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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

Despite the central role of quality, industry applications of data-based quality prediction for thermoplastics injection molding are 
rare, because of a suboptimal cost-benefit ratio. Therefore, we present a holistic approach for seamless part quality prediction, 
which automates the necessary data processing steps. Since the performance of the seven supervised learning algorithms applied
with Bayesian hyperparameter-optimization depends on aspects such as process state, etc., we combine the learnt models using an 
ensemble-method to ensure good results under varying conditions. The results show that the ensemble’s performance significantly 
depends on the chosen ensemble-hyperparameters, so future research should focus on their automatic identification.
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1. Introduction and state of the art

Injection Molding offers the production of complex 
geometries in a single, discontinuous production step, which is 
highly reproducible. The process consists of the following steps
[1]: Initially, the plastics material is plasticized by the rotational 
movement of the screw and additional heat input using heating 
elements. Thereupon, the melt is injected in the cavity of the 
mold, where the final shape of the product is formed. To 
compensate the shrinkage of the material due to the cooling, the 
screw applies further pressure during the packing pressure 
phase. Finally, the mold opens and the cooled part is ejected.

The injection molding process can be described via three 
control loops [2]. The first loop includes machine control, 
which adjusts machine parameters like injection speed, barrel 
temperature or holding pressure. The optimization potential 
here is considered to be largely exhausted [3]. The second loop 
uses process variables such as the melt pressure during injection
or cavity pressure to control the machine actuators. This is the 
second most researched field with products like KraussMaffei 
APC+ [4] or Engel iQWeightControl [5] available. Recent 

research shows that even further improvement is possible [6]. 
An overview of the various mathematical and statistical 
descriptions and optimizations of the injection molding process 
and the individual steps is provided by Fernandes, Pontes et al. 
[7]. Despite the high effort taken in product and process 
optimization by the plastics processing companies, internal and 
external perturbations are still negatively affecting the quality 
of the molded part. Sample based quality inspection however 
leads to delayed detection of scrap parts or in worst cases may 
fail to achieve even this.

Therefore, the focus today lies on the third loop, which uses 
the part quality for controlling the process. It should be noted 
here that this process control has been pursued for several 
decades now [8–10]. Regardless of good research results, these 
methods have not yet established themselves in the industry. 
Nevertheless, this type of quality control is back in the focus of 
research for several reasons. 

Some of the most important reasons are listed below [11]: 

• greater computational power at lower cost,
• improved and easily accessible algorithms,
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• a large amount of data in higher quality is available 
and easily accessible through improved sensor and 
machine technology,

• social focus, reinforced by political strategies like 
“Industry 4.0” (Germany) [12] or „Advanced 
Manufacturing“ (USA) [13].

Still, the use of direct part quality for machine control in an 
industrial context is often not possible because of the additional 
equipment-cost and time involved. Thus, the part quality must 
be predicted from available machine and process parameters. 
Different research studies show good results using machine 
learning for quality prediction. Tercan, Guajardo et al. [14] used 
transfer learning for improving the performance of neural 
networks and reducing the learning phase by using simulation 
data. Ogorodnyk, Lyngstad et al. [15] showed that artificial 
neural networks and decision trees can be used for the 
distinction of high- and low-quality injection molding parts. 
They further improved the prediction accuracy using two 
different feature selection methods to eliminate irrelevant 
process parameters [16]. In the field of machine learning for 
regression problems, it has been shown that high predictive 
performance for the part width is possible [17]. The authors 
used various regression methods including artificial neural 
networks and support vector machine on raw signal und image 
data. Building on this work, they have applied generative 
adversarial networks on thermographic images to predict the 
final injection molded part geometry [18].

From this selection of current applications of machine 
learning in injection molding, it is clear that machine learning 
can be used for quality prediction. However, in the presented 
cases, a model is often chosen and retained for the prediction. 
Yet it has been shown that the injection molding process is 
dynamic and changes over time. To our best knowledge, the 
adaption of the machine learning models based on new, unseen 
data in injection molding was not studied. 

In this work, we are proposing a holistic quality prediction 
framework, which automates the necessary data processing 
steps. Furthermore, we evaluate the question whether the 
adaptive selection between different machine learning 
algorithm can improve the prediction performance of the 
overall framework. For this purpose, we use an ensemble-like 
strategy. The strategy is to some extent similar to the switching 
strategy developed by Bayrak, Wang et al. [19] for the 
prediction of product concentration in mammalian cell culture 
bioreactors. 

The paper is organized as follows: Section 2 describes the 
methodology we used in this work. This includes the different 
machine learning models used in the holistic framework, the 
different data processing steps, which are necessary to get high 
prediction performances and the adaptive model selection 
based on ensemble learning. Additionally, the experimental 
data is presented; the results from the different experiments are 
provided in section 3. Finally, section 4 summarizes this work 
and gives an outlook for future research.

2. Methodology

2.1. Machine learning algorithms

The adaptive model selection/weighting algorithm utilizes 
artificial neural networks (ANN), support vector machines 
(SVM), binary decision trees (DT), k-nearest neighbors (kNN), 
ensemble methods (EM) (Bagging and Boosting) based on DTs 
and Gaussian process regression (GP). Furthermore, normal 
multiple linear regression (MLR) [20] is added to the analysis 
to compare classical statistical methods with machine learning.

Artificial neural network. ANN is one of the most popular 
learning algorithms, used in many various applications. They 
consist of one input layer, one or more hidden layers and one 
output layer. Each layer consists of interconnected neurons, 
which are processing the input sum using an activation 
function, while the connection weights are adjusted in the 
learning process [21].

Support vector machine. SVM are initially developed for 
classification problems. The goal is to create an optimal 
hyperplane in n-dimensional space with the maximum margin 
between the classes [22]. The algorithm was adapted to 
regression problems using a margin of tolerance [23].

Binary decision tree. DTs are simple and easy to understand 
and interpret using different split metrics for tree construction. 
The models are created by recursively partitioning the data 
space by minimizing the root mean squared error [24].

k-nearest neighbors. kNN (cf. Fig. 1) is a “lazy learning” 
algorithm which output depends on the nearest neighbors in the 
data space. For regression problems the output value is 
determined through the (weighted) average value of the 
neighbors [25].

Ensemble method. Ensemble methods combine different 
learning algorithms to enhance the predictive performance, 
from a single algorithm. In this work we focus on LSBoost, 
which is a Boosting method [26], and Bagging, which is a 
weighted combination of multiple decision trees [27].

Gaussian process regression. GPR is a probability 
distribution over possible function. Using the training data as 
evidence, the prior is updated by use of Bayes´ rule [28].

Fig. 1. k-nearest neighbor search, exemplary display for two features
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2.2. Adaptive model selection

The general framework used in this work is displayed in Fig. 
2. It mainly consists of four superordinate steps. The first step 
is data pre-processing. The complete data set is split into a test 
and learning data set using the holdout-method. While the 
learning data set is required for training the models and 
hyperparameter optimization, the test data set is used to provide 
unseen data for the model evaluation [29]. We call this type of 
data split “horizontal data split”, because each injection 
molding cycle is written row by row in the data log during 
production. In this research, we use 80 % data for learning and 
20 % data for testing. 

In the next step, we use the learning data set for feature 
selection. Feature selection is an important step of selecting a 
feature set that is most relevant for modeling. Furthermore, the 
reduced feature space decreases the computational effort to 
build a model [30]. In this study we use a filter approach with 
sequential forward selection (SFS) [31] as the search strategy, 
correlation-based feature selection (CFS) [32] as the 
performance evaluation metric and Pearson's correlation 
coefficient (PCC) [33] as the relevance criterion. This 
combination has proved to be very effective in previous 
investigations [34] for quality prediction with regression 
machine learning models. After the feature subset is selected, 
the learning and test data sets are adjusted accordingly. We call 
this type of data selection “vertical data selection”, since the 
features of the injection molding cycle (e. g. holding time, 
injection speed, etc.) are written column by column in the data 
log. 

After the feature selection the actual modeling takes place. 
First, a horizontal data split is performed to create a neighbor 
data set required for the subsequent ensemble learning. 50 % of 
the learning data set is used for modeling. Here, the six different 
machine learning models and linear regression mentioned 
earlier are trained. Hyperparameters are optimized via Bayesian 
hyperparameter optimization [35] using 5-fold cross-validation 
[36] for evaluation of parameter sets. An overview of the 
hyperparameters can be seen in [37]. In this research, the 
hyperparameters are divided into categorical and numerical 
according to Bermúdez-Chacón, Gonnet et al. [38]. This leads 
to a tree-like model structure. The prediction performance of 
each branch model (here base model) is evaluated using the test 
data set and the best models of the different machine learning 
algorithms are selected as best base models. The coefficient of 
determination (R²) [26] is used as goodness-of-fit criterion.

The ensemble learning takes place after the best base models 
are selected. In this study we evaluated three different 
strategies, whereby only two are shown in the workflow. 

The first strategy simply averages the outputs of the seven 
base models. This case, which we call “unweighted average 
ensemble” is unshown in the workflow. Obviously, we do not 
have to make use of the neighborhood information and there are 
no hyperparameters in this strategy.

The second strategy, which we call “single model selection 
ensemble”, is the opposite of the first. Here kNN-search with 
Euclidean distance metric (cf. Fig. 1) is applied to each data 
point of the test data set to determine the k-nearest in the 
neighbor data set. This results in a data set of test point 

neighbors, which have the most similarity (shortest distance in 
space) to the test data. The corresponding process and quality 
data can be selected from the neighbor data set through 
horizontal data selection.

Fig. 2. algorithm workflow
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• a large amount of data in higher quality is available 
and easily accessible through improved sensor and 
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“Industry 4.0” (Germany) [12] or „Advanced 
Manufacturing“ (USA) [13].
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transfer learning for improving the performance of neural 
networks and reducing the learning phase by using simulation 
data. Ogorodnyk, Lyngstad et al. [15] showed that artificial 
neural networks and decision trees can be used for the 
distinction of high- and low-quality injection molding parts. 
They further improved the prediction accuracy using two 
different feature selection methods to eliminate irrelevant 
process parameters [16]. In the field of machine learning for 
regression problems, it has been shown that high predictive 
performance for the part width is possible [17]. The authors 
used various regression methods including artificial neural 
networks and support vector machine on raw signal und image 
data. Building on this work, they have applied generative 
adversarial networks on thermographic images to predict the 
final injection molded part geometry [18].

From this selection of current applications of machine 
learning in injection molding, it is clear that machine learning 
can be used for quality prediction. However, in the presented 
cases, a model is often chosen and retained for the prediction. 
Yet it has been shown that the injection molding process is 
dynamic and changes over time. To our best knowledge, the 
adaption of the machine learning models based on new, unseen 
data in injection molding was not studied. 

In this work, we are proposing a holistic quality prediction 
framework, which automates the necessary data processing 
steps. Furthermore, we evaluate the question whether the 
adaptive selection between different machine learning 
algorithm can improve the prediction performance of the 
overall framework. For this purpose, we use an ensemble-like 
strategy. The strategy is to some extent similar to the switching 
strategy developed by Bayrak, Wang et al. [19] for the 
prediction of product concentration in mammalian cell culture 
bioreactors. 

The paper is organized as follows: Section 2 describes the 
methodology we used in this work. This includes the different 
machine learning models used in the holistic framework, the 
different data processing steps, which are necessary to get high 
prediction performances and the adaptive model selection 
based on ensemble learning. Additionally, the experimental 
data is presented; the results from the different experiments are 
provided in section 3. Finally, section 4 summarizes this work 
and gives an outlook for future research.
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artificial neural networks (ANN), support vector machines 
(SVM), binary decision trees (DT), k-nearest neighbors (kNN), 
ensemble methods (EM) (Bagging and Boosting) based on DTs 
and Gaussian process regression (GP). Furthermore, normal 
multiple linear regression (MLR) [20] is added to the analysis 
to compare classical statistical methods with machine learning.

Artificial neural network. ANN is one of the most popular 
learning algorithms, used in many various applications. They 
consist of one input layer, one or more hidden layers and one 
output layer. Each layer consists of interconnected neurons, 
which are processing the input sum using an activation 
function, while the connection weights are adjusted in the 
learning process [21].

Support vector machine. SVM are initially developed for 
classification problems. The goal is to create an optimal 
hyperplane in n-dimensional space with the maximum margin 
between the classes [22]. The algorithm was adapted to 
regression problems using a margin of tolerance [23].

Binary decision tree. DTs are simple and easy to understand 
and interpret using different split metrics for tree construction. 
The models are created by recursively partitioning the data 
space by minimizing the root mean squared error [24].

k-nearest neighbors. kNN (cf. Fig. 1) is a “lazy learning” 
algorithm which output depends on the nearest neighbors in the 
data space. For regression problems the output value is 
determined through the (weighted) average value of the 
neighbors [25].

Ensemble method. Ensemble methods combine different 
learning algorithms to enhance the predictive performance, 
from a single algorithm. In this work we focus on LSBoost, 
which is a Boosting method [26], and Bagging, which is a 
weighted combination of multiple decision trees [27].

Gaussian process regression. GPR is a probability 
distribution over possible function. Using the training data as 
evidence, the prior is updated by use of Bayes´ rule [28].
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Fig. 3. (a) plate specimen; (b) cover specimen

This neighborhood data set is used to evaluate every best 
base model. The model which best predicts the neighborhood 
is selected as local best model and taken for prediction of the 
corresponding test data point. The workflow links, exclusively 
used for this strategy, are dashed blue in Fig. 2.

The last strategy is called “weighted average ensemble” and 
is a combination of the first and the second strategy. In this case 
all seven base models are incorporated and their output is 
combined. However, unlike in the first strategy, the outputs are 
weighted using the base models’ coefficients of determination 
achieved on the test point’s neighborhood (cf. formula 1).

𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗 =
𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗
2

∑ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖
2𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖
                            (1)

Here, wj is the weight of the model j and N the total number 
of models incorporated. The dotted red lines in the workflow 
chart are exclusively used for strategy 3.

2.3. Experimental study

In this paper, practical experiments of plate and cover 
specimens (cf. Fig. 3) provide the data for the holistic quality 
prediction framework including the ensemble learning. The 
experiments were carried out on a KraussMaffei 120-380 PX
fully-electric injection molding machine (IMM). We use the 
weight and length of the plate specimens and the weight and 
diameter of the cover specimens as quality criteria. The weight 
is measured with a Sartorius Entris 153I-1S lab balance, upon 
which they are automatically placed by the IMM’s linear robot 
LRX50. The length and the diameter are automatically 
photographed with a Canon Eos 5D Mark III DSLR-camera 
with EF 70-200 mm f/4L USM lens. The available process 
features are directly taken from the machine’s actual value 
protocol. For data generation, six different process states are 
induced, to mirror real-world injection molding production 
situations: start-up, stable process, downtimes, regrind 
material, regrind material + adaptive process control (APC) and 
a central composite design (DOE) At each process state, 1000 
injection molding cycles are carried out, except for the DOE 
with 860 cycles due to its predefined structure. More 
information about the various experiments are reported in [31]. 
In total, 48 machine and process parameters and two times two 
quality criteria were logged during each cycle. All data 
processing steps are carried out in MATLAB2019b using the 
statistics and machine learning toolbox as well as additional, 
own implementations of algorithms, where necessary.

3. Results

Fig. 4. Prediction performance for the plate specimen weight

The achieved results of the best base models as well as the 
three ensemble variants are depicted in Fig. 4 to Fig. 7. Already 
the comparison of the coefficients of determination of the base 
models (blue bars) illustrates that the model quality strongly 
depends on the examined molded part, the quality criterion and 
the process state in which process and quality data are 
monitored.

Regarding the plate weight (cf. Fig. 4), very good model can 
be achieved when using re-grind material with or without 
adaptive process control or when conducting a DOE, in which 
case an excellent coefficient of determination of 99.5 % is 
achieved. In comparison, the results achieved with the startup 
and downtime data sets are rather inferior and the stable process 
result is insufficient. For the plate length (cf. Fig. 5), the re-
grind material data set yields the best performance with a very 
good coefficient of determination of 92.0 %. In combination 
with the adaptive process control the re-grind performs 
acceptably, which also applies to the DOE. The model qualities 
achieved for startup, stable process and process with 
downtimes are insufficient. 

Regarding the cover weight (cf. Fig. 6), a very good result 
is achieved with the DOE with a coefficient of determination 
of 96.5 %. Startup, stable process and the process with 
downtimes also yield good results around 80 %. Both re-grind 
data sets yield only mediocre results. For the prediction of the 
cover diameter (cf. Fig. 7), only the DOE yields a good model 
with a coefficient of determination of 92.1 %.

Fig. 5. Prediction performance for the plate specimen length
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Fig. 6. Prediction performance for the cover specimen weight

Further evaluations not displayed in this paper have shown, 
that the partly insufficient model qualities are mainly due to a 
too small variance in quality data compared to the measurement 
precision, i.e. the concerned process states are too stable. 
Consequently, to achieve higher coefficients of determination, 
one must choose either another process state with higher 
variance (in most cases the DOE works best here) or increase 
the precision of the measuring equipment. 

A comparison of the performance of the seven applied 
supervised learning algorithms reveals that the artificial neural 
network (fully-connected feedforward with one hidden layer) 
yields the best results on 10 of 24 data sets, followed by 
Gaussian process regression performing best on seven data 
sets. Support vector regression is third with three top positions, 
followed by the decision tree-ensembles (two), binary decision 
trees as well as multiple linear regression (both one). The “lazy 
learner” k-nearest neighbor regression performs under average 
in all cases. Obviously, different learning algorithms perform 
best on different conditions, which motivates our ensemble-
approach that incorporates multiple learners.

For ensemble learning, we applied a grid search for the 
hyperparameter k, starting with five neighbors going up to 400 
(size of neighbor data set) with a step size of five. Fig. 8 shows 
exemplarily the model performances depending on the 
neighborhood size for one of the 24 data sets. As standard of 
comparison for the three ensemble models, we use the best base 
model, since the aim of an ensemble model is to perform better 
than this. In the depicted case, we can see that the unweighted 
average ensemble is slightly better than the best base model. 
Obviously, both are not dependent on the chosen neighborhood 
size. For the other two ensembles, there is a running-in 
characteristic until k = 80, after which both curves reach a 
plateau until approx. k = 320. After leaving the plateau, the 
single model selection ensemble performance converges to the 
best base model performance and the performance of the 
weighted average ensemble converges to the unweighted 
average ensemble performance.

Looking at the overall performances of the ensemble models 
on all 24 data sets (cf. Fig. 4 to Fig. 7), we find that the 
unweighted average ensemble surpasses the best base model’s 
performance in 12 of 24 cases. As this is exactly 50 %, we

Fig. 7. Prediction performance for the cover specimen diameter

conclude that the question whether the ensemble is better than 
the best base model, is a question of coincidence, so the 
unweighted average ensemble does not create measurable 
added value. Still, it is interesting, that it performs basically 
comparable as the best base model, taking into account that all 
models, also the below-average ones, are equally used for 
calculating the prediction.

The weighted average ensemble performs significantly 
better, surpassing the best base model in 19 data sets and the 
single model selection ensemble performs best with 20 of 24 
data sets. Since these two variants outperform the best base 
model on the great majority of data sets, it seems reasonably to 
use them for prediction. Looking at Fig. 8 again, one can see 
that the fluctuations of the single model selection ensemble are 
significantly larger than those of the weighted average 
ensemble. This is not surprising since the latter averages the 
prediction of all included base models which is expected to 
have a smoothing effect, however, when it comes to automatic 
hyperparameter optimization (which we excluded in this paper) 
it seems a little bit easier to find a good number of neighbors 
for the weighted average ensemble than for the single model 
selection ensemble.

4. Conclusion and Outlook

Ensemble learning is often used to improve the prediction 
performance by combining different single or base models to 
one new model. In this study, we evaluated whether ensemble 
learning can enhance the quality prediction in injection 
molding. We tested three different strategies using an 
unweighted average ensemble, a weighted average ensemble 
and a single model selection ensemble.

Fig. 8. Model performances on cover weight with re-grind material data set
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Fig. 3. (a) plate specimen; (b) cover specimen

This neighborhood data set is used to evaluate every best 
base model. The model which best predicts the neighborhood 
is selected as local best model and taken for prediction of the 
corresponding test data point. The workflow links, exclusively 
used for this strategy, are dashed blue in Fig. 2.

The last strategy is called “weighted average ensemble” and 
is a combination of the first and the second strategy. In this case 
all seven base models are incorporated and their output is 
combined. However, unlike in the first strategy, the outputs are 
weighted using the base models’ coefficients of determination 
achieved on the test point’s neighborhood (cf. formula 1).
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Here, wj is the weight of the model j and N the total number 
of models incorporated. The dotted red lines in the workflow 
chart are exclusively used for strategy 3.

2.3. Experimental study

In this paper, practical experiments of plate and cover 
specimens (cf. Fig. 3) provide the data for the holistic quality 
prediction framework including the ensemble learning. The 
experiments were carried out on a KraussMaffei 120-380 PX
fully-electric injection molding machine (IMM). We use the 
weight and length of the plate specimens and the weight and 
diameter of the cover specimens as quality criteria. The weight 
is measured with a Sartorius Entris 153I-1S lab balance, upon 
which they are automatically placed by the IMM’s linear robot 
LRX50. The length and the diameter are automatically 
photographed with a Canon Eos 5D Mark III DSLR-camera 
with EF 70-200 mm f/4L USM lens. The available process 
features are directly taken from the machine’s actual value 
protocol. For data generation, six different process states are 
induced, to mirror real-world injection molding production 
situations: start-up, stable process, downtimes, regrind 
material, regrind material + adaptive process control (APC) and 
a central composite design (DOE) At each process state, 1000 
injection molding cycles are carried out, except for the DOE 
with 860 cycles due to its predefined structure. More 
information about the various experiments are reported in [31]. 
In total, 48 machine and process parameters and two times two 
quality criteria were logged during each cycle. All data 
processing steps are carried out in MATLAB2019b using the 
statistics and machine learning toolbox as well as additional, 
own implementations of algorithms, where necessary.

3. Results

Fig. 4. Prediction performance for the plate specimen weight

The achieved results of the best base models as well as the 
three ensemble variants are depicted in Fig. 4 to Fig. 7. Already 
the comparison of the coefficients of determination of the base 
models (blue bars) illustrates that the model quality strongly 
depends on the examined molded part, the quality criterion and 
the process state in which process and quality data are 
monitored.

Regarding the plate weight (cf. Fig. 4), very good model can 
be achieved when using re-grind material with or without 
adaptive process control or when conducting a DOE, in which 
case an excellent coefficient of determination of 99.5 % is 
achieved. In comparison, the results achieved with the startup 
and downtime data sets are rather inferior and the stable process 
result is insufficient. For the plate length (cf. Fig. 5), the re-
grind material data set yields the best performance with a very 
good coefficient of determination of 92.0 %. In combination 
with the adaptive process control the re-grind performs 
acceptably, which also applies to the DOE. The model qualities 
achieved for startup, stable process and process with 
downtimes are insufficient. 

Regarding the cover weight (cf. Fig. 6), a very good result 
is achieved with the DOE with a coefficient of determination 
of 96.5 %. Startup, stable process and the process with 
downtimes also yield good results around 80 %. Both re-grind 
data sets yield only mediocre results. For the prediction of the 
cover diameter (cf. Fig. 7), only the DOE yields a good model 
with a coefficient of determination of 92.1 %.
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Further evaluations not displayed in this paper have shown, 
that the partly insufficient model qualities are mainly due to a 
too small variance in quality data compared to the measurement 
precision, i.e. the concerned process states are too stable. 
Consequently, to achieve higher coefficients of determination, 
one must choose either another process state with higher 
variance (in most cases the DOE works best here) or increase 
the precision of the measuring equipment. 

A comparison of the performance of the seven applied 
supervised learning algorithms reveals that the artificial neural 
network (fully-connected feedforward with one hidden layer) 
yields the best results on 10 of 24 data sets, followed by 
Gaussian process regression performing best on seven data 
sets. Support vector regression is third with three top positions, 
followed by the decision tree-ensembles (two), binary decision 
trees as well as multiple linear regression (both one). The “lazy 
learner” k-nearest neighbor regression performs under average 
in all cases. Obviously, different learning algorithms perform 
best on different conditions, which motivates our ensemble-
approach that incorporates multiple learners.

For ensemble learning, we applied a grid search for the 
hyperparameter k, starting with five neighbors going up to 400 
(size of neighbor data set) with a step size of five. Fig. 8 shows 
exemplarily the model performances depending on the 
neighborhood size for one of the 24 data sets. As standard of 
comparison for the three ensemble models, we use the best base 
model, since the aim of an ensemble model is to perform better 
than this. In the depicted case, we can see that the unweighted 
average ensemble is slightly better than the best base model. 
Obviously, both are not dependent on the chosen neighborhood 
size. For the other two ensembles, there is a running-in 
characteristic until k = 80, after which both curves reach a 
plateau until approx. k = 320. After leaving the plateau, the 
single model selection ensemble performance converges to the 
best base model performance and the performance of the 
weighted average ensemble converges to the unweighted 
average ensemble performance.

Looking at the overall performances of the ensemble models 
on all 24 data sets (cf. Fig. 4 to Fig. 7), we find that the 
unweighted average ensemble surpasses the best base model’s 
performance in 12 of 24 cases. As this is exactly 50 %, we
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conclude that the question whether the ensemble is better than 
the best base model, is a question of coincidence, so the 
unweighted average ensemble does not create measurable 
added value. Still, it is interesting, that it performs basically 
comparable as the best base model, taking into account that all 
models, also the below-average ones, are equally used for 
calculating the prediction.

The weighted average ensemble performs significantly 
better, surpassing the best base model in 19 data sets and the 
single model selection ensemble performs best with 20 of 24 
data sets. Since these two variants outperform the best base 
model on the great majority of data sets, it seems reasonably to 
use them for prediction. Looking at Fig. 8 again, one can see 
that the fluctuations of the single model selection ensemble are 
significantly larger than those of the weighted average 
ensemble. This is not surprising since the latter averages the 
prediction of all included base models which is expected to 
have a smoothing effect, however, when it comes to automatic 
hyperparameter optimization (which we excluded in this paper) 
it seems a little bit easier to find a good number of neighbors 
for the weighted average ensemble than for the single model 
selection ensemble.

4. Conclusion and Outlook

Ensemble learning is often used to improve the prediction 
performance by combining different single or base models to 
one new model. In this study, we evaluated whether ensemble 
learning can enhance the quality prediction in injection 
molding. We tested three different strategies using an 
unweighted average ensemble, a weighted average ensemble 
and a single model selection ensemble.

Fig. 8. Model performances on cover weight with re-grind material data set
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All variants are integrated in a quality prediction 
framework, which automatically performs data pre-processing, 
feature selection, training and validation of the models 
including hyperparameter optimization. 

The conducted analysis shows that ensemble learning 
strategies can generally improve the prediction performance in 
comparison to a single prediction model. While in our study, 
the unweighted average ensemble yields result comparable to 
those of the best base model, the weighted average ensemble 
and the single model selection ensemble outperform the best 
base model on 19 and 20 of 24 data sets, respectively.

Such adaptive model selection or weighting can be used in
a real-time production process to dynamically change between 
various machine learning algorithms. This has the advantage 
that no machine learning algorithm needs to be selected from 
the beginning. In future work, the number of neighbors for the 
neighborhood data set should be considered a hyperparameter 
which needs to be automatically optimized. Moreover, we only 
used the Euclidian distance as distance metric. Other metrics, 
like Chebychev or Mahalanobis which show good results in 
classification problems, may improve the ensemble prediction 
performance and should therefore also be considered.
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