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Chapter 1

General Introduction

Quantitative risk management is arguably the most fundamental step in every risk
management process. It builds the theoretical foundation to quantify and analyze
risks in every company. In the present thesis, each chapter contributes to the lit-
erature by dealing with aspects of fundamental problems and discussions in quan-
titative risk management. Special emphasis is put on three major topics: First, on
the shortfall probability resp. the risk measure concepts in the context of portfolio
allocation problems. Then on the impact of periodic premium payments on pric-
ing, the shortfall probability and the optimal portfolio allocation of an insurance
contract. Finally, on time-inconsistent optimal portfolio allocations that stem from
uncertainty aspects because of different market states (regimes).

The usage of risk measures in quantitative finance and insurance is at least since the
axiomatic foundation of Artzner et al. (1999) omnipresent. Companies use them to
quantify the riskiness of an investment and even to optimize their asset allocation
under some shortfall constraints. Also the regulatory discusses different risk mea-
sures and their meaningfulness to calculate capital requirements s.t. the companies
and investors’ are secured against a shortfall. The companies have the motivation
to reduce the capital requirements s.t. the capital commitment costs do not exceed
their earnings. This leads to a conflict of goals between the regulatory, that wants to
protect the investors’ capital and the companies that want to maximize their profit.
Since the introduction of the Value at Risk to the public by J.P. Morgan in 1994
and its implementation in the first Basel accord (Basel I) to calculate the capital
requirements of the banks’ market risks (cf. Basel Committee on Banking Supervi-
sion (1996)), the Value at Risk has been an indispensable tool in risk management
for insurance companies and banks. There have been many discussions in academia,
the regulatory frameworks and amongst practitioners about the benefits and draw-
backs of the VaR and possible alternative risk measures as the Expected Shortfall
which has become more and more prominent since its appearance in Artzner et al.
(1999). Concerning the regulatory frameworks for banks, the Basel accords, there
have been many revisions since the Basel I framework: The current Basel III accord
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after the so-called fundamental review of the trading book (cf. Basel Committee on
Banking Supervision (2013)) accounts for some of the arguments from academia and
have changed the measurement of market risks from the VaR towards the Expected
Shortfall. On the insurance side, the current regulatory framework is Solvency II.
Here the capital requirements are still calculated with the VaR, but the discussion
is ongoing and the results of a review from the year 2020 are expected soon (cf.
EIOPA (2020)).

Different payment structures of the policyholder and guarantee features are other
important aspects in the context of risk quantification, especially for insurance com-
panies. In the ongoing low or even negative interest rate environment these two
components become even more important.1 The companies may no longer be able
to guarantee all of the policyholder’s contributions and need to reduce the guaran-
teed interest rate even further. Moreover, alternative guarantee concepts and inno-
vative products are needed to compensate for these problems. This results in a more
risky investment policy of the insurance company s.t. there exists the possibility
that parts of the insureds’ contributions may default.2 Another important aspect
for life insurance companies is the perspective of the insured’s benefits: Tradition-
ally, life insurance contracts in academia are mostly calculated and priced with a
single, upfront contribution of the insured. But in reality insureds often want to split
the contributions over time instead of paying an upfront premium payment. Thus,
the company’s room for maneuver is even more reduced and the premium splitting
affects the pricing of the contracts as pointed out by Bernard et al. (2017).

Finally, uncertainty aspects are omnipresent in the companies’ daily business and
thus of high relevance for their risk management: Regulatory requirements may
change because of new capital standards. Traditional, rather conservative assets may
become more risky or even worthless because of changing environmental awareness
and including sustainability aspects in the analysis of the company.3 Even entire
economic systems suddenly may change because of pandemic risks as seen in the
ongoing COVID 19 pandemic. 4 This is a current and really powerful example of
parameter uncertainty resulting from uncertainty in the world. The modeling of the
company’s assets becomes even more complicated than before because of uncertain
regimes. Thus, it is reasonable to investigate the optimal investment policy under

1 The effects of low-interest rate environment on life insurers are discussed in Berdin and Gründl
(2015).

2 The major insurance company in Germany, the Allianz, is no longer offering a full guarantee on
new life insurance products (cf. Handelsblatt (2020)).

3 This behavior that assets become worthless because of more prone environmental standards is
called stranded assets. A discussion on this topic is e.g. given in Bos and Gupta (2019) and
Caldecott (2017). A recent paper on uncertainty effects induced by climate change is Barnett et
al. (2020) and the mentioned papers within this work.

4 The paper of Ali et al. (2020) analyzes the reaction of the financial markets to the COVID-19
pandemic and presents the volatility evolution of corresponding markets.
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different regime possibilities that influence the drift and the volatility of the assets.
The uncertainty might be that great, that even probabilities for different regimes
are not observable anymore.

We contribute to these, as mentioned, highly relevant topics in quantitative risk
management in insurance and finance in the thesis. Special emphasis is put on the
pricing of a typical participating life insurance product, the minimum return rate
guarantee (MRRG) contract including default risk, and solving the resulting asset
allocation problem including a shortfall probability constraint. Moreover, another
interesting aspect arises if we not only allow for upfront premium payments in this
context: we investigate the impact of a periodic payment structure combined with a
tool that controls the investment fraction in the risky asset on the pricing, the opti-
mal asset allocation and risk management. Finally, we analyze a more general asset
allocation problem in finance where different possibilities for a regime are included
and time-inconsistency arises because of a pre-commitment investment strategy. We
derive the optimal investment decision as also study the impact of the value of in-
formation about the regime.
Methodically, the thesis contributes to the literature on model-free asset pricing,
payoff modification and asset allocation in Chapter 2. Moreover, Chapter 3 ad-
dresses the literature of pricing, risk management and portfolio planning of periodic
payments contracts with guarantee features. Chapter 4 contributes to parameter
uncertainty, ambiguity and optimal asset allocation. Based on these objectives, the
structure of the thesis is as follows:

Chapter 2 initiates the thesis by presenting the most common risk measure concepts
and comparing the two risk measures Value at Risk and Expected Shortfall in detail.
The cost-minimal payoff modification concept is introduced and applied to a payoff
s.t. a VaR constraint is fulfilled. Finally, the main result is presented: We investigate
participating life insurance contracts with minimum return rate guarantees where
we include default risk in our analysis. Without default risk the insured receives
the maximum of a guaranteed rate and a participation in the investment returns.
With default risk, the payoff is modified by a default put implying a compound
option. We represent the yearly returns of the liabilities in a model-free manner by
a portfolio of plain vanilla options. In a Black and Scholes model, the optimal payoff
constrained by a maximal shortfall probability can be stated in closed form. Due to
the completeness of the market, it can be implemented for any equity to debt ratio.
An analysis on the impact of risk measures constraints on the optimal solution of
portfolio allocation problems in terms of a literature overview concludes the chapter.

Building upon the insights of the previous chapter, Chapter 3 considers MRRG con-
tracts in a periodic premium payment setting under a terminal guarantee feature.
We find a representation of the periodic account value based on just one splitting
factor (i.e. two premium dates). This allows us to analyze qualitatively the effect
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of periodic premium payments in a stylized setup. In a two-period Black-Scholes
Model, we first discuss the impact of periodic premium payments on the guaran-
tee costs. Splitting the premium fraction instead of paying an upfront contribution
leads to a more risky contract for the insurance company. By introducing a man-
agement rule that controls the investment fraction in the risky asset, the insurance
company can react to the risk shift introduced by the periodic contributions of the
insured. Analyzing the impact of the splitting factor and the management rule, we
find quasi closed-form solutions for the guarantee costs. Moreover, we point out that
the management rule can be used by the insurance company to reduce the risk of
periodic contributions: The required capital for fulfilling a SFP can be dramatically
be reduced if a management rule is implemented. Finally, we analyze the expected
utility of the insured. We study the optimal splitting factor for a given manage-
ment rule and investment fraction that maximizes the expected utility. We find that
splitting the contributions has a huge impact on the optimal strategy: For an invest-
ment fraction that is greater than the Merton fraction the splitting factor is used
to adapt the investment fraction to be as close as possible to the Merton one. If
we additionally include a management rule, the overall optimal investment fraction
even differs from the Merton solution. We complete the chapter with a literature
overview by investigating the impact different guarantee features on the optimal
portfolio planning.

Next, Chapter 4 contributes to the literature on optimal asset allocation in the
context of parameter uncertainties. First, we discuss the impact of ambiguity and
learning on the optimal investment decision by reviewing the most important liter-
ature on portfolio planning in this research area. Afterward, we consider a stylized
setup of an investment decision to shed light on the impact of time-inconsistency
on pre-commitment strategies. First, we use a double risk situation where the outer
risk is given by a simple a-priori lottery and the inner risk situation is a regime
coinciding with the classic Merton problem. While in the myopic case, the weights
resemble the regime probabilities, there is a time-dependent probability reduction
of the good regime, i.e. as the investment horizon increases, the worst-case regime
gets more important. We also account for ambiguity about the ”success” probabil-
ity of this lottery. Preferences towards risk and ambiguity are modeled using the
smooth ambiguity approach by Klibanoff et al. (2005) under a double power utility
assumption. Again, we can separate the effects of the two risk situations as well as
the ambiguity aversion. We explain why the impact of time-inconsistency gets more
ambiguous since varying the ambiguity situation may also change the risk situation.
At the end of the chapter, we extend the previously described model by including
the possibility of one regime switch over the investment horizon and we review the
portfolio planning literature that includes regime-switching and analyze its impact
on the optimal portfolio allocation.

Finally, Chapter 5 summarizes the thesis and gives an outlook on further research.



Chapter 2

Risk Measure Concepts, Shortfall Probability Constraints and

Optimal Design of Quantile Guarantees

The chapter discusses the concept of shortfall probability (SFP) constraints and the
impact of default risk in the context of portfolio optimization. The SFP is a typical
and well-used benchmark in insurance and finance to calculate the riskiness of a
portfolio resp. to limit the risk of a potential shortfall. It can be classified into the
so-called shortfall risk measures. In general, risk measures are used to determine the
risk of a financial position resp. the required capital s.t. a position is acceptable.5

The regulatory frameworks for banks, the Basel accords, as also the ones for the
insurance companies, Solvency II and the Swiss Solvency Test (SST), require from
the companies that their portfolios fulfill a SFP benchmark s.t. the portfolio has
a limited shortfall percentage.6 To see how different risk measures are connected
and to get an overview of different risk measure classes it is convenient to start the
chapter with a review of prominent risk measure concepts.
In general, companies are interested in minimizing their required capital resp. their
costs. But they should also take their investors’ interests into account s.t. they are
committed to stay as long as possible with them. Therefore, it is also of interest
for them to maximize their investors expected utility. Thus, it is reasonable for the
company to determine the terminal payoff that maximizes the expected utility of the
investor, including a terminal SFP constraint s.t. the regulatory requirements are

5 For a detailed discussion on acceptance sets in the risk measure context we refer to Artzner et
al. (1999) resp. to Artzner et al. (2009).

6 The calculation and concrete assumption of a shortfall probability differs. For banks, the Basel
regulatory prescribes different SFPs for market risks, interest rate risks and operational risks.
The Solvency regulatory for insurance companies in Europe differentiates between many risk
types but prescribes just one SFP on the aggregated risks. For more details, we refer to the
following sections.
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fulfilled. 7 The general solution for the mentioned problem with a utility function
that implies constant relative risk aversion is given by Merton (1971). Modifying
this payoff s.t. the SFP is fulfilled is thus of great interest for the companies. This
modification mechanism is the so-called cost-minimal payoff modification, first in-
troduced by Dybvig (1988a) and Dybvig (1988b). The cost-minimal modification
should have a positive impact on both, the financial company and the investor: For
the first one, because the shortfall restriction is fulfilled and for the second one,
because she receives the optimal payoff under these circumstances. But in reality,
the investor suffers from this solution as she is not protected on the bad states of
the expected utility-maximizing payoff. This mitigates the idea of protection that
should be fulfilled with the SFP constraint. A detailed discussion is given in the
second part of this chapter.
Analyzing (life) insurance companies in particular, there is the current problem of
a low-interest-rate phase, s.t. traditional products cannot serve the insureds’ needs
anymore. Thus, there is the need for insurance companies to model innovative con-
tract designs. In so-called participating life insurance contracts with minimum return
rate guarantees (MRRG), the insured participates with her payments in the asset
side of the insurance company: The company invest the premium payments in risky
resp. risk-free assets and at the end of the contract period the insured receives the
maximum of a terminal guarantee and the terminal asset result. This payoff has the
possibility to default if the asset strategy has performed not well and is smaller than
the guaranteed rate. We provide a model-independent analysis of this payoff under
the possibility of a default. Furthermore, following the argumentation from above,
it is interesting to solve the resulting expected utility maximization problem under
a shortfall probability constraint. Stating the resulting optimal payoff, we draw the
connection to the cost-efficient payoff modification and find the impeding behavior
that the optimal payoff does not secure the insured on the bad states of the world.
Following this line of arguments, there exist three main aims in this chapter:
The first aspect is to present the state-of-the-art risk measure concepts and the
comparison of the different regulatory frameworks on the level of risk measures to
discuss the differences and commonalities of these concepts. The second aim is to
present the cost-efficient payoff modification and motivate the idea behind it to un-
derstand how the protection of the insured resp. the investor is mitigated. Here we
derive first results in a toy example and contribute to the literature. The third and
main aim in this chapter is to present MRRG products under default risk: We derive

7 Portfolio optimization resp. portfolio planning itself dates back to Merton (1971). There are
many possibilities for the optimization argument, e.g.we can maximize over all investment frac-
tions that are invested in the risky asset or over all possible premium payment schemes. In
Chapter 3 we analyze a expected utility maximization problem where we determine for a given
investment fraction the optimal premium payment fraction. In Chapter 4 we discuss a expected
utility maximization problem over the investment fraction in the risky asset in a situation under
uncertainty.
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model-free insights and find an application of the cost-efficient payoff modification
in an optimization problem, where we maximize the expected utility of the insured
under a shortfall constraint by determining the optimal payoff structure. Further-
more, we give a literature overview on optimal portfolio planning under risk measure
constraints.
We proceed as follows. First we introduce and review the most important concepts
and results in the theory of risk measures that are of importance for the thesis. Here
we rely on the path-breaking work of Artzner et al. (1999) and the resulting papers
of Acerbi (2002), Föllmer and Schied (2002) and Frittelli and Gianin (2002). We
discuss the most common risk measures in practice, the VaR and ES and embed
them into a broader class of risk measures, the so-called distortion and spectral risk
measures. Afterward, we present the cost-minimal payoff modification mechanism
by Dybvig (1988a) and Bernard et al. (2014). Using that technique we construct
modified payoffs that fulfill shortfall probability requirements imposed by a regu-
lator but impede the idea that the bad states of the world are the ones that need
to be secured. Our findings can even be generalized by applying the work of Wei
(2018). The main result is achieved by analyzing minimum return rate guarantee
contracts under default risk. We give model-free insights of the pricing and the SFP
of these insurance contracts and find in a Black-Scholes application that quantile
guarantees maximize the insureds expected utility and fulfill the imposed SFP. At
the end of this chapter we discuss the impact of different risk measure constraints
resp. different optimization arguments on the optimal expected utility maximizing
solution by giving a literature overview.

2.1 Concepts of Risk Measures

One of the most important topics in the finance and insurance industry is to account
for the corresponding risks of the firms. Risky investments might lead to high losses
that affect the performance of the bank resp. the insurance company and might
endanger the investors’ or insureds’ contributions. Thus, an intact risk management
should be at the heart of every company. Hereby the risks are modeled with ran-
dom variables, so-called loss variables or profit & loss variables, depending on the
context.8

Some company goals might contradict prudent risk management or the companies
themselves underestimate some of their taken risks. Here regulatory authorities come
into play. They want to protect with their frameworks the investors and insureds
on the one hand and want to force the companies to protect themselves against
high risks on the other hand. For this protection the companies have to calculate

8 The modeling of the random variables itself is not an easy task. In practice the modeling is based
on time-series samples from recent years which is prone to errors.
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capital requirements to absorb a large loss. Depending on the company there are
different regulatory frameworks: For banks there exists the Basel accords, currently
the revised version of Basel III but there are ongoing discussions s.t. a new regula-
tory framework in terms of Basel IV seems not that far away. The need for capital
requirements can be found in Basel Committee on Banking Supervision (2020). For
the insurance side there is the Solvency II framework for European insurance com-
panies. Switzerland as a non-European country has its own insurance regulatory,
the Swiss Solvency Test (SST). The need for capital requirements in the Solvency
II context is given in Chapter 3, Art. 37, §1 in the 2009 directive of the European
Parliament about Solvency II (cf. EC (2009)). In the technical documentation of the
SST, capital requirements are discussed in Section 2.1 (cf. Swiss Financial Market
Supervisory Authority (2006)).
All different regulatory frameworks imply that the companies’ risks should be con-
densed into one number to calculate the capital requirement based on the risks of
the company. As mentioned before the risks are modeled with random variables and
thus because of the randomness is it not possible to find one perfect function that
can handle this task for every risk in every company equally good and reliable. At
this point we start with our analysis and introduce the concept of risk measures.
A risk measure is a mapping that assigns every random variable X a real number
c. This number can be interpreted as the capital requirement. Of course there are
many possibilities to choose such a function. There exists e.g. the expected value or
the variance that exactly does the desired mapping. Thus there is the need to con-
ceptualize risk measures and discuss desired properties that a risk measure should
fulfill. On the basis of these properties we can evaluate if a risk measure should be
used to calculate capital requirements for banks and insurance companies or not.
Therefore, we first present the axiomatic of risk measures in the following subsection
and review the most common concepts of risk measures afterward.

2.1.1 The axiomatic of risk measures

As discussed before, all information of a random variable X are condensed into
one number to quantify the risk of X. This is problematic because one number is
not able to reflect the whole behavior of the corresponding risk. But if we have to
rely on that calculated number the corresponding functional should at least fulfill
some useful and meaningful properties. The quantification and discussion of these
properties will be the main aim in this section. Before that, let us start with an
example that will be of importance trough out the whole thesis.
Intuitively the first idea to quantify the risk of a random variable X is to ask for the
probability that X is smaller than a certain value s resp. the loss is greater than s,
depending on the definition of the random variable X. Mathematically this can be
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described by

P (X < s) resp. P (X > s) .

This probability is the so-called shortfall probability (SFP). The next natural ques-
tion that arises is how much capital c we need to add to the random variable X s.t.
the SFP can be minimized to at least a value of ε.9 This is described by

P (X + c < s) ≤ ε resp. P (X + c > s) ≤ ε.

This is the so-called SFP-concept. Determining the capital c is an important task
for many different research questions. It will be a major component in the analyses
of the following chapters. Of course this concept has also some disadvantages when
it comes to the point that a shortfall occurs: we do not know how severe the shortfall
is. The SFP-concept is closely related to the risk measure Value at risk that will be
discussed in details in the next section.
Another simple method for determining the risk could be to calculate the volatility
of the corresponding risk X. But if X has a profit and loss distribution also the
gains would be used to determine a number for the corresponding risk. This would
distort the risk situation of X. Thus properties for an appropriate definition of risk
measures are important and meaningful.

For the definition of risk measures we work on an atomless probability space (Ω,F ,P),
i.e. there exists at least one continuously distributed random variable on that space.
Furthermore, we define L0(Ω,F ,P) as the set of all random variables in that proba-
bility space. The set of all integrable random variables is denoted with L1(Ω,F ,P)
and the set of all bounded random variables is given by L∞(Ω,F ,P). Moreover, let
X ⊆ L0(Ω,F ,P) be a vector space of random variables over (Ω,F ,P). We interpret
a random variable X ∈ X as a loss variable, i.e. if X1 ≥ X2 P − a.s. the risk X1

has a higher loss than X2 and thus it is more risky. With these assumptions we can
define monetary risk measures. The definition already dates back to Artzner et al.
(1999).

Definition 2.1 (Monetary Risk Measure)
Let X with R ⊆ X be a R vector space of random variables over the probability space
(Ω,F ,P). The mapping ρ : X → R is called a monetary risk measure if it holds

(i) For X1, X2 ∈ X with X1 ≥ X2 P− a.s. it holds ρ(X1) ≥ ρ(X2).

(ii) ρ is cash-invariant, i.e. for X ∈ X and c ∈ R it holds ρ(X + c) = ρ(X) + c.

9 In general it is not possible to reduce the SFP to zero. The capital requirement would be infinite.
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The outcome of the risk measure ρ is interpreted as the minimum capital require-
ment. This is one of the most important regulatory requirements for banks and
insurance companies in the Basel resp. the Solvency accords. Notice that the defi-
nition of a monetary risk measure is given for loss variables X which takes values
greater than zero, e.g. damage claims. In the finance context loss variables are con-
nected with negative values X. In this case a definition of a monetary risk measure
R can be found e.g. in Föllmer and Schied (2016) and is given by

(i) X1 ≥ X2 P− a.s. ⇒ R(X1) ≤ R(X2)

(ii) R(X + c) = R(X)− c.

These interpretations are convertible into each other: if ρ is a monetary risk measure
as defined in Definition 2.1, then R(X) = −ρ(X) or R(X) = ρ(−X) defines a
monetary risk measure in the sense of Föllmer and Schied (2016).
This is the most canonic definition of a risk measure. To achieve a more detailed
classification we introduce in the next step the so-called convex risk measures which
have been first introduced by Föllmer and Schied (2002) and Frittelli and Gianin
(2002).

Definition 2.2 (Convex Risk Measure)
Let X with R ⊆ X be a R vector space of random variables over the probability space
(Ω,F ,P). A monetary risk measure ρ : X → R is called a convex risk measure
if ρ is a convex mapping.

This definition implies the following: Let ρ be a convex risk measure, X1 and X2

risks and λ ∈ (0, 1), then it holds

ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2).

This leads to one of the most important and desired property of risk measures as also
often discussed in theory and practice, the so-called subadditivity. Before discussing
this property, we define the class of coherent risk measures.

Definition 2.3 (Coherent Risk Measure)
Let X with R ⊆ X be a R vector space of random variables over the probability space
(Ω,F ,P). A monetary risk measure ρ : X → R is called coherent risk measure
if it holds

(i) ρ is a convex risk measure.

(ii) ρ is positive homogene, i.e. for every random variable X ∈ X and λ > 0 it
holds ρ(λX) = λρ(X).
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If ρ is a coherent risk measure and X1, X2 ∈ X , the subadditivity property is
fulfilled, i.e.

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

Subadditivity can be interpreted as the property which accounts for diversification.
The capital requirement for a portfolio of risks should be less or equal to the capital
requirements of the risks measured separately. In the literature this property is
widely accepted as one of the key properties of a risk measure. However, there also
exist some critics regarding the this property: Dhaene et al. (2008) show that the
subadditivity axiom can lead to an increase in the shortfall risk by a merger and also
Rootzen and Klüppelberg (1999) and Kou et al. (2013) argue that the property of
subadditivity is not indispensable and might be relaxed. The subadditivity discussion
will be taken up again in the next section.

2.1.2 Value at Risk and Expected Shortfall as most common risk measures in
theory and practice

In this subsection we want to discuss the most common risk measures that are used
in theory and practice, the Value at Risk (VaR) and the Expected Shortfall (ES).
Before we start with the discussion of the VaR and the ES let us take a glance at
the definitions of them and embed them into the coherence axioms.

Definition 2.4 (Value at Risk)
For α ∈ (0, 1) the mapping V aRα : X → R defines the risk measure Value at
Risk, where

V aRα(X) := inf{x ∈ R : FX(x) ≥ α} = inf{x ∈ R : P(X > x) ≤ 1− α} = F←X (α).

The function F←X (α) denotes the left-inverse function of the random variable X. For
further properties of F←X (α) we refer to Embrechts and Hofert (2013). We can see
in the definition that the VaR is a quantile of the random variable X. This is an
easy to calculate value and one of the reasons why the VaR is so famous in practice.
Furthermore, the connection to the SFP-concept mentioned in the beginning of this
section is obvious: The VaR denotes the capital c that is required s.t. the random
variable X − c will not be greater than zero with probability 1− α.

Remark 2.1
Remember that X is a set of loss variables. In this case V aRα(X) denotes the mini-
mum capital requirement which is needed s.t. the loss variable exceeds this value with
a probability of only 1−α. Or to state it the other way around: with a probability of
α the loss variable has a smaller outcome than V aRα(X).
In the context of profit variables V aRα(X) denotes the profit which does not fall
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Value at Risk: Profit variable vs. Loss variable
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Figure 2.1: Distinction between the VaR of a loss and a profit variable. The gray
dashed lines refer to the VaR with α = 0.9 resp. α = 0.1.

below with probability α. Thus in the context of loss variables we are interested in
the ’high’ quantile regions of the distribution of X, in the context of profit variables
the ’low’ quantile regions are of interest. Figure 2.1 shows the relation of loss and
profit variables and the corresponding VaR levels.

The VaR is not a convex risk measure and thus not coherent which is already shown
and discussed in Artzner et al. (1999). Especially the subadditivity property is not
fulfilled. To given an example let X1 and X2 be i.i.d. random variables with the
outcomes and corresponding probabilities p

Xi =

{
0, p = 0, 99

1, p = 0, 01
, i = 1, 2. (2.1)

Then V aR0,99(Xi) = 0, but V aR0,99(X1 +X2) = 1.
In contrast to this the ES is a coherent measure of risk defined in the following.

Definition 2.5 (Expected Shortfall)
Let X ⊆ L1(Ω,F ,P) be a set of loss variables and α ∈ (0, 1). The risk measure
Expected Shortfall (ES) is defined by

ESα(X) : =
1

1− α

∫ 1

α

V aRβ(X)dβ = V aRα(X) +
1

1− α

∫ ∞
V aRα(X)

1− FX(x)dx,

where the second equation holds when X is a continuously distributed random vari-
able.
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Again notice that this is the definition for loss variables X. In the context of profit
variables we refer to Föllmer and Schied (2016). Here the ES is defined by

ESα(X) := − 1

α

∫ α

0

V aRβ(X)dβ.

For a discussion on the coherence properties of the ES we refer e.g. to Acerbi and
Tasche (2002). Especially the subadditivity property is fulfilled s.t. the ES accounts
for diversification. Moreover, the ES at level α is more sensitive to the shape of the
tail of the loss distribution compared to the VaR because it evaluates the expected
return on the portfolio in the worst α percent of cases. Thus the ES is in a continuous
setting often defined as

ESα(X) = E[X|X > V aRα(X)].

This definition goes back to Rockafellar and Uryasev (2000). Using this definition,
it is easy to see that the ES prescribes a more conservative capital requirement than
the VaR. These are two important properties why the ES is preferred by many aca-
demics over the VaR. An axiomatic foundation for the ES based on portfolio capital
requirement calculation is presented in Wang and Zitikis (2021).
As stated before different capital requirements have to be fulfilled depending on the
company. European insurance companies are settled under the regulatory frame-
work of Solvency II established in the year 2006. The overall capital requirements
are divided into submodules, e.g. market risks, life insurance risks, non-life risks etc.
Every submodule in the standard approach (standard formula) is measured with a
one-year VaR with a confidence level of 99, 5%.10 In the year 2020 the EIOPA re-
viewed the Solvency II framework and a revised version is planned to be published
in 2022.11 Switzerland as a non-European country has its own insurance regulatory,
the so-called Swiss Solvency Test (SST). It uses a multi-period risk measure based
on the ES.12

On the banking side there are the Basel accords as the European regulatory frame-
work. The current version is given by Basel III. One of the most extensive revisions

10An overview about the Solvency II process and a critical analysis of that framework is given
in Eling et al. (2007) and Doff (2008). The paper of Floreani (2013) criticizes the risk measure
and capital requirement approach in Solvency II and Höring (2013) discusses the impact of the
market risk on the capital allocation of insurance companies. Gatzert and Martin (2012) quantify
the market and credit risk under Solvency II by comparing the standard approach with internal
models. BaFin (2018) discusses the standard formula of Solvency II and highlights the problem
of interest rate risks: there is no possibility to account for negative interest rates which is crucial
in the current low-interest-rate environment. Thus a detailed discussion of interest rate risks is
of great concern in the actual development and there are still many open research questions to
answer.

11For more insights we refer to EIOPA (2020).
12Filipović and Vogelpoth (2008) discuss in detail the SST risk measure and find that it is not
coherent. A general discussion of the SST can e.g. be found in Eling et al. (2008).
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has been carried out in Basel Committee on Banking Supervision (2013), the so-
called ”Fundamental Review of the Trading Book” (FRTB).13 Before the review,
market risks have been measured with the VaR at the 99% confidence interval. Af-
ter the review, market risks are now measured with the ES at level 97, 5%, but credit
risks are still calculated with the VaR. A discussion on this topic is given in Bugár
and Ratting (2016) as also in Laurent et al. (2016). For an analysis of credit risks in
the Basel III framework measured with the ES we refer to Osmundsen (2018). Kell-
ner and Rösch (2016) highlight the consequences of that change for the model risk.
A comparison of regulatory requirements for Solvency II and Basel III for and after
the fundamental review of the trading book can be found in Laas and Siegel (2017)
and Gatzert and Wesker (2012). The differences of insurance regulatory frameworks
(Solvency II, Swiss Solvency Test (SST) and US-RBC) is provided by Holzmüller
(2009). Comparing these regulatory frameworks, the two risk measures VaR and ES
are commonly used in practice and highly relevant for banks and insurance compa-
nies. Thus we focus on these two risk measures. Later we discuss alternatives for
regulatory practice.

Many research papers consider the VaR and ES from a more practical point of
view by analyzing them concerning the regulatory frameworks Solvency II, SST and
the Basel III accords. An early paper in this stream of literature is provided by
Berkowitz and O’Brien (2002), who are the first that analyze the performance of
Value-at-Risk models for large trading firms. They find modeling constraints and
regulatory practices that harm the VaR calculation. Kaplanski and Levy (2007)
study the efficiency of the VaR regulation in the Basel II accord and find that there
is an optimal level of required eligible capital from the regulators point of view.
A comparison of bank risk measures before, during and after the financial crisis is
presented in O’Brien and Szerszen (2017). They find that banks’ VaR is conservative
if times are normal but understate risks in a period of market instability. Chang et
al. (2019) compares the VaR and ES in the Basel III accord regarding market risks
and find that policymakers prefer the ES using a stochastic dominance approach. A
general discussion of the FRTB and the Basel 3.5 accord is presented by Embrechts
et al. (2014).

Coming back to the subadditivity axiom we have seen that the VaR does not fulfill
this property in general. But there exist some important exceptions where the feature
is met when the random variables fulfill some distributional assumptions.14

Starting with Bernoulli distributed random variables, Hofert and McNeil (2015) find

13The banking book was completely revised in 2013. For all detailed changes in the FRTB we refer
to Basel Committee on Banking Supervision (2013).

14 In reality the distributions of random variables have to be estimated s.t. there is the potential
of an incorrect model. The testing on how accurate the corresponding risk measure model has
been in the last period is called backtesting. This method is highly relevant for practitioners. In
the context of our two discussed risk measures the VaR has thereby better properties: Gneiting
(2011) shows that the ES is not an elicitable risk measure. A formal definition of elicitability
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a necessary and sufficient condition for a homogeneous portfolio of i.i.d. Bernoulli
random variables s.t. the VaR is subadditive.

Proposition 2.1 (Subadditivity VaR - i.i.d. Bernoulli Variables)
Let Xj ∼ B(1, p) be i.i.d. Bernoulli variables with j ∈ {1, 2, · · · , d} with d ≥ 2 and

p ∈ [0, 1]. Then V aRα(
∑d

i=1Xj) is superadditive if and only if (1−p)d < α ≤ (1−p).

For a proof of Proposition 2.1 we refer to Hofert and McNeil (2015) (Theorem 2.1).
This proposition is of importance because credit risks resp. the default of a credit
can be modeled via a Bernoulli random variable. If the quantile α is large enough
or the default probability p is big enough, the VaR is subadditive. In equation (2.1)
we used two i.i.d. Bernoulli random variables with p = 0, 01 and α = 0.99. Because
α = 1−p = 0.99 we have constructed an example where the VaR is superadditive. If
we choose the level α = 0.98 or α = 0.995, the VaR is subadditive. Even in the case
of a heterogeneous portfolio of Bernoulli variables it is possible to state necessary
and sufficient conditions s.t. the VaR is subadditive. This finding is given in the next
proposition. The proof can be found in Hofert and McNeil (2015) (Theorem 3.1).

Proposition 2.2 (Subadditivity VaR - Heterogeneous Bernoulli Variables)

Let Xj ∼ B(1, pj) be independent Bernoulli variables with j ∈ {1, 2, · · · , d} with
d ≥ 2. Furthermore, let 0 =: p(0) < p(1) ≤ p(2) ≤ · · · ≤ p(d) < p(d+1) := 1 denote the
ordered default probabilities. Then it holds

(i) V aRα(
∑d

i=1Xj) is superadditive for all
∏d

j=1(1− pj) < α ≤ (1− p(d)).

(ii) V aRα(
∑d

i=1 Xj) is subadditive for 0 ≤ α ≤
∏d

j=1(1−pj) resp. 1−p(2) < α ≤ 1.

Again, this proposition implies that the VaR is subadditive for Bernoulli variables
whenever the level α is large enough. On the one hand these are good news for prac-
titioners because in the Basel III accords, credit risks are measured with the VaR
with a confidence interval of α = 0.999. This level should be sufficiently large s.t.
the risk measure stays subadditive for many credit risks. On the other hand when
we have credit risks with a very good investment grade of AAA, the default proba-
bilities are smaller than 0, 1% (see e.g. in Bundesbank (2019)). In this situation the
VaR remains superadditive.

is given in Lambert et al. (2008). This missing property has been used by many authors in the
past as a reason to say that the ES is not backtestable. But recent papers of Du and Escanciano
(2017), Moldenhauer and Pitera (2019), Dimitriadis et al. (2019) and Kratz et al. (2018) provide
some techniques to backtest the ES based on quantiles. For the VaR there are many backtesting
procedures: Two great overviews of backtesting procedures are the papers of Campbell (2005)
and Nieto and Ruiz (2016).
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To analyze a more general situation we take a look at elliptical distributions.15

Typical examples of these distribution classes are the multivariate t−distribution,
the logistic distribution, symmetric multivariate Laplace distributions or the mul-
tivariate normal distributions. The interesting aspect arises if we take a look at a
n−dimensional elliptic distribution X with marginal distributions Xi s.t. V ar[Xi] <
∞, for all i = 1, · · · , n. For the set of all linear portfolios the VaR has the desired
subadditivity property.

Proposition 2.3 (Subadditivity VaR - Elliptical Distributions)
Let X be a n-dimensional elliptical distribution as defined above and

P =

{
Z =

n∑
i=1

λiXi : λi ∈ R

}

the set of all linear portfolios. For any Z1, Z2 ∈ P and 1
2
≤ α < 1 it holds

V aRα(Z1 + Z2) ≤ V aRα(Z1) + V aRα(Z2).

The proof of Proposition 2.3 is given in Theorem 1 of Embrechts et al. (2002).16

Among other things because of this property elliptical distributions are popular in
the context of finance and insurance. This has been first discussed by Owen and Ra-
binovitch (1983). But the assumption that the joint distribution of a portfolio follows
an elliptical distribution might be not realistic because mostly only the marginal dis-
tributions of the risks are known.
Let us finally briefly comment on the situation where heavy-tailed distributions are
involved in the calculation of capital requirements. Danielsson et al. (2006) presents
approximations for downside risk measures such as the VaR and the ES for heavy-
tailed risks with regular variation.17 Under this assumption the corresponding risks
have a tail similar to the Pareto distribution. With this result Danielsson shows that
all downside risk measures order and measure heavy tail risks in a similar manner.
Further insights and an empirical study on this topic is presented in Dańıelsson et
al. (2013).

15Elliptical distributions are a whole class of multidimensional probability distributions. They are
strongly connected to the so-called spherical distributions: While spherical distributions are a
generalization of the multivariate standard normal distribution N (0, I), elliptical distributions
extend the multivariate normal N (µ,Σ) distributions. Thus, the class of spherical distributions is
a subset of all elliptical distributions. For the concrete mathematical definitions and an in-depth
analysis we refer to McNeil et al. (2015) and to Fang et al. (1987).

16The statement of Proposition 2.3 can even be generalized to all positive-homogeneous,
translation-invariant risk measures. See e.g. Theorem 8.28 in McNeil et al. (2015).

17A cumulative density function f(x) varies regularly at minus infinity with tail index β > 0

if lim
t→∞

f(−tx)
f(−t) = x−β for all x > 0.
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To ask the general question of what risk measure is an appropriate choice for regula-
tory and risk management there are many papers that discuss this aspect. Dowd and
Blake (2006) analyze with an application to insurance companies what risk measure
can come after the VaR, Chen (2018) does this analysis with a focus on the Basel
accords. Moreover, Emmer et al. (2015) search for ’the best risk measure’ in theory
and practice. What all of these papers have in common is that they compare the
VaR and ES and they all mention other interesting classes of risk measures that
may be suitable alternatives: the classes of distortion and spectral risk measures.
This will be the topic of our next subsection before we start with the analysis of the
cost-efficient payoff modification and the MRRG contract design.

2.1.3 Classes of Risk Measures: Distortion and Spectral Risk Measures

Besides the two prominent risk measures VaR and ES, there are many possibilities
to choose a risk measure. Two of the most important classes of risk measures are
the so-called distortion and spectral risk measures. Especially we will see that the
ES is a member of both classes, the VaR a member of the distortion risk measures
family. The concept of distortion risk measures goes back to Wang et al. (1997) while
spectral risk measures date back to Acerbi (2002). In this section we want to present
the main findings regarding these classes of risk measures and show that they are
under a simple condition equivalent.

Properties and Examples of Distortion Risk Measures

At first we shed a light on the class of distortion risk measures and start with an
intuition behind these risk measures:

Let X be an integrable random variable, then the following integral representation
for the expected value of X holds:

E[X] = −
∫ 0

−∞
1− (1− FX(x))dx+

∫ ∞
0

(1− FX(x))dx,

where (1 − FX(x)) is the so-called tail function of X. This representation holds
because every random variable X can be represented as

X := X+ −X−,

where X+ := max{X, 0} and X− := −min{X, 0}. We assume integrability of the
risks, s.t. it holds E[X+] < ∞ and E[X−] < ∞ and therefore

EP[X] := EP[X
+]− EP[X

−].
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Moreover for ω ∈ Ω it holds

X−(ω) =

∫ 0

−X−(ω)

1dx =

∫ 0

−∞
1{X−(ω)≥−x}dx =

∫ 0

−∞
1{X(ω)≤x}dx.

The last equation holds because X−(ω) ≥ −x for x < 0 implies that X+(ω) = 0
and thus X(ω) ≤ x. Conversely, if X(ω) ≤ x < 0, then X+(ω) = 0 and thus
X−(ω) ≥ −x. Analogue we can represent the variable X+ as

X+ :=

∫ ∞
0

1{X(ω)>x}dx.

Using these two representations and the Theorem of Fubini, which allows to change
the order of integration, it holds

EP[X
+] =

∫ ∞
0

P(X(ω) > x)dx =

∫ ∞
0

1− FX(x)dx and

EP[X
−] =

∫ 0

−∞
P(X(ω) ≤ x)dx =

∫ 0

−∞
FX(x)dx =

∫ 0

−∞
1− (1− FX(x))dx.

Finally, using the fact that we assume integrable random variables, the claimed re-
sult holds with EP[X] := EP[X

+]− EP[X
−].

We now create a distortion risk measure by distorting the expected value (more
precisely the tail function) with a mapping g : [0, 1] → [0, 1], a so-called distortion
function.

Definition 2.6 (Distortion Function)
An increasing function g : [0, 1] → [0, 1] with g(0) = 0 and g(1) = 1 is called a dis-
tortion function. Additionally, if g is concave, g is called a concave distortion
function.

The next proposition shows us how a distortion function generates a distortion risk
measure.

Definition 2.7 (Distortion Risk Measure)
Let g : [0, 1] → [0, 1] be a (concave) distortion function, such that the two integrals∫ 0

−∞ 1− g(1− FX(x))dx and
∫∞
0

g(1− FX(x))dx are real valued, then

ρg(X) := −
∫ 0

−∞
1− g(1− FX(x))dx+

∫ ∞
0

g(1− FX(x))dx

defines a positive homogeneous, law-invariant risk measure, a so-called (concave)
distortion risk measure.
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In the following concave distortion risk measures will be of great interest because
if g is concave then ρg(X) is a coherent and convex risk measure. In the literature
there is also known an other representation for the expected value connected to the
Value at risk:

E[X] =

∫ 1

0

V aRα(X)dα. (2.2)

With this connection we can reformulate the distortion risk measure ρg(X) as fol-
lows:

ρg(X) =

∫ 1

0

V aRα(X)dg(α).

For a detailed discussion about quantiles and distortion risk measures we refer to
Dhaene et al. (2012) and for a note on generalized distortion risk measures we refer to
Hürlimann (2006). The following proposition gives a 1:1 connection between concave
distortion risk measures, coherent risk measures, convex risk measures and the so-
called weighted AVaR ρµ(X) :=

∫ 1

0
ESα(X)µ(dα), first introduced by Cherny

(2006).18

Proposition 2.4 (Concave Distortion Risk Measures - Properties)
Let X be a vector space of random variables which contains a continuous random
variable X∗, for X ∈ X ⇒ |X| ∈ X and {X : X ∼ B(1, t), t ∈ [0, 1]} ⊆ X .19 Then
the following statements are equivalent:

(i) ρg is convex.

(ii) ρg is a coherent.

(iii) g is a concave distortion function.

(iv) It exists a distribution µ with µ([0, 1]) = 1, s.t. ρg(X) = ρµ(X).

For the proof of Proposition 2.4 we refer to Theorem 4.82 and 4.88 in Föllmer
and Schied (2016). In a later section we refer to the so-called weighted VaR first
introduced by He et al. (2015). To eliminate confusion we use the following remark
to compare the weighted VaR and weighted AVaR.

Remark 2.2 (weighted VaR vs. weighted AVaR)

As seen in Proposition 2.4 the weighted AVaR ρµ(X) =
∫ 1

0
ESαµ(dα) introduced by

Cherny (2006) represents the class of concave distortion risk measures. In contrast,

18Notice that in our case the terms Average Value at Risk and Expected Shortfall coincide.
19Choose for example X as the set of all essentially bounded random variables.
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the weighted VaR ρµ(X) =
∫ 1

0
V aRαµ(dα) represents a much broader class of risk

measures s.t. the weighted AVaR is a special case of the weighted VaR.20

Let us take a look at some examples of distortion risk measures. Setting the distortion
function to

g1(x) := 1(1−α,1](x)

we receive ρg1(X) = V aRα(X), i.e. the VaR is a distortion risk measure with distor-
tion function g1. Obviously g1 is not concave s.t. the VaR is not coherent as discussed
before. For the distortion function

g2(x) := min

{
x

1− α
, 1

}
we receive ρg2(X) = ESα(X). Notice that g2 is a concave distortion function and
thus coherent. A third example of distortion risk measures is the so-called Wang
transformation which can be traced back to Wang (2000). Using the concave
distortion function

gwang(t) := Φ(Φ−1(t)− Φ−1(q)), for some q ∈
(
0,

1

2

]
,

where Φ denotes the distribution function of a standard normal distribution, ρgwang(X)
is called the Wang transformation risk measure. A remark of Adam et al. (2008)
gives a nice interpretation of this distortion risk measure, if the risk X follows a
normal distribution N (µ, σ2). Under this assumption one can show that it holds

ρgwang(X) = µ+ σΦ−1(q).

This is exactly the Value at Risk of X to the level q, i.e. with the Wang transforma-
tion we can force a valuation of the risk X to the level of V aRq(X), whenever X is
N (µ, σ2) distributed. The Wang transformation will be of great interest in the next
section in the context of cost-minimal modifications of risk measures.

Spectral Risk Measures and their relation to Distortion Risk Measures

In the literature, spectral risk measures are widely discussed and first introduced by
Acerbi (2002). Adam et al. (2008) analyzes asset allocation problems with a spectral
risk measure as a constraint. In the context of regulatory capital and optimal rein-
surance under Solvency II, Brandtner and Kürsten (2014) show that the ES is an
adequate risk measure as long as the re-insurance component is not involved. Adding

20For a detailed discussion of the weighted VaR and the comparison to the weighted AVaR we
refer to He et al. (2015).
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this concept to the analysis, the ES gets suboptimal: it seems too restrictive s.t. no
reinsurance contracts are signed at all and thus spectral risk measures become strik-
ing. In a follow-up paper Brandtner and Kürsten (2015) discuss the decision making
under ES and spectral risk measures and highlight the problem of comparative risk
aversion hereby and Brandtner (2018) analyze spectral risk measures in the context
of background risks. Before we discuss the properties we want to give an intuition
behind this class of risk measures.

Let X be an integrable random variable. As seen before the following VaR repre-
sentation for the expected value holds:

E[X] =

∫ 1

0

V aRα(X)dα.

Now, similar to the distortion risk measure concept, we can re-weight the VaR
levels with some weight function Ψ(t), a so-called admissible risk spectrum or

risk aversion function, with
∫ 1

0
Ψ(z)dz = 1. The following is taken from Acerbi

(2002).

Definition 2.8 (Admissible Risk Spectrum)
A function Ψ ∈ L1([0, 1]) is called admissible risk spectrum or risk aversion
function if the following properties hold:

(i) Ψ is positive, i.e.
∫
I
Ψ(p)dp ≥ 0, for all I ⊂ [0, 1].

(ii) Ψ is decreasing, i.e.
∫ q

q−ε Φ(p)dp ≥
∫ q+ε

q
Ψ(p)dp, for all q ∈ (0, 1) and for all

ε > 0, s.t. [q − ε, q + ε] ⊂ [0, 1].

(iii)
∫ 1

0
Ψ(p)dp = 1.

With this, a spectral risk measure can be defined.

Definition 2.9 (Spectral Risk Measure)
Let Ψ be an admissible risk spectrum, then

ρΨ(X) :=

∫ 1

0

V aRβ(X)Ψ(β)dβ

defines a risk measure, a so-called spectral risk measure.

We see the re-weighting of the expected value by multiplying the VaR at level β with
the function value Ψ(β). Because of the fact that Ψ is normalized the re-weighting
is possible.



2. Risk Measure Concepts, Shortfall Probability Constraints and Quantile
Guarantees 22

Remark 2.3 (Value at Risk)
By setting Ψ∗(t) = 1{t=α}(t) we can create the V aRα(X). But Ψ∗ is not decreasing
and thus it is not an admissible risk spectrum. Therefore, the V aR does not belong
to the class of spectral risk measures.

To get an intuition for the risk aversion function Ψ we take a closer look at the
Expected Shortfall: By setting

Ψ(t) :=
1

α
1{0≤t≤α}

(or Ψ(t) := 1
1−α1{α≤t<1}, depending on the context) we can represent the ESα(X) as

a spectral risk measure. The ESα(X) averages the possible outcomes in the α-right
tail with equal weights. Looking at the risk aversion function we see that this is also
just a weight function of the average. But here every tail quantile gets the same
weight s.t. one does not allow for risk aversion. A further discussion on spectral risk
measures as a generalization of the ES can e.g. be found in Tasche (2002). Generally
Ψ(t) gives different weights to different ”p-confidence level slices” of the tail. Because
of the normalization property of Ψ the weights in the average sum up to 1.The work
of Dowd et al. (2008) discusses the use of different functions Ψ that account for
risk aversion and their limitations. They show risk aversion functions Ψ that rebuild
utility functions, e.g. if we choose Ψ(t) = γ(1 − t)e(1−γ) for γ < 1 we receive the
CRRA utility function. The function faces the problem, that for large t and a high
risk aversion γ, lower losses are overweighted and high losses are underweighted. For
further discussions about this topic and other risk aversion functions Ψ we refer to
Dowd et al. (2008), the comment on this paper by Brandtner (2016a) and the paper
of Brandtner (2016b).

Now that we have discussed the two risk measure classes separately, we close the
gap between spectral risk measures and distortion risk measures. As stated before,
the concave distortion risk measures are in this context highly important: Using the
remark in McNeil et al. (2015) on page 287, we can write every concave distortion
function because of absolute continuity in the form g(t) =

∫ t

0
Ψ(u)du. Thus every

concave distortion risk measure can be represented in form of a spectral risk measure
and vice versa. Thus the classes of concave distortion risk measures and spectral risk
measures coincide and in general the class of spectral risk measures is a subset of
the class of distortion risk measures.

2.2 Shortfall constraints and cost-minimal payoff modification

The protection of the investor’s needs should be of great interest at least for the
regulator if not for the bank or insurance company. In this section, we investigate
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some kind of natural portfolio optimization problem when it comes to this subject:
maximizing the investor’s expected utility under a prescribed terminal shortfall con-
straint. This constraint can e.g. be modeled with the VaR or with the ES. To be
more general the investor receives an (optimal) payoff which is secured in form of
a shortfall constraint.21 The terminal shortfall constraint setup seems to be a good
and helpful tool at first sight. But in this section we will see that this setting can
impede the protection concept in times of bad market behavior because the state
prices are the more expensive the worse the market. It is thus more costly to adapt
the payoff on states of the world ω where the state prices are high, s.t. the pay-
off is modified on the cheaper state prices and thus better market conditions. The
modification is thus given to better states of the world while the bad states stay
unchanged and thus unprotected. This gives a first and simple introduction to the
concept of cost-minimal payoff modifications:
The theory of cost-minimal payoff modifications dates back to Dybvig (1988b) and
Dybvig (1988a). He analyzes state prices in discrete and continuous-time settings
and calculates cost-efficient payoff modifications. Bernard et al. (2014) build upon
the work of Dybvig and generalize many of his results. They find that cost-efficiency
does not offer protection against a decline in an economy. Furthermore, they provide
a condition that is sufficient for a cost-efficient payoff: If the random variable XT

and the state price density ξT are countermonotone, then XT is cost-efficient. The
concept of countermonotonicity is widely spread in the context of risk measures resp.
valuation bounds for risks, the so-called Fréchet-Hoeffding bounds. Countermono-
tone risks have some kind of opposing behavior: When XT has a high outcome in
a state of the world ω∗ then ξT (ω

∗) has a low outcome. This is a first hint for the
problem we are dealing with: The state price densities ξT are more expensive when
the random variable XT has a low outcome, i.e. there is no incentive to modify the
optimal payoff in the bad states of the world. Bernard et al. (2015) analyze portfolio
selection problems where they include some constraints on the state price densities.
They find again that optimal portfolios do not fit with the aspiration of investors
who seek protection. Bernard et al. (2019) even construct an algorithm to obtain
numerically an investor’s optimal portfolio under general preferences. Wei (2018)
uses this cost-efficient modification to define the so-called risk reduction per cost
(RRPC) to measure the trade-off between reducing the risk and incurring the costs.
He analyzes many risk measures in the context of expected utility maximization and
finds in a very general setting (the so-called weighted-VaR) that VaR and even the
ES as a constraint do not insure the investor on the bad states of the distribution.

21For example the shortfall constraint in the Solvency II framework is given in terms of a VaR
constraint with level α = 0.995.
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2.2.1 VaR constraint and cost-minimal payoff modification - A toy example

We want to motivate the concept of cost-minimal modifications with a simple ex-
ample. In this toy example, we can see how the concept works and can transfer this
to more sophisticated applications.
For this, let X be a discrete random variable in an arbitrage-free model setup.
The discrete sample space is given by Ω = {ω1, . . . , ωN}, the outcome by X(ω1) =
1, . . . , X(ωN) = N , i.e. the payoff in the state ω1 has the smallest value, the payoff
in state ωN has the highest value. The probabilities of the states are given by

P({ω ∈ Ω : X(ω) = i}) = 1

N
, for all i = 1, . . . , N.

The distribution function FX(x) resp. the left inverse function F←X (α) can be stated
as

FX(x) =



0 , x < 1
1
N

, 1 ≤ x < 2
...
N−1
N

, N − 1 ≤ x < N

1 , x ≥ N

, F←X (α) =



1 , 0 < α ≤ 1
N

2 , 1
N

< α ≤ 2
N

...

j , j−1
N

< α ≤ j
N

...

N , N−1
N

< α < 1

.

The state prices κ1, . . . , κN are because of the no-arbitrage assumption strictly posi-
tive and because of the increasing payoff also increasing, i.e. 0 < κ1 ≤ κ2 ≤ · · · ≤ κN .
Now let us take the regulator’s point of view and prescribe a constraint at the VaR,
i.e.

V aRα(X)
!

≤ d.

The constraint d can be interpreted for example in the context of an insurance
contract as a (constant) guarantee level GT promised to the insured. In the context
of Solvency II, the upper bound on the shortfall probability (α = 0, 995) determines
the amount of equity that is needed to honor the liabilities of the insured, i.e.

P(X < GT ) ≤ 0.005 or in other words: V aR0.995(X)
!

≤ GT .
For a level of α = 1− j

N
with j > d, we find in our example that

V aR1− j
N
(X) = F←X

(
j

N

)
= j,

i.e. the regulatory requirement is not fulfilled s.t. X has to be modified.
The modification is quite obvious by taking a closer look at the left inverse function
of X: To achieve F←X ( j

N
) = d, the outcome of X has to be reduced in the states

where X(ω) is between d+1 and j to the value d. For higher outcomes of X than j
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the reduction is not necessary because the VaR at level α = 1− j
N

is not influenced.

The calculation scheme of the modified payoff X̃ is presented in Table 2.1, s.t. the
distribution function of X̃ is given by

FX̃(x) =



0 , x < 1
1
N

, 1 ≤ x < 2
...
d−1
N

, d− 1 ≤ x < d
j
N

, d ≤ x < j
j+1
N

, j ≤ x < j + 1
...

1 , x ≥ N

.

ωi X(ωi) Y (ωi) κi X̃(ωi) = X(ωi)− Y (ωi)
ω1 1 0 κ1 1
ω2 2 0 κ2 2
...

...
...

...
...

ωd−1 d− 1 0 κd−1 d− 1
ωd d 0 κd d
ωd+1 d+ 1 1 κd+1 d
...

...
...

...
...

ωj−1 j − 1 j − 1− d κj−1 d
ωj j j − d κj d
ωj+1 j + 1 0 κj+1 j + 1
...

...
...

...
...

ωN N 0 κN N

Table 2.1: Cost-efficient Payoff Modification Scheme

The modified payoff X̃ fulfills the regulators’ specification, i.e.

V aR1− j
N
(X̃) = inf

{
x ∈ R : FX̃(x) ≥

j

N

}
= d.

This is also the cheapest way to modify X, s.t. the regulatory constraint is fulfilled
with the modification costs

N∑
i=1

κiY (ωi) =

j−d∑
i=1

κd+ii. (2.3)
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The procedure in the toy example can be applied to any situation where a random
variable has to be modified s.t. a shortfall condition based on the VaR is fulfilled. This
is in many applications of interest, e.g. in the context of maximizing the expected
utility over all possible payoffs X ∈ X of an investor s.t. a shortfall constraint is
fulfilled, i.e.

max
X∈X

EP[u(X)]

s.t. P(X < d) ≤ α.

The cost-efficient modification in our example is given in the following proposition.

Proposition 2.5 (Cost-efficient Payoff modification - VaR)
Let X be a random variable and d a prescribed constraint on the Value at risk with
level α, where V aRα(X) > d. The cost-efficient payoff modification X̃V aRα, s.t. the
VaR constraint is fulfilled, is given by

X̃V aRα(ω) : = X(ω) + [d−X(ω)]1{d1≤X(ω)≤V aRα(X)}

=


X(ω) , X(ω) < d

d , d ≤ X(ω) ≤ V aRα(X)

X(ω) , X(ω) > V aRα(X)

.

The modification costs are given by

PD(FX , Fξ)− PD(FX̃ , Fξ) =

∫ 1

0

[F←X (α)− F←
X̃
(α)]F←ξ (α)dα,

where PD(FX , Fξ) denotes the distributional price of the variable X with the state
price density ξ.

The representation of the modification costs in Proposition 2.5 are proven in Theo-
rem 3 of Dybvig (1988a). Using the new representation of the modification costs we
calculate these costs in our toy example. Recall that the VaR constraint is given by
the level of α = 1− j

N
> d the distribution function and left inverse function of X

is given by

FX(x) =



0 , x < 1
1
N

, 1 ≤ x < 2
...
N−1
N

, N − 1 ≤ x < N

1 , x ≥ N

, F←X (α) =



1 , 0 < α ≤ 1
N

2 , 1
N

< α ≤ 2
N

...

j , j−1
N

< α ≤ j
N

...

N , N−1
N

< α < 1
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and for X̃ given by

FX̃(x) =



0 , x < 1
1
N

, 1 ≤ x < 2
...
d−1
N

, d− 1 ≤ x < d
j
N

, d ≤ x < j
j+1
N

, j ≤ x < j + 1
...

1 , x ≥ N

, F←
X̃
(α) =



1 , 0 < α ≤ 1
N

2 , 1
N

< α ≤ 2
N

...

d− 1 , d−2
N

< α ≤ d−1
N

d , d−1
N

< α ≤ j
N

j + 1 , j
N

< α ≤ j+1
N

...

N , N−1
N

< α < 1

.

We need to calculate the state price density ξ to use the modification cost represen-
tation of Dybvig. In our discrete setting ξ is defined by:

ξ(ω) =
κ(ω)

pi
=

κi

1
N

= Nκi, for ω = ωi.

Thus, we receive for the distribution function and the left inverse of ξ

Fξ(x) =



0 , x < Nκ1

1
N

, Nκ1 ≤ x < Nκ2

...
N−1
N

, NκN−1 ≤ x < NκN

1 , x ≥ NκN

, F←ξ (α) =



Nκ1 , 0 < α ≤ 1
N

Nκ2 , 1
N

< α ≤ 2
N

...

NκN−1 , N−2
N

< α ≤ N−1
N

NκN , N−1
N

< α < 1

.

Calculating the modification costs, we receive

PD(FX , Fξ)− PD(FX̃ , Fξ) =

∫ 1

0
[F←X (α)− F←

X̃
(α)]F←ξ (α)dα

=

∫ d+1
N

d
N

1 ·Nκd+1dα+

∫ d+2
N

d+1
N

2 ·Nκd+2dα+ · · ·+
∫ j

N

j−1
N

(j − d) ·Nκjdα

=

j−d∑
i=1

κd+ii.

These modification costs coincide with our direct calculation in equation (2.3). An
illustration of the toy example with N = 100 j = 20 and d = 5 is given in Figure
2.2.
We find two problems concerning a VaR shortfall risk constraint in the context of
payoff modifications:
(i) The bad and thus for the investor risky states are not secured. Because of the
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Distribution functions toy example (V aR-constraint)
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Figure 2.2: Toy example with VaR constraint: modified payoff distribution function
FX̃ vs original distribution function FX

The toy example plotted for N = 100, d = 10, j = 30. The gray graph describes the distribution
function FX(x), the black dotted the modified function FX̃(x).

VaR constraint there exists a protection, but rather on the interval [d, j] and not on
the more problematic states on the interval [0, d]. This observation can also be seen
in the next section where we analyze an optimal design for an insurance contract.
(ii) Increasing the VaR level α reduces the interval of the unsecured investment but
still offers no protection on the worst states whenever the payoff has to be modified.
This impedes the idea of protection.

This can also be transferred to a continuous-time approach e.g. in the BS-market.
The famous result of Merton (1971) not only presents the optimal investment frac-
tion in the risky asset but also presents the optimal terminal wealth that maximizes
the expected utility of an investor. It is stated in terms of the state price density ξT .
In the BS-model it holds

ξT := e−rT−
1
2

(µ−r)2

σ2 T−µ−r
σ

WT .

Thus, the optimization problem of the terminal wealth XT under fair pricing con-
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dition is stated in the following terms:

max
XT

EP[u(XT )]

s.t. EP[ξTXT ] = X0.

The optimal solution is given by

X∗T := I(λξT ),

where λ is a constant that is determined in a way s.t. the fair pricing condition

EP∗ [ξTX
∗
T (λ)] = X0

is fulfilled and I := (u′)−1 denotes the inverse function of the first derivative of the
corresponding utility function. Adding a SFP constraint in terms of P(XT < d) ≤ α
to the above optimization problem gives us the problem stated in Basak and Shapiro
(2001). They have rigorously proven by applying the convex-duality approach that
the optimal solution is of the form:

XV aR,∗
T =


I(yξT ) , ξT < d1

d , d1 ≤ ξT ≤ V aRα(ξT )

I(yξT ) , ξT > V aRα(ξT )

, where d1 =
u′(d)

y
.

The constant y is determined similar to the problem without VaR constraint s.t. the
fair pricing condition is fulfilled, i.e.

EP∗ [ξTX
V aR,∗
T (y)] = X0, where y ≥ λ.

The solution of the VaR constrained problem is also given by a cost-efficient payoff,
modified from the solution without SFP constraint similar to Proposition 2.5. For
more details on this, we refer to Bernard et al. (2015).
The connection between the optimal solution under a SFP constraint and the op-
timal solution without a SFP constraint is given as follows: Following Basak and
Shapiro (2001) the optimal solution with the VaR restriction can alternatively be in-
terpreted resp. stated as the optimal unconstrained solution, where the initial value
X0 is reduced by the price of a put option (denoted with 1− ν)

EP∗ [ξTX
∗
T (λ)] = νX0

and an additional put option like construct that ensures the SFP constraint. The
VaR optimal solution can then be stated as

XV aR,∗
T = νX∗T + (d− νX∗T )1{d1≤ξT≤V aRα(ξT )}.
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Thus we can state the optimal terminal wealth with VaR constraint in terms of the
Merton solution, reduced by a factor ν with an additional put option component.
For more details we refer to Basak and Shapiro (2001) p. 377 and to Proposition
2.11 in the next section.

The finding of not securing the bad states of the world is not just a problem of the
VaR. In the next subsection, we briefly discuss that even the ES is not able to solve
this problem.

2.2.2 Cost-minimal payoff modification in the context of other (coherent) risk mea-
sures

In the discussion of risk measures the coherence axioms are of great importance.
As discussed in the previous subsection, one of the most important coherent risk
measures is the ES. Wei (2018) shows that measuring a risk with the ES can lead
to a situation where the bad states of the insured resp. the investor is not secured
just as we have seen in the last subsection with the VaR.
The first observation which can be seen easily from the definition of the expected
shortfall is, that ESα(X) ≥ V aRα(X), because

ESα(X) = V aRα(X) +
1

1− α

∫ ∞
V aRα(X)

1− FX(x)dx. (2.4)

Moreover, we see that the ES purely depends on the distribution of the random
variable X. Calculating the modified payoff will preserve the cost-efficient payoff
again, s.t. the bad states are not secured. This will be pointed out in the following:
Again, let the regulator prescribe some constraint d regarding the expected shortfall,
i.e.

ESα(X)
!

≤ d.

Similar to the VaR case we can modify the payoff if the constraint is not fulfilled.
Rewriting equation (2.4) we find an intuitive way to modify the ES s.t. the boundary
can be matched:

ESα(X) = d1 +
1

1− α

{∫ d2

d1

1− FX(x)dx+

∫ ∞
d2

1− FX(x)dx,

}
(2.5)

where d1 is the VaR of the random variable X with confidence level α. For the cost-
efficient modification we can adapt d1 (i.e. the VaR of the modified payoff is smaller
than the original payoff) and d2, s.t. the ES constraint is fulfilled. Expressing the
findings on the level of random variables, the following hold.
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Proposition 2.6 (Cost-efficient Payoff modification - ES)
Let X be a random variable and d a prescribed constraint on the Expected Shortfall
with level α, where ESα(X) > d. The cost-efficient modification X̃ESα, s.t. the ES
constraint is fulfilled is determined with

X̃ES(ω) : = X(ω) + [d1 −X(ω)]1{d1≤X(ω)≤d2}

=


X(ω) , X(ω) < d1

d1 , d1 ≤ X(ω) ≤ d2

X(ω) , X(ω) > d2,

where V aRα(X) ∈ [d1, d2] and V aRα(X̃) = d1. The modification costs are calculated
as in Proposition 2.5.

This proposition shows, similar to the VaR, that the bad states of the world are
not secured by a terminal ES constraint. This seems to be surprising in view of
the good properties of the ES as a coherent risk measure. The paper of Wei (2018)
gives a detailed proof on that. The proceeding in Proposition 2.6 to calculate the
cost-efficient payoff modification is discussed in detail in Wei (2018). He even finds
that the terminal wealth of the ES agent might be smaller on the bad states of the
distribution than the agent who does not care about protection at all and thus not
account for any shortfall constraints. Finally, Wei shows that many coherent risk
measures are not appropriate in the context of portfolio selection. For more details
we refer to Proposition 5.1 and Proposition 5.5 of Wei (2018). To overcome this
problem there are two possibilities when the overall optimization problem (maxi-
mize over all possible payoffs X) should remain intact: The first possibility is to
include another constraint into the ES resp. VaR optimization problem which is
based on the state prices s.t. the company is forced to secure the bad states of the
distribution. The other possibility is to change the risk measure in the shortfall con-
straint to one that accounts for securing the bad states of the distribution. Following
the second idea, Wei finds that the Wang distortion risk measure, originally used in
actuarial science, leads to a portfolio insurance strategy on the bad states when it
is used as a constraint in the optimization problem. For more information we refer
to Wei (2018).
Our findings give us a hint, that valuating a risk measure just by its axioms can
lead to some serious problems in specific contexts, here in the context of expected
utility maximization under shortfall constraints. It might be a better procedure in
practice to define some properties a risk measure should fulfill and then choose a
risk measure for that purpose, not the other way around. This is discussed in details
in the works of Bauer and Zanjani (2016) and Kou et al. (2013).
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2.3 Minimum Return Rate Guarantees under Default Risk - Optimal
Design of Quantile Guarantees

Now we present the main findings and contributions of this chapter.22 We maximize
the insureds expected utility of a contract where the insured receives at least a so-
called minimum return rate guarantee (MRRG) including the possibility of a default
in terms of investment returns. We focus on a savings plan which is motivated by
participating life insurance contracts. In reality, these contracts are more complex
than our assumptions. They also include a term life insurance component and pos-
sess several premium payment options to policyholders. It is often criticized that
the underlying of this kind of life insurance product is in reality typically based on
book values and not market values as suggested in most research papers. However,
the main effect is that the underlying possesses a lower volatility (via “smoothing”)
and - ceteris paribus - the value of the embedded options is lower. In any case, one
can in principle account for this effect via choosing the “appropriate” volatility in
the GBM - whenever the model is adjusted to empirical data via time series data.
For a detailed description of participating life insurance contracts we refer e.g. to
Grosen and Jørgensen (2000) and Grosen and Jørgensen (2002). Furthermore, we
also define the default event exclusively in terms of the investment returns and do
not consider that the insurance company may itself default.
Considering the possibility that the liabilities (guarantees) can not be honored im-
pedes the basic idea of a guarantee. However, in reality there is no guarantee pre-
vailing with probability one. Any guarantee may fail in times of extremely negative
market conditions, i.e. guarantees are only valid under sufficiently good scenarios.
Thus, one may soften the term guarantee and imagine it as honored with a high
probability (quantile guarantee). In the context of participating life insurance con-
tracts the guarantee is secured by regulatory requirements on the maximal shortfall
probability. For example as discussed in the previous section Solvency II contains the
condition that the shortfall probability w.r.t. a time horizon of one year is limited to
0.5%. Intuitively, it is clear that the value of a guarantee is decreasing in the shortfall
probability. Default risk mitigates the guarantee component (it is less often binding
and thus the guarantee is cheaper than without default risk). In contrast, control
of the shortfall probability makes the guarantee more binding. Our main focus is
on the optimal contract design in the presence of an upper probability bound on
the shortfall probability posed by the regulator, i.e. the optimal design of quantile
MRRGs.

The contributions of this section can be summarized as follows. Based on the dis-
tinction between a high and a low equity to debt ratio (compared to the combination
of guarantee and participation fraction), we state the return payoff to the insured

22 It is based on the work of Mahayni et al. (2021a).
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by means of piecewise linear functions of the return of the insurers asset returns. On
the one hand, this simplifies the pricing problem under default risk to the pricing of
standard call (put) options. On the other hand, this already gives model independent
insights, i.e. insights which are true w.r.t. any arbitrage free financial market model
setup. For example, a low (high) equity to debt ratio implies a concave (piecewise
concave and convex) payoff.23 Thus, for a low equity to debt ratio, the value of the
liabilities is decreasing in the riskiness of the insurer’s assets. Consequently, the de-
fault risk dominates the guarantee option which contradicts the guarantee concept,
i.e. if the admissible asset distributions are not restricted by an upper bound on
the shortfall probability (on the guarantee). A further contribution is then given by
deriving the optimal return payoff distribution to the insured. Because of the market
completeness, the optimal (return) payoff to the insured can be implemented for any
equity to debt ratio. Finally it is important to point out, that there are utility losses
to the insured (and there is too much equity involved) if the insurer implements a
suboptimal investment strategy.

This section is related to several strands of the literature including the ones on (i)
pricing and hedging embedded guarantees/options, (ii) the impact of default risk
(emphasizing on participating life insurance contracts), (iii) utility losses caused by
guarantees and/or suboptimal investment decisions (conducted by insurance com-
panies or pension funds), (iv) portfolio planning, (v) quantile hedging, and (vi) the
analysis of piecewise convex and concave contingent payoffs.
Pricing embedded options by no-arbitrage already dates back to Brennan and Schwartz
(1976). A more recent paper is Nielsen et al. (2011). Risk management and hedging
aspects are discussed in Coleman et al. (2006), Coleman et al. (2007), and Mahayni
and Schlögl (2008).
An early paper which already provides tools to determine closed-form solutions for
the solvency restriction based on a shortfall concept under certain distribution as-
sumptions (normal and log normal case) is given by Winkler et al. (1972) using
partial moments. Non-linear optimization problems under shortfall constrains have
already been solved in the past, c.f. McCabe and Witt (1980) who calculated the
optimal chance-constrained expected profit of a non-life insurer.
Considering default in the context of participating life insurance contracts is firstly
analyzed in Briys and De Varenne (1997) and Grosen and Jørgensen (2002). More
recent papers are Schmeiser and Wagner (2015) and Hieber et al. (2019). Other pa-
pers on participating life insurance contracts excluding default risk are e.g. Bacinello
(2001) who discusses amongst other results how a minimum interest rate guarantee
(“technical rate”) has to be set, such that the contracts are fairly priced and Gatzert
et al. (2012) where the customer value of the policyholder is maximized.

Papers on utility losses caused by (suboptimal) investment strategies include Jensen

23 In our setup, a low equity to debt ratio is always implied if there is a return guarantee which
gives a return accumulation higher (or equal) one.
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and Sørensen (2001), Jensen and Nielsen (2016) and Chen et al. (2019).24 Chen et
al. (2019) consider a general utility maximization under fair-pricing and budget con-
straints in a complete, arbitrage-free Black and Scholes model setup for an CRRA
Investor. The payoff function is chosen s.t. it also includes default risk. They apply
their results to equity-liked life insurances using a constant mix strategy and exam-
ine the effect of taxation.
Literature on portfolio planning with a main focus on insurance contracts with guar-
antees includes Huang et al. (2008), Milevsky and Kyrychenko (2008), Boyle and
Tian (2008) and Mahayni and Schneider (2016). The general idea of maximizing
the expected utility of the insured by choosing optimal parameter settings which
fulfill fair pricing conditions has been provided in the literature before. The paper of
Branger et al. (2010) analyzes different forms of point-to-point guarantees. Cliquet-
style options are analyzed in Gatzert et al. (2012) and Schmeiser and Wagner (2015).
In contrast to these articles we add the portfolio composition as a decision variable
in the optimization problem to determine the overall expected utility-maximizing
payoff of the insured in quasi-closed form.
Portfolio planning itself dates back to Merton (1969) and Merton (1971) who,
amongst other results, solves the portfolio planning problem for a CRRA investor.
The solution for investors who must also manage market-risk exposure using the
Value-at-Risk (VaR) is firstly mentioned in Basak and Shapiro (2001). Yiu (2004)
solves the problem where the VaR constraint is posed for the entire investment
horizon. More recently, Gao et al. (2016) derive the solution for an investor with a
dynamic mean-variance-CVaR and a dynamic mean-variance-safety-first constraint.
A joint (terminal) VaR and portfolio insurance constraint is considered in Chen et
al. (2018a). Multiple VaR constraints are analyzed in Chen et al. (2018b). With re-
spect to European and American guarantees, we also refer to El Karoui et al. (2005).
Quantile hedging already dates back to Föllmer and Leukert (1999). Literature on
the insurance demand dates back to Leland (1980) and Benninga and Blume (1985)
who show that in a complete financial market setup with risky and risk-free asset
investments as also a utility function with constant risk aversion the investor will
never buy portfolio insurance, instead buys the asset itself directly. Ebert et al.
(2012) confirm the result for guarantee contracts, i.e. for CRRA Investors with rea-
sonable risk aversion parameter Cumulative Prospect Theory (CPT) can not explain
the demand for complex guarantee contracts. Ruß and Schelling (2018) introduce
the concept of Multi Cumulative Prospect Theory (MCPT) which does not only
consider the terminal value of the investment but also the annual value change.
Under the MCPT the demand for complex guarantee products can be explained.

24 In particular, Jensen and Sørensen (2001) analyze wealth losses for pension funds and emphasize
that the individual investor can substantially suffer from the investment strategy conducted by
the sponsor.
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2.3.1 Contract design, payoffs, and fair pricing

We examine stylized versions of minimum return rate guarantees (MRRGs) which
are e.g. observed in participating life insurance contracts. The insured pays a single
premium at inception of the contract. The case of periodic payments is analyzed in
the next chapter. The focus is on contracts which grant the insured a participation
on positive investment results and include a return guarantee unless there is default
risk. Since we abstract from mortality or surrender risk, there is no loss of generality
due to a single premium compared to more flexible premium payments. The initial
contribution of the insured is denoted by P0. The product terminates and pays out
to the insured at T > 0.

Stylized version of MRRG

Throughout the following, AT denotes the terminal value of the insurance result
(asset result) which is the outcome of an admissible investment strategy with initial
investment A0. In particular, the initial investment A0 consists of the existing equity
amount E0 ≥ 0 and the contributions of the insureds P0, i.e. A0 = E0 + P0. In
particular, we normalize P0 = 1 and set E0 = α(E) where α(E) ∈ [0, 1] denotes the
equity fraction (equity to debt ratio, respectively).

Along the lines of Schmeiser and Wagner (2015), we assume that the policyholder’s
account evolves from t− 1 to t (t ∈ {1, . . . T}) according to

Pt = Pt−1

(
1 + max

{
g, α

(
At

At−1
− 1

)})
,

where α (α ∈]0, 1[) denotes the participation fraction and 1+g (g ≥ −1) is the guar-
anteed accumulation factor granted for one year.25 The special case g = −1 includes
a contract without guarantee. For an analysis of MRRG based on guarantee rates
that are linked to the interest rate evolution (so-called floating strike guarantees)
we refer to the working paper of Mahayni et al. (2021b).
To simplify the expositions, we restrict ourselves to T = 1, i.e. we refer to the in-
tended MRRG payoff P1 to the insured, i.e. the payoff which is valid without default
risk given by

P1 = P0

(
1 + max

{
g, α

(
A1

A0

− 1

)})
. (2.6)

25For different contract specifications within participation life insurance contracts cf. Nielsen et
al. (2011). Further details, in particular w.r.t. participating life insurance contracts with annual
return rate guarantees which are common in German-speaking countries, are given in Schmeiser
and Wagner (2015).
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Using 1 + max
{
g, α

(
A1

A0
− 1
)}

= 1 + g + α
(

A1

A0
−
(
1 + g

α

))+
implies the following

Lemma.

Lemma 2.1 (Intended payoff representation)
For P0 = 1, the intended payoff to the insured P1 can be represented by

P1 = 1 + g + α

(
A1

A0

−K

)+

, where K = 1 +
g

α
. (2.7)

Thus, P1 can be stated in terms of the payoff of (i) a long position in e−rP0(1 + g)
zero bonds maturing in one year (r denotes the c.c. interest rate) and (ii) αP0

A0
long

calls on the synthetic asset A with maturity T = 1 and strike K̃ = A0(1 + g
α
).

Without default risk, the MRRG payoff is illustrated in Figure 2.3. In particular,
by pure dominance arguments, the (arbitrage free) value of a payoff which is always
equal or sometimes even above another payoff must be higher than the value of the
other payoff. Thus, two equally valuable payoffs P1 and P̃1 with α > α̃ imply that
g < g̃.26

The assumption of a maturity T = 1 implies some simplifications to our model:
Because of the one period setting, the insured has no other premium payment op-
tion than an upfront premium. In the next chapter periodic premium payments are
analyzed in-depth. Furthermore, the insurer cannot suffer from death or surrender
of the policyholder, such that the surrender and mortality risk is excluded from our
analysis. Expected utility maximizing portfolio allocation under mortality risk can
be found e.g. in Milevsky and Young (2007). The impact of mortality risk on the
shortfall probability is presented in Gatzert and Wesker (2014).
Thus our optimization problem in the later subsection is a purely state dependent
portfolio optimization problem without time dependency. In this simplified setting,
we find in the next subsection model independent insights for any arbitrage free fi-
nancial market model and in Subsection 2.3.3, we can derive the utility maximizing
return payoff of the insured.

MRRG under default risk

Considering default risk (DR), the insured only receives the payoff P1 if the asset
value A1 is sufficiently high. The actual payoff to the insured under default risk is
denoted by L1 = PWith DR

1 and is given by

L1 = P1 − (P1 − A1)
+ where (2.8)

(P1 − A1)
+ = max{P1 − A1, 0} = max

{(
1 + max

{
g, α

(
A1

A0

− 1

)})
− A1, 0

}
26The properties of such contracts are analyzed in detail in Nielsen et al. (2011).
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MRRG (return) payoff (without default risk)
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Figure 2.3: For varying asset return A1

A0
, the figures illustrate guarantee return payoffs without

default risk. The black solid line refers to (α, g) = (1,−1) (no guarantee), the black
dashed line is given by (α, g) = (0.8, 0.1), and the black dotted line is based on
(α, g) = (0.6, 0.2).

can be interpreted as the default put option of the contract provider. Although
the default put option is given in terms of a nested version of the max operator
(a compound option feature), it is possible to disentangle the payoff in terms of
the payoffs of plain vanilla options, only. Notice that the initial value of the asset
side is given by A0 = P0 + E0. Normalizing P0 = 1 and setting E0 = α(E) gives
A1 = (1 + α(E))A1

A0
such that

(P1 − A1)
+ = max

{(
1 + max

{
g, α

(
A1

A0

− 1

)})
− (1 + α(E))

A1

A0

, 0

}
.

In particular, there is only one random variable A1

A0
involved. An intuitive interpreta-

tion of the payoff L1 is possible if one considers the payoff of the default put option
as a function of the random outcome of the investment decisions of the insurer, i.e.
as a function of the asset increment A1

A0
, and to distinguish between the strikes K1,

K2, and K3 defined by

K1 := 1 +
g

α
, K2 :=

1 + g

1 + α(E)
and K3 :=

1− α

1− α + α(E)
. (2.9)

K1 defines the level of A1

A0
such that the inner option (the call option of the insured

due to the participation in the excess returns) is in the money, i.e. where the intended

payoff P1 pays out 1+α
(

A1

A0
− 1
)
instead of 1+g. Now, the put option (of the equity

holders) can be in the money in both cases, i.e. we can observe (i) the intended payoff
P1 is equal to 1+g, but the asset side A1 is lower, i.e. A1 < 1+g ⇔ A1

A0
< 1+g

1+α(E) = K2,
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and (ii) the intended payoff P1 is equal to 1 + α
(

A1

A0
− 1
)
, but the asset side A1 is

lower, i.e. A1 < 1 + α
(

A1

A0
− 1
)
⇔ A1

A0
< 1−α

1−α+α(E) = K3.

In consequence, we can express the payoff of the default put option by means of
piecewise linear functions as follows:

(P1 − A1)
+ =

(
(1 + g)− (1 + α(E))

A1

A0

)
1{A1

A0
≤min{K1,K2}

}
+

(
1 + α

(
A1

A0

− 1

)
− (1 + α(E))

A1

A0

)
1{

K1<
A1
A0

<max{K1,K3}
},

i.e. (P1 − A1)
+ =

(
1 + α(E)

)(
K2 −

A1

A0

)
1{A1

A0
≤min{K1,K2}

}
+
(
1 + α(E) − α

)(
K3 −

A1

A0

)
1{

K1<
A1
A0

<max{K1,K3}
}.

A crucial distinction is given by a different ranking order of the strikes K1, K2

and K3. However, the relation between the strikes is given by comparing the eq-
uity to debt ratio α(E) to the guarantee g (and participation rate α). The result is
summarized in the following Lemma.

Lemma 2.2 (Strikes)
Let K1, K2, and K3 be defined as in Equation (2.9), then the following relations hold

(i) K1 = K2 = K3 ⇔ α(E) = −g(1−α)
α+g

(ii) K1 > K2 > K3 ⇔ α(E) > −g(1−α)
α+g

,

(iii) K3 > K2 > K1 ⇔ α(E) < −g(1−α)
α+g

.

In particular, the relation α(E) >
−g(1− α)

α + g
⇔ g >

−αα(E)

1− α + α(E)
(2.10)

and g ≥ 0 implies α(E) ≥ −g(1−α)
α+g

. In addition, notice that case (ii) ((iii), respectively)

in fact means a rather high (low) equity to debt ratio compared to the guarantee g.

In summary, the payoff (return) of the default put can be represented as follows.

Proposition 2.7 (Payoff representation of the defaultable put)
The payoff of the defaultable put can be stated in terms of a piecewise linear function
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in the asset increment A1

A0
, i.e.

(P1 − A1)
+ =



(
1 + α(E)

) (
K2 − A1

A0

)
1{A1

A0
≤K1

}
+
(
1 + α(E) − α

) (
K3 − A1

A0

)
1{

K1<
A1
A0

<K3

} for α(E) ≤ −g(1−α)
α+g(

1 + α(E)
) (

K2 − A1

A0

)+
for α(E) > −g(1−α)

α+g

.

(2.11)

An intuitive way to understand the liability side under default risk is analogously
given by stating the payoff L1 depending on the asset increment A1

A0
. First notice

that, without default risk, the call option of the insured (cf. Lemma 2.1) is in the
money if A1

A0
> K1 = 1 + g

α
. Otherwise the intended return is 1 + g. Under default

risk, the insured only receives 1+ g if this is possible, i.e. if A1 > P0(1+ g) (P0 = 1,
A0 = 1 + α(E)), or equivalently if A1

A0
> K2 = 1+g

1+α(E) . For
A1

A0
≤ K1 = 1 + g

α
, the

insured only receives the minimum of 1 + g and A1 = (1 + α(E))A1

A0
.

Now, consider the case that A1

A0
> K1 = 1+ g

α
, i.e. P1 = 1+α

(
A1

A0
− 1
)
. Again, under

default risk, the insured nevertheless only receives the lower of 1 + α
(

A1

A0
− 1
)
and

A1 = (1 + α(E))A1

A0
, which is defined by the benchmark K3 =

1−α
1−α+α(E) . In summary,

we obtain

L1 =



(1 + α(E))A1

A0
for A1

A0
< min{K1, K2}

1 + g for min {K1, K2} ≤ A1

A0
< K1

(1 + α(E))A1

A0
for K1 ≤ A1

A0
< max{K1, K3}

1 + α
(

A1

A0
− 1
)

for A1

A0
≥ max{K1, K2, K3}.

Using Lemma 2.2 immediately gives the following Proposition.27

Proposition 2.8 (Payoff representation of liabilities)
Let K1, K2 and K3 be defined as in Equation (2.9). For P0 = 1 and α(E) = E0

(A0 = 1 + α(E)) it holds

27

min{K1, K2} =

{
K1 for α(E) ≤ −g(1−α)

α+g

K2 for α(E) > −g(1−α)
α+g

,max{K1, K3} =

{
K3 for α(E) ≤ −g(1−α)

α+g

K1 for α(E) > −g(1−α)
α+g

,

max{K1, K2, K3} =

{
K3 for α(E) ≤ −g(1−α)

α+g

K1 for α(E) > −g(1−α)
α+g

.
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(i) Low equity to debt ratio: For α(E) ≤ −g(1−α)
α+g

, the payoff (return) to the
insured is given by

L1 =

 (1 + α(E))A1

A0
for A1

A0
< K3

1 + α
(

A1

A0
− 1
)

for A1

A0
≥ K3,

i.e. L1 = (1 + α(E))
A1

A0

− (1− α + α(E))

(
A1

A0

−K3

)+

. (2.12)

(ii) High equity to debt ratio: For α(E) > −g(1−α)
α+g

it holds

L1 =


(1 + α(E))A1

A0
for A1

A0
< K2

1 + g for K2 ≤ A1

A0
< K1

1 + α
(

A1

A0
− 1
)

for A1

A0
≥ K1,

i.e. L1 = (1 + α(E))
A1

A0

− (1 + α(E))

(
A1

A0

−K2

)+

+ α

(
A1

A0

−K1

)+

. (2.13)

For a low equity to debt ratio (Case (i)), the above Proposition states that the
liabilities of the insured are given by the payoff of

(i) 1+α(E)

A0
long positions in the insurer’s assets A and

(ii) 1−α+α(E)

A0
short calls with strike K = K3A0 =

1−α
1−α+α(E)A0.

For a high equity to debt ratio (Case (ii)), the above Proposition states that the
liabilities of the insured are given by the payoff of

(i) 1+α(E)

A0
long positions in the insurer’s assets A,

(ii) 1+α(E)

A0
short positions in a call on A with strike K = K2A0 =

1+g
1+α(E)A0 and

(iii) α
A0

long calls with strike K = K1A0 =
(
1 + g

α

)
A0.

In addition, the above Proposition immediately implies the following important
properties of the liability payoffs.

Corollary 2.1 (Properties of the liability payoff)
Let L1 be the liability payoff stated in Proposition 2.8, then it holds

(i) L1 is increasing in g and α(E). For g > 0, L1 is increasing in α.
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Illustration of the contract payoff under default (L1)
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Figure 2.4: For varying the asset return A1

A0
, the figures illustrate the payoff L1 = P1−(P1−A1)

+.

It holds 0 = α
(E)
1 < α

(E)
2 < α

(E)
3 . The black solid line refers to α(E) = 0, the black

dashed line to α(E) = α
(E)
2 , and the dotted line to α(E) = α

(E)
3 . The left hand figure

is based on α(E) ≤ −g(1−α)
α+g (low equity fraction) while the right hand figure is based

on α(E) > −g(1−α)
α+g (high equity fraction). In particular, the payoffs on the left hand

side are piecewise concave and convex while the payoffs on the right hand side are
concave.

(ii) For α(E) ≤ −g(1−α)
α+g

, L1 is concave in A1

A0
.

(iii) For α(E) > −g(1−α)
α+g

, L1 is piecewise concave and piecewise convex in A1

A0
.

An illustration of L1 is given in Figure 2.4. The left hand figure is based on α(E) ≤
−g(1−α)

α+g
(low equity fraction) while the right hand figure is based on the case α(E) >

−g(1−α)
α+g

(high equity fraction). In particular, the payoffs on the left hand side are
concave while the payoffs on the right hand side are piecewise concave and convex.
Intuitively, it is clear that a higher amount of equity means that the real degree
of guarantee is, ceteris paribus, higher than for a lower amount of equity. This is
resembled in the payoff profiles, i.e. a higher amount of equity gives more convexity
to the payoff profile (implying a more valuable guarantee).

2.3.2 Fair pricing and regulatory requirements

Throughout the following analysis, we make some assumptions on the contract de-
sign (and the model setup for the financial market). We assume that the financial
market model is arbitrage free. Furthermore, we assume that, because of competi-
tion, the contracts are fairly priced such that no-arbitrage is introduced (among the
insurers and between the insurance products and the financial market products):

Assumption 2.1 (No arbitrage)
We assume that the financial market model is arbitrage free. Thus, the fundamental
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theorem of asset pricing implies the existence of an equivalent pricing measure P∗
such that the price of any traded asset X with payoff XT at T > 0 is given by the
expected discounted payoff under P∗,i.e.

X0 = EP∗

[
e−

∫ T
0 r̃u duXT

]
, (2.14)

where r̃u denotes the forward rate, such that
∫ T

0
r̃u du is the continuously compounded

interest rate prevailing at time T .

Assumption 2.2 (Fair pricing)
We assume competition between the insurance companies (and with the opportunity
to invest in the financial market). In particular, we thus assume that the insurance
contracts are fairly priced, i.e. depending on the investment decisions which are
carried out by the insurer on the financial market, the contract prices are given by
the arbitrage free (financial market) prices.28

Assumption 2.3 (Stakeholders)
The policyholders are not able to participate at the arbitrage free financial market,
such that they cannot replicate future cash-flows. They just have the possibility to
invest in the asset side of the insurance company. The insurer itself, resp. its share-
holders, of course have this access to the market.29

In addition, we assume later that an admissible contract design must honor regu-
latory requirements as e.g. posed by an upper bound on the shortfall probability.
In our case these requirements are stated in the Solvency II regulatory framework
where the shortfall probability of 0.5% in one year is not allowed to be excessed. For
more insights and information we refer to Article 101 in EC (2009).

First, we consider the assumption on the contract pricing and the implications of
postulating an arbitrage free financial model setup. Subsequently, we introduce the
regulatory requirement and represent the shortfall probability in terms of the strikes
introduced above.

Along the lines of Proposition 2.8, the arbitrage free value of the liabilities (and the
default put, respectively) is given by the (arbitrage free) value of the corresponding
portfolio of plain vanilla options. To simplify the exposition, we refer to a one year
horizon, i.e. the call (or put) options have a maturity of T = 1. The (arbitrage

28 It should be mentioned that in practice it would not be possible to e.g. make sure that all these
contracts are initially fair: Rather, in practice, cross-subsidizing effects are unavoidable (cf. e.g.
Hieber et al. (2015)).

29This assumption is reasonable and has often been used in other literature dealing with this topic,
e.g. Schmeiser and Wagner (2015) or Briys and De Varenne (1997).
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free) value of a call (put) option (with maturity T = 1) and strike K is denoted by
Call(K) (Put(K)). Without loss of generality, we refer to the options written on
the increments A1

A0
(which is implied by the investment strategy of the insurer), i.e.

we use the relation (
A1

A0

−K

)+

=
1

A0

(A1 −KA0)
+ .

To be more precise, Call(K) (Put(K)) denotes the t = 0 value of the T = 1 payoff(
A1

A0
−K

)+
(
(
K − A1

A0

)+
, respectively).

Proposition 2.9 (Fair pricing conditions)
Assume that the asset A can be synthesized by a financial market strategy, i.e. the t =
0 price of the payoff A1 is A0 (A is an asset paying no dividends). In addition, assume
that the financial market is arbitrage free. Then, the fair pricing condition (posed by
the normalization P0 = 1) is given by the condition that the market consistent price
of the payoff L1 is equal to P0 = 1. In particular, depending on the equity fraction
α(E), the guarantee g, and the participation rate α, the following pricing conditions
hold:

(i) Low equity to debt ratio: For α(E) ≤ −g(1−α)
α+g

, it holds

1 = 1 + α(E) − (1− α + α(E))Call(K3). (2.15)

(ii) High equity to debt ratio: For α(E) > −g(1−α)
α+g

, it holds

1 = 1 + α(E) − (1 + α(E))Call(K2) + αCall(K1). (2.16)

where the strikes K1, K2 and K3 are defined as in Equation (2.9).

Corollary 2.2 (Properties of fair contracts under default risk)
The fair pricing conditions imply the following properties

(i) For α(E) = 0, a fair contract implies αfair = 1.

(ii) In the special case that g = −1 (no guarantee) it also holds αfair = 1.

The proof is straightforward and the results are intuitive: Part (i) states that with-
out equity, the insured face the whole risk of the asset investments, i.e. the (fair)
liabilities are given by L1 = A1

A0
. In particular, without further restrictions on the

distribution of A1

A0
, i.e. restrictions on the riskiness of the investment strategy, there
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is no guarantee without equity. The interpretation of part (ii) is analogous. Since
there is no guarantee if g = −1, a fair contract must imply L1 =

A1

A0
.

Now consider the condition that there is a regulatory requirement on the shortfall
probability. Assume that the regulator requires an upper bound ϵ for the probability
that the intended guaranteed accumulation P1 is not honored because the asset value
A1 is lower, i.e.

P(A1 < P1) ≤ ϵ. (2.17)

This is similar to our toy example in Subsection 2.2.1 where we prescribe an upper
bound on the VaR.

Again, normalizing P0 = 1 and using A1 = (1 + α(E))A1

A0
implies that the event

{A1 < P1} can be represented in terms of the strikes K1 = 1 + g
α
, K2 =

1+g
1+α(E) and

K3 =
1−α

1−α+α(E) :

K1 defines the level of A1

A0
such that the inner option is in the money, i.e. where the

intended payoff P1 pays out 1 + α
(

A1

A0
− 1
)
instead of 1 + g. The strike K2 defines

the level of A1

A0
such that the put option is in the money, i.e. the intended Payoff P1

is equal to 1 + g, but the asset side A1 is lower. K3 = 1−α
1−α+α(E) defines the level of

A1

A0
where the liabilities can not be satisfied if the inner option is in the money, i.e.

{A1 < P1} =

{
A1

A0

≤ K1;
A1

A0

< K2

}
∪
{
A1

A0

> K1;
A1

A0

< K3

}
. (2.18)

With Lemma 2.2 and the representation of the shortfall event in Equation (2.18),
we immediately obtain the following Proposition.

Proposition 2.10 (Shortfall probability)
The shortfall probability SFP := P(A1 < P1) is given by

SFP = P
(
A1

A0

< min{K1, K2}
)
+ P

(
K1 ≤

A1

A0

≤ max{K1, K3}
)

= P
(
A1

A0

< K3

)
1{α(E)≤−g(1−α)

α+g } + P
(
A1

A0

≤ K2

)
1{α(E)>

−g(1−α)
α+g }. (2.19)

It is worth to emphasize that, e.g. in the context of Solvency II, the upper bound on
the shortfall probability determines the amount of equity which is needed to assure
the solvency to a high degree, i.e. to honor the liabilities to the insured. The paper
of Boonen (2017) analyzes the capital requirements under Solvency II if they were
based on the ES.
Recall that K2 = 1+g

1+α(E) and K3 = 1−α
1−α+α(E) . Obviously, the lower the strike is, the
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Benchmark parameter
model parameter contract parameter upper bound on SFP
r µ σ P0 A0 α g ϵ

0.03 0.07 0.2 1 1+α(E) 0.9 0.0175 0.005

Table 2.2: Benchmark parameter setting

lower is the probability that the value of a given investment strategy drops below
the strike. Since the above strikes are decreasing in the equity fraction α(E), a higher
equity fraction is able to reduce the shortfall probability.30

2.3.3 Black and Scholes model setup and illustration

Along the lines of the previous subsections, the contracts can be fairly priced in
closed form in any arbitrage free model setup which allows closed form solutions
of plain vanilla options. For the sake of simplicity, we place ourselves in a Black
and Scholes model setup to give some illustrations. The financial market model over
the filtrated probability space (Ω,F , (Ft)t∈[0,T ],P) is given by the Black and Scholes
model, i.e. there are two investment possibilities: a risky asset S and a risk-free asset
B which accumulates according to a constant interest rate r. The filtration (Ft)t∈[0,T ]

is generated by the standard Brownian motion (Wt)t∈[0,T ]. Because of the complete-
ness of the Black and Scholes model, there exists a uniquely determined equivalent
martingale measure P∗ under which the process (W ∗

t )t∈[0,T ] defines a standard Brow-
nian motion. In particular, the risky asset (St)t∈[0,T ] and risk free bond dynamics
(Bt)t∈[0,T ] are given by

dSt = St (µ dt+ σ dWt) = St (r dt+ σ dW ∗
t ) , S0 = s

dBt = Btr dt, B0 = b.

Under the real world probability measure P, the asset price follows a geometric
Brownian motion with constant drift µ (µ > r) and constant volatility σ (σ > 0).
Under the uniquely defined equivalent martingale measure (pricing measure) P∗, the
asset price follows a geometric Brownian motion with constant drift r and constant
volatility σ (σ > 0). The risk free bond B grows at a constant interest rate r.

Constant mix strategies

30However, if one assumes a complete financial market model, any reduction in the shortfall prob-
ability can also be implemented by a change in the asset distribution by means of a suitable
investment strategy.
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Assuming that the insurer decides to implement an investment strategy which is
described by a constant fraction of wealth π invested in the risky asset (and the
remaining fraction 1 − π is invested in the risk free bond) implies that the asset
process is also given by a lognormal process, i.e.

dAt = At

(
π
dSt

St

+ (1− π)r dt

)
.

Thus, w.r.t. an investment horizon of T = 1, it holds

A1 = A0e
µ
(RW )
A − 1

2
σ2
A+σAW1 = A0e

r− 1
2
σ2
A+σAW ∗

1

where µ
(RW )
A = πµ+ (1− π)r and σA = πσ.

µ(RW ) denotes the drift of the asset dynamics under the real word measure P. Under
the pricing measure P∗, the drift is equal to r. In particular, let N(µ, σ2) denote the
normal distribution with mean µ and variance σ2 and Φ(·) the cumulative distribu-
tion function of the standard normal distribution. Then it holds

ln
A1

A0

∼ N

(
µA − 1

2
σ2
A, σ

2
A

)
under P, ln

A1

A0

∼ N

(
r − 1

2
σ2
A, σ

2
A

)
under P∗.

In consequence, the arbitrage free (competitive) price of the liabilities L1 (the de-
fault put, respectively) can be derived by means of Proposition 2.9 where the call
price formula Call(K) = Call(BS)(K, σA) is given by the Black and Scholes pricing
formula (w.r.t. the returns), i.e.

Call(BS)(K, σA) = Φ(d1(K, σA))− e−rKΦ(d2(K, σA)), (2.20)

where d1(K, σA) =
− lnK + r + 1

2
σ2
A

σA

and d2(K, σA) = d1(K, σA)− σA.

Figure 2.5 gives an illustration of fair contract designs. The left figure illustrates
fair tupels of the contract parameter (α, g). Along the lines of the model-free re-
sults, the (return) payoff of the MRRG under default risk is increasing in α and g.
Thus, in order to stay on a fair contract design, an increasing guarantee g must be
compensated by decreasing the participation rate α. In addition, the fair (α, g) com-

binations are lower for higher equity fractions, i.e. the black line refers to α
(E)
1 = 0.01,

the black dashed line to α
(E)
2 = 0.02, and the dotted line to α

(E)
3 = 0.05. This result is

straightforward and can, for example, be found in Grosen and Jørgensen (2002). An
interesting effect arises in view of the piecewise concave and piecewise convex payoff
structures (implied by g > 0 and α(E) > 0, cf. Corollary 2.1). Although the contract
value is increasing in the equity fraction α(E), this is not necessarily true with re-
spect to the riskiness of the investments, that means w.r.t. π (the volatility σA = πσ,
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Illustration of fair contracts (constant mix strategies)
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Figure 2.5: The contract and model parameters are given as in Table 2.2. The left figures illustrate

fair tupels of the contract parameter (α, g). The black line refers to α
(E)
1 = 0.01, the

black dashed line to α
(E)
2 = 0.02, and the dotted line to α

(E)
3 = 0.05. The figure

on the right hand side (the black line, respectively) depicts fair contracts for the
benchmark case in terms of fair combinations of the equity fraction α(E) and the
investment fraction π (defining the volatility of the assets, i.e. σA = πσ). The solid
line refers to α = 0.9, the dashed line refers to a lower participation fraction α = 0.85
and the dotted line refers to α = 0.8.

respectively). Thus, for a fixed equity fraction α(E), there may be two investment
fractions π1 and π2 such that the contract is fairly priced. This is illustrated in the
right hand plot of Figure 2.5 which depicts fair contracts for the benchmark case in
terms of fair combinations of the equity fraction α(E) and the investment fraction π
(defining the volatility of the assets, i.e. σA = πσ). The solid line refers to α = 0.9,
the dashed line refers to a lower participation fraction α = 0.85 and the dotted line
refers to α = 0.8. For the shortfall probability given in Proposition 2.10, the Black
and Scholes model setup immediately implies

SFP = Φ(d0(K3))1{α(E)≤−g(1−α)
α+g } + Φ(d0(K2))1{α(E)>

−g(1−α)
α+g }, (2.21)

where d0(K) :=
lnK − (µA − 1

2
σ2
A)

σA

.

Again, notice that, e.g. in the context of Solvency II, the upper bound on the shortfall
probability is posed to determine the amount of equity which is needed to assure
the solvency to a high degree, i.e. to honor the liabilities to the insured. This will
be of great interest in the next chapter when we analyze periodic payment streams
and how the periodic payments influence the insurers capital requirements.
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Fair contracts honoring the upper bound of the shortfall probability
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Figure 2.6: If not otherwise mentioned, the contract and model parameters are given as in Table
2.2. The black lines depict the fair contracts in terms of fair combinations of the equity
fraction α(E) and the investment fraction π (defining the volatility of the assets, i.e.
σA = πσ). The shaded region is the region where the upper bound on the shortfall
probability (ϵ = 0.005) is honored. While the figure on the left hand side refers to
the benchmark guarantee g = 0.0175, the right hand side is implied by g = −0.0175.

Recall that K2 = 1+g
1+α(E) and K3 = 1−α

1−α+α(E) : Obviously, the lower the strike is, the
lower is the probability of a constant mix strategy that its terminal value drops
below the strike. Since the above strikes are decreasing in the equity fraction α(E), a
higher equity fraction is able to reduce the shortfall probability, cf. Figure 2.6 for an
illustration. It is worth noticing that any reduction of the shortfall probability can
also be obtained by suitably adjusting the investment strategy, i.e. the distribution
of A1

A0
.

2.3.4 Optimal design of quantile guarantees

The following section discusses, from the perspective of the insured, the optimal de-
sign of a MRRG under default risk and an upper bound on the shortfall probability.
A fair contract design which provides a higher (expected) utility to the insured is
also beneficial to the insurance company. The contract provider competes with other
insurers and the financial market. Choosing among different contracts, the insured
selects the contract which provides herself the highest (expected) utility. Through-
out the following, we assume that the preferences of the insured are described by a
utility function u = u(CRRA) implying a constant relative risk aversion (CRRA) de-
noted by γ, i.e. u(CRRA)(x) = x1−γ

1−γ (γ > 1) and u(CRRA)(x) = ln x (γ = 1). Assuming
CRRA preferences has its merits. There are empirical investigations which justify
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CRRA preference, cf. e.g. Chiappori and Paiella (2011). In addition, CRRA utility
allows that the analysis is based on returns.31 The relevant optimization problem
is posed by maximizing the expected utility of the insured under constraints posed
by a competitive market (fair pricing) and the restrictions posed by the regulator.32

In the first instance, we formulate the optimization problem without stating the
optimization arguments, i.e.

maxEP [u(L1)] s.t. P (A1 < P1) ≤ ϵ, EP∗
[
e−rA1

]
= 1 + α(E) and EP∗

[
e−rL1

]
= 1.
(2.22)

The first condition states the regulatory requirement on the upper bound on the
shortfall of the intended payoff (guarantee) P1. The second condition ensures that
the asset value A1 is obtainable by a self-financing investment strategy with initial
investment A0 = 1+ α(E), and the third part captures the fair pricing of the liabili-
ties. To shed further light on the (overall) optimal design of quantile guarantees, we
discuss and compare (in the Black and Scholes model setup) different approaches
concerning the arguments which are optimally chosen in the maximization prob-
lem (2.22) in order to maximize the utility which is provided to the insured. As a
benchmark, we consider the optimal unconstrained strategy (no upper bound on the
shortfall probability). For α(E) = 0, this is the classic Merton problem (cf. Merton
(1971)). The solution implies the highest possible utility and thus provides an upper
bound of the expected utility of all contract designs.
We also comment on an approach suggested in Schmeiser and Wagner (2015) who
assume that the insurer implements a constant mix strategy, but can decide on the
fraction of asset wealth which is invested riskily. The insurer simultaneously deter-
mines the equity fraction α(E) and the investment fraction π such that the pricing
and shortfall constraints are satisfied for a given guarantee g. The utility to the
insured is then maximized by selecting the guarantee g which gives the highest ex-
pected utility.
Finally, we consider the optimal solution under the pricing and shortfall constraints
(without restricting the insurer’s investment strategy to constant mix strategies).

31 It is worth mentioning that CRRA preferences can not explain the existence of (quantile) guar-
antees using cf. Leland (1980). However, one can understand that policy makers provide tax
advantages for products with downside protection for old-age provision to reduce the risk of
poverty among the elderly and possible implications for tax payers - even if downside protection
reduces utility on the individual level for CRRA-type policyholders. For the effect of taxation
on equity-linked life insurance we refer to Chen et al. (2019)

32The optimization procedure with a value at risk restriction can be referred to as a chance-
constrained approach. It is transferable in a non-linear (deterministic) optimization program of
normal or log normal returns are assumed (cf. McCabe and Witt (1980)). Basically, we also con-
sider log normal payoffs for t = 1, 2, . . . under a Geometric Brownian Motion (GBM) assumption.
However, we have added the assumption that the insured is described by a constant relative risk
aversion (CRRA) which gives further insights on the utility effects from the perspective of the
insured.
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The solution can be traced back to the famous result of Basak and Shapiro (2001)
resp. our results from the last section. We will see that the optimal quantile hedge
does not protect the insured on the bad states of the world.

The Merton solution as a benchmark

Assume that the insured is not committed to select among MRRG contracts, only.
Instead, assume that she can, without transaction costs, dynamically trade on the
financial market. In terms of the MRRG contracts, this is the special case that α(E) =
0 (the insured owns the asset side herself) and a vanishing shortfall probability bound
ϵ = 1 (she is not restricted by the regulator). The optimization problem (2.22) then
boils down to

max
A1

EP

[
u

(
A1

A0

)]
s.t. EP∗

[
e−r

A1

A0

]
= 1,

i.e. the investor chooses the optimal payoff L1 = A1 (return, respectively, A0 = P0 =
1).33 Assuming a Black and Scholes model setup to describe the financial market
model, gives the classic Merton problem. The solution is firstly stated in Merton
(1971). Under the real world measure P, the optimal payoff L∗1 =

A∗
1

A0
is given by

A∗1
A0

= eµ
(RW )
A − 1

2
σ2
A+σAW1 , (2.23)

where µ
(RW )
A = πµ+ (1− π)r, σA = πσ and π =

µ− r

γσ2
=: π(Mer).

In the optimum, the investor uses a constant mix strategy where the fraction π of
portfolio wealth which is invested riskily is given by the quotient of the (local) excess
return (µ−r) and the squared asset volatility scaled by the parameter of relative risk
aversion γσ2. The certainty equivalent wealth/return CE which makes the investor
indifferent to the Merton payoff is defined by the condition u(CE) = EP[u(A1)], i.e.
CE = u−1(EP[u(A1)]). Straightforward calculations imply

CE∗ = e
r+

(µ−r)2

2γσ2 =: CE(Mer) and yCE∗ = lnCE∗ = r +
(µ− r)2

2γσ2
, (2.24)

where yCE∗
denotes the (optimal Merton) savings rate. Notice that the above CE∗

defines an upper bound to all certainty equivalents which are implied by (admissible)
MRRG contracts and refer to the upper bound by CE(Mer). Analogously, we refer
to the optimal Merton payoff (fraction) by A

(Mer)
1 (π(Mer)).

33Recall that α(E) = 0 implies α = 1, cf. Corollary 2.2 . With A0 = 1 it follows L1 = A1.



2.3. Minimum Return Rate Guarantees under Default Risk - Optimal Design of
Quantile Guarantees 51

Upper bound on SFP and restriction to constant mix strategies

Schmeiser and Wagner (2015) consider the optimization problem under a SFP condi-
tion but assume that the insurer implements a constant mix strategy. In consequence,
the insurer does not consider a quantile hedge to honor the guarantee. To ensure the
SFP condition for a given guarantee, the insurer is restricted to suitable combina-
tions of investment fractions and equity capital. Amongst other results, Schmeiser
and Wagner (2015) consider the optimization problem

max
g∈G

EP[u(L1)],

where G denotes the set of admissible guarantee rates and where the equity fraction
α(E) and the investment fraction of the asset side π are determined simultaneously
by the conditions34

P (A1 < P1) ≤ ϵ and EP∗
[
e−rL1

]
= 1.

Notice that P (A1 < P1) = SFP is analytically given by Equation (2.21). The lia-
bility value EP∗ [e−rL1] is stated in Proposition 2.9 in combination with Equation
(2.20).35 A few comments are worth being mentioned here: Schmeiser and Wagner
(2015) consider the exact fulfillment of the shortfall probability corresponding to
the minimum safety requirement where the ruin probability SFP is equal to the
upper bound ϵ. Intuitively, this is meaningful if the shortfall constraint is binding
in the case without equity capital, i.e. if the upper bound on the shortfall prob-
ability ϵ is sufficiently low compared to the lowest guarantee contained in the set
G. In addition, the authors consider an exogenously given participation fraction α
(e.g. α = 0.9 as implied by German legislation). However, α (1 − α, respectively)
implicitly defines a guarantee fee, i.e. the insured gives up some upside participation
for downside protection. In particular, if α is already sufficiently low (compared to
g), there does not exist an equity fraction α(E) ≥ 0 such that the (fair) pricing con-
dition can be satisfied, cf. Figure 2.5 and the results in Schmeiser and Wagner (2015).

As a numerical example, we refer to the benchmark parameter setting summarized
in Table 2.2 and consider the above mentioned optimization problem for the guar-
antees g, taking the values g ∈ G = {−0.1,−0.095, . . . , 0.02, 0.025} and a shortfall
probability bound given by ϵ = 0.005. For each g ∈ G, Table 2.3 summarizes the
combination of equity fraction α(E) and investment fraction π (implying that the

34Notice that the condition EP∗ [e−rA1] = 1 + α(E) is ensured since the insurer implements a
constant mix strategy with initial investment 1 + α(E).

35Once the equity fraction α(E) and the investment fraction of the asset side π are determined,
the expected utility (and CE) can be stated in quasi closed form. Schmeiser and Wagner (2015)
determine the solution by Monte Carlo simulations.
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SFP is exactly met and the contract is fairly priced) as well as the certainty equiv-
alent contract wealths CEs of insureds which are described by three different levels
of relative risk aversion (γ = 2, 3.56, and 5.94). In addition, the Merton solution
is summarized in the upper line. For each level of relative risk aversion, the high-
est certainty equivalent (CE) is marked which implies the optimal guarantee rate.
Observe that the CEs obtained by the (optimal) contracts are close to (but below)
the Merton solution. In addition, the corresponding investment fractions π are close
to (but above) the Merton fractions. Intuitively, this is explained by the participa-
tion fraction α which is (along the lines of the benchmark parametrization) equal
to α = 0.9, i.e. the investor gives up 10% of the upside returns.

Optimal quantile payoff

As mentioned above, the Black and Scholes model is complete such that any state
dependent payoff is attainable, i.e. it can be synthesized by a self-financing strategy
in the asset S and the risk free investment opportunity B. In addition with the
assumption that the contracts are fairly priced, we can obtain the utility maximizing
quantile guarantee payoff L1 with an initial investment of P0 = 1, i.e. the optimal
payoff is independent of the equity fraction α(E). Thus, w.l.o.g. we can set α(E) = 0.
Recall from Corollary 2.2 that for α(E) = 0, a fair contract implies α = 1, i.e.
L1 = A1 = A1

A0
(since P0 = 1 and A0 = 1 + α(E) = 1), such that the optimization

problem (2.22) simplifies to

max
A1

EP [u(A1)] s.t. P (A1 < 1 + g) ≤ ϵ and EP∗
[
e−rA1

]
= 1. (2.25)

The solution to this problem can already fully be traced back to Basak and Shapiro
(2001) who state the optimal payoff (in dependence of the state prices) under a
terminal VaR constraint.36

36Basak and Shapiro (2001) state the optimal solution in dependence of the state prices for a
general class of utility functions in a dynamic complete market setup where the investor can
choose between one risk-less bond and several risky stocks.
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Certainty equivalents of quantile MRRGs under the additional restriction to
constant mix strategies (ϵ = 0.005)

g α(E) π L0 SFP CEγ=2 CEγ=3.56 CEγ=5.94

π(Mer) = 0.5 π(Mer) = 0.28 π(Mer) = 0.169
CE(Mer) = 1.0408 CE(Mer) = 1.0363 CE(Mer) = 1.0339

-0.100 0.1285 0.5277 1 0.005 1.0405 1.0341 1.0247
(1.0406)

-0.090 0.1211 0.4921 1 0.005 1.0404 1.0348 1.0266
-0.080 0.1140 0.4571 1 0.005 1.0401 1.0353 1.0283
-0.075 0.1105 0.4397 1 0.005 1.0400 1.0355 1.0290
-0.070 0.1073 0.4229 1 0.005 1.0398 1.0357 1.0297
-0.065 0.1034 0.4047 1 0.005 1.0396 1.0359 1.0304
-0.060 0.1000 0.3876 1 0.005 1.0394 1.0360 1.0310
-0.050 0.0925 0.3521 1 0.005 1.0389 1.0361 1.0320
-0.045 0.0890 0.3347 1 0.005 1.0386 1.0361 1.0324

(1.0362)
-0.040 0.0850 0.3165 1 0.005 1.0383 1.0361 1.0328
-0.035 0.0812 0.2987 1 0.005 1.0380 1.0360 1.0331
-0.030 0.0775 0.2811 1 0.005 1.0377 1.0359 1.0334
-0.025 0.0738 0.2634 1 0.005 1.0373 1.0358 1.0336
-0.020 0.0694 0.2443 1 0.005 1.0369 1.0356 1.0337
-0.015 0.0653 0.2259 1 0.005 1.0365 1.0354 1.0338
-0.010 0.0611 0.2074 1 0.005 1.0360 1.0351 1.0338

(1.0338)
-0.005 0.0569 0.1887 1 0.005 1.0356 1.0349 1.0338
0.000 0.0519 0.1684 1 0.005 1.0350 1.0345 1.0336
0.005 0.0471 0.1485 1 0.005 1.0345 1.0341 1.0334
0.010 0.0419 0.1278 1 0.005 1.0339 1.0336 1.0331
0.015 0.0362 0.1063 1 0.005 1.0333 1.0331 1.0328
0.020 0.0299 0.0833 1 0.005 1.0326 1.0325 1.0323
0.025 0.0219 0.0567 1 0.005 1.0318 1.0317 1.0317

Table 2.3: The table states, for the benchmark parameter setting summarized in Table 2.2, the
results of the optimization problem constrained to constant mix strategies for the set
of guarantees g ∈ G and a SFP bound given by ϵ = 0.005. In particular, for each g,
the combination of equity fraction α(E) and investment fraction π (implying that the
SFP is exactly met and the contract is fairly priced) are given in columns two and
three. The last three columns summarize the associated certainty equivalent contract
wealths CEs of insureds described by levels of relative risk aversion (γ = 2, 3.56, and
5.94). In addition, the Merton solution is given in the upper line. For each level of
relative risk aversion, the highest certainty equivalent (CE), which can be obtained
by optimally choosing the guarantee, is marked. For these cases, the CE which can be
obtained without a restriction to constant mix strategies is included in italics.
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Proposition 2.11 (Optimal quantile return payoff)

If the shortfall probability is not binding, i.e. if P
(

A
(Mer)
1

A0
≤ 1 + g

)
≤ ϵ, the optimal

solution coincides with the Merton solution. If the shortfall probability is binding, i.e.

if P
(

A
(Mer)
1

A0
≤ 1 + g

)
> ϵ, the optimal return payoff w.r.t. the optimization problem

(2.26) is given as follows

A∗1
A0

= ν
A

(Mer)
1

A0

+

(
1 + g − ν

A
(Mer)
1

A0

)
1{

K<ν
A
(Mer)
1
A0

≤K
},

where 0 ≤ K ≤ K := 1 + g. K is determined by the SFP bound ϵ and ν by the
pricing condition, i.e.

P

(
A

(Mer)
1

A0

≤ K

ν

)
= ϵ and 1− ν = e−rEP∗

(1 + g − ν
A

(Mer)
1

A0

)
1{

K<ν
A
(Mer)
1
A0

≤K
}
 .

In the limiting cases ϵ → 1 (no constraint on the shortfall probability) and ϵ → 0
(full guarantee) it holds

(i) For ϵ → 1 (and/or P
(

A
(Mer)
1

A0
≤ 1 + g

)
≤ ϵ), it holds ν = 1, and K = K, i.e.

the optimal (return) payoff is given by the Merton solution

(
A∗

1

A0
=

A
(Mer)
1

A0

)
.

(ii) For ϵ → 0, it holds K = 0 (and K = 1 + g) such that

A∗1
A0

= (1 + g) +

(
ν
A

(Mer)
1

A0

− (1 + g)

)+

,

where ν solves

1 = e−r(1 + g) + νCall(BS)

(
1 + g

ν
, σ

(Mer)
A

)
and Call(BS) is given by Equation (2.20).37

Instead of explicitly stating the adoption to our setup, it is worth to comment on the
intuition behind the result. Obviously, if the quantile constraint is not binding, the

37Notice that the pricing condition is, by means of the put call parity, now given in terms of the
call price.
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optimal solution is given by the Merton solution. W.r.t. the other limiting case where
the return payoff is constrained by a shortfall probability of zero (ϵ → 0), we also
refer to El Karoui et al. (2005). The optimal unconstrained payoff is a modification
of the Merton solution (unconstrained solution).38 Intuitively, it is clear that a full
hedge of the guarantee features a put option. Notice that

(1 + g) +

(
ν
A

(Mer)
1

A0

− (1 + g)

)+

= ν
A

(Mer)
1

A0

+

(
(1 + g)− ν

A
(Mer)
1

A0

)+

,

i.e. the return of the Merton solution is backed up by a put option with strike
K = 1+g. The put payoff gives the tightest (and thus cheapest) possibility to obtain
a full hedge of the guarantee. Thus, it enables the investor to obtain the tightest
modification of the unconstrained optimal payoff. Here we see the connection to
the previous section and Proposition 2.5 where we analyzed the cost-efficient payoff
modification by fulfilling a VaR constraint. To honor the pricing condition, i.e. the
value of the payoff must be equal to one, the investor can no longer obtain the full

Merton return but only a fraction ν of it. In particular, while the value of
A

(Mer)
1

A0

is equal to one, the investor now receives only a fraction of the return, i.e. in the
presence of a (non vanishing) guarantee, her investment amount which is not needed
to finance the put is only a fraction ν (0 < ν < 1).
In summary, the fraction ν is determined by a fix point problem which is due to

the condition that the value of the put on the return ν
A

(Mer)
1

A0
must be equal to the

reduction of the initial investment 1 − ν (i.e. both sides depend on ν). Intuitively
it is now clear that any deviation from a perfect guarantee (ϵ → 0), an admissible
shortfall probability which is higher than zero gives rise to lower hedging costs than
the solution characterized above. While in the case of a zero shortfall probability
the optimal payoff is given by

ν
A

(Mer)
1

A0

+

(
(1 + g)− ν

A
(Mer)
1

A0

)
1{

K<ν
A
(Mer)
1
A0

≤K
},

where K = 0 and K = 1 + g, the investor is now allowed to implement a smaller
guarantee interval [K,K] where 0 ≤ K < K ≤ 1 + g. Notice that the upper bound
on the shortfall probability implies that fixing either K or K implies the other strike
such that ν is determined by the resulting fix point problem. However, the cheapest
way to do so is by setting K = 1+g, i.e. starting with the high asset prices (Merton
returns, respectively) which are linked to the cheapest states (to be hedged).
Using the results from the last section, we can overcome this problem by e.g. using
the Wang transformation risk measure as a shortfall constraint or by adding another

38 In fact, the result does not depend on the Black and Scholes model which implies the Merton
solution.
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constraint to the optimization problem that guarantees the insured a protection on
the bad states of the world. The paper of Chen et al. (2018a) presents an additional
portfolio insurance constraint in a general setting s.t. the insured is protected on
the bad states of the world.
In summary, the optimal quantile hedge is a scaled version of the Merton solution
overlaid by the (cheapest) quantile hedge which honors the SFP bound.39 In order to
illustrate the improvement obtained by the optimal quantile hedge, we add in Table
2.3 the CEs associated with the optimal quantile guarantees, cf. italic numbers in
brackets below the bold faced numbers referring to the optimal values under the
restriction to constant mix strategies (and choosing the guarantee). Again, it is
worth to emphasize that the optimal quantile payoff can be implemented for any
equity fraction α(E) of the insurer.

2.3.5 Conclusion

In this section we have analyzed the optimal design of participating life insurance
contracts with minimum return rate guarantees under default risk. The benefits to
the insured depend on the performance of an investment strategy which is conducted
by the insurer. This strategy is initialized by an amount given by the sum of equity
and the contributions of the insured. Unless there is a default event, the insured
receives the maximum of a guaranteed rate and a participation in the returns. Con-
sidering default risk modifies the payoff of the insured by means of a default put
implying a compound option feature (nested maximum). Based on yearly returns,
we show that, in spite of the compound option feature, the (yearly return) payoff
of the default put (and the liabilities to the insured) can be represented by piece-
wise linear functions of the investment return, i.e. the payoff of a portfolio of plain
vanilla options. Thus, the liabilities are easily priced in any model setup which gives
closed form solutions for standard options. In a complete market setup we then
derive the optimal (expected utility maximizing) quantile guarantee payoff of an
investor/insured with constant relative risk aversion. Because of the completeness
assumption, the return payoff can be implemented by the insurance company for
any equity to debt ratio. We illustrate the utility loss which arises if the insurer
implements a suboptimal investment strategy.

39W.r.t. quantile hedges, the interested reader is referred to Föllmer and Leukert (1999) who
show how to obtain the highest success probability when hedging a claim with a lower initial
investment than the one needed for a full hedge (or the other way round). An introduction to
quantile hedging and the Neyman-Pearson Lemma is also presented in Appendix A.
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2.3.6 Extension and literature review on portfolio planning under risk measure
constraints

It is also possible to generalize Proposition 2.11 to a maturity T > 1. The optimiza-
tion problem can then be stated as

A∗T = argmax
AT

E [u(AT )] s.t. P (AT < GT ) ≤ ε and EP∗

[
e−rT

AT

A0

]
= 1, (2.26)

where GT is the guaranteed value of the insured at time T .

Proposition 2.12 (Optimal quantile return payoff with maturity T )

If the shortfall probability is not binding, i.e. if P
(
A

(Mer)
T ≤ GT

)
≤ ε, the optimal

solution coincides with the Merton solution. If the shortfall probability is binding,

i.e. if P
(
A

(Mer)
T ≤ GT

)
> ε, the optimal return payoff is given by

A∗T = νA
(Mer)
T +

(
GT − νA

(Mer)
T

)
1{

K<νA
(Mer)
T ≤K

},
where 0 ≤ K ≤ K := GT . K is determined by the SFP bound ε and ν by the pricing
condition, i.e.

P
(
νA

(Mer)
T ≤ K

)
= ε and 1− ν = e−rTEP∗

[(
GT − νA

(Mer)
T

)
1{

K<νA
(Mer)
T ≤K

}] .
Calculating the SFP and the pricing condition in Proposition 2.12, we receive the
following closed-form formulas.

Lemma 2.3 (Shortfall probability and pricing formula)
(i) The shortfall probability is given by

P
(
νA

(Mer)
T ≤ K

)
= N

−
ln

(
νA

(Mer)
0

K

)
+ (µ− 1

2
σ2
A)T

σA

√
T

 .

(ii) The t–price of the T–payoff
(
GT − νA

(Mer)
T

)
1{

K<νA
(Mer)
T ≤K

} is given by

EP∗

[
e−r(T−t)

(
GT − νA

(Mer)
T

)
1{

K<νA
(Mer)
T ≤K

}∣∣∣Ft

]
=e−r(T−t)GT

[
N
(
−d2(K)

)
−N (−d2(K))

]
− νA

(Mer)
t

[
N
(
−d1(K)

)
−N (−d1(K))

]
,

(2.27)
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where

d1(K) =
ln
(

βA
(Mer)
t

K

)
+ (r + 1

2
σ2
A)(T − t)

σA

√
T − t

and d2(K) = d1(K)− σA

√
T − t.

In particular, for K = 0 and K = GT this is the price of a plain vanilla put on νA
with strike K = GT , i.e.

EP∗

[
e−r(T−t)

(
GT − νA

(Mer)
T

)+ ∣∣∣Ft

]
=e−r(T−t)GTN (−d2(K))− νA

(Mer)
t N (−d1(K)).

Setting T = 1 and exchanging (1 + g) with GT we receive the formulas for our
benchmark case with maturity T = 1. The proof of Lemma 2.3 is given in Appendix
B.1.
Given the optimal splitting factor ν we can even calculate the optimal expected
utility maximizing strategy in closed-form.

Lemma 2.4 (Optimal Expected utility)
For a CRRA utility function with risk aversion parameter γ the optimal expected
utility is given by

E [u(A∗T )] = E
[
u
(
νA

(Mer)
T +

[
GT − νA

(Mer)
T

]
1{K≤νA(Mer)

T ≤K}

)]
=

(νA0)
(1−γ)

1− γ
e(1−γ)(µAT− 1

2
γσ2

AT)
[
1−

(
N
(
d̃(K, γ)

)
−N

(
d̃(K, γ)

))]
+

G
(1−γ)
T

1− γ

(
N (d̃(K, 1))−N (d̃(K, 1))

)
,

where

d̃(K, γ) :=
ln
(

K
νA0

)
−
(
µA − (γ − 1

2
)σ2

A

)
T

σA

√
T

.

The first term is the expected utility of the scaled Merton payoff. The second term
resembles the utility loss caused by minus the probability weighted scaled Merton
loss, and the third term is the probability weighted utility of the guarantee.
The proof of Lemma 2.4 is given in the Appendix B.2.

A detailed analysis of this topic including multiple intermediate VaR constraints
can be found in Chen et al. (2018b). The intuition behind this is briefly stated in
the following:

Consider an optimization problem stemming from a regulator who also poses an in-
termediate VaR constraint. In addition to the terminal SFP condition P (AT < GT ) ≤
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εT , we thus introduce an additional SFP condition at t (0 < t < T ), i.e. the require-
ment P (At < Gt) ≤ εt.

In summary, the optimization problem under consideration is given by

A∗T = argmax
AT

E [u(AT )] , s.t. EP∗

[
e−rT

AT

A0

]
= 1

with P (At < Gt) ≤ εt and P (AT < GT ) ≤ εT . (2.28)

Using that the utility function is a CRRA function, it holds

A∗T = argmax
AT

E [u(AT )] = argmax
AT

E
[
u

(
AT

A0

)]
.

Therefore, we can also consider

A∗T = argmax
AT

E
[
u

(
At

A0

AT

At

)]
, s.t. EP∗

[
e−rT

AT

A0

]
= 1

with P (At < Gt) ≤ εt and P (AT < GT ) ≤ εT .

LetRt,T := AT

At
. With the Bellmann principle together with the results of the previous

section, it immediately follows that

A∗T = argmax
At

E
[
u
(
At R

∗
t,T (At)

)]
where R∗t,T = νh∗

(
ST

St

)
+

(
GT − νh∗

(
ST

St

))
1{

K<νAth∗
(

ST
St

)
≤K

}

and h∗
(
ST

St

)
= e(1−π

(Mer))(r+ 1
2
π(Mer)σ2)T

(
ST

St

)π(Mer)

.

For the exact solutions and proceedings, we refer to Chen et al. (2018b). This mul-
tiple VaR constraint setting is important for short-time VaR-type regulations in
combination with long-term liability commitments and leads to a more prudent
investment behavior than the optimal investment strategy under a terminal VaR
constraint.
As discussed in the previous section for a CRRA investor, the expected utility max-
imizing terminal wealth that fulfills a terminal VaR constraint impedes the securiti-
zation aspect of the investor. The results of Chen et al. (2018b) as discussed above
give reason to suspect, that this impeding behavior can be solved if we implement
another risk measure as shortfall constraint resp. if we add some further constraints
or restrictions to the problem. We want to respond to this question by analyzing
the literature on optimal portfolio planning under risk measure constraints. Table
2.4 summarizes the literature review where the tackled optimization problem, the
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corresponding risk measure constraint and the model assumptions are stated. Mer-
ton (1969) and Merton (1971) are the first papers that discuss the expected utility
of a CRRA resp. CARA investor. The maximum is achieved by using the constant
investment fraction πMer = µ−r

γσ2 . This investment fraction is the so-called Merton
fraction. As stated at the beginning of this chapter, the VaR was introduced to
the public in 1994 and implemented in the Basel accord 1996. The risk measure
conception of Artzner et al. (1999) has been introduced 3 years after the Basel I
accord. Thus, there exists a time gap between the famous results of Merton and
the first portfolio planning problem that introduced a risk measure as a constraint
in literature. Basak and Shapiro (2001) have been the first ones that maximized
the expected utility of an investor by choosing the optimal terminal payoff strategy
s.t. a VaR constraint is fulfilled in a continuous-time setting. This optimal solution
impedes the idea of protection on the bad states of the world as discussed in the
previous section. Leippold et al. (2006) generalize the setting of Basak and Shapiro
by analyzing an incomplete market setup. They show that the effectiveness of reg-
ulation strongly depends on market factors and the chosen model. Or to state it in
other words: in another model than the Black-Scholes setting the optimal solution
under the terminal VaR constraint behaves differently and may not cause the im-
peding behavior. In the Black-Scholes Model setting this problem can also be solved
if we account for more than one VaR constraint: Yiu (2004) presents a dynamic VaR
constraint that guarantees the fulfillment of a SFP for the whole investment horizon
within a n-dim. Black-Scholes setting. The optimal CRRA expected utility maxi-
mizing solution protects the investor in the bad states of the world. Pirvu (2007)
also analyzes a dynamic VaR constraint in an incomplete market model and finds
the same results as Yiu. Cuoco et al. (2008) analyze a dynamic VaR resp. ES con-
straint, i.e. the wealth process has to fulfill the SFP at every point in time t. They
determine the optimal investment fraction s.t. the expected utility of the terminal
wealth is maximized and explore, that both risk measures lead to a risk reduction.
They even formulate conditions under which the optimal solutions coincide. Thus,
they can confirm, that under a dynamic risk measure constraint the impeding effect
is mitigated. Shi and Werker (2012) extend the work of Cuoco et al. (2008) as they
account for stochastic interest rates. They show that the results of Cuoco et al.
(2008) are robust for stochastic interest rates.
Some papers include other risk measure constraints than the VaR and the ES: A ter-
minal expected loss constraint is investigated by Gabih et al. (2005), whereas Gundel
and Weber (2008) are the first ones to analyze the optimal portfolio planning prob-
lem with a terminal convex risk measure and Rogers (2009) introduces terminal
coherent risk measures as a constraint. The authors find that only a terminal SFP
constraint does not fulfill the protection on the bad states of the world. Thus, the
question arises if any risk measure that serves as a terminal SFP constraint can
protect the investor on the bad states without adding an additional feature. The
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answer to this question is given by Wei (2018). He introduces the weighted VaR
as a terminal risk constraint in the expected utility maximization problem of the
terminal wealth. As discussed in the first section of this chapter, the WVaR repre-
sents a whole class of risk measures s.t. this paper summarizes results of many other
papers and gives some new insights into other risk measures. It is shown that the
problem of not securing the bad states of the world in the optimal solution can be
solved by using e.g. the Wang distortion risk measure. Wei states precise conditions
under which a risk measure, as a terminal SFP, secures the bad states of the world.
Wei (2021) introduces another risk measure that solves this problem, the so-called
weighted shortfall. This risk measure is a development of the ES because the ES as
terminal SFP constraint does not fulfill the assumptions in Wei (2018).
In the special context of insurance contracts in a Black-Scholes setting, some recent
papers extend the results of Basak and Shapiro (2001) and find interesting insights:
Chen et al. (2018a) determine in a 1-dim. Black-Scholes setup the optimal payoff
for the terminal wealth and the optimal investment fraction s.t. the expected utility
under a joint VaR and portfolio insurance (PI) constraint on the terminal wealth is
fulfilled. They discover that adding the PI constraint to the optimization problem
helps to secure the investor on the bad states of the world s.t. the optimal strategy
is prudent. Chen et al. (2018b) contribute to the literature by adding multiple, in-
termediate VaR constraints as described above. Nguyen and Stadje (2020) analyze
a terminal VaR constraint in the context of non-concave expected utility maximiza-
tion including mortality risk. They figure out that the impeding behavior of the
optimal solution by Basak and Shapiro (2001) does not transfer to the situation
under mortality risk: the VaR constraint even leads to a more prudent risk struc-
ture. For the sake of completeness, some papers analyze a mean-variance setting
and include a risk measure constraint. We refer to Alexander and Baptista (2004)
and Alexander et al. (2007) for terminal VaR resp. terminal ES formulations and
to Gao et al. (2016) for a dynamic risk measure assumption of the problem. Bi and
Cai (2019) derive in a mean-variance setting the optimal reinsurance strategy with
a terminal VaR constraint.
From this literature review we can conclude, that only a terminal SFP in the Black-
Scholes world in most cases cannot protect the investor against the impeding behav-
ior of the optimal solution. If we want to stick to a terminal SFP constraint without
further restrictions or assumptions and want protection, the risk measure needs to
fulfill the conditions in Theorem 4.7 resp. Proposition 5.1 in Wei (2018). If we allow
for a more general model, more precise modeling of the reality (e.g. including mortal-
ity risk in the analysis), or more realistic risk management that includes more than
a terminal SFP (e.g. dynamic SFP constraints), then the optimal expected utility
maximizing solution protects the investor even on the bad states of the world. 40

40For portfolio allocation problems under uncertainty, we refer to the literature review in Chapter
4. A literature review on portfolio allocation problems including guarantee features is given in
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Authors Risk Measure
Constraint

Optimization
Problem

Assumptions

Merton
(1971)

- EU, (πt)t∈[0,T ] n-dim. BS-model; CRRA and
CARA utility

Basak and
Shapiro
(2001)

terminal VaR EU, WT complete, n-dim. market model
(GBM); strictly increasing, con-
cave utility function, twice differ-
entiable with Inada condition41

Alexander
and Bap-
tista
(2004)

terminal VaR
terminal ES

MV n-dim. MV model; rates of return
multivariate normal distributed

Yiu (2004)
dynamic VaR EU, (πt)t∈[0,T ] complete, n-dim. market model

(GBM); power utility function;
include consumption

Gabih et
al. (2005)

terminal EL EU, WT 1-dim. BS model; strictly in-
creasing, concave utility function,
twice differentiable with Inada
condition

Leippold
et al.
(2006)

terminal VaR EU, (πt)t∈[0,T ] incomplete 1-dim. market model;
CRRA utility

Alexander
et al.
(2007)

terminal VaR
terminal ES

MV n-dim. MV model; returns have
discrete distribution with finitely
many jump points

Pirvu
(2007)

dynamic VaR EU, (πt)t∈[0,T ] incomplete, n-dim. market model
(GBM) with random drift and
volatility; CRRA utility function

(To be continued)

Chapter 3.
41The Inada conditions are given by lim

x→∞
u′(x) = 0 and lim

x↘x̄u

u′(x) = ∞, where x̄u := inf{x ∈ R :

u(x) > −∞}.
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Authors Risk Measure
Constraint

Optimization
Problem

Assumptions

Boyle
and Tian
(2007)

terminal VaR EU, (πt)t∈[0,T ] complete model with n risky as-
sets and 1 risk-free asset, up-
front contributions; utility func-
tion is continuously differentiable,
strictly increasing and concave
and fulfills Inada

Cuoco et
al. (2008)

dynamic VaR
dynamic ES

EU, (πt)t∈[0,T ] complete, n-dim. market model
(GBM); strictly increasing, con-
cave utility function, continu-
ously differentiable with Inada
condition

Dańıelsson
et al.
(2008)

terminal VaR EU, WT complete, discrete n-dim. Arrow-
Debreu setting

Gundel
and Weber
(2008)

terminal con-
vex risk mea-
sure

EU, WT n-dim. semimartingale model;
strictly increasing, strictly con-
cave, continuously differentiable
utility function with Inada con-
dition

Rogers
(2009)

terminal co-
herent risk
measure

EU, WT complete, 1-dim. market model
(GBM); concave, and strictly
increasing utility function with
lim
x→∞

u′(x) = 0

Shi and
Werker
(2012)

two-period
VaR

EU, WT complete market model (GBM),
stochastic interest rates (Vasicek
model), CRRA utility

Kraft and
Steffensen
(2013)

terminal VaR
terminal ES

EU, (πt)t∈[0,T ] 1-dim. black-Scholes Model;
CRRA utility

Gao et al.
(2016)

dynamic VaR
dynamic ES

MV complete, n-dim. market model
(GBM)

Zhang and
Gao (2016)

terminal ES EU, (πt)t∈[0,T ] complete, n-dim. market model
(GBM); log utility

Zhao
and Xiao
(2016)

terminal VaR EU, (πt)t∈[0,T ] n-dim. market model; asset price
is modeled by the non-extensive
statistical mechanics42; log-utility
function

Chen et al.
(2018a)

combined
terminal VaR
and PI

EU, (πt)t∈[0,T ]

EU, WT

1-dim. BS model; twice differen-
tiable utility function, fulfills In-
ada and integrability condition

(To be continued)
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Authors Risk Measure
Constraint

Optimization
Problem

Assumptions

Chen et al.
(2018b)

multiple VaR EU, (πt)t∈[0,T ] complete, 1-dim. market model
(GBM); strictly increasing, con-
cave utility function, twice differ-
entiable with Inada condition

Wei (2018)
terminal
WVaR43

EU, WT complete, n-dim. market model
(GBM); twice continuously differ-
entiable, strictly increasing and
strictly concave utility function
that fulfills Inada condition

Bi and Cai
(2019)

dynamic VaR MV 1-dim. correlated market model
with state dependent risk aver-
sion; optimal reinsurance strategy
derived

Nguyen
and Stadje
(2020)

terminal VaR EU, WT complete, n-dim. market model
(GBM); including mortality risk
and non-concave utility

Wei (2021)
terminal ES
terminal
weighted
shortfall44

EU, WT complete, n-dim. market model
(GBM); strictly increasing and
concave utility function, contin-
uously differentiable that fulfills
Inada condition

EU=expected utility; MV=mean-variance; PI=portfolio insurance

Table 2.4: Selected papers on optimal portfolio planning under risk measure con-
straints

42This model setup is able to account for fat tails.
43With the WVaR many risk measures can be represented as discussed in the previous section. We
can construct spectral risk measures, distortion risk measures and coherent risk measures in this
setting. Thus the paper of Wei (2018) represents many applications in the context of portfolio
planning with risk measure constraints.

44This is a special case of a spectral risk measure.



Chapter 3

The impact of periodic premium payments and management

rules on the pricing, risk management and expected utility

This chapter analyzes periodic premium payments in participating insurance con-
tracts including a terminal guarantee. Premium payments of the insured are one of
the main aspects of (life) insurance contracts. In participating life insurance con-
tracts the insured participates with her premium payments on the asset side of the
insurance company: the payments are invested in risky or risk-free assets. If the
insured pays her premiums as a single payment at inception (at the end) of the
contract, this is called an upfront (postponed) premium. If she splits her contri-
butions over the contract horizon, e.g. monthly or yearly recurring payments, this
is called periodic payments. In Germany, periodic payments are well accepted by
policyholders: 57% of all life insurance contracts are concluded with periodic pay-
ments as stated by GDV (2021a). Thus, it is interesting to analyze periodic premium
payments. Especially, since many papers in academia only assume upfront premium
payments.
As stated before, the insured’s payments are invested in risky and risk-free assets.
Thus, the terminal contract value of the insured depends on the asset evolution.
To avoid high losses and to protect the insured, typically a guarantee component
is included in the contract: the insured receives at the end of the contract period
the maximum of the guarantee component and the terminal wealth of the asset
evolution. There are many different guarantee features, of which the most common
one in literature is the terminal guarantee. Here, the value of the asset result is
compared with the promised guarantee at end of the contract. But this guarantee
feature is not for free: The insured participates only with a rate of α ∈ (0, 1) at her
terminal account value. The remaining part (1 − α) corresponds to the guarantee
costs. These costs depend on both, the guaranteed value and the type of premium
payments: a higher guarantee of course results in higher guarantee costs. Also, the
premium payments should have a huge impact on the guarantee costs: an upfront
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payment implies that the insured participates the whole investment horizon fully
in the asset side. A periodic payment structure implies that the participation in
the asset side increases with every period. The influence of periodic payments on
the guarantee costs is important for the insurance company and thus an interesting
aspect to analyze.
The guarantee promise of the insurance company can get problematic if the asset
return evolution is not promising and the asset results are smaller than the promised
guarantee: a shortfall risk occurs. For these cases the insurance companies have to
build reserves and capital requirements as stated in Solvency II, s.t. this default
event can only occur with a probability of 0.5%. It is interesting to analyze how the
premium payments (periodic vs. one-time payment) influence the required capital.
This analysis is important for insurance companies because the smaller the required
capital, the more they can use to invest.
We should also include the perspective of the insured in this analysis: she has many
different contract offerings on the insurance market and will pick the contract which
maximizes her willingness to pay for. We interpret the willingness to pay in terms
of her expected utility, i.e. the higher her expected utility the higher is her willing-
ness to enter the contract. Thus, maximizing the expected utility of the terminal
wealth of the insured is also of interest fort the insurance company. The impact of
the premium payments (periodic vs. one-time payment) is also in this case of great
importance.
Let us take a look at the insurance company again. As stated before, the insured
decides in our setting about the payment scheme, s.t. the insurance company cannot
influence the decision. But there exists one aspect that allows the insurance company
to control all of the former mentioned aspects: the investment fraction in the risky
asset. A change in the investment fraction directly influences the guarantee costs,
the required capital to fulfill the shortfall probability constraint and the expected
utility of the insured. Thus, it is interesting to analyze the effects of a tool (we call
it management rule) that controls the investment fraction, depending on the former
results of the asset returns and its interplay with the periodic premium payments.
Therefore, we analyze the impact of periodic premium payments on participating
life insurance contracts under management rules in the main part of this chapter
and find implications on the pricing, the risk management and the expected utility
of the insured.
Finally, one wonders what happens if we use a more complex guarantee feature
instead of the terminal guarantee. We motivate two guarantee schemes (the cliquet-
style and ratchet guarantee) and give a literature overview on the impact of these
different guarantee features on optimal portfolio planning.
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3.1 Participating Life Insurance Contracts with Periodic Premium
Payments under Regime Switching

In this section, we consider (life-) insurance contracts where the insured receives
the maximum of a guaranteed amount and (a fraction of) a stochastic payoff given
by the outcome of a risky investment strategy.45 Under fair pricing, the contribu-
tion of the insured defines the possible combinations of the guaranteed amount and
the participation fraction in the stochastic payoff. The higher the guarantee is, the
lower is the fair participation in the stochastic payoff. While there is a large strand
of literature that considers the risk management, the pricing, and the benefits to
the insured in the context of a single upfront contribution, fewer papers include the
impact of periodic contributions, i.e. where some contributions are postponed to the
future. We discuss in general the contract design of the payoff of a participating
contract with terminal guarantee feature in dependence of a flexible payoff scheme
to motivate our chosen stylized model setup. In this setup we analyze the effects of
premium payment postponements on the risk profile of the provider as well as the
benefits to the insured.
From the perspective of the product provider’s risk management, there is an addi-
tional risk in case of periodic premium (cf. Bernard et al. (2017)). In case of a single
upfront premium, the (fair) guarantee costs are paid by the insured at inception of
the contract and can be used to mitigate (hedge) the guarantee. However, this is not
possible if some of the contribution (and thus guarantee premium) is postponed to
the future. Without pre-financing (and implementing a dynamic hedging strategy
at the beginning), the part of the guarantee costs which is paid in the future can
be lower than the amount which is then needed to hedge the guarantee (depending
on the moneyness of the insurance put option). In case the contract provider is al-
lowed to adjust the investment strategy, he can use the adjustment such that the
additional risk from the periodic premium payments is mitigated. This possibility
is captured in our model in terms of a management rule under which the insurance
company can adjust the investment strategy.
Some of our results can be applied to products that belong to the class of equity-
linked (or unit-linked) products with an interest rate guarantee where the insured’s
benefit is linked to the performance of a specific reference portfolio. Typical guaran-
teed equity-linked products are Equity-Index Annuities (EIA) which are very popu-
lar in the North American market or their German counterparts Select Products.46

In addition, these results concern Variable Annuities which are insurance contracts
with guarantees designed as pension products where the trusted fund is invested in a
reference portfolio. However, a special focus is on traditional (German) participating

45This section is based on the work of Mahayni et al. (2021c).
46One of these products is for example ”IndexSelect” by Allianz. For a detailed analysis of this
product and an overview of further equity-linked products we refer to Alexandrova et al. (2017).
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life insurance contracts with an annual surplus distribution which is also linked to
the asset side of the insurance company. To isolate the impact of the management
rule, we abstain from additional rights which may be included in those insurance
products such as surrender options, paid-up and resumption options or guaranteed
annuity options.47

The present value of the insured’s contributions are normalized to one and the con-
tribution schemes in our setting (upfront, postponed, periodic) determine when and
how the policyholder participates in the asset side of the insurance company s.t. the
different schemes and even the different management rules imply different guarantee
costs. These costs have to be fairly priced s.t. the contracts do not account for arbi-
trage. For this we set ourselves in a Black-Scholes model and analyze the impact of
the periodic payments (splitting factor) and the management rules on the fair pric-
ing of the guarantee. But these two components (splitting factor and management
rule) not just have an impact on the fair pricing but even more on the risk manage-
ment of the contract provider as stated before. This crucial observation is analyzed
in detail and we give solutions to overcome this problem. We furthermore analyze
the perspective of the policyholder. Assuming that the risk preferences of the poli-
cyholder are described by a constant relative risk aversion (CRRA), we consider her
portfolio planning problem in terms of maximizing her expected utility w.r.t. how to
split her contributions over time. We examine the impact of periodic contributions
of the policyholder on her expected utility (from which her willingness to pay can
be derived) under different management rules (investment strategies, respectively)
of the insurance company.
Our main contributions of this section can be summarized as follows: First, we ana-
lyze in general the account value of a participating contract with terminal guarantee
in dependence of a flexible payoff scheme (n possible premium payments) and find a
representation that depends on just one splitting factor. Thus we can qualitatively
analyze in the following the impact of periodic premium contributions in a stylized
setup with two premium payment dates. In a Black-Scholes Model setting we dis-
cuss the different management rules with which the insurance company can react to
bad or good market movements and adapt the investment strategy. A main focus is
on the impact of the splitting factor and the management rules on the fair pricing
of the contract. We derive quasi closed-form solutions for the guarantee costs with
periodic premium payments and constant management rule (investment fractions
coincide) and closed-form solutions for the special cases of an upfront resp. post-
poned premium payment. Furthermore, we show that the guarantee costs in this
case are convex and strictly monotonically increasing in the splitting factor s.t. an
upper bound for the guarantee costs depending on the splitting factor is derived. For
the variable management rule under a simple assumption on the adapted investment
fraction we explore that also the guarantee costs of the variable management rule

47For an overview of embedded options in life insurance contracts we refer to Gatzert (2009).
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are strictly increasing and convex in the splitting factor. Moreover, they are greater
than the ones under the constant management rule for a fixed splitting factor. From
the risk management perspective of the insurance company we show that periodic
premium payments lead to an increase of the riskiness (compared to an upfront pay-
ment) in terms of the shortfall probability (SFP) of the insurance company resp. to
an increase of the required solvency capital s.t. a SFP is matched. By implementing
a variable management rule this riskiness can be reduced greatly.
Assuming that the risk preferences of the insured are described by a CRRA utility
function, we also study her portfolio planning problem in terms of maximizing her
expected utility concerning how to split her contributions optimal over time. We
find that splitting the contributions has a huge impact on the expected utility of the
insured. Under a constant management rule and no guarantee the Merton solution
(i.e. the investment fraction is given by the famous Merton fraction and the contri-
bution of the insured is given by an upfront premium payment) archives the highest
expected utility. Deviations from the Merton fraction imply that splitting the pre-
mium payments becomes optimal for the insured. In case of a variable management
rule we show that the overall solution is not given by the Merton solution anymore
s.t. periodic payments can be used to maximize the expected utility of the insured.

This section is related to several strands of the literature including (i) periodic
premium contribution schemes, (ii) pricing of embedded guarantees (options, re-
spectively), (iii) risk management, (iv) utility losses caused by guarantees and/or
suboptimal investment decisions conducted by insurance companies, (v) portfolio
planning and (vi) regime-switching. Without postulating completeness, we only re-
fer to a subset of related literature and hint at the additional literature given within
the mentioned papers. Pricing of long-term guarantees by no-arbitrage dates back
to Brennan and Schwartz (1976). The fair valuation of participating life insurance
contracts is, to the best of our knowledge, first analyzed by Briys and De Varenne
(1994) as also Briys and De Varenne (1997). Recent contributions are e.g. Kling et
al. (2011), Chong (2019), Orozco-Garcia and Schmeiser (2019), Hieber et al. (2019)
and Bacinello et al. (2021). The first consideration of periodic contributions dates
back to Brennan and Schwartz (1976). Further discussions about single and periodic
contributions can be found in e.g. Bacinello and Ortu (1993a), Bacinello and Ortu
(1993b), Bacinello and Ortu (1994), Nielsen and Sandmann (1995) as also Nielsen
and Sandmann (1996). They consider constant periodic contributions, while we al-
low for flexible periodic contributions of the policyholder. More recent works include
Gatzert (2013), Bernard et al. (2017) and Eckert et al. (2021).
Periodic contributions generally do not lead to closed-form solutions because the
combination of periodic contributions and asset returns of the terminal wealth re-
sults in a dependency structure. One possibility to overcome this problem is to
use upper and lower bounds for the pricing. Results on this topic are e.g. given in
Hürlimann (2010), Chi and Lin (2012) and Bernard et al. (2017), while the latter
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two also include flexible contributions. We differentiate from their approach by de-
riving quasi closed-form solutions.
The consideration of default risk embedded in life insurance contracts with terminal
guarantee schemes dates back to Briys and De Varenne (1994). Further contribu-
tions are given by Grosen and Jørgensen (2002) and Bernard et al. (2005). More
recent works are given by Schmeiser and Wagner (2015), Hieber et al. (2019) and
Mahayni et al. (2021a). Moreover, quantifying the risk resulting from long-term
guarantees with appropriate risk measures is done by e.g. Barbarin and Devolder
(2005), Gatzert and Kling (2007) and Devolder (2018), who analyzes the capital
requirements under different risk measures. We implement a VaR-based SFP and
calculate the required capital s.t. this bound is matched, depending on the manage-
ment rules and the splitting factor.
To assess life insurance contracts with guarantees and participation on the surplus
of the insurer, it is necessary to evaluate the asset strategy itself. Here exists a
strong connection to the literature of portfolio optimization which already dates
back to Merton (1971). He solves the problem of maximizing the expected utility of
an investor with constant relevant risk aversion (CRRA) in a Black-Scholes model
setup. The continuous utility maximizing strategy is given in terms of a constant
investment fraction in the risky asset. In contrast, periodic premium contributions
(e.g. yearly payments) only imply the possibility of discrete time adjustments of the
insured’s portfolio. This causes a utility loss compared to the optimal continuous
time version. However, Rogers (2001) shows that the discretization error is negligi-
bly small for a time lag smaller than two years, s.t. we can compare our results with
the Merton solution. Further literature on portfolio optimization in a Black-Scholes
model setup is given by Huang et al. (2008), Branger et al. (2010), Gatzert (2013),
Schmeiser and Wagner (2015), Chen and Hieber (2016) and Mahayni et al. (2021a).
We further consider a management rule, s.t. the insurer adjusts the investment strat-
egy if positive or negative shocks on the stock market occur. Such management rules
can be interpreted as a regime switch. For a detailed literature overview on regime-
switching we refer to Chapter 4.
The rest of the section is organized as follows. First, we present the general con-
tract design and the model assumptions in Subsec. 3.1.1. In Subsec. 3.1.2 we discuss
the impact of the splitting factor on the fair pricing for a constant resp. a variable
management rule. The impact of the splitting factor and the management rules on
the risk management of the insurance company is subject to Subsec. 3.1.3 and the
effects on the expected utility of the insured are presented in Subsec. 3.1.4. Finally,
we conclude the section.
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3.1.1 Contract design and model assumption

Since we are interested in the impact of how insurance premiums are split over time,
we first describe the payoff of a participating contract with a terminal guarantee in
dependence of a flexible payoff scheme.

Contract payoff

Since, in practice, insurance premiums are paid in discrete time, we consider a
contract design which is based on discrete dates T = {t0 = 0, . . . , tn−1, tn = T}. T
denotes the maturity of the contract and the contributions of the insured are given
by a periodic premium scheme where ati denotes the premium paid at ti ∈ T \{tn}.
The payoff LT which the insured receives at T = tn is defined by the maximum of
two ingredients: the portfolio (or account) value VT of the insured and a terminal
guarantee GT , i.e.

LT = max{VT , GT} = VT + [GT − VT ]
+, (3.1)

where [GT − VT ]
+ = max{GT − VT , 0}. In summary, the contract payoff can be in-

terpreted by means of two components: the portfolio (or account) value VT and the
payoff of a European put option with maturity T , strike K = GT and underlying V
(with payoff VT ). We refer to the second component as the insurance put.

Underlying of insurance put

The portfolio value VT is linked to the investment results (account value) of the
insurance company which, at ti (i = 0, . . . , n), are denoted by Ati . Furthermore, the
participation in the investment results depends on the guaranteed amount GT as
well as how much premium is paid at each point in time.

Since the contract payoff defined by Eqn. (3.1) is increasing in the guaranteed
amount GT , we assume in addition that only a part ãti = αati is invested in the
asset side of the insurance company (i.e. the remaining premium part finances the
guarantee). In particular, the special case GT = 0 implies α = 1 (ãti = ati) and α
is decreasing in GT . This observation already dates back to Nielsen and Sandmann
(1996). It holds

VT = Vtn =
n−1∑
i=0

ãti
Atn

Ati

.

We assume that the investment decisions of the insurance company are invested in
a complete and arbitrage-free financial market and the existence of a risk-free asset
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growing with a constant interest rate r. This implies the existence of a uniquely de-
fined pricing measure P∗ where the discounted account increments are a martingale,
i.e.

e−r(tn−ti)EP∗

[
Atn

Ati

∣∣∣∣Ati

]
= 1.

Abstracting from mortality risk and assuming that the periodic premiums are paid
with certainty, it is convenient to define Vti as the arbitrage free ti-price of the payoff
(portfolio value) VT , i.e.

Vti := e−r(tn−ti)EP∗ [Vtn| {At0 , . . . , Ati}] .

A nice to interpret representation of the account value is given in the following
lemma.

Lemma 3.1 (Account value V )
Let Ati denote the investment result of the insurance company at ti and ati the
premium of the insured paid at ti. Then the account value Vti is given by

Vti = α

(
i−1∑
j=0

atj
Ati

Atj

+ ati +
n−1∑

j=i+1

e−r(tj−ti) atj

)
. (3.2)

The proof of Lemma 3.1 is given in Appendix C.1. Thus, the so-called account
value Vti is defined by means of the sum of three components: the already realized
participation in the account value, the current premium, and the present value of
future premiums. Furthermore, the account value at ti+1 depends on the value at
ti, the investment results of the insurance company in the period [ti, ti+1] and the
present value of the contributions at and after ti+1. Thus the account value can be
written as follows.

Lemma 3.2 (Dynamics of V )
Let PVti :=

∑n−1
j=i e

−r(tj−ti)atj (i = 0, . . . , n − 1) denote the present value of the
contributions at and after ti. Then, it holds Vt0 = αPVt0 and Vti+1

(i = 0, . . . , n− 1)
is given by

Vti+1
= Vti

Ati+1

Ati

+ α

(
PVti+1

(
1− e−r(ti+1−ti)Ati+1

Ati

))
. (3.3)

The proof of Lemma 3.2 is given in Appendix C.2.

Throughout the following, we consider the case that the present value of the periodic
premiums is equal to one, i.e.

PVt0 =
n−1∑
i=0

e−r(ti−t0) ati = 1, (3.4)
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such that Vt0 = α. We now consider a so-called premium splitting factor which
describes how the contributions are split over time.

Definition 3.1 (Premium splitting factor)
Normalizing the present value of the periodic premium payments to one, cf. Eqn.
(3.4) implies that the periodic premium payments can be stated by means of a pre-
mium splitting factor {βt0 , . . . , βtn−1} where

βi ≥ 0 for all i = 0, . . . , n− 1,
n−1∑
i=0

βi = 1,

such that ati := βie
r(ti−t0).

The extreme cases are thus implied by (i) β0 = 1 (and βi = 0 for i = 1, . . . n − 1)
and (ii) βn−1 = 1 (and βi = 0 for i = 0, . . . n− 2) such that

(i) (at0 , at1 , . . . , atn) = (1, 0, . . . , 0) (upfront premium) and

(ii) (at0 , at1 , . . . , atn) = (0, 0, . . . , er(tn−1−t0)) (postponed premium).

Now, consider the general case that βi ∈]0, 1[. Notice that with the definition of β,
it follows

PVti =
n−1∑
j=i

e−r(tj−ti)atj =
n−1∑
j=i

e−r(tj−ti)βje
r(tj−t0) = er(ti−t0)

n−1∑
j=i

βj. (3.5)

Thus it holds:

Proposition 3.1 (Dynamics of V - premium splitting factor)
It holds Vt0 = α and Vti+1

(i = 0, . . . , n− 1) is given by

Vti+1
= βi+1

(
αer(ti+1−t0) +

Ati+1

Ati

(
Vti − αer(ti−t0)

))
+
(
1− βi+1

)
Vti

Ati+1

Ati

, (3.6)

where βi+1 :=
n−1∑

j=i+1

βj and 1− βi+1 =
i∑

j=0

βj.

The proof of Proposition 3.1 is given in Appendix C.3.

The above proposition states that Vti+1
depends on a premium splitting factor βi+1.

Thus, qualitatively, the impact of periodic premium contributions (compared to a
single upfront contribution) can be derived in a stylized setup with two premium
payment dates.
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Stylized contract design

To simplify the expositions, we consider a stylized contract design which refers to
n = 2, where T = {t0 = 0, t1 = 1, t2 = T = 2}. We set β0 = β such that β1 = 1− β,
i.e. the analysis reduces to one splitting factor β ∈ [0, 1]. Recall that the premium
payment at time t = 0 is then given by a0 = β and a1 = (1 − β)er such that the
present value of the contributions is normalized to one. The corner cases are now
given by the upfront premium (β = 1) where all premiums are invested at t0 = 0
and the postponed premium case β = 0 (all premiums are postponed to t = 1).
With formula (3.2) we immediately receive for the portfolio value Vi (i = 0, 1, 2)

V0 = α,

V1 = α

(
β
A1

A0

+ (1− β)er
)
,

V2 = α

(
β
A2

A0

+ (1− β)er
A2

A1

)
= V1

A2

A1

.

Recall that our research question includes the impact of an upfront and postponed
premium payment and the cases between these extremes on the pricing, the risk
management and the utility of the insured. In order to ensure the comparability of
different premium schemes, we assume that all contracts are fairly priced. Notice
that fair pricing means that the t0- value of the contributions is equal to the t0-value
of the contract payoff LT , i.e. in our stylized contract design it holds

1 = e−2rEP∗
[
V2 + (G2 − V2)

+
]
.

With e−2rEP∗ [V2] = V0 = α, it follows

1− α = e−2rEP∗
[
(G2 − V2)

+
]
, (3.7)

i.e. 1− α coincides with the guarantee costs at t = 0, denoted with GC0 where

GC0 := e−2rEP∗
[
(G2 − V2)

+
]

is the price of an Asian put option.48

Notice that both sides of Eqn. (3.7) depend on α such that the fair α is the solution
of a fix-point problem. In addition, the fair α depends on the splitting factor β, i.e.
on the periodic premium payments a0 and a1.

48Asian put option means that V2 is a weighted average of stochastic increments. More information
on Asian put options can e.g. be found in Vorst (1992) and Nielsen and Sandmann (1995)
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The guarantee costs in the periodic premium setting, depending on the splitting
factor β, can thus be stated in terms of

GC0 = e−2r EP∗

[(
G2 − V1

A2

A1

)+
]

= e−r EP∗

[
e−r EP∗

[(
G2 − V1

A2

A1

)+
∣∣∣∣∣V1

]]
.

Notice that the inner expectation denotes the guarantee costs at t = 1, i.e.

GC1 = e−r EP∗

[(
G2 − V1

A2

A1

)+
∣∣∣∣∣V1

]
.

These are given by the price of a European put option with time to maturity T = 1,
strike K = G2, and underlying V , currently priced at V1. Thus,

GC0 = e−r EP∗ [GC1] .

In the special case of (i) β = 1 (upfront premium), it follows V2 = ã0
A2

A0
= αA2

A0
and

thus

GC
(β=1)
0 = e−2rEP∗

[(
G2 − α

A2

A0

)+
]
.

Here, the Asian feature vanishes and the guarantee costs are given by a European
put option with maturity T = 2. In the special case of (ii) (postponed premium), it
follows V2 = ã1

A2

A1
= αer A2

A1
, i.e.

GC
(β=0)
0 = e−2rEP∗

[(
G2 − αer

A2

A1

)+
]

= EP∗

[
e−rEP∗

[(
e−rG2 − α

A2

A1

)+
∣∣∣∣∣A1

]]
.

The Asian feature vanishes again and the guarantee costs are given by a forward
starting option. Let G2 = e2g where g < r. The condition g < r ensures the existence
of a fair contract (for upfront premium), cf. Bacinello (2001), it follows

GC
(β=0)
0 = EP∗

[
e−rEP∗

[(
e−(r−g)eg − α

A2

A1

)+
∣∣∣∣∣A1

]]

≤ EP∗

[
e−rEP∗

[(
eg − α

A2

A1

)+
∣∣∣∣∣A1

]]
.
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In summary, the comparison of the guarantee costs linked to the corner cases (i)
and (ii) reduces to comparing a guaranteed rate over different investment horizons,
i.e. if the investment results Ai+1

Ai
are independent and identically distributed. How-

ever, in reality the investment decisions of the insurance company may depend on
the market movements. This implies a dependence structure even in the case of a
Black and Scholes model setup for the investment opportunity set. Further details
on the financial market assumptions and the investment decisions of the insurance
company are postponed to the subsequent subsection.

Model assumptions and management rule

Our financial market model over the filtrated probability space (Ω,F , (Ft)t∈[0,T ],P)
is given by the Black-Scholes model. The filtration (Ft)t∈[0,T ] is generated by the
standard Brownian motion (Wt)t∈[0,T ]. Because of the completeness of the Black-
Scholes model, there exists a uniquely defined equivalent martingale measure P∗
under which the process (W ∗

t )t∈[0,T ] is a standard Brownian motion. In particular,
the risk-free bond (Bt)t∈[0,T ] grows at constant interest rate r, i.e. Bt = ert and the
risky asset (St)t∈[0,T ] is given by

dSt = St (µ dt+ σ dWt) = St (r dt+ σ dW ∗
t ) , S0 = 1.

Under the real world probability measure P, the asset price follows a geometric
Brownian motion with constant drift parameter µ (µ > r) and constant volatility σ
(σ > 0). Under the martingale measure (pricing measure) P∗, the asset price follows
a geometric Brownian motion with constant drift r and constant volatility σ. Recall
that our stylized contract design implies a maturity of T = 2 and a discrete payment
structure. Thus we are interested in the returns S1

S0
and S2

S1
of the risky asset. The

solution of the corresponding SDE is given by a log-normal distribution, s.t. it holds

Si+1

Si

underP
= eµ−

1
2
σ2+σ(Wi+1−Wi) underP∗

= er−
1
2
σ2+σ(W ∗

i+1−W ∗
i ), i = 0, 1.

The insurance company can decide which fraction of wealth πt at time t is invested in
the risky asset S. According to common practice, πt is restricted to values between
zero and one (πt ∈ [0, 1]), i.e. no short selling and borrowing is allowed.49 The
remaining part (1 − πt) is invested in the risk-free bond B. Thus, the evolution of
the portfolio wealth (investment result), denoted by the stochastic process (At)t∈[0,T ],

49Specifying the investment fraction can lead to different investment strategies, e.g. Option Based
Portfolio Insurance (OBPI) and Constant Proportion Portfolio Insurance (CPPI). For a detailed
discussion of these strategies we refer to Bertrand and Prigent (2001). An application of further
strategies such as Buy and Hold (B & H) can e.g. be found in Branger et al. (2010).



3.1. Participating Life Insurance Contracts with Periodic Premium Payments
under Regime Switching 77

is defined over the risky and risk-free asset:

dAt = At

(
πt
dSt

St

+ (1− πt)
dBt

Bt

)
, A0 = 1. (3.8)

Within our stylized contract design we are interested in the returns A1

A0
and A2

A1
of

the investment results. The solution of equation (3.8) is again given by a log-normal
distribution s.t. it holds

Ai+1

Ai

underP
= eµA,i− 1

2
σ2
A,i+σA,i(Wi+1−Wi) underP∗

= er−
1
2
σ2
A,i+σA,i(W

∗
i+1−W ∗

i ), i = 0, 1,

where the cumulated drift and volatility µA,i resp. σA,i is given by

µA,i := πiµ+ (1− πi)r

σA,i := πiσ. (3.9)

With the possibility of different investment fractions in t = 0 and t = 1 the insurance
company can react to (good or bad) market movements and adapt the investment
strategy. We account for this by introducing a so-called management rule depending
on the asset return A1

A0
. Notice that under the pricing measure P∗ only the portfolio

wealth’ volatility σA,i depends on the investment fraction πi. Thus for our analysis
on the contract pricing and the risk management we define the management rule in
terms of the volatility σA,i. When the investment fractions are constant over time, i.e.
π0 = π1 (and thus σA,0 = σA,1), we speak of a constant management rule (CMR). For
a variable management rule (VMR) we consider for the sake of simplicity a stylized
version where

σA,1 = σA,0

n∑
i=1

ei1Ei
= σ

(
π0

n∑
i=1

ei1Ei

)
,

i.e. the management rule controls the investment fraction π1 at t = 1 by increasing
or decreasing π0 by the value ei. The event Ei is a function of A1

A0
, e.g. n = 3 and

E1 =

{
A1

A0

< c1

}
=

{
c0 ≤

A1

A0

≤ c1

}
E2 =

{
c1 ≤

A1

A0

≤ c2

}
E3 =

{
A1

A0

> c2

}
=

{
c2 ≤

A1

A0

≤ c3

}
,

where 0 = c0 < c1 ≤ c2 < c3 = +∞. Notice that the events E1, E2, E3 are disjoint.
The second equation for E1 and E3 holds because A1

A0
is absolute continuously dis-

tributed and thus atomless s.t. there is no probability mass in one point. Thus Ei
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is defined by Ei :=
{

A1

A0
∈ [ci−1, ci]

}
, s.t. the probability for each event under the

pricing measure is given by

P∗
(
ci−1 ≤

A1

A0

≤ ci

)
= Φ

(
ln(ci)− (r − 1

2
σ2
A,0)

σA,0

)
− Φ

(
ln(ci−1)− (r − 1

2
σ2
A,0)

σA,0

)
.

With this management rule setting we are able to capture the most common invest-
ment strategies, e.g. if we set e1 < 1, e2 = 1, e3 > 1 and c1 < 1, c2 > 1, we are
in a setting of a so-called portfolio insurance strategy. Here the insurance company
increases the investment fraction at t = 1 if the asset return A1

A0
is greater than one,

i.e. in case a gain is observed. The company decreases the investment fraction, if
A1

A0
< 1 and on a small interval [c1, c2] the insurance company does not react to the

market behavior and leaves the investment fraction unchanged. If all values of ei are
equal to one, we are back in the setting of a constant management rule. A discussion
on how to choose the parameters e1, e2 and e3 is given in the next subsection.

3.1.2 Impact of splitting factor on (fair) pricing under different management rules

We analyze the impact of the splitting factor and the management rule on the pric-
ing of the contract. For that we first discuss guarantee costs in the Black-Scholes
setting in general. After that we analyze the different management rules and split-
ting factors in more detail.

Fair pricing and the impact of the splitting factor

As discussed in the last subsection, the guarantee costs for a splitting factor β ∈ [0, 1]
are given by GC0, i.e. by the t = 0 price of the payoff (G2 − V2)

+. Notice that
V is the result of an admissible investment strategy with price process V0 = α,

V1 = α
(
βA1

A0
+ (1− β)er

)
, and V2 = V1

A2

A1
. Since the dynamics of A are given in

terms of a GBM with drift µA (for pricing µA is irrelevant), volatility σA (σA,0 and
σA,1, respectively) and V2 = V1

A2

A1
, we can also interpret V2 as the result of a GBM

(starting at t = 1 with V1) with volatility

σV,1 = σA,1 = π1σ.

Using our stylized model setup, we can state the t = 0 costs in terms of the Black-
Scholes Put formula of a European put option PBS(x, T,K, σ) with time to maturity
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T and strike K with underlying X (current price x and volatility σ).50 Applying this
to our model-free results from subsection 3.1.1, we find the following formula for the
guarantee costs.

Proposition 3.2 (Guarantee Costs - Black-Scholes Setup)

For V1 = α
(
βA1

A0
+ (1− β)er

)
the guarantee costs in the periodic premium setting

depending on the splitting factor β can be stated in terms of

GC0 = e−r EP∗ [GC1] = e−r EP∗
[
PBS(V1, 1, G2, σA,1)

]
.

Proposition 3.2 shows the dependence of the guarantee costs on the splitting factor
β and also on the management rule, because the volatility in the put price is given
by σA1 . In the special case of β = 0 it holds V1 = αer such that V1 is deterministic.
In the special case of β = 1 it holds V1 = αA1

A0
.

In the following we differentiate between the guarantee costs in case of a constant
management rule,GCCMR

0 , and the guarantee costs in case of a variable management
rule, GCVMR

0 , to separate the impact of the splitting factor and the management
rule on the guarantee costs.

Splitting factor and fair pricing under constant management rules

Following a constant management rule implies σA,1 = σA,0 such that

GCCMR
1 = PBS(V1, 1, G2, σA,0) = V1P

BS

(
1, 1,

G2

V1

, σA,0

)
and

GCCMR
0 = e−r EP∗

[
PBS(V1, 1, G2, σA,0)

]
.

Notice that GCCMR
0 is stated as the t = 0 price of a forward starting option, i.e.

a put option starting at t = 1 with V1. For β ∈]0, 1[, the distribution of V1 =

α
(
βA1

A0
+ (1− β)er

)
can not be stated in closed-form.

But the special cases of (i) upfront premium (β = 1) implies V1 = αA1

A0
and (ii)

50Notice that the Black-Scholes put price is given by

PBS(x, T,K, σ) =e−rTKΦ(−d2(x, T,K, σ))− xΦ(−d1(x, T,K, σ))

where d1(x, T,K, σ) :=
ln( x

K ) + ( 12σ
2 + r)T

σ
√
T

and d2(x, T,K, σ) := d1(x, T,K, σ)− σ
√
T .
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postponed premium (β = 0) implies V1 = αer, thus we can calculate the guarantee
costs in closed-form. It holds for β = 0

GC
(β=0), CMR
0 = e−r EP∗

[
V1P

BS

(
1, 1,

G2

V1

, σA,1

)]
= e−r EP∗

[
αerPBS

(
1, 1,

G2

αer
, σA,0

)]
= PBS(α, 1, e−rG2, σA,0).

In contrast, for β = 1, it follows

GC
(β=1), CMR
0 = e−r EP∗

[
PBS(V1, 1, G2, σA,1)

]
= e−r EP∗

[
PBS

(
α
A1

A0

, 1, G2, σA,0

)]
= PBS (α, 2, G2, σA,0) = αPBS

(
1, 2,

G2

α
, σA,0

)
.

The interesting question is how the guarantee costs in the CMR case are related
to each other, depending on the splitting factor β. For this the following remark is
crucial.

Remark 3.1 (Properties of guarantee costs in β)
Notice that the put price is a decreasing and convex function of the underlying,
independent of the model assumption. Thus, for β ∈ [0, 1] it especially holds

PBS(βx0 + (1− β)x1, T,K, σ) ≤ βPBS(x0, T,K, σ) + (1− β)PBS(x1, T,K, σ).

Using the convexity property for Jensen’s inequality we receive51

GCCMR
0 = e−r EP∗

[
PBS(V1, 1, G2, σA,0)

]
≥ e−r PBS (EP∗ [V1], 1, G2, σA,0)

= e−r PBS (αer, 1, G2, σA,0) = GC
(β=0),CMR
0 .

Moreover, we can use the convexity property and again Jensen to show

PBS (V1, T,K, σ) ≤ βPBS

(
α
A1

A0
, T,K, σA,0

)
+ (1− β)PBS(αer, T,K, σA,0)

= βPBS

(
α
A1

A0
, T,K, σA,0

)
+ (1− β)PBS

(
EP∗

[
α
A1

A0

]
, T,K, σA,0

)
≤ βPBS

(
α
A1

A0
, T,K, σA,0

)
+ (1− β)EP∗

[
PBS

(
α
A1

A0
, T,K, σA,0

)]
,

51Jensen’s inequality states that for a convex function u it follows E[u(X)] ≥ u(E[X]).
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Benchmark parameter
r µ σ g π

0.01 0.15 0.037 0.0025 0.3

Table 3.1: Benchmark parameter setting.

where the last inequality is again implied by Jensen. Taking expectations on both
sides of the calculated inequality, we receive

EP∗
[
PBS (V1, T,K, σ)

]
≤ EP∗

[
PBS

(
α
A1

A0

, T,K, σA,0

)]
and thus

GCCMR
0 ≤ GC

(β=1),CMR
0 .

Combining the findings in this subsection, we can state the following proposition.

Proposition 3.3 (Properties Guarantee Costs - Constant management rule)

For a constant management rule with a premium fraction β ∈ [0, 1], the guarantee
costs GC0(β) are given in quasi closed-form by

GCCMR
0 (β) = e−r EP∗

[
PBS(V1, 1, G2, σA,0)

]
.

For the special cases of upfront and postponed premium payments we receive

(i) GC
(β=0),CMR
0 = PBS(α, 1, e−rG2, σA,0).

(ii) GC
(β=1),CMR
0 = PBS (α, 2, G2, σA,0).

Furthermore, GCCMR
0 (β) is monotonically increasing and convex in β. In particular,

for all β ∈ [0, 1] a trivial upper price bound is given by GC
(β=1),CMR
0 while a tighter

upper price bound is implied by

GCCMR
0 (β) ≤ βGC

(β=1),CMR
0 + (1− β)GC

(β=0),CMR
0 .

An illustration of the convexity result and pricing bounds in Proposition 3.3 is given
in Figure 3.1. For the results we use the benchmark parameter setting in Table 3.1.52

Recall that for β ∈]0, 1[ the contract has an Asian put feature and thus we receive
here an upper pricing bound for the Asian put. The discussion on general upper and
lower bounds for Asian put options can be found in Nielsen and Sandmann (2003). A
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Convexity put price depending on splitting factor β - CMR

0.0 0.2 0.4 0.6 0.8 1.0
0.020
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0.035
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P
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Figure 3.1: The parameters we used are r = 0.01, σ = 0.15, µ = 0.037, g = 0.0025 and π = 0.3.
The black line refers to the guarantee costs depending on the splitting factor β:

GC0(β), the gray dashed line pictures the linear function between (0, GC
(β=0),CMR
0 )

and (1, GC
(β=1),CMR
0 ).

survey with pricing results on Asian Options is given in Boyle and Potapchik (2008).

Splitting factor and fair pricing under variable management rule

Following a variable management rule has the advantage for the insurance company
to adjust the investment fraction at t = 1 and react to the last period’s asset return
A1

A0
. These adjustments of course have an impact on the guarantee costs. First of all,

using the same argumentation as in the last subsection, that the put-price is convex
in the underlying for fixed volatility, s.t. we find

GC
(β=0),V MR
0 ≤ GCVMR

0 (β) ≤ GC
(β=1),V MR
0 .

To specify the guarantee costs of the variable management rule and to compare
them with the constant management rule we need another well known result from
pricing theory.

Remark 3.2 (Convexity of put price in the volatility)
Notice that the put price is convex in σ independent of the model assumption, i.e. it
especially holds for all ν ∈ (0, 1)

PBS(x, T,K, νσ0 + (1− ν)σ1) ≤ νPBS(x, T,K, σ0) + (1− ν)PBS(x, T,K, σ1).
52Notice that we set the guarantee rate to g = 0.0025. This is the new guarantee rate standard
since 2022 for German life insurers (cf. GDV (2021b)).
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Convexity put price depending on volatility σA,1 - VMR case
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Figure 3.2: For both pictures we choose β = 0.5 and c1 = c2 = 1. The left picture shows the
(e1, e3) combinations s.t.

∑3
i=1 eiP∗(Ei) = 1 for the special case that P∗(E2) = 0. The

right picture shows the put prices depending on the choice of e1 (black dotted line).

The corresponding values of e3 are chosen s.t.
∑3

i=1 eiP∗(Ei) = 1. Choosing a value
for e3 that does not solve the equation (in our example we choose (e1; e3) = (0, 8; 1, 2)

s.t.
∑3

i=1 eiP∗(Ei) = 1, 032) violates the convexity property of the Black-Scholes put
price in the volatility (gray dot).

Thus we first have to discuss the choice of the volatility σA,1 s.t. the convexity
property is not violated and the no-arbitrage assumption (fair pricing) holds true.
As already presented in the last section we model the volatility for the second period
[1, 2] in terms of

σA,1 = σA,0

n∑
i=1

ei1{Ei}.

For the choices of ei we need to take the following consideration into account: As
stated in the previous subsection we assume that e1 < 1, e2 = 1 and e3 > 1 to model
the different reactions to the asset returns A1

A0
. Without further restrictions it is pos-

sible that for choices (e11, e
1
2, e

1
3) and (e21, e

2
2, e

2
3) the corresponding put prices coincide

even if the risk structures differ.53 This would lead to the possibility of arbitrage.
Thus the put price is not concave resp. monotonically increasing in the volatility
if we do not choose a suitable restriction. By looking at the expected volatility
EP∗ [σA,1], we can formulate a first restriction to the choice of ei s.t. the riskiness of
the strategies becomes comparable.

53For example if we choose within our benchmark parameter setting and β = 0.5 for the parameters
e1, e2, e3 (0.3; 1; 1.5) resp. (0.9; 1; 1.25) then the put prices coincides with a value of 0.03 but the
strategy of the first setting is much more risky than the second one.
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Assumption 3.1
To avoid violations of the convexity of the put price in the volatility we assume that

EP∗

[
n∑

i=1

ei1{Ei}

]
=

n∑
i=1

eiP∗(Ei) = const.

The next question that arises is how to choose the constant for the expected volatil-
ity EP∗ [σA,1].
Case 1: const. < 1:
If we choose for e1 < 1 a value that is close to 1 and e2 = 1 we find that the value of
e3 that solves the equation has to be smaller than 1. This is a contradiction to our
assumption that e3 > 1.
Case 2: const. > 1:
If we choose for e3 > 1 a value that is close to 1 and e2 = 1 we find that the value of
e1 that solves the equation has to be greater than 1. This is a contradiction to our
assumption that e1 < 1.
Thus the constant has to be 1. With this assumption the convexity property of the
put price is fulfilled and the choices of e1, e2 and e3 are given in a way, that our
assumptions are not contradicted. With these results we can postulate our Assump-
tion (∗):

Assumption (∗)
To avoid violations of the convexity of the put price in the volatility and for the
corresponding choices of e1, e2 and e3, we assume that

EP∗

[
n∑

i=1

ei1{Ei}

]
=

n∑
i=1

eiP∗(Ei) = 1.

Figure 3.2 shows under Assumption (∗) the corresponding choices of e1 and e3 for
the case that e2 = 1 and the corresponding put prices.

Remark 3.3
Notice that a high value of e1 implies a rather small value for e3 s.t. the riskiness
of the strategy is smaller than for a small e1 (which implies a large e3). This is
reflected by the decreasing value of the put price in the factor e1. Furthermore, if
we fix e1 and e2 the remaining factor e3 is monotone increasing in the investment
fraction π0 because the probability P∗(E3) is decreasing in the investment fraction.
To compensate for this lower probability the value of e3 has to be increased s.t.
Assumption (∗) is fulfilled. This is important for the later following expected utility
section.
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Under Assumption (∗) we furthermore see that the following statement holds:

EP∗ [σA,1] = σA,0

n∑
i=1

eiP∗(Ei) = σA,0.

Thus the (stochastic) volatility fulfills the martingale property.

Using Assumption (∗) it follows

GC
(β=0),VMR
0 = α

n∑
i=1

PBS

(
1, 1,

G2

αer
, eiσA,0

)
P∗(Ei)

≥ αPBS

(
1, 1,

G2

αer
,

(
n∑

i=1

eiP∗(Ei)

)
σA,0

)

= αPBS

(
1, 1,

G2

αer
, σA,0

)
= GC

(β=0),CMR
0 .

However, for β = 1, it follows

GC
(β=1),V MR
0 = e−r EP∗

[
PBS

(
α
A1

A0

, 1, G2, σA,0

3∑
i=1

ei1{Ei}

)]
.

Again notice that the put price is convex in the volatility, thus with Jensen inequality
we receive

EP∗

[
PBS

(
α
A1

A0

, 1, G2, σA,0

3∑
i=1

ei1{Ei}

)]
≥ PBS

(
α
A1

A0

, 1, G2,EP∗

[
σA,0

3∑
i=1

ei1{Ei}

])
.

Under Assumption (∗) we find

PBS

(
α
A1

A0

, 1, G2,EP∗

[
σA,0

3∑
i=1

ei1{Ei}

])
= PBS

(
α
A1

A0

, 1, G2, σA,0

)
, i.e.

EP∗

[
PBS

(
α
A1

A0

, 1, G2, σA,0

3∑
i=1

ei1{Ei}

)]
≥ PBS

(
α
A1

A0

, 1, G2, σA,0

)
.

Taking expectations on both sides preserve the inequality and we receive

GC
(β=1),V MR
0 = e−r EP∗

[
PBS

(
α
A1

A0

, 1, G2, σA,1

)]
≥ e−r EP∗

[
PBS

(
α
A1

A0

, 1, G2, σA,0

)]
= GC

(β=1),CMR
0 .
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Thus we find that under Assumption (∗) the guarantee costs for the variable man-
agement rule are more expensive than the costs for the constant management rule
for both, the upfront and the postponed premium case. For the general case β ∈]0, 1[
it holds again with Jensen and σA,0 = EP∗ [σA,1]

PBS(V1, 1, G2, σA,0) = PBS(V1, 1, G2,EP∗ [σA,1]) ≤ EP∗ [PBS(V1, 1, G2, σA,1)]

and thus

e−rEP∗ [PBS(V1, 1, G2, σA,0)] ≤ e−rEP∗ [PBS(V1, 1, G2, σA,1)] ⇔ GCCMR
0 ≤ GCVMR

0 .

The following proposition summarizes the results.

Proposition 3.4
For a variable management rule that fulfills Assumption (∗) and for every splitting
factor β ∈ [0, 1] it holds

(i)GC
(β=0),V MR
0 ≤ GCVMR

0 (β) ≤ GC
(β=1),V MR
0

(ii)GCCMR
0 (β) ≤ GCVMR

0 (β).

A visualization of these results is given in Figure 3.3. The fact that the guarantee
costs for the VMR are higher compared to the one for the CMR is intuitively clear
because the insurance company has more possibilities resp. rights in the VMR case
than in the CMR case. But more rights have to be compensated with higher costs
if we want to avoid arbitrage s.t. GCCMR

0 (β) ≤ GCVMR
0 (β).

As seen above Assumption (∗) is highly important for our results. Let us analyze
the assumption in more detail. It holds

3∑
i=1

eiP∗(Ei) = Φ(d1(c1, 1, e
2r, σA,0))[e1 − e2] + Φ

(
d1(c2, 1, e

2r, σA,0)
)
[e2 − e3] + e3.

Let us now assume that on the set E2 it holds σA,1 = σA,0, i.e. e2 = 1. This is a
realistic assumption s.t. we have three different possibilities to adjust the investment
fraction in t = 1 depending on the return A1

A0
: we can keep the investment fraction

constant, i.e. e2 = 1, we can reduce the investment fraction with e1 < 1 and we can
increase the investment fraction with e3 > 1. Using e2 = 1 we find

n∑
i=1

eiP∗(Ei)
!
= 1 ⇔ e3 =

Φ(d1(c1, 1, e
2r, σA,0))(e1 − 1)

Φ (d1(c2, 1, e2r, σA,0))− 1
+ 1. (3.10)

If we choose e.g. e2 = 1 on the interval [0.99, 1.01], i.e. c1 = 0.99 and c2 = 1.01,
we are in the situation where the insurance company keeps its investment fraction
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Convexity put price VMR and comparison with CMR

0.0 0.2 0.4 0.6 0.8 1.0
0.020

0.025

0.030

0.035

Splitting factor β

P
ut
P
ric
e

Figure 3.3: We choose within our benchmark parameter setup β = 0.5 and c1 = c2 = 1, e1 =
0.8; e2 = 1 and e3 = 1.1453 s.t.

∑3
i=1 eiP∗(Ei) = 1. The gray line pictures the guar-

antee costs for the constant management rule GCCMR
0 (β) and the black dotted line

the guarantee costs for the variable management rule GCVMR
0 (β), both depending

on the splitting factor β.

constant over time if the asset return has a loss smaller than one percent resp. a
gain smaller than one percent. If A1

A0
> 1.01 resp. A1

A0
< 0.99 (i.e. we are on the sets

E1 resp. E3), the insurance company reacts and adjusts its investment fraction for
the period [1, 2].
Now the question is how to adjust the fractions s.t. assumption (∗) is fulfilled. Let
us assume that the company is interested in reducing the investment fraction for the
period [1, 2] by 5% if the asset return has a loss of more than one percent, i.e. we set
e1 = 0.95. Plugging in all the information into equation (3.10), we receive that the
insurance company can increase their investment fraction if the asset return A1

A0
has

gains of more than one percent by 3.42%, i.e. e3 = 1.0342 fulfills Assumption (∗).

3.1.3 Impact of splitting factor on risk management

In this section we discuss the risk for the insurer that stems from the periodic pay-
ment structure of the insured’s contact policy. Proposition 3.3 shows that a problem
of underpricing can arise if the insured is not willing to pay the whole guarantee
costs at inception. Because of the structure of the periodic payments, it is natural
that also the costs for the guarantee are paid proportionately to the payment struc-
ture, i.e. we have a payment stream of β(1−α) at inception and of (1−β)er(1−α)
in t = 1. This is a problem for the insurance company because the risk structure
at t = 1 differs from the one at inception. This can lead to a risk for the insurance
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company of underpricing the guarantee costs, because the payment (1−β)er(1−α)
in t = 1 of the insured may not be sufficient for the risk structure in that period.
To overcome this problem in our setting, the insurance company can adjust the in-
vestment fraction at t = 1 to reduce the risk situation:
The insurance regulatory framework - Solvency II - contains the condition that the
shortfall probability (SFP) w.r.t. a time horizon of one year is limited to 0.5%. The
upper bound on the shortfall probability determines the amount of capital that is
needed to assure the solvency to a high degree, i.e. to honor the liabilities to the
insured. It is now of interest to analyze how much capital C at time t = 0 is required
s.t. the shortfall probability of ε = 0.005 at t = 1 of the periodic contract is matched.
With this setting we can measure the effects of postponed premium payments for
the risk structure of the insurer. Furthermore, we can analyze how a management
rule affects the capital requirements, i.e. the riskiness of the insurer’s assets and how
we can reduce them.

Characterization shortfall probability and general problem

For the SFP the following calculations hold in general

P
(
L1 > Cer +

A1

A0

)
≤ ε ⇔ P

(
L1 −

A1

A0

> Cer
)

≤ ε. (3.11)

Thus, we need to calculate and characterize the random variable L1 − A1

A0
in more

detail. It holds

L1 −
A1

A0

= V1 + EP∗

[
e−r
(
G2 − V1

A2

A1

)+
]
− A1

A0

= V1 +GC1 −
A1

A0

, (3.12)

where GC1 = PBS(V1, 1, G2, σA,1) = V1P
BS
(
1, 1, G2

V1
, σA,1

)
. Moreover, it holds for

the guarantee costs at t = 0

1− α = GC0.

Notice that the fair pricing takes place under the pricing measure P∗ but the short-
fall probability is calculated under the real world measure P, s.t. in the pricing parts
of the formula we have to work with r instead of the drift µA.

Using the representations of GC0 and GC1, we can write the random variable L1−A1

A0

as follows.
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Proposition 3.5 (General Representation L1 − A1

A0
)

The random variable L1 − A1

A0
is given by

L1 −
A1

A0

= GC1 −
V1

α
GC0 + (1− β)

(
er − A1

A0

)
. (3.13)

The proof of Proposition 3.5 is given in Appendix C.4. Now it is interesting to dis-
cuss the impact of the premium payments and/or the impact of the management
rule on the values of the random variable L1 − A1

A0
. As seen in the last section, for a

fixed management rule (CMR or VMR) the guarantee costs GC0 are increasing in
the splitting factor β s.t. the capital requirements are smaller if the premiums are
paid upfront instead of postponed.
This is an important observation because postponed resp. periodic premium pay-
ments lead to an increasing capital requirement for the insurance company compared
to upfront payments. But periodic resp. postponed premium payments can be at-
tractive to the insured s.t. the insurance company has a target conflict: minimizing
its capital requirement vs. fulfilling the insured’s needs.
Here our management rule setting can be applied by the insurance company: As
we have seen in the last section, for a fixed β it holds GCVMR

0 > GCCMR
0 , i.e. by

applying a management rule we can reduce the random variable L1 − A1

A0
and thus

the required capital C, even though a postponed resp. a periodic payment structure
is implemented. Furthermore, the participation fraction α is decreasing in GC0, s.t.
the effect is amplified.

Splitting factor and capital requirements under management rules

Recall thatGC1 = PBS(V1, 1, G2, σA,1) andGC0 = e−rEP∗ [GC1]. In the case of a vari-
able management rule we are able to affect the investment decision at t = 1 by adapt-
ing the investment fraction π1 with our management rule σA,1 = σA,0

∑3
i=1 ei1Ei

.
Again for the periodic payments (β ∈]0, 1[) we are not able to calculate the formulas
is closed-form. In the two special cases β = 0 resp. β = 1 the following representation
hold.

Proposition 3.6 (Representation L1 − A1

A0
(VMR) - Special cases)

Let the insurance company follow a VMR. In the special case of a postponed premium
(β = 0) it holds

L1 −
A1

A0

= GC
(β=0), V MR
1 − erGC

(β=0), V MR
0 + er − A1

A0

and for the upfront premium case (β = 1) we receive

L1 −
A1

A0

= GC
(β=1), V MR
1 − A1

A0

GC
(β=1), V MR
0 .
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The proof is straight forward. In the special case of a CMR (σA,0 = σA,1) in com-
bination with β = 0 resp. β = 1 we are able to simplify the representation of the
random variable L1 − A1

A0
.

Corollary 3.1 (Representation L1 − A1

A0
(CMR) - Special cases)

Let the insurance company follow a CMR. In the special case of a postponed premium
(β = 0) it holds

L1 −
A1

A0

= er − A1

A0

and for the upfront premium case (β = 1) we receive

L1 −
A1

A0

= GC
(β=1), CMR
1 − A1

A0

GC
(β=1), CMR
0

= PBS

(
α
A1

A0

, 1, G2, σA,0

)
− A1

A0

PBS (α, 2, G2, σA,0) .

The proof of Corollary 3.1 is stated in Appendix C.5. Notice that in the postponed
premium case L1 − A1

A0
is independent of the guarantee costs and given by the com-

parison of er and the random variable A1

A0
. Thus, the required capital to fulfill the

SFP of ε can be calculated in closed-form in that special case

P
(
L1 −

A1

A0

> Cer
)

≤ ε

⇔P
(
A1

A0

< er(1− C)

)
≤ ε

⇔CCMR,(β=0) ≥ 1− e−reσA,0Φ
−1(ε)+µA,0− 1

2
(σA,0)

2

.

Using the results of Proposition 3.3 resp. 3.4 with the representation of Proposition
3.5 we can conclude that CCMR,(β=0) gives us an upper bound for all required capitals
C, s.t.

C ≤ CCMR,(β=0).

A lower bound for the capital requirements is given by a VMR. But varying the
weighting factors ei of course has an impact on the pricing of the guarantee costs
and thus influences the required capital C s.t. we cannot state a general lower bound
for the capital requirements. But as seen in Figure 3.2 the put price increases with
increasing weighting factor e3 s.t. we can say that the lower bound gets smaller the
more extreme our variable management rule is chosen. Thus we can give a recom-
mended action to the insurance company on how to choose the management rule
depending on how small the required capital should be. We can even determine the
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management rule s.t. the capital requirement C coincides with the one from an up-
front payment without management rule s.t. the risk structures coincide. A detailed
discussion on this topic is given in the next subsection.

Analysis of required capital

To determine the required capital C in regards of the shortfall probability of ε =
0.005 we solve

P
(
L1 −

A1

A0

> Cer
)

≤ ε.

As mentioned before for β ∈]0, 1[ this cannot be solved in closed-form. Thus we use
Monte-Carlo simulations to visualize and discuss the effects.54 The first results we
receive by analyzing the constant management rule case, i.e. π0 = π1. The postponed
premium payment leads to an increase of the capital that is required to fulfill the
SFP compared to the upfront premium case (10.38 percent compared to 8.86 percent
of the initial capital). Thus postponed premium payments lead to an increase in the
riskiness of the insurer’s portfolio. This riskiness can be reduced by introducing
the splitting factor resp. the periodic premium payments: If we split the payment
stream of the insured in a way that at t = 0 she pays 20 percent of her premiums
and at t = 1 she pays 80 percent, then the risk in form of the required capital is
reduced to 9.6 percent which is the median of the possible capital requirements in
our case study. This is a high reduction compared to the fact that only 20 percent
of the insured’s payments are paid at inception. Thus a relatively small investment
fraction at inception can reduce the riskiness of the insurers portfolio. But the best
payment structure for the insurance company in terms of riskiness is the upfront
payment, here the required capital is the smallest. This is not surprising because
the costs for the guarantee are the highest in this case (cf. Figure 3.1). The results
for the constant management rule case are visualized in Figure 3.4.

Using the variable management rule setting and suitable tuple of (e1, e2, e3) s.t. as-
sumption (∗) is fulfilled, we can reduce the required capital compared to the constant
management rule case. This holds for all premium fractions β. In general it holds
that the more extreme the management rule setting is (i.e. e1 and e3 differ greatly)
the less capital is required s.t. the SFP is fulfilled. It is even possible to reduce the
postponed capital requirement to a level of 8.86 percent in our case study (choose
e1 = 0.63; e2 = 1 and e3 = 1.2689), i.e. to the level of the upfront premium in
the constant management rule case. This highlights the importance of the variable
management rule: The insurance company has thus two possible approaches for re-

54We use 106 simulations for the results. Notice that the differentiation between pricing and real
world measure is crucial fo the simulations: The random variable L1 is calculated under the
pricing measure P∗, A1

A0
under the real world measure P.
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Impact of splitting factor on capital requirements (CMR)

0.0 0.2 0.4 0.6 0.8 1.0

0.090

0.092

0.094

0.096

0.098

0.100

0.102

0.104

Splitting factor β

R
eq
ui
re
d
ca
pi
ta
l

Figure 3.4: The picture shows the impact of the splitting factor on the capital requirements for
a constant management rule and the benchmark parameter setting.

ducing its capital requirements if the insured intends to pay a postponed premium:
Either to offer her a periodic payment contract or to implement a management rule
that reduces the capital requirements to the one of an upfront premium payment as
described above.
The second observation regarding the variable management rule is that also in the
case of periodic premium payments or an upfront payment the required capital
to fulfill the SFP is reduced. Finally, we observe that for every management rule
(e1, e2, e3) s.t. assumption (∗) is fulfilled, the splitting factor that minimizes the
capital requirements differs. Thus there exists for every suitable choice of a manage-
ment rule an optimal splitting factor β∗ s.t. the required capital is minimized. The
corresponding pictures for different management rules are stated in Figure 3.5.

3.1.4 Expected utility of the insured

We are not only interested in the impact of the management rules and splitting
factor on the insurance company. Without the willingness of the insured to enter the
contract, the insurance company is not able to conclude the contract. We measure
the willingness to pay for a contract by the expected utility of the insured. The higher
the expected utility, the higher is her willingness to enter the contract. Thus, it is
interesting to analyze the impact of the splitting factor and the management rules
on the expected utility of the insured to determine the optimal portfolio allocation
s.t. her expected utility is maximized. For this we need to define the utility function
of the insured. We consider that the insured has a constant relative risk aversion



3.1. Participating Life Insurance Contracts with Periodic Premium Payments
under Regime Switching 93

Impact of management rules on capital requirements (VMR)
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VMR: e1=0.95; e2=1; e3=1.0363
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VMR: e1=0.9; e2=1; e3=1.0727
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VMR: e1=0.8; e2=1; e3=1.1453
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Figure 3.5: The pictures show the impact of the management rules on the capital requirements.
Beside the benchmark parameter setting we use c1 = c2 = 1. The corresponding
values for e1, e2, e3 are stated in the pictures.

(CRRA), s.t. the utility function is given by

u(x) =

{
x1−γ

1−γ , γ > 1

ln(x), γ = 1,

where γ denotes the relative risk aversion. Of course the fair pricing condition has
to be fulfilled s.t. the optimization problem (without stating the optimization argu-
ment) is of the form

max EP [u(L2)] (3.14)

s.t. e−2r EP∗ [L2] = 1, where

L2 = V2 + (G2 − V2)
+ and V2 = α

(
β
A2

A0

+ (1− β)er
A2

A1

)
.

In the case of no guarantee (g → −∞) the put option vanishes and it holds L2 = V2

s.t. the fair pricing is always fulfilled. For the special case of an upfront premium
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(β = 1) it holds V2 = A2

A0
. This portfolio planning problem already dates back

to Merton (1971). He determines the optimal investment fraction π that has to
be invested in the risky asset s.t. the expected utility is maximized. Thus, he solves
problem (3.14) with π as optimization argument. The solution is given by the famous
Merton solution

πMer =
µ− r

σ2γ
.

If we allow for a guarantee but stick to the case of an upfront premium payment,
the optimal solution in terms of the investment fraction is also given by the Merton
solution. This result can be traced back to Basak and Shapiro (2001) and found e.g.
in Mahayni et al. (2021a) (cf. Chapter 2, Proposition 2.11 for the case ε → 1). The
only difference compared to the situation without guarantee is that the insured does
not participate fully in the asset return because of the incurring guarantee costs
(denoted with ν in Proposition 2.11).
It is now of interest to analyze how the splitting factor and the management rules
have an impact on the optimal expected utility of the insured and how the optimal
investment fraction is influenced by this. In the following analysis we speak of the
certainty equivalent (CE). This is a monotone transformation of the expected utility
given by

CE = u−1 (EP [u(L2)]) .

Because of the monotonicity, the optimal parameter of the CE solution coincides with
the optimal parameter for the expected utility solution. The certainty equivalent
savings rate is furthermore given for T = 2 by

yCE =
1

2
ln(CE).

Impact splitting factor and constant management rule on the expected utility of the
insured

We start the analysis with the constant management rule, i.e. σA,0 = σA,1 = σA

resp. µA,0 = µA,1 = µA. Here we can identify the influence of the splitting factor on
the expected utility. Let us first concentrate on the two special cases where we can
calculate the expected utility in closed-form: the upfront (β = 1) and the postponed
premium case (β = 0).

Proposition 3.7 (Closed-Form Solutions - CMR)
Let L2 be the terminal wealth of the insured, u(·) a CRRA utility function, G2 = e2g

the terminal guarantee feature and Φ(·) the distribution function of the standard
normal distribution.

(a) For the upfront premium case (β = 1) it holds:
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(i) E[u(L(upfront)
2 )] = α(1−γ)

1−γ e(1−γ)(2µA−γσ2
A)

{
1− Φ

(
ln(G2

α )−2[µA−σ2
A(γ− 1

2
)]

√
2σA

)}
+ 1

1−γG
(1−γ)
2 Φ

(
ln(G2

α )−2µA+σ2
A√

2σA

)
.

(ii) CE(upfront) =

{
α(1−γ)e(1−γ)(2µA−γσ2

A)

{
1− Φ

(
ln(G2

α )−2[µA−σ2
A(γ− 1

2
)]

√
2σA

)}

+G
(1−γ)
2 Φ

(
ln(G2

α )−2µA+σ2
A√

2σA

)} 1
1−γ

.

(b) For the postponed case (β = 0) it holds:

(i) E[u(L(postponed)
2 )] = α(1−γ)

1−γ e(1−γ)(r+µA− 1
2
γσ2

A)

{
1− Φ

(
ln(G2

α )−r−µA−σ2
A( 1

2
−γ)

σA

)}
+ 1

1−γG
(1−γ)
2 Φ

(
ln(G2

α )−r−µA+ 1
2
σ2
A

σA

)
.

(ii) CE(postponed) =

{
α(1−γ)e(1−γ)(r+µA− 1

2
γσ2

A)

{
1− Φ

(
ln(G2

α )−r−µA−σ2
A( 1

2
−γ)

σA

)}

+G
(1−γ)
2 Φ

(
ln(G2

α )−r−µA+ 1
2
σ2
A

σA

)} 1
1−γ

.

The proof of Proposition 3.7 is given in Appendix C.6. Notice that the participation
fractions α in part a) and b) differ because of the different premium payment cases.

For the no guarantee case (g → −∞) Corollary 3.2 follows immediately:

Corollary 3.2 (Closed-Form Solutions CMR - no Guarantee)
We assume the same assumptions as in Proposition 3.7. For the special case of
g → −∞ (i.e. α = 1) it holds that L2 = V2, s.t. the following results hold.

(a) Upfront premium (β = 1):

(i) E[u(V (upfront)
2 )] = 1

1−γ e
2(1−γ)(µA− 1

2
γσ2

A).

(ii) CE(upfront) = e2(µA− 1
2
γσ2

A).

(iii) y
(upfront)
CE (π) = µA − 1

2
γσ2

A.

(b) Postponed premium (β = 0):

(i) E[u(V (postponed)
2 )] = 1

1−γ e
(1−γ)(r+µA− 1

2
γσ2

A).
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Impact of splitting factor on CE without guarantee (CMR)
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Figure 3.6: The pictures show the impact of the splitting factor β on the certainty equivalent
for the case of no guarantee for different investment fractions. Beside the benchmark
parameter setting we use γ = 4. The corresponding values of π are stated in the
pictures.

(ii) CE(postponed) = e(r+µA− 1
2
γσ2

A).

(iii) y
(postponed)
CE (π) = 1

2
(r + µA − 1

2
γσ2

A).

The savings rates from Corollary 3.2 can be used to analyze for which investment
fractions π a postponed and for which investment fractions an upfront premium
payment is more beneficial. Again notice that a higher savings rate corresponds to
a higher expected utility.

Proposition 3.8 (Savings Rates - CMR)

Let y
(upfront)
CE (π) and y

(postponed)
CE (π) be the savings rates as defined above for the case

g → −∞, then it holds

y(postponed)(π) > y(upfront)(π) ⇔ π > 2πMer,

y(postponed)(π) = y(upfront)(π) ⇔ π = 2πMer,

y(postponed)(π) < y(upfront)(π) ⇔ π < 2πMer.

The proof of Proposition 3.8 is straight forward. We find that postponing the pre-
mium payments in the case of no guarantee is just favorable compared to the upfront
premium case if the investment fraction of the insurance company is more than twice
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as large as the Merton fraction.
Another interesting case is the one where the investment fraction is exactly twice as
large as the Merton fraction. Here the savings rates and thus the expected utility
of the insured coincides. We will see below that this result can be generalized in
the case of periodic premium payments with no guarantee. Notice again that for a
splitting factor β ∈]0, 1[ there exist no closed-form solutions for the expected utility
of the insured. Thus we have to work with simulations. The results are presented in
Figure 3.6.
First of all notice that the scale of the y-axes in the pictures differ because of the
quite different outcomes for the certainty equivalents. The highest CE is achieved
as discussed before for the Merton solution (here: πMer = 0.3) with an upfront pre-
mium payment. Any deviation from an upfront premium fraction leads to a utility
loss and it gets higher the more we deviate from the upfront case. Thus for the Mer-
ton fraction the highest utility loss occurs if the insured invests with a postponed
premium payment. This observation also holds for investment fractions π < πMer,
because here the investment fractions are smaller than the optimal one and the in-
sured has the willingness to stick as close as possible to the Merton solution. This is
achieved by investing everything of her premium fraction at inception. For the other
investment fraction cases (π > πMer) the situation is different: here the investment
fraction is higher than the optimal Merton solution and thus it is optimal for the
insured to invest a premium fraction of β < 1 to balance the overinvestment into the
risky asset. As seen in Proposition 3.8 for an investment fraction of π = 0.6 = 2πMer

the CE for the upfront and postponed premium case coincide. Even more interesting
is the observation that it holds CE(β) = CE(1− β), s.t. the certainty equivalent is
symmetric around the value of β = 0.5. This determines also the optimal premium
fraction that maximizes the CE for that investment fraction. If the investment frac-
tion is increased even further, the postponed premium case is preferred over the
upfront premium case of the insured and the optimal splitting factor tends more
and more towards the postponed premium case.
Notice that for a given splitting factor the portion β is invested in the asset side
of the insurance company (and the remaining part into the risk-free asset), i.e. βπ
is invested in the risky asset S. Thus we can determine the optimal splitting factor
that maximizes the expected utility for a given investment fraction in the case of no
guarantee in the way that βπ equals the Merton fraction or is ’as close as possible’
to the Merton solution.

Lemma 3.3 (Optimal Splitting Factor CMR - no Guarantee)
For the case of no guarantee (g → −∞) and a prescribed investment fraction π the
optimal splitting factor β∗ that solves the optimization problem

max
β∈[0,1]

EP[u(V2)]
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Figure 3.7: The pictures show the impact of the splitting factor β on the certainty equivalent for
the case of a guarantee of g = 0.0025 for different investment fractions π. Beside the
benchmark parameter setting we use γ = 4. The corresponding values of π are stated
in the pictures.

is given by

β∗ =

{
1, π ≤ πMer

πMer

π
, π > πMer.

Including a guarantee, the optimization problem for a fixed investment fraction
differs from the one above without guarantee. It is given by

max
β∈[0,1]

EP [u(L2)]

s.t. e−2r EP∗ [L2] = 1.

We need to take care of the fair pricing condition and the put option as also the
participation fraction α influence the value of the certainty equivalent, s.t. it is not
possible to receive a similar result as in Lemma 3.3. But the interpretation of the
results compared to the CMR case without guarantee is similar, pictured in Figure
3.7.
Again notice that the scales of the y-axes differ. Overall we find that the certainty
equivalents are smaller than the ones in the no guarantee case. This is because the
optimal solution of a CRRA investor is given by a pure constant mix strategy (the
Merton solution). It follows that any guarantee scheme is undesired by a CRRA
investor s.t. any deviation from the optimal Merton solution results in a utility loss
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of the insured. The overall optimal solution as mentioned above is also in this case
given by the Merton fraction and an upfront premium fraction. For an investment
fraction π < πMer we receive the highest CE for upfront premium fractions and for
π > πMer the insured needs to split her contributions to receive the highest certainty
equivalent. The most important difference compared to the situation without guar-
antee is, that the postponed premium is in none of the cases optimal. Thus we can
conclude that in case of a CMR and a guarantee splitting the premium payments
can be optimal for the insured in terms of the certainty equivalent, but postponing
the payments is not an option for her.

Impact splitting factor and variable management rule on the expected utility of the
insured

For implementing a VMR we have to take care that Assumption (∗) is fulfilled. We
are maximizing over all splitting factors β ∈ [0, 1] the expected utility for different
(prescribed) investment fractions. Thus we have to adapt the choices of e1, e2 and e3
as discussed in Remark 3.3. Let us again start with the analysis of the no guarantee
case.
The first observation - independent of the investment fraction - is, that the certainty
equivalents under a VMR are smaller than in the CMR case. This is because the
VMR influences the investment fraction s.t. there exists a deviation from the Merton
solution which causes certainty equivalent losses.
A second major observation and difference compared to the constant management
rule is that the overall optimal solution is again achieved by the Merton fraction but
with a splitting factor of β < 1. This is meaningful because in the case of a variable
management rule the insurance company adapts the investment fraction over time
to the market movements and thus following the ’static’ Merton solution (i.e. β = 1)
cannot lead to the optimal certainty equivalent. This observation is plotted in Figure
3.8. Notice that the right side of the figure also refers to an investment fraction of
π = 0.3. It shows, in an enlarged way, the most interesting interval for the premium
fraction. The effect is rather small for the usage of a management rule that accounts
for a portfolio insurance strategy (i.e. e1 < 1, e2 = 1 and e3 > 1). If we use a more
risky strategy that increases the investments in bad market states and decreases the
investments in a good state (i.e. e1 > 1, e2 = 1 and e3 < 1 s.t. Assumption (∗) is
fulfilled; we call it a gambling strategy), the effect also occurs in that magnitude.
Thus we can conclude that a management rule affects the optimal solution in the
way that it deviates from the Merton solution but the effects are rather small.
Besides these two observations, the certainty equivalents for different investment
fractions behave similarly to the ones in the CMR case. For completeness we show
other investment fraction cases in Appendix C.7.

Including a guarantee feature to the VMR setting, the differentiation between the
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Impact of variable management rule on Merton solution without
guarantee
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Figure 3.8: The pictures show the impact of the splitting factor β and the variable management
rule on the certainty equivalent for the case of no guarantee. Besides of the benchmark
parameter setting we use γ = 4, e1 = 0.8, e2 = 1 and e3 = 1.1453. The corresponding
value of π is the Merton fraction, i.e. π = 0.3. The left picture shows the certainty
equivalent for all premium fractions β ∈ [0, 1] and the right picture focuses on the
fractions in the interval [0.98, 1] to display the maximum CE.

portfolio insurance strategy and the more risky gambling strategy is even more im-
portant. Analyzing the portfolio insurance strategy we show that introducing the
management rule leads to the fact that the certainty equivalent of the insured is
maximized for an upfront premium fraction, independent of the prescribed invest-
ment fraction. This can be interpreted in the way that the risk averse insured is
protected by the portfolio insurance strategy (if the asset evolution for period [0, 1]
has not been promising, the investment fraction into the risky asset is reduced) and
thus invests all of her contributions at inception.
The gambling strategy in contrast leads to a completely different behavior: Here the
optimal splitting factor is smaller than one, s.t. postponing some of the insured’s
payments increases her certainty equivalent. Even in the Merton solution case the
deviation from an upfront premium is more present.55 Furthermore, we find that the
certainty equivalents in general are greater than the ones in the portfolio insurance
setting. Thus we can conclude that the more risky gambling strategy together with
splitting the contributions (investing everything at inception would be too risky for
the risk averse insured) leads to a higher certainty equivalent than the more pro-
tective portfolio insurance strategy. The observations are plotted in Figure 3.9. The
first row presents the portfolio insurance strategy and the second row the gambling
strategy.

55 If we use for example the strategy e1 = 1.2, e2 = 1 and e3 = 0.8547 and invest the Merton
fraction we receive the highest certainty equivalent for a splitting factor of β = 0.813.
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Impact of variable management rule on Merton solution with guarantee
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Figure 3.9: The pictures show the impact of the splitting factor β and the variable management
rule on the certainty equivalent for the case of no guarantee. Beside the benchmark
parameter setting we use γ = 4 and e1 = 0.8, e2 = 1. The value of e3 is chosen de-
pending on the investment fraction s.t. Assumption (∗) is fulfilled. The corresponding
values of π are stated in the pictures.

Finally notice, that our results are obtained for a fixed guarantee amount g and a
fixed constant relative risk aversion γ. First of all recall that the choices of e1, e2, e3
for the VMR do not depend on the level of the risk aversion and the guarantee level.
Thus changes in the two parameters do not influence the choices of e1, e2, e3 s.t.
Assumption (∗) is fulfilled. Varying the level of relative risk aversion leads to similar
results: In the CMR case the received results qualitatively coincide for every level
of risk aversion γ with our benchmark setting of γ = 4: For π ≤ πMer the upfront
premium case is optimal and for π > πMer it is optimal to split the contribution
to be as close as possible on the Merton solution. Of course for g → −∞ it can
be the case that because of a small level of risk aversion γ the Merton fraction is
greater than 0.5 s.t. for an investment fraction of π ∈ [0, 1] it is never the case that
π > 2πMer and thus the postponed premium case is never preferred over the upfront
investment. If γ is large enough (i.e. πMer is small) and applying Lemma 3.3 we
find that a postponed contribution can be preferred over the upfront premium case
for even small investment fractions. Thus a postponed premium payment can even
lead to an optimal solution for a given investment fraction. For the VMR we also
derive similar results as in our benchmark case: The Merton solution is not optimal
anymore for the no guarantee case because the insured splits her contributions to
receive the highest certainty equivalent. If we allow a guarantee and implement a
gambling strategy, the optimal splitting factor β is smaller than one and even the
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optimal investment fraction does not coincide with the Merton fraction.
If we vary the prescribed guarantee g we find that the certainty equivalents increase
with a decreasing g because the insured as a CRRA investor does not seek a guar-
antee. For the CMR the guarantee does not affect the results as described above:
The representation of Mahayni et al. (2021a) holds for every guarantee amount g.
The only difference here is the participation fraction because with changing guaran-
tee rates the guarantee costs differ and thus the participation fraction. In case of a
VMR the effects strongly depend on the value of the guarantee and the management
rule choice: For a guarantee g > 0 the portfolio insurance strategy leads to optimal
splitting factors of β = 1, independent of the investment fraction. But the higher the
guarantee rate g, the closer the certainty equivalents for different splitting factors
(e.g. if we set g = 0.009 then the difference between upfront and postponed premium
in terms of the certainty equivalent is just 0.0028). For a negative guarantee rate the
behavior changes and it is optimal to split the premium payments. The more neg-
ative the guarantee rate, the more extreme is this splitting reaction. Moreover, the
differences in the certainty equivalents between the best and worst decision increase
with decreasing guarantee. If we implement a gambling strategy there are opposing
effects compared to the portfolio insurance strategy: For a negative guarantee rate
it is optimal in the Merton fraction to invest everything at inception and even for
an investment fraction greater than the Merton solution we receive less splitting
and more investing in the first interval compared to the situation where the guar-
antee rate is positive. In contrast, a more positive guarantee rate (compared to our
benchmark case of g = 0.0025) leads to more splitting and thus to the reaction that
the insured invests more of her contribution at the second interval. The results for
the gambling strategy are pictured in Figure 3.10. The corresponding results for the
portfolio insurance strategy are stated in Appendix C.8.

3.1.5 Conclusion

We analyze the impact of periodic premium payments of the insured on the pricing of
contracts, the risk management of the insurance company and the expected utility of
the insured under management rules. The contract offers the insured the maximum
of a guaranteed rate and a participation in the asset returns. Within a stylized two
period Merton model the management rules influence the investment fraction and
thus affect the risk structure of the second period. We find that the splitting factor,
which determines the periodic premium payments of the insured has a huge impact
on the pricing of the contract. For a constant management rule we explore that
the guarantee costs, which can be stated in quasi closed-form, are monotonically
increasing and convex in the splitting factor β. Including a variable management
rule, which has to fulfill some assumptions to avoid violations on the fair pricing, we
can compare the guarantee costs of the CMR with the ones of the VMR. We show
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Impact of guarantee rate on variable management rules
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Figure 3.10: The pictures show the impact of the guarantee rate on the optimal splitting factors
β for variable gambling management rule. Beside the benchmark parameter setting
we use γ = 4 and e1 = 1.2, e2 = 1. The value of e3 is chosen depending on the
investment fraction s.t. Assumption (∗) is fulfilled. The corresponding values of π
and g are stated in the pictures.

that the costs for a VMR are always greater than the ones under a CMR and that
the guarantee costs are also convex and monotonically increasing in the splitting
factor. For the risk management of the insurance company we find that splitting
the contributions of the insured leads to an increase of the required capital for the
insurance company s.t. a shortfall probability constraint is fulfilled. The required
capital can be reduced by implementing a variable management rule to adapt to the
riskiness of the portfolio. Finally, we discuss the impact of the splitting factor on the
expected utility of the insured. For a constant management rule the upfront premium
case in combination with the Merton fraction leads to the highest expected utility
of the insured. Deviations from the Merton fraction imply that the optimal splitting
factor has to be adapted to a value smaller than one. For variable management rules
we find that an upfront contribution is not optimal for the insured and even the
Merton fraction itself as investment fraction is not optimal anymore. The effects
depend on the choice of the guarantee level g.
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3.2 Literature review on portfolio planning including guarantee fea-
tures

In the previous section, we analyzed a contract with periodic premium payments
including a terminal guarantee feature. Besides the terminal guarantee there are
other interesting and for the praxis relevant guarantee features: The ratchet guar-
antee is a frequently used feature in life insurance contracts and in the context of
variable annuities (c.f. the paper of Bauer et al. (2008) and Ledlie et al. (2008)).
Also, the cliquet feature is used and analyzed by many authors, see e.g. in Hieber et
al. (2016) for the perspective of a life insurance analysis and Bacinello et al. (2011)
for the variable annuity context. A detailed description of these guarantee features
in the context of upfront premium payments is presented by Ebert et al. (2012) and
Ruß and Schelling (2018). Thus an analysis of the impact of these guarantee features
on the optimal portfolio planning of the insurance company resp. for the insured is
another interesting research aspect: As discussed in the previous section, the CRRA
investor does not want a terminal guarantee (including the guarantee feature leads
to a decrease in the certainty equivalent). This is due to the fact that the guaran-
tee can be seen as an additionally imposed constraint on the optimal investment
strategy and thus reduces the value of the optimal solution. We investigate in terms
of a literature overview if the other guarantee features evoke a different behavior
of the insured resp. under which assumptions or models the insured wants a guar-
antee feature. To answer this question we analyze the portfolio planning literature
that includes guarantee features. Before, let us briefly discuss the two mentioned
guarantee concepts in our periodic premium payment setting. This is an extension
of the existing results on cliquet and ratchet guarantees where, to the best of our
knowledge, only upfront contributions are included.
Following the notation as in the previous section we can define the Ratchet Guaran-
tee feature. The insured’s terminal wealth including that guarantee feature, denoted

with L
(Ratch)
2 , is given by

L
(Ratch)
2 = max{V1, V2, G2}

= V2 + (max{G2, V1} − V2)
+

= α

(
β
A2

A0
+ (1− β)er

A2

A1

)
+

+

(
max

{
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(
β
A1

A0
+ (1− β)er

)}
−
[
α

(
β
A2

A0
+ (1− β)er

A2

A1

)])+

. (3.15)

Here the comparison between the guarantee and the asset returns take place at
every discrete point in time (in our setting at t = 1 and t = 2). The insured receives
the overall maximum of the asset return evolution over time resp. the guarantee
amount G2. The costs for the ratchet guarantee scheme can be written as a put
option as seen in equation (3.15). Then the ratchet guarantee costs for the insured,
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denoted with GC
(Ratch)
0 , are given by

GC
(Ratch)
0 (β) = e−2rEP∗

[
(max {G2, V1} − V2)

+] . (3.16)

The other guarantee feature besides the terminal guarantee that is often applied in
theory and practice is the so-called Cliquet-Style Guarantee feature. Combining this
guarantee promise with the terminal wealth of the investment strategy, the insured’s
terminal payoff L

(Cliq)
2 is given by

L
(Cliq)
2 = max {V1, e

g}max

{
V2

V1

, eg
}

(3.17)

= max
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+ (1− β)er
)
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}
max

{
A2

A1

, eg
}

(3.18)

This guarantee feature compares at every discrete point in time the return from
the investment strategy with the one period guarantee rate and takes the maximum
of both components. This is done for every discrete step in time. A representation
for the upfront premium case can for example be found in the paper of Ruß and
Schelling (2018). For fair pricing of the guarantee costs without periodic payments
we can also refer to Ruß and Schelling (2018) or Kijima and Wong (2007).

To state the guarantee costs for the cliquet-style guarantee in the periodic setting
we use the fair pricing condition of the insured’s liabilities. It holds:

e−2rEP∗

[
L
(Cliq)
2

]
= α +GC

(Cliq)
0 (β).

Rearranging this equation we receive

GC
(Cliq)
0 (β) = e−2rEP∗

[
L
(Cliq)
2

]
− α.

If we take the possibility into account, that the guaranteed interest rate g is vanish-
ing, i.e. g → −∞, the terminal guarantee and cliquet style guarantee feature coincide
and just gives the terminal wealth of the investment strategy. In the ratchet guar-
antee case there still exists a guarantee feature, even if g → −∞.56

After presenting and analyzing the guarantee features, let us investigate if cliquet
resp. ratchet guarantees are more wanted by CRRA investors than the terminal
guarantee, i.e. if the expected utility is maximized for a guarantee rate g > −∞
for these guarantee features. Moreover, we discuss the assumptions and models un-
der which a need for a guarantee component is identified. This is done in terms

56 It could be interesting to analyze the guarantee schemes under periodic premium payments as
in the previous section to analyze the impact of the splitting factor and management rules on
the pricing, the risk management and the expected utility of the insured. A first draft working
paper on this topic is given by Offermann and Stein (2021).
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of a literature review. One of the first papers that analyzes the impact of different
guarantee features on the expected utility of the insured is Tepla (2001). He ana-
lyzes the optimal investment fraction and optimal terminal wealth under a terminal
guarantee with a HARA utility function. Jensen and Sørensen (2001) analyze the
optimal CRRA portfolio choice under a terminal guarantee feature.57 For a 1-dim.
Black-Scholes model with deterministic interest rate and for a Vasicek term struc-
ture model, they present the impact of the terminal guarantee component on the
expected utility of the insured. Allowing a guarantee feature results in a utility loss.
The paper of Deelstra et al. (2003) investigates the optimal portfolio allocation of a
pension fund in which terminal wealth is protected with a terminal guarantee rate.
In the context of stochastic interest rates and the special case of a CRRA utility
function of the investor, they determine the optimal investment strategy where short
selling and borrowing are allowed. In a follow-up paper (Deelstra et al. (2004)) they
furthermore investigate the optimal terminal guarantee component that maximizes
the investor’s expected utility. But even the optimal determined guarantee rate can-
not create a higher expected utility than the case without a guarantee.
El Karoui et al. (2005) analyze under CRRA utility the optimal terminal wealth in-
cluding a continuous-time guarantee component.58 They do not compare the optimal
solution under the continuous guarantee feature with the Merton solution in terms of
expected utility but we can argue that if a CRRA investor does not want a terminal
guarantee then she (resp. her expected utility) suffers even more under a continu-
ous feature. Boyle and Tian (2007) analyze the optimal terminal wealth within a
n-dim. market model where the guarantee component is modeled via a hedgeable
random variable. They state the optimal terminal wealth s.t. this terminal guaran-
tee is fulfilled with a prescribed probability. This presents a generalization of the
results from Basak and Shapiro (2001). Branger et al. (2010) also analyzes different
investment strategies for different annual guarantee schemes under CRRA utility.
The utility losses for a suboptimal investment strategy resp. guarantee scheme is
analyzed and illustrated. Moreover, these utility losses are also visible in the results
of Schmeiser and Wagner (2015), who analyze amongst other results how to set the
terminal guarantee from a regulator’s point of view s.t. the CRRA expected utility of
the insured is maximized. This is done with Monte-Carlo simulations. Furthermore,
Mahayni et al. (2021a) also solve this problem but in quasi closed-form and discuss
the impact of a terminal guarantee feature together with the impact of default risk
on the optimal expected utility maximizing terminal wealth of the insured.
None of the so far analyzed papers can explain the need for a guarantee component:
The CRRA investor does neither want a terminal nor a dynamic guarantee compo-
nent. Also a more complex setting with stochastic interest rates or other products
as e.g. pension funds cannot explain the demand for guarantees.

57They call it a constant interest rate guarantee.
58 In the paper it is called an American guarantee feature.
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A first hint is given by Chen et al. (2015). They include mortality risk in their anal-
ysis and show that under this more realistic contract modeling, the expected utility
investor prefers products with a terminal guarantee. As mentioned in the previous
chapter, mortality risk seems an important and natural modeling component in a
life insurance contract to represent a more realistic economy.59 Another interesting
aspect in that research area that has influenced its development from that point on
is given by Døskeland and Nordahl (2008). They are the first that include cumulative
prospect theory (CPT)60 into the analysis: in a 1-dim. Black-Scholes Model setup
they analyze the effects of terminal and yearly guarantees on the terminal wealth of
a CRRA investor. They also find that the guarantee feature implies utility losses.
Applying CPT into the model, the demand for guarantees can be explained. This is
the first hint under which assumptions the integration of behavioral aspects into the
analysis of guarantee components seems to be expedient. For an analysis of different
investment strategies under CPT we refer to Dierkes et al. (2010) and Dichtl and
Drobetz (2011). The general portfolio choice problem under CPT is investigated by
He and Zhou (2011).
Many other papers discuss CPT in optimal portfolio allocation to explain the de-
mand for guarantees: Ebert et al. (2012) analyze terminal guarantees as well as
ratchet and cliquet guarantees on the terminal wealth of the insured with upfront
contributions in a 1-dim. Black-Scholes Model setup. They determine the expected
utility of a CRRA investor and include an S-shaped utility function from Cumula-
tive Prospect Theory (CPT) into the analysis. Their findings suggest that Prospect
Theory investors favor the terminal guarantee feature compared to the more sophis-
ticated ratchet and cliquet style guarantees.61

Ruß and Schelling (2018) include even Multi-Cumulative Prospect Theory (MCPT)62

into the analysis and find under the same assumption as Ebert et al. (2012), that
under MCPT the demand for cliquet style guarantee products can be explained.
Thus, we can conclude that under CRRA utility assumption a terminal guarantee
is in most of the cases not wanted by the investor. The only exception is a more
realistic modeling including mortality risk: the combination of long time horizons,
mortality risk and a high risk aversion as driving factors can explain the demand for
products with guarantees. Furthermore, behavioral aspects from Prospect Theory
resp. CPT and MCPT can explain the demand for terminal as also for cliquet style
guarantee features. If we do not incorporate these assumptions resp. models, the
investor will always suffer from guarantees in form of a loss in her expected utility.

59The optimal portfolio allocation problem including mortality risk for a CRRA investor is solved
by Milevsky and Young (2007).

60Cumulative prospect theory dates back to Tversky and Kahneman (1992).
61Boyle and Tian (2008) are the first ones that analyze besides the terminal guarantee a ratchet
guarantee feature w.r.t. the optimal expected utility maximizing investment fraction.

62Multi-Cumulative prospect Theory is based on CPT and considers annual changes in the contract
values.
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Authors Guarantee
Feature

Optimization
Problem

Assumptions

Jensen and
Sørensen
(2001)

terminal EU, (πt)t∈[0,T ] n-dim. market model with CRRA
utility and upfront contributions;
include constant interest rate as
well as Vasicek term structure
model

Tepla
(2001)

terminal EU, (πt)t∈[0,T ] complete, n-dim. model with
strictly increasing, strictly con-
cave and continuously differen-
tiable utility function

Deelstra et
al. (2003)

terminal EU, (πt)t∈[0,T ] complete market with 1 risk-free,
1 risky asset and a zero-coupon
bond; short rate process is a gen-
eralization of Vasicek resp. the
Cox-Ingersoll-Ross model

Deelstra et
al. (2004)

terminal EU, GT complete market model with 1
risk-free asset, n risky assets;
CRRA utility

Iwaki and
Yumae
(2004)

terminal MV n-dim. market model and upfront
contributions

El Karoui
et al.
(2005)

continuous EU, WT 1-dim. Black-Scholes model with
CRRA utility function

Boyle
and Tian
(2007)

terminal
modeled with
random vari-
able

EU, (πt)t∈[0,T ] complete model with n risky as-
sets and 1 risk-free asset; utility
function is continuously differen-
tiable, strictly increasing and con-
cave and fulfills Inada; guarantee
should be fulfilled within a SFP
constraint

Boyle
and Tian
(2008)

terminal
ratchet

EU, (πt)t∈[0,T ] strictly increasing, strictly con-
cave and twice differentiable util-
ity function

Døskeland
and Nor-
dahl
(2008)

terminal
annual

EU, (πt)t∈[0,T ] 1-dim. black-Scholes Model,
CRRA utility resp. S-shaped
CPT utility function

(To be continued)
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Authors Guarantee
Feature

Optimization
Problem

Assumptions

Branger et
al. (2010)

annual EU, (πt)t∈[0,T ] 1-dim. Black-Scholes model;
CRRA utility

Dichtl and
Drobetz
(2011)

terminal
stopp loss

EU, (πt)t∈[0,T ] 1-dim. Black-Scholes model;
CRRA utility and S-shaped CPT
utility function

Di Giac-
into et al.
(2011)

terminal EU, (πt)t∈[0,T ] 1-dim. black-Scholes Model; util-
ity function is twice continuously
differentiable and strictly increas-
ing and concave

Ebert et al.
(2012)

terminal
ratchet
cliquet

EU, (πt)t∈[0,T ] 1-dim. Black-Scholes Model,
CRRA utility and S-shaped CPT
utility; upfront contributions

Chen et al.
(2015)

terminal
annual

EU, (πt)t∈[0,T ] 1-dim. Black-Scholes Model in-
cluding mortality risk; CRRA
utility and S-shaped CPT utility
function

Schmeiser
and Wag-
ner (2015)

terminal EU, GT 1-dim. Black-Scholes Model,
CRRA utility

Ruß and
Schelling
(2018)

terminal
ratchet
cliquet

EU, (πt)t∈[0,T ] 1-dim. Black-Scholes Model,
MCPT utility function

He et al.
(2020)

terminal EU, (πt)t∈[0,T ] 1-dim. Black-Scholes Model; S-
shaped CPT utility function

Mahayni
et al.
(2021a)

terminal EU, GT

EU, WT

complete, 1-dim. market model;
CRRA utility

EU=expected utility, MV=Mean-Variance, CTP=cumulative prospect theory

Table 3.2: Selected papers on portfolio planning including guarantee features



Chapter 4

Parameter uncertainty, ambiguity and optimal asset allocation

under time-inconsistency

In this chapter we analyze the impact of uncertainty on an optimal asset allocation
problem. In general, uncertainty is connected to the situation where we do not know
the exact parameters in a model resp. only know the probability of occurrence of
these parameters. Not knowing about the exact model framework might also cause
uncertainty. In this chapter we want to focus on a setup where the model is known
but parameters are uncertain. A current example for this uncertainty aspect is given
by the COVID 19 disease or the climate change: both situations imply uncertainty
and make it impossible to know the exact parameters of a financial model: For ex-
ample we know that the risky assets in a financial market are following a 1-dim.
Black-Scholes model, but the drift and volatility parameters µ and σ are uncertain
resp. only a probability distribution about the true parameters is known. An even
more uncertain situation can occur if we even do not know the exact distribution of
the parameters. This is referred to a situation under ambiguity.
Under these uncertainty situations it is complicated to decide on investments. There
is the unrealistic possibility that an expert knows the true parameters and can in-
vest the overall optimal solution: in our Black-Scholes model setup under CRRA
preferences of the investor this is the Merton solution. Another possibility is that
the investor observes the market and receives information about the parameters.
This corresponds to the topic of learning: Here the investor can implement a strat-
egy based on the learned parameters and update the strategy in recurring points in
time. As a third possibility the investor might determine the optimal solution based
on the current knowledge about the parameters and the probabilities of them. She
invests the - at that point in time - optimal solution for the whole investment hori-
zon and does not change the investment fraction anymore. This refers to a so-called
pre-commitment strategy. An example for a pre-commitment strategy is given in the
decision of building or not building a nuclear power plant. There exists uncertainty
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about the effects of it and one has to decide today if it should be build or not. The
decision is not revisable s.t. one has to stick to the result.
In this chapter we focus on these pre-commitment strategies. Specifically, we are
working in a Black-Scholes Model setup where two possibilities for the drift and
volatility are given: (µ1, σ1) refers to a good evolution of the market, i.e. a high drift
rate and a small volatility is assumed and (µ2, σ2) refers to a bad evolution of the
market with low drift rate and a high volatility. We do not know which possibility
is corresponding to reality but we own probabilities of occurrence in terms of p for
the good market evolution and (1 − p) for the bad evolution. The probabilities p
and (1 − p) refer to a so-called a priori lottery. Under CRRA preferences it is now
interesting to analyze how the optimal pre-commitment solution, depending on the
a priori lottery and the remaining investment horizon, looks like. We discuss the op-
timal solution in detail and analyze limiting cases where the remaining investment
horizon is zero or infinite.
Another aspect that is worth being analyzed is the willingness of the uniformed in-
vestor to receive the information about the true regime. We refer to it as the value of
information. Furthermore, it is interesting to see, how the optimal pre-commitment
solution and the value of information changes if we analyze the given setting under
ambiguity. Finally, we can extend the analysis and allow that the uncertainty is not
only given in t = 0 but rather can occur during the whole investment horizon. This
refers to a setup under regime-switching, modeled with a Markov-process. Again, we
can calculate the optimal pre-commitment strategy and compare it to the situation
in the a priori lottery case.
Another interesting question is, what happens to the optimal solution if we change
some assumptions resp. the model. This question is answered in a literature overview.
We account for learning and ambiguity in portfolio allocation itself and analyze how
regime switching in portfolio allocation affects the optimal solution.
Following this line of arguments we proceed as follows: First, we introduce the reader
to ambiguity and learning as also discuss the impact of these topics on portfolio al-
location. In the main part of this chapter we present the optimal pre-commitment
strategy under an a priori lottery and under ambiguity. Furthermore, we analyze
the value of information in these two cases and give an extension of the model by
investigating situations in which regime-switching can occur. Finally, we discuss how
the results under regime switching are affected, if we differ the assumptions or the
model framework in terms of a literature overview.
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4.1 Ambiguity and learning in portfolio planning - Discussion and
literature review

The topic of parameter uncertainty is widely spread in literature. Especially in the
context of optimal portfolio allocation, e.g. Kan and Zhou (2007) and Xia (2001),
who analyze the effects of parameter uncertainty on dynamic portfolio allocation in-
cluding the possibility of learning about the parameters. In this chapter parameter
uncertainty is characterized in the way that the distributional parameters of the cor-
responding risks are uncertain, e.g. we know that the risk X is normally distributed
but the corresponding drift and/or volatility parameter µ and σ is unknown or can
change from one period to another. The importance of parameter uncertainty in
portfolio optimization is e.g. discussed by Rogers (2001).
Uncertainty may has an effect on different aspects: It can exist w.r.t. the distribu-
tional parameters as described above. But there could also be uncertainty about the
confidence interval or even about the risk measure itself because of new regulatory
requirements. Uncertainty can be overcome by learning about the market over time
and adapting the corresponding investment strategy. Ambiguity, on the other side,
is also important when it comes to the subject of uncertainty. In the main part
of this section we model the parameter uncertainty with a lottery, i.e. the investor
does not know the true regime but has some probabilities for the occurrence of the
true regime. If this probabilities are also uncertain, we speak of a situation under
ambiguity. This will be explained in the next subsection in more detail.

4.1.1 Ambiguity in portfolio planning

The term ambiguity derives from behavioral economics research and dates back to
Arrow (1951). The work of Ellsberg (1961) describes the paradox that people be-
have differently in situations under risk where the probabilities of the outcomes are
known compared to situations where they are ambiguous and do not know the cor-
responding probabilities to their actions. There are many papers with behavioral
focus that deal with ambiguity. We want to discuss the most important results and
refer to the literature given within the stated papers:
Fox and Tversky (1995) investigate that decision-makers are ambiguity averse. This
is due to a comparison of the ambiguous setting to a less ambiguous resp. more fa-
miliar situation. They call it the comparative ignorance hypothesis. Fox and Weber
(2002) extend these results by observing new ways in which the decision context can
affect the willingness to act under uncertainty that do not rely on the comparative
evaluation scheme. A theoretical discussion and review of the ambiguity literature is
given in Epstein and Schneider (2010). Trautmann et al. (2011) find that preference
reversals occur in measurements of ambiguity aversion and Gollier (2011) connects
ambiguity with portfolio choices. He finds that in general ambiguity aversion does
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not reduce the demand for the uncertain asset. One needs to define sufficient con-
ditions to guarantee that an increase in ambiguity aversion reduces the demand for
the ambiguous asset. The combination of portfolio choice and ambiguity is an inter-
esting research question that is also investigated in the next section.
Portfolio choices are often determined by looking at the expected utility of the cor-
responding investment. Decisions under ambiguity can also be modeled in a similar
way, using the smooth ambiguity model by Klibanoff et al. (2005). They extend the
expected utility approach by overlaying the situation under risk with another un-
certainty situation: The expected utility approach assigns every outcome xi with a
utility function u(xi) and then weights the outcome with the corresponding proba-
bility pi for the state of the world xi. Thus the expected utility is given by

EP[u(X)] =
N∑
i=1

piu(xi) resp. EP[u(X)] =

∫
Ω

u(X)dP,

depending on whether it is a discrete or a continuous setup. As mentioned before the
ambiguity situation occurs if there is uncertainty about the probabilities that are
assigned to the different states of the world. This is taken into account by another
probability measure, denoted here with P∗, that assigns probabilities to all possible
probability measures P ∈ P . For example, if we set ourselves in a discrete setting and
have two possible probability measures, then q denotes the probability to be under
the first probability measure with the probabilities p11, p

1
2, · · · , p1N and (1−q) denotes

the probability to be under the second measure with probabilities p21, p
2
2, · · · , p2N .

Moreover, the model of Klibanoff et al. (2005) also addresses the ambiguity aversion
which has been investigated by Fox and Tversky (1995) as stated above. For this we
overlay the expected utility of the decision without ambiguity with another function
v. If v is concave, then it accounts for ambiguity aversion. It is thus a similar concept
as in the utility context where u accounts for risk aversion if the function is concave.
Thus, if we combine the two ingredients, we receive the smooth ambiguity model of
Klibanoff et al. (2005). In our simple example the smooth ambiguity model is given
by

qv

(
N∑
i=1

p1iu(xi)

)
+ (1− q)v

(
N∑
i=1

p2iu(xi)

)
.

To state it in general terms, the decision-maker evaluates the double expected utility
given in terms of

EP∗ [v (EP[u(X)])] =

∫
Ω̃

v

(∫
Ω

u(X)dP
)
dP∗.

In general there are many possibilities to choose the utility and ambiguity functions
u and v. In our main section of this chapter we model both functions with a CRRA
function. For the risk situation we choose u(x) = x1−γ

1−γ and for the the situation
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under ambiguity we choose v(x) = x1−η

1−η , s.t. γ denotes the risk aversion parameter
and η the ambiguity aversion parameter. The smooth ambiguity model is widely
spread to model ambiguity in economics. Ju and Miao (2012) as also Chen et al.
(2014) analyze the asset allocation problem in case of ambiguous returns. Ahn et
al. (2014) compare different ambiguity models in the context of portfolio selection
and receive that the smooth ambiguity model can explain most of the decisions.
In contrast Halevy (2007) shows that not all of the ambiguity situations can be
explained with this model and Epstein (2010) finds some paradoxes regarding this
model. The smooth ambiguity model has even been extended by Klibanoff et al.
(2009). The authors include recursive preferences in their setting.

There are also other possibilities to model ambiguity. Multiple prior preferences
are one of the most common ones beside the smooth ambiguity approach. They
date date back to Gilboa and Schmeidler (1989). An investor with multiple prior
preferences has got several priors (probability distributions). She selects the prior
after choosing a portfolio that yields the lowest expected utility given her choice.
Dow and da Costa Werlang (1992), Chen and Epstein (2002), Epstein and Wang
(2004) as also Garlappi et al. (2007) are some examples for research papers that use
this approach to model ambiguity in asset pricing and also to determine the optimal
portfolio under ambiguity.

This shows that ambiguity is widely discussed in economics. The behavioral aspects
and also the connection towards the financial topics (and especially in portfolio allo-
cation) is obvious. This is also underlined by results of Hansen and Sargent (2001),
Garlappi et al. (2007) and Jeong et al. (2015) who show that investors are rather
ambiguity avers than ambiguity neutral and thus it is useful to include ambiguity
aspects in the analysis of an optimal portfolio.
We want to discuss how ambiguity affects the optimal investment solution in the
risky resp. uncertain asset compared to the Merton fraction in a situation without
ambiguity. This is done in form of a literature overview. The selected papers men-
tioned are stated in Table 4.1, where we present the corresponding ambiguity model
and the research topic of the analyzed papers.
Dow and da Costa Werlang (1992) have been the first who introduce ambiguity in
the context of portfolio optimization. They analyze a two-period model in a multiple
prior setting by considering a market with one ambiguous asset and one risk-free
bond. They show that the investor only invests in the ambiguous asset if its price
is smaller than the expected asset return value. Maenhout (2004) shows that in an
optimal portfolio allocation model ambiguity aversion decreases the optimal share
in equities. Furthermore, Easley and O’Hara (2009) show under a multiple prior
setting that regulation of unlikely events can moderate the effects of ambiguity and
increase the participation in financial market. Moreover, they show that in some
markets there is no demand for a risky asset if the drift parameter µ belongs to a
certain interval. This can be attributed to the ambiguity aversion of the investor
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and underlines the findings of Garlappi et al. (2007): They explore that optimal
portfolios overweight risk-free assets if ambiguity is considered. The results can also
be traced back to Epstein and Schneider (2008) who find in a multiple-prior setting
that ambiguity averse decision makers react more strongly to bad news than to good
news and that they avoid volatile assets. Guidolin and Rinaldi (2010) generalize the
findings of Easley and O’Hara (2009) by showing that there exists an idiosyncratic
as also a systemic uncertainty in the market. Furthermore, they can confirm the
results of Easley and O’Hara (2009), that there exists a price interval where it is
optimal not to invest in the risky asset.
Taboga (2005) uses the smooth ambiguity approach to select a portfolio under ambi-
guity with a two-stage preferences approach. He finds out that the optimal solution
weights all possibilities but gives more weight to the more pessimistic ones. Gollier
(2011) explores the determinants of the demand for uncertain assets and of asset
prices if investors are ambiguity averse with the smooth ambiguity model. As dis-
cussed above, he finds that only under sufficient conditions the investment in the
more ambiguous asset is reduced if we increase the ambiguity aversion. Moreover,
Maccheroni et al. (2013) include the smooth ambiguity approach into the mean-
variance optimization by analyzing a risky, a risk-free and an ambiguous asset. They
confirm the results of Gollier (2011), that the investment in the more ambiguous as-
set is reduced only under conditions. Chen et al. (2014) analyze the optimal portfolio
weight and consumption in a generalized smooth ambiguity model for i.i.d. assump-
tions as also for a vector autoregressive model (VAR). They show that the optimal
investment in case of ambiguity is more conservative than without ambiguity. Also
the paper of Zhang et al. (2017) in a n-dim. discrete model setup with transaction
costs and parameter uncertainty shows that the optimal dynamic trading rule gives
less weight to risky asset under ambiguity.
Mostly all papers in this literature review give reason for assuming that the investor
gives more weight to the pessimistic possibilities under ambiguity and thus reduces
the investment in the the ambiguous asset compared to the situation without am-
biguity. This result holds true independently of the concrete ambiguity model that
is assumed. This tendency can be regulated as seen in Easley and O’Hara (2009),
s.t. under the right regulatory, the participation in the financial market can even
be enlarged. The accounting for ambiguity in optimal portfolio planning is thus an
important factor. But Branger and Larsen (2013) show that it might be not suffi-
cient just to include ambiguity in the modeling. They show that without taking the
possibility of learning in the context of uncertainty under consideration, the utility
loss can be high, even if we account for ambiguity. Thus an analysis of learning is
of importance. This will be the topic of the next subsection.
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Authors Ambiguity Mod-
eling

Research Topic

Dow and
da Costa Wer-
lang (1992)

Multiple Prior Generalize EU model by analyzing the asset
choice problem under one uncertain asset in
a two-period model; use a non-additive prob-
ability measure, that distinguishes between
quantifiable risks and unknown uncertainties

Maenhout
(2004)

Multiple Prior 1-dim. model setting with an ambiguous as-
set and an investment horizon of T with a
CRRA utility

Taboga (2005)
Smooth Ambi-
guity

n-dim. portfolio selection under ambiguity
with a two-stage preferences approach that
disentangles ambiguity and ambiguity aver-
sion; CARA utility

Pflug and Woza-
bal (2007)

Multiple Prior MV portfolio selection problem; shows the
trade-off between return and risk in view of
the ambiguity situation

Garlappi et al.
(2007)

Multiple Prior MV model; optimal portfolio under ambigu-
ity overweight risk-free assets compared to
models without ambiguity

Easley and
O’Hara (2009)

Multiple Prior 3-dim. market model with risk-free and two
risky assets where drift and volatility is am-
biguous; with CARA utility the investors do
not invest risky to avoid ambiguity

Guidolin and Ri-
naldi (2010)

Multiple Prior Find conditions under which trading no risky
asset is optimal under ambiguity; even show
that there exists idiosyncratic and systemic
ambiguity in the market

Gollier (2011)
Smooth Ambi-
guity

1 risky and 1 risk-free asset; stating sufficient
conditions under which ambiguity aversion
decreases the investment in uncertain asset

(To be continued)
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Authors Ambiguity Mod-
eling

Research Topic

Branger and
Larsen (2013)

Robust control
Approach

1-dim. market model under an ambiguity
averse investor, stock price follows jump-
diffusion process; big differences between am-
biguity aversion w.r.t. diffusion risk com-
pared to jump risk

Maccheroni et
al. (2013)

Smooth Ambi-
guity

Mean-variance setting with a risky, a risk-
free and an ambiguous asset

Chen et al.
(2014)

Smooth Ambi-
guity

Analyze i.i.d. and VAR model under general-
ized smooth ambiguity assumption; optimal
strategy is more conservative than without
ambiguity

Pınar (2014)
Multiple Prior n-dim. MV market setting; finding closed-

form solution for investor who is ambiguity
averse about mean returns

Biagini and
Pınar (2017)

Multiple Prior complete, n-dim. BS-model, maximize EU
under ambiguous mean and volatility; use
CRRA utility and find closed-form solution

Zhang et al.
(2017)

Multiple Prior n-dim. discrete model setup, portfolio selec-
tion problem with transaction costs and pa-
rameter uncertainty; optimal dynamic trad-
ing rule gives less weight to risky resp. high
volatile factors

EU=expected utility; MV= mean-variance; VAR= vector autoregressive model

Table 4.1: Selected papers on optimal portfolio planning under ambiguity

4.1.2 Learning in portfolio planning

The topic of parameter uncertainty resp. ambiguity is strongly connected to the
topic of learning. Parameter uncertainty resp. ambiguity implies that investors do
not know about the true parameters in a model or even cannot estimate the proba-
bilities for the parameter distribution. But as time passes by, the investor is able to
gather information about the market and thus she can learn about the parameters
and adapt her strategy until they are not ambiguous or uncertain anymore. This
corresponds to the topic of learning in economics and finance. We want to introduce
the reader to the main aspects in this research topic and contribute with a literature
review on selected papers that are connected to the topic of learning in the context
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of portfolio planning.
The cornerstone of learning dates back to the well-known Bayes (updating) rule
from statistics, thus this part of mathematics is also called the Bayesian statistics
and was established in the 18th century. Bayes rule shows how prior beliefs can be
updated into posterior knowledge after receiving new information. The basic form
of the Bayes rule is given by a connection between conditional probabilities and
unconditional ones. It holds

P(A|B) =
P(B|A)P(A)

P(B)
.

The left side of the equation can be interpreted as posteriori distribution. The term
P(B|A) is used for the likelihood of the a priori distribution P(A) and P(B) is the
so-called probability of the evidence. This means that in a first step we choose an
a priori distribution with subjective information about the uncertain parameter Θ.
In a second step we can determine from a given sample the a posteriori distribution
where two sources of information are joint together: The information from the a
priori distribution and the information from the sample. In a third step the resulting
a posteriori distribution of the parameter can be analyzed and the process starts all
over again. This can also be transferred to random variables resp. to distributions
where a parameter is unknown: Let Θ be the uncertain parameter, Π(Θ) the a priori
distribution of Θ and f(x1, · · · , xn|Θ) the joint density of the sample X1, · · · , Xn.
Then the a posteriori distribution is given by

Π(Θ|x1, · · · , xn) =
f(x1, · · · , xn|Θ)Π(Θ)∫
f(x1, · · · , xn|Θ)Π(Θ)dΘ

.

A typical example in this setting is that the uncertain parameter Θ is normally dis-
tributed as a priori distribution. This can also be retraced in the literature overview.
For more information about the Bayesian statistics we refer e.g. to Lee (2012).
Using Bayes rule we can update the information about an unknown drift or volatility
of the corresponding parameters and thus learn about the true distributional pa-
rameters. This is an important feature in many portfolio planning problems where
uncertainty about parameters matters:

Let us assume that an investor can invest into a risky asset S and risk-free asset B
in the 1-dim. Black-Scholes model setup, i.e.

dSt

St

= µdt+ σdWt,
dBt

Bt

= rdt.

Furthermore, the random variable ln(WT ) ∼ N (µ, σ2) denotes the logarithmized
terminal wealth of the investor. Moreover, we assume that the investor’s utility
function is given by a CRRA utility with relative risk aversion parameter γ. In
case that the drift and volatility parameter (µ, σ) are known (i.e. there exists no



4.1. Ambiguity and learning in portfolio planning 119

uncertainty), the Merton fraction πMer := µ−r
σ2γ

as investment fraction in the risky
asset maximizes the expected utility of the investor.
Now we include parameter uncertainty in the analysis: There are many possibilities
to model this uncertainty: the investor might know the underlying distributional
process of the asset evolution but cannot observe the true drift parameter63 or she
might even be uncertain about the distributional process itself. In our small example
we assume that the drift parameter µ is uncertain. Thus, the Merton solution is not
applicable anymore. This is a typical assumption in the leaning literature. Including
learning about the drift µ in a Bayesian setting, the optimal solution of the resulting
allocation problem has been first described in terms of an SDE by Brennan (1998)
and has been explicitly solved by Rogers (2001). We want to present the basic line of
thoughts in the modeling of Brennan (1998) and present the explicit representation
of the optimal solution afterward.
In t = 0, the uncertain drift µ is normally distributed with mean m0 and volatility
v0. The conditional expectation of the drift on observable returns up to time t is
given by

mt := E[µ|FS
t ]

and the variance of the drift (filtering error) by

vt := E[(µ−mt)
2|FS

t ],

where FS
u := σ(St, t ≤ u) is the Sigma-Algebra created by the risky asset S. This

allows us to base our estimation for the drift on the results of St. The changes for
the estimate mt can be described by the following SDE as presented in Liptser and
Shiriaev (1977):

dmt =
vt
σ2

[
dSt

St

−mtdt

]
=

vt
σ2

[µdt+ σdWt −mtdt] ,

with the solution

mt :=
1

v0t+ σ2

(
m0σ

2 + µv0t
)
+

v0
v0t+ σ2

σWt.

The SDE of the variance is given by

dvt = −v2t
σ2

dt

and is solved by

vt :=
v0σ

2

vot+ σ2
.

63Volatilities are much easier to estimate than the drift s.t. in most of the literature it is assumed
that the volatility is known. See e.g. Merton (1980) and Bollerslev et al. (1992) for evidence that
the variance is predictable.
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Using this results we can solve the expected utility maximizing terminal wealth
problem of a CRRA investor. The optimal investment fraction into the risky asset
under learning at time t is then given by

π∗,Learningt =
mt − r

γσ2
+ (1− γ)

v0(T − t)

v0t+ σ2 − (1− γ)(v0T + σ2)

(
mt − r

γσ2

)
=

mt − r

σ2

1

1− (1− γ)v0T+σ2

v0t+σ2

.

The optimal investment strategy under learning is given by the Merton solution,
using the updated form of the drift mt, and by an additional component. This com-
ponent can be interpreted as need for hedging against unanticipated future shifts
in the estimated mean. Assuming that mt > r and γ > 1, the optimal investment
fraction under learning is always smaller than the optimal Merton solution without
uncertainty. A detailed discussion of the solution and its implications is given in
Lundtofte (2006).
This example presents the solution for a 1-dim. Black-Scholes market model with
Bayes updating. A typical assumption in literature is µ > r, s.t. the case of a reduced
optimal investment fraction compared to the Merton solution without ambiguity is
typical. Naturally, the question arises how the results differ if we change assumptions
or even change the model. This is analyzed in the following literature review.
The observation that an investor cannot observe the true state of the economy has
been first introduced in a continuous modeling by Williams (1977). Gennotte (1986)
is the first author who calculates the optimal estimator for the unobservable ex-
pected drift and shows in a general setting that the portfolio choice can be solved
in two separate steps. He finds that the uncertainty about µ leads to a reduction in
the stock allocation. Detemple (1991) further generalizes the approach by looking
at non-normal distributed Bayesian learning. Brennan (1998) builds upon the work
of Gennotte (1986) and analyzes the effects of uncertainty as also learning about
the mean return on the risky asset portfolio decision. He determines the expected
utility maximizing investment fraction under learning depending on a HJB equation
and discusses the effects depending on the risk aversion of the investor: Risk averse
investors reduce their investment in the risky asset under learning compared to the
Merton solution, risk-seeking investors increase their investments. Rogers (2001)
works with the model assumptions of Brennan (1998) and calculates closed-form so-
lutions for the optimal investment fraction into the risky asset if learning is applied
by Bayesian updating. Cvitanić et al. (2006) assume that the prior distribution of the
unknown drift is given by a normal distribution and for other points in time follows
a linear model depending on µ0. They determine the expected utility maximizing
terminal wealth and analyze how optimal allocations depend on the correlation be-
tween the assets’ expected returns. This correlation reduces uncertainty by allowing
learning across assets. The change to a linear model for the unknown drift has some
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meaningful changes that are pointed out by Xia (2001): He extends the model of
Brennan by allowing the unknown drift µ to be predicted with a linear model with
n variables. He finds closed-form solutions of the optimal investment fraction for
an isoelastic utility function and concludes that the optimal allocation depends on
the current value of the predictive variable. The allocation can increase, decrease or
vary non-monotonically compared to the optimal solution without learning. Thus,
including a linear model of the unknown drift can lead to the fact that the optimal
investment fraction under learning is greater than the one in the Merton case. The
linear modeling of the unknown drift is also used by Branger et al. (2013). They an-
alyze the optimal investment fraction for the expected utility maximizing terminal
wealth and include ambiguity as also learning in their analysis. Learning about the
drift is given by a linear model that includes observable and unobservable predictors.
They derive closed-form solutions and find that both, learning and ambiguity aver-
sion, impact the optimal investment fraction in the risky asset. Suboptimal strategies
that do not include both components in the analysis lead to significant utility losses.
Peijnenburg (2018) analyzes a life-cycle model that includes ambiguity aversion and
the possibility of learning about the equity premium. Ambiguity aversion reduces
the optimal participation fraction which leads to an underdiversification. Learning
about the equity premium over the years can lead to an increase in the stock allo-
cation.
From this observations we can conclude that in case of a risk averse investor, the
uncertainty (i.e. the need for learning) implies that the optimal investment fraction
that maximizes the expected utility of the investor is smaller than the Merton frac-
tion without uncertainty. This is a plausible result: The uncertainty in combination
with the risk aversion leads to a more cautious investment strategy. The opposite
behavior is true if the investor is risk seeking. In case the investor can even predict a
linear model for the unknown drift, then it is also not surprising that this can lead to
an increase of the investment fraction in the risky asset: If the investor beliefs in the
linear model and the variables give the impression of a positive market trend, then
the investor increases the investment fraction. Thus, we can finally conclude from
this literature overview that the more precise our information and modeling about
the uncertain drift is, the better the investor assesses the situation and therefore
adapts her investment fraction in the risky asset.

There are also many papers on discrete portfolio optimization under learning. For a
nice literature overview regarding this topic we refer to Pastor and Veronesi (2009) p.
372. Finally notice, that the literature on optimal portfolio planning under learning
is closely connected to the literature on portfolio planning under regime switches.
An overview of the latter topic is given at the end of this chapter.
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Authors Learning
Parameter

Optimization
Problem

Assumptions

Gennotte
(1986)

Bayes
µ0 ∼ N (m0, v0)

EU complete, (n + s)-dim. market
model (GBM) with s technolo-
gies to invest; increasing, concave,
twice differentiable von Neumann
Morgenstern utility function

Detemple
(1991)

Bayes
non-normal µ

EU n-dim. market model; von
Neumann-Morgenstern utility

Brennan
(1998)

Bayes
µ0 ∼ N (m0, v0)

EU, π 1-dim. BS model with uncertainty
about drift ;concave, twice differ-
entiable utility function

Xia (2001)
Linear model
µt = α + βSt

EU, (πt)t∈[0,T ] 1 risky and 1 risk-free asset with
uncertainty about µ; closed-form
solution under isoelastic utility

Rogers
(2001)

Bayes
µ0 ∼ N (m0, v0)

EU, (πt)t∈[0,T ] 1 risky and 1 risk-free asset model
including consumption with un-
certainty about drift; CRRA util-
ity

Cvitanić et
al. (2006)

Bayes
µ0 ∼ N (m0, v0)

EU, WT (n+2)-dim. market model; CRRA
utility

Miao
(2009)

Bayes
µ is modeled by
a SDE

EU n-dim. market model; recursive
multiple-prior utility process64

Branger et
al. (2013)

Linear model
observable and
unobservable
predictor for µt

EU, π 1-dim. BS model under drift un-
certainty and ambiguity; CRRA
utility

Chen et al.
(2014)

Linear model
i.i.d. and VAR

EU, (πt)t∈[0,T ] 1 risky and 1 risk-free asset; un-
certainty modeled under general-
ized smooth ambiguity assump-
tion with CRRA functions

Peijnenburg
(2018)

Bayes
equity premium
∼ N (m0, v0)

EU life-cycle model with CRRA util-
ity

Balter et
al. (2021)

Bayes
µ0 ∼ N (m0, v0)

EU, (πt)t∈[0,T ] 1-dim. BS model under drift un-
certainty and ambiguity; CRRA
utility

EU=expected utility; VAR=vector autoregressive model

Table 4.2: Selected papers on continuous optimal portfolio planning under learning
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4.2 Optimal Asset Allocation, Time-Inconsistency and the Value of
Information

4.2.1 Introduction

In this section we consider a stylized model which is tightly connected to the classical
Merton problem where an investor with constant relative risk aversion maximizes
her expected utility by splitting her wealth between a risky and a risk-free asset.65

The risk-free asset grows at a constant rate and the price dynamics of the risky
asset are given by a geometric Brownian motion with drift µ and volatility σ. We
introduce an a priori lottery (p, 1−p) in which the outcomes give rise to two regimes
given in terms of (µ, σ)-tuples. Thus, we introduce a second dimension of risk which
implies an outer expectation about the outcome of the lottery and an inner expecta-
tion about the expected utility within the regimes.66 We also account for ambiguity
about the ”success” probability of this lottery which gives, in addition to the two
dimensions of risk, a third dimension. Preferences towards risk and ambiguity are
modeled by using the smooth ambiguity approach of Klibanoff et al. (2005) under
a double power utility assumption. In fact, this ambiguity model implies a further
outer expectation (which is analogously modeled to the risk dimensions). Optimal
investment in this setting (with and without ambiguity) is thus time-inconsistent.
We analyze the optimal time-inconsistent pre-commitment strategy (with and with-
out ambiguity about the probability of the a priori lottery) and compare it to the
optimal strategy if the investor can condition on the regimes (defined by the model
parameters).

In the first instance, we explain time-inconsistency by the observation that the ob-
jective of maximizing the expected utility and maximizing the expected savings
rate implies different investment decisions, i.e. unless the investor is described by
log utility or the investment horizon converges to zero (myopia). A further lim-
iting case is obtained by an infinite investment horizon. Our results give rise to
intuitive economic explanations. If the investor can condition on the regime, she
favors the regime-dependent Merton solution. If she is not able to obtain the in-
formation about the regime, her optimal (pre-commitment) strategy is between the
regime-dependent Merton solutions, i.e. can be stated as a weighted average of the
Merton solutions. While, in the myopic sense, the weighting factor is dominated by
the regime probabilities, the impact of the regime probabilities is decreasing in the
investment horizon s.t. her optimal decision is based on the worst-case, i.e. she max-
imizes the worst-case savings rate over the regimes. The time-inconsistency of the
optimal pre-commitment strategy for γ > 1 can be traced back to the non-myopic

64More information about multiple priors can be found in Chen and Epstein (2002).
65 It is based on the work of Branger et al. (2021).
66The outer expectation implies an aggregation of utilities.
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behavior of the investor. She chooses the optimal investment over a first period with
continuation utility over some second period in view. In our setup, the continuation
utility is lower in Regime 2 than in Regime 1 (Regime 2 is the bad state w.r.t. to
future investment opportunities). For an investor with γ > 1, the hedging motive
dominates and she wants to have more wealth in the bad state. The optimal strat-
egy thus moves towards the worst-case strategy, in which the investor foregoes some
wealth in order to lower the variance and in particular to increase the level of wealth
in the bad state. Our setup allows measuring the effects of time-inconsistency by
means of a coefficient of time-inconsistency (normalized to values between zero and
one).
We analyze the value of information, i.e. the willingness to pay for the information
about the regimes. In addition, we also account for ambiguity about the regime
probabilities and analyze the value of information about the probability. To simplify
the expositions, we also use a stylized version in which the regime probability is a
two-point random variable.

In summary, we shed light on the implications of time-inconsistency which are com-
mon in various decision problems in finance. In particular, time-inconsistency is
immanent in all investment problems where maximizing expected utility implies an-
other optimal strategy than maximizing the expected savings rate.
Thus, we provide an intuitive explanation that there is no time-consistency for a
log-investor (γ = 1). Alternatively, time-consistency can technically be obtained by
switching the decision objective from maximizing the expected utility of terminal
wealth to maximizing EU of log-wealth (or maximizing the expected savings rate,
respectively).
For γ > 1, myopia (T → 0) implies that the investor acts risk neutral w.r.t. the
regime dependent savings rates, i.e. the decision can be formulated by means of
the expected savings rate, while an infinite investment horizon implies a maximin
decision rule. Thus, the investor maximizes the worst-case savings rate. Therefore,
we also add an intuitive approach why time-inconsistency implies that a risk averse
investor acts like an even more risk averse investor the longer the investment hori-
zon is. Intuitively, it is also clear that the higher the risk aversion is the faster the
optimal decision converges to the result of the maximin decision rule. In addition,
we show that for all pre-commitment strategies within the interval of the regime
dependent Merton solutions, the savings rate is for T → 0 (T → ∞) given by the
expected savings rate over the regimes (worst-case savings rate of the regimes). We
also state intuitive results w.r.t. the value of the information about the regimes: In
both limiting cases (T → 0, T → ∞) the maximal willingness to pay for the infor-
mation about the regime is zero. In particular, the value of information is maximal
for some finite investment horizon.
Using the smooth model of ambiguity, we can emphasize similar effects concerning
the levels of risk and ambiguity aversion. Stating the optimal strategy by means
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of a weighted average of the regime dependent Merton solutions (which depend on
the level of risk aversion), the impact of the level of risk aversion and ambiguity
aversion on the weighting factor are equivalent. However, we provide an intuitive
explanation concerning opposing effects w.r.t. the probability distribution over the
regime probabilities and the regime probabilities themselves. To simplify the expo-
sition, we consider ambiguity about the a priori lottery (p, 1 − p) in terms of two
possible values for p, i.e. pa or pb (pa > pb). Intuitively, it is clear that the ambiguity
situation is more severe the higher the spread between the probabilities pa and pb is.
The highest spread is obtained for pa = 1 and pb = 0. Moreover, a higher ambiguity
situation implies a lower risk situation, i.e. for pa = 1 (pb = 0) the regime is known
and implies Regime 1 (pa = 1) resp. Regime 2 (pb = 0).

Our first dimension of risk already dates back to Merton (1971). He solves the prob-
lem of maximizing the expected utility of an investor with constant relevant risk
aversion (CRRA) in a Black-Scholes model setup. As mentioned above, our setup is
similar to the problem of a social planner who aggregates the utilities of investors
with different beliefs or different levels of risk aversion. Chen et al. (2021a) con-
sider a collective of investors in a pension fund with heterogeneous risk preferences.
The investment decision is delegated to a fund manager who promises a minimum
guarantee for the investment. In a further study, Chen et al. (2021b) solve an op-
timal collective investment problem under portfolio insurance constraints assuming
that investors have different levels of risk aversion and differ in their willingness to
pay management fees. Further studies that take heterogeneous risk aversions of in-
vestors of a collective investment problem into account are Alserda et al. (2019). For
the special case of two investors with different utility functions (log and isoelastic
utility), Dumas (1989) analyzes the allocation of wealth and aggregation of capital.
Garlappi et al. (2017) analyze a dynamic collective investment problem with a group
of agents having heterogeneous beliefs. They find that group decisions are dynami-
cally inconsistent and lead to inefficient underinvestments. Jackson and Yariv (2014)
show that with any heterogeneity in time preferences there exists a present bias in
aggregating utilities. Furthermore, heterogeneity leads to time-inconsistency even
though the individual preferences are time-consistent. This finding is confirmed for
a household consumption problem by Adams et al. (2014).
Due to the assumption of a double risk situation our problem is similar to a setup
in which two investors with heterogeneous beliefs are restricted to follow the same
strategy. Thus, time-inconsistency arises naturally. The strand of literature refer-
ring to time-inconsistency in optimal asset allocation problems can be traced back
to Strotz (1955). He proposes two strategies of dealing with time-inconsistency –
a strategy of pre-commitment and a strategy of consistent planning. Balter et al.
(2021) compare a pre-commitment strategy with a dynamically consistent one in
the context of ambiguity and learning and determine a point of regret for a pre-
commitment investor. Björk and Murgoci (2014) as also Björk et al. (2017) account
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for time-inconsistency in stochastic control problems. They derive a game theoretical
solution within a discrete-time and continuous-time framework. These two papers
build on the work of Basak and Chabakauri (2010) who study dynamic portfolio
choice under mean-variance preferences. They show that the optimal investment
strategy is time-inconsistent and find a distinction between pre-commitment, dy-
namically consistent and myopic strategies. Further literature in this context is given
by Cong and Oosterlee (2016), Pedersen and Peskir (2017), Dai et al. (2021) as also
the recent papers of Vigna (2020) and van Staden et al. (2021) who compare dy-
namically consistent and pre-commitment strategies in a mean-variance setup.
Accounting for ambiguity (which dates back to Arrow (1951)) adds a third dimen-
sion of risk in our analysis. There is strong empirical evidence for the existence of
ambiguity in decision making: Antoniou et al. (2015), Brenner and Izhakian (2018)
and Dimmock et al. (2016) find that ambiguity is priced in the equity market. An
increase of ambiguity leads to underinvestments. Ambiguity in portfolio choice is
widely spread in literature. Guidolin and Rinaldi (2013) provide an overview of the
portfolio choice facing ambiguity literature. Biagini and Pınar (2017) derive a ro-
bust solution of the Merton problem of an ambiguity averse investor. Borgonovo and
Marinacci (2015) give results for certainty equivalents in a multi-event problem in
the presence of risk and ambiguity aversion. Jin and Zhou (2015) analyze a portfolio
choice problem in an expected utility and mean-variance framework by maximizing
the worst sharpe ratio. Further literature in the context of ambiguity in a mean-
variance framework is given by Maccheroni et al. (2013), Pflug and Wozabal (2007)
and Pınar (2014).

The outline of this section is as follows. In Subsec. 4.2.2 we give a brief review over
the basic Merton results, i.e. about the optimal expected utility maximizing strategy,
the utility and savings rate which is obtained by it. Subsequently, we introduce a
stylized modification of the Merton problem, i.e. we introduce an a priori lottery
which defines the drift and volatility tuple. In Subsec. 4.2.3 we derive the expected
utility maximizing pre-commitment strategy. Comparing the case with observed
regimes to the case with unobserved regimes gives us the value of information about
the regime which we analyze in more detail in Subsec. 4.2.4. Moreover, in Subsec.
4.2.5 we also account for ambiguity about the regime probabilities. We show the
analogies and differences stemming from risk and ambiguity aversion. Finally, we
conclude the section.

4.2.2 A priori lottery

We modify the classic Merton problem by introducing an a priori lottery where the
outcome is one of two regimes. Once the regime is known, the investment problem
boils down to the Merton problem. To simplify the exposition, we give a review of
the Merton problem as well as some basic results.
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Throughout the following, we consider an investor with constant relative risk aver-
sion (CRRA), i.e. her utility function is

u(x) =

{
x1−γ

1−γ γ > 1

lnx γ = 1
,

where γ denotes her relative risk aversion. The investor is equipped with an initial
amount of V0 which we can normalize to V0 = 1 because of the CRRA framework. We
only consider γ ≥ 1 as the usual choice in asset allocation. Her investment decisions
are given in terms of the fraction π of her portfolio wealth which she invests in
a risky asset, the stock S. The remaining fraction is invested in a risk-free asset
growing with constant interest rate r. In the benchmark model of Black-Scholes, the
dynamics of the stock price are

dSt = µStdt+ σStdWt where S0 = s0.

If the investor chooses the weight πt for the risky investment in the stock, the
dynamics of her wealth are given by

dVt = [r + πt(µ− r)]Vtdt+ πtσVtdWt.

The optimal investment strategy (which maximizes the expected utility) is given by
the well-known constant Merton fraction67

πMer =
µ− r

γσ2
. (4.1)

This strategy also maximizes the certainty equivalent CET and the savings rate yT
which are in general defined by

u(CET ) = E[u(VT )] and yT =
1

T
lnCET .

The savings rate y (we drop the index T since the savings rate in our setting is
independent of T ) for a constant portfolio weight π is given by 68

y(π) = r + π(µ− r)− 1

2
γπ2σ2, (4.2)

67 In particular, notice that the optimal strategy implies a constant investment fraction. With
no uncertainty about the future dynamics there are no state variables to condition on, and
with CRRA, there is also no need to condition on current wealth. Moreover, a time-dependent
strategy would increase the variance without increasing the mean, and is thus dominated by a
time-independent strategy.

68Since we have assumed normally distributed log returns, the maximization of utility in the base
case is equivalent to a mean-variance portfolio selection problem.
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and the maximal savings rate is

y(πMer) = r +
1

2γ
· (µ− r)2

σ2
= r +

1

2γ
· λ2,

where λ = µ−r
σ

denotes the constant market price of risk. In view of the introduction
of two regimes, we state the loss rate implied by a strategy π instead of the optimal
strategy πMer. The loss rate is given by

l(π) = y(πMer)− y(π) =
1

2
γσ2

(
π − πMer

)2
. (4.3)

In general, the difference between the savings rates for two different strategies πa

and πb is

y(πa)− y(πb) = (πa − πb)µ− 1

2
γ(π2

a − π2
b )σ

2

= γσ2(πa − πb)

(
πMer − πa + πb

2

)
.

In the following, we consider two regimes that reflect different dynamics of the stock
price or different beliefs of the investor about these dynamics. In regime i (i ∈ {1, 2})
the expected return and the volatility of the stock are denoted by µi and σi; the
corresponding probability measure is denoted by Pi. The risk-free rate is constant
and equal to r in all regimes. In particular, we now assume

dSt,i = µiSt,idt+ σiSt,idWt,i for i = 1, 2

where S0,1 = S0,2 = s0 and W·,i is a Brownian motion under the probability measure
Pi. We interpret the two regimes as a good (Regime 1) and a bad (Regime 2) one,
i.e. it holds that λ1 ≥ λ2. This is true for µ1 ≥ µ2 and σ1 ≤ σ2, but there are also
combinations with µ1 > µ2 and σ1 > σ2 for which this holds true.69

Throughout the following, we use the convention that y(π, i) (i ∈ {1, 2}) denotes
the savings rate within regime i. With Eqn. (4.2), it holds (for i ∈ {1, 2})

y(π, i) = r + π(µi − r)− 1

2
γπ2σ2

i .

The investment fraction π ̸= 0 which implies y(π, 1) = y(π, 2) is denoted by πequal.
Straightforward calculations give

y(π, 1)− y(π, 2) =

{
1
2
γ(σ2

1 − σ2
2)π(π

equal − π) σ1 ̸= σ2

π (µ1 − µ2) σ1 = σ2
, (4.4)

69 In a graph with the ratio σ1/σ2 of volatilities on the x-axis and the ratio (µ1 − r)/(µ2 − r) of
expected excess returns on the y-axis, the condition λ1 > λ2 corresponds to the points above
the 45-degree line.
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where

πequal =
µ1 − µ2

1
2
γ(σ2

1 − σ2
2)
. (4.5)

The two regimes thus result in the same savings rate for the trivial choice π = 0
(then the savings rate coincides with the risk-free rate) and for π = πequal. If Regime
1 comes with the higher expected return and the lower volatility, then πequal is
negative. For positive portfolio weights it then always holds true that the savings
rate is higher in Regime 1 than in Regime 2. If Regime 1 has a larger expected return
and a higher volatility but still the higher market price of risk, the two regimes give
the same savings rate for π = πequal > 0, and the difference of the savings rates
switches sign for this choice of π. The relevant cases later on will be the ones in
which πequal is between πMer

1 and πMer
2 . This holds true for

σ1σ2

0.5(σ2
1 + σ2

2)
<

(µ1 − r)/σ1

(µ2 − r)/σ2

<
0.5(σ2

1 + σ2
2)

σ1σ2

.

If σ1 = σ2, the two regimes are either identical and the savings rates coincide for
every π, or Regime 1 always gives a higher savings rate than Regime 2.

In our stylized modification of the Merton problem (”initial lottery”) the regime is
determined by the lottery L = (p, 1 − p) at time 0 and then stays constant over
time. We thus add a second dimension to the risk situation. The expected utility of
the investor (immediately before the lottery L takes place) is70

EUT,p = pEP1 [u(VT )] + (1− p)EP2 [u(VT )]. (4.6)

For the portfolio choice of the investor we distinguish two cases. In the first case
(information about the regime), the regime is observable and the investor can con-
dition her strategy on the regime, i.e., π̃ = (π1, π2). In the second case (no informa-
tion about the regime), the regime can not be observed and the investor has to rely
on some regime-independent strategy π̃ = (π, π). Notice that conditioning on the
regime gives, in the (EU maximizing) optimum, on each regime a constant invest-
ment strategy. Thus, there is no restriction of generality by considering strategies
π̃ = (π1, π2). Without the information about the regime, there is some restriction
imposed by considering strategies π̃ = (π, π). Furthermore, the optimal strategies
do not depend on the state of the economy and they are constant. Thus we can
w.l.o.g. restrict our analysis to constant strategies which depend on the regime at
most.

Comparing the case with observed regimes to the case with unobserved regimes
gives us the value of information about the regime which we analyze in more detail

70While the utilities refer to the ones obtained in different regimes, our setup is similar to the
problem of a social planner who aggregates the utilities of investors with different beliefs or
different levels of risk aversion (cf. literature given in the introduction of the section).
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in Section 4.2.4. We restrict the analysis to the case in which the investor receives
this information immediately after the initial lottery in which the regime is drawn.
We abstract from the case of learning in which the investor would gradually update
her subjective probabilities of the two regimes and learns the true regime in the long
run. This assumption is not a restriction to our model: The work of Bäuerle and
Grether (2017) analyze a Bayesian investor who can learn about an uncertain drift
µ and wants to maximize the CRRA expected utility of her terminal wealth. They
find that the optimal fraction invested in the risky asset of a risk averse investor
converges for T → ∞ to the smallest possible Merton ratio, i.e. to the worst-case
scenario. In particular, the paper reveals that the effect of learning does not play a
role for a long-term investor.

EUT,p aggregates over utilities in the two regimes. With

EPi
[u(VT )] =

{
1

1−γ e
y(π,i)(1−γ)T γ > 1

y(π, i)T γ = 1
,

it follows

EUT,p =

{
1

1−γ

[
pey(π,1)(1−γ)T + (1− p)ey(π,2)(1−γ)T

]
γ > 1

[py(π, 1) + (1− p)y(π, 2)]T γ = 1
.

Notice that the aggregation is highly non-linear unless γ = 1.

Due to the double risk situation, i.e. a lottery over two different Merton problems,
risk aversion γ comes into play twice. First, to determine the expected utility EPi

of a strategy conditional on the regime. The investor uses a CRRA-utility function
with risk aversion γ, s.t. γ captures the aversion against normally distributed return
innovations. The larger γ, the lower the savings rate, and the smaller the optimal
portfolio weight. Second, γ is used again when the investor aggregates the utilities
over the two regimes, i.e. when he calculates EUT,p given the savings rates y(π, i) in
the two regimes i = 1, 2. The larger γ, the lower the savings rate yT,p resulting out
of y(π, 1) and y(π, 2).

Maximizing expected utility in (4.6) is equivalent to maximizing the certainty equiv-
alent savings rate yT,p where

yT,p(π) :=
1

T
ln
(
u−1 (EUT,p)

)
, (4.7)

i.e.

yT,p(π) =

{
1

(1−γ)T ln
[
pey(π,1)(1−γ)T + (1− p)ey(π,2)(1−γ)T

]
γ ̸= 1

py(π, 1) + (1− p)y(π, 2) γ = 1
. (4.8)
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In general, the savings rate of the initial lottery does not coincide with the expected
savings rate given by p y(π, 1)+(1−p)y(π, 2) which is independent of the investment
horizon T . Jensen’s inequality implies

yT,p(π)


> p y(π, 1) + (1− p)y(π, 2) γ < 1
= p y(π, 1) + (1− p)y(π, 2) γ = 1
< p y(π, 1) + (1− p)y(π, 2) γ > 1

.

In the special case of log-utility, the savings rate for an initial lottery coincides with
the expected savings rates of the Merton problems in the two regimes. This implies
that the strategy that maximizes expected utility also yields the highest expected
savings rate. This is not true for γ ̸= 1, i.e. unless one considers the myopic case
T → 0. The dependence of the savings rate for the limiting cases T → 0 and T → ∞
is given in the following proposition:

Proposition 4.1 (Decreasing certainty equivalent savings rate in maturity)
For γ > 1, the certainty equivalent savings rate yT,p(π) for a constant strategy π and
the savings rate yT,p(π

∗,pre
T,p ) for the optimal pre-commitment strategy π∗,preT,p are both

a decreasing function of T . The limiting values of the certainty equivalent savings
rate yT,p(π) are

lim
T→0

yT,p(π) = p y(π, 1) + (1− p)y(π, 2)

lim
T→∞

yT,p(π) = min{y(π, 1), y(π, 2)}.

The proof of Proposition 4.1 is given in Appendix D.1.

For γ > 1 (and T > 0) the savings rate of a strategy π equals the expected savings
rate over the regimes only for the boundary cases p = 0 and p = 1, i.e. if the second
dimension of the risk situation vanishes. The larger the risk aversion γ, the lower
the savings rate that is resulting out of the savings rates y(π, i) in the two regimes.
Furthermore, the savings rate increases in the probability of the good state.

The difference between yT,p(π) and p y(π, 1) + (1− p)y(π, 2) also depends on p and
is maximized for

p∗SR(π, T ) =
1

1− e(y(π,1)−y(π,2))(1−γ)T
+

1

(y(π, 1)− y(π, 2))(1− γ)T
.

For T → 0, we have that lim
T→0

p∗SR = 0.5, i.e. in the myopic case the highest difference

is observed in the case when the uncertainty about the regime is largest. It also
holds that p∗SR(π, T ) is increasing in T . With the savings rate yT,p(π) approaching
the lower of the two savings rates, the difference to the higher expected savings rate
is maximized when the latter has more and more weight on the larger of the two
savings rates.
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4.2.3 Pre-commitment and the impact of time-inconsistency

The investor cannot observe the true regime, i.e. she cannot choose a regime-
dependent strategy today, and we assume that she also cannot learn about the
regime over time. We denote her optimal strategy as the optimal pre-commitment
strategy. With no state variables and CRRA utility, this strategy is time- and state-
independent but depends on the length of the investment horizon T only.71 To facil-
itate the exposition, we directly specify the optimal pre-commitment strategy π∗,preT,p

by maximizing the expected utility over a constant (regime independent) investment
fraction π, i.e.

π∗,preT,p := argmaxπEUT,p = argmaxπyT,p(π),

where EUT,p is given in Eqn. (4.6) and yT,p is given in Eqn. (4.8).

For the interpretation, we give the optimal pre-commitment strategy in terms of
the regime dependent Merton solutions. In analogy to Eqn. (4.1), we define πMer

i

(i ∈ {1, 2}) by

πMer
i =

µi − r

γσ2
i

.

Since the highest possible savings rate in Regime i is obtained by πMer
i , it follows

that72

π∗,preT,p ∈
[
min{πMer

1 , πMer
2 },max{πMer

1 , πMer
2 }

]
=: A.

We can therefore write the optimal pre-commitment strategy π∗,preT,p as a weighted
average of the regime dependent Merton solutions, i.e.

π∗,preT,p := α∗T,pπ
Mer
1 + (1− α∗T,p)π

Mer
2 , (4.9)

where α∗T,p gives the optimal weight of the Merton solution for Regime 1. We stress
the impact of the investment horizon and the regime probabilities by the notation
α∗T,p. In addition, α∗T,p may depend on all model and preference parameters. In the
following proposition, we give the implicit function for α∗T,p which involves π∗,preT,p

and which follows from the first order condition for the optimal pre-commitment
strategy.73

Proposition 4.2 (Optimal pre-commitment strategy)
Along the lines of Eqn. (4.9), the optimal pre-commitment strategy π∗,preT,p is given by

71For a proof see Balter et al. (2021).
72Notice that the assumption λ1 ≥ λ2 does not necessarily imply πMer

1 ≥ πMer
2 .

73The result can easily be generalized to more than two regimes.
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the weighting factor α∗T,p where

α∗T,p =
pσ2

1f1(π
∗,pre
T,p , T )

pσ2
1f1(π

∗,pre
T,p , T ) + (1− p)σ2

2f2(π
∗,pre
T,p , T )

and fi(π, T ) = ey(π,i)(1−γ)T , i = 1, 2.

The proof of Proposition 4.2 is given in Appendix D.2.

Different from the optimal Merton strategy, the optimal pre-commitment strategy
depends on T for γ ̸= 1 and is thus time-inconsistent: If the investor conducts the
strategy herself, she will regret her decision as time moves by and the remaining
investment horizon becomes shorter.

The time-inconsistency of the optimal pre-commitment strategy can be traced back
to the non-myopic behavior of the investor. For γ > 1, she chooses the optimal
investment over a first period with continuation utility over some second period
in view. In line with that intuition, the time dependence of the pre-commitment
strategy is driven by the savings rates in the two regimes. The optimal weight thus
also depends on the regime-specific savings rates captured in the functions fi.

We first look at the limiting values for the optimal pre-commitment strategy:

Proposition 4.3 (Limiting values of optimal pre-commitment strategy)
The limiting values for the optimal pre-commitment strategy are given by

lim
T→0

α∗T,p =
pσ2

1

pσ2
1 + (1− p)σ2

2

and

lim
T→∞

π∗,preT,p =


πMer
1 y(π, 1) < y(π, 2) ∀π ∈ A

πMer
2 y(π, 2) < y(π, 1) ∀π ∈ A

πequal otherwise
, (4.10)

where πequal is defined in Equation (4.5).

The limiting case T → 0 gives the myopic investment decision. The optimal weights
of the Merton solutions are the same for all levels of risk aversion γ. With myopia,
there is no more dependence on continuation utilities, but the weights are driven by
the probabilities (p, 1− p) and the volatilities σi respectively their difference only.

To get the intuition for the functional form of α∗0,p, note that the savings rate for
T → 0 coincides with the expected savings rate p y(π, 1) + (1− p)y(π, 2). With

y(π, i) = y(πMer
i , i)− l(π, i),
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Benchmark parameter

µ1 µ2 σ1 σ2 r
0.03 0.01 0.10 0.20 0.00

Table 4.3: Benchmark parameter constellation.

the optimal pre-commitment strategy does not only maximize the expected savings
rate, but also minimizes the expected loss rate. The loss rate in regime i is given
by Eq. (4.3). It depends on the squared difference between the strategy π and the
optimal Merton strategy and scales with the squared volatility σ2

i . The deviation
between the strategy π and the Merton-strategy πMer

i thus enters the expected loss
rate with a factor that depends on the probability of the regime and the regime-
dependent variance. Consequently, the weighting factor of the Merton-strategy πMer

i

in the optimal pre-commitment strategy is proportional to the regime-probabilities
and variances, too. This is also shown in the left graph of Figure 4.1, which plots the
limiting α∗0,p as a function of σ2 − σ1 and for different values of p. The benchmark
parameter constellation in terms of the regime parameters µi and σi (i = 1, 2) is
given in Table 4.3. The graph confirms that the weight for regime 1 is increasing
in the probability of this regime and is decreasing in the volatility σ2 in the other
regime.

The other limiting case is given by T → ∞. For an infinite investment horizon, the
savings rate of a strategy π is given by the lower of the regime-dependent savings
rates (cf. Proposition 4.1). The optimal pre-commitment strategy is thus given by
the strategy π ∈ A which maximizes this worst-case savings rate. The worst-case
regime on the interval A can always be Regime 1, always be Regime 2, or switch from
one regime to the other. Accordingly, the optimal limiting strategy which achieves
the maximal worst-case utility is the Merton strategy for Regime 1, the Merton
strategy for Regime 2, or πequal (see Eq. (4.10)).

The limiting optimal pre-commitment strategy for T → ∞ does not depend on the
probabilities as long as both regimes have a positive probability. The reason is that
it coincides with the worst-case strategy, which depends on parameters within the
regimes but not on the probability of the regimes.

Next, we look at the behavior of the weighting factors for general T . A special case
is given by γ = 1 for which fi(π, T ) ≡ 1. The weighting factor then simplifies to

α∗T,p =
pσ2

1

pσ2
1 + (1− p)σ2

2

.

For the myopic investor, the optimal strategy is time-consistent and coincides with
the optimal myopic strategy for T → 0. The reason is that the savings rate is equal to
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the expected savings rate not just in the limit but for all T . An easy intuition why the
assumption of log-utility avoids problems stemming from time-inconsistency is that
log utility implies a myopic behavior. The investor thus always chooses the strategy
that is optimal over the next instant and neither takes the remaining investment
horizon nor the continuation utility into account.74

For γ > 1, the weighting factor of a regime i does not only depend on its probability
and its volatility but also on a discount function fi. This function is the smaller, the
larger the savings rate in a regime is, and thus downplays the weight of the ”good”
regime so that the optimal strategy is shifted towards the worst-case strategy. The
impact of the savings rate is the larger, the longer the investment horizon and the
higher the risk aversion is. In addition, it is the larger, the more the savings rates
in the two regimes differ from each other.

To aggregate the impact of the discount functions f1 and f2, we define the function
δ as

δ(π, T ) := 1− f1(π, T )

f2(π, T )
= 1− e[y(π,1)−y(π,2)](1−γ)T .

It describes the relative difference between expected utilities in the two regimes for
a given strategy π. For y(π, 1) > y(π, 2) and γ > 1, we have δ ∈ [0, 1). The lower
limit of δ = 0 is attained for the limiting case T → 0 while the upper limit of one
is approached for T → ∞. For y(π, 1) = y(π, 2) and thus π = πequal, δ is identically
equal to zero.

With this definition of δ, we can rewrite the portfolio weight of the optimal pre-
commitment strategy as

α∗T,p(π
∗,pre
T,p ) =

pσ2
1(1− δ(π∗,preT,p , T ))

pσ2
1(1− δ(π∗,preT,p , T )) + (1− p)σ2

2

. (4.11)

For T = 0 and thus δ = 0, the optimal strategy is the myopic one. For T > 0, the
strategy becomes time-inconsistent if γ ̸= 1 and y(π∗,preT,p , 1) ̸= y(π∗,preT,p , 2). The degree
of time-inconsistency is captured by δ which ultimately goes to one. The portfolio
weight α then approaches zero, and the pre-commitment strategy approaches the
worst-case strategy πMer

2 . The special case y(π∗,preT,p , 1) = y(π∗,preT,p , 2) holds for π∗,preT,p =

πequal. With a zero difference between the savings rates, δ is identically equal to zero.
The weight α is then time-independent, and the resulting strategy is time-consistent.

For y(π, 1) > y(π, 2) and γ > 1, δ increases in the difference of the savings rates given
in Eqn. (4.4). This difference in turn increases in the difference of the volatilities

74One could thus avoid time-inconsistency of the optimal strategy by setting the objective function
equal to the expected savings rates, which is equivalent to maximizing the expected utility of
log wealth.
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α∗0,p for different p and α∗T,p for different levels of risk aversion γ
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Figure 4.1: The left picture displays the optimal weight on the Merton solution in Regime 1 at
T = 0 depending on the differences σ2 −σ1 (where σ2 = 0.2). The black line pictures
p = 0.4, the black dashed p = 0.6 and the gray dashed p = 0.8. The right picture
shows the optimal weight on the Merton solution in Regime 1 α∗

T,p depending on the
investment horizon T . The black line pictures γ = 2, the black dashed γ = 4 and the
gray dashed γ = 16.

and the difference of the portfolio weights from πequal. Intuitively, the force to the
worst-case regime matters more, the higher the difference of good and bad regime
is, which is illustrated in the right hand side of Figure 4.1.

Furthermore, δ increases in the probability p of the good regime and in the risk
aversion γ. These relations are illustrated in Figure 4.2 and Figure 4.3. Intuitively,
risk aversion causes the convergence of the optimal strategy towards the worst-case
strategy, which is reached for the limiting value δ = 1. The larger the risk aver-
sion, the faster this convergence takes place, and thus the larger the corresponding
δ(π∗,preT,p , T ). To get the intuition for the impact of p, note that time-inconsistency
shifts the importance from the good regime towards the bad regime over time. This
shift is the more severe, the higher the myopic importance of the good regime is (i.e.
p).

We can also use δ to link the time-inconsistence of the optimal pre-commitment
strategy to the hedging needs of the investor. As pointed out above, the reason for
time-inconsistency is that the investor takes the difference between the continuation
utilities into account. For y(π, 1) > y(π, 2) and thus δ ∈ [0, 1), regime 2 is the worse
one. By moving the strategy towards the worst-case strategy, the investor foregoes
some returns to lower the variance and in particular to increase the level of wealth in
the bad state. The strength of the hedging demand increases in the risk aversion, the
planning horizon and the difference between the regimes. In line with this intuition,
δ increases in γ, T , and the difference between the regimes.
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Impact of investment horizon T on time-inconsistency

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Investment Horizon T

T
im
e
In
co
ns
is
te
nc
y
M
ea
su
re

δ

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Investment Horizon T

T
im
e
In
co
ns
is
te
nc
y
M
ea
su
re

δ

Figure 4.2: The left (right) figure refers to a level of risk aversion γ = 2 (γ = 8). The black
graph refers to the optimal pre-commitment strategy π∗,pre

T,p for p = 0.2. The dashed
black (dashed gray) graph refers to the optimal pre-commitment strategy for p = 0.5
(p = 0.8).

π∗,preT,p for different investment horizons T depending on probability p
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Figure 4.3: The left figure refers to γ = 4 (πMer
1 = 0.75, πMer

2 = 0.0625), the right figure to γ = 8
(πMer

1 = 0.375, πMer
2 = 0.03125). The black graphs picture T = 2, the black dashed

T = 20 and the gray dashed T = 100.
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Notice that δ is not only related to the weights of the optimal pre-commitment strat-
egy, but can also be used to write the savings rate in terms of the time-inconsistency

yT,p(π) = y(π, 2) +
1

(1− γ)T
ln [1− p δ(π, T )] . (4.12)

If Regime 2 is the bad one, the second term is non-negative and measures the
additional contribution of the good state to the savings rate. This contribution
depends on p as well as on δ. It increases in the probability p of the good regime.
It also increases in δ, which in turn increases in the difference between the savings
rates in the good and bad regime.

For the optimal pre-commitment strategy, the savings rate is

yT,p(π
∗,pre
T,p ) = y(π∗,preT,p , 2) +

1

(1− γ)T
ln
[
1− pδ(π∗,preT,p , T )

]
. (4.13)

For π∗,preT,p = πequal, the savings rates in the two states coincide. δ is then equal to
zero and the optimal savings rate is equal to the (identical) savings rates in the two
states. Otherwise, the second term is positive. The savings rate then increases in the
probability of Regime 1 and in the utility gain in Regime 1 relative to Regime 2.

Along the lines of Proposition 4.1, myopia (which we see for γ = 1 and T = 0)
implies that the investor acts risk neutral w.r.t. the regime dependent savings rates,
i.e. the savings rate in case of risk over the regimes is equal to the expected savings
rate. An infinite investment horizon implies a worst-case decision, i.e. the decision
is based on the worst-case savings rate.

In our stylized setup, the optimal pre-commitment strategy converges toward the
worst-case strategy and is time-inconsistent. The effect of time-inconsistency can be
captured by the function δ which depends on the difference between the savings rates
in the two regimes and which drives the optimal weighting factor α. If πMer

1 > πMer
2

and σ1 ≤ σ2, the weighting factors for the Merton strategies in the myopic case
are proportional to the regime probability and the variance of the regime, so that
a higher risk in a regime biases the optimal pre-commitment strategy towards the
Merton strategy for this regime. Moreover, the weight of the good regime decreases
in the investment horizon, i.e. the investor puts more and more weight on the worst-
case strategy. The effect is more pronounced, the higher the level of risk aversion γ
is.

4.2.4 Value of information

We now compare the utility of the optimal pre-commitment strategy to the one of the
optimal strategy under full information if the investor can condition her strategy on
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the regime. Thus, the optimal strategy π∗ under full information maximizes expected
utility when the outcome of the a priori lottery is known, i.e.

π∗ = (π∗1, π
∗
2) := argmax

(π1,π2)

{pEP1 [u(VT (π1))] + (1− p)EP2 [u(VT (π2))]}

= argmax
π1

pEP1 [u(VT (π1))] + argmax
π2

(1− p)EP2 [u(VT (π2))].

The second line follows from the fact that the two terms in the weighted sum depend
on either π1 or π2. It immediately follows with the Merton result:

Proposition 4.4 (Optimal strategy under full information)
In case of an initial lottery L over the regimes 1 and 2, the expected utility and the
expected savings rate of a CRRA investor who can condition the strategy on the true
regime are maximized for

π∗ = (πMer
1 , πMer

2 ). (4.14)

The maximal savings rate yT,p(π
∗) when we can condition on the regimes is

yT,p(π
∗) =

{
1

(1−γ)T ln
[
pey(π

Mer
1 ,1)(1−γ)T + (1− p)ey(π

Mer
2 ,2)(1−γ)T

]
γ ̸= 1

p y(πMer
1 , 1) + (1− p)y(πMer

2 , 2) γ = 1
,

and the maximal certainty equivalent CE∗T is

CE∗T =


[
pey(π

Mer
1 ,1)(1−γ)T + (1− p)ey(π

Mer
2 ,2)(1−γ)T

] 1
1−γ

γ ̸= 1

e[p y(π
Mer
1 ,1)+(1−p)y(πMer

2 ,2)]T γ = 1
.

The value of the regime information can be measured by the quotient of the certainty
equivalents associated with the optimal strategies with and without the regime in-
formation, i.e. by the ratio CE∗,preT,p /CE∗T of the certainty equivalents. This ratio
gives the percentage of wealth the investor foregoes if she does not learn about
the regime immediately after the initial lottery has taken place. Alternatively, one
can measure the value of information in terms of the difference in the savings rates
yT,p(π

∗)− yT,p(π
∗,pre
T,p ), i.e. by the annual rate of return that the investor foregoes.

For γ = 1, the difference of the savings rate is simply given by the expected loss
rate in the two regimes, i.e. it holds

yT,p(π
∗)− yT,p(π

∗,pre) = p l(π∗,preT,p , 1) + (1− p) l(π∗,preT,p , 2),

where the loss rate is given in Equation (4.3). For γ > 1, it holds that

yT,p(π
∗)− yT,p(π

∗,pre
T,p ) =

1

(1− γ)T
ln

[
pey(π

Mer
1 ,1)(1−γ)T + (1− p)ey(π

Mer
2 ,2)(1−γ)T

pey(π
∗,pre
T,p ,1)(1−γ)T + (1− p)ey(π

∗,pre
T,p ,2)(1−γ)T

]
.

It follows immediately
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Proposition 4.5 (Value of information)

(i) The difference of the savings rates is given by

yT,p(π
∗)− yT,p(π

∗,pre
T,p )

=

{
βT,p(1) l(π

∗,pre
T,p , 1) + (1− βT,p(1)) l(π

∗,pre
T,p , 2) γ = 1

1
(1−γ)T ln

[
βT,p(γ)e

l(π∗,pre
T,p ,1)(1−γ)T + (1− βT,p(γ)) e

l(π∗,pre
T,p ,2)(1−γ)T

]
γ ̸= 1

,

where

βT,p(γ) :=
pey(π

∗,pre
T,p ,1)(1−γ)T

pey(π
∗,pre
T,p ,1)(1−γ)T + (1− p)ey(π

∗,pre
T,p ,2)(1−γ)T

=
p(1− δ(π∗,preT,p , T ))

p(1− δ(π∗,preT,p , T )) + 1− p
.

(ii) The ratio of the certainty equivalents is given by

CE∗T,p
CET,p(π

∗,pre
T,p )

= e[yT,p(π
∗)−yT,p(π

∗,pre
T,p )]T

=

 e[βT,p(1) l(π
∗,pre
T,p ,1)+(1−βT,p(1)) l(π

∗,pre
T,p ,2)]T γ = 1[

βT,p(γ)e
l(π∗,pre

T,p ,1)(1−γ)T + (1− βT,p(γ)) e
l(π∗,pre

T,p ,2)(1−γ)T
] 1

1−γ
γ ̸= 1

.

The proof of Proposition 4.5 is given in Appendix D.3. The loss in the savings rate
and in the certainty equivalent is thus equal to some weighted average of the regime-
specific loss rates, where the weights depend on the certainty equivalents in the two
regimes.

Intuitively, we expect the value of information to increase with the planning horizon,
i.e. with the length of the time horizon over which it is relevant. However, the savings
rates converge towards the worst-case savings rates when the investment horizon goes
to infinity, which lowers the value of information (the difference of the savings rates)
about the true regime for an increasing investment horizon. By the same argument
the difference of the certainty equivalents first increases and then decreases in T .

The limiting behavior of the gains from information is summarized in the following
proposition:

Proposition 4.6 (Limits for value of information)

(i) For the limits of the difference of the savings rates it holds

lim
T→0

[
yT,p(π

∗)− yT,p(π
∗,pre
T,p )

]
=

1

2
γp(1− p)

(
πMer
1 − πMer

2

)2 σ2
1σ

2
2

pσ2
1 + (1− p)σ2

2

.

lim
T→∞

[
yT,p(π

∗)− yT,p(π
∗,pre
T,p )

]
=

{
0 πequal ̸∈ A
y(πMer

2 , 2)− y(πequal, ·) πequal ∈ A.
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Figure 4.4: The left figure refers to p = 0.2 (black), p = 0.5 (black dashed), and p = 0.7 (gray
dashed) where γ = 4. The right figure to γ = 2 (black), γ = 4 (black dashed), γ = 6
(gray dashed) where p = 0.5.

(ii) For the limits of the ratio of the certainty equivalents it holds

lim
T→0

CE∗T,p
CET,p(π

∗,pre
T,p )

= 1

lim
T→∞

CE∗T,p
CET,p(π

∗,pre
T,p )

=

{
1 πequal ̸∈ A
∞ πequal ∈ A.

The proof of Proposition 4.6 is given in Appendix D.4.

Figure 4.4 gives the ratio of the certainty equivalents as a function of T . For T → 0,
both CEs converge to the initial investment. Their ratio thus goes to one. In the
case T → ∞, both CEs converge to infinity. For the parameters in Table 4.3, the
worst-case strategy converges towards the Merton strategy in the worse regime, and
the ratio of the CEs goes to one. There is thus an investment horizon T̂ for which
the value of information obtains its maximum. As the figure shows, this T̂ increases
in p and decreases in γ.

The right graph furthermore shows that the value of information is decreasing in
relative risk aversion γ. To get the intuition, note that the portfolio weights are
proportional to 1/γ. A higher risk aversion thus induces the investor to take smaller
portfolio weights, which limits the savings rates, i.e. the gains from investing. This
consequently also lowers the difference between the savings rates, i.e. the value of
information.

Figure 4.5 shows the difference in the savings rates as a function of the probability
p. In the limiting cases p = 0 and p = 1, there is no difference between the cases
with and without full information, so that the difference of the savings rates is
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Figure 4.5: The left figure refers to a risk aversion of γ = 2, the right to γ = 4.The black lines
picture T = 20, the black dashed T = 50 and the gray dashed T = 100.

equal to zero. For intermediate values of p, the difference is first increasing and then
decreasing in p. To get the intuition, we write the difference of the savings rates as

yT,p(π
∗)− yT,p(π

∗,pre) =yT,p(π
∗)−

[
y(π∗,preT,p , 2)− 1

(1− γ)T
ln
[
1− pδ(π∗,preT,p , T )

]]
.

The first term, the savings rate in the full information case, is increasing in the
probability p of the good regime. The same holds for the second term, the savings
rate in the limited information case. A larger p moves the optimal pre-commitment
strategy away from the worst-case strategy, which lowers its savings rate in regime
2 but increases the gain from regime 1. While the increase of the savings rate in the
full information case dominates for small p, the opposite holds for large p. When T
approaches zero, the value of information for T → 0 is largest for p = σ2/(σ1 + σ2).
For equal volatilities, this simplifies to p = 0.5 for which uncertainty about the true
regime is largest. The dependence on p vanishes for T → ∞ when the savings rates
are determined by the worst-case values.

4.2.5 A priori lottery and ambiguity

We now discuss the impact of ambiguity on time-inconsistency and the value of infor-
mation. We use the smooth ambiguity approach of Klibanoff et al. (2005) to model
the investor’s ambiguity aversion, i.e. the impact of uncertainty on the probability
p of the a priori lottery on the investor’s preferences.

The investor’s time t = 0 certainty equivalent to receiving VT is given by

v−1
(
Ep

[
v
(
u−1 (EUT,p)

)])
(4.15)
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for two increasing utility and ambiguity functions u and v. The corresponding savings
rate is given by

yamb
T (π) =

1

T
ln
(
v−1

(
Ep

[
v
(
u−1 (EUT,p)

)]))
.

For v = u, the investor is ambiguity neutral and we are back in a situation with
risk.

The optimal pre-commitment strategy under ambiguity π∗,pre, amb is defined by

π∗,pre, amb
T,p := argmaxπ Ep

[
v
(
u−1 (EUT,p)

)]
= argmaxπ yamb

T (π).

Throughout the following, we assume that both u and v are CRRA functions, i.e.

u(x) =

{
x1−γ

1−γ γ > 1

lnx γ = 1
and v(x) =

{
x1−η

1−η η > 1

lnx η = 1
,

where γ and η capture the (constant) relative aversions towards risk and ambiguity.

For the sake of simplicity, we model ambiguity by a situation with two different
probability distributions (pa, 1− pa) and (pb, 1− pb) over the regimes 1 and 2. The
investor assigns the probabilities p̃ and 1 − p̃ to these two distributions. W.l.o.g.,
we assume pb ≤ pa. Thus, without ambiguity aversion, we are back in a decision
problem under risk with a lottery (q, 1− q) where

q := p̃pa + (1− p̃)pb. (4.16)

For a given portfolio weight π, the expected utility of the investor is

Ep

[
v
(
u−1 (EUT,p)

)]
=

1

1− η

[
p̃eyT,pa (π)(1−η)T + (1− p̃)eyT,pb

(π)(1−η)T ] ,
where yT,pa(π) is the savings rate in a risk situation described by the distribution
(pa, 1−pa) and yT,pb(π) is the savings rate in a risk situation described by the distri-
bution (pb, 1− pb). Note that the aggregation over the two probability distributions
in case of ambiguity has the same functional form as the aggregation over the two
regimes in case of risk.

The savings rate in case of ambiguity is

yamb
T,p̃ (π) :=

1

(1− η)T
ln
[
p̃eyT,pa (π)(1−η)T + (1− p̃)eyT,pb

(π)(1−η)T ] .
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Plugging in the corresponding formulas for the savings rates in case of risk over the
regimes gives

yamb
T,p̃ (π) =


1

(1−η)T ln
[
p̃
[
pae

y(π,1)(1−γ)T + (1− pa)e
y(π,2)(1−γ)T ] 1−η

1−γ

+(1− p̃)
[
pbe

y(π,1)(1−γ)T + (1− pb)e
y(π,2)(1−γ)T ] 1−η

1−γ

]
γ ̸= 1

1
(1−η)T ln

[
p̃eypa (π)(1−η)T + (1− p̃)eypb (π)(1−η)T

]
γ = 1

.

For the limiting case T → 0, it holds that

lim
T→0

yamb
T,p̃ (π) = p̃ lim

T→0
yT,pa(π) + (1− p̃) lim

T→0
yT,pb(π)

= p̃ (pay(π, 1) + (1− pa)y(π, 2)) + (1− p̃) (pby(π, 1) + (1− pb)y(π, 2))

= q y(π, 1) + (1− q) y(π, 2),

and for the limiting case T → ∞, it holds that

lim
T→∞

yamb
T,p̃ (π) = min{y(π, 1), y(π, 2)}.

In both limiting cases the savings rate no longer depends on the risk aversion over
the regimes and the ambiguity aversion over the lotteries.

For T > 0 and η > γ, Jensen’s inequality75 implies that

yamb
T,p̃ (π) < p̃ yT,pa(π) + (1− p̃)yT,pb(π)

≤ p̃ (pay(π, 1) + (1− pa)y(π, 2)) + (1− p̃) (pby(π, 1) + (1− pb)y(π, 2))

= q y(π, 1) + (1− q) y(π, 2).

Similar to risk aversion, ambiguity aversion thus also reduces the savings rate relative
to the expected savings rate under the lottery (q, 1− q).

The optimal pre-commitment strategy of the ambiguity-averse investor is given by

π∗,pre,amb
T,p̃ := argmaxπ

1

(1− η)T
ln
[
p̃eyT,pa (π)(1−η)T + (1− p̃)eyT,pb

(π)(1−η)T ] .
The strategies that maximize the two savings rates in the above expression separately
from each other are π∗,preT,pa

and π∗,preT,pb
. Similar to the optimal pre-commitment strategy

in case of risk (which is between the optimal strategies πMer
1 and πMer

2 in the two

75EU = 1
1−γ e

y(π,i)(1−γ)T is a concave function of the portfolio weight, thus the expectation EUT,p

over the regimes is concave in the portfolio weights. Thus utility under ambiguity is for η > γ
concave in the portfolio weights.
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Impact of ambiguity on pre-commitment strategy
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Figure 4.6: The gray line displays πMer
2 = 0.0625. The black graph refers to the optimal pre-

commitment strategy under ambiguity aversion π∗,pre, amb
T,p̃ with p̃ = 0.5, pa = 0.6 and

pb = 0.2. The dashed black (dashed gray) graph refers to the optimal pre-commitment
strategy without ambiguity for γ = 4 under the given probability distribution over
the regimes with p̃ = 0.6 (p̃ = 0.2). The left (right) figure refers to a level of ambiguity
η = 4.000001 (η = 16).

regimes), the optimal pre-commitment strategy in case of ambiguity is between π∗,preT,pa

and π∗,preT,pb
, i.e. it holds that

π∗,pre, amb
T,p̃ ∈

[
min

{
π∗,preT,pa

, π∗,preT,pb

}
,max

{
π∗,preT,pa

, π∗,preT,pb

}]
=: Aamb

T .

For T → ∞, the limiting value of the optimal pre-commitment strategy does no
longer depend on the regime probability s.t.

lim
T→∞

Aamb
T =


{πMer

1 } y(π, 1) < y(π, 2) ∀π ∈ A
{πMer

2 } y(π, 2) < y(π, 1) ∀π ∈ A
{πequal} otherwise

. (4.17)

Again, we first look at the limiting values of the optimal pre-commitment strategies
under ambiguity.

Proposition 4.7 (Limiting results ambiguity)
For T → 0, it holds that

lim
T→0

π∗,pre, amb
T =

qσ2
1

qσ2
1 + (1− q)σ2

2

πMer
1 +

(1− q)σ2
2

qσ2
1 + (1− q)σ2

2

πMer
2 = lim

T→0
π∗,preT,q .

For T → ∞, it holds that

lim
T→∞

π∗,pre, amb
T =


πMer
2 y(π, 2) < y(π, 1) ∀π ∈ A

πMer
1 y(π, 1) < y(π, 2) ∀π ∈ A

πequal otherwise
.
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Impact of probability p̃ on optimal strategies π∗,pre, amb
T,p̃ and π∗,preT,q
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Figure 4.7: The pictures are created for γ = 4, η = 16, pa = 0.6, pb = 0.2 with an invest-
ment horizon of T = 50 (left figure) and T = 200 (right figure). The black graphs

show the optimal pre-commitment strategy under risk and ambiguity π∗,pre, amb
T,p̃ , the

black dashed graphs show the optimal pre-commitment strategy under risk π∗,pre
T,q

with probability q, the gray lines the optimal pre-commitment strategy under risk
with probability pa, the gray dashed the optimal pre-commitment under risk with
probability pb.

For T → 0, the optimal pre-commitment strategy under risk and ambiguity coincides
with the optimal pre-commitment strategy under risk with probability distribution
(q, 1 − q). For T → ∞, we are again in the case that the investor maximizes the
worst-case savings rate over the regimes, i.e. she uses the Merton strategy of the bad
regime. In both cases the strategy depends on γ (via the Merton fraction) but not
on the ambiguity aversion parameter η. An illustration is given in Figure 4.6.

In the limiting cases the optimal strategies coincide for all combinations p̃, pa, pb
that imply the same q. We now compare the optimal strategy π∗,pre, amb

T,p̃ under risk
and ambiguity with the optimal strategy π∗,preT,q under risk. Notice that π∗,preT,q is the
optimal strategy of an ambiguity neutral investor. Thus, for an ambiguity-averse
investor it holds π∗,pre, amb

T,p̃ ≤ π∗,preT,q , i.e.

π∗,pre, amb
T,p̃ ∈

[
min

{
π∗,preT,pa

, π∗,preT,pb

}
, π∗,preT,q

]
.

In addition, recall that for T < ∞, the optimal pre-commitment strategy (weighting
factor) is increasing in p. Thus, for pb < pa

π∗,pre, amb
T,p̃ ∈

[
π∗,preT,pb

, π∗,preT,q

]
.

For given T and varying probability p̃, an illustration of π∗,preT,pb
and π∗,preT,q and thus

the domain π∗,pre, amb
T,p̃ is presented in Figure 4.7. In analogy to the previous section,
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we to state the optimal pre-commitment strategy π∗,pre,amb
T,p̃ under ambiguity as a

weighted average of the two regime dependent Merton fractions πMer
1 and πMer

2 .

Proposition 4.8 (Optimal Pre-Commitment Strategy under Ambiguity)
The optimal pre-commitment strategy π∗,pre,amb

T,p̃ under ambiguity aversion η and risk
aversion γ (η > γ) solves the equation

π = α̃T,p̃(π)
(
αT,pa(π)π

Mer
1 + (1− αT,pa(π))π

Mer
2

)
+ (1− α̃T,p̃(π))

(
αT,pb(π)π

Mer
1 + (1− αT,pb(π))π

Mer
2

)
. (4.18)

The weight α̃T,p̃(π) is given by

αT,pi(π) =
piσ

2
1(1− δpreT (π))

piσ2
1(1− δpreT (π)) + (1− pi)σ2

2

, for i = a, b

α̃T,p̃(π) =
p̃(1− δamb

T (π))

p̃(1− δamb
T (π)) + (1− p̃)

,

δamb
T (π) = 1− paσ

2
1(1− δpreT (π)) + (1− pa)σ

2
2

pbσ2
1(1− δpreT (π)) + (1− pb)σ2

2

[
pa(1− δpreT (π)) + (1− pa)

pb(1− δpreT (π)) + (1− pb)

] η−γ
γ−1

,

the weights αT,pa(π) and αT,pb(π) are given in Equation (4.11) applied to π (instead
of the optimal pre-commitment strategy).

The proof of Proposition 4.8 is given in Appendix D.5. Notice that in the special
case pa = pb there is no (third dimension) ambiguity since the lotteries (pa, 1− pa)
and (pb, 1−pb) coincide. It is intuitively clear that the optimality condition simplifies
to the optimal pre-commitment strategy under the lottery (pa, 1− pa) = (pb, 1− pb)

π∗,pre,amb
T,p̃ = π∗,preT,q (= π∗,preT,pa

= π∗,preT,pb
).

Now, consider the case where the second risk dimension vanishes, i.e. pa = 1, pb = 0.
Here Proposition 4.8 simplifies to

π∗,pre,amb
T,p̃ = α̂∗T,p̃π

Mer
1 + (1− α̂∗T,p̃)π

Mer
2

where α̂∗T,p̃(π) =
p̃σ2

1e
y(π,1)(1−η)T

p̃σ2
1e

y(π,1)(1−η)T + (1− p̃)σ2
2e

y(π,2)(1−η)T

In consequence, for a given q (i.e. the probability of Regime 1 if the lotteries are
merged), the ambiguity aversion is the more important, the higher the difference of
pa and pb is (equality holds for pa = pb). In contrast, this decreases the risk situation
(i.e. if pb = 0 and pa = 1, we have no risk situation about the regime). Thus, there
is an opposing effect of ambiguity situation and risk situation about the regimes.



4. Parameter uncertainty, ambiguity and optimal asset allocation under
time-inconsistency 148

π∗,pre,amb
T,p̃ , const. q for different pa and pb combinations
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Figure 4.8: The left (right) hand side refers to γ = 4, η = 8 (γ = 4, η = 16). Both illustrations

are plotted with a constant q = p̃ = 0.6. The black graphs display π∗,pre,amb
T,p̃ for

pa = 0.7, pb = 0.45. For pa = pb = 0.6 it holds π∗,pre,amb
T,p̃ = π∗,pre

T,q (gray and black
dashed graphs). The gray dashed graphs refer to pa = 1, pb = 0.

In addition, Proposition 4.8 sheds light on the importance of the ratio of the levels of
ambiguity aversion η and risk aversion γ. Intuitively, it is clear that the optimal pre-
commitment strategy under all three dimensions π∗,pre,amb

T,p̃ is decreasing in the risk
aversion γ. A higher γ leads to a reduction of the regime based Merton fractions (first
risk dimension). In addition, a higher level of risk aversion yields a faster convergence
towards the Merton fraction associated with the worst-case regime (second risk
dimension). Concerning the third dimension (ambiguity), the speed of convergence
towards the worst-case strategy (maximin strategy) is monotonically increasing in
the difference resp. the ratio of η and γ, i.e. the higher the difference between the
two parameters, the faster the convergence. For fixed investment horizon T the
probability distributions (pa, 1 − pa) and (pb, 1 − pb) become less important (more
important) for the investment decision if the difference between γ and η gets smaller
(bigger). For given q, an illustration of the convergence behavior of the optimal pre-
commitment strategy under ambiguity and risk aversion to the maximin strategy is
given in Figure 4.8.

In addition to the value of the information about the regime (complete informa-
tion), we consider now the value of the information about the lottery (second risk
dimension), i.e. the willingness to pay for resolving the ambiguity (the knowledge
whether (pa, 1− pa) or (pb, 1− pb) applies). Here, the investor knows whether to use
the strategy π∗,preT,pa

or π∗,preT,pb
. Under complete information, she knows whether to use
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Value of information: π∗,preT,pa and π∗,preT,pb known, const. q
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Figure 4.9: Left side: γ = 4, η = 8. Right side: γ = 4, η = 16. q = p̃ = 0.6. Black line: pa = pb =
0.6, black dashed: pa = 0.8, pb = 0.3, gray dashed: pa = 1, pb = 0

πMer
1 or πMer

2 . We consider the following ratios certainty equivalents

VoILot(T ) =

[
p̃ CET,pa(π

∗,pre
T,pa

)1−η + (1− p̃)CET,pb(π
∗,pre
T,pb

)1−η
] 1

1−η[
p̃ CET,pa(π

∗,pre,amb
T,p̃ )1−η + (1− p̃)CET,pb(π

∗,pre,amb
T,p̃ )1−η

] 1
1−η

and

VoIComplete(T ) =
q CET (π

Mer
1 , 1) + (1− q)CET (π

Mer
2 , 2)[

p̃ CET,pa(π
∗,pre,amb
T,p̃ )1−η + (1− p̃)CET,pb(π

∗,pre,amb
T,p̃ )1−η

] 1
1−η

,

i.e. VoILot(T )−1 denotes the willingness to pay for the knowledge of the lottery and
VoIComplete(T )− 1 denotes the willingness to pay for the knowledge of the regime.

An illustration of the value of resolving the ambiguity situation, i.e. V oILot(T ), is
given in Figure 4.9. Notice that (for all pa, pb combinations) the limits T → 0 and
T → ∞ of V oILot(T ) are equal to 1, i.e. the willingness to pay is zero. Intuitively,
the same reasonings apply to the third (ambiguity) dimension as for the second risk
dimension (cf. Sec. 4.2.4). Obviously, the willingness to pay is also zero. In the special
case pa = pb (no ambiguity) it holds V oILot(T ) = 1 (independent of the investment
horizon T ). Similar to Sec. 4.2.4, there is an investment horizon T̂ for which the value
of information achieves its maximum. It is the highest for pa = 1, pb = 0 where as
argued above the ambiguity influence is the highest. However, beyond T̂ , the value
of information drops faster for a higher difference between η and γ since a higher
difference implies a faster convergence against the worst-case as already mentioned
before.
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4.2.6 Conclusion

We consider a stylized setup of an investment decision to shed light on the im-
pact and problems of time-inconsistency. In the first instance, we introduce time-
inconsistency using a double risk situation. While the outer risk is given by a simple
a priori lottery, the inner risk situation is a regime, coinciding with the classic Mer-
ton problem. Although our stylized setup is artificial (in the sense that we do not
allow for learning about the regimes), it fits many (dynamic) decision problems (cf.
Introduction).
The double risk situation allows an intuitive interpretation of the results. Techni-
cally, we can separate the outer and inner risk situation. Since the outer risk situation
increases in time (the investment horizon), the optimal decision of the investor con-
verges to the optimal decision within the worst-case regime, i.e. the investor chooses
the expected utility maximizing strategy for this regime. For a finite investment
horizon, the optimal investment decision is explained by a weighted average of the
optimal regime dependent (Merton) solutions. While in the myopic case, the weights
resemble the probabilities given by the lottery, there is a time dependent reduction
of the probability of the good regime, i.e. as the investment horizon increases the
worst-case regime gets more important. Thus, in the limiting case of an infinite in-
vestment horizon, the decision is only based on the worst-case regime. In particular,
we provide a measure (normalized to [0, 1]) for the impact of time-inconsistency.
The measure is increasing in the level of risk aversion, because the impact of time
makes the risk situation higher, such that the impact is the higher, the higher the
risk aversion. Furthermore, it is increasing in the probability of the good regime:
the shift towards the worst-case regime is the more severe, the lower the probability
of the worst-case regime is. Concerning the willingness to pay for the information
about the regime, we have the (obvious) result that the higher the risk aversion is,
the higher is the willingness to pay for the information. However, we show that the
willingness to pay obtains a maximum, i.e. first increases in the investment horizon
and then decreases to zero. Thus, there is an investment horizon where the willing-
ness to pay is maximized. In addition to the two dimensions of risk, we also introduce
an additional dimension stemming from ambiguity about the regime probabilities.
Using the smooth ambiguity model of Klibanoff et al. (2005), implies a further outer
expectation (accounting for the ambiguity aversion). Again, we can separate the
effects of the two risk situations as well as the ambiguity aversion. We explain why
the impact of time-inconsistency gets more ambiguous. This is explained by the
observation that varying the ambiguity situation may also change the risk situation.
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4.3 Extension and literature review on portfolio allocation under un-
certainty aspects

4.3.1 Possibility of one regime switch

A possible extension to the model in the previous section is given by allowing one
regime switch on the interval [0, T ].76 Let us assume the filtered probability space
(Ω,F , (Ft)t∈[0,T ],P), where the filtration (Ft)t∈[0,T ] is generated by the standard
Brownian motion (Wt)t∈[0,T ] and the continuous time observable Markov process
(Yt)t∈[0,T ], i.e. Ft = σ(Ws, Ys; 0 ≤ s ≤ t). We assume that Yt has two possible states,
i.e. Yt(ω) ∈ {1, 2}. The unconditional probability at t = 0 of the Markov process is
given by

P (Y0(ω) = 1) = p, P (Y0(ω) = 2) = 1− p.

Thus, the Markov process starts in state 1 with probability p and in state 2 with
1 − p. With this setup we take into account that the first state of the Markov
Chain Y0 is uncertain. We further assume that both, the drift parameter µ and the
volatility σ, depend on the Markov Process, i.e. µt = µ(Yt) and σt = σ(Yt). When
the actual regime is given by state 1, i.e. Yt(ω) = 1 we write µt = µ(Yt = 1) = µ1

and σt = σ(Yt = 1) = σ1 (resp. µ2 and σ2 for state 2).
Furthermore, the time of a regime switch is stochastic, modeled by an exponentially
distributed random variable τ ∼ Exp(λ), where λ is the scale parameter. The density
and distribution function of τ are given by

fλ
τ (x) =

{
λe−λx, x ≥ 0

0, x < 0
, F λ

τ (x) =

{
1− e−λx, x ≥ 0

0, x < 0
. (4.19)

Our financial market model contains two assets, a risky asset S and a risk-free asset
B. Both are adapted to the filtration (Ft)t≥0, i.e. by evaluating the asset evolution,
we know all informations about the Brownian motion and of the Markov process
until time t.The evolution of the risk free asset (Bt)t∈[0,T ] is given by

dBt = Btrdt, (4.20)

76 In general, regime-switching is often connected to uncertain distributional parameters, e.g. the
drift µ or the volatility σ. Depending on the economic circumstances there can occur a good
regime (resp. a bad regime) which will be represented by a high drift and a small volatility
(resp. a small drift and a high volatility). A regime ’switches’ if the circumstances change. This
change is mathematically modeled with a Markov chain resp. a Markov process. If the current
state of the regime is known, we speak of an observable Markov chain, if it is not known, we
speak of an unobservable or hidden Markov chain. A short introduction to the Markov chain
regime-switching problematic can be found in the Appendix A2. Furthermore, we give a review
on the optimal portfolio planning literature under regime-switching at the end of this chapter.
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where r defines the risk-free interest rate. The solution of this SDE is given by the
continuously compounded interest of the initial value B0. The dynamics of the risky
asset (St)t∈[0,T ] are defined by

dSt = Stµ(Yt)dt+ Stσ(Yt)dWt, (4.21)

where the drift µ and the volatility σ both depend on the Markov process (Yt)t∈[0,T ].
Using these definitions the evolution of the portfolio wealth (Vt)t∈[0,T ] of the invest-
ment strategy is given by the following dynamics:

dVt = Vt

(
πt
dSt

St

+ (1− πt)
dBt

Bt

)
= Vt (πtµ(Yt)dt+ πtσ(Yt)dWt + (1− πt)rdt)

= Vt ({πt[µ(Yt)− r] + r}dt+ πtσ(Yt)dWt)

= Vt (µA,t(Yt)dt+ σA,t(Yt)dWt) , (4.22)

where πt is the investment fraction in the risky asset S. For the special case where
the investment fraction is constant over time, i.e. πt = π, for all t ∈ [0, T ], we follow
a so called Constant Mix strategy (CM). In this case it holds µA,t(Yt) = µA(Yt) =
πµ(Yt) + (1− π)r;σA,t(Yt) = σA(Yt) = πσ(Yt), for all t ∈ [0, T ].
In consequence, for the solution of the SDE following a CM strategy it holds under
the real world measure P:

Vt = V0e
(µA(Yt)− 1

2
σ2
A(Yt))t+σA(Yt)Wt .

If the regime switches at the random point in time τ ≤ T from regime 1 to regime
2, it holds:

X1 =
VT

V0

=
Vτ

V0

VT

Vτ

= e[π(µ1−r)+r− 1
2
π2σ2

1 ]τ+σ1πWτ e[π(µ2−r)+r− 1
2
π2σ2

2 ](T−τ)+σ2π(WT−Wτ )

= e[π(µ2−r)+r− 1
2
π2σ2

2 ]T e[π(µ1−µ2)− 1
2
π2(σ2

1−σ2
2)]τ+π(σ1Wτ+σ2(WT−Wτ )). (4.23)

If the regime switches randomly at a point in time τ with τ > T , the terminal wealth
can be stated as

X2 =
VT

V0

= e[π(µ1−r)+r− 1
2
π2σ2

1 ]T+σ1πWT . (4.24)

Now our aim is to calculate and maximize the expected utility resp. the certainty
equivalent of the investor. As in the previous section we use a power utility with
constant relative risk aversion parameter γ, the CRRA utility function, defined by

u(x) :=

{
x1−γ

1−γ , for γ > 1

ln(x), for γ = 1.
(4.25)
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Using a CRRA utility function has its merits in the context of portfolio optimization.
It allows us an analysis only based on the asset returns. We can state the expected
utility optimization problem of the investors terminal wealth by

max
πt

EP [u(VT )] . (4.26)

The famous result from Merton (1971) provides the optimal investment fraction πt

to maximize the investors expected utility in the absence of regime switches. Here
the optimal portfolio investment strategy is given by a CM strategy with optimal
investment fraction

π∗t = π∗ = πMer =
µ− r

γσ2
. (4.27)

If a regime switch occurs, the Merton solution of course cannot be optimal anymore
because of the changing drift and volatility parameters. Intuitively one could sug-
gest that the overall optimal expected utility in a regime-switching environment is
achieved by adapting the investment fraction to the Merton solution which fits the
current parameters in the regime and changing it after a regime switch occurs. This
intuition is true if and only if the regime switch is observable. Sotomayor and Cade-
nillas (2009) in a more general setting as also Ocejo (2018) show that the investment
strategy which maximizes the expected utility of the investor in (4.26) is given by

π∗t =
µ(Yt)− r

γσ(Yt)2
. (4.28)

Here the parameters of the asset dynamic (in contrast to the Merton solution in
Equation (4.27)) are depending on the current regime at time t.
In the situation of one regime switch and knowing the start regime we can see that
the optimal investment strategy of the investor is given by

π∗t = 1{t<τ}π
Mer1 + 1{t≥τ}π

Mer2 = 1{t<τ}
µ1 − r

γσ2
1

+ 1{t≥τ}
µ2 − r

γσ2
2

. (4.29)

In the next step, it is interesting to calculate and analyze the utility losses which
occur from a suboptimal investment strategy. For this, we need to calculate the
expected utility of the investor’s investment strategy. We receive results in closed-
form.

4.3.2 Log Utility

For the special case γ = 1 we receive the following results.
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Proposition 4.9 (Expected Utility under Regime-Switching - Log Utility)
Let u be the Log-utility function, τ the exponentially distributed random point in time
with intensity parameter λ where the regime switches from state 1 to state 2 and T
the maturity of the contract. Then the expected utility of the terminal wealth VT can
be stated as

EP∗

[
u

(
VT

V0

)]
=
[
ν(T, λ)σ2

1ππ
Mer
1 + (1− ν(T, λ))σ2

2ππ
Mer
2

−1

2
π2(ν(T, λ)σ2

1 + (1− ν(T, λ))σ2
2) + r

]
T

= ν(T, λ)y(π, 1)T + (1− ν(T, λ))y(π, 2)T,

where

ν(T, λ) :=e−λT +
1

λT
− 1

λT
e−λT =

1

λT
+ P(τ > T )

(
1− 1

λT

)
,

1− ν(T, λ) :=P(τ ≤ T )

(
1− 1

λT

)
.

Let us briefly comment on the interpretation of the term ν(T, λ)y(π, 1)T :
With regard to our assumption, we are starting in Regime 1. Because of taking
expectations the first (and only) regime switch is expected at t = 1

λ
. It could also

be possible that the switch takes place after T , i.e. we stay the whole time of the
investment horizon in Regime 1. This is captured by the term P(τ > T ). If this
scenario occurs then we are (under expectation) not only in the first time interval
[0, 1

λ
] in Regime 1, but also the remaining time (T− 1

λ
) . This is captured by ν(T, λ)T

resp. its utility ν(T, λ)y(π, 1)T . The term (1 − ν(T, λ))y(π, 2)T can be interpreted
similar:
We are starting in Regime 1, i.e. under expectation a switch is at most possible at
t = 1

λ
. Thus it is only possible to stay the remaining time (T − 1

λ
) in Regime 2 if this

scenario occurs, i.e. the probability P(τ ≤ T )
(
T − 1

λ

)
. But this is (1− ν)T resp. the

utility (1− ν(T, λ))y(π, 2)T .

Proposition 4.10 (Pre-Commitment under Regime-Switching - Log Case)
The pre-commitment strategy that maximizes the expected utility of the log investor
is given by

πpre,∗ =
ν(T, λ)σ2

1π
Mer
1 + (1− ν(T, λ))σ2

2π
Mer
2

ν(T, λ)σ2
1 + (1− ν(T, λ))σ2

2

= α(ν(T, λ))πMer
1 + (1− α(ν(T, λ)))πMer

2 , with

α(ν(T, λ)) :=
ν(T, λ)σ2

1

ν(T, λ)σ2
1 + (1− ν(T, λ))σ2

2

.
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4.3.3 Power Utility

For the general power utility setting, we are also able to receive closed-form results.
We further assume w.l.o.g. that r = 0 as in the previous section.

Proposition 4.11 (Expected Utility Regime-Switching - Power Utility)
Let u be the CRRA utility function with relative risk aversion parameter γ > 1, τ
the exponentially distributed random point in time with intensity parameter λ where
the regime switches from state 1 to state 2 and T the maturity of the contract. Then
the expected utility of the terminal wealth VT can be stated as

EP

[
u

(
VT

V0

)]
=

1

1− γ

[
a(π, λ)ey(π,1)(1−γ)T e−λT + (1− a(π, λ))ey(π,2)(1−γ)T

]
, with

a(π, λ) =
ξ1 − ξ2

ξ1 − ξ2 − λ
=

y(π, 1)(1− γ)− y(π, 2)(1− γ)

y(π, 1)(1− γ)− y(π, 2)(1− γ)− λ
.

The proof of Proposition 4.11 is given in Appendix D.7.

Proposition 4.12 (Pre-Commitment in Regime-Switching - Power Utility)
For γ > 1 (and r = 0) the optimal pre-commitment strategy is given by the implicit
function

πpre,∗ = απMer
1 + (1− α)πMer

2 , where

α =
σ2
1g1

σ2
1g1 + σ2

2g2
, 1− α =

σ2
2g2

σ2
1g1 + σ2

2g2
with

g1 =e−λT ey(π
∗,pre,1)(1−γ)T

(
T (ξ1 − ξ2)(ξ1 − ξ2 − λ)

λ
− 1

)
+ ey(π

∗,pre,2)(1−γ)T

g2 =e−λT ey(π
∗,pre,1)(1−γ)T + ey(π

∗,pre,2)(1−γ)T (T (λ− ξ1 + ξ2)− 1)

The proof of Proposition 4.12 is given in Appendix D.8.

Remark 4.1
(i) Using the relation EP

[
u
(

VT

V0

)]
= u(CE) we can easily calculate the certainty

equivalent (CE) of the terminal wealth where

CE =

[
ξ1 − ξ2

ξ1 − ξ2 − λ
e(ξ1−λ)T +

−λ

ξ1 − ξ2 − λ
eξ2T

] 1
1−γ

.

(ii) Setting γ = 0 we get the closed-form formula for the expected value of the ter-
minal wealth EP[VT ].
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Defining yT,λ(π) :=
1
T
ln (u−1 (EUT,λ)) we receive with r = 0:

yT,λ(π) =

{
ν(T, λ)y(π, 1) + (1− ν(T, λ))y(π, 2), γ = 1

1
(1−γ)T ln

[
a(π, λ)ey(π,1)(1−γ)T e−λT + (1− a(π, λ))ey(π,2)(1−γ)T

]
, γ > 1

.

(4.30)

Using these results, we are able to analyze the impact of pre-commitment strategies
in a regime-switching environment similar to the previous section within the a-priori
setup. This will be an interesting and promising analysis for further research.

4.3.4 Regime-switching and portfolio planning - A literature review

Let us end the chapter by giving a literature review on aspects of portfolio planning
including the regime-switching topic. As stated before in Chapter 2, Merton (1969)
and Merton (1971) are the first two articles that face the challenge of determining the
optimal investment fraction in the risk asset s.t. the expected utility of an investor is
maximized. Over the years, there are many research papers that include the impact
of regime-switching in the optimal investment decision. In this literature overview we
want to answer the question how the optimal solution under regime-switching differs
compared to the standard Merton solution in case of only one regime. A review of
the most common literature is presented in Table 4.4. It includes the corresponding
Markov Chain (hidden or observable) and the parameters that should be modeled
under the regime switch as well as the optimization problem and the assumptions of
the authors. As noticed before, the topic of regime-switching in portfolio planning
is closely related to the ones of learning and ambiguity in this research area. Thus
we only mention the papers that specifically touch the regime-switching aspects.
The first paper, to the best of our knowledge, that has made regime-switching in
the economics research area popular is Hamilton (1989). He considers an observable
discrete-time Markov-switching autoregressive time series model. In the context of
portfolio allocation Zariphopoulou (1992) has been the first that investigates the
EU maximizing terminal wealth problem including consumption where the drift µ
is modeled with a MC. The paper works with a utility function that fulfills the
Inada conditions s.t. there is no closed-form solution possible. Elliott and Van der
Hoek (1997) analyze a hidden Mean-Variance model and determine the optimal
strategy for a one-period contract. Ang and Bekaert (2002) investigate the optimal
investment fraction in discrete time where the asset returns are modeled with an
observable Markov chain. They test empirically the influence of regime-switching on
the optimal terminal wealth. If the corresponding portfolio does not account for a
risk-free asset, the effects of different regimes are small. If we introduce a risk-free
asset, the observation changes and ignoring the regimes is costly. Zhou and Yin
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(2003) work within a continuous MV market model where the drift, the interest
rate and even the volatility is modeled with an observable MC. They find that for
the special case of a constant interest rate the results show similarity to the results
without regime-switching. This observation can be found in many papers:
Bäuerle and Rieder (2004) show that for CRRA utility and a 1-dim. BS model that
integrates regime-switching for r, µ and σ the optimal investment fraction is given
by the Merton solution, depending on the current state of the MC, i.e.

π∗,obs.t =
µ(t)− r(t)

σ(t)2γ
. (4.31)

The authors also tackle the problem where the drift can switch within a hidden MC
model in Rieder and Bäuerle (2005). They find explicit solutions in the CRRA utility
case. The optimal solution is given by two factors: a myopic part that refers to the
solution under observable states and by a hedging demand part that depends on a
PDE. An optimal solution under a hidden Markov Chain for the drift, depending
on a PDE, is also given by Honda (2003). Sotomayor and Cadenillas (2009) work
in a n-dim. observable MC market model with a general assumption on the utility
function. They discuss the general problem and present closed-form solutions for
specific HARA functions and also consumption is included in the model. Ocejo
(2018) presents the same results as Bäuerle and Rieder (2004) but achieved the
solution based on Laplace transforms. The work of Zhang et al. (2010) analyze an
enlarged 1-dim. model s.t. it is complete and solve the expected utility maximizing
investment fraction problem for the terminal wealth in closed-form for CRRA utility
and a MC with n possible states for the interest rate r, the drift µ and the volatility
σ. The results coincide with equation (4.31).

Liu (2011) even includes ambiguity aversion in a model with a risky and risk-free
asset, where the drift parameter follows a hidden MC. The derived optimal solution
contains three parts: the myopic Merton solution depending on the regime as stated
in equation (4.31), an intertemporal hedging component and a hedging component
that refers to the ambiguity situation. Capponi and Figueroa-López (2014) analyze
a setting where to the standard model a risky bond is introduced. The bond can
default if the counterparty cannot serve it. For the special case of CRRA utility,
they find the expected utility maximizing investment fractions for the products.
The investment into the risky asset is given by 4.31, the optimal investment into the
risky (defaultable) bond is given by the unique solution of a non-linear system of
equations. Fu et al. (2014) introduce observable regime-switching to an incomplete
market where also derivatives are included. For the CRRA utility case they find
closed-form solutions for the optimal investment fraction that maximize the terminal
wealth. It is the sum of a modified Merton solution in combination with delta hedging
strategy.
There are also Mean-Variance models that include regime-switching. Frauendorfer
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et al. (2007) derive in a complex Ornstein-Uhlenbeck model with an observable MC,
that models the drift and volatility parameter, an efficient portfolio that is optimal
to a MV criterion. A discrete MV setting with observable MC is presented in Yin
and Zhou (2004), whereas Costa and Araujo (2008) as also Xie (2009) analyze a
continuous (generalized) MV model.
Referring to this literature overview, we can conclude that there is a crucial difference
when it comes to portfolio planning within a regime-switching model: If the states
of the Markov-Chain are observable, the optimal investment fraction corresponds to
the optimal Merton solution, depending on the current state of the economy. Thus,
we invest at time t the investment fraction given in equation (4.31) including the
current states of µ, σ and r. If we are in the situation that the states of the Markov
Chain are not observable, the optimal solution consists of more than one term,
depending on the problem we are facing. It always contains the optimal observable
solution, stated in equation (4.31) and some additional terms that refer to a hedging
demand because of the unobservable situation.

Authors Markov
Process

Optimization
Problem

Assumptions

Zariphopoulou
(1992)

observable
µ

EU, (πt)t∈[0,T ] 1 risky and 1 risk-free asset with
consumption, ; strictly increasing
and concave utility that fulfills In-
ada conditions

Elliott and
Van der
Hoek
(1997)

hidden MV n-dim. discrete model for the
rates of return

Ang and
Bekaert
(2002)

observable EU, (πt)t∈{0,··· ,T} discrete, n-dim. market model,
CRRA utility

Honda
(2003)

hidden
µ

EU, (πt)t∈[0,T ] 1-dim. BS model; HARA utility

Zhou and
Yin (2003)

observable
r, µ, σ

MV n-dim. continuous market model

(To be continued)
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Authors Markov
Process

Optimization
Problem

Assumptions

Bäuerle
and Rieder
(2004)

observable
r, µ, σ

EU, (πt)t∈[0,T ] 1 risky and 1 risk-free asset;
CRRA utility

Sass and
Hauss-
mann
(2004)

hidden
µ

EU, (πt)t∈[0,T ] n-dim. market model, d possi-
ble states for the MC; strictly
increasing and concave, twice
continuously differentiable utility
function with Inada, explicit so-
lution determined numerically

Rieder and
Bäuerle
(2005)

hidden
µ

EU, (πt)t∈[0,T ] 1 risky and 1 risk-free asset, d
possible states of the MC; CRRA
utility

Frauendorfer
et al.
(2007)

observable
µ, σ

MV n-dim. Ornstein-Uhlenbeck that
models pension funds

Jang et al.
(2007)

observable
r, µ, σ

EU, (πt)t∈[0,T ] 1 risky and 1 risk-free asset, 2
possible states of the MC; CRRA
utility; model transaction costs

Nagai and
Rung-
galdier
(2007)

hidden
µ

EU, (πt)t∈[0,T ] n-dim. market model and d possi-
ble states for the MC;CRRA util-
ity; give insights with a PDE ap-
proach

Taksar
and Zeng
(2007)

hidden
µ, σ

EU, (πt)t∈{0,··· ,T} n-dim. market model and d pos-
sible states of the MC; discrete
approximation for optimal termi-
nal wealth strategy with applica-
ble representation for log-utility

Costa and
Araujo
(2008)

observable
µ, σ

generalized MV n-dim. market model with d pos-
sible states of the MC

Xie (2009)
observable
r, µ, σ

MV 1-dim. market model that in-
cludes liability payments, d pos-
sible states of the MC

Sotomayor
and Ca-
denillas
(2009)

observable
r, µ, σ

EU, (πt)t∈[0,T ] n-dim. market model with con-
sumption and d possible states of
the MC; strictly increasing and
concave utility that fulfills Inada
conditions

Elliott et
al. (2010)

hidden
µ

MV 1 risky, 1 risk-free asset, d possible
states of the MC

(To be continued)
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Authors Markov
Process

Optimization
Problem

Assumptions

Zhang et
al. (2010)

observable
r, µ, σ

EU, (πt)t∈[0,T ] 1-dim. incomplete market with d
possible states of the MC, en-
larged to complete one; CRRA
utility

Korn et al.
(2011)

hidden
r, µ, σ

EU, (πt)t∈[0,T ] 1 risky, 1 risk-free asset and 1
cuponbond, also include a pen-
sion fund, d possible states of the
MC; continuous, strictly increas-
ing, strictly concave and contin-
uously differentiable utility func-
tion that fulfills Inada

Liu (2011)
hidden
µ

EU, (πt)t∈[0,T ] 1 risky and 1 risk-free bond, in-
clude consumption and ambigu-
ity, 2 possible states of the MC;
CRRA utility

Çanakoğlu
and
Özekici
(2012)

observable
µ, σ

EU, (πt)t∈[0,T ] n-dim. market model, stochas-
tic interest rate, regime-switching
via MP; HARA utility

Shen and
Siu (2012)

observable
short rate, σ

EU, (πt)t∈[0,T ] 1 risky, 1 risk-free asset and
1 zerobond; stochastic inter-
est rate modeled with Vasicek;
continuous, (strictly) increasing,
(strictly) concave and continu-
ously differentiable utility func-
tion that fulfills Inada

Capponi
and
Figueroa-
López
(2014)

observable
r, µ, σ

EU, (πt)t∈[0,T ] 1 risky, 1 risk-free asset and 1
risky bond, d possible states for
the MC; strictly increasing and
concave utility, explicit solution
for CRRA

Fu et al.
(2014)

observable
r, µ, σ

EU, (πt)t∈[0,T ] model with 1 risky, 1 risk-free
asset and an option, d possible
states of the MC; strictly increas-
ing and strictly concave utility
function

Ocejo
(2018)

observable
r, µ, σ

EU, (πt)t∈[0,T ] cf. Sotomayor and Cadenillas
(2009); presents solution based on
Laplace transforms

Bo et al.
(2019)

hidden
µ, σ default
coefficient

EU, (πt)t∈[0,T ] n-dim. market model with de-
faultable stocks and infinitely
many possible states for MC

EU=expected utility; MC=Markov Chain; MV=Mean-variance

Table 4.4: Selected papers on optimal portfolio planning under regime-switching
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At the end of this chapter, let us take a look at the risk measure literature that
contributes to the regime-switching topic. The first paper that includes a possible
regime switch in the assets log-returns and its impact on the VaR as also the ES is
Hardy (2001). In a Bayesian updating process, she calculates closed-form formulas
for both risk measures. Kawata and Kijima (2007) develop a simple regime-switching
model to estimate portfolio VaR. This model is able to correct the underestimation
problem of risk that has been reported in literature. Elliott and Miao (2009) propose
regime-switching models to measure the VaR and ES for a single financial asset as
well as portfolios. They capture the volatility clustering phenomenon by assuming
the returns follow Student-t distributions. All three papers assume an observable
Markov chain. Elliott and Siu (2010) minimize the portfolio risk by applying convex
risk measures in an observable MC regime-switching and game-theoretical environ-
ment. For the entropic risk measure they discuss special cases.
In the context of portfolio allocation under risk measure constraints there exist
some more papers that investigate the impact of a regime-switching environment
on the optimal portfolio planning rule. Yiu et al. (2010) include consumption and
a Value at Risk constraint. They calculate the optimal investment fraction under
an observable Markov Chain depending on a HJB equation and present numerical
results: They show that if a regime switches toward a bad regime (high volatility),
the corresponding Value at Risk level decreases. This is due to the fact that the
bad regime influences the optimal investment fraction as seen in equation (4.31):
If the volatility increases, the investment in the risky asset decreases and thus the
risk itself decreases because more is invested in the risk-free bond. Therefore, the
capital requirements decrease. Liu et al. (2012) solve this problem for the special
case of CRRA utility in the absence of consumption with a dynamic VaR constraint
in closed-form. It is given by a generalization of the Merton solution that includes
the risk constraint and the Markov Chain. The paper of Liu et al. (2014) analyzes
a dynamic convex risk measure as a constraint within an observable Markov model.
They solve the problem using game theory.
Zhu et al. (2016) present one of the first papers that introduces a VaR-SFP con-
straint in an optimization problem within a hidden Markov Chain setting. They
discuss the optimal portfolio strategy numerically: The investment in the risky asset
is reduced to fulfill the VaR constraint. Hu and Wang (2017) present the optimal
consumption and investment fraction for a regime-switching model with a VaR con-
straint that includes liabilities. For a special case of exponential utility functions and
two states MC, they derive explicit solutions: The optimal investment fraction is of
the same structure as described above in the hidden Markov-Chain setting without
risk constraints: One part of the solution is given by equation (4.31), scaled with
a term that corresponds to the risk constraint and a second part that is given by
a PDE. Finally, Yan et al. (2020) analyze an investment-reinsurance policy for an
insurance contract and minimize the SFP modeled with a VaR under an observable
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Markov Chain. Concluding this literature overview on the impact of SFP constraints
on the optimal investment fractions in a regime-switching portfolio allocation prob-
lem, we find commonalities to the problems without risk constraint: in the observable
Markov Chain setting, the optimal solution is based on the Merton fraction, adapted
to the current state of the Markov Chain. If the Markov Chain is unobservable, the
optimal solution is given by a combination of a myopic component of the observable
case and an additional (PDE) hedging component. The impact of the risk constraint
scales the optimal solution. The different regimes affect the riskiness of the optimal
strategy and thus the required capital to fulfill the SFP constraint: a higher volatil-
ity regime leads to a less risky investment fraction and thus to a reduction in the
capital requirement.

Authors Risk Measure Optimization
Problem

Assumptions

Hardy
(2001)

VaR, ES - log-normal distributed returns,
observable MC

Kawata
and Kijima
(2007)

VaR - log-normal distributed returns,
observable MC

Elliott
and Miao
(2009)

VaR - Student-t distributed returns

Elliott and
Siu (2010)

convex risk
measures

minimize portfo-
lio risk

1 risky and 1 risk free asset, ob-
servable MC on r, µ, σ with d pos-
sible states

Yiu et al.
(2010)

dynamic VaR EU, (πt)t∈[0,T ]

observable MC
r, µ, σ

1 risky and 1 risk-free asset, d
possible states of the MC; include
consumption, two time differen-
tiable, strictly increasing and con-
cave utility function with Inada

Liu et al.
(2012)

dynamic VaR EU, (πt)t∈[0,T ]

observable MC
r, µ, σ

1 risky and 1 risk-free asset, d
possible states of the MC; CRRA
utility

Liu et al.
(2014)

dynamic con-
vex risk mea-
sure

EU, (πt)t∈[0,T ]

observable MC
r, µ, σ

1 risky and 1 risk-free asset, d pos-
sible states of the MC; exponen-
tial utility function

(To be continued)
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Authors Risk Measure Optimization
Problem

Assumptions

Zhu et al.
(2016)

VaR EU,(πt)t∈[0,T ]

hidden MC
µ

n-dim. market model with con-
sumption, d possible states of the
MC; strictly increasing and con-
cave, twice continuously differen-
tiable with Inada

Hu and
Wang
(2017)

VaR EU, (πt)t∈[0,T ]

observable MC
r, µ, σ

1 risky, 1 risk-free asset and lia-
bilities, include consumption and
d possible states of the MC; 2
time continuously differentiable,
strictly increasing and concave
utility function with Inada

Setyani et
al. (2018)

VaR EU, (πt)t∈[0,T ]

observable MC
r, µ, σ

1 risky and 1 risk-free asset, in-
clude consumption and 2 possible
states of the MC; strictly increas-
ing and concave utility

Yan et al.
(2020)

VaR minimize ruin
probability
observable MC

1 risky and 1 risk-free asset, 2
possible states of the continu-
ous MC; analyzing an investment-
reinsurance policy

EU=expected utility; MC=Markov Chain; MV=Mean-variance

Table 4.5: Selected papers on portfolio allocation with risk measures (constraints)
under regime-switching



General Conclusion and Further Research

The present thesis consists of three chapters that contribute to the literature of
quantitative risk management on pricing, shortfall probability management, opti-
mal asset allocation and uncertainty.

We contribute to the pricing literature in Chapter 2 by deriving model-independent
insights of a minimum return rate guarantee (MRRG) product under default risk
which implies a nested (compound) option feature. Despite this feature, the payoff
of the default put and the liabilities to the insured can be represented by piecewise
linear functions of the investment return, i.e. the payoff of a portfolio of simple put
and call options. This implies that the liabilities are easily priced in any model setup
which gives closed-form solutions for standard options.
Furthermore, in Chapter 3 we calculate fairly priced guarantee costs of a MRRG
contract, where periodic premium payments and a management rule, that controls
the investments in the risky asset depending on the former asset evolution, are in-
cluded. We find in a two-period Black-Scholes model setup that the splitting factor,
which determines the periodic premium payments of the insured, has a huge im-
pact on the pricing of the contract: For a constant management rule, we show that
the guarantee costs, which can be stated in quasi closed-form, are monotonically
increasing and convex in the splitting factor. Including a variable management rule,
which has to fulfill some assumptions to avoid violations on the fair pricing, we
can compare the guarantee costs of the constant management rule with the ones
of the variable management rule: The costs for a variable rule are always greater
than the ones under a constant rule and the costs are also convex and monotonically
increasing in the splitting factor.

Contributions to the shortfall probability aspect are also given in Chapter 3 by
analyzing the effects of periodic premium payments and management rules on the
required capital of the insurance company. We find that splitting the contributions of
the insured leads to an increase of the required capital for the insurance company s.t.
the shortfall probability constraint is fulfilled. The required capital can be reduced by
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implementing a variable management rule to adapt to the riskiness of the portfolio.
Moreover, we derive in Chapter 2 the expected utility-maximizing payoff of a MRRG
contract under default risk that fulfills a prescribed shortfall probability bound.
We discuss the impeding behavior of the optimal solution that the insured is not
secured on the bas states of the world. This behavior stems from cost-efficient payoff
modifications.Moreover, we discuss the utility loss for the insured which arises if the
insurer implements a suboptimal investment strategy. This is also strongly connected
to the optimal asset allocation contributions in the thesis.

Asset allocation contributions are furthermore given in Chapter 3 by analyzing the
expected utility maximizing periodic premium fraction of a MRRG contract for
a given investment fraction under management rules. For a constant management
rule, the upfront premium case in combination with the Merton fraction leads to the
optimal expected utility of the insured. Deviations from the Merton fraction imply
that the optimal splitting factor has to be adapted to a value smaller than one.
For variable management rules, we find that an upfront contribution is not optimal
for the insured and even the Merton fraction itself as investment fraction is not an
optimal choice anymore.
Additionally, we consider in Chapter 4 a stylized setup of an investment decision
to shed light on the impact and problems of time-inconsistency using a double risk
situation. The outer risk is given by a simple a priori lottery, whereas the inner risk
situation is a regime that coincides with the classic Merton problem. For a finite
investment horizon, the optimal investment decision is explained by a weighted
average of the optimal regime-dependent (Merton) solutions. While in the myopic
case, the weights resemble the probabilities given by the lottery, there is a time-
dependent reduction of the probability of the good regime, i.e. as the investment
horizon increases the worst-case regime gets more important. Thus, in the limiting
case of an infinite investment horizon, the decision is only based on the worst-case
regime. In particular, we provide a measure (normalized to [0, 1]) for the impact of
time-inconsistency. The measure is increasing in the level of risk aversion and with
the probability of the good regime.

The uncertainty aspect in the thesis is also covered in Chapter 4. We model the risk
situation with an a priori lottery and overlay it with an ambiguous situation where
the probabilities for the different regimes are unclear. Using the smooth ambiguity
model of Klibanoff et al. (2005) implies a further outer expectation (accounting for
the ambiguity aversion). Again, we can separate the effects of the two risk situations
as well as the ambiguity aversion.

All of the derived results are embedded into a literature overview of asset allocation
problems under risk measure constraints, guarantee features, ambiguity, learning
and regime-switching: We find solutions to the impeding behavior that the insured
is not protected on the bad states of the world if we implement a terminal SFP con-
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straint. Using a dynamic risk constraint resp. a more realistic model that includes
mortality risk can solve the problem.
The inclusion of mortality risk can also explain the demand for a guarantee feature in
the CRRA utility case. Furthermore, if we include behavioral aspects from Prospect
Theory we can even explain the demand for more complex guarantee features.
Moreover, we find that uncertainty aspects as ambiguity reduce the investment frac-
tion in the risky asset compared to the Merton solution. Regime-switching, depend-
ing on an observable resp. unobservable Markov chain, also influence the optimal
investment fraction that maximizes the expected utility of the investor.

Concerning parameter uncertainty and optimal asset allocation under time inconsis-
tency, it is interesting to study the effects of regime switches on the optimal, time-
inconsistent investment strategy in more detail. We have already received some first
results as mentioned in Section 4.3, that build the basis for a detailed discussion
and analysis.
This research topic contains further interesting research questions that we want to
tackle in the future: The setting allows us to study asset allocation problems with
restrictions on admissible portfolios if the restrictions can be changed by regulatory
decisions. The regime setting then captures different constraints as an upper limit
on downside risk measures like Value at Risk and Expected Shortfall or restric-
tions on the insurance companies’ investment decision (e.g. upper bounds on wealth
fractions invested riskily or an upper bound for the position in brown assets). Solu-
tions of the resulting asset allocation problems allow us to analyze how uncertainty
about a change in regulatory rules – e.g. a discussion about new rules in banking
or insurance – changes the investment decisions. Moreover, there are possible in-
teresting applications: Asset allocation problems in insurance economics are often
subject to additional restrictions on the downside risk of the optimal portfolio as
described in this thesis. The specific form and level of these restrictions/guarantees
are subject to regulatory changes. We could capture this uncertainty in our regime-
switching model in which the regimes correspond to different constraints imposed
on the optimal portfolio. Another application could be that we assume, that the
regimes describe different climate futures chosen by the decisions of policymakers
like business-as-usual or sticking to the limit of 2°C. The regimes differ w.r.t. the
dynamics of asset prices: changes in regimes can induce price jumps as e.g. a gain
of green assets at the expense of brown assets. Our implemented regime-switching
model allows us to study the impact of regulatory risks on the optimal allocation to
brown and green assets.

The topic of climate risks is in general a very interesting research area: Two current
papers of the Basel Committee on Banking Supervision explore how climate-related
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risks can affect banks. Basel Committee on Banking Supervision (2021b) points out
that all other financial risks are affected by climate risks and that the current Basel
framework may not sufficiently address climate risks. Basel Committee on Banking
Supervision (2021a) discusses, amongst other aspects, the risk measurement ap-
proaches for climate risks. Thus the discussed risk measures in this thesis could be
rethought on the specific properties of climate risks or could be used to measure
the impact of climate change like the climate VaR, developed by Dietz et al. (2016).
Other challenging ’new’ types of risks are cyber risks. They become more and more
relevant because of an increasing number of cyberattacks in the last years.77 Eling
and Wirfs (2019) calculate actual costs of cyber risk events based on over 26.000
cyber events. They show that cyber risks have to be modeled via extreme value the-
ory (EVT) to evaluate the costs of cyber risks. This could give a new initiation of a
debate on the VaR because as we have seen in the thesis the VaR behaves similarly
compared to the ES in the context of heavy-tailed risks.

Moreover, as stated in Section 3.2, a detailed analysis of MRRG contracts with pe-
riodic premium payments under different guarantee features could be an interesting
topic for further research. Several papers analyze cliquet and ratchet guarantee con-
tracts but all of these works, to the best of our knowledge, consider upfront premium
payments.

Finally, the results and representations of the MRRG contract under default risk in
Chapter 2 can also be used for future research. It could be interesting to extend our
problem to more than one policyholder. If a default occurs, we have to think about
a sharing rule between the policyholders for the actual payoff. This leads to the
problem of bankruptcy rules. An article that builds a starting point for our analysis
is given by Boonen (2019).

77For a literature overview of quantifying IT risks and for a definition of cyber risks we refer to
Mukhopadhyay et al. (2013) and Biener et al. (2015).
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Appendix A1: Theoretical Aspects of Chapter 2 - Neyman-Pearson
Lemma and Quantile Hedging

Neyman-Pearson Lemma and Quantile Hedging

As we have seen in Chapter 2, quantile guarantees build an optimal design for MR-
RGs under default risk. The concept of quantile hedging is well known in literature
and dates back to Föllmer and Leukert (1999). The idea behind the quantile hedge
is as follows:
In a complete market model setup, every option can be perfectly hedged with a
self-financing strategy (ξt)t∈[0,T ] with initial value A0. If the investor is only willing
to invest the value V0 with V0 < A0 the question arises what the best strategy or
hedge under these circumstances looks like.78 Another situation could be that the in-
vestor is not interested in a full hedge and wants to fix a shortfall probability bound
ε ∈ (0, 1) on a strategy. What is the minimum initial value Ṽ0, s.t. this shortfall
bound is fulfilled?79 The answers to this are given by the quantile hedging theory.
Developing this theory, based on the paper of Föllmer and Leukert (1999), will be
the main goal of this section.
For proving that the quantile hedge is the optimal solution for these problems the au-
thors use a powerful tool from statistical test theory, the so-called Neyman-Pearson
Lemma. This theorem is used by many other authors in highly relevant research
topics in mathematics and economics for proving optimality of a solution in an op-
timization problem. Thus, before going more into details on the quantile hedging
theory, we want to motivate and present the main results from the Neyman-Pearson
theory that has been first developed in the work of Neyman and Pearson (1933).
Later we will see, that the formulation of the Neyman-Pearson problem is of the

78Föllmer and Leukert (1999) call this problem maximizing the probability of success.
79Föllmer and Leukert (1999) speak of maximizing the expected success ratio.
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same structure as the main part in proving the optimality of the quantile hedge.
Knowing about the results of the Neyman-Pearson theory will help us to prove the
optimality of a quantile hedge. The following section is based on the work of Witting
(1985).

Neyman-Pearson Theory - General Motivation of Test Theory

A main topic in statistics is the so-called Test Theory. This setting aims to determine
whether a parameter ϑ of an unknown distribution Pϑ belongs to a parameter set
Θ0 or Θ1. The set Θ0 corresponds to the so-called null hypothesis H0, the set Θ1

to the alternative H1. That means if we choose ϑ ∈ Θ0, the created distribution Pϑ

belongs to H0. If we take η ∈ Θ1, Pη belongs to H1. The form of the null hypothesis
and the alternative will be clarified in the following. Now a statistical test is used to
decide, based on a sample {x1, . . . , xn}, if the null hypothesis is true or needs to be
rejected. In case the null hypothesis is rejected we decide to go for the alternative
H1.
There can occur two possible errors, the so-called type I error, if the null hypothesis
is true but has been rejected from the test, and the type II error, where the null
hypothesis is not rejected by the test although it is not true anymore.
In general, the aim is to control the type I error and minimize under that constraint
the type II error. A more detailed and mathematical explanation of this will be given
in the next section.
As mentioned before, a test function resp. a test is needed to decide if H0 is true or
needs to be rejected. Two different tests are relevant for our purpose: the randomized
and the non-randomized test. For defining these two tests, we use the most basic
test as an example, a so-called one-sided test. This example will also be useful and
attainable in the Neyman-Pearson and quantile hedging context.
The null hypothesis and alternative for a one-sided test can be formulated as follows:

H0 : The true parameter ϑ is smaller or equal than the parameter ϑ̃, i.e. ϑ ≤ ϑ̃

H1 : The true parameter ϑ is greater than the parameter ϑ̃, i.e. ϑ > ϑ̃.

Now it is reasonable to ask how the test function for this hypothesis test is formed:80

From the given sample {x1, . . . , xn} we denote the set of points, where we decide for
the alternative, with S. The complement SC denotes the points, where we assume
the null hypothesis is true. For deciding we need to estimate the unknown parameter
ϑ. This is done by a function T , a so-called statistic. The specific form of T differs,
in the Neyman-Pearson context we will precise this function in the next section.

80This is stated in Witting (1985), p.35-41.
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If T (x) ≤ s for a suitable s ∈ R and x ∈ {x1, . . . , xn}, we believe in H0.

If T (x) > s for a suitable s ∈ R and x ∈ {x1, . . . , xn}, we believe in H1.

Thus, the subsets S and SC can be written as follows:

S := {x : T (x) > s}; SC := {x : T (x) ≤ s}.

With this results the non-randomized test can be formulate as:

Definition 4.1 (Non-randomized Test)
A non-randomized test is a function φ : {x1, . . . , xn} → {0; 1}, defined as

φ(x) := 1{x: T (x)>s}(x) =

{
1, x ∈ S

0, x ∈ SC
.

This non-randomized test can be interpreted as the probability to decide for alter-
native H1. In test theory the main aim is to control the type I error, i.e. to restrict
the probability for rejecting the null hypothesis although it is still true by a level
of α ∈ (0, 1). In general it is not possible to exhaust the full boundary condition
with a non-randomized test.81 Therefore, it is useful to take a look at a so-called
randomized test. Here the test function φ is generalized s.t. all values between zero
and one are possible outcomes. In case of a one-sided test, the randomized test can
be defined as follows:

Definition 4.2 (Randomized Test)
A randomized test is a function φ : {x1, . . . , xn} → [0, 1], defined as

φ(x) := 1(s,∞](T (x)) + γ(x)1{s}(T (x)) =


1, T (x) > s

γ(x), T (x) = s

0, T (x) < s

,

where γ is a measurable mapping from {x : T (x) = s} → [0, 1], the so-called ran-
domization.

The interpretation of a randomized test is as follows:
For T (x) > s, we decide for the alternative H1. In case of T (x) < s, we choose
the null hypothesis H0. For T (x) = s, we do a randomization, i.e. we are choosing

81For an example see Witting (1985), page 36-37.
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randomly H0 or H1. This random choice is done by doing a Bernoulli experiment
with the distribution B(1, γ(x)). If the event happens (with probability γ(x)), we
decide for the alternative H1. Otherwise we choose the null hypothesis H0.
By using a randomized test, it is possible to exhaust the type I error probability α.
In case of a one-sided test, H0 and H1 only contain one distribution each. As we will
see in the next section, this is the case in the Neyman-Pearson context. For this we
need to choose the constant s and the randomization γ in the following way:

s := inf{t : P0(T > t) ≤ α}, where P0 is the distribution in H0,

γ(x) = γ̄ =

{
α−P0(T>s)
P0(T=s)

, for P0(T = s) > 0

0, for P0(T = s) = 0.
(4.32)

The randomization γ is constant and the number s is just the generalized inverse
function of the distribution function of T under the probability measure P0. For
the complete formulation of this theorem and its poof we refer to Theorem 1.38 in
Witting (1985).
Before we formulate the Neyman-Pearson Lemma, one more definition is needed,
the so-called density quotient. The famous Radon-Nikodým theorem gives a con-
nection between two probability measures on a measurable space (Ω,F) with the
so-called property of absolute continuity. This leads to the Radon-Nikodým density.
If the property of absolute continuity is not fulfilled, there exists a more general re-
sult, containing the so-called density quotient. Before defining the density quotient,
we want to state the famous Randon-Nikodým theorem: These results will be also
needed in the quantile hedging part of this section. The following definition and
theorem is taken from Föllmer and Schied (2016).82

Definition 4.3 (Absolute continuous measure)
Let P and Q be two probability measures on the measurable space (Ω,F). Q is ab-
solute continuous with respect to P, in symbols P << Q, when the following
holds:

P(A) = 0 ⇒ Q(A) = 0, for all A ∈ F .

With this definition we can formulate the Radon-Nikodým theorem, which charac-
terizes absolute continuous measures:

Theorem 4.1 (Radon-Nikodým)
Let P and Q be two probability measures on the measurable space (Ω,F). Then the
following statements are equivalent:

(i) P << Q
82For a more general approach we refer to the book of Elstrodt (2018), Chapter 7.
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(ii) There exists a random variable ξ : Ω → [0,∞], such that

Q(A) =

∫
A

ξ dP = EP[1Aξ], for all A ∈ F .

The random variable ξ is called the Radon-Nikodým density, symbolized with dP
dQ .

For a proof of this theorem we refer e.g. to Bauer (2011), p. 101-104.
If neither P << Q nor Q << P holds, the representation in the above theorem does
not hold anymore. But there exists a generalization, that holds for every probability
measures P and Q, the so-called Lebesgue Decomposition. In this theorem the density
quotient replaces the roll of the Radon-Nikodým density.

Theorem 4.2 (Lebesgue Decomposition)
Let P and Q be two probability measures on the measurable space (Ω,F). Then there
exists a random variable L ≥ 0 and a set N ∈ F with Q(N) = 0, s.t. the following
representation holds:

P(A) = P(A ∩N) +

∫
A

L dQ, for all A ∈ F .

The function L is called density quotient from P w.r.t. Q.

Now we have discussed all theoretical parts which are required for understanding
the Neyman-Pearson Lemma. This theory will be presented in the following section.

Neyman-Pearson Lemma

Coming back to the main problem in test theory, namely minimizing the type II
error by controlling the type I error, the Neyman-Pearson Lemma gives an explicit
representation of an optimal test that solves this problem.83 The Neyman-Pearson
Lemma is set in the most basic case of test theory: There are only two probability
measures involved, i.e. the null hypothesis and the alternative are given by:

H0 = {P} and H1 = {Q}.

The type II error occurs if Q is the true probability measure, but the null hypothesis
is not rejected. The type I error occurs, if P is the true measure, but H0 is rejected.
Mathematically, we can state the test problem in a simplified way as follows:

Q(H0 is not rejected) → min ⇔ Q(H0 is rejected) → max

s.t. P(H0 is rejected) ≤ α s.t. P(H0 is rejected) ≤ α. (4.33)

83This theorem was first introduced by Neyman and Pearson (1933).
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This structure of the Neyman-Pearson problem is also well known in the context of
portfolio optimization under some constraint. For example, in the quantile hedging
case the success probability of a hedge should be maximized (this corresponds to the
type II error minimization), s.t. a shortfall constraint is fulfilled (this corresponds
to the type I error control).
Thus knowing about the optimal solution in the Neyman-Pearson problem will pro-
vide immediately the optimal solution in the quantile hedging case. Writing the
optimization problem in (4.33) in a more complex way, we can introduce the former
defined test function φ to determine the optimal test φ∗, that solves the problem.∫

φ(x)q(x)dµ → sup
φ∈Φ

s.t.

∫
φ(x)p(x)dµ ≤ α, (4.34)

where p and q are Lebesgue densities of the probability measures P and Q, µ is a
dominating measure, Φ is a set of all test functions φ and α the control probability
of the type I error.
Intuitively, φ will be set as large as possible (that means φ = 1) in case the quotient
q(x)
p(x)

is large and φ will be set as small as possible (that means φ = 0) in case q(x)
p(x)

is

small (cf. Witting (1985), p 192).
Now the Neyman-Pearson Lemma can be formulated, which states an optimal ran-
domized test, a so-called best-α-test, that solves problem (4.34).

Proposition 4.13 (Neyman-Pearson Lemma)
Let P and Q be two probability measures on the measurable space (Ω,F) and L a
density quotient of Q w.r.t. P. Then there exists a best-α-test φ∗ for testing the null
hypothesis H0 = {P} against the alternative H1 = {Q} for a given level α ∈ (0, 1).
The following statements hold:

(i) The best-α-test φ∗ is given by

φ∗(x) = 1{L(x)>s}(x) + γ̄1{L(x)=s}(x),

where γ̄ and s are determined as in (4.32).

(ii) The density quotient L is given by

L(x) :=
q(x)

p(x)
1{p(x)>0}(x) +∞1{p(x)=0,q(x)>0}(x).

(iii) With the best-α-test φ∗ it holds: EP[φ
∗] = α.
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For the proof of the proposition we refer to Witting (1985), p. 193-194.

Remark 4.2

(I) To avoid the notation of ∞ in the density quotient L, the test φ∗ can also be
written in the following way: φ∗(x) = 1{q(x)>s·p(x)}(x)+ γ̄1{q(x)=s·p(x)}(x). This
is possible because the following equation holds:

{x : L(x) > s} = {x : q(x) > s · p(x)}.

(II) For a constant randomization of γ̄ = 0, we are in the setting of a non-
randomized test. This is the most basic form of the Neyman-Pearson Lemma.
φ∗ has then the following form:

φ∗(x) = 1{q(x)>s·p(x)}(x).

The following property of an optimal Neyman-Pearson test is also of interest in the
context of portfolio optimization:

Corollary 4.1
Let φ∗ be the best-α-test from the Neyman-Pearson Lemma.

(i) If the best-α-test is given by a non-randomized test φ∗ and for any measurable
set A ∈ F holds P(A) ≤ P({q(x) > s · p(x)}) = EP[φ

∗], then also Q(A) ≤
Q({q(x) > s · p(x)}) = EQ[φ

∗].

(ii) If the best-α-test is given by a randomized test φ∗ and for any φ ∈ Φ holds∫
φ dP ≤

∫
φ∗ dP, then also

∫
φ dQ ≤

∫
φ∗ dQ.

For the proof of this corollary, we refer to Föllmer and Schied (2016), p. 494-495.

Some examples and applications of the Neyman-Pearson Lemma in the context
of statistics are given by Dudewicz and Mishra (1988) on pages 444-471. For our
purpose this theorem is a useful tool for proving the optimality of the quantile hedge.
This will be part of the next section, where we also show, how the Neyman-Pearson
Lemma is used to prove the optimality of this hedge.

Quantile Hedging

After reviewing the most important results and techniques regarding the Neyman-
Pearson Theory, we can formulate the quantile hedging part in this section. Quantile



Appendix 175

hedging goes back to Föllmer and Leukert (1999) and is widely applied to proof op-
timality results: Melnikov and Smirnov (2012) for example use this tool to provide
a quasi closed-form solution for the dynamic CVaR hedging. Melnikov and Tong
(2014) apply quantile hedging on equity-linked life insurance contracts including
transaction costs, whereas Wang (2009) applies it to the so-called guaranteed min-
imum death benefits contracts (GMDB), which are a component in many variable
annuity contracts. Quantile hedging is also applicable to a Markovian regime switch-
ing model, as shown by Lien et al. (2021).

Model Setup

Let us start with the basic assumptions and notations in the context of quantile
hedging. Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space and (Vt)t∈[0,T ] a value
process represented as

Vt = V0 +

∫ t

0

ξsdXs,

where (Xt)t∈[0,T ] is a semi-martingale and
(
V0, (ξt)t∈[0,T ]

)
a self-financing and ad-

missible strategy. V0 is the starting capital and (ξt)t∈[0,T ] a predictable process that
corresponds to the number of assets the investor owns at time t. We further assume
the the model is complete, i.e. there exists a uniquely defined equivalent martingale
measure P∗.
The contingent claim H, which is FT measurable w.r.t. P∗ (we write H ∈ L1(P∗))
can be perfectly hedged because of the complete model assumption. Thus there
exists a predictable process ξH , s.t.

EP∗ [H|Ft] = H0 +

∫ t

0

ξHs dXs P− a.s.,

i.e. the option can be replicated with the self-financing strategy
(
H0, ξ

H
)
, where it

holds H0 = EP∗ [H|F0] = EP∗ [H].
This is the standard setting for a perfect hedge. Let us now assume that the investor
does not want to invest H0 at t = 0 resp. cannot afford this amount of money but Ṽ0

with Ṽ0 < H0. In this case a perfect hedge is not possible anymore. We are interested
in maximizing the success probability of the hedge, i.e.

P
({

V0 +

∫ t

0

ξsdXs ≥ H

})
→ max, s.t.V0 ≤ Ṽ0. (4.35)

The first step to solve this problem is to reduce it to the construction of the so-called
success set {VT > H}.
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The construction of success sets

Proposition 4.14
Let Ã ∈ FT be a solution of

P(A) → max, s.t.EP∗ [H1A] ≤ Ṽ0. (4.36)

Furthermore, let ξ̃ be the perfect hedge for H̃ = H1Ã ∈ L1(P∗), i.e.

EP∗ [H1Ã|Ft] = EP∗ [H1Ã]︸ ︷︷ ︸
H̃0

+

∫ t

0

ξ̃sdXs P− a.s.

Then (Ṽ0, ξ̃) solves problem (4.35) and it holds {VT ≥ H} = ÃP− a.s.

A proof is given by Föllmer and Leukert (1999), p. 255. To construct the maximal
success set we need to apply the Neyman-Pearson Lemma. For that we first construct
the Radon-Nikodým density:

dQ∗

dP∗
:=

H

EP∗ [H]
=

H

H0

.

In general, the Radon-Nikodým density helps to calculate probabilities in the form
of

Q(A) =

∫
A

dQ

dP
dP = EP

[
dQ

dP
1A

]
.

In our setting it holds

Q∗(A) = EP∗

[
dQ∗

dP∗
1A

]
= EP∗

[
H

H0

1A

]
=

1

H0

EP∗ [H1A] ,

s.t. equation (4.36) can be written as Q∗(A) ≤ Ṽ0

H0
:= α. Moreover, we define

ã := inf

{
a : Q∗

(
dP
dP∗

> aH

)
≤ α

}
and Ã :=

{
dP
dP∗

> ãH

}
.

With this we receive the following proposition.

Proposition 4.15
Assume that the set Ã solves Q∗(Ã) = α. Then the optimal strategy that solves
(4.36) is given by (Ṽ0, ξ̃).



Appendix 177

Following Proposition 4.15, we find that if the second condition in (4.36) is fulfilled
with equality, then it is automatically the optimal solution. In general it is not true
that one can always find a set A ∈ FT s.t. Q∗(A) = α holds. For this we need to
apply the Neyman-Pearson theory to construct the so-called expected success ratio.

Expected success ratio

Let φ : Ω → [0, 1] be a FT measurable function and R the class of all this functions.
Taking a look at the optimization problem

max
φ∈R

EP[φ], s.t.

∫
φdQ∗ ≤ α︸ ︷︷ ︸
EQ∗ [φ]

, (4.37)

it is of the form of the Neyman-Pearson Lemma. Thus we can apply Proposition
4.13 which states that the optimal solution is of the following form

φ̃ = 1{ dP
dP∗>ãH} + γ1{ dP

dP∗=ãH}, where

γ =

0 ,Q∗
(

dP
dP∗ = ãH

)
= 0

α−Q∗( dP
dP∗>ãH)

Q∗( dP
dP∗=ãH)

, otherwise
.

Let us now define the success ratio that is given for every strategy (V0, ξ) of a value
process V by

φV := 1{VT≥H} +
VT

H
1{VT<H}.

Notice that φV ∈ R and {φV = 1} coincides with the success set {VT ≥ H} of
the strategy (V0, ξ). Now the aim is to find a strategy that maximizes the expected
success ratio EP[φ].

Proposition 4.16
Let ξ̃ be the perfect hedge for H̃ := Hφ̃, then (Ṽ0, ξ̃) maximizes the expected success
ratio EP[φ] under all admissible strategies (V0, ξ) with V0 ≤ Ṽ0 and the success ratio
of (Ṽ0, ξ̃) is given by φ̃.

Remark 4.3
If it holds Q∗(Ã) = α then it follows that φ̃ = 1{Ã}. This is the well known strategy
as in Proposition 4.15. Thus, the setting including the expected success ratio is a real
generalization.
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This is the solution for the situation where we want to maximize the success prob-
ability for a given initial capital V0. Another interesting aspect is to determine the
amount of money at inception, s.t. a given success probability is fulfilled.

Cost minimization for given Success Probability

Let us assume we have a prescribed shortfall probability ε ∈ (0, 1) and we search
for the smallest initial capital V0 s.t. there exists a strategy (V0, ξ) with

P
(
V0 +

∫ T

0

ξsdXs ≥ H

)
≥ 1− ε.

This problem can also be formulated equivalently in the Neyman-Pearson context,
i.e. search for a set A ∈ FT s.t.

EP∗ [H1A] → min s.t. P(A) ≥ 1− ε. (4.38)

With the previously derived results EP∗ [H1A] can be written as H0Q∗(A). Thus
(4.38) can equivalently be written as

Q∗(AC) → max s.t. P(AC) ≤ ε. (4.39)

The solution can be derived with the Neyman-Pearson Lemma: For this let

b̃ := inf

{
b : P

(
dQ∗

dP
> b

)
≤ ε

}
and B̃C :=

{
dQ∗

dP
> b̃

}
=

{
dQ∗

dP∗
> b̃

dP
dP∗

}
=

{
H

EP∗ [H]
> b̃

dP
dP∗

}
=

{
dP
dP∗

<
H

b̃EP∗ [H]

}
.

Case 1: P(B̃) = 1− ε (i.e. P(B̃C) = ε ):

In this case B̃C solves problem (4.39) and thus B̃ solves (4.38). Using the previous
results imply that the optimal strategy is then given by the replication of the option
H1B̃.

Case 2: P(B̃) ̸= 1− ε:

Here we can apply the success ratio discussed in the last subsection. Define

φ̃ :=1{dQ∗
dP <B̃} + γ1{dQ∗

dP =B̃}, where

γ =


(1−ε)−P

(
dQ∗
dP <B̃

)
P(dQ∗

dP =B̃)
, P

(
dQ∗

dP < B̃
)
< 1− ε

0, else
.

Applying the Neyman-Pearson Lemma, we receive the following proposition.
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Proposition 4.17
Let ξ̃ be the perfect hedge of H̃ := Hφ̃ and Ṽ0 := EP∗ [H̃]. Then (Ṽ0, ξ̃) has minimal
costs under all strategies with expected success ratio EP [φ] ≥ 1 − ε and the success
ratio is given by φ̃ with EP[φ] = 1− ε.

An application of the Quantile hedging theory in the context of the Black-Scholes
Model is given in Föllmer and Leukert (1999), p. 260-262.
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Appendix A2: Theoretical Aspects of Chapter 4 - Regime Switching
setup via Markov Chains

Observable Markov Chains

Uncertainty of distribution parameters can have a huge impact on the corresponding
capital requirements of a risk measure. We want to discuss this impact in a Black-
Scholes Model setup. Regime switching is often modeled via Markov Chains.
We consider a regime switching model with two regimes.84 We work on the filtered
probability space (Ω,F , (FO

t )t∈[0,T ],P), where the filtration (FO
t )t∈[0,T ] is generated

by the standard Brownian motion (Wt)t∈[0,T ] and the continuous time observable
Markov Chain85 (Y O

t )t∈[0,T ], i.e. FO
t = σ(Ws, Y

O
s ; 0 ≤ s ≤ t). We assume that Y O

t

has two possible regimes {s1, s2}.
The unconditional probability at t = 0 of the Markov Chain is given by

P
(
Y O
0 (ω) = s1

)
= p, P

(
Y O
0 (ω) = s2

)
= 1− p,

so the Markov Chain starts in state s1 with probability p and in s2 with 1− p.

With the transition probabilities

qij(t, u) := P(Yu = sj|Yt = si)

the generator A of the continuous time Markov Chain is defined as

At =

(
a11(t) a12(t)
a21(t) a22(t)

)
, where

aij(t) := lim
h→0

qij(t, t+ h)− δij
h

, where δij :=

{
1, i = j

0, i ̸= j
.

Our financial market model contains two assets, a risky asset S and a risk-free
asset B. Both are adapted to the filtration F = (FO

t )t≥0. Using this filtration by
evaluating the asset evolution, we have all information about the Brownian motion
and the Markov process up to time t. Thus, the current state of the Markov process
is known when we evaluate St.
The evolution of the risk-free asset without regime-switching is given by

dBt = Btrdt, (4.40)

84Empirical evidence for a model with two regimes (a so called bear and bull state) is e.g. given
in Guidolin and Timmermann (2008).

85There also exists the concept of unobservable or as synonymous term hidden Markov Chain. A
short introduction to this setup is given in the following subsection.
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where r defines the risk-free interest rate. The solution of this SDE is given by the
continuously compounded interest of the initial value B0, i.e. Bt = B0e

rt.

The dynamics of the risky asset (St)t∈[0,T ] are defined by

dSt = Stµ(Y
O
t )dt+ Stσ(Y

O
t )dWt, (4.41)

where the drift µ and the volatility σ both depend on the Markov Chain Y O.

As we are in a situation that the Markov Chain is observable and just has two
possible states s1 and s2, we can calculate the solution of Equation (4.40) depending
on the state of the world the system is at time t:
For the case that Y O

t (ω) = s1, we write µ(Y O
t (ω)) = µ(s1) = µ1, for Y O

t (ω) = s2
we write µ(Y O

t (ω)) = µ(s2) = µ2. Analogue, we write σ1, when we see that the
observable Markov Chain is at time t in state s1 and σ2 when the Chain is at time
t in state s2.

Using these definitions, the evolution of the investor’s portfolio wealth (Vt)t∈[0,T ] is
given by the following dynamics:

dVt = Vt

(
πt
dSt

St

+ (1− πt)
dBt

Bt

)
= Vt (πtµ(Yt)dt+ πtσ(Yt)dWt + (1− πt)rdt)

= Vt ({πt[µ(Yt)− r] + r}dt+ πtσ(Yt)dWt)

= Vt(µA,t(Yt)dt+ σA,t(Yt)dWt), (4.42)

where πt is the investment fraction of the risky asset S.
In this section we want to analyze the special case where the investment fraction
is constant over time, i.e. πt = π, for all t ∈ [0, T ]. Here we follow a so-called
Constant Mix strategy (CM) where the drift and volatility is also constant over
time (µA,t(Yt) = µA(Yt) = πµ(Yt) + (1 − π)r;σA,t(Yt) = σA(Yt) = πσ(Yt), for all
t ∈ [0, T ]). In consequence for the solution following a CM strategy it holds under the
real world measure P. Furthermore we simplify the setting s.t. the regime uncertainty
only occurs at t = 0, s.t. we can write

Vt = V0e
(µA(Y0)− 1

2
σ2
A(Y0))t+σA(Y0)Wt .

Unobservable Markov Chains

In the observable Markov Chain setup we worked on the filtered probability space
(Ω,F , (FO

t )t∈[0,T ],P) with filtration FO
t . In the case of an unobservable Markov

Chain86 we no longer have the information about the current state of the chain

86 In literature a synonymous term used for an unobservable Markov Chain is hidden Markov
Chain, e.g. in Liu (2011).
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which is why we have to adjust the filtration to FH = (FH
t )t≥0, where FH

t =
σ(Ss; 0 ≤ s ≤ t). In contrast to the filtration FO

t , where the information about
the current state of the Markov Chain and the Brownian Motion are included, the
filtration FH

t is the sigma algebra generated by the risky asset S. This means that
we have all information at time t about the asset price St, but we neither have
information about the actual regime nor information about the Brownian Motion.
To overcome this, we use so called ’filtered probabilities’. Let us denote (Y H

t )t∈[0,T ]

as unobservable Markov Chain if the current state of the chain Y H
t0
(ω) is unknown.

In case of a two regime world with regimes s1 and s2, the filtered probabilities are
defined by

pt = P (Yt(ω) = s1|FH
t )

Markov Property
= P (Yt(ω) = s1|St) (4.43)

1− pt = P (Yt(ω) = s2|FH
t )

Markov Property
= P (Yt(ω) = s2|St), (4.44)

where p0 (resp. 1 − p0) is the probability that at time t = 0 the unobservable
Markov Chain starts in state s1 (resp. s2). With this setting we can work in a so-
called ’Markovian equivalent economy’(see e.g. Gennotte (1986)).
Honda (2003) models transition probabilities λ based on an exponential distribution,
where the parameter λ12 = λ21 = λ. This means that the transition probability for
a regime switch from s1 to s2 is the same as switching from s2 to s1. With this
assumption the stochastic process of the filtered probabilities evolves as follows

dpt = λ(1− 2pt)dt+ pt(1− pt)
µ(s2)− µ(s1)

σ
dW t = µp(pt)dt+ σp(pt)dW t, (4.45)

where µp(pt) = λ(1−2pt) and σp(pt) = pt(1−pt)
µ(s2)−µ(s1)

σ
. An interpretation of this

formula is given in Honda (2003), p. 49.
W t is a Brownian Motion with respect to (FH

t )t≥0, constructed by

W̄t =

∫ t

0

dSs − Ssµ̂(pt)

Ssσ
ds, (4.46)

where µ̂(pt) = ptµ(s1) + (1 − pt)µ(s2). Combining formulas (4.45) and (4.46), the
risky asset S can be represented as follows:

dSt = Stµp(pt)dt+ Stσp(pt)dW t. (4.47)

Thus we can construct the ’Markovian equivalent economy’ combining the risk free
bond, the filtered probabilities given in (4.45) and the risky asset given in (4.47)
with the filtration (FH

t )t≥0 on the probability space (Ω,F , P ).
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Appendix B: Proofs of Chapter 2

B.1: Proof of Lemma 2.3

Part (i) follows immediately with the observation that under the measure P βA
(Mer)
T

is normally distributed with mean (µ− 1
2
σ2
A)T and standard deviation σA

√
T .

For (ii) notice that

EP∗

[
e−r(T−t)

(
GT − βA

(Mer)
T

)
1{

K<βA
(Mer)
T ≤K

}∣∣∣Ft

]
= E1 − E2,

where

E1 := EP∗

[
e−r(T−t)GT1{K<βA

(Mer)
T ≤K

}∣∣∣Ft

]
,

E2 := EP∗

[
e−r(T−t)βA

(Mer)
T 1{

K<βA
(Mer)
T ≤K

}∣∣∣Ft

]
.

E1 is immediately implied by the observation that under P∗ and given the infor-

mation Ft, βA
(Mer)
T is normally distributed with mean βA

(Mer)
t + (r − 1

2
σ2
A)T and

standard deviation σA

√
T , i.e.

E1 = e−r(T−t)GT

N
 ln

(
K

βA
(Mer)
t

)
− (r − 1

2σ
2
A)(T − t)

σA

√
T − t



−N

 ln

(
K

βA
(Mer)
t

)
− (r − 1

2σ
2
A)(T − t)

σA

√
T − t




= e−r(T−t)GT

[
N
(
−d2(K)

)
−N (−d2(K))

]
.

In addition, notice that

E2 = EP∗

[
e−r(T−t)βA

(Mer)
T 1{

K<βA
(Mer)
T ≤K

}∣∣∣Ft

]
= EP∗

[
e−r(T−t)βA

(Mer)
t e(r−

1
2
σ2
A)(T−t)+σA(W ∗

T−W
∗
t )1{

K<βA
(Mer)
T ≤K

}∣∣∣Ft

]
= βA

(Mer)
t EP∗

[
e−

1
2
σ2
A(T−t)+σA(W ∗

T−W
∗
t )1{

K<βA
(Mer)
T ≤K

}∣∣∣Ft

]
.

With Girsanov’s Theorem,

EP∗

[
e−

1
2
σ2
A(T−t)+σA(W ∗

T−W
∗
t )1{

K<βA
(Mer)
T ≤K

}∣∣∣Ft

]
=P̃
(
K < βA

(Mer)
t e(r+

1
2
σ2
A)(T−t)+σA(W̃T−W̃t) ≤ K

)
,
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where W̃t = W ∗
t − σAt is a Brownian motion under P̃, i.e. the above probability is

given by

P̃
(
K < βA

(Mer)
t e(r+

1
2
σ2
A)(T−t)+σA(W̃T−W̃t) ≤ K

)
=N

 ln
(

K

βA
(Mer)
t

)
− (r + 1

2
σ2
A)(T − t)

σA

√
T − t

−N

 ln
(

K

βA
(Mer)
t

)
− (r + 1

2
σ2
A)(T − t)

σA

√
T − t


=N

(
−d1(K)

)
−N (−d1(K)) .

B.2: Proof of Lemma 2.4

Consider u(x) = x(1−γ)

1−γ :

EP[u(A
∗
T )] = EP

[
u

(
βA

(Mer)
T +

{
GT − βA

(Mer)
T

}
1{

K<βA
(Mer)
T ≤K

})]
= EP

[
u

(
βA

(Mer)
T 1{

βA
(Mer)
T ≤K

}
∪
{
βA

(Mer)
T >K

} +GT1{K<βA
(Mer)
T ≤K

})]
= EP

[
u
(
βA

(Mer)
T

)
1{

βA
(Mer)
T ≤K

}
∪
{
βA

(Mer)
T >K

} + u (GT ) 1{K<βA
(Mer)
T ≤K

}]
= E3 + E4,

where

E3 := EP


(
βA

(Mer)
T

)(1−γ)
1− γ

1{
βA

(Mer)
T ≤K

}
∪
{
βA

(Mer)
T >K

}
 ,

E4 := EP

[
G

(1−γ)
T

1− γ
1{

K<βA
(Mer)
T ≤K

}
]
.

Let us first calculate E3. Notice that the following property for indicator functions
holds:

1A∪B = 1A + 1B + 1A∩B.

In our case the set A is given by
{
βA

(Mer)
T ≤ K

}
and B by

{
βA

(Mer)
T > K

}
. They

are disjoint because K ≤ K. So E3 can be stated as follows:

E3 = EP


(
βA

(Mer)
T

)(1−γ)
1− γ

1{
βA

(Mer)
T ≤K

}
+ EP


(
βA

(Mer)
T

)(1−γ)
1− γ

1{
βA

(Mer)
T >K

}


=: E5 + E6.
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E5 and E6 are similar to compute, thus we only calculate E5 in detail. For E6 we
can proceed analogously.

E5 =
β(1−γ)

1− γ
EP

[(
A

(Mer)
T

)(1−γ)
1{

βA
(Mer)
T ≤K

}]
=

β(1−γ)

1− γ
A

(1−γ)
0 EP

[
e(1−γ)(µA− 1

2
σ2
A)T+(1−γ)σAWT 1{

βA
(Mer)
T ≤K

}] , (4.48)

where the last equality holds because A
(Mer)
T = A0e

(µA− 1
2
σ2
A)T+σAWT .

Now our aim is to use Girsanov’s theorem to calculate the expected value. For this
we need the Radon-Nikodym density which is in our setting given by

ZT := e−
1
2
(1−γ)2σ2

AT+σA(1−γ)WT .

Rewriting (4.55), we get

E5 =
(βA0)

(1−γ)

1− γ
e(1−γ)(µA− 1

2
σ2
A)T e

1
2
(1−γ)2σ2

ATEP

[
e−

1
2
(1−γ)2σ2

AT e(1−γ)σAWT 1{
βA

(Mer)
T ≤K

}]
=

(βA0)
(1−γ)

1− γ
e(1−γ)[µAT− 1

2
γσ2

AT ]EP

[
ZT1{βA(Mer)

T ≤K
}] . (4.49)

With Girsanov’s Theorem,

EP

[
ZT1{βA(Mer)

T ≤K
}] = P̃

(
βA

(Mer)
T ≤ K

)
,

where P̃ is the uniquely determined equivalent martingale measure of P and W̃T is
a BM under P̃ given by W̃T = WT − (1− γ)σAT .
Again notice, that

ln

(
A

(Mer)
T

A0

)
=

(
µA − 1

2
σ2
A

)
T + σAWT = · · · =

[
µA −

(
γ − 1

2

)
σ2
A

]
T + σAW̃T .

Then we get

P̃
(
βA

(Mer)
T ≤ K

)
= P̃

 ln

(
A

(Mer)
T

A0

)
−
[
µA −

(
γ − 1

2

)
σ2
A

]
T

σA

√
T

≤
ln
(

K
βA0

)
−
[
µA −

(
γ − 1

2

)
σ2
A

]
T

σA

√
T


= N

 ln
(

K
βA0

)
−
[
µA −

(
γ − 1

2

)
σ2
A

]
T

σA

√
T

 . (4.50)
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Combining (4.56) and (4.50), it holds

E5 =
(βA0)

(1−γ)

1− γ
e(1−γ)[µAT− 1

2
γσ2

AT ]N

 ln
(

K
βA0

)
−
[
µA −

(
γ − 1

2

)
σ2
A

]
T

σA

√
T

 . (4.51)

Analogously, we get

E6 = · · · = (βA0)
(1−γ)

1− γ
e(1−γ)[µAT− 1

2
γσ2

AT ]P̃
(
βA

(Mer)
T > K

)
= . . .

=
(βA0)

(1−γ)

1− γ
e(1−γ)[µAT− 1

2
γσ2

AT ]

1−N

 ln
(

K
βA0

)
−
[
µA −

(
γ − 1

2

)
σ2
A

]
T

σA

√
T

 .

(4.52)

Using the results stated in (4.51) and (4.52), E3 is given by

E3 =
(βA0)

(1−γ)

1− γ
e(1−γ)[µAT− 1

2
γσ2

AT ]
{
1−

[
N
(
d̃(K, γ)

)
−N

(
d̃(K, γ)

)]}
. (4.53)

It remains to calculate E4:

E4 = EP

[
G

(1−γ)
T

1− γ
1{

K<βA
(Mer)
T ≤K

}
]
=

G
(1−γ)
T

1− γ
EP

[
1{

K<βA
(Mer)
T ≤K

}]

=
G

(1−γ)
T

1− γ
P
(
K < βA

(Mer)
T ≤ K

)
=

G
(1−γ)
T

1− γ
P

 ln
(

K
βA0

)
− (µA − 1

2
σ2
A)T

σA

√
T

< ξ ≤
ln
(

K
βA0

)
− (µA − 1

2
σ2
A)T

σA

√
T

 ,

where ξ ∼ N (0, 1).
So it holds

E4 =
G

(1−γ)
T

1− γ

{
N (d̃(K, 1))−N (d̃(K, 1))

}
. (4.54)

The final solution is given by combining (4.53) and (4.54). 2
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Appendix C: Proofs of Chapter 3

C.1: Proof of Lemma 3.1

The account value Vti is given by

Vti = e−r(tn−ti)EIP∗ [Vtn| {At0 , . . . , Ati}]

= e−r(tn−ti)EIP∗

[
n−1∑
j=0

ãtj
Atn

Atj

∣∣∣∣∣ {At0 , . . . , Ati}

]

= e−r(tn−ti)EIP∗

[
i−1∑
j=0

ãtj
Ati

Atj

Atn

Ati

+
n−1∑
j=i

ãtj
Atn

Atj

∣∣∣∣∣ {At0 , . . . , Ati}

]

=
i−1∑
j=0

ãtj
Ati

Atj

+
n−1∑
j=i

e−r(tj−ti) ãtj

= α

(
i−1∑
j=0

atj
Ati

Atj

+
n−1∑
j=i

e−r(tj−ti) atj

)

= α

(
i−1∑
j=0

atj
Ati

Atj

+ ati +
n−1∑

j=i+1

e−r(tj−ti) atj

)
.

C.2: Proof of Lemma 3.2

Using the representation of Lemma 3.1, the account value Vti is given by

Vti = α

(
i−1∑
j=0

atj
Ati

Atj

+ ati +
n−1∑

j=i+1

e−r(tj−ti) atj

)
.
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Furthermore, notice that at ti+1 (i ≤ n− 2) it holds

Vti+1
= α

(
i∑

j=0

atj
Ati+1

Atj

+ ati+1
+

n−1∑
j=i+2

e−r(tj−ti+1) atj

)

= α

(
Ati+1

Ati

i−1∑
j=0

atj
Ati

Atj

+ ati
Ati+1

Ati

+ ati+1
+ er(ti+1−ti)

n−1∑
j=i+2

e−r(tj−ti) atj

)

= α

((
i−1∑
j=0

atj
Ati

Atj

+ ati

)
Ati+1

Ati

+ ati+1
+ er(ti+1−ti)

n−1∑
j=i+2

e−r(tj−ti) atj

)

= Vti

Ati+1

Ati

+ α

(
−

(
n−1∑

j=i+1

e−r(tj−ti)atj

)
Ati+1

Ati

+ ati+1
+ er(ti+1−ti)

n−1∑
j=i+2

e−r(tj−ti) atj

)

= Vti

Ati+1

Ati

+ α

(
−

(
n−1∑

j=i+1

e−r(tj−ti)atj

)
Ati+1

Ati

+ er(ti+1−ti)
n−1∑

j=i+1

e−r(tj−ti) atj

)

= Vti

Ati+1

Ati

+ α

((
n−1∑

j=i+1

e−r(tj−ti)atj

)(
er(ti+1−ti) −

Ati+1

Ati

))

= Vti

Ati+1

Ati

+ α

((
n−1∑

j=i+1

e−r(tj−ti+1)atj

)(
1− e−r(ti+1−ti)Ati+1

Ati

))
,

such that

Vti+1
= Vti

Ati+1

Ati

+ α

((
n−1∑

j=i+1

e−r(tj−ti+1)atj

)(
1− e−r(ti+1−ti)Ati+1

Ati

))

= Vti

Ati+1

Ati

+ α

(
PVti+1

(
1− e−r(ti+1−ti)Ati+1

Ati

))
.
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C.3: Proof of Proposition 3.1

Using the representation of the account value in Lemma 3.2 together with Eqn. (3.5)
we find that

Vti+1
= Vti

Ati+1

Ati

+ α

(
er(ti+1−t0)

n−1∑
j=i+1

βj

(
1− e−r(ti+1−ti)Ati+1

Ati

))

= αβi+1e
r(ti+1−t0) +

(
Vti − αer(ti−t0)βi+1

) Ati+1

Ati

= αer(ti−t0)
[
er(ti+1−ti)βi+1 −

Ati+1

Ati

βi+1

]
+ Vti

Ati+1

Ati

= er(ti−t0)
[
βi+1

(
αer(ti+1−ti) − α

Ati+1

Ati

)]
+ Vti

Ati+1

Ati

(
βi+1 +

(
1− βi+1

))
= er(ti−t0)

[
βi+1

(
αer(ti+1−ti) − α

Ati+1

Ati

+ Vti

Ati+1

Ati

)]
+ Vti

Ati+1

Ati

(
1− βi+1

)
= er(ti−t0)

[
βi+1

(
αer(ti+1−ti) +

Ati+1

Ati

(e−r(ti−t0)Vti − α)

)
+
(
1− βi+1

)(
e−r(ti−t0)Vti

Ati+1

Ati

)]
= βi+1

(
αer(ti+1−t0) +

Ati+1

Ati

(
Vti − αer(ti−t0)

))
+
(
1− βi+1

)
Vti

Ati+1

Ati

.

C.4: Proof of Proposition 3.5

Using the representation of L1, we find that

L1 −
A1

A0

= V1 + V1P
BS

(
1, 1,

G2

V1

, σA,1

)
− A1

A0

= V1

(
1 + PBS

(
1, 1,

G2

V1

, σA,1

))
− A1

A0

.

With V1 = α(βA1

A0
+ (1− β)er) and some simple calculations it follows

L1 −
A1

A0

=β

(
α
A1

A0

PBS

(
1, 1,

G2

V1

, σA,1

)
− (1− α)

A1

A0

)
+

(1− β)

(
αerPBS

(
1, 1,

G2

V1

, σA,1

)
+ αer − A1

A0

)
.
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Recall that (1− α) = GC0 and thus L1 − A1

A0
can be rewritten as

L1 −
A1

A0

=α

(
β
A1

A0

+ (1− β)er
)
PBS

(
1, 1,

G2

V1

, σA,1

)
−(

β
A1

A0

GC0 + (1− β)erGC0

)
+ (1− β)

(
er − A1

A0

)
=GC1 −

V1

α
GC0 + (1− β)

(
er − A1

A0

)
.

C.5: Proof of Corollary 3.1

The general formula for the random variable L1 − A1

A0
is received by inserting the

corresponding formulas for the CMR case from the guarantee section 3. For the
special case of a postponed premium payment it holds V1

α
= er and thus

erGC
(β=0), CMR
0 = EP∗ [GC

(β=0), CMR
1 ].

Furthermore, it holds

GC
(β=0), CMR
1 = PBS(erα, 1, G2, σA,0).

This is a deterministic value s.t.

erGC
(β=0), CMR
0 = GC

(β=0), CMR
1 .

Inserting the result in the general formula gives the claim. For the upfront premium
case insert the definition of V1 with β = 1 and the claimed result holds.

C.6: Proof of Proposition 3.7

ad a):

EP[u(L2)] = EP

[
u

(
max

{
α
A2

A0

, G2

})]
= EP

[
u

(
α
A2

A0

1{
α

A2
A0

>G2

} +G21{αA2
A0
≤G2

})]
= EP

[
u

(
α
A2

A0

1{
α

A2
A0

>G2

})]+ EP

[
u

(
G21{αA2

A0
≤G2

})]
= E1 + E2,
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where

E1 := EP

[
u

(
α
A2

A0

1{
α

A2
A0

>G2

})] ,
E2 := EP

[
u

(
G21{αA2

A0
≤G2

})] .
Let us first calculate the value of E1 and recall, that u(x) = x(1−γ)

1−γ .

E1 =
1

1− γ
EP

[(
α
A2

A0

)(1−γ)

1{
α

A2
A0

>G2

}
]

=
α1−γ

1− γ
EP

[
e(2µA−σ2

A)(1−γ)+(1−γ)σAW2 1{
α

A2
A0

>G2

}] , (4.55)

where the last equality holds because A2

A0
= e2µA−σ2

A+σAW2 . Now our aim is to use
Girsanov’s theorem to calculate the expected value. For this we need the Radon-
Nikodym density which is in our setting given by

Z2 := e−σ
2
A(1−γ)2+σA(1−γ)W2 .

Rewriting (4.55), we get

E1 =
α1−γ

1− γ
e(2µA−σ2

A)(1−γ)e(1−γ)
2σ2

A EP

[
e−σ

2
A(1−γ)2+σA(1−γ)W21{

α
A2
A0

>G2

}]
=

α1−γ

1− γ
e(2µA−σ2

A)(1−γ)e(1−γ)
2σ2

A EP

[
Z21{αA2

A0
>G2

}] . (4.56)

With Girsanov’s Theorem,

EP

[
Z21{αA2

A0
>G2

}] = P̃
(
α
A2

A0

> G2

)
,

where P̃ is the uniquely determined equivalent martingale measure of P and W̃T is
a BM under P̃ given by W̃2 = W2 − 2(1− γ)σA. Using this result, we get

P̃
(
α
A2

A0

> G2

)
= 1− P̃

(
A2

A0

≤ G2

α

)
= 1− P̃

(
W̃2√
2
≤

ln(G2

α
)− 2[µA − (γ − 1

2
)σ2

A]√
2 σA

)

= 1− Φ

(
ln(G2

α
)− 2[µA − σ2

A(γ − 1
2
)]

√
2σA

)
. (4.57)
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Combining (4.56) and (4.57), it holds

E1 =
α1−γ

1− γ
e(1−γ)(2µA−γσ2

A)

{
1− Φ

(
ln(G2

α
)− 2[µA − σ2

A(γ − 1
2
)]

√
2σA

)}
. (4.58)

It remains to calculate E2:

E2 =
1

1− γ
G

(1−γ)
2 EP

[
1{

α
A2
A0
≤G2

}] = 1

1− γ
G

(1−γ)
2 P

(
α
A2

A0

≤ G2

)
=

1

1− γ
G

(1−γ)
2 P

(
W2√
2
≤

ln(G2

α
)− 2µA + σ2

A√
2σA

)

=
1

1− γ
G

(1−γ)
2 Φ

(
ln(G2

α
)− 2µA + σ2

A√
2σA

)
. (4.59)

Combining (4.58) and (4.59) we get the final solution.

For the CE just use the relation CE = u−1(EP[u(L2)]) with u−1(x) = ((1− γ)x)
1

1−γ .

ad (b):

EP[u(L2)] = EP

[
u

(
max

{
αer

A2

A1

, G2

})]
...

= EP[E3] + EP[E4],

where

E3 :=
α1−γ

1− γ
EP

[(
er
A2

A1

)1−γ

1{
αer

A2
A1

>G2

}
]

E4 :=
1

1− γ
EP

[
(G2)

1−γ 1{
αer

A2
A1
≤G2

}] .
Let us calculate E3 where we use that A2

A1
= eµA− 1

2
σ2
A+σA(W2−W1). So it holds

E3 =
α1−γ

1− γ
EP

[(
er
A2

A1

)1−γ

1{
αer

A2
A1

>G2

}
]

=
α1−γ

1− γ
er(1−γ)e(1−γ)(µA− 1

2
σ2
A)EP

[
eσA(1−γ)(W2−W1)1{

αer
A2
A1

>G2

}] (4.60)

As shown in the proof of part (a), we now want to use Girsanov’s Theorem. The
Radon-Nikodym density here is given by

Ẑ2 := e−
1
2
(1−γ)2σ2

A+σA(1−γ)(W2−W1).
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Rewriting (4.60) and with the fact that

σA(Ŵ2 − Ŵ1) = σA(W2 −W1)− σ2
A(1− γ),

where ŴT is a BM under the uniquely determined equivalent martingale measure
P̂, we get

E3 =
α1−γ

1− γ
er(1−γ)e(1−γ)(µA− 1

2
γσ2

A)EP

[
Ẑ21{αer A2

A1
>G2

}]
=

α1−γ

1− γ
er(1−γ)e(1−γ)(µA− 1

2
γσ2

A)

{
1− P̂

(
αer

A2

A1

≤ G2

)}
...

=
α1−γ

1− γ
e(1−γ)(r+µA− 1

2
γσ2

A)

{
1− Φ

(
ln(G2

α
)− r − µA − σ2

A(
1
2
− γ)

σA

)}
(4.61)

It remains to calculate E4:

E4 =
1

1− γ
EP

[
(G2)

1−γ 1{
αer

A2
A1
≤G2

}]
=

1

1− γ
G

(1−γ)
2 P

(
αer

A2

A1

≤ G2

)
=

1

1− γ
G

(1−γ)
2 P

(
W2 −W1 ≤

ln(G2

α
)− r − µA + 1

2
σ2
A

σA

)

=
1

1− γ
G

(1−γ)
2 Φ

(
ln(G2

α
)− r − µA + 1

2
σ2
A

σA

)
. (4.62)

Combining (4.61) and (4.62) we get the final result.
The certainty equivalent can be calculated analogously to part (a). 2
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C.7: Supplementary figure - Certainty Equivalent VMR no guarantee

Impact of variable management rule on Merton solution without
guarantee
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The pictures show the impact of the splitting factor β and the variable management rule on the
certainty equivalent for the case of no guarantee. In addition to the benchmark parameter setting,
we use γ = 4 and e1 = 0.8, e2 = 1. The value of e3 is chosen depending on the investment fraction
s.t. Assumption (∗) is fulfilled. The corresponding values of π are stated in the pictures.
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C.8: Supplementary figure - Certainty Equivalent VMR no guarantee

Impact of guarantee rate on variable management rules
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The pictures show the impact of the guarantee rate on the optimal splitting factors β for a variable
portfolio insurance management rule. In addition to the benchmark parameter setting, we use
γ = 4 and e1 = 0.8, e2 = 1. The value of e3 is chosen depending on the investment fraction s.t.
Assumption (∗) is fulfilled. The corresponding values of π and g are stated in the pictures.
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Appendix D: Proofs of Chapter 4

D.1: Proof of Proposition 4.1

For γ > 1, the certainty equivalent savings rate yT,p(π) is given by

yT,p(π) =
1

(1− γ)T
ln
[
pey(π,1)(1−γ)T + (1− p)ey(π,2)(1−γ)T

]
.

For the partial derivative with respect to T , it holds that

∂yT,p(π)

∂T
=

1

T

pey(π,1)(1−γ)Ty (π, 1) + (1− p)ey(π,2)(1−γ)Ty (π, 2)

pey(π,1)(1−γ)T + (1− p)ey(π,2)(1−γ)T

− 1

(1− γ)T 2
ln
[
pey(π,1)(1−γ)T + (1− p)ey(π,2)(1−γ)T

]
=

1

(1− γ)T 2

pey(π,1)(1−γ)Ty (π, 1) (1− γ)T + (1− p)ey(π,2)(1−γ)Ty (π, 2) (1− γ)T

pey(π,1)(1−γ)T + (1− p)ey(π,2)(1−γ)T

− 1

(1− γ)T 2
ln
[
pey(π,1)(1−γ)T + (1− p)ey(π,2)(1−γ)T

]
=

1

(1− γ)T 2

pex1x1 + (1− p)ex2x2

pex1 + (1− p)ex2
− 1

(1− γ)T 2
ln [pex1 + (1− p)ex2 ] ,

where we define xi = y (π, i) (1−γ)T . We can then write the derivative as a function
of the random variable X with realizations x1 (with probability p) and x2 (with
probability (1− p)):

∂yT,p(π)

∂T
=

1

(1− γ)T 2

[
E
[
eXX

]
E [eX ]

− lnE
[
eX
]]

=
1

(1− γ)T 2E [eX ]

{
E
[
eXX

]
− E

[
eX
]
lnE

[
eX
]︸ ︷︷ ︸

>0 (z ln z is convex function for z > 0)

}
< 0.

Next, we turn to the certainty equivalent savings rate for the optimal pre-commitment
strategy where we have to take into account that the optimal pre-commitment strat-
egy depends on T :

∂yT,p(π
∗,pre
T,p )

∂T
=

∂yT,p(π)

∂T

∣∣∣
π=π∗,pre

T

+
∂yT,p(π)

∂π

∣∣∣
π=π∗,pre

T,p︸ ︷︷ ︸
=0 (FOC)

∂π∗,preT,p

∂T

< 0.
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D.2: Proof of Proposition 4.2

We need to show that π∗,preT,p = α∗T,pπ
Mer
1 +(1−α∗T,p)π

Mer
2 , where π∗,preT,p = argmax

π
{yT,p(π)}.

For γ > 1 the certainty equivalent savings rate yT,p(π) is given by

yT,p(π) =
1

(1− γ)T
ln
(
pey(π,1)(1−γ)T + (1− p)ey(π,2)(1−γ)T

)
.

Calculating the FOC, we receive

∂yT,p
∂π

=
pγσ2

1(π
Mer
1 − π)ey(π,1)(1−γ)T + (1− p)γσ2

2(π
Mer
2 − π)ey(π,2)(1−γ)T

pey(π,1)(1−γ)T + (1− p)ey(π,2)(1−γ)T
!
= 0

⇔ π
!
=

pσ2
1π

Mer
1 ey(π,1)(1−γ)T + (1− p)σ2

2π
Mer
2 ey(π,2)(1−γ)T

pσ2
1e

y(π,1)(1−γ)T + (1− p)σ2
2e

y(π,2)(1−γ)T , (4.63)

i.e. the optimal pre-commitment strategy π∗,preT,p is implicitly defined as solution of
(4.63). Separating the fraction leads to

π∗,preT,p =
pσ2

1e
y(π∗,pre

T,p ,1)(1−γ)T

pσ2
1e

y(π∗,pre
T,p ,1)(1−γ)T + (1− p)σ2

2e
y(π∗,pre

T,p ,2)(1−γ)T π
Mer
1 +

pσ2
1e

y(π∗,pre
T,p ,1)(1−γ)T

pσ2
1e

y(π∗,pre
T,p ,1)(1−γ)T + (1− p)σ2

2e
y(π∗,pre

T,p ,2)(1−γ)T π
Mer
2

⇔ π∗,preT,p =α∗T,pπ
Mer
1 + (1− α∗T,p)π

Mer
2 .

D.3: Proof of Proposition 4.5

The value of information is given by the difference of the certainty equivalent savings
rates yT,p(π

∗)− yT,p(π
∗,pre). For γ > 1 it holds

yT,p(π
∗)− yT,p(π

∗,pre) =
1

(1− γ)T
ln

[
peyT,p(π

Mer
1 ,1)(1−γ)T + (1− p)eyT,p(π

Mer
2 ,2)(1−γ)T

peyT,p(π
∗,pre
T,p ,1)(1−γ)T + (1− p)eyT,p(π

∗,pre
T,p ,2)(1−γ)T

]
.

The inner part of the log function can be written as

peyT,p(π
∗,pre
T,p ,1)(1−γ)T

peyT,p(π
∗,pre
T,p ,1)(1−γ)T + (1− p)eyT,p(π

∗,pre
T,p ,2)(1−γ)T

peyT,p(π
Mer
1 ,1)(1−γ)T

peyT,p(π
∗,pre
T,p ,1)(1−γ)T +

(1− p)eyT,p(π
∗,pre
T,p ,2)(1−γ)T

peyT,p(π
∗,pre
T,p ,1)(1−γ)T + (1− p)eyT,p(π

∗,pre
T,p ,2)(1−γ)T

(1− p)eyT,p(π
Mer
2 ,2)(1−γ)T

(1− p)eyT,p(π
∗,pre
T,p ,2)(1−γ)T

=yT,p(π
∗,pre
T,p , 1)el(π

∗,pre
T,p ,1)(1−γ)T + (1− βT,p(γ))e

l(π∗,pre
T,p ,2)(1−γ)T .
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For γ = 1 the value of information yT,p(π
∗)− yT,p(π

∗,pre) is given by

yT,p(π
∗)− yT,p(π

∗,pre) =p(yT,p(π
Mer
1 , 1)− yT,p(π

∗,pre
T,p , 1))+

(1− p)(yT,p(π
Mer
2 , 2)− yT,p(π

∗,pre
T,p , 2)).

Using the fact that βT,p(1) = p gives the claimed representation.

D.4: Proof of Proposition 4.6

For γ > 1 it holds

lim
T→0

{
yT,p(π

∗)− yT,p(π
∗,pre
T,p )

}
= lim

T→0
yT,p(π

∗)− lim
T→0

yT,p(π
∗,pre
T,p ).

Notice that

lim
T→0

yT,p(π
∗,pre
T,p ) = lim

T→0

{
py(π∗,preT,p , 1) + (1− p)y(π∗,preT,p , 2)

}
= py

(
lim
T→0

π∗,preT,p , 1
)
+ (1− p)y

(
lim
T→0

π∗,preT,p , 2
)

and

lim
T→0

π∗,preT,p = lim
T→0

α∗T,pπ
Mer
1 + (1− lim

T→0
α∗T,p)π

Mer
2 , where

lim
T→0

α∗T,p =
pσ2

1

pσ2
1 + (1− p)σ2

2

.

Using the results of Proposition 4.1 and the fact that

l(π∗,preT,p , i) = y(πMer
i , i)− y(π∗,preT,p , i) =

1

2
γσ2

i (π
∗,pre
T,p − πMer

i )2,

we get

lim
T→0

{
yT,p(π

∗)− yT,p(π
∗,pre
T,p )

}
= pl( lim

T→0
π∗,preT,p , 1) + (1− p)l( lim

T→0
π∗,preT,p , 2). (4.64)

Calculating the two loss rates, we receive with the above stated results

l( lim
T→0

π∗,preT,p , 1) =
1

2
γ(1− p)2σ2

2

(
σ1σ2

pσ2
1 + (1− p)σ2

2

)2 (
πMer
1 − πMer

2

)2
(4.65)

l( lim
T→0

π∗,preT,p , 2) =
1

2
γp2σ2

1

(
σ1σ2

pσ2
1 + (1− p)σ2

2

)2 (
πMer
1 − πMer

2

)2
. (4.66)
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Combining (4.64), (4.65) and (4.66) we finally get

lim
T→0

{
yT,p(π

∗)− yT,p(π
∗,pre
T,p )

}
=
1

2
γ
(
πMer
1 − πMer

2

)2 p2(1− p)σ2
1 + p(1− p)2σ2

2

(pσ2
1 + (1− p)σ2

2)
2 σ2

1σ
2
2

=
1

2
γp(1− p)

(
πMer
1 − πMer

2

)2 σ2
1σ

2
2

pσ2
1 + (1− p)σ2

2

.

For γ = 1 we are immediately in the situation of equation (4.64), s.t. the same result
holds.

For the case T → ∞ we distinguish between:

lim
T→∞

π∗,preT,p ̸= πequal and lim
T→∞

π∗,preT,p = πequal.

For limT→∞ π∗,preT,p ̸= πequal it holds with equation (4.13)

lim
T→∞

{yT,p(π∗)− yT,p(π
∗,pre)}

= lim
T→∞

{
1

(1− γ)T
ln

[
pe(y(π

Mer
1 ,1)−y(π∗,pre

T,p ,1))(1−γ)T + (1− p)e(y(π
Mer
2 ,2)−y(π∗,pre

T,p ,2))(1−γ)T

1− pδ(π∗,preT,p , T )

]}

= lim
T→∞

{
1

(1− γ)T

}
ln

[
1

1− p

]
= 0.

For π∗,preT,p = πequal it holds that yT,p(π
∗,pre
T,p , 1) = yT,p(π

∗,pre
T,p , 2) (for this we write

y(πequal, ·) because the regime i does not matter here), s.t. δ(π∗,preT,p , T ) = 0, for all T
and thus with equation (4.13) it holds

lim
T→∞

{yT,p(π∗)− yT,p(π
∗,pre)} = lim

T→∞

{
yT,p(π

∗)− y(πequal, ·)
}

= min
{
y(πMer

1 , 1), y(πMer
2 , 2)

}
− y(πequal, ·).

D.6: Proof of Proposition 4.8

We want to show that π∗,pre,amb
T = argmax

π

{
yamb
T,p̃ (π)

}
is given by

α∗T,p̃
(
αT,paπ

Mer
1 + (1− αT,pa)π

Mer
2

)
+ (1− αT,p̃)

(
αT,pbπ

Mer
1 + (1− αT,pb)π

Mer
2

)
.

The certainty equivalent savings rate for γ > 1 with ambiguity yamb
T,p (π) is given by

yamb
T,p̃ (π) :=

1

(1− η)T
ln
[
p̃eyT,pa (π)(1−η)T + (1− p̃)eyT,pb

(π)(1−η)T ] .
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Calculating the FOC we receive

∂yamb
T,p̃ (π)

∂π
=

p̃
∂yT,pa (π)

∂π
eyT,pa (π)(1−η)T + (1− p̃)

∂yT,pb
(π)

∂π
eyT,pb

(π)(1−η)T

p̃eyT,pa (π)(1−η)T + (1− p̃)eyT,pb
(π)(1−η)T

!
= 0. (4.67)

Within the results in the proof of Proposition 4.2 it furthermore holds

∂yT,pi(π)

∂π
=

piγσ
2
1(π

Mer
1 − π)ey(π,1)(1−γ)T + (1− pi)γσ

2
2(π

Mer
2 − π)ey(π,2)(1−γ)T

piey(π,1)(1−γ)T + (1− pi)ey(π,2)(1−γ)T
, for i = a, b.

Using this result, we can solve the FOC (4.67) for π and can formulate that π∗,pre,amb
T

has to fulfill the equation

π =
p̃

1− p̃

(
pae

y(π,1)(1−γ)T + (1− pa)e
y(π,2)(1−γ)T

pbey(π,1)(1−γ)T + (1− pb)ey(π,2)(1−γ)T

) η−γ
γ−1

×

paσ
2
1e

y(π,1)(1−γ)T (πMer
1 − π) + (1− pa)σ

2
2.6

y(π,2)(1−γ)T (πMer
2 − π)

pbσ2
1e

y(π,1)(1−γ)T + (1− pb)σ2
2e

y(π,1)(1γ)T
+

pbσ
2
1π

Mer
1 ey(π,1)(1−γ)T + (1− pb)σ

2
2π

Mer
2 ey(π,2)(1−γ)T

pbσ2
1e

y(π,1)(1−γ)T + (1− pb)σ2
2e

y(π,2)(1−γ)T .

Simplifying this equation we receive

π =
p̃ξa

p̃ξa + (1− p̃)ξb

[
paσ

2
1e

y(π,1)(1−γ)TπMer
1 + (1− pa)σ

2
2e

y(π,2)(1−γ)TπMer
2

paσ2
1e

y(π,1)(1−γ)T + (1− pa)σ2
2e

y(π,2)(1−γ)T

]
+(

1− p̃ξa
p̃ξa + (1− p̃)ξb

)[
pbσ

2
1e

y(π,1)(1−γ)TπMer
1 + (1− pb)σ

2
2e

y(π,2)(1−γ)TπMer
2

pbσ2
1e

y(π,1)(1−γ)T + (1− pb)σ2
2e

y(π,2)(1−γ)T

]
, where

ξa =
(
paσ

2
1e

y(π,1)(1−γ)T + (1− pa)σ
2
2e

y(π,2)(1−γ)T ) [paey(π,1)(1−γ)T + (1− pa)e
y(π,2)(1−γ)T ] η−γ

γ−1 ,

ξb =
(
pbσ

2
1e

y(π,1)(1−γ)T + (1− pb)σ
2
2e

y(π,2)(1−γ)T ) [pbey(π,1)(1−γ)T + (1− pb)e
y(π,2)(1−γ)T ] η−γ

γ−1 .

Recall that δpre(π, T ) = 1− e(y(π,1)−y(π,2))(1−γ)T and define δamb(π, T ) := 1− ξa
ξb
, s.t.

we can finally write the equation as

π =
p̃(1− δamb

T (π))

p̃(1− δamb
T (π)) + (1− p̃)

[
paσ

2
1(1− δpreT (π))πMer

1

paσ2
1(1− δpreT (π)) + (1− pa)σ2

2

+
(1− pa)σ

2
2π

Mer
2

paσ2
1(1− δpreT (π)) + (1− pa)σ2

2

]
+

1− p̃

p̃(1− δamb
T (π)) + (1− p̃)

[
pbσ

2
1(1− δpreT (π))πMer

1

pbσ2
1(1− δpreT (π)) + (1− pb)σ2

2

+
(1− pb)σ

2
2π

Mer
2

pbσ2
1(1− δpreT (π)) + (1− pb)σ2

2

]
=α∗

T,p̃

(
αT,pa

πMer
1 + (1− αT,pa

)πMer
2

)
+ (1− αT,p̃)

(
αT,pb

πMer
1 + (1− αT,pb

)πMer
2

)
.
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D.7: Proof of Proposition 4.11

With the results of equations (4.23) and (4.24) we can state the expected utility of
a CRRA investor in terms of

EP

[
u

(
VT

V0

)]
= EP

[
u
(
1{τ≤T}X1 + 1{τ>T}X2

)]
=

1

1− γ

{
EP

[
1{τ≤T}X

(1−γ)
1

]
+ EP

[
1{τ>T}X

(1−γ)
2

]}
. (4.68)

Let’s start with the calculation of E1 := EP

[
1{τ≤T}X

(1−γ)
1

]
in (4.68):

E1 = EP

[
1{τ≤T}e

[π(µ2−r)+r− 1
2
π2σ2

2 ]T (1−γ)e[π(µ1−µ2)− 1
2
π2(σ2

1−σ2
2)]τ(1−γ)+π(σ1Wτ+σ2(WT−Wτ ))(1−γ)

]
= e[π(µ2−r)+r− 1

2
π2σ2

2 ]T (1−γ)EP

[
1{τ≤T}e

[π(µ1−µ2)− 1
2
π2(σ2

1−σ2
2)]τ(1−γ)EP

[
eπ(σ1Wτ+σ2(WT−Wτ ))(1−γ)|τ

]]
,

(4.69)

where the last equation holds because of the basic properties of the conditional
expectation. Furthermore the Brownian motion Wτ is independent from WT −Wτ .
Together with the fact that E

[
eX
]
= eµ+

1
2
σ2

for X ∼ N(µ, σ2), equation (4.69) can
be written as

e[π(µ2−r)+r− 1
2
π2σ2

2 ]T (1−γ)EP

[
1{τ≤T}e

[π(µ1−µ2)− 1
2
π2(σ2

1−σ2
2)]τ(1−γ)EP

[
eπ(σ1Wτ+σ2(WT−Wτ ))(1−γ)|τ

]]
= e[π(µ2−r)+r− 1

2
π2σ2

2 ]T (1−γ)EP

[
1{τ≤T}e

[π(µ1−µ2)− 1
2
π2(σ2

1−σ2
2)]τ(1−γ)e

1
2
π2σ2

1(1−γ)2τ+
1
2
π2σ2

2(1−γ)2(T−τ)
]

= eξ2TEP
[
1{τ≤T}e

ντ
]
. (4.70)

Now it holds that the function g(x) := 1{x≤T}e
νx is measurable, so the transformation

g(τ) is still a random variable. Together with τ ∼ Exp(λ) and its absolute continuous
density function fλ

τ (x)we get

EP [g(τ)] =

∫ ∞
−∞

g(x)fλ
τ (x)dx. (4.71)

Combining (4.70) and (4.71), we get

eξ2TEP
[
1{τ≤T}e

ντ
]
= eξ2T

∫ ∞
−∞

1{x≤T}e
νxfλ

τ (x)dx

= eξ2T
∫ T

0

eνxλe−λxdx

= λeξ2T
1

ν − λ

[
e(ν−λ)T − 1

]
. (4.72)
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For the calculation of E2 := EP

[
1{τ>T}X

(1−γ)
2

]
in (4.68) it holds:

E2 = EP

[
1{τ>T}e

[π(µ1−r)+r− 1
2
π2σ2

1 ]T (1−γ)+σ1πWT (1−γ)
]

= e[π(µ1−r)+r− 1
2
π2σ2

1 ]T (1−γ)EP
[
1{τ>T}e

σ1πWT (1−γ)]
= e[π(µ1−r)+r− 1

2
π2σ2

1 ]T (1−γ)EP
[
1{τ>T}EP

[
eσ1πWT (1−γ)|τ

]]
= eξ1TEP

[
1{τ>T}

]
= eξ1T

[
1− F λ

τ (T )
]

= e(ξ1−λ)T . (4.73)

Combining (4.72) and (4.73) gives the final result. 2

D.8: Proof of Proposition 4.12:

Proof Maximizing EU pre-commitment strategy Proposition 1:
To maximize the expected utility we have to minimize the expression

ξ1 − ξ2
ξ1 − ξ2 − λ

e(ξ1−λ)T +
−λ

ξ1 − ξ2 − λ
eξ2T .

The first order condition is given by

∂

∂π

{
ξ1 − ξ2

ξ1 − ξ2 − λ

}
e(ξ1−λ)T +

ξ1 − ξ2
ξ1 − ξ2 − λ

∂

∂π

{
e(ξ1−λ)T

}
+

∂

∂π

{
−λ

ξ1 − ξ2 − λ

}
eξ2T +

−λ

ξ1 − ξ2 − λ

∂

∂π

{
eξ2T

} !
= 0.

Let us calculate the corresponding derivatives first (r=0):

� ∂ξ1
∂π

= (1− γ)γσ2
1(π

Mer
1 − π)

� ∂ξ2
∂π

= (1− γ)γσ2
2(π

Mer
2 − π)

�
∂(ξ1−ξ2)

∂π
= (1− γ)γ

[
σ2
1π

Mer
1 − σ2

2π
Mer
2 − π(σ2

1 − σ2
2)
]

� ∂
∂π

{
ξ1−ξ2

ξ1−ξ2−λ

}
=

∂(ξ1−ξ2)
∂π

(ξ1−ξ2−λ)−(ξ1−ξ2) ∂(ξ1−ξ2−λ)
∂π

(ξ1−ξ2−λ)2 =
−λ ∂(ξ1−ξ2)

∂π

(ξ1−ξ2−λ)2

=
−λ(1−γ)γ[σ2

1(π
Mer
1 −π)−σ2

2(π
Mer
2 −π)]

(ξ1−ξ2−λ)2

� ∂
∂π

{
e(ξ1−λ)T

}
= ∂ξ1T

∂π
e(ξ1−λ)T = (1− γ)γσ2

1(π
Mer
1 − π)Te(ξ1−λ)T
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� ∂
∂π

{
−λ

ξ1−ξ2−λ

}
=

λ
∂(ξ1−ξ2−λ)

∂π

(ξ1−ξ2−λ)2 =
λ

∂(ξ1−ξ2)
∂π

(ξ1−ξ2−λ)2 = − ∂
∂π

{
ξ1−ξ2

ξ1−ξ2−λ

}
� ∂

∂π

{
eξ2T

}
= ∂ξ2T

∂π
eξ2T = (1− γ)γσ2

2(π
Mer
2 − π)Teξ2T

Because of the fact that ∂
∂π

{
−λ

ξ1−ξ2−λ

}
= − ∂

∂π

{
ξ1−ξ2

ξ1−ξ2−λ

}
and −λ

ξ1−ξ2−λ = 1 − ξ1−ξ2
ξ1−ξ2−λ

we can write the first order condition as follows

∂

∂π

{
ξ1 − ξ2

ξ1 − ξ2 − λ

}
(e(ξ1−λ)T − eξ2T ) +

ξ1 − ξ2
ξ1 − ξ2 − λ

(
∂

∂π

{
e(ξ1−λ)T

}
− ∂

∂π

{
eξ2T

})
+

∂
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{
eξ2T

} !
= 0

⇔
−λ(1− γ)γ

[
σ2
1(π

Mer
1 − π)− σ2

2(π
Mer
2 − π)

]
(ξ1 − ξ2 − λ)2

(e(ξ1−λ)T − eξ2T )+
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(1− γ)γσ2

1(π
Mer
1 − π)Te(ξ1−λ)T − (1− γ)γσ2

2(π
Mer
2 − π)Teξ2T

)
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(1− γ)γσ2
2(π

Mer
2 − π)Teξ2T

!
= 0

⇔πpre,∗ =
[σ2

1(π
Mer
1 − πpre,∗)− σ2

2(π
Mer
2 − πpre,∗)](e(ξ1−λ)T − eξ2T )

Teξ2Tσ2
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− (ξ1 − ξ2)σ
2
1(π

Mer
1 − πpre,∗)e(ξ1−λ)T

λσ2
2e

ξ2T
+ πMer

2

⇔πpre,∗ = πMer
1

[λσ2
1(e
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(ξ1−λ)T
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πMer
2
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ξ2T − e(ξ1−λ)T ) + Tλeξ2Tσ2
2(ξ1 − ξ2 − λ)
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+
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(
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Rootzen, H. and Klüppelberg, C. (1999), A single number can’t hedge against
economic catastrophes, AMBIO: A Journal of the Human Environment. (Cited
on page 11.)

Ruß, J. and Schelling, S. (2018), Multi cumulative prospect theory and the
demand for cliquet-style guarantees, Journal of Risk and Insurance 85(4), 1103–
1125. (Cited on pages 34, 104, 105, 107, and 109.)

Sass, J. and Haussmann, U. G. (2004), Optimizing the terminal wealth under
partial information: The drift process as a continuous time Markov chain, Finance
and Stochastics 8(4), 553–577. (Cited on page 159.)

Schmeiser, H. and Wagner, J. (2015), A proposal on how the regulator should
set minimum interest rate guarantees in participating life insurance contracts,
Journal of Risk and Insurance 82(3), 659–686. (Cited on pages 33, 34, 35, 42, 49,
51, 70, 106, and 109.)



Appendix 228

Setyani, F., Novita, M. and Malik, M. (2018), Optimal portfolio selection with
regime-switching Hamilton-Jacobi-Bellman (HJB) equation and maximum value-
at-risk (MVaR) constraint, 1108(1), 1–6. (Cited on page 163.)

Shen, Y. and Siu, T. K. (2012), Asset allocation under stochastic interest
rate with regime switching, Economic Modelling 29(4), 1126–1136. (Cited on
page 160.)

Shi, Z. and Werker, B. J. (2012), Short-horizon regulation for long-term investors,
Journal of Banking & Finance 36(12), 3227–3238. (Cited on pages 60 and 63.)

Sotomayor, L. R. and Cadenillas, A. (2009), Explicit solutions of consumption-
investment problems in financial markets with regime switching, Mathematical
Finance: An International Journal of Mathematics, Statistics and Financial Eco-
nomics 19(2), 251–279. (Cited on pages 153, 157, 159, and 160.)

Strotz, R. H. (1955), Myopia and Inconsistency in Dynamic Utility Maximization,
The Review of Economic Studies 23(3), 165–180. (Cited on page 125.)

Swiss Financial Market Supervisory Authority (2006), Technical doku-
ment on the Swiss Solvency Test, https://www.finma.ch/FinmaArchiv/bpv/
download/e/SST_techDok_061002_E_wo_Li_20070118.pdf. Accessed: 2022-01-
13. (Cited on page 8.)

Taboga, M. (2005), Portfolio selection with two-stage preferences, Finance Re-
search Letters 2(3), 152–164. (Cited on pages 115 and 116.)

Taksar, M. and Zeng, X. (2007), Optimal terminal wealth under partial in-
formation: Both the drift and the volatility driven by a discrete-time Markov
chain, SIAM journal on Control and Optimization 46(4), 1461–1482. (Cited on
page 159.)

Tasche, D. (2002), Expected shortfall and beyond, Journal of Banking & Finance
26(7), 1519–1533. (Cited on page 22.)

Tepla, L. (2001), Optimal investment with minimum performance constraints,
Journal of Economic Dynamics and Control 25(10), 1629–1645. (Cited on
pages 106 and 108.)

Trautmann, S. T., Vieider, F. M. and Wakker, P. P. (2011), Preference
reversals for ambiguity aversion, Management Science 57(7), 1320–1333. (Cited
on page 112.)

Tversky, A. and Kahneman, D. (1992), Advances in prospect theory: Cumula-
tive representation of uncertainty, Journal of Risk and uncertainty 5(4), 297–323.
(Cited on page 107.)

https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf
https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf


Appendix 229

van Staden, P. M., Dang, D.-M. and Forsyth, P. A. (2021), The surprising
robustness of dynamic Mean-Variance portfolio optimization to model misspecifi-
cation errors, European Journal of Operational Research 289(2), 774–792. (Cited
on page 126.)

Vigna, E. (2020), On Time Consistency for Mean-Variance Portfolio Selection,
International Journal of Theoretical and Applied Finance 23(06), 1–22. (Cited on
page 126.)

Vorst, T. (1992), Prices and hedge ratios of average exchange rate options, Inter-
national Review of Financial Analysis 1(3), 179–193. (Cited on page 74.)

Wang, R. and Zitikis, R. (2021), An axiomatic foundation for the Expected
Shortfall, Management Science 67(3), 1413–1429. (Cited on page 13.)

Wang, S. S. (2000), A class of distortion operators for pricing financial and insur-
ance risks, Journal of risk and insurance 67(1), 15–36. (Cited on page 20.)

Wang, S. S., Young, V. R. and Panjer, H. H. (1997), Axiomatic characteriza-
tion of insurance prices, Insurance: Mathematics and Economics 21(2), 173–183.
(Cited on page 17.)

Wang, Y. (2009), Quantile hedging for guaranteed minimum death benefits, Insur-
ance: Mathematics and Economics 45(3), 449–458. (Cited on page 175.)

Wei, P. (2018), Risk management with weighted VaR, Mathematical Finance
28(4), 1020–1060. (Cited on pages 7, 23, 30, 31, 61, and 64.)

Wei, P. (2021), Risk management with expected shortfall, Mathematics and Finan-
cial Economics 15, 847–883. (Cited on pages 61 and 64.)

Williams, J. T. (1977), Capital asset prices with heterogeneous beliefs, Journal of
Financial Economics 5(2), 219–239. (Cited on page 120.)

Winkler, R. L., Roodman, G. M. and Britney, R. R. (1972), The deter-
mination of partial moments, Management Science 19(3), 290–296. (Cited on
page 33.)

Witting, H. (1985), Mathematische Statistik I: Parametrische Verfahren bei festem
Stichprobenumfang, Springer-Verlag. (Cited on pages 169, 170, 171, 173, and 174.)

Xia, Y. (2001), Learning about predictability: The effects of parameter uncertainty
on dynamic asset allocation, The Journal of Finance 56(1), 205–246. (Cited on
pages 112, 121, and 122.)



Appendix 230

Xie, S. (2009), Continuous-time mean–variance portfolio selection with liability and
regime switching, Insurance: Mathematics and Economics 45(1), 148–155. (Cited
on pages 158 and 159.)

Yan, M., Yang, H., Zhang, L. and Zhang, S. (2020), Optimal investment-
reinsurance policy with regime switching and value-at-risk constraint, Journal of
Industrial & Management Optimization 16(5), 2195–2211. (Cited on pages 161
and 163.)

Yin, G. and Zhou, X. Y. (2004), Markowitz’s mean-variance portfolio selection
with regime switching: From discrete-time models to their continuous-time limits,
IEEE Transactions on automatic control 49(3), 349–360. (Cited on page 158.)

Yiu, K.-F. C. (2004), Optimal portfolios under a value-at-risk constraint, Journal
of Economic Dynamics and Control 28(7), 1317–1334. (Cited on pages 34, 60,
and 62.)

Yiu, K.-F. C., Liu, J., Siu, T. K. and Ching, W.-K. (2010), Optimal portfolios
with regime switching and value-at-risk constraint, Automatica 46(6), 979–989.
(Cited on pages 161 and 162.)

Zariphopoulou, T. (1992), Investment-consumption models with transaction
fees and Markov-chain parameters, SIAM Journal on Control and Optimization
30(3), 613–636. (Cited on pages 156 and 158.)

Zhang, J., Jin, Z. and An, Y. (2017), Dynamic portfolio optimization with am-
biguity aversion, Journal of Banking & Finance 79, 95–109. (Cited on pages 115
and 117.)

Zhang, Q. and Gao, Y. (2016), Optimal consumption—portfolio problem with
CVaR constraints, Chaos, Solitons & Fractals 91, 516–521. (Cited on page 63.)

Zhang, X., Siu, T. K. and Meng, Q. (2010), Portfolio selection in the enlarged
Markovian regime-switching market, SIAM Journal on Control and Optimization
48(5), 3368–3388. (Cited on pages 157 and 160.)

Zhao, P. and Xiao, Q. (2016), Portfolio selection problem with Value-at-Risk
constraints under non-extensive statistical mechanics, Journal of computational
and applied mathematics 298, 64–71. (Cited on page 63.)

Zhou, X. Y. and Yin, G. (2003), Markowitz’s Mean-Variance Portfolio Selection
with Regime Switching: A Continuous-Time Model, SIAM Journal on Control
and Optimization 42(4), 1466–1482. (Cited on pages 156 and 158.)



Zhu, D.-M., Xie, Y., Ching, W.-K. and Siu, T.-K. (2016), Optimal portfo-
lios with maximum Value-at-Risk constraint under a hidden Markovian regime-
switching model, Automatica 74, 194–205. (Cited on pages 161 and 163.)



Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbständig und ohne
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