. After each iteration the next
acoustic feature enters the GaAs substrate. The amplitude of the consecutive
pulse train components decreases according to the interface acoustic reflection
coefficient every two pulses.
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to the loss of energy in the transmission at the interface. The resulting pulse train at
T = 8Tc is depicted in the last sketch of figure 20. This pulse train can also be thought
of as a repetition of the first bipolar pulse with decreasing amplitude. The amplitude
reduction is determined by the interface reflection coefficient R defined in equation 24.

However, this is a simplified picture of stress generation in metal films. In real metals
effects like transport or different sources for non-mechanical stress can lead to space and
time dependent stress. This changes the shape of the pulse train. A quantitative under-
standing of the differences in acoustic pulse generation for different metals is desirable
for a better knowledge of the underlying processes as well as for their efficient use as
optoacoustic transducers. By measuring the transient changes of the (400) Bragg peak of
GaAs, we aim to disentangle the stress generation processes in different metal films and
thus the acoustic wave emission in opto-acoustic transducers. This will be described in
the following.

6.2 Experiments on Metals on GaAs (400)
For the investigation of picosecond acoustics in metal films on GaAs, we performed pump-
probe measurements as described in the previous sections. Figure 21 shows the time
evolution of the diffracted X-ray intensity in the vicinity of the (400) Bragg peak of GaAs
for various excited metal films. The intensity is depicted by the color code and each map
is normalized such that the intensity of the unpumped diffraction pattern has a maximum
value of unity.

To reduce the influence of noise, the signal has been smoothed using a 5-point moving
average filter apart from the rocking curve (|θ − θB| > 0.08 °) to remove high frequency
noise. This was done taking great care, that neither the position nor the strength of the
pump induced side maxima was changed. Slightly different angular regions have been
chosen for the plots, to focus on the pump induced changes for the different materials and
excitation conditions.

To compare the influence of different metals on the acoustics, the experiments were
performed for 5 different metals: Aluminum, palladium, gold, platinum and titanium.
For aluminum, palladium and gold the measurements were also done at two fluences to
compare different excitation conditions. The respective incident fluences are shown in the
graphs.

The time resolved X-ray diffraction results exhibit a complex behavior and differences
between the various material systems and also dependencies on the excitation conditions
are obvious. In the following this will be discussed in more detail and the acoustics will
be quantitatively modeled for two cases.

A few observations are common for all samples. At first, it is visible that some pi-
coseconds after the excitation satellites start to appear on both sides of the main peak.
With increasing delay, these satellites move towards the main peak and new satellites
appear. This behavior is well known for diffraction from acoustic pulses generated in bulk
materials (e.g. [100]).

Second, the satellites appear on the two sides alternatingly, always starting at positive
angular deviation - the compression side - followed by negative angular deviation. This
is a footprint of the form of the acoustic pulse. Due to the structure of the samples, the
leading-edge of the pulse is always compressive (i.e. negative strain).

The "fish bone" structure can be understood in real as well as in reciprocal space. In
the latter one, the diffraction of X-rays with acoustic waves is the inelastic scattering of
the X-rays with phonons (see chapter 4.3.3). Each angle corresponds to a phonon mode
with wave vector q and the intensity at that angle oscillates in time with the oscillation
frequency given by the dispersion relation in equation 25.
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Figure 21: Experimental results on ultrafast acoustics for different materials.
This figure shows results for various material systems (aluminum, palladium,
gold, platinum and titanium) and excitation conditions. The diffracted X-ray
intensity is encoded in a color code.
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To extract the angular frequency of the phonon modes, the Fourier transform with
respect to the delay time has been taken for every angle. Figure 22 shows this in a
2D false color representation exemplary for the low fluence measured on Pd/GaAs. The
normalized intensity is encoded in the color code. The x-axis is converted into a wave
vector axis following equation 28. Prior to taking the Fourier transform, the diffraction
patterns have been multiplied with a function of the form (1 − G(∆θ)), where G is a
Gaussian. This prevents experimental noise around the main peak from dominating the
signal.

As can be seen, the maximum amplitude is located on two branches, starting from the
origin and following a linear curve. This reflects the fact that we are looking at low wave
vector acoustic phonons, which follow a linear dispersion (compare equation 25).

Indeed, the speed of sound of GaAs in (100) direction can directly be extracted as the
slope of the branches from the experimental data. By fitting a linear function to the
maximum amplitude for each frequency on both branches, shown as a red dashed line, we
can determine the sound velocity to be c(100)

GaAs = (4726 ± 22) m
s , which is in agreement with

the literature value of 4730 m
s [16]. The only fit parameters in this model are the origin

of the wave vector and the slope of the branches. Values in the black dashed cone are
omitted for this analysis. They are not located on the main branch and originate from
noise.

Figure 22: Acoustic phonon dispersion relation from time-resolved X-ray
diffraction. The linear dispersion relation of the acoustic phonons close to
the Brillouin zone center building picosecond acoustic waves can be extracted
from time-resolved X-ray diffraction data by taking the Fourier transform in
time for every angle. A linear fit (red dashed line) through the branches of
maximum amplitudes yields the sound velocity, which is in good agreement to
the literature value for (100) oriented GaAs. The data points inside the black
dashed cone are omitted in the fitting process, because they are not located
on the acoustic phonon branches.
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An equivalent real space interpretation of the fish bone structure is explained in the
left part of figure 23. The upper part shows the most minimalist view of an acoustic
pulse traveling from an interface into a substrate. It consists of two discontinuities in the
density: The interface between the film and the substrate, and the most prominent feature
of the acoustic pulse train, which is the sign change of the strain in the first bipolar pulse
as described in section 6.1. The distance d1 between these two discontinuities increases
with time, since the pulse is traveling into the substrate.

X-rays reflected from the two discontinuities (1 and 2) interfere and the resulting inter-
ference pattern is the Fourier transform of the structure, that means the Fourier transform
of a rectangle. This is indeed a sinc-function whose side maxima move towards the center
with time. The lower left image in figure 23 shows the Fourier transform of the situation
shown above. As can be seen, the transient changes of the sinc-function cause a fish bone
structure as is visible in our data.

Figure 23: Visualization of the general appearance of time-resolved X-ray
diffraction patterns from acoustic waves in bulk materials. This figure
illustrates the real space interpretation of the creation of fish bone structures
in transient diffraction patterns as interference effects of X-rays reflected from
an interface and a density discontinuity traveling into a substrate and the cor-
responding Fourier transform (left column). It also demonstrates the intensity
enhancement at distinct wave vectors (angles) as an additional interference
from a second traveling discontinuity (right column).

As a last similarity between the different samples, the amplitude of the intensity oscil-
lations at a fixed angle decreases with time delay (see Fig. 24). This effect is independent
of the metal used and can also be seen for different fluences. In principle, two effects can
be responsible for this. The first one is damping of the acoustic pulse, while traveling
through the material. However, even if the pulse is not altered in time, the amplitude of
the oscillations would decay. This is caused by the second effect. Since a finite pulse train
travels into the substrate, the X-rays have to pass the material above the pulse before
scattering with it. They lose intensity due to absorption on that way. Hence, the further
the pulse has traveled into the GaAs, the more the oscillation intensity is damped.
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Figure 24: Oscillation of the diffracted intensity for a specific phonon mode. This
graph shows a vertical cut through the 2D false color plot of the Pd measure-
ment for an incident fluence of 8.2 mJ

cm2 at an angle of 0.2°, which corresponds
to a phonon wave vector of q = 0.037 nm-1. The intensity increases shortly
after time zero and an oscillation builds up. The initial increase originates in
the acoustic pulse train entering the substrate. After approximately 100 ps the
oscillation intensity starts to decrease. Several reasons can be responsible for
that as acoustic damping, or effects of X-ray absorption as the X-rays have to
travel deeper into the sample before scattering with the strain pulse. The red
line is a guide to the eye.

Nonetheless, there are also clear differences between the materials. To begin with,
experiments at higher fluences generally show more pump induced intensity contributions
apart from the main peak. This is plausible, because a higher excitation fluence generally
creates higher amplitude acoustic waves, which lead to more diffracted intensity away
from the Bragg peak.

Additionally, the measurements at higher fluences show enhancements at particular
fixed angles, while the intensity is suppressed at other angles. This behavior can again
be interpreted in reciprocal as well as in real space.

In the reciprocal space image, the enhancement is indicative of the amplification of
specific phonon modes. These are the dominant phonon modes of the pulse, whose wave
vector is connected to the acoustic pulse properties via q = nπ/tGaAs with n being an
integer.

The right part of figure 23 shows the interpretation in real space. In contrast to the
weak excitation discussed before, the amplitude of the second bipolar pulse becomes
relevant now. With that, a second moving discontinuity has to be taken into account.
This introduces a second thickness d2 to the system, which is constant as the wave travels.
In this situation, three rays interfere with each other. The interaction of the rays 1 and
2, and 1 and 3, respectively, forms the fish bone structure again (see Fourier transform
in the lower image). However, this is now overlapped by the interference of the waves 2
and 3, which have a constant phase relation and hence enhance or decrease the signal at
fixed wave vectors.

Comparing the different metals, some show a concentration of the additional intensity
closer to the rocking curve (Au), while others show a spread of the pump induced intensity
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over a wider angular range. This effect is not depending on the excitation fluence as it
can be seen for low and high fluences.

To conclude, the experiments on different metal films on top of GaAs substrates show
a complicated transient evolution of the diffraction intensity in the vicinity of the Bragg
peak. To get a deeper material specific and even quantitative understanding, a detailed
analysis is necessary. In the following, the stress generation mechanisms and the subse-
quent acoustic response are discussed in detail. This knowledge will then be applied to
two of the systems, where a detailed model is developed.

6.3 Stress Generation upon Optical Excitation
As described in section 4.3, stress leads to an acoustic response of solid materials. Non-
mechanical stress according to equation 19 can be caused by several different sources.

First, ultrafast changes of the lattice temperature lead to a thermodynamic non-equili-
brium, which is a source of thermoelastic stress. The new temperature is connected to a
new equilibrium position of the atoms. Since initially the atoms are still located at their
original position, restoring forces occur, which induce stress. This is often referred to as
the phononic part of stress.

Second, a change of the electron distribution due to optical excitation of a material gives
rise to electronic stress caused by changes of the interatomic potential [104]. Every change
of the electronic distribution, e.g. an optical excitation of the electronic system, results in
a change of the charge carrier density in the system. This alters the interatomic forces of
the lattice represented by the crystal potential and thus yields a new equilibrium position
of the atoms. Subsequently, the lattice relaxes to the new equilibrium by excitation of
acoustic waves.

Last, there are also other sources for stress in solids such as the inverse piezoelectric
effect, electrostriction or magnetostriction. These effects are only relevant in the respective
materials (e.g. ferromagnets [57, 58, 115, 133]). Therefore, they are not considered here.
Additional information can be found in the literature [104].

6.3.1 Two Temperature Model

A frequently used model to describe the non-equilibrium response of metals to optical
excitation with an ultrashort laser pulse is the two temperature model (TTM) [6]. In this
model the subsystems of electrons and phonons are described separately by corresponding
temperatures Te and Tl. They exchange energy due to scattering until both systems are in
thermal equilibrium. This is the case, when they have reached the same temperature. The
strength of the energy transfer is given by the electron-phonon coupling constant G. The
temperature evolution of the subsystems is given by the coupled differential equations:

Ce(Te)
∂Te

∂t
= ∇[κe(Te)∇Te] −G(Te − Tl) + S(z, t),

Cl(Tl)
∂Tl

∂t
= ∇[κl(Tl)∇Tl] +G(Te − Tl),

(36)

where Ce and Cl are the electron and lattice specific heat and κe and κl are the thermal
conductivities of the electrons and the lattice, respectively. S is the source term and
describes the energy deposition by the laser pulse. Whenever the laser pulse duration is
short compared to the relevant timescales of the problem, the excitation can be assumed
to happen instantaneously. In that case, S is approximated by a Heaviside function.

In the frame of the TTM the absorption and subsequent energy relaxation of a fem-
tosecond laser pulse can be understood as follows. The whole energy is absorbed by the
electrons creating a hot electronic system, while the lattice remains cold. Subsequently,
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electron-phonon coupling sets in and energy is transferred to the lattice until thermal
equilibrium is reached.

Changes of the temperatures of the subsystems lead to stress [138]:

δσtot = −γeCeδTe − γlClδTl, (37)

where γe and γl are the average Grüneisen parameters and δTe and δTl are the temper-
ature changes of the electron and lattice system, respectively. If the material parameters
are known, the stress evolution can be calculated from the temperature changes.

Even though the two temperature model is successful in explaining various systems, it
has its limitations due to the underlying assumptions, which are not valid generally:

• It assumes an initially thermalized electronic system [26].

• The energy transfer between the subsystems is not regarded as mode specific [135].

• The phonon system is considered as thermalized for all times as well [117].

These limitations have to be kept in mind. For every application, it has to be checked
carefully, whether the TTM is applicable. For our case, the TTM seems to describe the
physics well and thus it is exploited in the following.

So far, the discussion has only taken into account the transient changes of the elec-
tron and lattice temperature. This is only valid for a spatially homogeneously excited
specimen. For spatially inhomogeneous excitation energy transport plays a role as will
be shown in the following discussion. All in all, a complicated interplay of different mi-
croscopic processes like absorption, transport, and subsystem coupling determines the
spatiotemporal evolution of stress and the resulting acoustic response of the material.

6.4 Metric for Transient Rocking Curve Comparison
It is necessary to define a scalar metric to compare two-dimensional diffraction patterns.
By minimizing such a metric for the measured and simulated patterns, it is possible to
develop models describing the underlying physics and to find the optimal parameters of
these models. In the following, the mean average percentage error (MAPE) will be used
as a metric:

MAPE = 100
NθNt

∑
θ,t

|(I1(θ, t) − I2(θ, t)|
I1(θ, t)

, (38)

where Ii are the angle and time dependent diffraction intensities and Nθ and Nt are the
number of angle bins and the number of time steps of the diffraction pattern. This metric
normalizes the difference of the two intensities at each point in angle and time to the first
intensity and averages the result over all "pixels". This has the advantage, that a change
between the two diffraction patterns at a low intensity, e.g. 10−3, has the same influence
on the metric as a change at high intensity. This is important, because the intensities of
the relevant features in the diffraction patterns vary over orders of magnitude.

Though, this also comes with a disadvantage, one has to be aware of. At low intensities
the signal to noise ratio decreases. Especially, when two patterns are in good agreement,
the role of noise increases and deviations originating from noise can dominate the MAPE.

Even a good model will rarely reach the theoretical limit of 0 %, but will always exhibit
an offset. This originates in the points, where there are still slight differences between the
two curves and is even more pronounced, if noise causes additional deviations.

Hence, there is always some kind of offset, especially if two different models are com-
pared to each other. Because of that deviations of only a few percent should be treated
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with care and do not necessarily mean that one model is superior. However, if the com-
parison is done within one model with varying parameters, even small differences can be
meaningful.

Another issue which can limit the mathematical agreement of two patterns with such
point by point comparison is an imperfect determination of the temporal and angular
origin. Great care was taken to determine these as good as possible, but nevertheless this
is a potential source for inaccuracies.

6.5 Modeling of the Acoustic Response
One way to interpret time-resolved X-ray diffraction results is called the "modeling ap-
proach" in the following. One starts from the microscopic processes upon optical excitation
like absorption, transport or energy coupling between the subsystems. This is followed
by simulating the induced acoustic response and calculation of the resulting diffraction of
the incoming X-ray beam. By that, for every point in time it is possible to determine the
strain distribution η(z, t) and according to section 4.1.3 the transient diffraction patterns
I(θ, t).

A comparison of the calculated X-ray intensities to the measured ones allows to judge,
whether the microscopic processes were correctly described for the specific material sys-
tem. This comparison is done by using the MAPE-metric introduced in the previous
paragraph. The complexity is further increased, because energy redistribution, stress
generation and acoustic wave emission are not necessarily separated in time, but happen
indeed simultaneously. A sketch of this analysis scheme is shown in figure 25.

Figure 25: Workflow of modeling. Visualization of the iterative modeling workflow
used to describe the experimental results.

In the next two sections it will be shown that such a modeling allows in some cases for
the quantitative understanding and identification of the relevant microscopic processes and
material properties for the acoustic wave emission. This analysis focuses on two examples
from the experimental results presented before. Gold and palladium present two limiting
cases of "slow" and "fast" electron-phonon coupling and the following analysis reveals how
this influences the acoustic response.

For both systems a microscopic model will be presented, discussed and compared to the
experimental results. Besides the parameters of the models both systems have two "fit"
parameters in common, which originate in the experimental conditions: The maximum
strain η̂GaAs in the substrate and the thickness of a single pulse tGaAs (see figure 20).
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The pulse thickness in the substrate is connected to the metal film thickness via equa-
tion 35. However, the metal sound velocity depends on the structure of the metal film and
is therefore not exactly known. To get around this problem, the pulse thickness is taken
as a free parameter and from that the metal sound velocity is derived and compared to
literature.

6.5.1 Gold

The absorption length for light with a wavelength of 800 nm light in gold is 13 nm [53].
Hence, the laser energy is completely absorbed by the electrons in the metal film and
the GaAs is not excited. However, electronic transport in gold is very fast and therefore
the energy is efficiently distributed over the whole film thickness within a few hundred
femtoseconds [11, 49] leaving the film with an excited electronic distribution. Meanwhile,
the lattice is still not excited, because electron-phonon coupling is comparably weak in
gold [83, 122]. Therefore, we assume a spatially homogeneous distribution of the energy
over the metal film. This leads to stress which is only time dependent.

The strain wave emission is hence determined by the coupling of the energy between
the subsystems and the time evolution of the induced stress, which will be analyzed in the
following. First, the phenomenological model by Nicoul et al. will be deployed [83] for the
experiment at high fluence (see figure 21). Second, a two temperature model simulation
is performed. By comparison to the result using the Nicoul model it is shown that the
deviations between the two models are negligible and that both are equally well suited for
describing the measurement within the sensitivity of the experiment. Because of its sim-
plicity the Nicoul model is used for the following analysis of the low fluence measurement
as well as for the discussion of the fluence dependent experiments in part 6.5.3.

Nicoul et al. have studied the acoustic response of an epitaxial gold film on a Mica
substrate [83]. They could explain their observations of the transient shifts of the (111)
Bragg peak of Au by assuming an exponential transformation of electronic to thermal
stress due to energy transfer between the subsystems. This phenomenological approach
is an approximation to the two temperature model (see below). Initially, there is nonzero
electronic stress and no thermal stress. The transient evolution of the total stress can be
described by:

σtot(t) = σ∞H(t)
[
1 +

(
γe

γl

− 1
)

exp
(

− t

τ

), (39)

where σ∞ = c2
Mρη∞ is the stress after equilibration without any thermal transport

losses. It is given by the sound velocity cM, the density ρ and η∞, the strain after equili-
bration5. H(t) is the Heaviside function, which yields an instantaneous stress generation
at T = 0. The parameters determining the temporal evolution of the stress are the
Grüneisen parameters of the electronic and the lattice system γe and γl together with the
electron-phonon coupling time τ . This description assumes, that electronic excitation and
transport happen "fast" compared to the time scale of electron-lattice equilibration and
acoustic wave emission.

The absorbed fluence is connected to the strain in the metal after equilibration via:

Fabs = tMCV c
2
Mρ

3Bβ η∞, (40)

5η∞ is a theoretical value, the system would relax to without any losses. In practice it is not reached,
because there are energy losses e.g. heat conduction through the interface.
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where tM is the thickness of the metal film, ρ is the density, B is the bulk modulus and
β is the linear thermal expansion coefficient.

The model contains two additional parameters to the two fit parameters η̂GaAs and
tGaAs discussed in the previous chapter: The first is the ratio of the electronic and lattice
Grüneisen parameters, which is γe/γl = 0.5 for gold [83]. The second parameter is the
electron-phonon coupling time τ , which is fluence dependent (see [122] and references
therein). The stress after equilibration is proportional to the maximum strain in GaAs.

To find the best approximation to the experimental result, the coupling time was varied
in discrete steps of 0.5 ps, while the maximum strain and the pulse thickness were used as
free parameters to achieve the optimal agreement between model and experiment. The
parameters were varied until the minimal MAPE was reached for every coupling time.
The results are depicted in figure 26. All used material parameters are given in table 1.

tM 120 nm
tGaAs 170 nm
cM 3380 m

s
R 0.44
Tc 35 ps
c100

GaAs 4730 m
s [16]

ρ 19.3 g
m3 [37]

B 1.73 × 1011 Pa[55]
β 1.42 × 10−5 1

K [68]
CV 2.49 × 106 J

m3 K [68]
Ae 67.6 J

m3 K2 [67]
ξopt 13 nm [53]
γe/γL 0.5 [83]
G 1.7 × 1016 W

m3 K [122]

Table 1: Parameters for the acoustic sim-
ulation of the excited gold film.
The metal thickness tM was measured
using atomic force microscopy. The
thickness inside the GaAs tGaAs is a
free parameter. The speed of sound
in the metal cM, the interface reflec-
tivity R and the characteristic time
Tc are calculated from that values us-
ing equations 35 and 24. All other
parameters are taken from the liter-
ature. The respective references are
given in the table.

Figure 26: Mean average percentage error for variation of coupling time in gold.
The blue circles show the best achievable MAPE as a function of the coupling
time. The blue line is a guide to the eye. The red cross marks the optimal
MAPE obtained from the two temperature model for T∞ = 28.4 K.
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As can be seen, the optimal result is obtained for a coupling time of τ = (3.5 ± 1.0) ps.
The corresponding values for tGaAs and η̂GaAs are 170 nm and 4.9 × 10−4. The resulting
pulse train in GaAs for T = 6Tc is shown in the left panel of figure 27. The leading front
of the acoustic pulse has traveled 1000 nm into the substrate as expected for the sound
velocity of GaAs (100) c100

GaAs = 4730 m
s and the characteristic time of the gold sample Tc =

35 ps.

Figure 27: Strain pulse results modeling. This figure shows the result of the acoustic
modeling. The left panel shows the strain pulse in the GaAs of the gold sample,
the right panel on the palladium sample. z = 0 corresponds to the interface
between the metal and the substrate.

The general shape of the pulse follows the scheme described in the previous section. It
consists of a bipolar pulse, which is repeated with decreasing amplitude. The amplitude
reduction is determined by the acoustic interface reflectivity.

The shape of the bipolar pulses is nearly rectangular, mirroring the homogeneous spatial
excitation of the gold film. Only the edges at the beginning and at the end of the bipolar
pulse are smoothed, which is a signature of the time dependent energy exchange between
the electronic and lattice subsystem.

It should be noted, that the differences in the diffraction patterns between the optimal
results for the different coupling times are rather small stressing the importance of the
high dynamic range of the measurement as well as the use of a scalar metric like the
MAPE to add up all the small deviations between the measured and calculated patterns.
By just looking at the diffracted intensity for single time steps, it would not be possible
to differentiate adequately.

From the obtained maximum strain, the stress after equilibration in the gold can be
found to be σ∞ = 0.21 GPa. This corresponds to an overall temperature rise of T∞ =
28.4 K. According to Sokolowski-Tinten et al. one would expect a coupling time of around
2.75 ps for this temperature rise [122].

Additional two temperature model calculations were performed to compare them to
the simple assumption of an exponential time constant. For that, an excited electron
distribution with a spatially constant temperature at T = 0 was assumed as the initial
excitation. Given this, equations 36 were solved numerically. Due to the spatially constant
electron temperature, the gradient vanishes and no further transport happens.
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The system reaches a final temperature rise of 28.4 K as in the experiment for an
initial electron temperature of Te(0) = 1485 K. The temperature development of the two
subsystems is shown in the left part of figure 28. As can be seen, the electron temperature
decreases fast, while the lattice heats moderately. This is a sign of the higher specific heat
of the the lattice. After ≈ 10 ps, both systems have reached thermal equilibrium.

Figure 28: Two temperature model calculations for the excited gold film. The
left graph shows the evolution of the subsystem temperatures after optical
excitation of the electronic system of the gold film. Thermal equilibrium with
a temperature rise of 28.4 K is reached after approximately 10 ps. The right
graph shows the evolution of the electronic, thermal and total stress calculated
from the temperatures. The purple dashed line is an exponential fit to the total
stress corresponding to the Nicoul model.

From the temperature evolution, the electronic, thermal and total stress were calculated
by integrating equation 37. The result is plotted on the right side of figure 28. Initially,
there is only electronic stress, since the lattice is still at room temperature. During the
energy transfer the electronic stress decreases and the phononic stress increases. Since
the lattice Grüneisen coefficient is twice the electronic one, the overall stress increases up
to twice the initial stress at time zero.

The purple dashed line is an exponential fit to the total stress, which corresponds to the
model by Nicoul. It yields a coupling time of τ = (2.76±0.03) ps, which is lower than the
optimal result obtained for our experiments but still within the experimental uncertainty.
As can bee seen, there are deviations between the TTM result and the exponential fit.
However, these deviations are small.

Accordingly, the deviations in the diffraction patterns calculated from this result are
also small. The MAPE is shown as a red cross in figure 26 and is close to the MAPE at
the respective time constants using the Nicoul model. However, it is slightly larger than
the optimal MAPE value at 3.5 ps.

Various reasons are possible for that. Sokolowski-Tinten et al. have observed that the
time constants obtained by a fit to the TTM are normally smaller than the experimentally
observed results at weak excitations below T∞ = 50 K as in this case [122]. This might
hint to a weak temperature dependence of the electron-phonon coupling parameter G.
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Chase et al. have used ultrafast electron diffraction to observe the diffuse scattering of
a thin gold film after laser excitation [18]. They found, that the phonon system is not in
thermal equilibrium in the first picoseconds after excitation. This might also effect the
average coupling time determined in this work.

For the low fluence measurement the pump induced intensity changes are comparably
small as are the effects of varying the electron-phonon coupling time. Hence, an analysis of
the optimal coupling time as for the high fluence was not tried. Therefore, the procedure
was altered as follows: An optimization of equation 39 to the experimental data with
the maximum strain as the only free parameter was performed. For every value of the
strain the temperature rise in the gold film was calculated and the corresponding coupling
time was determined by a fit to a TTM calculation. The best result was obtained for
η̂GaAs = 5.3 × 10−5, which corresponds to a temperature rise of 3.1 K and a coupling time
of 1.5 ps.

Figure 29 shows the comparison of the time dependent rocking curves in a 2D false
color representation. The first two columns of the figure show the results for gold. In
the upper panel the experimental results, which were already presented in figure 21, are
shown. The left image shows the lower fluence, the right one the higher fluence. The
lower panel graphs show the best modeling result for both measurements.

Using the best fit value and comparing the result in figure 29 shows that the exper-
imental data are in good agreement with the results of the simulation. This is further
demonstrated in the comparison of single rocking curves. Figure 30 shows the rocking
curves for different multiples of the characteristic time Tc = 35 ps and both fluences in
the two left hand side columns. Again, it is visible that the results of the modeling fit the
experimental data well. Especially the position and the intensity of the side maxima for
different delays are reproduced nicely by the model.

The best approximation to the experimental data is achieved using tGaAs = 170 nm. This
result cannot be directly compared to the experimental value, because the exact sound
velocity of the gold film is unknown. Nevertheless, we can estimate it using equation 35
with the result for tGaAs and the metal film thickness tM = 120 nm, measured by atomic
force microscopy, to be cM = (3380 ± 80) m

s . This is in reasonable agreement with the
literature value of 3441 m

s for (111) oriented gold (calculated from elastic constants taken
from [80]). This finding is supported by static X-ray diffraction measurements yielding
that our film is preferably (111) oriented (see appendix A).

The optimal values for the maximum strain are η̂GaAs = 5.3×10−5 and η̂GaAs = 4.9×10−4

for the low and high fluence experiment. This corresponds to an absorbed fluence of
0.034 mJ

cm2 and 0.31 mJ
cm2 . These values are rather small, because the reflectivity for s-

polarized 800 nm light is close to 1 at an angle of incidence of 36° (R = 0.981 [53]).
To conclude, our measurements can be well reproduced in the frame of the model de-

veloped by Nicoul et al. [83]. The crucial point for the understanding of the picosecond
acoustics of the excited gold film is the interplay of electron-phonon coupling and trans-
port: While electron-phonon coupling is comparably slow in gold, efficient transport leads
to a homogeneous spatial distribution of the deposited energy. This is essential for the
overall shape of the acoustic pulse, which is consequently governed by rectangular bipolar
pulses. Due to the high dynamic range, the experiment is even sensitive to the electron-
phonon coupling time, which affects the shape of the pulse due to the difference in electron
and lattice Grüneisen coefficients.

The material parameters obtained by the optimization are in reasonable agreement to
the literature. A direct comparison of the the phenomenological model by Nicoul et al. to
two temperature model calculations has shown, that the deviations are small, even though
the two temperature model yields a slightly lower coupling time for the given temperature
rise.
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Figure 30: Single rocking curve comparison. This figure shows the comparison of
the experimental results for gold (column 1 and 2) and palladium (column 3
and 4) for the two different fluences and various time delays to the simulated
diffraction patterns using the presented models for the emitted picosecond
acoustic waves. The specific times and fluences are given in the graphs. It
should be stressed, that the agreement ranges over the high dynamic range of
our setup.
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6.5.2 Palladium

For modeling the experimental results on the Pd/GaAs sample, TTM calculations were
not performed for two reasons. On the one hand, the electronic Grüneisen parameter
of palladium is unknown and hence the temporal evolution of the total stress cannot
be deduced from the temperatures. On the other hand, Marius Milnikel has performed
ultrafast electron diffraction experiments measuring the Debye-Waller effect in an optically
excited palladium film (see appendix B) [77]. He found, that the electron-phonon coupling
time in palladium is around half a picosecond, much faster than the characteristic acoustic
time scale Tc. Hence, hot electrons start to exchange energy with the lattice very fast and
thermal equilibrium is rapidly reached (quasi-instantaneously). On the relevant acoustic
timescales, the two systems can therefore be assumed to be in thermal equilibrium. Hence,
it is not necessary to model the temporal evolution of the temperatures in the palladium
film to describe the acoustics.

Thomsen et al. have introduced a model to calculate the acoustics for an optically
excited sample in the limit that only one contribution to the stress, namely the thermoe-
lastic exists, which means that the system can be described by a single temperature [129].
This model is also applicable, if the equilibration of the electronic and lattice subsystem
is fast and, accordingly, both can be assumed to have the same temperature.

In the model, heat diffusion described by the thermal diffusivity D is the only transport
mechanism taken into account. To begin with, an initially exponential excitation profile
with the absorption length of the respective material as the decay constant is assumed.
Transport by hot electrons faster than the acoustic timescales could alter this profile and
lead to an effectively larger deposition depth and also deviations from the exponential
profile, which is not included in the model.

The transient strain wave shape in such a system is given by

η(z, t) = 3FabsβB

ξc2ρCV

F (z − ct) (41)

with the absorbed fluence Fabs, the linear thermal expansion coefficient β, the bulk
modulus B, the absorption length ξ, the sound velocity c, the density ρ and the specific
heat per unit volume CV . The function F (z−ct) describes the shape of the bipolar pulse.
It can be calculated using

F (z − ct) =


−1

2e
−(z−ct)/ξ − 1

2
∫ ∞

0+ dt
′ ∫ ∞

0 dz′ ∂Θ(z′,t′)
∂t′ δ(z′ − z + c(t− t′))

1
2e

−(z−ct)/ξ − 1
2

∫ ∞
0+ dt

′ ∫ ∞
0 dz′ ∂Θ(z′,t′)

∂t′

×[δ(z′ − z + c(t− t′)) − δ(z′ + z − c(t− t′))],
(42)

where the first equation holds for z > ct and the second one for z < ct. The function
Θ(z, t) describes the energy transport due to diffusion during the emission of the strain
wave:

Θ(z, t) =
∫ ∞

−∞
dz′(4πDt)−1/2e(−z−z′)2/4Dte−|z′|/ξ. (43)

The shape of the pulse is determined by the ratio D/cξ. Figure 31 shows the bipolar
pulse with and without diffusion. As can be seen, the pulse consists of two exponential
decay profiles mirroring the absorption of the light, if diffusion is not taken into account.
Transport during the acoustic emission process leads to an asymmetry between compres-
sion and expansion. This broadens the compression part of the pulse while reducing its
maximum.
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Figure 31: Comparison of a strain pulse with and without diffusion. This figure
shows the result of the Thomsen model [129] with and without diffusion. The
diffraction results of the palladium experiment can be explained better, if ther-
mal diffusion is taken into account.

Even though electron-phonon coupling is fast compared to the acoustic timescales, it
cannot be excluded that transport of hot electrons leads to changes of the deposition
profile before the subsystems have reached thermal equilibrium. To account for that ξ
is interpreted as an effective deposition depth and treated as a free parameter in the
following. The optical absorption depth is ξopt = 12.5 nm [53], but for the modeling ξ is
varied in discrete steps of 2.5 nm from 7.5 – 30 nm.

This model is now applied to the palladium heterostructure under examination. The
relevant material parameters are given in table 2. The diffusion constant is related to the
thermal conductivity κ via D = κ

CV
:

Table 2: Parameters for the acoustic simula-
tion of the excited palladium film.
The metal thickness tM was measured us-
ing atomic force microscopy. The thick-
ness inside the GaAs tGaAs is a free pa-
rameter. The speed of sound in the metal
cM, the interface reflectivity R and the
characteristic time Tc are calculated from
that values using equations 35 and 24.
All other parameters are taken from the
literature. The respective references are
given in the table.

tM 88 nm
tGaAs 93 nm
cM 4500 m

s
R 0.36
Tc 20 ps
c100

GaAs 4730 m
s [16]

ρ 12.02 g
m3 [76]

B 1.81 × 1011 Pa [55]
β 1.18 × 10−5 1

K [68]
CV 2.95 × 106 J

m3 K [68]
ξopt 12.5 nm [53]
κ 73 W

m K [48]
G 1.4 × 1018 W

m3 K [77]

Given these parameters, equations 41 – 43 can be solved numerically. Again, the free
parameters in this model are the thickness of a single pulse in the substrate tGaAs and the
maximum strain in the GaAs η̂GaAs. These parameters are optimized until the minimum
MAPE is reached. The result is shown in figure 32. The MAPE is normalized in this case
to allow for the plotting of the results for the low and high fluence case in one graph.
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It is clearly visible that the optimal effective deposition depth ξ = 17.5+7.5
−2.5 nm for the

high fluence experiment is larger than the optical absorption depth, while the low fluence
measurement can be described best using ξopt ≈ ξ = 12.5+5

−2.5 nm. This indicates that for
the high fluence some transport of excited electrons leads to a broadening of the energy
deposition profile in comparison to the absorption profile of the laser pulse.

Figure 32: Mean average percentage error for variation of scale length in pal-
ladium. The two curves show the best achievable MAPE between measured
and calculated diffraction patterns for the high (blue) and low fluence (orange)
results. The solid lines are guides to the eye. The dashed line shows the liter-
ature value for the absorption length of the light in palladium (see table 2).

The resulting strain in the substrate η(z, t) for the high fluence measurement for T = 6Tc
is depicted in the right part of figure 27. The leading front has only reached a depth
of 570 nm, because the characteristic time of Tc = 20 ps is shorter than for the gold
sample. As can be seen, the acoustic pulse shape is determined by the shallower energy
distribution profile in contrast to gold. Additionally, diffusion effects the biexponential
shape originating in the ratio D/cξ = 0.32 for the given parameters.

From the result of the acoustic modeling the diffracted X-ray intensity is calculated.
The comparison of the 2D false color plots to the experimental data is shown in the
two right hand side columns of figure 29. A direct comparison of the rocking curves
for different multiples of the characteristic time Tc = 20 ps is shown in figure 30. Best
agreement to the experimental data is given for tGaAs = 93 nm and a maximum strain
of η̂GaAs = 1.1 × 10−3 and η̂GaAs = 5.4 × 10−3 for the low and high fluence experiment,
respectively. This corresponds to a maximum temperature rise of T∞ = 315 K and T∞
= 64 K and an absorbed fluence of Fabs = 0.29 mJ

cm2 and Fabs = 2.0 mJ
cm2 , which suits the

theoretical surface reflectivity of R = 0.81 for 800 nm at an angle of incidence of 36°
within the experimental uncertainties.

As for gold we cannot directly compare the result for the thickness with experimental
parameters, because the exact sound velocity of the palladium film is unknown due to the
unknown structure. Nevertheless, we can use the obtained value and the measured palla-
dium film thickness of tM to determine the sound velocity to be cM = (4500±100) m

s . This
is in good agreement with the range of sound velocities for the different palladium crystal
directions calculated by the elastic constants given in the literature c = [4350, 4905] m

s [93].
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Using this results one can compare the experimental data to the calculated rocking
curves in figures 29 and 30. Again, the agreement between both is very good, supporting
the given model for the acoustic dynamics.

To check for the relevance of including diffusion effects, we also tried to reproduce the
experimental data while setting the thermal conductivity of palladium to 0. It turned out
that by omitting diffusion, the agreement between theory and experiment worsens. This
is shown in figure 33 for an exemplary time delay. The position and intensity of the side
maxima is clearly reproduced worse, if diffusion is not taken into account.

Figure 33: Effect of including diffusion for the simulation of the palladium re-
sponse. This figure shows the best fit to the experimental data for the previ-
ously discussed model and compares it to the simulation, where the effect of
thermal diffusion is not taken into account. This is done by setting the thermal
conductivity κ = 0.

All in all, it can be said that the strong electron-phonon coupling in palladium is
mostly responsible for the shape of the induced acoustic pulse. However, for high excita-
tion fluences hot electron transport affects the excitation profile faster than acoustic wave
emission and hence also the shape of the pulse. Subsequently, transport via thermal diffu-
sion alters the profile and leads to an asymmetry between the compressive and expansive
part of the bipolar pulse.

6.5.3 Fluence Dependence

As shown in the previous paragraphs, our models allow for the quantitative description
of the acoustic response of both material systems. Additionally, we performed fluence
dependent measurements to investigate, whether the purely linear models are able to
describe the dynamics over the relevant range of fluences. Two kinds of linearities have
to be considered: Acoustic and optical linearities.

Figure 34 shows the comparison of unpumped, experimental and simulated rocking
curves for both materials and five different fluences. The experiments were done at fixed
delay times. The fluence was varied from 3.8 mJ

cm2 to 67 mJ
cm2 for gold and from 1.7 mJ

cm2 to
8.6 mJ

cm2 for palladium.
For every fluence, the optimal value of the maximum strain in GaAs was searched to

find the best agreement to the experimental data. As has been discussed, the electron-
phonon coupling time for gold and the scale length for palladium are fluence dependent.
For gold, this was taken into account by determining the coupling time based on a TTM
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calculation for every single peak strain in the optimization process. For palladium, the
scale length was varied linearly between the value for the low fluence experiment (12.5 nm)
and for the high fluence experiment (17.5 nm).

For both materials, the agreement between experimental and simulated curves is good
over the whole fluence range. By only optimizing the peak strain, we are thus able to
reproduce the measurements. This shows, that a purely linear acoustic model is capable of
describing the experimental data in the given fluence range and hence, nonlinear acoustic
effects do not have to be taken into account.

To also look for optical non-linearities, the peak strain as a function of the experimental
fluence for gold is shown in figure 35. The dashed line is a linear fit through the origin to
the data. Within the experimental error, all data points are in agreement with the linear
fit and hence we see no nonlinear behavior. The orange crosses show the results of the
transient experiments for comparison.

For palladium, the peak strain is not a good measure for optical linearity. As has been
shown, fluence dependent electronic transport has to be taken into account to explain the
experimental results and hence the scale length changes as a function of fluence. If the
fluence is for example doubled and also twice the energy is deposited, this will not lead
to a doubling of the peak strain. Due to the larger scale length the energy is distributed
over a wider range and the peak strain is thus smaller. Therefore, the average strain of a
bipolar pulse, which is defined as:

η̄ = 1
d

∫ d

0
|η(z)|dz, (44)

with the thickness of the bipolar pulse d is shown for palladium in figure 35. The dashed
line is a linear fit to the data through the origin. Within the experimental uncertainty
the data points follow a linear dependence.

Thus, we can conclude that both material systems show a purely linear behavior in
terms of acoustic and optical linearity over the investigated fluence range.

6.6 Comparison and Conclusion
The analysis of the acoustic response of the two samples has shown some distinct differ-
ences, explaining the deviations of the time resolved X-ray diffraction data for gold and
palladium. In both cases, the interplay of electron-phonon coupling and transport deter-
mines the picosecond acoustic response upon optical excitation. While electron-phonon
coupling is relatively slow and electronic transport is very effective in gold, it is quite the
opposite for palladium. This results in very different shapes of the acoustic pulses.

As figure 27 shows, the dominant form of the strain pulse is close to a rectangle for gold
and an exponential profile for palladium, each reflecting the spatiotemporal dependence
of energy deposition upon optical excitation. Connected to the form of the pulse, the
peak strain also differs by a factor of two for a comparable amount of deposited energy.
This originates in the confinement of the energy in a much smaller volume for palladium.
These differences manifest in the transient diffraction signals.

A linear acoustic model of the strain wave emission and propagation is able to repro-
duce the measured transient changes of the diffracted X-ray intensity over four orders of
magnitude exploiting the high dynamic range of our setup. With just two free param-
eters, the experimental data can be described quantitatively over an extended range of
fluences.
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Figure 34: Fluence dependent experiments and modeling. This figure shows the
comparison of the fluence dependent experimental diffraction patterns to the
best simulation fit, based on the presented models for gold (left column) and
palladium (right column) for a fixed time delay of 96 ps and 54 ps, respectively.
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Figure 35: Modeling strain versus experimental fluence. This figure shows the
strain which yields the best fit to the experimental data using the previously
discussed models as a function of the experimental fluence. The dashed lines
are linear fits through the origin. The orange crosses show the data of the time
resolved experiments.

7 Strain Retrieval
As described in chapter 6, the modeling approach serves well in understanding the acous-
tics upon ultrafast optical excitation for some systems. Even though it turned out to be
very effective in this case as in various examples in the literature, it suffers from a number
of issues.

• Modeling of the microscopic processes can become very complex. In general, the
problem can get more complicated than it was for the two metals. For example, in
our cases a perfect interface was assumed, which is not necessarily true.

• Simple phenomenological models based on the two temperature model could be
exploited in this case. However, the TTM is not always applicable. In fact, it might
even fail for simple metals [135] and the situation could become worse for more
complex materials.

• The geometrical structure of the system could also be much more complex for ex-
ample with multiple layers of different materials including nanoparticles or 2D ma-
terials. Moreover, if the penetration depth of the pump light is larger than the layer
thickness, excitation takes place in multiple layers and interlayer energy transport
becomes important.

• The relevant parameters could be found in the literature for both materials. This
is not always a case. E.g. for palladium a full TTM modeling was not possible due
to the missing electronic Grüneisen coefficient.

• Such an approach can be very time consuming, because assumptions on the micro-
scopic processes have to be made, the corresponding diffraction has to be calculated
and the assumptions have to be judged on the basis of the agreement between ex-
periment and simulation. This is an iterative process, until a reasonable model is
found.

For all these reasons, a more direct derivation of the acoustic pulse from the experi-
mental data would be desirable. To further improve the analysis of picosecond acoustic
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experiments and extend the method to more complex and non-ideal situations, we aim
to develop a new method to directly extract the acoustic response from the transient
diffraction data, which will be called "direct strain retrieval".

Our method does not require any physical assumptions. Only some very fundamental
boundary conditions originating in the sample geometry are taken into account to reduce
the solution space of the problem.

This section is structured as follows. Firstly, the general problem is discussed and the
idea for the solution is presented. Secondly, the retrieval algorithm is described in detail.
Thirdly, the optimal hyperparameters for the retrieval are investigated and fourthly, the
algorithm is applied to the gold and palladium measurements already discussed in the
previous chapter and the results are compared to the modeled acoustics. In the end,
the performance, its potentials and limitations and ways for possible improvements are
discussed.
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7.1 Phase Problem and General Idea
The underlying problem is a very general issue in diffraction experiments: The phase prob-
lem. A diffracted wave’s field strength at a position r⃗ can be described by its amplitude
Ê and phase ϕ:

E(r⃗) = Ê(r⃗) exp(iϕ(r⃗)). (45)

However, these quantities are seldom measured directly. Most commonly, the diffracted
intensity is measured. Since the intensity is proportional to the absolute square of the
field strength,

I(r⃗) = |E(r⃗)|2 = Ê(r⃗)2, (46)

it is no function of the phase anymore and hence the phase information of the wave is
lost during the measurement process. Accordingly, it is difficult to retrieve the full wave
and with that the information about the specimen. Translated to the field of ultrafast
acoustics, this means that it is straight forward to calculate the angle and time resolved
X-ray intensity for a given strain distribution η(z, t) using dynamical X-ray diffraction
theory (see chapter 4.1.3), but it is challenging to solve the inverse problem (see figure
36).

Figure 36: Phase problem in ultrafast acoustics. The phase problem translated to
ultrafast acoustics is that the calculation of the X-ray intensity is easy, if
the space- and time-dependent strain distribution is known. However, the
calculation of the strain distribution from the time-resolved diffraction data is
difficult.

Different methods have been developed to solve the phase problem. In coherent diffrac-
tive imaging phase retrieval algorithms like the Gerchberg-Saxon algorithm are very suc-
cessful in reconstructing nanostructures from diffraction patterns [35, 90]. They require
the probed object to be confined to a small region. Initially, random phases are guessed
and by iterative application of the Fourier transform and its inverse and exploiting the
fact, that the exact amplitudes are known, the phases can be retrieved. This has already
been successfully applied for retrieving the static strain in a thin film [131]. However, the
constraints mentioned above are not fulfilled in our case. The strain wave travels into the
substrate and hence is not confined. Additionally, the method exploits the invertibility of
the Fourier transform, but the diffraction pattern is only given by the Fourier transform
in the kinematical limit. Dynamical diffraction theory is not invertible and, therefore,
these algorithms are typically not applicable.
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Another important method is Rietveld refinement, which was introduced to reconstruct
the structure of polycrystalline samples from a diffractogram [98]. It uses a least-square
minimization of the deviation from a calculated to a measured pattern and optimizes
parameters like peak position and peak intensity. Our problem differs from these in
some points. First, Rietveld methods are normally applied to one dimensional data.
Second, changes of the parameters alter the pattern in specific regions, namely around
the attributed Bragg peak. In contrast, we are only looking at one Bragg peak in our
experiment and changes to the parameters of the pulse do not only effect a confined region,
but alter large parts of the 2D pattern. We therefore aim for a method, which takes this
special prerequisites into account.

There are also methods for direct strain retrieval similar to our case discussed in the
literature [32, 61]. However, these assume physical models for their retrieval, e.g. about
the indirect scattering with phonons or the dielectric function of the material. Moreover,
they even require special sample features such as a reflection inside the specimen. Ideally,
the solution should not require any prerequisite assumptions.

In this chapter, a new method based on machine learning techniques is described. The
basic idea is, that transient diffraction patterns are in fact images. Since deep neural
networks have been proven superior to other methods in image analysis, it is convenient
to try to use them for the analysis of time resolved diffraction from acoustic waves. Such
a method would perfectly complement the modeling approach and would thus allow for
a better analysis and understanding of picosecond acoustic experiments.

The crucial point for using deep neural networks to solve a problem is the availability of
a sufficient amount of training data. The calculation of diffraction patterns from known
strain distributions is easy. Thus, any desired number of training pairs can be created by
randomly generating strain pulses and calculating corresponding diffraction patterns.

7.2 Pulse Parametrization and Sensitivity

A prerequisite for strain retrieval with deep neural networks is the parametrization of the
acoustic pulse. A straightforward way to do so, would be to just take the strain amplitude
ηT (z) at a depth z for a fixed time delay T . Depending on the chosen spatial grid size,
this leads to a few hundred parameters, if a time interval of T = 100 ps is supposed to
be covered. Additionally, it does not reflect the periodicity of the pulse train. Therefore,
a parametrization using the Fourier expansion of the bipolar pulse, which deploys this
periodicity is chosen in this work.

Imagine the strain distribution being a periodic repetition of the bipolar pulse. Accord-
ing to the theory of Fourier expansion a periodic function like this can be approximated
by:

η(z) = C0

2 +
N∑

n=1
(Cn cos(nk1z) + Sn sin(nk1z)), (47)

where n is an integer, N is the order of the expansion and Cn and Sn are the sine and
cosine amplitudes, respectively. k1 is the wave number of the fundamental component
which is chosen to be:

k1 = 2π
d
, (48)

reflecting the periodicity of the pulse train. The amplitudes of the Fourier expansion
which are also known as the Fourier coefficients can be calculated via:
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Cn = 2
d

∫ d/2

−d/2
η(z) cos(ik1z)dz,

Sn = 2
d

∫ d/2

−d/2
η(z) sin(ik1z)dz.

(49)

One obtains the full pulse train by multiplication with a suitable gating function G:

ηTrain(z) = η(z)G(d,R). (50)

This gating function is determined by the pulse thickness d and the interface reflectivity
R and has the value Rj−1 for the jth bipolar pulse of the pulse train and 0 everywhere
else. It reflects the creation mechanism of the back and forth reflection in the metal film.

Figure 37 shows the acoustic pulse train and the gating function G. Given that, the
pulse train can be fully described by the set {d,R, Si, Ci}. The quality of the reconstruc-
tion is determined by the number of Fourier coefficients taken into account. Therefore, it
is desirable to retrieve as much coefficients as possible.

Figure 37: Pulse train and gating function. A pulse train emitted in our sample
geometry can be parametrized by the Fourier expansion of a periodic repetition
of the bipolar pulse and a suitable gating function shown in red.

The coefficients might vary over several orders of magnitude making it difficult to
retrieve them. Therefore, the average strain of a bipolar pulse, which is defined by equa-
tion 44, is used to normalize the Fourier coefficients.

Altogether, the pulse is parametrized by the set {η̄, d, R, Si, Ci}. It should be stressed,
that this approach does not make any assumptions about the physical processes of strain
generation. It just reflects the spatial restrictions due to sample geometry.

To get a better understanding of the dependence of the Fourier coefficients on the pulse
shape, we take a look at different typical examples. For this, four different pulse shapes
closely connected to the two material systems under investigation are taken into account.
These shapes are in a sense limiting cases for different temporal and spatial variations of
stress:

I Rectangle - Result of a spatially homogeneous and timely constant stress,
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II Gold - Result of a spatially homogeneous and time dependent stress,

III Exponential - Result of spatially inhomogeneous and temporally constant stress (no
transport after light absorption),

IV Palladium - Result of a spatially inhomogeneous and time dependent stress.

The four different shapes can be seen in the upper panel of figure 38. Moreover, the
Fourier expansions of these bipolar pulses are shown for 5 and 20 sine coefficients together
with 0 and 20 cosine coefficients. The values of the coefficients are plotted on the left hand
side of the lower panel for the sine and on the right hand side for the cosine coefficients.
The coefficients for every pulse are normalized to the lowest coefficient having the value
-1 for comparison reasons.

As can be directly seen, the sine coefficients are dominant and have negative values.
This reflects the general bipolar and thus point symmetric pulse shape and the fact that
the first part is always positive followed by the negative strain part. Cosine coefficients
are only necessary to describe the palladium pulse, because this is the only one with an
asymmetry between expansion and compression. This is due to the fact, that the original
stress is space and time dependent. Opposite to the sine coefficients, the cosines do not
have a fixed sign. There are positive as well as negative values.

It can also be seen that the overall strength of the sine coefficients declines with the
coefficient number. For the pulses III and IV the strongest coefficient is #2 and the
decline is smooth.

Contrary, pulses I and II have their strongest coefficient at #1, but the decline is
alternating. This means on the one hand, the even coefficients are equal to 0 for the
perfect rectangular pulse and close to 0 for the gold pulse. The odd coefficients on the
other hand are decaying smoothly. This can easily be understood taking the special form
of the pulse into account: For getting a rectangular bipolar pulse, the respective Fourier
coefficients have to be symmetric with respect to the axis at 1/4 and 3/4 of the thickness.
This requires a maximum or a minimum at this positions, which is only fulfilled for the
odd Fourier components.

As has been said before, only the asymmetric pulse contains cosine components. The
values of these components differ from the sine ones in two aspects: First, they are about
an order of magnitude smaller than the sine coefficients. This is immediately clear, since
the asymmetry of the pulse is weak. Second, the cosine coefficients may also take positive
values.

As one expects, pulse shapes can be reconstructed the better the more Fourier coeffi-
cients are taken into account. This is especially visible at sharp boundaries, since high
frequency components are required to create such features in real space. Accordingly,
the pulse generated by 20 sine coefficients is already much closer to the original pulse
than the one constructed by 5 components. However, even with such a low number of
coefficients as 5, the general shape of the bipolar pulse (rectangular or exponential) can
be distinguished.

Taking a closer look at the yellow and purple curve in graph IV of figure 38 one can
see that the differences of the real space strain shape are small, even if a high number of
cosine coefficients is taken into account. This is a consequence of their comparable small
amplitude. However, as has been shown in chapter 6, we are sensitive to the asymmetry
of the pulse, because thermal diffusion has to be taken into account to give the best
description of the experimental results on the palladium sample.

All these observations regarding the Fourier components of the bipolar pulse lead to
the question, how much information about the Fourier coefficients is included in our time-
resolved X-ray diffraction data. A first rough estimation can be done by taking a look at
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Figure 38: Fourier series and coefficients of the different bipolar pulses. This
figure compares the Fourier series expansion and the amplitude of the coeffi-
cients for different bipolar pulse shapes. The upper figures show 4 different
bipolar pulses - I: Rectangular, II: Gold, III: Exponential and IV: Palladium
- together with their Fourier expansions including 5 sine and 0 cosine, 20 sine
and 0 cosine and 20 sine and cosine coefficients (the yellow curves are hidden
behind the purple curves for the symmetric pulses). The lower figure shows the
amplitudes of the Fourier coefficients for the pulse shapes mentioned above.
On the left hand side for the sine and on the right hand side for the cosine
coefficients. The coefficients are normalized such that the dominant coefficient
has an amplitude of -1.
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the relation between the angle and the phonon wave vector derived from equation 28. A
phonon mode with wavelength λ leads to a diffraction signal at an angular deviation of

∆θ = λX

2 cos(θB)
1
λ

(51)

apart from the main peak. To get a first estimate for the sensitivity to Fourier coef-
ficients, one can insert the pulse thickness d instead of a phonon wavelength and divide
this through the experimental accessible angular range (∆θexp ≈ 0.6°). Using the mate-
rial specific values and the experimental parameters of the two material systems under
investigation yields:

N = ∆θ
∆θexp

≈

6 (Au),
3 (Pd).

(52)

Moreover, the intensity of the diffraction signal reduces with increasing angular dis-
tance to the Bragg peak. This stresses the importance of the high dynamic range of our
experiments for the retrieval of as much coefficients as possible. Furthermore, equation 51
suggests, that the number can be increased by either decreasing the Bragg angle of the
observed peak or by increasing the pulse thickness.

As mentioned, this is only an estimate for the number of coefficients. Therefore, an
empirical investigation is done to decide which number of coefficients is taken into account
for the following retrieval.

Figure 39 shows the MAPE (see section 6.4) of the experimental result for the higher
intensity gold and palladium samples to the respective simulations taking different num-
bers of Fourier coefficients into account. The left graph shows the dependency of the
MAPE on the number of sine coefficients for the bipolar gold pulse. Since this pulse is
fully symmetric, cosine coefficients were omitted.

Figure 39: Mean average percentage error between the calculated diffraction
patterns of a pulse and its Fourier expansion. The graphs show the
MAPE between the calculated diffraction patterns for gold and palladium as a
function of the number of sine coefficients taken into account. For palladium,
the pulse is asymmetric and hence cosine coefficients have to be considered.
Therefore, the curves in the right graph show the comparison for one to three
cosine coefficients. For more than three cosines there is no difference visible.

After every even coefficient, there is a significant drop in the MAPE up to a number
of approximately 10. For even higher numbers of coefficients only minor changes occur.
The drop after the even coefficients is in line with the observation that the even sine
coefficients are close to 0 for the gold pulse (see figure 38).
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Taken into account, that this comparison is done on simulation data, it is reasonable
to assume that it will be difficult to retrieve more than 10 Fourier coefficients from our
experimental data. Hence, we will take 10 components for the further examination.

For palladium, asymmetry plays a role. Therefore, cosine coefficients have to be taken
into account. The right graph of figure 39 shows the MAPE as a function of the number of
sine coefficients for a different number of cosine coefficients. Again, there is a significant
drop for the first approximately 6 sine coefficients for all curves followed by minor changes.
An effect of the number of cosine coefficients is clearly visible. However, the differences
between 2 and 3 cosines are already small for lower number of sines. A clear deviation is
only visible for 10 and more coefficients. For the following discussion 6 sine and 3 cosine
coefficients are regarded.

We also performed the same investigation with normalizing the pulses to the average
strain to exclude, that changes of the average strain due to omitting higher order coef-
ficients is accountable for the evolution of the MAPE. This is not the case but for the
reason of clarity, the respective curves are not shown.

The previously developed parametrization of acoustic pulses together with the consid-
erations about the retrievable number of Fourier coefficients will now be used to develop
a new kind of retrieval algorithm based on deep neural networks. This will be presented
in the following sections.

7.3 Deep Learning Algorithm
In this section, the utilized algorithm will be described in detail.

Generation of Training Data For the generation of training data, it is exploited that
the calculation of the diffraction pattern for a known strain distribution is straight forward
using dynamical X-ray diffraction theory. As a first step, the parameters {η̄, d, R, Si, Ci}
for the artificial creation of a strain pulse are chosen randomly within a predefined range,
in which the real parameters are expected to be located. Additionally, the values of the
Fourier coefficients are restricted according to the results of the last chapter: In general,
the amplitude of the Fourier components decreases with increasing coefficient number.
For a successful optimization, it is helpful to decrease the size of the solution space with
the knowledge about the expected values.

In practice, this is accounted for by defining an envelope function, which limits the
range of values. The exact shape of that function is of minor interest. In practice, the
function

f(x) = arctan (0.5x− 3) − π/2, (53)

where x is the Fourier coefficient number, has proven to fulfill the requirements. It is
shown in figure 40.

The cosine coefficients differ in two aspects. At first, they are generally one order of
magnitude smaller than the sine components. Therefore, the envelope function is adjusted
by a factor of 1/10. Secondly, they can have both signs. Hence, for every generated cosine
coefficient, the sign is chosen randomly.

For these artificial strain pulses, the according transient diffraction patterns are calcu-
lated. We use an angular range of (-0.6°, 0.6°) around the Bragg peak and a time interval
of (0 ps, 100 ps). The angular interval is dictated by the convergence angle of our X-ray
beam, which defines the measurement range. The temporal interval is a compromise: On
the one hand, it is supposed to be short, because we want to minimize the influence of
possible acoustic non-linearities and want to be able to retrieve the strain with as little
time steps as possible. On the other hand, we want to determine the interface reflectivity
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Figure 40: Envelope function for the random choice of Fourier coefficients. This
graph shows the envelope function, which restricts the range of the amplitude
of the Fourier coefficients. E.g. the arrow marks the range in which the value
of the second Fourier coefficient can be chosen.

R. This is only possible, if at least the second bipolar pulse has already entered the GaAs.
The resulting pairs {η(z, t), I(θ, t)} are used as training data for the deep neural network.

A problem of this approach is that the training data and the experimental data come
from different sources. That means, there may be fundamental differences between the
training data and the data to analyze. An obvious example for that is noise, which
is present in our experimental data, but not in the simulated one. Such issues could
complicate the analysis, reduce the achievable quality of the results, or even make the
retrieval impossible.

Network Architecture For our strain retrieval, we use an established and very successful
network architecture from the field of image classification: ResNet18 [43]. ResNet18 is
an 18 layer deep residual convolutional neural network from the family of the ResNet
networks, which have won some important image classification challenges like the ILSVRC
2015 [106].

Figure 41: ResNet18 structure. This graph shows the general structure of the
ResNet18 network architecture used in this work (taken and adapted from
[92]).

The structure of ResNet18 is shown in figure 41. It consists of 18 layers of which 17
are convolutional block layers and the last one is a fully connected layer. The number
of neurons in the fully connected layer is equal to the output parameters of the strain
retrieval and depends on the number of Fourier coefficients taken into account.
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The convolutional blocks are built of convolutional, ReLu, pooling and batch normal-
ization layers, which were explained in section 4.4.3. Starting from block number 2, an
additional connection shortcuts the path over two blocks of layers. The detailed layer
sequence can be found in the literature of this section. For the work here, ResNet18
was chosen, because it is a comparably deep neural network, promising good retrieval
results, but its size and parameter numbers (2.37 million) are low enough, that it can still
be trained on a desktop computer with a suitable graphics processing unit in reasonable
times.

Training Process Before the actual network training, the training data is preprocessed
to improve the final network performance. At first, the diffraction patterns are resized to
[224, 224] pixels by interpolation, which is the input size of ResNet18. At second, white
Gaussian noise is added to the images to mimic real world data. The strength of this
noise is a hyperparameter of the network and will be discussed in the hyperparameter
section.

The strain induced intensity changes of the diffraction pattern extend over four orders
of magnitude. As a third step the logarithm of the images is taken prior to the training
process to account for that. Due to the properties of the logarithm, values close to 0 could
dominate the whole signal afterwards. A constant value A is added to every pixel of the
input image to circumvent this problem. The constant A is a second hyperparameter of
the network.

The input matrix to the network is therefore calculated as:

IInp = log
(
R(N(I, SNR), [224, 224]) + A)

)
, (54)

where I is the diffraction pattern, N(M, SNR) is a function adding white Gaussian
noise with a signal to noise ratio of SNR, which is a hyperparameter of the training, to a
matrix M and R(M, s) is a function resizing a matrix M to a size of s via interpolation.

Preprocessing is also required for the output parameters of the training data. It must be
taken into account that the values of the average strain and the Fourier coefficients of the
output parameter set may vary over orders of magnitude. Thus, the Fourier coefficients
are normalized to the value of the average strain. The average strain itself is transformed
by taking the logarithm afterwards.

The transformation of the vector of output parameters is therefore given by:

p = (log(η̄), Si/η̄, Ci/η̄, d, R). (55)

In general, training a deep neural network for different output parameters improves, if
all the output parameters have a comparable distribution. Otherwise, a parameter with
a much higher mean might dominate the updating of the network parameters. Hence, it
is convenient to normalize every parameter set to have the same mean and variance, in
our case a mean of 0 and a variance of 1. An often used statistical method for this is the
normalized z-score. Let pj be the set of an output parameter of the network, e.g. the
average strain, with the mean µj and the standard deviation σj. The normalized z-score
is then defined by:

p̃j = pj − µj

σi

. (56)

After preprocessing, one receives a set of pairs of input matrices and output parameter
vectors {I i

Inp, p̃i} as a foundation to train the neural network. This set is divided into
two parts: 90 % of the data are used as training data. The remaining 10 % are utilized as
validation data as described in section 4.4.2.
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The training data is employed to train ResNet18 with an adam optimizer. After each
30 epochs of training the network performance is validated on the validation set until
the validation error defined in equation 29 does not decrease for a number of validation
processes. This number is called the validation patience n and is another hyperparameter
of the network. If the training is stopped too early, the performance might not have
reached the best possible value. If the training is stopped too late, this might lead to
overfitting. A typical network training progress can be seen in figure 42.

Figure 42: Network training. Training and validation error decrease with the iteration
number. The initial drop is fast and slows down rapidly. At some point, a
plateau is reached and further training could only lead to overfitting, but does
not improve the performance.

Proof of Principle In the end, we want to use the trained network to analyze experi-
mental data. As mentioned, this is complicated by the fact that training and experimental
data come from different sources. Beforehand, a first test of the working principle is run
to proof that a deep neural network can restore the parameters of the strain pulse from
a diffraction pattern. For that, we train a network with a suitable configuration for the
experimental gold data, but test it on artificial test data.

We choose 10 sine and no cosine coefficients and the respective parameter ranges are:
η̄ = (10−4, 10−2), d = (320 nm, 360 nm), R = (0.25, 0.6). For the performance test, a test
data set with 100 pairs of diffraction patterns and corresponding strain pulses is created.
From that set, three pairs with different orders of magnitude of the average strain are
chosen randomly.

The thus received diffraction patterns are analyzed by the trained network. To get the
real parameters, the transformations to the output according to equations 55 and 56 have
to be undone, after receiving the output of the network. The comparison between the
true parameters and the true strain pulses calculated from that parameters compared to
the ones reconstructed by the network are shown in figure 43.

As can be seen, the agreement between true and reconstructed parameters and strain
pulses is very good. Even for the lowest average strain, which produces a weak diffraction
signal, the network is capable of retrieving the parameters well.

However, this does not necessarily say something about the performance on the experi-
mental data. As has been already discussed, the measured patterns come from a different
source and the performance may suffer.
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Figure 43: Network performance on test data. Performance of the network on three
test data sets. The pairs were chosen randomly from a set of 100 test data
pairs, which have not been used to train the network. The graphs on the
left hand side show the true parameters (10 sine coefficients, thickness and
reflectivity) and the ones retrieved by the deep neural network. The graphs
on the right hand side depict the bipolar pulses built from the corresponding
parameters on the left.
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7.4 Strain Retrieval on Gold
In the previous section, it has been shown, that strain retrieval with deep neural networks
works in principle. As a next step, we switch to the gold measurement and investigate,
under which conditions strain retrieval works best. There are some differences in the
preprocessing and analysis of the experimental data related to equation 54 compared to
the training data.

First, there is no addition of Gaussian noise to the data. This is done for the artificial
data as an attempt to approximate real world data. Noise is already inherent to the
measured diffraction patterns and therefore not added again.

Second, to improve the predictability of the model, a variant of cross-validation is
employed [4]. For that, the network is trained multiple times and for every training
iteration the partition of training and validation data is chosen differently. On the one
hand, this tends to increase the generalization capability of a deep neural network model.
On the other hand, this gives multiple results for the same experimental data set, which
allows to define a confidence interval for each output parameter.

Third, a weighting mechanism is introduced. After each training iteration, the diffrac-
tion pattern is calculated for the strain pulse built of the network’s output parameters.
The deviation of this pattern to the experimental data according to equation 38 is used
as a weight. The final value of the parameters of interest is a weighted mean of the single
results.

To have a measure for the quality of the result we use the MAPE of the resulting
diffraction pattern to the experimental one, which was already introduced in the previous
chapter.

Hyperparameter Optimization The quality of the retrieval also depends on the choice
of the training’s hyperparameters. In the following, the influence of different hyperparam-
eters will be discussed. The goal is, to find an optimal set for the best retrieval possible.
The dependence of the MAPE on the respective hyperparameters is shown in figure 44.
For the variation of the hyperparameters shown here, all the other hyperparameters were
kept constant at the optimum values (dashed lines), which were determined in an iterative
process before. It should be noted, that the optimum value for one hyperparameter is
stable against a variation of the others, even if they are not chosen as their respective
optimum values.

Together with that, the final validation error of the training and the training time is
plotted. The final validation error is the value of the error metric of the network on the
validation data after the termination of the training. It allows to evaluate the influence
of a hyperparameter on the network’s performance on artificial data. By that, one can
judge, whether an improvement is based on a general gain of the network or by a better
fit to the real world data. For example, the introduction of every kind of noise will always
reduce the general performance of the network on artificial data, because the training and
validation data becomes noisy. Hence, the final validation error will increase. But it might
improve the performance on measured data, because the noisy training data mimics the
measured data better.

We are mainly interested in the trend and not in the absolute value of the final validation
error. For that purpose, it is rescaled to the same range as the MAPE values, to allow
for plotting it on the same axis.

The evolution of the training time on the right axis shows, if the change in performance
is achieved on the back of a more costly computation. However, it should be stated
that the absolute training time strongly depends on the respective computer system used
for the training as well as the usage of the resources of that system. Hence, the total
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Figure 44: Hyperparameter optimization for gold. This figure shows the dependency
of the network performance on experimental data (blue), the final validation
error (red) and the training time (yellow) as a function of different hyperpa-
rameters of the network.
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computation time will not be discussed in detail, but relative changes will be discussed if
relevant. Since we are interested in the optimal retrieval and all trainings can be done in
reasonable times, the training time only becomes important, if the achievable performance
is considered similar. All simulations were either done on an Intel(R) Core i7-9700 CPU
with 32 GB RAM and an NVIDIA GeForce RTX 2080 (S1) or on an AMD EPYC 7742
with 1 TB RAM and a Tesla V100S (S2).

The first question arising is the size of the training data set necessary to achieve good
retrieval results. The upper row of figure 44 shows the performance enhancement with
increasing data set size. As expected, the performance is bad for very low set size numbers.
It increases drastically up to a number of 2500. This fast increase is followed by a slow
gain with further increment of the size. The final validation error follows a similar trend.
This shows, that by increasing the set size, the performance of the overall network is
enhanced and the retrieval benefits on experimental data.

At the same time, the training time for a single trial also increases. As we are mainly
interested in a good result and since the training time is still in a reasonable range, a size
of 25,000 is chosen for the further evaluation.

The next hyperparameter under investigation is the constant A added to the input
data prior to taking the logarithm. This parameter was introduced, to avoid very small
values from dominating the data. It is therefore reasonable to assume that a value in the
range of the normalized diffraction intensities delivers good results. To analyze this, the
additive constant was varied over a range of several orders of magnitude from 5 ×10−4 up
to 10. As the figure shows, the retrieval is bad for very small values, where the constant
is in the typical range of the noise and increases for higher values, while the training time
increases simultaneously. An optimal value is reached for 10−1, which will be used for
the following discussion. A further increment does not lead to a significant change of the
performance or the training time.

As has been discussed, we introduced a simple model of noise to encounter for the most
obvious difference between the distributions of the training data and the measured data.
The free parameter of this model is the signal to noise ratio SNR. In the training, the
SNR is sweeped between a very noisy signal of SNR = 60 dB and a noise free input at an
infinite SNR based on a power level of 1. Note, that adding noise with a SNR ≈ 80−90 dB
to the simulated curves delivers results, which are comparably noisy to the measurements.

The network performance is very bad for really noisy signals and slightly increased for
a mediocre noise level between 70 − 90 dB, which is the range of noise of the experimental
data. For values of 95 dB and upwards, there is no difference between the noisy and noise-
free input. To increase the retrieval quality, we assume a mediocre noise level of SNR =
90 dB. As expected, the general network performance on artificial data generally suffers
from any kind of noise, which is recognizable by the final validation error. It should be
noted, that the noise level has no influence on the training time. The drop at SNR =
90 dB is not caused by noise, but by a change of the computer system used for training.

The validation patience describes a stopping mechanism for the network training. If it
is set to n ∈ N, the training finishes, when the validation error has not decreased for n
validation iterations. The idea is, to prevent the network from overfitting, in case the per-
formance is only increasing on the training data, but not on the validation data anymore.
The fourth row of figure 44 shows, that the validation patience has no strong influence
on the retrieval of experimental data. An increase of this parameter only increases the
training time and the performance on the validation data. Even though, overfitting does
not seem to be an issue here, we choose a value of n = 5, which gave the best result in
this test.

The last parameter is the initial learning rate. It is a crucial parameter in all deep
network trainings. If chosen too low, the training time increases drastically, because the
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model needs a lot of steps, before reaching a minimum in the optimization landscape. In
contrast, if the initial learning rate is chosen too high, the optimization might overshoot
the valleys in the landscape and hence does not reach the optimal points. For our system,
it is obvious, that the retrieval result does not change for an initial learning rate up to
10−4 but gets significantly worse for a further increment. Simultaneously, the training
time decreases drastically with an increased initial learning rate. We therefore choose it
to be 5 × 10−5.

Figure 45: Strain retrieval on gold - parameters. This figure shows the result of
the strain retrieval for the gold measurements. The upper graph compares
the values of the Fourier coefficients and the material parameters d and R of
the retrieved (blue) parameters and the modeling ones (red). The lower graph
depicts the bipolar pulses calculated from these parameters and shows them
together with the full modeling pulse including all Fourier components. The
dashed dotted lines show the average strain for retrieval and modeling.

Results The optimal hyperparameters are marked by the dashed lines in figure 44 and
are now used to train the network for strain retrieval on the experimental gold data.
As described, the network is trained 10 times with differently partitioned training and
validation data sets. The final values of the retrieval parameters are given by the weighted
mean of the single trials and are plotted in the upper part of figure 45. The error bars
show the weighted standard deviation of the single trial values. On the left hand side of
the dashed line, the 10 sine coefficients are plotted (left axis). On the right hand side
of the line, the thickness and interface reflectivity are shown (right axis). The material
parameters are compared to the parameters of the modeling result described in chapter 6.

As can be seen, the retrieved parameters are all close to the modeling result. Especially,
the trend of the coefficients with the alternating amplitude between even and uneven
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components is clearly reproduced. The highest deviation is observed for the second sine
coefficient. The material parameters of the system d and R are retrieved close to the
values of the modeling, too. The deviation is slightly larger for R.

The shape of the bipolar pulse shape is calculated from the parameters in the upper
panel and plotted in blue in the lower panel of figure 45. For comparison, the modeling
pulse is also shown together with its Fourier expansion up to an order of 10. We cannot
expect the retrieval results to be closer to the modeling than this expanded curve, since
this is the number of coefficients taken into account for the retrieval.

It can be seen, that the pulse shape of the modeling is reproduced well by the strain
retrieval. In both curves, some unphysical oscillations occur, which originate in the Fourier
nature of the pulse parametrization and the limited number of coefficients taken into
account.

Especially, the overall shape of the modeling pulse of a distorted rectangle is clearly
reproduced. In addition, this is also true for the strength of the strain pulse. This is
represented by the average strain, which is shown in the graph as a dashed dotted line.
To conclude, shape and amplitude of the pulse can be retrieved quite good.

Ultimately, the comparison to the modeling result is not the benchmark to evaluate the
performance of the strain retrieval, because there might be deficiencies in the model. To
judge the achievements of the strain retrieval algorithm, we therefore have to compare
the resulting diffraction patterns to the experimental data.

Figure 46 shows the intensity distributions for the strain retrieval, the experimental
data and the modeling approach: On the left side in 2D false color representation and on
the right hand side single diffraction patterns for three selected delay times.

Comparing the false color plots, there is no clear difference visible. Strain retrieval and
modeling lead to a comparable good agreement to the experimental data. Some small
deviations appear, when taking a closer look at the at the diffraction patterns at particular
time steps. However, there is no clear supremacy of one of the two methods.
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Figure 46: Strain retrieval on gold - diffraction patterns. This figure shows the
comparison of the diffraction patterns from the experiment to the calculated
ones for the strain retrieval pulse and the modeling pulse. On the left hand
side, 2D false color representations for a range of 100 ps are given. On the
right hand side, single rocking curves are compared for three different points
in time.
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7.5 Strain Retrieval on Palladium
The procedure for strain retrieval on palladium is equal to the one on gold described
in the previous section. The main difference is, that 6 sine and 3 cosine coefficients are
taken into account (see the previous discussion). Furthermore, the intervals of the training
parameters are given by η̄ = (10−4, 10−2), d = (160 nm, 200 nm), R = (0.1, 0.6). First,
we will look for an optimal set of hyperparameters, which will subsequently be used to
retrieve the transient strain distribution in the palladium sample.

Hyperparameters Optimization Figure 47 shows the change of the relative mean av-
erage percentage error of the palladium strain retrieval for different values of the hyper-
parameters already discussed for gold. All in all, the observations are quite similar: The
data set size needs to have a minimal size to ensure good network performance. In con-
trast to gold, a much lower number of 2500 pairs already yields the optimal result, even
though the performance on validation data still increases.

A mediocre additive constant, signal to noise ratio and initial learning rate deliver an
optimal performance, while keeping the training time in a reasonable range (all trainings
were done on S2 in this case). The validation patience has no influence on the final result
and hence, overfitting does not seem to be a decisive problem again.

The hyperparameters used in the following are marked by dashed lines.

Results Figure 48 shows the retrieved parameters and the assembled strain pulse in
comparison to the results of the modeling approach. Opposing the the gold case, the
retrieved parameters now include 6 sine and 3 cosine coefficients plotted on the left hand
side of the dashed line.

The deviations of the Fourier components from the two sources are slightly larger than
they have been for the retrieval of the gold parameters. Particularly, the 4th and 6th sine
as well as the 1st and 3rd cosine component differ significantly from the modeling ones,
i.e. they are clearly outside the error range of the retrieved ones. Other than that, the
retrieved values for the material parameters are comparable.

However, taking a look at the bipolar pulse the differences between the two results (blue
and yellow) are small. As in the gold case, the general shape of the pulse as well as the
average strain are retrieved to a good extent. Obviously, the deviations of the coefficients
do not result in large differences of the pulses. However, both Fourier expanded pulses
differ strongly from the modeling pulse including all Fourier coefficients (red). This is
why a comparison of the resulting diffraction patterns is crucial again.

Figure 49 shows the comparison of the rocking curves for both results to the experimen-
tal data. Both models reproduce the experimental rocking curves similarly well. At some
points, strain retrieval is more successful (e.g. 31 ps and 0.3°), while at others the model-
ing gives better results (e.g. 91 ps 0.05 - 0.4°). It should be stressed, that for calculating
the diffraction patterns the complete modeling pulse including all Fourier coefficients has
been used.

We thus conclude, that the large real space differences between the retrieved pulse and
the complete modeling pulse do not manifest in significant differences of the corresponding
diffraction patterns. Hence, it is not a deficiency of the retrieval algorithm, which leads
to the differences in real space, but these are mainly caused by the limited amount of
information included in the diffraction pattern. This is a consequence of the high Bragg
angle of the observed Bragg peak as well as the comparably small thickness of the bipolar
pulse originating in the specific sample geometry and the speed of sound of the respective
materials, and hence the low phonon wave vector range covered in this measurement.
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Figure 47: Hyperparameter optimization for palladium. This figure shows the de-
pendency of the network performance on experimental data (blue), the final
validation error (red) and the training time (yellow) as a function of different
hyperparameters of the network.
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Figure 48: Strain retrieval on palladium - parameters.This figure shows the result
of the strain retrieval by the deep learning approach for the palladium mea-
surements. The upper graph compares the values of the Fourier coefficients
and the material parameters d and R of the retrieved (blue) parameters and
the modeling ones (red). The lower graph depicts the bipolar pulses calculated
from these parameters and shows them together with the full modeling pulse
including all Fourier components. The dashed dotted lines show the average
strain for retrieval and modeling.

By construction, the strain retrieval algorithm does not include any physical model and
can only reproduce the experimental data as good as possible. This is fulfilled comparably
for the modeling and the strain retrieval result.
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Figure 49: Strain retrieval on palladium - diffraction patterns. This figure shows
the comparison of the diffraction patterns from the experiment to the calcu-
lated ones for the strain retrieval pulse and the modeling pulse. On the left
hand side, 2D false color representations for a range of 100 ps are given. On the
right hand side, single rocking curves are compared for three different points
in time.
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7.6 Summary
To conclude, we have shown, that a suitably constructed and trained deep neural network
is capable of retrieving the strain pulse emitted in a heterostructure upon ultrafast optical
excitation from time-resolved X-ray diffraction data.

To do so, the strain pulse has to be parametrized in a proper fashion. A possible choice
is to use the Fourier expansion of a periodic repetition of the bipolar pulse together with a
suitable gating function, which includes the pulse thickness and the interface reflectivity.
This reflects the geometric form of the pulse train originating from the sample geometry.

Already well established deep neural network architectures, especially from the field
of image analysis, deliver good results. This makes it possible to profit from decades of
research as well as current developments in this very fast evolving field. Moreover, the
influence of the network architecture has not even been investigated, yet, and might still
leave room for improvement.

Careful adjustment of the hyperparameters of the training is key to success. For an
optimal set, it is possible to retrieve the strain pulse to a quality comparable to the results
of the modeling described in chapter 6. But if the hyperparameters are chosen suboptimal,
the achievable results become worse.

We have shown, that for both material systems under more detailed investigation the
experimental diffraction patterns can be reconstructed by the strain pulses retrieved by
the deep neural network. In particular, the general shape of the pulse as well as the
average strain level is retrieved very precisely. In this specific case it directly indicates
that the energy is distributed differently inside the two metal films upon optical excitation.

This clearly shows how the two approaches can benefit from each other: By retriev-
ing the strain from the two material systems, it becomes immediately clear that energy
transport over the whole film plays an important role for the gold sample. Meanwhile,
the energy stays confined to the surface region for the palladium sample. This is already
a good starting point for the model generation.

At the same time, the best achievable performance is limited by the information about
the strain contained in the diffraction patterns. The patterns are only influenced by
certain features of the acoustic pulses and hence only these can be retrieved.

The detected wave vector range is determined by the diffraction angle and the geom-
etry of the emitted strain pulse. This limits the achievable results in the chosen model
systems, because the (400) Bragg peak of GaAs with a Bragg angle of 76.5° at 4.5 keV
limits the accessible range of q-vectors. The easiest way to overcome this issue is the
use of a different, lower order Bragg peak. For that purpose, we have already performed
experiments on equivalent samples with (111) surface orientation in order to investigate
the (111) Bragg peak at 24.9°. The experimental data is shown in figure 50 and will be
analyzed in the future. With a simple estimation according to equation 51 one would
expect to be sensitive to N ≈ 9 coefficients.

Of course, two other ways to solve this problem are the use of thicker films, which
admittedly can also affect the pulse shapes, or to use a different X-ray wavelength. The
latter requires changes to the source.

There is also room for improvement of the algorithm, which can be exploited in the
future. The next steps to go are:

1. As already discussed, the first and most important step will be to look at differ-
ent material systems with more favorable properties, e.g. the new measurements
on (111)-oriented GaAs, where a higher number of Fourier components should be
directly accessible due to the smaller Bragg angle. This can open the way to further
improvements of the presented algorithm, which were not necessary for the given
systems, since the current version already yields results as good as possible.
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Figure 50: First experimental results on (111)-oriented GaAs. Single diffraction
patterns and 2D false color representations of first experiments on new samples
of palladium and aluminum films on top of (111)-oriented GaAs substrates.

2. The network architecture can be adapted and optimized. Up to now, a standard
network was employed. A comparison of different network architectures will re-
veal, whether different networks show different properties and which ones are more
suitable for direct strain retrieval.

3. Up to now, a very simple noise model was employed. A more sophisticated noise
model which is closer to reality could deliver better results. For example, at the
lowest measured intensities of 10−4 shot noise is expected to be the dominant noise.

4. It is not clear whether the chosen pulse parametrization is best suited for strain
retrieval of acoustic pulses. Therefore, different parametrizations e.g. wavelet trans-
formations should be tested and compared.

5. It is also possible to think of different inputs to the network. For example, instead of
taking the bare experimental data as an input, one can use the Fourier transform of
the experimental data in time such as shown in figure 22 in chapter 6 as the network
input. This might better reflect the reciprocal space character of the experiment.

6. After improving the performance of the method, it will be interesting to investigate
which areas of the 2D input are most important for the network to examine the
value of a specific parameter. Up to now, the DNN is a black box and it is not
clear where the information is extracted. This is a long lasting discussion in deep
learning, but in recent years solution approaches such as simple occlusion [140],
LIME [97] or Grad-CAM [118] were proposed. These techniques will be employed
on the algorithm presented here.

Using deep neural networks for direct strain retrieval in the future is a good approach
for a number of reasons. The retrieval already works well for the presented (400) exper-
iments. In our research, we have also tried other methods like genetic algorithms and
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multi parameter optimization [60], which were outperformed by deep neural networks.
A big advantage is, that the approach makes use of the achievements of an active re-
search community. Therefore, new developments can be adapted and improve the strain
retrieval.

A clear advantage of the model to other algorithms presented in the literature [32, 61]
is that it does not require any physical assumptions prior to the retrieval. Hence, it
approaches the problem from the opposite direction compared to the established modeling
and both methods complement each other.
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8 Conclusion and Outlook

In this work, we have presented optical pump - X-ray probe experiments of laser induced
picosecond acoustic waves in heterostructures of metal films on GaAs substrates at the
laboratory laser-plasma X-ray source at the University of Duisburg-Essen. By following
the transient changes in the vicinity of the (400) GaAs Bragg peak upon ultrafast infrared
excitation of the electronic system of the metal film, we were able to investigate the
acoustic response of different material systems. The goal was, to develop a quantitative
and material-specific understanding of the relevant microscopic processes, their interplay
and their competition in the emission of coherent acoustic phonons.

We have presented experimental results for various metals (Pd, Au, Al, Pt, Ti) and ex-
citation conditions. Two material systems were analyzed in detail, which are characterized
by a very different strength of electron-phonon coupling: Gold with a comparably slow
and palladium with a comparably fast coupling between the two subsystems, which leads
to a different effect of transport mechanisms in these systems. We were able to develop a
model for both by simulating the microscopic processes upon optical excitation and the
induced acoustics. The simulation of the time and angle resolved X-ray diffraction inten-
sity using dynamical X-ray diffraction theory and the comparison of the calculations to
the experimental data have shown that our model is well suited to describe the underlying
physics. The physical parameters which provide the best match between simulation and
experiment are in good agreement with literature data.

It turned out, that an interplay of electron-phonon coupling and transport leads to the
very specific acoustic response of the two materials. "Weak" electron-phonon coupling in
gold in combination with efficient electronic transport leads to a distribution of the energy
over the whole film thickness causing a close to rectangular shape ot the pulse train. In
contrast, in palladium fast electronic transport is suppressed and the energy is confined
close to the surface by strong electron-phonon coupling, inducing a nearly exponential
pulse shape. We also performed fluence dependent experiments and could show, that
our linear acoustic model is capable of describing the behavior over the relevant range of
fluences.

Even though the modeling approach is a well established and successful way of un-
derstanding X-ray diffraction of ultrafast acoustic experiments, it suffers from various
problems such as growing complexity for more difficult cases and geometries. To com-
plement the modeling, it is a huge advantage to have a method for directly retrieving
the strain from transient diffraction patterns. This is challenging, because of the phase
problem in diffraction experiments.

To solve this problem, we have developed a novel algorithm for direct strain retrieval
based on deep neural networks. By using pairs of randomly created strain pulses together
with simulated transient diffraction patterns, a neural network was trained to analyze
diffraction patterns and directly retrieve the strain pulse. Experiments on artificial exam-
ples as well as on the two previously discussed materials have proven, that the algorithm
is successful in retrieving the acoustic pulses from time-resolved diffraction patterns di-
rectly. Most importantly, no a priori physical model has to be assumed, which makes the
algorithm promising for future experiments on more complex systems and situations.

Moreover, we have discussed the advantages as well as the limitations of the algorithm.
It turned out, that the currently discussed data only contain limited information about
the exact shape of the strain pulse. This originates in the limited phonon wave vector
range of the investigated material systems in the given angular range of the experimental
setup. Switching to a Bragg peak with a lower Bragg angle and thus less dispersion can
increase this range.
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Therefore, the next step will be to deploy the algorithm for the analysis of more suitable
experimental situations. First experiments on (111)-oriented GaAs samples have already
been presented at the end of this thesis. This will allow for a further classification of the
features of the algorithm and the optimal working conditions.

With an optimized algorithm, we aim to investigate more complex systems such as het-
erostructures containing e.g. perovskites, nanoparticles or 2D materials. Additionally, we
want to reduce the number of required time points for a retrieval, which would ultimately
allow to follow and investigate transient changes of acoustic pulses such as non-linear
effects. Finally, the goal is to exploit all these findings to be able to generate tailored
strain pulses for the selective, ultrafast manipulation of material properties.
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Appendix
A Diffractometry of the Au/GaAs sample

Figure 51 shows static X-ray diffraction measurements obtained with a Bruker D8 Advance
diffractometer with a copper anode at 40 keV and 40 mA. As can be seen, the Au (111)
peak is the dominant gold peak. The (220) peak is hidden in the shoulder of the GaAs(400)
peak.

Figure 51: Static diffractometry of the Au/GaAs sample. This figure shows the
static diffractometry spectrum of the gold on GaAs sample. The peaks at the
left edge of the (400) GaAs peak are GaAs peaks originating from X-rays at a
different wavelength emitted by a small amount of wolfram from the cathode,
which is unintentionally deposited on the anode with time. The (111) peak of
gold is clearly the dominant one for gold.

B Electron-phonon coupling strength in palladium

To determine the electron-phonon coupling strength Marius Milnikel has performed flu-
ence dependent measurements of the transient Debye-Waller effect on laser-excited 17 nm
thick polycrystalline films of palladium on top of a Si3N4 substrate. The diffraction pat-
terns were integrated azimuthally. By fitting Gaussian peaks superimposed on a linear
background to the data, the transient evolution of the diffraction intensity can be deter-
mined for every Bragg peak.

It was proven that the lattice response is completely incoherent and yet Debye-Waller
like by plotting the negative logarithm of the intensity normalized to the unpumped
intensity − log( Ihkl(∆t)

I0
hkl

) against the squared length of the reciprocal lattice vector G2
khl for

the respective Bragg peak yielding a linear dependence. The resulting r.m.s displacement
was converted to a temperature rise by using the results of Gao et al. [31].

The transient temperature rise as a function of time delay for different fluences is
shown in figure 52. The solid lines represent fits to the data using a two temperature
model calculation. A constant electron-phonon coupling strength of G = 1.4 × 1018 W

m3 K
yields the best result for all fluences.

Fitting a simple exponential curve to all data sets delivers a coupling time of around
half a picosecond without a pronounced fluence dependence in the given temperature
range. This is fast compared to the relevant time scales of the acoustic wave emission
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discussed in this work. For further information and a more detailed discussion see the
dissertation of Marius Milnikel [77].
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Figure 52: Debye-Waller experiments on palladium. The graph shows the tempera-
ture as a function of delay time inside the palladium film after optical excitation
for different fluences. The solid lines represent fits to the experimental data
using a two temperature simulation with a constant electron-phonon coupling
strength of G = 1.4 × 1018 W

m3 K .
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C Matlab code

In this section, the Matlab code used for this work is given. The code for the calculation
of transient diffraction patterns has already been reported in reference [1].

The deep learning tasks were performed in the framework of the Matlab experiment
manager, which requires a setup function as an input to train the respective neural net-
work.

1. Creation of training data sets for deep neural networks

1 %% Parameters of the pulse
2 tmin = 160; % Minimum and maximum thickness
3 tmax = 180;
4 Rmin = 0.25; % Minimum and maximum reflectivity
5 Rmax = 0.6;
6 avStrainMin = 1e-4; % Minimum and maximum average strain
7 avStrainMax = 1e-2;
8 NbrSin = 10; % Number of Fourier coefficients
9 NbrCos = 0;

10

11 idxStart = 1;
12 idxEnd = 30000;
13

14 %% Parameters of the DXRD calculations
15 ThetaMin = -0.5952;
16 ThetaMax = 0.5958;
17 dTheta = 0.0045455;
18 TMin = 0;
19 dt = 2;
20 TMax = 100;
21

22 theta = (ThetaMin:dTheta:ThetaMax)';
23 time = TMin:dt:TMax;
24

25 %% Create Parameters, calculate diffraction patterns and save everything
26 for ijk = idxStart:idxEnd
27 % Choose the average strain and the Fourier coefficients; log10 ...

ensures
28 % uniform distribution over orders of magnitude
29 avStrain = round(10.^(-((-log10(avStrainMin) - ...
30 -log10(avStrainMax))*rand + -log10(avStrainMax))), 6);
31 t = (tmax-tmin)*rand+tmin;
32 R = (Rmax-Rmin)*rand+Rmin;
33

34 % This function chooses Fourier coefficients randomly, builds the
35 % bipolar pulse and normalizes it to the correct average strain
36 [BipolarPulse, FC] = Fourier(2*t, NbrSin, NbrCos, avStrain);
37 Pars = [avStrain; t; R; FC]; % Parameter Vector
38

39 % Create the result folder and save the parameters
40 H = DataHash(Pars);
41 ResultFolder = fullfile('Data', H);
42 mkdir(ResultFolder);
43 save(fullfile(ResultFolder, 'FC'), 'Pars')
44

45 % Simulate and save TRXD and convoluted TRXD (cTRXD)
46 [cTRXD, TRXD] = modeling(BipolarPulse, R, theta, time);
47 save(fullfile(ResultFolder, 'Results'), 'cTRXD', 'CRC');
48

49 % Display status
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50 disp(['Simulation ' num2str(ijk-idxStart+1) ' of '...
51 num2str(idxEnd-idxStart+1) ' finished']);
52 end

2. Setup function for experiment manager

1 function [Xtrain,Ytrain,layers,options] = Setup_Function(params)
2 % Xtrain: Diffraction patterns for training
3 % Ytrain: Parameters for training
4 % layers: Network architecture
5 % options: Training options
6 % params: Variables for training; only contains RNGseed
7

8 %% set parameters
9 rng(params.RNGseed)

10 inSize = [224 224]; % Input size of the network architecture
11 TrainingDataSize = 30000; % Size of training and validation set
12 addConst = 1e-1; % Additive constant
13 SNR = 90; % Signal to noise ratio
14 ValPat = 5; % Validation patience
15 ILR = 5e-05; % Initial learning rate
16

17 %% Load the data; v containts the parameters, M contains the ...
diffraction patterns

18 [v,M] = importData('DataSetAu.mat',inSize, SNR, addConst, ...
TrainingDataSize);

19

20 n = size(M,3); % Get number of imported pairs
21 idx = randperm(n); % Randomly permute the training set
22 valSize = floor(0.1*n); % Set size of validation set to 10 %
23

24 idxtrain = idx(1:end-valSize); % Set indices for training ...
and validation

25 idxval = idx(end-valSize+1:end);
26

27 Xtrain = M(:,:,idxtrain); % Assign diffraction patterns ...
and parameters

28 Ytrain = v(idxtrain,:);
29 [Ytrain,mu,sigma] = zscore(Ytrain); % Normalize data using z-score
30

31 Xval = M(:,:,idxval);
32 Yval = v(idxval,:);
33 Yvalnorm = (Yval-mu)./sigma;
34

35 save('zscorePar', 'mu', 'sigma') % Sava parameters to undo ...
z-score after retrieval

36

37 %% Define network architecture
38 layers = getResNet18(outSize); % Create ResNet18 with correct number ...

of output parameters
39

40 %% Specify training options
41 options = trainingOptions('adam', ...
42 'InitialLearnRate',ILR, ...
43 'MaxEpochs',300, ...
44 'L2Regularization',5e-6,...
45 'Shuffle','every-epoch', ...
46 'ValidationFrequency',30, ...
47 'ValidationPatience', ValPat,...
48 'Verbose',false, ...
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49 'MiniBatchSize', 256,...
50 'ValidationData',{Xval,Yvalnorm}, ...
51 'Plots','training-progress');
52 end

3. Training data import function

1 function [v,M] = importData(filename,inSize, SNR, addConst, SetSize)
2 % Import the training data and do some preprocessing
3 % v: Parameter vector
4 % M: Diffraction patterns
5 % filename: Name of the training data set
6 % inSize: Input size of the network architecture
7 % SNR: Signal to noise ratio
8 % addConst: Additive constant
9 % SetSize: Number of elements used for training

10

11 load(filename)
12 n = SetSize; % Number of elements of the training data set
13 i = randperm(numel(Matrix));% Permute the elements to choose randomly
14 i = i(1:n);
15

16 for idx = 1:numel(i)
17 % Preprocessing of parameter vector (1: avStrain, 2: thickness, 3:
18 % reflectivity, 4-end: Fourier coefficients)
19 v(idx,:) = Vector{i(idx)}; % Assign parameters to v
20 v(idx, 4:end) = v(idx,4:end)./v(idx,1); % Normalize FC to av. ...

strain
21 v(idx, 1) = log(v(idx,1)); % Take log of av. strain
22

23 % Preprocessing of images
24 img = imresize(Matrix{i(idx)},inSize(1:2)); % Resize images
25 if SNR
26 img = awgn(img, SNR); % Add noise to the patterns
27 end
28 img = normLog(img, addConst); % Add addConst and take log of ...

patterns
29 M(:,:,idx) = img; % Assign patterns to array M
30 end

4. Analysis script for measured patterns with trained networks

1 clear; close
2 load('..\..\MRC_Au_DL.mat'); % Load the file containing the ...

experimental data
3 idxTrial = 1; % Trial number, e.g. if a ...

hyperparameter was varied
4 NbrTrials = 10; % Number of training iterations
5 inSize = [224 224]; % Input size of the network
6 addConst = 1e-1; % Training addConst for undoing ...

preprocessing
7 NbrSin = 10; % Number of FC coefficients
8 NbrCos = 0;
9 NbrCoef = NbrSin + NbrCos;

10

11 % Create a list with all result folders for that trial
12 k = (1:NbrTrials)+NbrTrials*(idxTrial-1);
13
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14 FolListC = dir('Trial*');
15 m = numel(FolListC);
16

17 jj = 1;
18 for i = 1:m
19 for j = k
20 if strcmp(FolListC(i).name, ['Trial_' num2str(j)])
21 FolList(jj) = FolListC(i);
22 jj = jj + 1;
23 end
24 end
25 end
26 n = numel(FolList);
27

28 % Analyze the experimental pattern with all trained networks in the list
29 for i = 1:n
30 load(fullfile(FolList(i).folder, FolList(i).name, 'output.mat')); ...

% Load network
31 load(fullfile(FolList(i).folder, FolList(i).name, ...

'zscorePar.mat')); % Load z-score parameters
32

33 % Analyze the measured time-resolved pattern (MTRXD)
34 [ParPred, PulsePred] = testNetOnMRC(MTRXD, nnet, mu, sigma, ...

NbrSin, NbrCos, addConst);
35 Par(i,:) = ParPred; % Parameter array
36 Pulse{i} = PulsePred; % Pulse cell
37 RCint = calcCRC(PulsePred, ParPred(3), theta, time); % ...

Calculate the diffraction patterns
38 Weight(i) = 100*(100-MAPEmat(MRC, RCint)); % Define a weight
39 end
40

41 % Calculate the weighted results
42 Weight = Weight/sum(Weight); % ...

Normalize the weights
43 [av_Strain, err_Strain] = weightedMean(Weight,Par(:,1)); % Mean of ...

the average strain
44 [av_FC, err_FC] = weightedMean(Weight, Par(:,4:end)); % Mean of ...

the Fourier coefficients
45 [av_t, err_t] = weightedMean(Weight, Par(:, 2)); % Mean of ...

the thickness
46 [av_R, err_R] = weightedMean(Weight, Par(:, 3)); % Mean of ...

the reflectivity
47

48 % Build the average pulse and Fourier coefficients
49 av_Pulse = FourierFunctions.build(2*av_t, av_Strain, ...

av_FC(1:NbrSin), ...
50 av_FC(NbrSin+1:NbrCoef));
51 av_FCn = ...

av_FC*av_Strain/FourierFunctions.averageStrainFC(2*av_t, ...
52 av_FC(1:NbrSin), av_FC(NbrSin+1:NbrCoef));
53

54 % Calculate the error
55 errFCn = sqrt((av_Strain*err_FC).^2+(av_FC*err_Strain).^2);
56 relerrFCn = abs(errFCn./av_FCn);
57 relerrd = abs(err_t/av_t);
58 relerrR = abs(err_R/av_R);
59

60 function [CoeffPred, PulsePred] = testNetOnMRC(Matrix, net, mu, ...
sigma, NbrSin, NbrCos, addConst)

61 % This function prepares the measured data and gives it as an input ...
to the

62 % network.
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63 % Matrix contains the measured data.
64 % imageSize, net, mu and sigma are the parameters of the neural network
65

66 % Undo preprocessing of diffraction pattern
67 img = normLog(Matrix, addConst);
68 MRCprep(:, :, 1) = img;
69

70 % Get the network predictions and undo preprocessing of parameters
71 score = net.predict(MRCprep);
72 CoeffPred = score.*sigma + mu;
73 CoeffPred(:,1) = exp(CoeffPred(:,1)); % Undo the log in preparation
74

75 % Build the pulse
76 PulsePred = FourierFunctions.build(2*CoeffPred(2), CoeffPred(1), ...

CoeffPred(4:3+NbrSin), CoeffPred(4+NbrSin:3+NbrSin+NbrCos));
77 end
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