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Kurzzusammenfassung
Topologische Semimetalle zeichnen sich durch Fermion-Quasiteilchen mit Bandkreuzungs-
punkten in ihrer elektronischen Struktur aus. In Weyl Semimetallen sind diese Kreuzungs-
punkte durch Symmetrie und Topologie geschützt. Hier werden Fermi-Arc Oberflächen-
zustände gebildet, die Paare dieser Punkte mit entgegengesetzten chiralen Ladungen ver-
binden. In jüngster Vergangenheit sind unkonventionelle topologische Semimetalle mit im
E-k-Raum stark verkippten Dirac-Zuständen, sogenannte Typ-II Dirac/Weyl-Semimetalle,
aufgekommen. Außerdem können höhere topologische Ladungen in chiralen topologischen
Semimetallen gebildet werden. Trotz solcher neuartigen Materialien sind die Spin-Textur
und ihre Verbindung zu topologischen Eigenschaften sogar in konventionellen topologischen
Semimetallen noch immer wenig ergründet. In dieser Dissertation haben wir das Typ-II
Dirac Semimetall NiTe2, das Typ-II Weyl Semimetall MoTe2 und das chirale topologische
Semimetall CoSi untersucht. Je niedriger hierbei die Kristallsymmetrie ist, umso höhere
topologische Ladungen können gebildet werden. Die Inversionssymmetrie von NiTe2 führt
zu einer entarteten topologischen Ladung C = 0. Dagegen bewirkt die gebrochene Inversions-
symmetrie in MoTe2 eine Aufspaltung der topologischen Ladungen mit C = ±1 und chiral
strukturiertes CoSi wird durch C = ±2 charakterisiert. Mittels Impulsmikroskopie zusam-
men mit einem bildgebenden Spinfilter haben wir Spin- und Orbital-abhängige elektronische
Strukturen in Verbindung mit Symmetrie und Topologie untersucht.

Für inversionssymmetrische Materialien wie NiTe2 ist eine Spin-Polarisation der Volu-
menzustände nicht erlaubt. Dennoch kann eine “versteckte” Spin-Polarisation der Volu-
men Dirac-Zustände der obersten Te-Lage einer Te-Ni-Te-Dreifachschicht beobachtet wer-
den, wobei der entartete Dirac-Zustand in NiTe2 durch eine Überlagerung von zwei Dirac-
Zuständen mit entgegengesetzter Spin-Polarisation gebildet wird. Dieses Szenario finden
wir sowohl für NiTe2 als auch für MoTe2: In beiden Fällen weist ein Paar Weyl-Zustände
mit entgegengesetzter Chiralität eine umgekehrte Spin-Polarisation auf. Abhängig von der
Symmetrie der jeweiligen Kristallstruktur sind die Zustände jedoch im k-Raum im Fall
von inversionssymmetrischem NiTe2 entartet und im Fall von MoTe2, aufgrund der ge-
brochenen Inversionssymmetrie separiert. Dabei konnten wir zeigen, dass ein ausgeprägter
Circulardichroismus mit wechselndem Vorzeichen einen Fingerabdruck für die entgegenge-
setzten chiralen Ladungen der Weyl-Punkte in MoTe2 liefert. Die Empfindlichkeit des Cir-
culardichroismus gegenüber der Chiralität des Systems kann darüberhinaus direkt anhand
von CoSi bestätigt werden, wo der Dichroismus sein Vorzeichen zwischen chiralen Kristallen
mit entgegengesetzter struktureller Händigkeit umkehrt. Der Circulardichroismus offen-
barte außerdem eine komplexe Orbital-Textur der CoSi Bänder, welche ein höher geladenes
Fermion mit nicht-trivialer Topologie bilden.

In dieser Arbeit haben wir eine Beziehung zwischen Spin- und Orbital-Textur, Topologie
und Symmetrie aufgebaut. Über die drei hier untersuchten Materialien hinaus tragen die
in dieser Arbeit dargestellten Ergebnisse erheblich zum Verständnis von unkonventionellen
topologischen Semimetallen im Allgemeinen bei.
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Abstract
Topological semimetals host fermion quasiparticles with band crossing points in their
bulk electronic structures. In Weyl semimetals, these crossing points are protected
by symmetry and topology, forming a Fermi arc at the surface, which connects pairs
of these points with opposite chiral charges. Recently, unconventional topological
semimetals have emerged with strongly tilted Dirac cones, termed type-II Dirac/Weyl
semimetals. Additionally, higher topological charges can be formed in structurally
chiral crystals, referred to as chiral topological semimetals. In spite of the emer-
gence of such new materials, the underlying spin texture and its link to topological
properties even in conventional topological semimetals have still remained elusive. In
this thesis, we studied the type-II Dirac semimetal NiTe2, the type-II Weyl semimetal
MoTe2, and the chiral topological semimetal CoSi. Here, when the symmetries of
the respective crystal structures are lower, a higher topological charge can be formed.
Inversion-symmetric NiTe2 leads to a degenerate topological charge C = 0, while bro-
ken inversion symmetry in MoTe2 causes the splitting of topological charges with
C = ±1. Chiral structured CoSi is characterized by C = ±2. By means of momen-
tum microscopy together with an imaging spin filter, we revealed spin- and orbital-
dependent electronic structures in connection with symmetry and topology.

For inversion-symmetric materials like NiTe2, a spin polarization of bulk states is
not allowed. An observed “hidden” spin polarization of the bulk Dirac cone, however,
originates from the top Te atom of a Te-Ni-Te trilayer. This can be understood in
a concept where the degenerate Dirac cone in NiTe2 is formed by a superposition
of two Dirac cones with opposite spin polarizations localized at the top and bottom
Te atoms of the trilayer. In particular, we found the same scenario for NiTe2 and
MoTe2: a pair of Weyl cones with opposite chirality exhibits a reversed spin polar-
ization. Depending on the symmetry of the crystal structure, however, the cones are
degenerate in k space for inversion-symmetric NiTe2 and separated for MoTe2 due to
broken inversion symmetry. A strong circular dichroism with reversed sign gives a
fingerprint of opposite chiral charges of the Weyl points in MoTe2. The sensitivity
of the circular dichroism to the chirality of the system can be directly confirmed in
the case of CoSi, where the dichroism reverses its sign between chiral crystals of the
opposite structural handedness. The circular dichroism further revealed a different
orbital texture of bands forming a higher-charge fermion in CoSi, which is attributed
to their topology.

In this thesis, we established a relationship between the spin and orbital texture,
topology, and symmetry. Beyond the three studied materials, the results presented in
this thesis significantly contribute to the understanding of unconventional topological
semimetals, in general.
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1 Introduction
Dirac and Weyl fermions are fundamental particles described by relativistic quantum
mechanics [1, 2]. Weyl fermions attain chirality determined by whether the directions
of its spin and momentum are parallel or antiparallel, while Dirac fermions can be re-
garded as a superposition of a pair of Weyl fermions with opposite chirality. Though
these fermions have been first predicted in high-energy physics, the signature of Weyl
fermions has still not been captured in high-energy physics, whereas Dirac and Weyl
fermions in condensed-matter systems have been discovered as quasiparticle excita-
tions. The discovery of their analogues in solids has attracted great attention not
only because the characterization of such fermions encountered a non-trivial topology
of their band structure but also because it promises to revolutionize spintronics appli-
cations and quantum computing processing by virtue of novel quantum phenomena
[3, 4]. These movements dramatically boosted the current importance of the field
“topological quantum materials” in condensed-matter physics and materials science.

Dirac fermions in solids can be considered to be massless relativistic electrons de-
scribed by the Dirac equation. Since the band dispersion within the electronic struc-
ture is a direct manifestation of energy eigenstates, these fermions emerge as a linear
dispersion with band crossing points in the electronic structure, a so-called Dirac
cone. Angle-resolved photoemission spectroscopy (ARPES) provides information of
electronic structures, which has been employed for verification of topological quantum
materials by observing their band structures, including Dirac cones. In general, the
band structure describes the motion of electrons in a solid. Thus it is directly related
to the electric transport properties of a material. For instance, graphene or topolog-
ical insulators possessing Dirac cones in their electronic structures host high-speed
quasiparticle states and a conductive metallic surface.

Topological quantum materials are classified according to the topology of their band
structure, which is characterized by a topological invariant, e.g., the Chern number
[5]. For instance, the opposite chirality of Weyl fermions in the electronic structure
is encoded by a positive and negative sign of the Chern number of the band crossing
points, which is also called “topological chiral charge” [4]. It is important to note that
the topological invariant is related to the “phase” of the wave function and can be
calculated form the bulk wave function. If a non-trivial topological order is present in
the bulk with a non-zero Chern number, topologically protected surface states should
be formed as a result of the bulk-boundary correspondence. Symmetries also play
a crucial role to realize topological quantum materials. Their band crossing points
are protected by crystal- or time-reversal-symmetries. In other words, when certain
symmetries are broken, global properties of topological quantum materials change
drastically.

1



1 Introduction

This thesis goes far beyond topological materials classification based on the band
structure. Indeed, topological information including topological chiral charges can be
more directly reflected by the spin and orbital degrees of freedom of the electronic
states. In general, spin-orbit coupling links the spin and orbital angular momentum.
Recently, momentum microscopy combined with an imaging spin filter has overcome
the low efficiency of spin-resolved measurements by simultaneously recording the elec-
tron spin in 2D (kx, ky) momentum space [6, 7]. By utilizing differently polarized
light, one can access the orbital information of the electronic wave function. Espe-
cially, circularly-polarized light, which possesses a specific chirality itself, interacts
with structural and electronic chirality [8]. Our motivation is to clarify the relation-
ship between topological chiral charge, spin- and orbital-texture, and symmetry from
the electronic-structure point of view.

In this thesis, we study the type-II Dirac semimetal NiTe2, the type-II Weyl semimetal
MoTe2 [9], and the topological chiral semimetal CoSi [10]. Depending on the crystal
structure, different topological phases, encoded by the Chern number, emerge in these
materials. When more crystal symmetries are broken, a larger topological charge can
be realized. Space-inversion protected NiTe2 possesses C = 0, space-inversion bro-
ken MoTe2 C = ±1, and chiral-structured CoSi C = ±2 (or ±4). A chiral structure
has no space-inversion and mirror symmetry. This leads to a concept “handedness”
that an object does not coincide with its mirror image. Moreover, these materials
belong to a class of “unconventional” topological semimetals, where unconventional
fermions emerge which have no analogs in high-energy physics [11, 12]. This is because

NiTe2 1Td-MoTe2 CoSi
Type-II Dirac semimetal Type-II Weyl semimetal Chiral topological

semimetal
Crystal
structure

Preserved space-
inversion symmetry

Broken space-inversion
symmetry

Chiral

Chern
number

0 ±1 ±2 (±4)

Band
structure

Table 1.1: Unconventional topological semimetals studied in this thesis.
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fermions in condensed-matter systems are constrained by the symmetries of the crys-
tal space group. These symmetries can be much lower than the Poincare symmetry
imposed in high-energy physics, which may give rise to abundant fermions beyond
conventional Dirac and Weyl fermions in solids. These unconventional topological
semimetals attract great attention also because they have potential to exhibit more
exotic quantum phenomena. We demonstrate that our findings for each material can
be explained by unified concepts, which can be generally applied to other topological
quantum materials.

In Section 2.1, we first introduce Dirac and Weyl fermions, and spin-orbit coupling
based on the Dirac equation in relativistic quantum mechanics. Spin-orbit coupling
plays important roles not only for realization of topological quantum materials but
also for electron spin detection. In Section 2.2, we describe a general concept to
classify topological quantum materials including the topological invariant for band
structures, i.e., the Chern number, and a guideline for the formation of topological
surface states, i.e., the bulk-boundary correspondence. We then describe topological
insulators, Dirac and Weyl semimetals, and chiral topological semimetals in Secs. 2.3,
2.4, and 2.5, respectively.

In Chapter 3, we describe the experimental method employed in our work starting
from the principles of photoemission spectroscopy and electron spin detection to spin-
resolved momentum microscopy. Section 3.4 emphasizes how polarization-dependent
measurements probe the orbital information of the wave functions and reviews their
applications to topological quantum materials with regard to the spin and orbital
degrees of freedom of the electron in topologically non-trivial band structures.

In Chapter 4, we visualize the 3D Fermi surface of the type-II Dirac semimetal
NiTe2 obtained by photon-energy dependent measurements. By performing spin-
resolved momentum microscopy, we then unveil the intriguing spin texture of the
surface and bulk Dirac cones. An observed “hidden” spin texture of the bulk states
is, however, not expected due to the crystal symmetry of NiTe2.

In Chapter 5, we reveal symmetry properties of measured band structure of the
type-II Weyl semimetal MoTe2, taking two different experimental geometries as ex-
amples. We probed the chiral electronic structure by means of circular dichroism
and captured the chirality of the Weyl points. For the first time, we experimentally
uncovered the spin texture of Weyl cones in MoTe2.

In Chapter 6, we elaborate how we prepared and characterised high quality sur-
faces of the chiral topological semimetal CoSi. We then clarify dichroism and orbital
contribution in the band structure by means of polarization-dependent measurements.

In Chapter 7, with the help of thin film band structure calculations and general
symmetry arguments, we connect important results that we have obtained for these
materials and describe unified concepts of the relationship between spin- and orbital-
dependent band structures, symmetry, and topological chiral charges. Finally, in
Chapter 8, we summarize our conclusion and give a future outlook.

3



2 Background
In this chapter, we introduce the basic background of topological quantum materials.
We start with Dirac and Weyl fermions, and spin-orbit coupling based on the Dirac
equation in relativistic quantum mechanics in Sec. 2.1. Spin-orbit coupling plays im-
portant roles not only for realization of topological quantum materials but also for
electron spin detection. Dirac fermions appear as quasiparticles in topological quan-
tum materials. Followed by an overview and a general concept for the classification
of topological quantum materials in Sec. 2.2, we describe topological insulators, Dirac
and Weyl semimetals, and chiral topological semimetals in Secs. 2.3, 2.4, and 2.5,
respectively.

2.1 Relativistic quantum mechanics
2.1.1 Dirac and Weyl fermions
Dirac established a theory describing spin-1

2 particles in the relativistic regime [1].
We start from the relativistic energy law:

E2 = c2p2 +m2c4, (2.1)
where E is the energy, c is the speed of light, p is the momentum, m is the rest
mass. We replace E → ih̵ ∂

∂t and p → −ih̵ ( ∂
∂x1
, ∂

∂x2
, ∂

∂x3
) to change from a classical

description to a quantum mechanical description. We linearize this equation with
respect to the energy E and the momentum p by introducing matrix coefficients such
that the equation fulfills the Lorentz invariance and we obtain the Dirac equation:

[ih̵ ∂
∂t
+ ih̵c(γ1 ∂

∂x1
+ γ2 ∂

∂x2
+ γ3 ∂

∂x3
) − γ0mc2]ψ = 0, (2.2)

where ψ is a four-component wave function, γµ (µ = 0,1,2,3) is a 4×4 matrix fulfilling
the anticommutation relation {γµ, γν} = 2δi,jI (µ, ν = 0,1,2,3), I is the 4 × 4 identity
matrix. One can chose a set of γµ matrices called Dirac representation:

γ0 = (I 0
0 −I) , γ

j = ( 0 σj

−σj 0 )(j = 1,2,3), (2.3)

where σ1 = (0 1
1 0) , σ

2 = (0 −i
i 0 ) , σ

3 = (1 0
0 −1) are Pauli matrices. One can choose

another set of γµ matrices called chiral representation or Weyl representation [2]:

γ0 = (0 I
I 0) , γ

j = ( 0 −σj

σj 0 )(j = 1,2,3). (2.4)

4



2.1 Relativistic quantum mechanics

In the Weyl representation, the Dirac spinor ψ can be decomposed into a right-handed
chiral spinor ψR and a left-handed chiral spinor ψL fulfilling the following equation:

ψ = ψR + ψL (2.5)
γ5ψR = +ψR (2.6)
γ5ψL = −ψL (2.7)

ih̵c(γ1 ∂

∂x1
+ γ2 ∂

∂x2
+ γ3 ∂

∂x3
)ψR =mc2ψL (2.8)

ih̵c(γ1 ∂

∂x1
+ γ2 ∂

∂x2
+ γ3 ∂

∂x3
)ψL =mc2ψR, (2.9)

where the operator γ5 = iγ0γ1γ2γ3 gives the eigenvalue reflecting the chirality of the
chiral spinor. A Weyl fermion is described by ψR or ψL and attains chirality, while a
Dirac fermion is a particle satisfying eq. 2.2 and is regarded as a superposition of a
pair of fermions with opposite chirality described by eq. 2.5. If m = 0, ψR and ψL are
decoupled. The chirality of a massless particle is defined by whether the directions of
its spin and momentum are parallel or antiparallel.

In solids, a massless Dirac fermion manifests as a linear dispersion so-called Dirac
cone in energy-momentum space, which seems to follow m = 0 in eqs. 2.1 and 2.2:
E = ±cp, in sharp contrast to a nearly free quasiparticles described by Schrödinger
equation H = p2

2m so-called Schrödinger particle. Analogous to high-energy physics,
Weyl cones always appear in pairs and attains defined chirality.

2.1.2 Spin-orbit coupling
One of the successes in the Dirac equation is the introduction of the electron spin and
spin-orbit coupling (SOC). The origin of the SOC is interaction between an electron
spin and a “virtual” magnetic field caused by the electron motion in the electric field.
Imagine the electron orbiting around the atomic nucleus. When one looks from the
moving coordinate system of the electron, the nucleus seems to orbit around the
electron and it causes the “virtual” magnetic field for the electron as the effect of
electromagnetic induction. From the relativistic point of view, this means the electric
field is transformed into a magnetic field by the Lorentz transformation.

We consider the Dirac equation in the electromagnetic field. We replace p→ p− e
cA

and E → E − eϕ in eqs. 2.1 and 2.2, where A is the vector potential, ϕ is the electric
potential, and e is the electric charge:

Hψ = Eψ, H = 1
2m (p −

e

c
A)

2
+ eϕ. (2.10)

In the non-relativistic limit, E, eψ ≪ mc2, and introducing the energy W = E −mc2

excluding the rest energy mc2, we obtain:

[ 1
2m (p −

e

c
A)

2
+eϕ− eh̵

2mcσ ⋅B−
eh̵2

8mc2∇⋅E−
eh̵

4m2c2σ [E × (p −
e

c
A)] ]ψ =Wψ, (2.11)

5



2 Background

where E is the electric field and B is the magnetic field. The first two terms are
the same as the Schrödinger equation for a particle in the electromagnetic field. The
third term eh̵

2mcσ ⋅B =
2µB

h̵ S ⋅B (µB = eh̵
2mc : Bohr magneton) represents the interaction

energy of the electron spin with the magnetic moment −2µB
h̵ S and an external magnetic

field. The forth term, Darwin term, may be understood as a relativistic correction to
the electron energy and has no classical analogon. The fifth term, assuming A = 0,
becomes

HSOC =
eh̵

4m2c2σ (E × p) = e

2m2c2r

dϕ

dr
(L ⋅S) (2.12)

by applying E = −r(1
r)

dϕ
dr , S = h̵

2σ, and L = r × p, which describes the SOC energy.

2.2 Classification of topological quantum materials

2.2.1 Overview
Topological quantum materials host quasiparticles as band crossing points with linear
dispersions in their surface (topological insulators [3, 13]) or bulk (Dirac semimetals
and Weyl semimetals [4, 14, 15]) electronic structures, so-called Dirac cones. These
band crossing points are protected by symmetry or topology, often accompanied by
topological surface states as a result of the bulk-boundary correspondence. When
external or intrinsic parameters break certain symmetries, global properties of topo-
logical quantum materials change dramatically.

Topological insulator Dirac semimetal Weyl semimetal

Band
structure

Symmetry Time-reversal
symmetry

Time-reversal and
space-inversion
symmetry

Broken time-reversal or
space-inversion
symmetry

Bulk states Band inverted Degenerate Dirac cone Pairs of non-degenerate
Dirac cones

Surface
states

Helical spin-polarized
Dirac cone

Fermi arc

Prototypical
materials

Bi2Se3, Bi2Te3,
Bi1−xSbx

Na3Bi, Cd3As2
(Type-II) NiTe2

(Ta, Nb)(As, P)
(Magnetic) Co3Sn2S2,
Mn3Sn, Mn3Ge
(Type-II) MoxW1−xTe2

Table 2.1: Topological quantum materials

6



2.2 Classification of topological quantum materials

Table 2.1 reviews several classes of topological quantum materials. In topological
insulators, the Dirac-cone surface states form inside an inverted bulk band gap, which
is protected by time-reversal symmetry. The surface Dirac cone exhibits helical spin-
texture and exists at any kz in momentum space. In contrast, topological semimetals
host Dirac cones in the bulk which disperse linearly in three-dimensional momentum
space. In Dirac semimetals, crystal symmetry and time-reversal symmetry guarantee
existence of a double degenerate Dirac cone. If the Dirac semimetal breaks space-
inversion or time-reversal symmetry, a degenerate Dirac cone splits into a pair of
non-degenerate Weyl cones, which becomes the Weyl semimetal. A pair of the cor-
responding Weyl points exhibit opposite chirality, and connected and topologically
protected by a Fermi arc at the surface.

Figure 2.1 schematically illustrates a topological phase transition from the normal
insulator to the topological insulator as a function of SOC strength. Strong SOC
generates band inversion between the bulk conduction band and valence band. The
two inverted bands hybridize, opening up an energy gap, where topological insulators
can be realized [16]. The Dirac-semimetal phase can appear at the quantum critical
point in the topological phase transition, where the bulk conduction and valence
bands touch only at discrete (Dirac) points [17].

Figure 2.1: Schematic illustration of a topological phase transition from the normal
insulator via the Dirac semimetal to the topological insulator as a function of SOC
strength.
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2.2.2 Chern number
Topology means the mathematical classification of properties of geometric objects by
continuous deformation. For instance, a coffee mug can be transformed smoothly into
a donut but not into a ball, which means that a coffee mug and a donut are classified
as the same group, but a ball as the different group. In this case, the number of holes
distinguishes these objects and can be understood as “topological invariant”, since
the mug can be deformed into the donut without changing the number of holes.

Here, we introduce a topological invariant for band structures, the Chern number.
The Chern number is rooted in the mathematical theory but it can be understood
physically in terms of the Berry phase [5]. The Berry phase γ [18, 19] is a quantum
phase factor that appears in the course of an adiabatic evolution of a quantum-state
system. We consider the parametric dependence of the eigenstate of the Hamiltonian
H(R(t)) depending on a set of time-dependent parameters R(t), such that R(t)
moves on a closed loop C from t = 0 and returns to the original position at t = T ,
i.e., R(t = 0) = R(t = T ), where γ becomes a gauge-invariant physical quantity. We
introduce the nth eigenstate ∣ϕn(R(t))⟩. We set R(t) as the Bloch wave vector k and
∣ϕn(R(t))⟩ as the Bloch wave function ∣un,k⟩. We can also choose the closed loop as
the Brillouin zone (BZ) boundary. The Berry phase γ for this loop C is defined as

γ = i

T

∫
0

dt⟨ϕn(R(t))∣
∂

∂t
∣ϕn(R(t))⟩

= i∮
C

dR ⋅ ⟨ϕn(R)∣
∂

∂R
∣ϕn(R)⟩

= i∮
C

dR ⋅An(R)

= i∫
S

dSΩn(R). (2.13)

On the last line, we applied the Stokes’s theorem. Here, we define the Berry connection
or the Berry vector potential An(R) and its rotation, i.e., the Berry curvature Ωn(R)
as

An(R) = i⟨ϕn(R)∣
∂

∂t
∣ϕn(R)⟩,

An(k) = i⟨un,k∣
∂

∂t
∣un,k⟩, (2.14)

Ωn(R) = ∇R ×An(R),
Ωn(k) = ∇k ×An(k). (2.15)

The Berry curvature Ωn(R) plays the role of the magnetic field perpendicular to
the area swept out by the integration path analogous to the field of the magnetic
monopole.
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2.2 Classification of topological quantum materials

The Chern number is the total Berry curvature in the BZ and for the nth band it
is defined as

Cn ≡ ∫
BZ

d2k

2π Ωn(k)

= ∮
∂BZ

An(k) ⋅
dk

2π . (2.16)

It can be interpreted as the numbers of monopoles in the BZ and known to become
integer for reasons analogous to the quantization of the magnetic monopole [20]. The
Chern number can be defined in each band and characterizes its topological structure
of whether the phase of the wave function is “twiste”. If it is nonzero, it is topologically
non-trivial.

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijst showed that,
by applying linear response theory, so-called Kubo formula [21], Hall conductivity is
quantized to integer multiples of − e2

h and is connected with the Chern number in the
2D integer quantum Hall system [22] as [5]

σxy =
jy

Ex

= −e
2

h
∑

n:filled
Cn, (2.17)

where jy is the current in y-direction for an applied electrical field in x-direction Ex.
The Chern number is therefore also called TKNN number. For a band insulator
at T = 0, the sum of the Chern numbers for the occupied bands ∑n:filledCn gives
the number of chiral edge modes which carry charges of integer multiples of −e and
propagate only in one direction at each edge. This is the so-called bulk-boundary
correspondence [23, 24]. the topological understanding of the quantum Hall effect
[25] opened up a new field in condensed-matter physics: topological quantum states
of matter.

Let us see a quantum anomalous Hall insulator, a so-called Chern insulator [26],
as an example. A Chern insulator with Chern number C = 2 exhibits the anoma-
lous quantum Hall effect in the absence of an external magnetic field, accompanied

Figure 2.2: Relationship between the Chern number and chiral edge states in a quan-
tum anomalous Hall insulator (Chern insulator) with C = 2.

9



2 Background

by two chiral edge states as indicated in Fig. 2.2(a). Accordingly, in its electronic
structure two topological non-trivial gapless edges states can be formed between the
bulk conduction and valence band as shown in Fig. 2.2(b). These right moving edge
states with + Fermi velocity indicate the Chern number of this system. As one can
also recognize from the asymmetry of the chiral edge states with respect to k = 0, this
system breaks time-reversal symmetry.

In summary, we derived the following important conclusions in this section:

• The Chern number directly corresponds to the number of chiral edge modes in
the quantum Hall system.

• Even without any edge/surface information, the Chern number calculated from
the bulk Bloch wave function predicts how the edge/surface states form as a
result of the bulk-boundary correspondence.

2.2.3 Bulk-boundary correspondence

As in Chern insulators, Dirac-cone surface states to connect the bulk valence and
conduction band in topological insulators and Fermi-arc surface states to connect the
Weyl nodes with opposite chirality in Weyl semimetals also form as a result of the
bulk-boundary correspondence as shown in Figs. 2.5 and 2.3. Their formation can be
understood as decomposition of formation of chiral edge states in Chern insulators
later described in detail in Secs. 2.3.2 and 2.4.2.

On the other hand, information of topological surface states in the electronic struc-
ture predicts existence of monopoles characterized by the Chern number, the so-called
topological chiral charge [27]. The ways are as follows. We consider (i) a closed 2D
loop or (ii) a cut in the surface BZ and we count chiral edge modes. We think of band
dispersions of chiral edge states. We add up the signs of the Fermi velocities with +1
for right-moving chiral edge modes and −1 for left-moving chiral edge modes. The
sum gives (i) the topological chiral charge in the closed cylinder corresponding to the
Chern number in the bulk or (ii) the Chern number for the 2D plane.

Now, we apply these criteria to Weyl semimetals. We consider (i) a loop enclosing
the Weyl node as shown in Fig. 2.3(a) in the surface BZ. As seen from the band
dispersion in Figs. 2.3(b, d), we can find one left-moving chiral edge mode intersected
by the loop. Therefore, the cylinder in the bulk BZ contains a topological charge
−1. We then consider (ii) a cut between two Weyl nodes as shown in Fig. 2.3(a).
We can find one right-moving chiral edge mode as shown in Figs. 2.3(b, c). Thus,
the 2D subsystem in the bulk contains Chern number C = +1. This indicates that
a non-trivial topological charge penetrates the considered 2D plane. The Fermi arc
is regarded as a constant-energy cut of chiral edge states at the Fermi level, and
therefore in this context, regarded to carry a topological charge.
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2.3 Topological insulators

Figure 2.3: Application of the bulk-boundary correspondence to chiral edge states in
Weyl semimetals. (a) Brillouin zone and surface Brillouin zone together with a cut
and a loop. (b) A pair of Weyl cones in E −k space. (c) E −k section of the cut. One
right-moving chiral edge state indicates Chern number C = +1. (d) E − k section of
the loop. One left-moving chiral edge state indicates Chern number C = −1. Green
(Orange) planes and sections represent conduction (valence) bands. Pink plane and
sections represent chiral edge states and the Fermi arc.

2.3 Topological insulators
2.3.1 Band structures of a time-reversal symmetric system
Before introducing topological insulators, we think of the time-reversal operation. The
time-reversal operation transforms t to −t in time, accordingly k to −k in momentum,
B to −B in the magnetic field, and ↑ to ↓ in spin. Now we consider the spin 1

2 system
described by a time-reversal symmetric Hamiltonian. We can derive the following
conclusions by the Kramers theorem and a schematic picture of the resulting band
structure is shown in Fig. 2.4:

• The time reversal partner of the eigenstate ψ(↑,k) with energy E(↑,k) is ψ(↓,−k)
with E(↓,−k), the so-called Kramers pair. For this, it is required that:

E(↑,k) = E(↓,−k), (2.18)
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suggesting that the bands come in pairs, i.e., energy eigenstates are symmetric
and the spin is reversed upon k→ −k.

• The special points k = Γi satisfy Γi = −Γi +G, where G is a reciprocal lattice
vector. Γi are invariant under the time-reversal operation and are called time-
reversal invariant momenta (TRIM). At k = Γi, the bands of Kramers pairs are
always degenerate, so-called Kramers degenerate:

E(↑,Γi) = E(↓,Γi). (2.19)

In a three-dimensional system, there exist 8 TRIM at Γi = 1
2(n1b1 +n2b2 +n3b3)

(ni = 1,2,3) where bk (k = 1,2,3) are the primitive vectors of the reciprocal
lattice [28].

• When inversion symmetry is present, the bands are degenerate everywhere:

E(↑,k) = E(↓,k). (2.20)

Figure 2.4: Band structures of a time-reversal symmetric system. (a) The time-
reversal partners k and −k share the same energy eigenstates, but have opposite spin.
Time-reversal symmetry enforces degeneracy at the TRIM Γi due to the Kramers
theorem and degeneracy is lifted everywhere else in inclusion of SOC. (b) When
inversion symmetry is present, the bands are degenerate everywhere.

2.3.2 Z2 topological insulators
We first see the simplest example of the topological insulator in 2D, also called a
quantum spin Hall (QSH) system [29–31]. The QSH system can be realized by a
superposition of two quantum Hall systems for the up and down spins with opposite
magnetic fields. We assume that the up-spin (down-spin) subsystem has C↑ = +1
(C↓ = −1). Hence, the up- and down-spin propagate in the opposite direction at the
edge, which is commonly called helical edge states. While the magnetic field vanishes
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in the whole system, preserving time-reversal symmetry, an “effective” magnetic field
can emerge due to SOC. However, the Chern number C is not well-defined in the
QSH system.

Here, we introduce the topological invariant for a QSH system with time-reversal
symmetry [28, 29, 32, 33]. As in the Chern number, the topological invariant is related
to the bulk wave functions. We define an index δ at each TRIM Γi as

δ(Γi) ≡
Pf[w(Γi)]√
det[w(Γi)]

, (2.21)

where w(k) is a unitary matrix with elements wmn(k) = ⟨um(k)∣Θ∣un(-k)⟩, ∣un(k)⟩
is the occupied Bloch wave function. Θ is the time-reversal operator Θ = iσyK with
the complex conjugation operator K. Unlike the Chern number, the index δ denotes
only the parity, i.e., (−1)ν (ν = 0,1), which classifies the Hilbert space into “twisted”
(ν = 1) or trivial (ν = 0). These indices δ indicate whether or not the band inversion
occurs at the TRIM Γi. The Z2 topological numbers νj are given as products of all
or some of the indices

(−1)νj =∏
i

δ(Γi), (2.22)

which distinguishes between the topological insulator (νj = 1) or the normal insulator
(νj = 0). If the 2D system in Fig. 2.5 conserves the perpendicular spin pz, C↑ +C↓ = 0
due to time-reversal symmetry, but C↑−C↓

2 defines a quantized spin Hall conductivity.
The Z2 topological number can be simplified as ν = C↑−C↓

2 mod 2.

Figure 2.5: Simple model of 2D topological insulators is considered to be a superposi-
tion of two quantum Hall systems for the up and down spins with opposite magnetic
fields. Helical edge states impose spin-momentum locking.
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The most prominent property of topological insulators is the existence of topolog-
ical surface states. Non-trivial Z2 topological order (ν = 1) guarantees formation of
metallic surface states across the bulk band gap as a consequence of the bulk-boundary
correspondence described in Sec. 2.2.3. Helical spin-polarized surface states naturally
give rise to so-called spin-momentum locking, namely, the spin of an electron is locked
perpendicular to its crystal momentum. This results in properties, such as suppres-
sion of non-magnetic backscattering from momenta k to −k at the surface [28, 32, 34]
and a dissipationless, pure spin current due to the absence of a net charge flow.

Topological insulators are realized in several materials such as Bi1−xSbx [28, 35],
Bi2Se3, Bi2Te3 [16, 36], and so on.

2.4 Dirac and Weyl semimetals

2.4.1 Weyl semimetals
In Weyl semimetals, the Weyl nodes are topologically characterized by the Berry
curvature and the Chern number. The Weyl nodes are the source and the sink of the
Berry flux in momentum space, acting as a magnetic monopole and antimonopole.
The chirality of the Weyl nodes is also connected with the Chern number C = ±1.
Because of the so-called no-go theorem [37, 38], the Weyl nodes should always come
in pairs of opposite chirality so that the total chiral charge integrated over the first
BZ is zero.

Such Weyl points appear at generic momenta and are formed by band inversion.
Therefore, these points can be removed without changing the symmetry of the system,
e.g., by changing SOC strength as shown in Fig. 2.1. These crossing points are
classified as accidental crossings [4] in contrast to essential crossings which are enforced
at high-symmetry momenta (TRIM) by specific crystal symmetries later described in
Sec. 2.5.2.

In a Weyl semimetal with time-reversal symmetry but without space-inversion sym-
metry, the Weyl points distribute symmetrically in momentum (k) space [Fig. 2.6(a)]
and the total number of Weyl points must be a multiple of four [4, 15, 39]. This is
because the time-reversal operation reverses the Berry curvature Ω behaving like

Figure 2.6: Configuration of Weyl points in momentum space with time-reversal but
without space-inversion symmetry (a) and with space-inversion symmetry but without
time-reversal symmetry (b). Purple and dark blue colors denote the opposite chirality
of the Weyl points.
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a “magnetic field”, i.e., Ω(k) = −Ω(−k) and the Weyl point at the momentum
k0 = (kx0 , ky0 , kz0) is converted into the Weyl point at −k0 with the same chiral-
ity. Since the sum of the chiral charge over the entire BZ needs to vanish, there
must be at least one additional pair with opposite chirality. In a Weyl semimetal
with space-inversion symmetry but without time-reversal symmetry, the Weyl points
distribute antisymmetrically in momentum (k) space [Fig. 2.6(b)] because space in-
version requires Ω(k) = Ω(−k) and thus the Weyl point at k0 are mapped onto −k0
with the opposite chirality [4, 15, 39].

These Weyl nodes necessitate the appearance of the Fermi-arc surface states [40–
42]. Unlike usual Fermi surfaces, the Fermi arc is not a closed loop but an open
arc that connects the projection of two Weyl points with opposite chirality onto the
surface BZ. Formation of the Fermi arc can be understood as a collection of 2D Chern
insulators, which will be described in the next subsection.

The Fermi arc is known to tangentially connect the bulk Fermi surface projected
onto the surface BZ and then merges into the bulk Fermi surface [43, 44]. The Fermi
arc emerges as a helicoid surface in E-k space throughout the wide energy across the
Fermi level [45]. Two Fermi surfaces appear on the top and bottom surfaces of the
crystal with opposite Fermi velocities.

Weyl semimetals can be realized in transition-metal monoarsenides/monophosphides
(Ta, Nb)(As, P), where the crystal structure breaks space-inversion symmetry [46–
48]. Magnetic Weyl semimetals breaking time-reversal symmetry can be realized in
Mn3Sn, Mn3Ge, and Co3Sn2S2 [4, 49], and the 2D magnet Fe/W(110) [50].

2.4.2 Properties of Weyl semimetals
One of the important phenomena for Weyl semimetals is the chiral anomaly [51].
Historically, the Adeler-Bell-Jackiw anomaly [52, 53] or the chiral anomaly [54] are
introduced in high-energy physics, as a non-conservation of chiral charge in a system
of relativistic fermions, coupled to an electromagnetic field with collinear electric and
magnetic field. Figure 2.7 shows a simple explanation of the chiral anomaly based on
the zeroth Landau level of the Weyl semimetal in the quantum limit. In the absence
of an electromagnetic field E and B, the left-handed and right-handed Weyl fermions
have equal chemical potentials, which implies that the chirality of Weyl fermions is
conserved. An applied magnetic field leads to Landau levels that disperse only along
the field direction. The zeroth Landau levels from the left-handed and right-handed
chiral Weyl bands are considered to propagate along or opposite to the field direction
with opposite velocities due to different chirality. When one applies an electric field
E parallel to the magnetic field B, electrons are accelerated at a rate of eE in the −E
direction. This motion induces a charge pumping from one Weyl band to the other.
There is charge flow around an individual Weyl band, and the chiral charge of each
Weyl node is thus not conserved. This then generates an axial charge current.

One direct consequence of the chiral anomaly is negative magnetoresistance [54].
Owing to the axial charge current created by the chiral anomaly, the back scattering
from one Weyl state to another one with opposite chirality is suppressed. As a
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Figure 2.7: Schematic illustration of the chiral anomaly. Adapted from [4].

consequence, the longitudinal conductivity along the applied magnetic field is large
and proportional to the magnitude of B. In other words, the resistivity decreases
with increasing magnetic field, resulting in the negative magnetoresistance.

Another important transport property for the magnetic Weyl semimetals is the
anomalous Hall effect [41, 42, 55]. Here, we describe the formation of the Fermi arc
and the Hall effect in a concept that the Weyl semimetal can be viewed as a collection
of 2D Chern insulators. We consider the simplest Weyl semimetal containing only one
pair of Weyl nodes at (±kx0 , 0, 0) as shown in Fig. 2.3. We think of a 2D subsystem
in the 3D BZ. Everywhere except at kx = ±kx0 , band structures cutting through the
ky-kz plane should be fully gapped. Since the Weyl nodes are described by the Berry
curvature field, there must be a Berry flux penetrating all the 2D slices between the
two Weyl nodes with the opposite chiral charge. In other words, when the slice is
swept through the monopole (antimonopole), Chern number changes by +1 (−1). A
2D slice between the projection of the Weyl nodes, i.e., −kx0 < kx < kx0 has the Chern
number C = +1. Each 2D subsystem behaves as a 2D Chern insulator and naturally
exhibits a chiral edge state. Hence, the Fermi arc is regarded as a collection of the
chiral edge modes of all possible 2D Chern insulator. Since each 2D Chern insulator
contributes the Hall conductance, the total Hall conductivity of the system should be
directly given by the integral of dkx as

σtotal
yz = − 1

2π ∫
BZ

σyz(kx)dkx

= − e2

2πh2kx0 , (2.23)

which should be quantized as − e2

2πh . Note that the anomalous Hall effect principally
diminishes in the space-inversion breaking Weyl semimetal, since it possess at least
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two pairs of Weyl points in the BZ, and the total Berry phase contributed by the two
Weyl pairs cancels each other.

Weyl semimetals also host exotic optical responses. Interaction with circularly
polarized light, which possesses a specific chirality itself, in general, reflects the chi-
rality of matter. In Weyl semimetals, it has been shown that the correlation between
circularly polarized light and the intrinsic chirality of the Weyl states drives an unidi-
rectional photocurrent in response to the respective light helicity, which is commonly
called circular photogalvanic effect [56–58]. A circularly polarized photon along the
+î (i = x, y, z) direction couples only one branch of the Weyl cone, namely, only a
transition from angular momentum − h̵î

2 to h̵î
2 for left-circularly polarized light with

Li = +î (from h̵î
2 to − h̵î

2 for right-circularly polarized light with Li = −î) is allowed
due to the optical selection rule. Depending on the chirality of the Weyl cones, the
generated photocurrents propagate in opposite directions. The sum of photocurrents
from a pair of Weyl cones with opposite chirality should vanish. However, in some
cases, the net photocurrents do not vanish identically.

2.4.3 Dirac semimetals
Coming from the Weyl picture described in Sec. 2.1.1, the Dirac cone in Dirac
semimetals can be regarded as a superposition of two Weyl cones with Weyl nodes
characterized by the Chern number C = ±1. Preserved time-reversal and space-
inversion symmetries protect degeneracy of chiral-charge states, and therefore guaran-
tee degeneracy of the Dirac cone in spin as well, because of the Kramers theorem (see
Sec. 2.3.1). Due to the net Chern number C = 0, the Dirac node is not topologically
protected and may result in opening up an energy gap. However, the Dirac node can
be protected by additional crystal symmetry [59–62]. For instance, nth fold uniax-
ial rotation (n = 3,4,6) symmetry stabilizes a Dirac node, which appears along the
rotational axis [59–62]. This mechanism has led to well-established Dirac materials
Na3Bi [60, 63] and Cd3As2 [64, 65], in which the Dirac nodes are protected by 3-fold
and 4-fold rotational symmetry, respectively. The chiral anomaly can also arise in a
Dirac semimetal, since the Dirac fermions can split into pairs of Weyl fermions with
opposite chirality under an external magnetic field [66].

2.4.4 Type-II topological semimetal
Quasiparticles in condensed-matter systems are constrained by the symmetries of
space groups rather than by Lorentz invariance. Unconventional Lorentz-invariance
violating Weyl/Dirac fermions have been proposed, termed type-II Weyl/Dirac fermions,
in contrast to conventional Weyl/Dirac fermions referred to as type-I Weyl/Dirac
semimetals. Type-II Weyl/Dirac semimetals feature strongly tilted Dirac cones [11]
as shown in Table 1.1. In the constant energy momentum map at the Fermi level dis-
played as a middle planar cut, the Weyl points appear at the boundary between elec-
tron and hole pockets forming the upper and lower half of the Dirac cone, respectively,
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as compared to a point-like Fermi surface in type-I Weyl/Dirac semimetals. Thus,
type-II Weyl/Dirac semimetals possess a finite density of states at the Fermi level
(Dirac-point energy). Away from the Fermi level, these electron- and hole-pockets
open and are separated in the constant energy cut. Type-II Weyl semimetals host
exotic transport properties such as an anisotropic chiral anomaly depending on the
current direction, and anisotropic negative magnetoresistance along certain direction
[67, 68].

2.4.5 Topological semimetals in transition-metal dichalcogenides
Transition-metal dichalcogenides (TMDCs) constitute an emergent class of materials
to host various crystal structures, various class of materials, and rich electronic and
physical properties [9, 69, 70]. TMDCs with a chemical formula MX2, where M is a
transition metal and X is a chalcogenide (e.g., S, Se, Te), consist of a stacking of X-
M-X trilayers, bond by van der Waals forces. Hence, the 2D nature of TMDCs offers
a natural cleaving plane, which can facilitate the fabrication of devices. As shown
in Fig. 2.8, TMDCs crystallize in various structures: hexagonal (2H), trigonal (1T ),
Monoclinic (1T ′), and Orthorhombic (1Td). 2H-structured TMDCs such as MoS2
and WSe2 are often semiconductors. 1T -structured TMDCs such as PtSe2 [71–75],
PtTe2 [76], PdTe2 [74, 75, 77–79], and NiTe2 [80–82] are classified as type-II Dirac
semimetals due to preserved space-inversion symmetry. On the other hand, 1Td-
structured TMDCs such as WTe2 [11] and MoTe2 [83–93], and (Mo, W)Te2 [87, 93]
are classified as type-II Weyl semimetals because of broken space-inversion symmetry.
TMDCs host superconductivity and charge density wave in e.g., TaS2 [69].

MoTe2 is known to have two different crystal phases: the semiconducting 2H phase
and semimetalic 1T ′ phase. By cooling down below 250 K, the 1T ′-phased MoTe2
undergoes a transition to the 1Td phase [94, 95], where it becomes a type-II Weyl
semimetal. 1T ′-MX2 monolayers have been proposed to be a 2D topological insulator
which exhibits the QSH effect [96]. Phenomena related to (type-II) Weyl semimetals
were reported. For instance, the magnetoresistance is observed in WTe2 [97] and
MoTe2 [98], which is induced by the chiral anomaly. The anisotropic magnetoresis-
tance is observed in WTe2 [99]. MoTe2 also hosts Seebeck enhancement of Seebeck
effect [100, 101], and superconductivity [102, 103].

The number of Weyl points in MoTe2 has been debated and is still controversial
[83, 85–93]. Some studies predicted a total of 4 Weyl points lying at kz = 0 with one
inequivalent set of projected Weyl point WP1 onto the surface BZ [86, 93]. Others
predicted a total of 8 Weyl points lying at kz = 0 with two inequivalent sets of projected
Weyl points W1 and W2 [83]. Others predicted a total of 12 Weyl points with two
inequivalent sets of projected Weyl points W1 lying at kz = 0 and W2 lying off the
kz = 0 plane [85]. However, one can think of a unified understanding associated with
the Weyl phase transition in MoxW1−xTe2 [87, 93] as shown in Fig. 2.9(b). According
to theoretical studies, the number of Weyl points and their position depends on lattice
constant, SOC strength, and atom positions. The band structure of 1Td-MoxW1−xTe2
contains a hole pocket at the BZ center and two electron pockets at the positive and
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Figure 2.8: Crystal structures of transision-metal dichalcogenides MX2

negative kx near the Fermi level. In MoxW1−xTe2, total 8 Weyl points appear as the
touching points between hole and electron pockets. One type (WP1) is located slightly
above the Fermi level. The other (WP2) is located near the Fermi level. By increasing
Mo concentration, which naturally modifies the lattice constant, the Weyl points
WP1 and WP2 become well separated in momentum space. By further increasing
Mo concentration, the Weyl points WP2 annihilate pairwise and MoTe2 possesses a
total of 4 Weyl points. Since the Weyl point WP1 is robust against the parameters
and has a large Weyl-point separation that can be resolved in measurements, in this
thesis, we take a scenario with 4 Weyl points in MoTe2.
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Figure 2.9: Type-II Weyl semimetal MoTe2 (a) A pair of strongly tilted Dirac cones
characterizing Type-II Weyl semimetals. (b) Schematic illustration of the Weyl phase
transition in MoxW1−xTe2. Red and blue contours indicate topological Fermi-arc and
trivial surface states, respectively. (b) adapted from [93].

Figure 2.10 reviews type-II Dirac semimetals of the type 1T -MX2. Previously pre-
dicted and experimentally confirmed PtTe2-class type-II Dirac semimetals possess,
however, Dirac points far below the Fermi level. In such situation, the physical
properties remain still dominated by non-topological properties. Recently, NiTe2 has
emerged as the new type-II Dirac semimetal with Dirac points near the Fermi level
[80–82].

The 1T -MX2 crystal structure is composed of edge-sharing MX6 octahedra with
three M-X-M sub-layers as shown in Fig. 2.8. A center transition metal sub-layer
divides six chalcogen atoms into two triangle sub-layers indicated by red and orange
atoms in Fig. 2.10(b). There is a 180○ rotation between these two chalcogen sub-
layers, which suggests that both layers are inequivalent. By space inversion (r → −r),
a chalcogen atom can be mapped onto that of the other sub-layer. Thus, this system
preserves a 3-fold rotational symmetry (C3) along the c-axis as well as space-inversion
symmetry.

Figure 2.10(a) schematically shows how the bulk Dirac cone in type-II Dirac semimet-
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Figure 2.10: Type-II Dirac semimetal 1T -MX2. (a) Strongly tilted Dirac cone. (b)
Crystal structure possessing space-inversion and three-fold symmetry. Red and orange
Te atoms represent inequivalent Te atoms. (c) Brillouin zone. (d) Energy hierarchy of
p orbitals at the Γ (left) and A (right) points. A combination of crystal-field splitting
(CFS), spin-orbit coupling (SOC), and bonding and anti-bonding splitting leads to
the different energy levels of the p orbitals. A strong kz dispersion for the pz-derived
band crosses with other bands and results in the inverted band gap (IBG) and the
bulk Dirac point (BDP). The symmetry of the states are labeled with the irreducible
representations (Ri,Γi,Ai,∆i) and parity (+, −). (d) adapted from [82].
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als of the type 1T -MX2 appears in (E, kx, ky, kz) space. The Dirac point appears
at the D point (kz = 0.75π

c in NiTe2) between the Γ and A points along the C3 rota-
tional axis in the BZ, shown in Fig. 2.10(c). The Dirac cone is tilted towards the kz

direction. Cutting through the Dirac point energy (ED) as a constant energy cut, the
hole and electron pockets touch at the Dirac point at kz = kD. Cutting through kD
parallel to the kz axis, the up-right Dirac cone appears in the kz = kD plane.

More interestingly, 1T -MX2 hosts not only tilted Dirac cones in the bulk but also a
surface Dirac cone. The mechanism of such Dirac-cones formation is simply explained
by a single chalcogen X p orbital manifold [74, 75] as shown in Fig. 2.10(d). Consider a
2-site model with 3×2 p-orbitals in a trigonal crystal field. A combination of crystal-
field splitting, SOC, and bonding and anti-bonding splitting leads to the different
energy levels of the p orbitals. Since inter-layer hopping for pz-orbitals is larger
than that of px,y-orbitals, we suppose that inter-layer hopping of px,y-orbitals can be
neglected. This approximation is reasonable, because hopping strengths along the
c-axis are naturally much larger for pz orbitals than px,y orbitals for TMDCs. This
results in a large band width of the pz-orbitals caused by bonding and anti-bonding
splitting at the Γ point compared to the A point, and therefore a strong dispersion
for the pz-derived band as a function of the out-of-plane momentum kz. The strong
kz dispersion for the pz-derived band crosses with the px,y-derived bands, resulting
in two crossing points labeled with BDP and IBG. The crossing labeled with BDP
consists of bands with a different reducible representation and is protected by C3
rotational symmetry against hybridization [61, 62]. Thus, the crossing BDP generate
the tilted Dirac cone in the bulk. The other crossing labeled with IBG consist of
bands with the same representation. These bands hybridize and open a gap due to an
anti-crossing. These bands have opposite parity caused by bonding and anti-bonding
splitting, and thus their hybridization leads to an inverted band gap with non-trivial
Z2 topological order, between which Dirac-cone surface states can be formed as in
topological insulators.

2.5 Chiral topological semimetals

2.5.1 Unconventional fermions

Recently, unconventional fermions beyond Weyl and Dirac, which have no analogues
in high-energy physics, have been proposed [12, 49]. Weyl fermions are characterized
by band-crossing points with two-fold degeneracy and Chern number C = ±1 [Table
2.2(a)], while unconventional fermions are characterized by band-crossing points with
multiple (higher than two-fold) degeneracy and a nonzero Chern number which is
usually higher than C = ±1 e.g., as shown in Table 2.2(c-e). Bradlyn et al. systemati-
cally examined all non-magnetic space groups in inclusion of SOC and revealed two-,
three-, four-, six- and eight-fold degenerate band crossings [12].

22



2.5 Chiral topological semimetals

(a) (b) (c) (d) (e)
Weyl fermion Dirac fermion Spin-1 fermion Double WF RSW fermion

Two-fold Four-fold Three-fold Four-fold Four-fold
C = ±1 C = 0 C = ±2 C = ±2 C = ±4

Table 2.2: Conventional and Unconventional fermions in solids. Chern numbers are
indicated close to corresponding bands. WF: Weyl fermion. RSW fermion: Spin-3/2
Rarita-Schwinger-Weyl fermion.

2.5.2 Kramers-Weyl fermions
As described in Sec. 2.3.1, the Kramers degeneracy should not be lifted at TRIM
with time-reversal symmetry and without inversion symmetry in inclusion of SOC due
to the Kramers theorem. Such Kramers degeneracy can form Weyl points, termed
Kramers-Weyl fermions [10]. Non-magnetic structurally chiral crystals, which possess
no mirror and space-inversion symmetry, are a good platform for realizing Kramers-
Weyl fermions. Note that chirality in geometry refers to a concept of “handedness”.
This means that an object does not coincide with its mirror image. Chang et al. sys-
tematically examined chiral space groups [10]. They revealed that all degeneracies at
TRIM in non-magnetic chiral crystals with relevant SOC exhibit a non-zero quantized
Chern number, and depending on the space group, they can host two-, three-, four-,
and six-fold crossings. Thus, unconventional fermions can emerge as Kramers-Weyl
fermions there.

Unlike conventional Weyl fermions, Kramers-Weyl fermions are classified as es-
sential crossings [4], which are pinned to the high-symmetry points, i.e., TRIM, by
specific crystal symmetries. This enables fermions with maximal separation in mo-
mentum space. In contrast to accidental crossings, these points cannot be removed
as long as the symmetry is maintained.

2.5.3 Chiral topological semimetals in transition-metal
monosilicides

B20 materials with a chemical formula MB, where M is a transition metal and B is
a group 14 element, such as transition-metal monosilicides MSi and monogermanide
MGe, crystallize in a structurally chiral cubic lattice with space group P213 (No.
198). They have attracted great interest because they host chiral magnetism and
skyrmions in metallic ferromagnets e.g., MnSi and MnGe [104–107] and thermoelectric
materials in a correlated narrow-gap semiconductor e.g., FeSi [108]. Recently, it has
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been predicted that B20 materials host unconventional fermions induced by structural
chirality described in Sec. 2.5.2, termed chiral topological semimetals [10, 109–112].

Figure 2.11 reviews the electronic structure of the chiral topological semimetal CoSi.
In this thesis, we ignore accidental crossings in B20 materials appearing at generic
momenta in inclusion of SOC [109, 115]. Irrespective of SOC, B20 materials host
unconventional fermions. We first consider its electronic structure without SOC as
shown in Fig. 2.11(a). All bands are doubly degenerated. At the Γ point, a Dirac
band and a flat band form a three-fold degenerate node near the Fermi level with
Chern number C = +2, which form a fermion shown in Table 2.2(c). At the R point,
two separate Weyl cones forms a four-fold degenerate node below the Fermi level
with Chern number C = −2 , which is called a double Weyl cone, shown in Table
2.2(d). The flat band and the top part of the Weyl cone contribute electronic states
at the Fermi level, which form a hole pocket centered at the Γ point and an electron

Figure 2.11: Electronic structure of the chiral topological semimetal CoSi with (a,
b) and without (c, d) SOC. (a, c) Calculated bulk band structure. Insets show
enlargement of bands around the Γ and X points. Chern numbers are indicated
close to corresponding bands. (b, d) Brillouin zone and (001) surface Brillouin zone
together with emergent chiral charges and Fermi arcs. (e) 3D Fermi surface. SOC
results in a change of the Chern number from C = ±2 to C = ±4 and spin-splitting of
the Fermi arc. (a, c) adapted from [113]. (e) adapted from [114].
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pocket centered at the R point in the 3D BZ as shown in Fig. 2.11(e). Due to the
bulk-boundary correspondence, the Fermi arc is formed at the surface by connecting
two fermions with the opposite chiral charge as shown in Fig. 2.11(b) and lies in the
gap between the hole and electron pockets.

When taking into account SOC, all bands split, and accordingly emerging fermions
and the Chern number are modified as shown in Fig. 2.11(c, d). At the Γ point a four-
fold degenerate node with Chern number C = +4 [Table 2.2(e)] and a Weyl fermion
appear. At the R point, a six-fold degenerate node with Chern number C = −4
emerges. The Fermi arc also splits as a direct consequence of changing the Chern
number, since the Fermi arc is regarded to carry a topological charge. Predicted
spin-split Fermi arcs and their spin texture are displayed in Fig. 2.12.

First experimental band-structure observations suggest no spin splitting of bands
within experimental resolution due to weak SOC in CoSi [114, 116, 117], RhSi [117],
AlPt [118], RhSn [119]. Later, several studies observed spin-split Fermi arcs of the
strong SOC materials PdGa [120] and PtGa [121].

Properties of chiral topological semimetals depend on structural handedness of
chiral crystals. Figure 2.13(a) illustrates the crystal structure of PdGa with opposite
handedness. The chiral motif in their structure is the helical arrangement of Pd and

Figure 2.12: Calculated Fermi surface derived from surface for CoSi(100) showing the
spin-split Fermi arcs (a) and their spin texture (b). Adapted from [111].
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Ga atoms along the (111) direction. On a mirror operation, these helices reverse
their handedness. The mirror operation reverses not only the structural chirality but
also the sign of the Chern number at the high symmetry points. Accordingly, this
leads to a reversal of their Fermi-arc velocities as a consequence of the bulk-boundary
correspondence (see Sec. 2.2.3) as shown in Fig. 2.13(C). Schröter et al. succeeded
in growing two different enantiomer of PdGa with opposite handedness [120]. The
chirality of the crystal structure can be observed from low energy electron diffraction
(LEED) patterns of the (100) surface as shown in Fig. 2.13(B). The S-shaped intensity
distribution is mirrored when comparing the two enantiomers.

Most Weyl semimetals suffer from several drawbacks, such as large numbers of
Weyl points, Weyl fermions close to each other in momentum space, and short Fermi
arcs. In such materials, Weyl fermions are located at the non-high-symmetry points.
They are less topologically robust, because Weyl points may easily annihilate in pairs
e.g., by changing SOC strength. In contrast, CoSi provides platform of the ideal Weyl
semimetal with only one pair of Weyl points, manifested as maximal separation of the
opposite Weyl points, and correspondingly, the long Fermi arc, irrespective of SOC.

Figure 2.13: Crystal-handedness dependent Chern number and Fermi arc of chiral
topological semimetals. (A) Crystal structure of two enantiomers of PdGa with op-
posite handedness. (B) Low energy electron diffraction (LEED) patterns for two
enantiomers. The S-shaped intensity distribution of the spots (highlighted by red
dashed lines) reflects the handedness of the crystal structure. (C) Sign of the Chern
number and the Fermi-arc velocities are reversed for opposite handedness of the crys-
tal. Adapted from [120]
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Moreover, chiral topological semimetals exhibit exotic properties analogous to Weyl
semimetals which may reflect larger Chern number and structural chirality in addi-
tion [10]. Since one Weyl node at the BZ center sit near the Fermi level and the
opposite node lies energetically far away from it, chiral topological semimetals meet
the requirement for the quantized circular photogalvanic effect [10, 57, 110, 122]. The
helicity-dependent quantized circular photogalvanic effect was observed in RhSi [123]
and CoSi [124]. A recent study pointed out that van Hove singularity, namely the
singularity in the electronic structure, is realized in a helicoid Fermi arc of chiral topo-
logical semimetals in transition-metal monosilicides [125], which will be described in
detailed in Sec. 6.3.
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3 Experimental methods
Here, we summarize the general description of photoemission spectroscopy [126–128]
and electron spin detection [7, 129] in a way that can be usefully applied not only
to conventional angle-resolved photoemission spectroscopy but also to momentum
microscopy [7, 126]. This enables easy comparison between both methods. Section
3.4 describes how polarization-dependent measurements clarify orbital information of
the electronic wave functions and their useful applications to topological quantum
materials. Section 3.5 outlines the NanoESCA beamline, where we performed spin-
resolved momentum microscopy.

3.1 Photoemission spectroscopy

3.1.1 General description
Photoemission spectroscopy (PES) is based on the photoelectric effect, in which pho-
toelectrons are emitted when a photon impinges on a material and is absorbed by
electrons in the solid. In this process, the photon energy of monochromatic light,
hν, and the kinetic energy of the emitted photoelectrons in vacuum, Ekin, satisfy the
following energy conservation formula (see also Fig. 3.1):

Ekin = hν − ϕ −EB, (3.1)

where EB is the binding energy of an electron inside the solid before its excitation
and ϕ is a material-dependent work function. In order to escape from the material,
electrons have to overcome a potential barrier described by the work function ϕ. The
photoemission intensity I is related to the transition matrix element and the initial
state spectral function which are involved in the photoemission process. Based on
eq. 3.1, recording photoemission intensities I(Ekin) as a function of Ekin can provide
information of the momentum(k)-integrated initial state spectral function, i.e., the
density of states. Taking into account the in-plane momentum conservation law,
one can record the momentum distribution of photoemission intensities and probe
the k-dependent initial state spectral function, which provide information of a band
structure.

The photoemission process can be understood in the so-called three step model:
(Step 1) Photoexcitation of an electron inside the solid. (Step 2) Travel of the excited
photoelectron to the sample surface. (Step 3) Emission of the photoelectron into the
vacuum. Here, we emphasize three different states of the electrons:

28



3.1 Photoemission spectroscopy

• ∣ϕ(i,ki)⟩: The initial state of the electrons before excitation.
ki: The initial state crystal momentum

• ∣ϕ(f,kf)⟩: The final state of the electrons after excitation.
kf : The final state crystal momentum.

• K: The momentum of the electron after being emitted into vacuum.

Our final goal is to obtain the initial state information in the solid.
In the photoexcitation process, as shown in Fig. 3.2, the momentum conservation

law including the crystal and incident photon momenta q is obtained as

kf = ki +G + q,
kf∥ = ki∥ +G∥ + q∥, (3.2)
kf⊥ = ki⊥ +G⊥ − q⊥,

where G is an arbitrary reciprocal lattice vector. Here the photon momentum normal
to the sample surface is defined as −qi⊥. In the case of low photon energy at hν < 100

Figure 3.1: Energy diagram of the photoemission process. The final state is often
approximated by a parabolic free-electron dispersion (free electron final state model).
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Figure 3.2: Momentum conservation at each state in the photoemission process.

eV, q is often neglected since it is much smaller than ki and kf . When the photo-
electron escapes from the solid to the vacuum, the momentum component parallel to
the surface is conserved because of the in-plane translation symmetry of the crystal
structure, which can be described as

K∥ = kf∥ = ki∥ +G∥. (3.3)
Assuming that the photoelectron in the vacuum is a free electron with the kinetic
energy Ekin and the free electron mass m, i.e., Ekin = ∣p∣

2

2m =
h̵2∣K∣2

2m , the momentum of
the emitted electron is described using the polar emission angle θK as

K∥ =
√

2mEkin

h̵
sin θK , (3.4)

K⊥ =
√

2mEkin

h̵
cos θK . (3.5)

Combining eq. 3.4 and the momentum conservation parallel to the surface in eq. 3.3,
one can finally reach to

kf∥ = ki∥ +G∥ =
√

2mEkin

h̵
sin θK . (3.6)

This equation allows one to calculate kf∥ by collecting photoelectrons emitted into
a certain θK in angle-resolved photoemission spectroscopy (ARPES). Note that, in
contrast to conventional ARPES, momentum microscopy directly accesses the in-plane
crystal momentum kf∥ = (kfx, kfy) and no conversion from θK to kf∥ is necessary.

The momentum component perpendicular to the surface is not conserved during
the emission of the photoelectron, but can be deduced under certain assumptions
described in the next subsection.
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3.1.2 Free electron final state model
To address the out-of-plane momentum k⊥, we introduce the free electron final state
model which assumes that the dispersion of the unoccupied bands is approximated
by a free-electron dispersion [126] (see Fig 3.1). The free-electron dispersion of the
final state with a band minimum at Evac −Ui is described as

Ef(∣kf ∣) =
h̵2∣kf ∣2

2m +Evac −Ui, (3.7)

where Ui is the inner potential, i.e., energy at the bottom of the free-electron va-
lence band with respect to the vacuum level energy Evac. This dispersion describes
a parabola for the energy as a function of kf . Based on eq. 3.2, we replace kf with
ki −G as

∣ki −G∣2 = 2m
h̵2 (Ef −Evac +Ui)

= 2m
h̵2 (Ekin +Ui). (3.8)

Here, we applied Ef = Evac +Ekin (see Fig. 3.1). With Ekin =constant, this describe a
sphere in k space centered at −G with a radius of

√
2m
h̵

√
Ekin +Ui. A momentum disk

at a certain kinetic energy Ekin obtained by momentum microscopy can be regarded
as the constant-energy spherical surface in k space described by eq. 3.8 projected onto
the k∥ plane in the surface BZ. Since Ekin varies with hν in eq. 3.1, by varying hν one
can access the ki⊥ dispersion of the bands. Ui can be determined experimentally by
the periodicity of the bands in ki⊥. When Ui is known, the perpendicular momentum
component can be evaluated as

ki⊥ = kf⊥ −G⊥

=
√

2m
h̵2 (Ekin +Ui) − kf∥

2 −G⊥. (3.9)

3.1.3 Photoemission process
The photoemission process is driven by the interaction of the solid with a dynamic
electromagnetic field. The electrons in a solid are described by the electron Hamilto-
nian He. After the light irradiation, the Hamiltonian for the total system is written
using the photon Hamiltonian Hph and the Hamiltonian Hint for interactions between
electrons and photons as,

H = He +Hph
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H0

+ Hint±
H′

(3.10)

Since H′ = Hint is considered to be a time-dependent perturbing Hamiltonian the
transition probability wi→f from the occupied initial state ϕk

i into the unoccupied final
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state ϕk
f is obtained by time-dependent perturbation theory in quantum mechanics as

wi→f =
2π
h̵
∣⟨ϕk

f ∣Hint∣ϕk
i ⟩∣2δ(Ef −Ei − hν), (3.11)

which represents Fermi’s golden rule. The δ function ensures energy conservation in
the excitation process. The photoemission intensity is proportional to wi→f and is
described as

I ∼ wi→f ∝ ∣⟨ϕk
f ∣Hint∣ϕk

i ⟩∣2 = ∣Mk
f,i∣

2
, (3.12)

where Mk
f,i is the transition matrix element.

The Hamiltonian in an electromagnetic field in eq. 2.10 is further written as

H = 1
2m (p −

e

c
A)

2
− eϕ

= 1
2mp2

²
He

+ e

2mc (A ⋅ p + p ⋅A) + e2

2mc2 A2 − eϕ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hint

≈ He +
e

mc
A ⋅ p. (3.13)

On the third line, we neglect the term e2

2mc2 A2 describing two-photon processes, enforce
the Weyl gauge in which ϕ = 0, and apply ∇ ⋅A = 0 for a plane electromagnetic field.

One of the solutions of A for the plane electromagnetic field is

A(r, t) = ϵei(k⋅r−c∣k∣t) ≈ A0ϵ, (3.14)

where the vector ϵ denotes the oscillating direction of the electric field of the incident
light, k is the wave vector, and r is the position operator. Since the wave length λ
of the radiation field (e.g., λ = 2π

∣k∣ = 124 Å for hν = 100 eV) is much longer than the
atomic dimension (∼ Å), i.e., k ⋅ r ≈ 2π a0

λ << 1 (a0 ∶ Lattice constant), we can apply
the approximation: eik⋅r = 1+ ik ⋅r+⋯ ≈ 1 to eq. 3.14, known as dipole approximation.
Therefore, the matrix element can be expressed as

Mk
f,i =

e

mc
⟨ϕk

f ∣A ⋅ p∣ϕk
i ⟩

≈ e

mc
⟨ϕk

f ∣A0ϵ ⋅ p∣ϕk
i ⟩

= e

mc
A0⟨ϕk

f ∣ϵ ⋅ [r,H0]∣ϕk
i ⟩

= − ie
h̵c
A0⟨ϕk

f ∣ϵ ⋅ rH†
0 −H0ϵ ⋅ r∣ϕk

i ⟩

= − ie
h̵c
A0(Ef −Ei)⟨ϕk

f ∣ϵ ⋅ r∣ϕk
i ⟩. (3.15)

On the third line, we applied the commutator relationship h̵p
m = −i[r,H0]. The term

ϵ ⋅ r represents electric dipole moment.
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3.1.4 Surface sensitivity
The surface sensitivity of PES depends on the photon energy [130]. The photoelectron
signal is attenuated by inelastic scattering. Although the inelastic mean free path of
electrons is material dependent, it can be assumed to follow a universal curve as a
function of the kinetic energy of the electron in the energy region Ekin > 20 eV as
shown in Fig. 3.3. A minimum of the universal curve is found around 20-100 eV with
3-10 Å. This implies that PES with vacuum ultraviolet (VUV) light is highly surface
sensitive and probes predominantly the top few atomic layers. In the case of the low-
energy region Ekin < 10 eV, the inelastic mean free path could be material dependent
[126].

Figure 3.3: The inelastic mean free path of electrons as a function of kinetic energy
for various materials. Adapted from [130].

3.2 Momentum microscopy
3.2.1 Overview
Momentum microscopy is based on the principles of photoemission electron microscopy
(PEEM) [131]. As outlined in Fig. 3.4, the momentum microscope system consists of
a sample stage, PEEM optics, a double hemispherical analyzer, a 2D detector. The
momentum microscope collects all electrons emitted into complete half space from
the sample surface by applying an acceleration voltage between the sample and the
microscope objective lens. Therefore, it directly provides two-dimensional photoelec-
tron maps I(kx, ky) of the in-plane crystal momentum over the whole Brillouin zone
at a single measurement in sharp contrast to conventional ARPES that collects and
records a certain emission angle of photoelectrons. It records individual momentum
discs I(kx, ky) at a fixed energy. The 3D I(kx, ky,EB) data, that yields the band
dispersion along all directions in the surface BZ, is then obtained by a series of such
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Figure 3.4: Schematic illustration of band structure imaging by momentum mi-
croscopy equipped with an imaging spin filter. The momentum microscope collects
all electrons emitted into complete hemisphere above the sample. The imaging spin
filter can be inserted/retracted after the second hemispherical analyzer. Electrostatic
decelerating and accelerating lenses before and after the scattering target allow the
selection of the scattering energy, Es, of electrons. Electrons are reflected from the
imaging spin filter crystal at an angle of incidence 45○, with small deviations. Every
position of the image is encoded as a different reflection angle of the electron. The
spin-filtered image is flipped up on the reflection with respect to the plane perpen-
dicular to the scattering plane (ky).
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Figure 3.5: Selective local band structure measurement of NiTe2. (a-c) The best sam-
ple region is explored by PEEM illuminated with a mercury lamp. (b) We found a flat
and good region. (c) In order to record band dispersions, we turned the synchrotron
beam on, showing strong intensity near the PEEM image center. (d, e) We measured
Fermi surface with the different acceleration voltage UA. UA = 5 kV enlarges momen-
tum space compared to UA = 14 kV. (f) Scanning the binding energy EB yield the 3D
band dispersion map I(kx, ky,EB).

measured constant-energy momentum discs by scanning the binding energy EB as
shown in Fig. 3.5(f).

The momentum microscope enables both real-space PEEM mode and momentum
space mode in the same instrument by changing the optical lens settings. Fig-
ures 3.5(a-c) shows how PEEM images help us find a good sample region. Fig-
ure 3.5(a) shows a PEEM image on the boundary of a well cleaved region in NiTe2.
High contrast between black and white regions shows different regions of the sample,
indicating that a well cleaved region exhibits high intensity (black intensity). The
well cleaved region, however, shows inhomogeneous intensity with several terraces.
After moving the sample, we found a flat and good region as shown in Fig. 3.5(b).
Figure 3.5(c) shows a PEEM image after turning the synchrotron beam on. Strong
intensity near the image center suggests the beam spot size 10 µm (V) × 20 µm (H).
After we have identified a good sample region, the microscope is then switched to the
momentum image mode to record the band dispersions as indicated in Figs. 3.5(d,
e). Therefore, the analyzed area for momentum maps [Figs. 3.5(d, e)] is the area
with strong intensity near the PEEM image center in Fig. 3.5(c). In this way, we can
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measure the local electronic structure on nano-sized samples and individual domains.

3.2.2 Working principles
Photoelectrons are emitted with an angle θ with respect to the sample surface nor-
mal from the sample and are accelerated by an electron optical immersion lens. The
lens sees a virtual sample located behind the real sample surface, from which pho-
toelectrons are emitted with an effective angle θ′(< θ). Even those photoelectrons
that are emitted parallel to the surface (θ = 90○) enter the lens under a finite angle
θ′. The initial emission angle θ is related to the initial momentum h̵k =

√
2mEkin

as sin θ = h̵k∥
h̵k =

h̵k∥
√

2mEkin
, and the effective angle θ′ is related to the momentum after

acceleration h̵k′ =
√

2m(eUA +Ekin) as sin θ′ = h̵k′
∥

h̵k′ =
h̵k′
∥

√
2m(eUA+Ekin)

. Since the acceler-
ation along the surface-normal preserves the surface parallel momentum component,
k∥ = k′∥, we obtain:

sin θ′ = k∥
h̵√

2m(eUA +Ekin)
≈ k∥

h̵√
2meUA

. (3.16)

When the acceleration voltage UA is large compared to the initial kinetic energy
Ekin of the photoelectrons, eUA >> Ekin, sin θ′ is scaled linear in k∥ [6, 132]. For a
geometrical lens with focal length f , a beam that enters the lens under an angle θ′
will be focused in the momentum image plane in the distance rk = f tan θ′ from the
optical axis. With tan θ′ ≈ sin θ′, thus, the lateral position in the image focal plane
can be directly calibrated in k∥. For a fixed θ′, i.e., a fixed position in the momentum
image plane, k∥ becomes larger with increasing UA. This means that with increasing
UA the momentum field of view becomes larger as demonstrated in Figs. 3.5(d, e). In
such way, band structure imaging from overview to highest resolution is possible.

The momentum image is formed in the back focal plane of the objective lens. The
spatial image is formed further downstream. The momentum microscope enables one
to switch the image plane between the real-space and momentum-space image by
changing the electron-optical lens settings. With increasing UA the momentum field
of view becomes larger, while the spatial (PEEM) field of view becomes smaller. This
corresponds to the fact that when the momentum image shrinks in the focal plane,
the spatial image in the image focal plane expands accordingly.

The double hemispherical analyzer plays a crucial role as an aberration compen-
sated energy filter. The first hemispherical analyzer selects the energy of the elec-
trons. The second hemispherical analyzer compensates the aberration introduced by
the first analyzer. Due to the spherically symmetric 1/r potential (r: the radius),
electron trajectories can be interpreted as Kepler ellipses, giving rise to the largest
energy dispersion after a deflection angle of 180○ or after passing the first analyzer
[133]. Electrons are again refocused after the second analyzer by reversing the beam
path in the second anti-symmetrical analyzer, realizing an effective 360○ pass, like
closed trajectories of Kepler ellipses for the 360○ deflection [134].

36



3.2 Momentum microscopy

An improved high-resolution momentum microscope with double-pass energy filter
is reviewed in Ref. [135].

3.2.3 Momentum microscopy vs. ARPES
To conclude this section, let us summarize the advantages of momentum microscopy
compared to ARPES.

• Momentum microscopy enables both real-space PEEM imaging and momentum-
space band structure imaging. Thus, we can select an analyzed area of the band
structure measurement.

• Momentum microscopy provides 2D photoemission intensity distribution I(kx, ky)
at a single measurement, while ARPES requires scanning an emission angel θ
together with rotating the sample or moving the analyzer especially for spin-
resoled ARPES.

• Momentum microscopy captures all emission directions θ in the complete emis-
sion hemisphere above the sample and covers the maximum k∥ space described
by the photoemission horizon for emission angles of θ = ±90○ (see Fig. 3.6).
ARPES capture a relatively small fraction of the emission hemisphere up to,
e.g., θ = ±30○ and covers a smaller k∥ space described by eq. 3.4.

• The fixed photoemission geometry, where the angle of photon incidence stays
constant during the measurement without rotating the sample, gives direct ac-
cess to symmetry dependent effects of wave functions and light polarization.
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Figure 3.6: The maximum accessible k∥, the photoemission horizon, is given when
the emission angle θ reaches 90○ in eq. 3.4: kmax

∥
=
√

2mEkin
h̵ sin 90○ =

√
2mEkin

h̵ . The
photoemission horizon follows the parabolic dispersion of a free electron in the vacuum
as a function of the photoelectron kinetic energy. The accessible k∥ for emission angles
of θ = 30○, k∥ =

√
2mEkin

h̵ sin 30○, is plotted for comparison.
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• The parallel momentum imaging allows a direct combination with an imag-
ing spin filter, providing spin-resolved 2D photoemission intensity distribution
I(kx, ky) (see Sec. 3.3.2).

3.3 Spin-resolved momentum microscopy

3.3.1 Principle of electron spin detection
A measurement of the spin of a free electron cannot be realized in an “ideal” Stern-
Gerlach type experiment due to the Heisenberg uncertainty relation and the strong
effect of the Lorentz force by a magnetic field [136]. Thus, we can only detect the
electron spin using a spin-dependent electron scattering experiment. So far, there are
two primary methods of detecting the electron spin [7, 129]. One is utilizing SOC
between the incoming electrons and a non-magnetic scattering target. The other is
utilizing exchange interaction between the incoming electrons and a ferromagnetic
scattering target. The most common detector using SOC as the fundamental interac-
tion is the Mott detector [137, 138], which employs heavy-element targets such as Au
or Th. Another detector based on SOC is single-channel spin-polarized low-energy
electron diffraction (SP-LEED) by W(100) [139, 140]. As a detector based on ex-
change interaction, very low-energy electron diffraction (VLEED) detector such as
Fe(100)/Ag(100) [141], improved and long life time Fe(001)p(1 × 1)-O [142–145] are
developed. All detectors mentioned above are so far employed as single-channel de-
tectors. Recently, an imaging spin filter by W(100) [146–148], Ir(100) [149], long life
time Au/Ir(100) [6, 150, 151] has been developed as a multi-channel detector based
on SOC.

Here, we describe basics of electron spin detection taking Mott scattering [138] as

Figure 3.7: Schematic illustration of Mott scattering.
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3.3 Spin-resolved momentum microscopy

an example. Mott scattering describes the scattering of an electron Coulomb field
of the atomic nucleus, including the effect of SOC. The SOC contribution to the
Hamiltonian is given by

HSOC =
e

2m2c2r

dϕ

dr
(L ⋅S) = Ze2

2m2c2r3 (L ⋅S), (3.17)

ϕ(r) = −eZ
r
, (3.18)

where ϕ(r) is the Coulomb potential, Z is the atomic number, and L and S are the
orbital and spin angular momentum. SOC contributes to the scattering potential and
induces a spin-dependent spatial asymmetry of the reflected electrons (see Fig. 3.7),
which leads to the following results.

• The term L ⋅ S depends on spin polarization of electrons. Thus, the scattering
probability of spin-polarized electron to right and left will be different. Taking
into account that the term L ⋅ S(> 0) can be maximized and can induce max-
imum repulsion if S = ±∣S∣n̂ (n̂: unit vector normal to the scattering plane),
the scattering probability is related to spin polarization perpendicular to the
scattering plane.

• HSOC becomes large for high-Z heavy elements and larger L. Heavy-element
materials are suitable for use as scattering target.

Left-right scattering asymmetry can be defined as

A = IL − IR

IL + IR

, (3.19)

where IL (IR) is the intensity of the detected electrons scattered to the left (right).
The asymmetry A is related to the spin polarization P as

P = A
S
= 1
S

IL − IR

IL + IR

, (3.20)

where S is the Sherman function, i.e., the spin sensitivity of the detector. S depends
on the target material, the electron energy, and the scattering angle, and can be
evaluated experimentally.

The scattered intensity I is proportional to the differential cross section dσ
dΩ and can

be written as [136]

I = dσ

dΩI0,

dσ

dΩ(θ, ϕ) = R(θ, ϕ) (1 + S(θ, ϕ)P ⋅ n̂) , (3.21)

where I0 is incident photo current, R is the spin integrated scattering amplitude, θ
and ϕ are the polar and azimuthal angles of the scattered electrons, respectively, n̂
is the scattering plane normal. In a kinematic model, the scattering cross section
only depends on θ. In contrast, for low-energy scattering at the solid surface such as
SP-LEED and an imaging spin filter, S and R depend on θ and ϕ due to multiple
scattering [148].
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3.3.2 Imaging spin filter
Up to now spin-resolved experiment have been extremely time-consuming because of
the low efficiency of spin detectors and single-channel spin detection by which the
spin at one energy and at only one momentum point (kx, ky) can be detected at a
time [7]. These difficulties are overcome by combining momentum microscopy with
an imaging spin filter, which enables parallel spin detection in the entire momentum
image [6, 148].

The imaging spin filter is based on the spin-dependent specular reflection of low-
energy electrons which is governed by SOC. The imaging spin filter is introduced into
the electron optical path after the energy filter of the double hemispherical analyzer as
shown in Fig. 3.4. The imaging spin filter can be inserted/retracted after the second
analyzer from the beam path. The reciprocal/real-space image is formed at the scat-
tering target such that every position of the images is encoded as a different scattering
angle. Electrons are reflected from the target at an angle of 45○, corresponding to a
central image point, with small deviations ±1.5○ (off-center image points) as shown in
Fig. 3.4. The image information is conserved upon the mirror-like specular reflection
in the (00) LEED beam. Note that the obtained image is flipped upon the reflection
with respect to the plane perpendicular to the scattering plane. The quantization
axis P is aligned perpendicular to the scattering plane as we discussed in Sec. 3.3.1.

For the single-channel detector based on SOC, spin-polarized electrons scattered to
the left and right are detected (see Fig. 3.7). For the imaging spin filter, right/left-
scattered electrons can be detected by e.g., tilting the spin-filter crystal around 90○
back and forth. Instead, we measure two different images at two different scattering
energies. Though we need two detectors for the former way, for the latter way we
need only one detector and thus we do not need to change the optical path.

The scattering amplitude depends on the scattering energy [152] such that we
replace I = IEs , S = SEs ,R = REs in eq. 3.21. As shown in Fig. 3.4, electrostatic
decelerating and accelerating lenses before and after the scattering target allow the
selection of the scattering energy Es of the electrons. We need to know SEs and REs

in advance, and the property of the spin filter will be described later.
Here, we derive a general equation to obtain a spin-resolved image from eq. 3.21.

The spatial coordinate (x, y) [the momentum coordinate (kx, ky)] is encoded in the
corresponding angle (θ, ϕ). We replace R(θ, ϕ), P (θ, ϕ) by R(x, y), P (x, y). Only
the component of the polarization vector P parallel to the scattering plane normal n̂
can be measured. Therefore, we write P = P ⋅ n̂. From eq. 3.21, we obtain intensities
IEs1 , IEs2 at two different scattering energies Es1, Es2:

IEs1(x, y) = I0(x, y) (1 + SEs1(x, y)P (x, y))REs1(x, y) (3.22)

IEs2(x, y) = I0(x, y) (1 + SEs2(x, y)P (x, y))REs2(x, y) (3.23)

Dividing eq. 3.22 by eq. 3.23, we obtain the spin polarization P (x, y) and subsequently
the spin-integrated incident photocurrent I0(x, y):
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3.3 Spin-resolved momentum microscopy

P (x, y) =
IEs1(x,y)

REs1(x,y) −
IEs2(x,y)

REs2(x,y)

SEs1(x, y)
IEs2(x,y)

REs2(x,y) − SEs2(x, y)
IEs1(x,y)

REs1(x,y)

= ΓEs1(x, y) − ΓEs2(x, y)
SEs1ΓEs2(x, y) − SEs2ΓEs1(x, y)

, (3.24)

I0(x, y) =
SEs1(x, y)

IEs2(x,y)

REs2(x,y) − SEs2(x, y)
IEs1(x,y)

REs1(x,y)

SEs1(x, y) − SEs2(x, y)

= SEs1ΓEs2(x, y) − SEs2ΓEs1(x, y)
SEs1(x, y) − SEs2(x, y)

, (3.25)

where ΓEs(x, y) =
IEs(x,y)

REs(x,y) denotes the measured intensity at the scattering energy
Es normalized by the respective reflectively REs(x, y). The reflectively REs(x, y) can
be obtained from an unpolarized electron image with homogeneous intensity. We
measured a clean Cu(100) surface illuminated with unpolarized light from a mercury
lamp in defocused condition [148]. As the spin sensitivity S is sufficiently constant
over the image, we assume SEs(x, y) = SEs [148].

Figure 3.8 demonstrates how we analyze the spin-resolved data. We first obtain the
intensity IEs(kx, ky) [Figs. 3.8(a, d)] measured on the NiTe2 sample and the reflectively
REs(x, y) [Figs. 3.8(c, f)] measured on a clean Cu(100) surface illuminated with a
mercury lamp at two different scattering energies Es1, Es2. One can clearly find the
different reflectively between Es1 and Es2 which originate from the spin-filter crystal.
We then obtain the normalized intensity ΓEs(kx, ky) = IEs(kx,ky)

REs(x,y) [Figs. 3.8(b, e)]. Based
on eqs. 3.24 and 3.25, we finally obtain the spin polarization P (kx, ky) [Fig. 3.8(i)]
and the spin-integrated total intensity I0(kx, ky) [Fig. 3.8(j)].

In this thesis, we utilized a W(100) spin-filter crystal. Figure 3.9 shows the spin
sensitivity S and the spin-averaged reflectively R as function of the scattering energy
[148]. One can determine working points, such that large difference of the spin sensi-
tivity S at two different scattering energy and/or high reflective R are fulfilled. We
utilize two working points in the scattering energy at Es1 = 26.5 eV and Es2 = 30.5 eV
with a spin sensitivity of S26.5eV = 0.42 and S30.5eV = 0.05.

The well established procedure for preparation of the W(100) crystal leads to clean,
carbon free surfaces [153]. Several cycles of low-power flash (1700 K) in 5×10−8 mbar
O2 atmosphere are performed followed by a final single high-power (2500 K) flash
removing the oxide layer right before measurement. At a pressure of 1 × 10−10 mbar
inside the spin-filter chamber during the measurements, the analyser-crystal could be
used for 2 hours. Several hours after the high-power flash, a single low-power flash
(without O2) partially recovers W(100) surface and one can restart another set of
the spin-resolved measurements for another 2 hours. We have used several low-power
flash before repeating a time-consuming full preparation (several cycles of low-power
flash with O2 + high power flash).
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Figure 3.8: Analysis of the spin-resolved data of NiTe2 measured using a W(100) spin
filter. (a-c) Measurement at Es1 = 26.5 eV. (d-f) Measurement at Es1 = 30.5 eV. (a, d)
Measured IEs(kx, ky). (b, e) ΓEs(kx, ky). (c, f) Measured REs(kx, ky). (g) Obtained
P (kx, ky). (h) Obtained I0(kx, ky).
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Figure 3.9: Properties of the spin-filter crystal of W(100). Spin averaged reflectivity
I/I0 and spin sensitivity S as a function of the electron scattering energy Es. Working
points are indicated by dotted lines at Es1 = 26.5 eV and Es2 = 30.5 eV. Data from
[148]. Adapted from [126].

3.4 Polarization

3.4.1 Effect of the matrix element
The photoemisiion intensity distribution can be described by the matrix element as
introduced in Sec. 3.1.3. Here, we demonstrate how we determine the orbital character
of the initial state wave function ∣ϕk

i ⟩ by use of the optical polarization of the incident
light ϵ. We assume that the final state ∣ϕk

f ⟩ is even with respect to mirror plane like a
free electron (since odd-parity states are zero everywhere on the mirror plane). Any
component of ϵ orthogonal to the mirror plane has odd parity, while the component
parallel to the mirror plane has even parity. Therefore, the parity of each term can
be summarized as:

∣Mk
f,i∣∝ ∣⟨ϕk

f ∣ϵ ⋅ r∣ϕk
i ⟩∣ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⟨+∣ + ∣+⟩ ≠ 0 ϕk
i ∶ even → ϵ ∶ even (p-polarization)

⟨+∣ − ∣−⟩ ≠ 0 ϕk
i ∶ odd → ϵ ∶ odd (s-polarization)

⟨+∣ + ∣−⟩ = 0
⟨+∣ − ∣+⟩ = 0

(3.26)
For p-polarization, which is the plane of polarization parallel to the mirror plane
(see Fig. 3.10), only even orbital components of the initial state contribute to the
photoemission intensity, while for s-polarization, which is the plane of polarization
perpendicular to the mirror plane, only odd components contribute. Detectable or-
bitals in the case of the xz- and yz-mirror planes are summarized in Fig. 3.10.
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(i) Mirror plane: xz-plane
px py pz

p-pol. ✓ - ✓
s-pol. - ✓ -

dxy dyz dzx dx2−y2 dz2

p-pol. - - ✓ ✓ ✓
s-pol. ✓ ✓ - - -

(ii) Mirror plane: yz-plane
px py pz

p-pol. - ✓ ✓
s-pol. ✓ - -

dxy dyz dzx dx2−y2 dz2

p-pol. - ✓ - ✓ ✓
s-pol. ✓ - ✓ - -

Figure 3.10: Polarization-dependent photoemission probes orbital symmetry. The
experimental geometry is indicated on the left hand side together with the px orbital
as an example. The px orbital is even with respect to the xz-plane and odd with
respect to the yz-plane. Purple and green arrows indicates the electric field vector
(E) for p- and s-polarized light, respectively. Detectable orbitals in the case of the xz-
and yz-mirror planes are summarized on the right hand side. ✓: Allowed orbitals. -:
Forbidden orbitals.

As we see now, differently polarized light probes specific orbital symmetries. This
thesis aims to clarify the orbital texture of topologically non-trivial bands. Here, we
see an application of polarization-dependent measurements to the prototypical type-I
Weyl semimetal TaP. As shown in Fig. 3.11(a), TaP possesses 24 Weyl points in the
first BZ [46–48]. Each Weyl point possess a chiral charge C = ±1. A projection onto
the (001) surface gives rise to two inequivalent sets of projected Weyl points, W1 and
W2. Since there are two W2 at the same kz, the projected Weyl point W2 onto the
(001) surface carries a chiral charge C = ±2. The Fermi surface of TaP(001) consists of
the spoon-shaped feature α, the neck feature β, and the outer bowtie-shaped feature
γ around the X and Y points as shown in Figs. 3.11(b, d). Ref. [154] assigned the
state α to the surface Fermi arc, the state β to the bulk-like states, the state γ to the
surface-like state. These three states are separated by the Weyl points W1 and W2.
The two split Fermi arcs α terminate at the Weyl point W2. Since the number of
the Fermi arcs corresponds to the chiral charge as a result of the the bulk-boundary
correspondence (see Sec. 2.2.3), this observation is consistent with a chiral charge
C = ±2 of the projected W2.

Photoemission-intensity maps excited by p- and s-polarized light exhibit different
intensity variations for the different states, because different orbital symmetries con-
tribute to the photoemission intensity. For s-polarized light [Fig. 3.11(b)], the state
α along the kx = 0 axis on the upper side and the state β along the ky = 0 axis on
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Figure 3.11: Orbital-resolved band structures in TaP(001) (a) Brillouin zone showing
24 Weyl points. (b) Photoemission-intensity maps obtained with s-polarized light.
(c) Linear dichroism, defined as the intensity asymmetry I(kx, ky) − I(−kx, ky), ob-
tained from the measured intensity I(kx, ky) with p-polarized light in panels (b). (d)
Calculated Fermi surface projected onto different Ta 5d and P 3p orbitals derived
from surface or bulk. α,β, and γ indicate the features and W1 and W2 indicate the
projected Weyl points. (a) adapted from [15]. (b-d) adapted from [154].

the right hand side are pronounced. According to the calculated Fermi surface in
Fig. 3.11(d), the state α along the kx = 0 axis includes odd py orbital and the state
α along the ky = 0 axis mainly consists of odd dyz orbital. The observation agrees
with the fact that s-polarized light is sensitive to odd orbitals with respect to the
xz optical mirror plane (see Fig. 3.10(i)). The different intensity variations for the
α and β distinguish the topological Fermi arc α and the bulk-like states β, which
are characterized by the different orbital symmetries [154]. The linear dichroism in
Fig. 3.11(c) will be discussed in Sec. 3.4.3.

Next, we see orbital-dependent spin texture taking the Dirac-cone surface states
as an example. The spin texture of the Dirac-cone surface states has been directly
observed by spin-resolved ARPES [36]. Later several studies have reported that the
measured photoelectron spin depends on the optical polarization of the exciting light
[155–157].

Figures 3.12 (a-e) shows the most advanced observation of the spin texture of the
Dirac cone in Bi2Se3 by spin-resolved momentum microscopy [158]. It clearly shows
that the probed spin texture is reversed when using p- and s-polarized light. This
is caused by a concept that different spin textures are locked to different orbitals as
schematically shown in Fig. 3.12(f) [156, 157, 160]. This is a direct consequence of the
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Figure 3.12: Orbital-dependent spin texture of the Dirac-cone surface sates. (a-e)
Spin-resolved measurement of Bi2Se3 excited by s- (a, c) and p- (b, d) polarized light.
Red, blue, and gray shaded intensities show the photoelectron spin polarization along
the ky in-plane direction according to the two dimensional color code and photoe-
mission geometry displayed in panel (e). (f) Reversed spin texture upon different
polarization is caused by a concept that different spin textures are locked to different
orbitals. (a-e) adapted from [158]. (f) adapted from [159].

large SOC present in topological insulators. Note that the observation of a reversed
photoelectron spin polarization for different light polarizations in topologically trivial
materials such as BiTeI reveals that this effect is not due to topological protection,
but large SOC [161]. An additional asymmetry of intensities and spin polarizations
between the left and right half of the cone for p-polarized light is caused by the linear
dichroism and will be discussed in Sec. 3.4.3.

Kuroda and Yaji et al. systematically measured the 3D spin polarization vector
(Px, Py, Pz) of spin-orbit coupled surface states in Bi2Se3 and Bi(111) as a function
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of the linear-polarization angle with respect to the incident mirror plane from p- to
s-polarization [162, 163]. Since spin-orbit entanglement causes the wave function to
be a coherent superposition of the spinor coupled to orbital components [159, 160,
164], they demonstrated that p- and s-polarized light can selectively excite the the
fully spin-polarized photoelectron with spin-up or spin-down states and in other case
the both states can be excited simultaneously due to spin-dependent interference in
photoemission.

3.4.2 Circular dichroism
Circularly polarized light, which possesses a specific chirality itself, couples to chiral
systems. In general, circular dichroism implies that the response of a chiral crystal
to left and right circularly polarized is different. Circular dichroism in the angular
distribution (CDAD) can be caused by not only a intrinsic chiral system but also a
chirality that is induced by the handedness of the experimental setup [8, 165] as
shown in Fig. 3.13. As shown in Fig. 3.14, circularly polarized light breaks the
mirror symmetry of the incident plane, giving rise to a top-bottom asymmetry of
the photoemission intensity. The CDAD signal ICDAD is then obtained from the
difference of photoemission intensities taken with right(IR)- and left(IL)-circularly
polarized light in two separate measurements and thus defined as

ICDAD(kx, ky) = IR(kx, ky) − IL(kx, ky) ∶ Definition (i). (3.27)

The CDAD asymmetry can be used for a quantification of the CDAD effect and is
defined as

ACDAD(kx, ky) =
IR(kx, ky) − IL(kx, ky)
IR(kx, ky) + IL(kx, ky)

, (3.28)

Figure 3.13: Natural handedness (left) and handedness induced by a dissymmetric
experimental arrangement (right). The incoming light vector q, the outgoing photo-
electron momentum k, and the surface normal n̂ define a handed coordinate system.
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Figure 3.14: Circular dichroism in the angular distribution (CDAD) of MoTe2. (a)
Schematic illustration of experimental geometry indicating the incident mirror plane
aligned in the xz-plane. (b-d) Fermi-surface contour obtained with right circularly
polarized light IR (b), left circularly polarized light IL (c), IR−IL (CDAD) (d). IR and
IL maps exhibit a top-bottom asymmetry of the photoemission intensity and fulfill
IR(kx, ky) = IL(kx,−ky).

which varies between ±1.
In detail, the incoming light vector q, the outgoing photoelectron momentum k,

and the surface normal n̂ define a handed coordinate system as shown in Fig. 3.13.
We assume that the incoming light is in the xz(yz)-plane. Here, symmetry arguments
allow the following general conclusions.

• The CDAD due to the experimental geometry vanishes at the ky = 0 (kx = 0)
line along the incident plane, because all three vectors q, k, and n̂ lie in the
same plane and thus cannot a define handedness.

• When the incident plane matches a crystal mirror plane, a result ĨR, where
tilde˜stands for mirrored experiment with respect to the incident plane, yields
the identical result as the original experiment with reversed circularly polarized
light IL, since the mirror operation reverses the photon helicity, i.e., ĨR(kx, ky) =
IL(kx, ky). Thus, we obtain

IR(kx, ky) = IL(kx,−ky) (xz mirror plane) (3.29)
(IR(kx, ky) = IL(−kx, ky) (yz mirror plane)), (3.30)

where ICDAD(kx, ky) = IR(kx, ky) − IL(kx, ky) is an odd function of ky (kx). The
CDAD should be anti-symmetric with respect to the incident plane.
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In this case, the CDAD can be obtained in another way in a single measurement
without helicity reversal as

ICDAD(kx, ky) = IR(kx, ky) − IR(kx,−ky) ∶ Definition (ii). (3.31)

Further studies with detailed calculation of the dipole transition matrix element
∣Mk

f,i∣ ∝ ∣⟨ϕk
f ∣ϵ ⋅ r∣ϕk

i ⟩∣ in eq. 3.15 suggests that CDAD probes the orbital part of the
wave function [8, 165] and is related to the orbital angular momentum [166].

We aim to capture a topological signature, which is related to the orbital degree
of freedom of the electronic states. A fingerprint of the Weyl points and the associ-
ated chiral Dirac states can be obtained through the CDAD measurement. Previous
studies have reported the CDAD accesses the orbital angular momentum or the Berry
curvature of Dirac cones in graphene [167, 168] and topological insulators [169, 170],
and of valleys in TMDCs [171, 172]. Recently, this attempt has been applied to Weyl
semimetals, demonstrating that momentum mapping of the orbital angular momen-
tum reflects the Berry curvature field describing the Weyl nodes [173].

Figure 3.15 shows the orbital- and spin angular momentum, and the Berry curva-
ture field of the type-I Weyl semimetal TaAs. Broken space-inversion symmetry and
SOC induces a spin splitting into non-degenerate band branches v± and c± due to the

Figure 3.15: Orbital and spin angular momentum, and Berry curvature field of the
type-I Weyl semimetal TaAs. (a) Calculated bulk band dispersion projected onto
the orbital angular momentum Lx (top) and corresponding measured band dispersion
for the circular dichroim (bottom). (b) Calculated bulk band dispersion projected
onto the spin angular momentum Sx. (c) Momentum maps of the orbital angular
momentum Lx and the Berry curvature Ωx slightly below an energy of the Weyl node
W2 (black points). Adapted from [173].
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Kramers theorem (see Sec. 2.3.1). The spin-split branches v± and c± carry parallel
orbital angular momentum (Fig. 3.15(a)), while antiparallel spin angular momentum
(Fig. 3.15(b)). Ref. [173] further confirmed this experimentally by performing CDAD
and spin-resolved photoemission. The CDAD signal can be shown to be approxi-
mately proportional to the projection of the orbital angular momentum L on the
light propagation direction [166, 169, 173]. In this experimental geometry, where the
light is incident along the x direction, the CDAD signal predominantly reflects the Lx

component of the orbital angular momentum. A comparison of the measured CDAD
and the Lx of band structure shows a good agreement. As indicated in Fig. 3.15(c),
momentum maps of the orbital angular momentum Lx and the Berry curvature Ωx

are closely related. Sign changes of the Lx and the Ωx close to the Weyl nodes reveal
the topological nontrivial winding of the wave function.

3.4.3 Linear dichroism
Circular polarized light breaks the mirror symmetry of the incident plane and gives rise
to an asymmetries of the intensities as shown in Fig. 3.14. In the same analogy, a finite
Ez component of the electric field vector, e.g, linearly p-polarized light, breaks the
mirror symmetry and gives rise to an asymmetry of the intensities. This asymmetry
reflects the linear dichroism in the angular distribution (LDAD) [174, 175]. We assume
that the incidence of p-polarized light is in the yz-plane (see Fig. 3.16(a)). The tilted
electric field vector E aligned in the same plane breaks the symmetry of the xz-plane,
i.e., the orthogonal plane to the incident mirror plane. This causes a top-bottom
asymmetry of the intensity as shown in Fig. 3.16(b). The term ”dichroism” here
refers to the different response of a system to p-polarized light coming from −ky and
+ky directions at a definite angle (see Fig. 3.16(a)). Ez,p (E′z,p) and Ip (I ′p) are the
electric field vector and measured intensity with p-polarized light coming from −ky

(+ky). Thus, the LDAD signal ILDAD is determined as

ILDAD(kx, ky) = Ip(kx, ky) − I ′p(kx, ky) ∶ Definition (i). (3.32)

We consider that mirror operation with respect to the xz-plane converts Ez,p to
E′z,p. Therefore, the LDAD signal ILDAD is evaluated in another way from a single
measurement I(kx, ky) as

ILDAD(kx, ky) = Ip(kx, ky) − Ip(kx,−ky) ∶ Definition (ii), (3.33)

where Ip(−kx, ky) is the reversed intensity map with respect to the xz-plane. The
LDAD asymmetry is defined as

ALDAD(kx, ky) =
Ip(kx, ky) − Ip(kx,−ky)
Ip(kx, ky) + Ip(kx,−ky)

. (3.34)

Note that Definition (ii) includes information on the broken mirror symmetry due
to not only the incident light but also the crystal structure as described in detail in
Sec. 5.2.
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Figure 3.16: Linear dichroism in the angular distribution (LDAD) of MoTe2. (a)
Schematic illustration of experimental geometry indicating the incident mirror plane
aligned in the yz-plane. (b) Fermi-surface contour obtained with p-polarized light Ip
showing a top-bottom asymmetry of the photoemission intensity. (c) Corresponding
map of ILDAD(kx, ky) = Ip(kx, ky) − Ip(kx,−ky).

The LDAD and CDAD reflect the handedness of the experiment and give similar
information on the orbital part of the wave function except for a phase factor [174].

An application of the LDAD to the type-I Weyl semimetal TaP is indicated in
Fig. 3.11(c). The measured LDAD I(kx, ky) − I(−kx, ky) map clearly shows a sign
reversal between the topological Fermi arc α and the bulk-like states β at the Weyl
point W2 as indicated by black arrows. Note that the LDAD does not directly reflect
a specific orbital. These complement measurements together with p- and s-polarized
light clarified pronounced switches in the orbital texture at the projected Weyl points
[154], reflecting the different orbital character of the topological Fermi arc and the
bulk-like states.

Next, we discuss the LDAD effect of spin polarization taking the Dirac-cone surface
states as an example. As shown in Figs. 3.12(b, d), for p-polarized light, one can find
an additional asymmetry of intensities and spin polarizations between the left and
right half of the cone due to the LDAD. This asymmetry in the spin-polarization can
be attributes to a different LDAD for spin-up and spin-down states, and shows that
these spin-states can be locked to different orbitals [158].
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3.5 NanoESCA beamline
We performed all experiments at the NanoESCA beamline [176] of the Elettra Syn-
chrotron in Trieste, Italy, operated by PGI-6, Forschungszentrum Jülich. A com-
mercial momentum microscope (NanoESCA) with a aberration compensated double
hemispherical analyzer [131, 134] is available there, with some modifications. It is
equipped with a W(100) imaging spin filter. Dual APPLE-II type undulators with
phase modulation electromagnet in the beamline provide a wide range of photon en-
ergies between 25 eV and 1000 eV with lineally and circularly polarized light. The
beam spot size is focused to around 10µm (V) × 20µm (H). We confirmed the beam
spot size from a PEEM image as indicated in Fig. 3.5(c). The energy resolution of
the analyzer can reach 100 meV. The sample stage can be cooled down at T ∼ 100 K
using liquid nitrogen and at T ∼ 30 K using liquid helium. The NanoESCA beamline
is equipped with the in-situ preparation chamber including a sample heating stage
(annealing system), a sputter gun, a low energy electron diffraction (LEED), Auger
electron spectroscopy (AES), and a metal evaporation system, which provides the
complete surface cleaning and preparation system.
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4 Type-II Dirac semimetal NiTe2

4.1 Sample preparation
The crystal of NiTe2 was mounted on the sample plate with silver epoxy and the
plate was attached to the sample holder as shown in Fig. 4.1(a). Dr. Raman Sankar at
Prof. Fang-Cheng Chou’s group, National Taiwan University synthesized high-quality
single crystals of NiTe2 as described in Ref. [80] and provided them as a collaborative
project. Since the layered 2D nature of NiTe2 offers a natural cleaving plane (see
Sec. 2.4.5), we cleaved the crystal in situ at room temperature using a carbon tape
as shown in Fig. 4.1(b). As shown in Fig. 4.1(c), we succeeded in obtaining a low
energy electron diffraction (LEED) pattern after cleavage, suggesting a clean sample
surface. We measured them in an ultrahigh vacuum of better than ∼ 10−10 Torr. All
measurements were performed while keeping the sample at T ∼ 100 K. Before the
momentum microscope measurements, the best sample region was selected by using
photoemission electron microscopy (PEEM) as described in Fig. 3.5.

Figure 4.1: (a) NiTe2 sample on the sample holder. (b) We cleaved the sample using
a carbon tape. (c) Low energy electron diffraction (LEED) pattern measured with an
electron beam energy of 44 eV showing sharp spots.

4.2 Fermi surface tomography
To construct the 3D Fermi surface of NiTe2, we have performed photon-energy-
dependent measurements in the energy range between 48 eV and 132 eV as shown in
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4 Type-II Dirac semimetal NiTe2

Fig. 4.2. This measurement enables us to determine specific photon energies which
can access the high-symmetry points from symmetry of a shape of the observed bands
as described later. 2D momentum discs shows tomographic sections through the 3D
BZ in reciprocal space as indicated in Fig. 4.2(a). These disks are described by
eq. 3.8 as a constant-energy sphere in k space, and the perpendicular momentum
component (k⊥) is selected by the photon energy. We performed a band structure
calculation in collaboration with Dr. Philipp Rüßmann at Peter Grünberg Institut
(PGI-1), Forschungszentrum Jülich. Density functional theory (DFT) calculations
were carried out within the local spin density approximation [177] using the full-
potential relativistic Korringa-Kohn-Rostoker Green’s function method (KKR) [178,
179] with exact description of the atomic cells [180, 181]. The 3D Fermi surface

Figure 4.2: Fermi surface tomography. (a) Bulk and surface Brillouin zone together
with the corresponding 2D momentum discs measured at several photo energies as
indicated by the spherical section. (b) Calculated 3D Fermi surface. (c-e) Measured
Fermi-surface contour at a photon energy of hν = 96 eV (c), 81 eV (d), and 67
eV (e). High symmetry points of the surface Brillouin zone are indicated by the
corresponding labels. (f, g) kz dispersion maps at EF along M−K−Γ−K−M (f) and
Γ −M − Γ −M′ − Γ(g) indicated by dark orange orthogonal planes in panel (a). Dark
blue lines indicate calculated bulk bands.
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4.2 Fermi surface tomography

exhibits a three-fold and space-inversion symmetry reflecting the symmetry of the
crystal structure (see Fig. 2.10(b)). Figure 4.2(b) shows Fermi surface contours at
the top and bottom D points (kz = ±0.75π

c ) between the Γ and A points (see Fig
2.10(c) or Fig 4.2(a)) indicated by red and blue contours, respectively, demonstrating
that the direction of the contour is reversed.

A Fermi surface contour obtained at hν = 81 eV [Fig. 4.2(d)] cutting through the
high symmetry Γ point is characterized by a flower-like shape with six-fold symmetry
centered at the BZ center. Fermi surfaces contour obtained at hν = 96 eV [Fig. 4.2
(c)] and 67 eV [Fig. 4.2(e)] cutting through the top and bottom D point demonstrate a
triangle-like contour with three-fold symmetry. The direction of the triangle contour
obtained at both photon energies is reversed, which is consistent with the calculated
3D Fermi surface. The reversal is required by space-inversion symmetry of the crystal
structure. Our result is the first experimental observation of the full 3D Fermi surface
in the type-II Dirac semimetal 1T -MX2.

Figures 4.2(f, g) show kz dispersion maps at EF along the M −K − Γ −K −M (f)
and Γ −M − Γ −M′ − Γ (g) directions indicated by dark orange orthogonal planes in
Fig. 4.2(a). The photon energy hν is converted to kz based on eq. 3.9. From the
photon energy scan measurement, we found best agreement to the calculated band
structure by taking an inner potential Ui = 9.5eV + ϕ. Here, the inner potential was
determined from an energy offset between an experimental kinetic energy at the high
symmetry point Ekin = hν − ϕ and an energy at the corresponding high symmetry kz

Ekin +Ui =
h̵k2

z

2m .

As described in Fig. 2.10(a), appearance of the boundary between hole and electron
pockets together with the Dirac point at ED is a solid signature of the strongly
titled Dirac cone in the type-II Dirac semimetal NiTe2. As we can see from the
calculated 3D Fermi surface in Fig 4.2(b), a dark orange colored hole pocket and a
green colored electron pocket touch at the Weyl point. As shown Figs. 4.2(f, g), one
observes an inner ellipse-like electron pocket centered at (k∥, kz) = (Γ,Γ), as clearly
recognized from calculated bulk bands indicated by dark blue lines. This electron
pocket corresponds to the orange electron pocket in Fig. 4.2(b). Above and below
the electron pocket, one finds the Dirac points at (k∥, kz) = (Γ,D) and adjacent hole
pockets.

The observed band dispersions should fulfill a 3-fold and space-inversion symmetry
expected from the crystal symmetry described in Sec. 2.4.5. Fermi surface sections
are symmetry with respect to the kx = 0 line, i.e., the Γ −M − Γ −M′ − Γ direction,
which corresponds to the axis of the 3-fold symmetry, as seen from Figs. 4.2(c-e). The
kz dispersions at EF along M −K − Γ −K −M [Fig. 4.2(f)], corresponds to a section
parallel to the mirror plane, exhibits symmetry with respect to the kx = Γ line. The
kz dispersions at EF along Γ −M − Γ −M′ − Γ [Fig. 4.2(g)] exhibits asymmetry with
respect to the k∥ = Γ and kz = Γ lines. Measured sections through the Fermi surface
show an overall good agreement with calculated ones and the expected symmetries.
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4 Type-II Dirac semimetal NiTe2

Figure 4.3: Band structures at the high symmetry (Γ, A) and the Dirac (D) points.
Measured Fermi-surface contours (a, d, g, j, m) and band dispersions along the M −
K − Γ −K −M (b, e, h, k, n) and Γ −M − Γ −M′ − Γ (c, f, i, l, o) directions measured
at a photon energy of hν = 81 eV (Γ) (a-c), 67 eV (D) (d-f), 60 eV (A) (g-i), 56 eV (D)
(j-l), 45 eV (Γ) (m-o) with p-polarized light are indicated. Corresponding momentum
sections for the band dispersions are indicated by red dotted lines on the Fermi-surface
contours and dark orange orthogonal planes on the surface BZ in Fig. 4.2(a). BD and
B1 represent the bulk Dirac cone and the bulk state B1, respectively, indicated by
orange arrows. SD, S1, and S2 represent the surface Dirac cone, the surface states S1
and S2, respectively, indicated by green arrows. Red dotted lines in panels (e, f, k, l)
indicate binding energies where we display spin-resolved results in Figs. 4.6 and 4.7.
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4.3 Band structure
We measured band-dispersions at the high symmetry (Γ and A) and the Dirac (D)
points as shown in Fig. 4.3. We display measured Fermi-surface countours and band
dispersions along the M−K−Γ−K−M and Γ−M−Γ−M′ −Γ directions from left to
right. Corresponding momentum sections for the band dispersions are indicated by
red dotted lines on the Fermi-surface contours. Since the bulk Dirac cone disperses
in 3D momentum space, the up-right Dirac cone appears only at the D point. One
can find the Dirac cone centered at the Γ point near EF, annotated by a orange arrow
with label BD [Figs. 4.3(e, f)]. One can also observe a hole-like band outside the B1
band indicated by a orange arrow labeled B1. The B1 band actually develops from
the flower-like into the triangle-like contour as a function of kz as seen in Fig. 4.2.
We find an overall agreement of measured band dispersions with the calculated bulk
bands indicated by blue lines. Note that one can not find a clear signature of the
up-light bulk Dirac cone at hν = 56 eV (D point) probably because the bulk states
are suppressed and the surface states are enhanced due to matrix-element effects.

Now we take a look at the surface states. One can observe the surface Dirac
cone with the Dirac point at E ∼ EF − 1.4 eV at the Γ point, indicated by orange
arrows labeled SD in Fig. 4.3. One can also find that the photoemission intensity of
the surface Dirac cone is modulated as a function of the photon energy. It is most
pronounced at hν = 56 eV [Figs. 4.3(k, l)], and is suppressed and almost vanishes at
hν = 67 eV and 81 eV. Interestingly, even when the surface Dirac cone disappears
at the first BZ, one can find the surface Dirac cone with pronounced intensity at the
second BZ, e.g., measured at hν = 60 eV [Fig. 4.3(i)] and 81 eV [Fig. 4.3(c)]. Such
phenomena that a certain band dispersion is suppressed in a certain BZ, whereas it
is clearly observed in the next BZ have been often experimentally reported. This
can also be related to matrix-element effects, which so far has not been theoretically

Figure 4.4: Bulk and surface character of the bands obtained by the thin film calcu-
lation. (a) Band dispersion showing the surface and bulk character according to the
blue and red color code on the right hand side. (b) We used an 8 trilayers film model.
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calculated [126]. In addition to the surface Dirac cone, several other surface states
are present. For instance, the surface state S1 is indicated in band-dispersion maps
measured at hν = 67 eV and S2 at hν = 45 eV and 56 eV. The SD, S1, and S2 states
are consistent with previous ARPES and theoretical studies [81, 82].

To identify the surface and bulk origin of the bands, we performed a thin film
calculation for an 8 trilayer film of NiTe2 as shown in Fig. 4.4. We define a localization

of the states X = n
1st − nmid

n1st + nmid , where n1st , nmid are the integrated densities within the
1st and 4th (i.e, middle) trilayer in the film, respectively. The localization of the states
X gives the surface and bulk character according to the blue and red color code on
the right hand side in Fig. 4.4(a). The observed SD, S1, and S2 bands indicated by
green arrows are well reproduced by the calculation.

Next, we focus on the Bulk Dirac cone. Figure 4.5 shows the energy development of
momentum sections measured at a photon energy of hν = 67 eV (D point). One can
see that the triangle-like B1 band indicated by yellow arrows becomes bigger towards
deeper binding energies. Inside the B1 band, the bulk Dirac cone with the Dirac point
near EF develops into a star-like triangle pocket BD clearly seen at E = EF−0.4 eV. We
find a good agreement of the observed B1 and BD bands with bulk band calculation
indicated by dark blue lines at E = EF,EF − 0.5 eV. Inside the bulk Dirac cone,
one can find a circular contour developing from E = EF − 0.4 eV and clearly seen at
E = EF − 0.7 eV, which corresponds to the S1 band. Our calculation clarified that

Figure 4.5: Energy development of momentum distribution of photoemission intensity
measured at a photon energy of hν = 67 eV (D point) with p-polarized light. Dark
blue lines indicate the calculated bulk bands.
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4.4 Spin texture

bulk-derived states exhibit a three-fold symmetry at the off-high-symmetry point,
while surface-derived states exhibit a six-fold symmetry, since surface states can be
understood as projection of all kz in the BZ.

4.4 Spin texture
Figure 4.6 shows a spin-resolved measurement of the surface Dirac cone. For the spin-
resolved measurements, the spin quantization axis P points in-plane along the positive
ky axis. The spin-resolved momentum map recorded slightly above the surface Dirac
point in Fig. 4.6(a) shows characteristic spin-momentum locking of a inner circular
contour centered at the Γ point with directly opposite Py-spin-polarization (blue and
red colors) for the positive and negative kx. Below the surface Dirac point, the
inner circular contour demonstrates a reversed spin polarization as clearly seen in
Fig. 4.6(b). Though the spin texture of the surface Dirac cone in PdTe2 has been
observed [75], this observation gives clear evidence for a helical spin-polarized surface
Dirac cone in NiTe2 for the first time. Since the surface Dirac cone in the type-II
Dirac semimetal 1T -MX2 is formed by band inversion with non-trivial Z2 topological
order [74, 75] as in topological insulators (see Sec. 2.4.5), the helical spin-polarized
surface Dirac cone is predicted.

Figure 4.7 shows a spin-resolved measurement of the bulk Dirac cone and related
features. One can see that the BD, B1, and S1 bands are spin polarized. All bulk
bands, however, must be spin degenerate in non-magnetic materials, which naturally
preserves time-reversal symmetry, with space-inversion symmetry due to the Kramers

Figure 4.6: Spin texture of the surface Dirac cone. (a, b) Measured constant-energy
maps at E = EF − 1.3 eV (a), EF − 1.55 eV (b) at a photon energy of hν = 56 eV. A
lower inset illustrates the spin texture of the surface Dirac cone.
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Figure 4.7: Spin texture of the bulk Dirac cone. (a-c) Measured constant-energy maps
at E = EF − 0.1 eV (a), EF − 0.4 eV (b), EF − 0.7 eV at a photon energy of hν = 67 eV
cutting through the D point. (d, e) Calculated spin-polarized bulk bands in the top
Te layer for the y component at E = EF−0.1 eV (d), EF−0.5 eV (e) at kz = −0.75π

c (D
point). (f) Schematic 3D spin texture of the bulk Dirac cone and the related features
in (E,kx, ky) space.

theorem described in Sec. 2.3.1. Therefore, the observed spin polarization of the BD
and B1 bands are unexpected. Thus, previous studies on the type-II Dirac semimetal
1T -MX2 only focused on the spin texture of the surface states [75, 81, 82]. The
observed “hidden” spin polarization of the bulk bands originates from the top Te
layer of a Te-Ni-Te trilayer due to broken inversion symmetry at the surface probed
by surface sensitive VUV light, which will be described in detail in Sec. 7.2.

Figures 4.7(d, e) shows calculated spin-polarized bulk bands in the top Te layer at
kz = −0.75π

c (D point). The color code gives the y-component of the spin polarization.
We find a good agreement of the observed spin texture with calculated one. The
observed Py spin texture is anti-symmetric with respect to the kx = 0 axis i.e, Py → −Py

upon the mirror operation kx → −kx. In general, mirror operation with respect to
the mirror plane of three-fold symmetry reverses the spin component parallel to the
corresponding plane, as clearly seen in the calculation. Figure 4.7(f) schematically
illustrates 3D spin texture of the bulk Dirac cone and the related features in (E,kx, ky)
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space. Vectors at each momenta indicate direction of the spin polarization. The color
code gives the y-component of the spin polarization as in Fig. 4.7(d, e). One can find
a complicated spin texture developing in 3D.

4.5 Summary
By preforming photon-energy dependent measurements, for the first time we suc-
ceeded in capturing the full 3D Fermi surface, which reflects the three-fold and space-
inversion symmetry of the crystal structure. Together with band structure calcula-
tions and symmetry arguments, we identified bulk and surface states, latter of which
exhibits a 6-fold symmetry. We give clear evidence for a helical spin-polarized ad-
ditional surface Dirac cone below the Fermi level caused by band inversion as in
topological insulators for the first time in NiTe2. We observed and mentioned for the
first time a “hidden” spin polarization of the bulk Dirac cone and bulk states, which is
not allowed for non-magnetic materials with space-inversion symmetry. The observed
Py spin texture is anti-symmetric with respect to the kx = 0 axis, consistent with the
three-fold symmetry of the crystal structure.
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5.1 Sample preparation
High-quality single crystals of MoTe2 were synthesized by Prof. Keiji Ueno’s group as
described in Ref. [182] for our collaboration. The crystal was mounted on the sample
holder [Fig. 5.1(a)] and was cleaved in situ at room temperature using a carbon

Figure 5.1: (a) MoTe2 sample on the sample holder. (b) Low energy electron diffrac-
tion (LEED) pattern measured with an electron beam energy of 82 eV showing sharp
spots. (c, d) PEEM images illuminated with a mercury lamp including a defect (c)
and on the flat region (d). (e) Measured Fermi-surface contour using p-polarized light
at a photon energy of hν = 52 eV. A red dotted line indicates the Fermi arc as a guide
to the eye.
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tape as in NiTe2. As shown in Fig. 5.1(c), we succeeded in obtaining a low energy
electron diffraction (LEED) pattern after cleavage, suggesting a clean sample surface.
The experimental conditions are the same as measurements of NiTe2 as described in
Sec. 4.1. By measuring real space PEEM images [Figs. 5.1(c, d)], we explored the
best sample region in the same way as Sec. 3.2.1. Figure 5.1(c) includes a defect and
Figure 5.1(d) indicates the flat region. The synchrotron beam is illuminated on the
image center in Fig. 5.1(d) as in measurements of NiTe2 (see Fig. 3.5(c)), where we
recorded the band dispersions.

Figure 5.1(e) shows the measured Fermi-surface contour using p-polarized light at
a photon energy of hν = 52 eV. One can clearly see the hole-pocket centered at the BZ
center and two electron pockets centered at the positive and negative ky = ±0.3 Å−1

and kx = 0. These electron- and hole-pockets form the tilted Dirac cones in the upper
and lower half of the MoTe2 Fermi-surface contour. The measured Fermi-surface
section here corresponds to the planar cut displayed in Fig. 2.9(a), such that the
Dirac cone states appear with a linear crossing in the constant energy photoelectron
momentum map. One can also observe the Fermi arc being located outside of the
electron pocket towards the touching points between the electron- and hole-pockets,
indicated in Fig. 5.1(e) by a red dotted line as a guide to the eye. This result is in
good agreement with previous observations for this material [84, 89].

Figures 5.2 and 5.3 show the sum of photoemission intensities obtained with left and
right circularly polarized light. According to the energy development of momentum
maps in Fig. 5.2, the circular-like hole pocket centered at the BZ center becomes

Figure 5.2: Momentum distribution of the sum of the photoemission intensities ob-
tained with left and right circularly polarized light. (a-d) Constant-energy maps at
E = EF (a), EF − 0.1 eV (b), EF − 0.25 eV (c), EF − 0.325 eV (d).
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Figure 5.3: Band-dispersion maps of the sum of the photoemission intensities obtained
with left and right circularly polarized light at ky = 0 Å−1 (a), −0.08 Å−1 (b), −0.16 Å−1

(c), −0.24 Å−1 (d), −0.32 Å−1 (e), and kx = 0 Å−1 (f). Orange and green dotted lines
indicates hole and electron bands as a guide to the eye.

bigger, and the half-arc-like electron pockets become smaller and finally disappear
towards deeper binding energies. Energy-momentum diagrams in Fig. 5.3 indicate
sections of these hole and electron pockets. At ky = 0 in Fig. 5.3(a), one can find
the hole-like band with the broad band width indicated by a orange dotted line. At
ky = −0.32 Å−1 in Fig. 5.3(e), one can find the electron-like band centered at kx = 0
indicated by a green dotted line. One can see the development of these bands. At
kx = 0 in Fig. 5.3(f), one can find the hole-like band centered at ky = 0 and the
electron-like band centered at ky = ±0.3 Å−1. The observed band dispersions are
overall consistent with previous reports [83, 84, 86–93].
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5.2 Experimental geometry
As described in Sec. 2.4.5, the 1T ′-phased MoTe2 undergoes a transition to the 1Td

phase by cooling down below 250 K [95]. We have performed measurements at T ∼
100 K, where MoTe2 crystallizes in the 1Td structure and becomes a type-II Weyl

Figure 5.4: Experimental geometry. We have performed experiments with two differ-
ent geometries at a photon energy of hν = 52 eV, where the optical plane is aligned
perpendicular (a-d) and parallel (e-h) to the crystal mirror plane. Measured Fermi-
surface contours (b, f) show top-bottom (b) and right-left (f) intensity asymmetries
due to the LDAD. Corresponding maps of ILDAD(kx, ky) = I(kx, ky) − I(kx,−ky) are
displayed in panel (c) and ILDAD(kx, ky) = I(kx, ky) − I(−kx, ky) in panel (g). The
ICDAD map in panel (d) shows a non-vanishing signal at the kx = 0 line. The ICDAD
map in panel (h) shows anti-symmetry with respect to the ky = 0 axis.
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semimetal. 1Td-MoTe2 possesses one mirror plane as indicated by a blue orthog-
onal plane in Figs. 5.4(a, e). We have performed experiments with two different
geometries: (i) The optical plane is aligned perpendicular to the crystal mirror plane
[Fig. 5.4(a)]. (ii) The optical plane is aligned parallel with the crystal mirror plane
[Fig. 5.4(e)]. We display the corresponding results in Figs. 5.4(b-d) for geometry (i)
and in Figs. 5.4(f-h) for geometry (ii). Figure 5.4 shows the measured Fermi-surface
contours taken using p-polarized light (b, f), corresponding linear dichroism (c, g),
and circular dichroism (d, h). For p-polarization, one can find the expected top-
bottom asymmetry of the intensity with respect to the ky = 0 axis in Fig. 5.4(b) for
geometry (i) and right-left asymmetry with respect to the kx = 0 axis in Fig. 5.4(f)
for the geometry (ii). The observed intensity asymmetries reflect the linear dichro-
ism in the angular distribution (LDAD) as described in Sec. 3.4.3. The correspond-
ing ILDAD maps defined as ILDAD(kx, ky) = I(kx, ky) − I(kx,−ky) in Fig. 5.4(c) and
ILDAD(kx, ky) = I(kx, ky) − I(−kx, ky) in Fig. 5.4(g) visualize the LDAD effect more
clearly. In geometry (i), the LDAD is caused solely by the mirror symmetry breaking
due to the incident light with respect to the orthogonal plane to the incident plane.
On the other hand, in geometry (ii), the LDAD is caused by a mixture of the broken
mirror symmetry due to the incident light and the crystal structure. The LDAD
asymmetries ALDAD yield ∼ 30% for both experimental geometries, and therefore we
conclude that the contribution by the broken crystal symmetry is small.

Figures 5.4(d, h) show the circular dichroism. The CDAD signal ICDAD is obtained
from the difference in photoemission intensities for right- and left-circularly polarized
light according to eq. 3.27. When the incoming light vector q, the outgoing photo-
electron momentum k, and the surface normal n̂ lie in the same plane, handedness
can not be defined and contribution of the asymmetric photoemission geometry to
the CDAD should vanish. In geometry (i), contribution of the asymmetric photoe-
mission geometry to the CDAD should vanish at the kx = 0 line, while in geometry
(ii), it should vanish at the ky = 0 line. Nevertheless, we observed a non-vanishing
CDAD at the kx = 0 line in geometry (i), indicating an intrinsic chirality of the
wave functions as described in detail in the next section. In geometry (ii), where
the incident plane coincides with a crystal mirror plane, the observed CDAD map
fulfills anti-symmetry with respect to the incident plane, i.e., the ky = 0 axis based
on eq. 3.29. The overall CDAD vanishes at the ky = 0 line, since eq. 3.29 requires
ICDAD(kx, ky = 0) = IR(kx, ky = 0) − IL(kx, ky = 0) = 0. The ICDAD maps also contain
a contribution of the LDAD, in addition. In particular, Figure 5.4(h) shows a clear
left-right asymmetry. Later in this chapter, we focus on experiments with geometry
(i).

5.3 Circular dichroism of the Weyl states
Figure 5.5 shows the energy development of momentum distribution of the CDAD
measured at a photon energy of hν =60 eV. In the Fermi-surface contour in Fig. 5.5(a),
one can clearly see the CDAD texture of “X”-shaped crossings originating from the
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boundary between the electron and hole pockets, which is summarized in Fig. 5.5(e).
Interestingly, the relative positions of the orange and green hole bands are changed
at an energy of E ∼ EF − 0.27 eV as recognized in the vicinity of the kx = 0 line. For
example, in the positive ky region in Fig. 5.5(c), the green band on the negative kx

side has a larger ky distance from the BZ center at kx = 0 than the orange one on the
positive kx side. In the case E < EF − 0.27 eV as shown in Fig. 5.5(d), the orange one
on the positive kx side has a larger ky distance than the green one on the negative kx

side.

Figure 5.5: Momentum distribution of the circular dichroism measured at a photon
energy of hν = 60 eV. (a-d) Constant-energy maps at E = EF (a), EF − 0.1 eV (b),
EF − 0.25 eV (c), EF − 0.325 eV (d). Plotted intensities indicate the difference of pho-
toemission intensities for right- (σ+) and left- (σ−) circularly polarized light according
to the color code. (e) Schematic band-structure development as a function of binding
energy. (f) Configuration of the Weyl points in momentum space. In 1Td-MoTe2, the
Weyl points are located at kz = 0. Purple and dark blue colors indicate the opposite
chirality of the Weyl points.
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A schematic evolution of the corresponding band features as a function of the
binding energy is summarized in Fig. 5.5(e). Electron pockets are located above EF
(left). Moving down in energy towards EF, electron and hole pockets touch each
other, corresponding to the crossings (second schematic from left) that we observed
in Fig. 5.5(a). At deeper binding energies the crossing point again opens and the
constant energy contour shows the hole pockets. The relative position of the green
and orange hole bands are changed, as indicated by black dotted circles.

Figures 5.6(a-e) show the band-dispersion maps plotted along cuts parallel to the
X − Γ − X direction (see horizontal dotted lines in Figs. 5.5(a-d).) The CDAD here
reveals more details of the development of the Weyl cones, indicated by black dotted
lines as a guide to the eye in Fig. 5.6(d), as compared to the sum of the photoemisson
intensities in Fig. 5.3. In particular we observe that the pair of Weyl cones exhibits a
strong CDAD signal, whereas the sign is reversed between the two cones. As described
in Sec. 3.4.2, the CDAD couples to chiral systems and probes the orbital part of the

Figure 5.6: Band-dispersion maps of the circular dichroism measured at a photon
energy of hν = 60 eV at ky = 0 Å−1 (a), −0.08 Å−1 (b), −0.16 Å−1 (c), −0.24 Å−1 (d),
−0.32 Å−1 (e), and kx = 0 Å−1 (f)
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5.3 Circular dichroism of the Weyl states

wave function. The CADA is also related to the orbital angular momentum. As
demonstrated in the type-I Weyl semimetal TaAs in Fig. 3.15, the orbital angular
momentum is correlated with the Berry curvature field describing the Weyl points.
The Weyl points of 1Td-MoTe2 are located close to the kx = 0 line where geometry
contributions to the CDAD minimize. The CDAD signal here strongly reflects the
chirality of the electronic structure, in particular, the chiral charge of the respective
Weyl points, which is connected with the Berry curvature. Therefore, the pair of Weyl
cones exhibiting a strong CDAD with reversed sign indicates the opposite chirality of
the respective Weyl points. This experimental geometry is best suited to get access
to the chiral charge of the Weyl points.

For reference, the configuration of the Weyl points in momentum space and their
chirality are indicated in Fig. 5.5(f) (For details of the Weyl-point location and chiraliy
in general see Fig. 2.6 and Sec. 2.4.1). The CDAD fingerprint allows to determine
the Weyl-point energy to be located +50 meV above EF. The Weyl-point location in
energy is in good agreement with a previous report [86, 93]. From our experimental
results we could identify a certain scenario with a total of 4 Weyl points [86, 93]. Note
that the CDAD of the Weyl point on the other ky side, i.e., Weyl points at (kx, ky) =
(+,+) and (+,−) exhibits the same sign, but the chirality should be reversed as
indicated in Fig. 5.5(f). This is because the CDAD is constrained by the experimental
geometry. A more detailed discussion in comparison with calculation will follow in
Sec. 7.4.

The features related to the Weyl cone depend on the photon energy, which is evident
for the bulk Weyl cone. In particular, the spectral weight of surface states could be
enhanced using UV light as in Sr2RuO4 [183] and Bi2Se3 [158]. Here, we chose the
photon energy such that the section probed by the photon energy through the bulk
BZ corresponds to the high-symmetry point kz = 0 and coincides with the bulk Weyl
point.

At kx = 0 in Fig. 5.6(f), we observe cone-like bands with crossing points at E ∼
EF − 0.27 eV indicated by black dotted lines. The behavior of this band corresponds
to a change of the relative positions of the green and orange colored hole bands in
the vicinity of the kx = 0 line. As mentioned before, a CDAD that would arise from
a broken mirror symmetry in the photoemission geometry vanishes at the kx = 0 line.
Therefore, the observed CDAD at kx = 0 probes an intrinsic chirality of the wave
functions. The observed cone-like band might therefore be a signature of chiral cones.
The cone can not be observed by the sum of the photoemision intensity in Fig. 5.3(f),
but only observed by the CDAD. Correspondingly, the splitting of the hole pockets at
kx = 0 in the momentum section can not be observed by the sum of the photoemision
intensity in Figs. 5.2(c, d). In contrast, we observed the splitting as a change of
the relative positions of the green and orange colored hole bands in Figs. 5.5(c, d).
The CDAD provides more information and can only visualize these states at kx = 0.
The presence of the possible chiral cones here has not been reported, and so far not
predicted and discussed in theory. The relationship between these states and the
Weyl physics are interesting and can be an open question.
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5 Type-II Weyl semimetal MoTe2

5.4 Spin texture
Some first-principles-calculation and spin-resolved photoemission studies suggest that
Fermi arcs exhibit spin-momentum-locked spin textures on the type-I Weyl semimetals
(Ta, Nb)(As, P) [184–186] and the type-II Weyl semimetal WTe2 [187], similar to the
chiral edges states of topological insulators (see Secs. 2.2.3 and 2.3.2). Other studies
on the type-II Weyl semimetal MoTe2 have indeed reported the existence of spin-
polarized bulk and trivial surface states [84, 91, 92], but not yet resolved the spin
texture of the Weyl cones and the Fermi arc.

Figure 5.7 shows the spin-resolved Fermi-surface contour measured at a photon
energy of hν = 52 eV. Using s-polarized light, shown in Fig. 5.7(a), the observed
spin texture shows a single crossing of spin-up (red) and spin-down (blue) states.
The measured spin polarization is always given with respect to the positive ky axis.
This spin texture corresponds well to the observed CDAD texture from Fig. 5.5(a),
which is here also displayed on the right hand side of Fig. 5.7(a) as a reference. For
p-polarized light, shown in Fig. 5.7(b), the observed spin texture shows additional
details. In particular, the “X”-shaped contours of the Weyl cone states appear as
double lines, where a spin-down (blue) state is located slightly left of a spin-up (red)
state. The sketch on the right hand side of Fig. 5.7(b) summarizes the observed Fermi-
surface contour in the ky > 0 region as a guide to the eye. The k∣∣ separation of the
spin-split states that we observe here is too small to be resolved in a spin-integrated
measurement, e.g., in Fig. 5.1(e).

The spin splitting of the Weyl cone states is caused by a combination of SOC and
the broken inversion symmetry describe in Sec. 2.3.1. As explained in Secs. 2.2.1
and 2.4.3, if the Dirac semimetals break space-inversion symmetry, a spin degenerate
Dirac cone splits into a pair of spin-split Weyl cones with the opposite chiral charge.
Thus, spin texture of the Weyl cones can be related to the chiral charge of the Weyl
points. Therefore, we conclude that the observed reversed spin polarization to the
two cones in the half BZ can be explained by the opposite topological chiral charge
of a pair of the Weyl points.

Our observation of different spin textures for measurements taken with p-polarized
light versus s-polarized light, where no spin-splitting of the “X”-shaped contour is ob-
served, can be explained by optical selection rules. As described in Sec. 3.4.1, p- and
s- polarized light selectively probe contributions to the Weyl cone states of even and
odd orbitals, respectively. As shown in Figs. 3.11(b, c) photoemission distribution in
the type-I Weyl semimetal TaP exhibits rich intensity variations between p- and s-
polarization [154]. In contrast, we can not see a significant difference of spin-integrated
photoemission intensities between p- and s-polarization in 1Td-MoTe2. However, we
observed different spin textures between p- and s-polarization. This is the similar
case in topological surface states of Bi2Se3 [156, 157, 160], i.e, there is not a sig-
nificant difference of spin-integrated photoemission intensities except for asymmetry
of intensities due to the LDAD, but the different spin textures excited by p- and
s-polarization. Therefore, we conclude that even and odd orbitals of the Weyl cones
probed by p- and s-polarized light, respectively, possess the different spin texture.
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5.4 Spin texture

Figure 5.7: Spin texture of the Weyl cones. Spin-resolved Fermi-surface contour mea-
sured using s-(a) and p-(b) polarized light at a photon energy of hν = 52 eV. Sketches
on the right hand side summarize the observed Fermi surface features in (kx, ky) as
a guide to the eye. A sketch in panel (a) shows the observed CDAD texture from
Fig. 5.5(a) by using the same green and orange color code as in Fig. 5.5. In panel
(b), a sketch is shown in the ky > 0 upper half region. (c) Photoemission experimen-
tal geometry. A purple arrow indicates the electric field vector (E) for p-polarized
light. Spin-resolved intensities are encoded using the 2D colour code: red and blue
intensities indicate spin-up and spin-down photoelectrons with a spin quantization
axis along the ky direction.

For p-polarization, we observed the chiraliy-reflecting spin texture of the Weyl cones.
Here, we discuss the relationship between spin texture and the CDAD. In the case

of the type-I Weyl semimetal TaAs, the spin-split states carry parallel orbital angular
momentum, while antiparallel spin angular momentum as shown in Figs. 3.15(a, b)
[173]. Comparison between results of the CDAD and spin texture excited by p-
polarization suggests the different texture of the Py spin angular momentum and the
orbital angular momentum probed by the CDAD on the spin-spilt adjacent states of
the Weyl cones. The Py spin texture related to odd orbitals probed by s-polarization
seems to show a coincidence of the orbital angular momentum proved by the CDAD.

There is an additional asymmetry of photoemission intensities and spin polarization
between the top and bottom half of the Fermi-surface image, observed for p-polarized
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5 Type-II Weyl semimetal MoTe2

light due to the LDAD. We have already seen the LDAD effect for spin-integrated
results in Sec. 5.2. Similar to the topological surface states in Bi2Se3 as shown in
Fig. 3.12 [158], we observe here the LDAD effect for the spin polarized states.

5.5 Summary
Taking into account crystal and experimental symmetries, we discussed symmetry of
the observed band structures for two different experimental geometries. We experi-
mentally clarified circular dichroism and spin texture of the Weyl cones for the first
time in type-II Weyl semimetals. We captured a pair of chiral Weyl cones in energy
and momentum space exhibiting a strong circular dichroism with reversed sign, giv-
ing evidence for a opposite chiral charge of the respective Weyl points. We observed
a signature of chiral cones below the Fermi level with the intrinsic chirality of the
wave functions probed by the circular dichroism, which has not been reported so far.
A pair of spin-split Weyl cones, caused by spin-orbit coupling and broken inversion
symmetry of the 1Td crystal structure, was found to exhibit a reversed spin texture
when probed by p-polarized light. The spin texture can be explained by the oppo-
site topological charge. The observed spin texture of the Weyl cones excited with
s-polarized light corresponds well to its circular-dichroism texture.
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6 Chiral topological semimetal CoSi

6.1 Sample preparation
High-quality single crystals were grown by the modified Bridgman method with the
help of an optical floating-zone furnace as described in Ref. [188, 189] and polished on
the (100) surface as shown in Fig. 6.1(a). The size of the crystal is 8mm×8mm×8mm
and the size of the polished surface is 4mm. On the basis of collaboration with
National Taiwan University, Dr. Yu-Hsun Chu and Dr. Guo-Jiun Shu at Prof. Fang-
Cheng Chou’s group synthesized the crystals and the surface preparation was per-
formed together with Mr. Kui-Hon Ou Yang, Ms. Yi-Hsin Shen, Mr. Chien Jing,
and Dr. Yu-Hsu Chu at NanoMagnetism laboratory (Prof. Minn-Tsong Lin’s group).
Since the Co and Si atoms are strongly bonded by multiple covalent bonds in three
dimensions and the high symmetry surfaces are not cleavage planes, we performed
Ar+ sputtering and annealing in the preparation chamber of the NanoESCA beamline
in order to get a clean sample surface instated of cleaving the sample. Although the
sputter process usually leads to clean surfaces, the quality of as-sputtered surfaces
is disordered and far from being single crystalline. Nevertheless, single crystallinity
can be restored by annealing the surface after sputtering. Klein et al. compared
FeSi(100) surfaces prepared by cleaving, and sputtering and annealing, reporting that
the cleaved surface contained a mixture of various crystalline directions, which might
not be a good surface for photoemission studies [190]. Takane et al. cleaved CoSi
crystals more than 50 times, and in a very few cases they succeeded in cleaving them
and in observing the band dispersion [116]. The advantage of preparation by sputter-
ing and annealing is to easily reproduce a clean surface every time. To evaluate the
quality of the sample surface and to confirm the crystal orientation, we measured low
energy electron diffraction (LEED). Based on LEED patterns, we rotated the sample
on the sample holder to align the sample with respect to the microscope coordinate.
Referring to the cleaning procedure of the transition-metal monosilicides FeSi [190,
191] and MnSi [192], we explored the best condition for the in situ surface preparation
of CoSi. Here, we have obtained the best results as follows:

• Ar+ sputtering with an energy of 2 keV

• Annealing at T ∼ 680○C for 40 min

After more than ten cleaning cycles, we observed sharp LEED spots and clear band
dispersions (see Fig. 6.2). The observed LEED spots are arranged in a square-like (1×
1) pattern consistent with the symmetries expected for the (100) surface termination
of CoSi.
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6 Chiral topological semimetal CoSi

Figure 6.1: Characterization of the sample surface on CoSi(100). (a) Polished
CoSi(100) crystal on the sample plate. (b) PEEM image illuminated with a mer-
cury lamp showing defects and polishing scratches. (c) Auger electron spectroscopy
(AES). An unclean sample without degas, sputtering, and annealing indicated by a
blue line shows a clear C auger peak. A sample after a few cycles of the cleaning
procedure indicated by a black line shows clear Co and Si peaks. (d) X-ray photoe-
mission spectra (XPS) after the cleaning procedure obtained with a photon energy of
hν = 400 eV.

As shown in Fig. 6.1(c), Auger electron spectroscopy (AES) before degas after
introducing a sample into a vacuum in the preparation chamber of the NanoESCA
beamline from the air, denoted by an “unclean” sample (blue line), detects a C auger
peak as a major contamination. After a few cycles of the cleaning procedure, AES
(black line) shows clear Co and Si peaks, revealing a clean surface. These results are
similar to the AES of FeSi [193]. X-ray photoemission spectra (XPS) also shows clear
core level peaks of Co and Si. A PEEM image [Fig. 6.1(b)] shows defects and polishing
scratches. Before the momentum microscope measurements, the best sample region
was selected by using PEEM.

We measured two different samples as shown in Fig. 6.2. LEED patterns show
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6.1 Sample preparation

sharper spots on sample B [Fig. 6.2(b)] than sample A [Fig. 6.2(a)]. Reflecting the
sharpness of the LEED spots, measured Fermi surfaces show sharper bands of sample
B [Fig. 6.2(d)] than A [Fig. 6.2(c)]. Interestingly, we found that the propagation

Figure 6.2: Measurement of two different samples with opposite structural chirality.
(a, b) LEED patterns measured with an electron beam energy of 37 eV (sample A),
34 eV (sample B) show sharper spots on sample B than sample A. (c, d) Measured
Fermi surfaces at a photon energy of hν = 50 eV (sample A), 44 eV (sample B) using
p-polarized light show sharper bands of sample B than A. We apply the Chern-number
analysis to blue and pink dotted lines. (e, f) Energy-momentum diagrams along cuts
indicated by blue dotted lines in panels (c, d) show the dispersion of the Fermi arc
(FA) indicated by green arrows. A reversal of the Fermi-arc velocities between both
samples implies a different handedness of the chiral crystals.
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6 Chiral topological semimetal CoSi

direction of the Fermi arcs (FA) is reversed. For sample A, the FA extends from the
(kx, ky) = (−1,1) direction to the BZ center on the top half of the BZ, while from the
(kx, ky) = (1,1) direction to the BZ center for sample B. To analyze the topological
nature of the surface states, we applied the criteria described in Sec. 2.2.3. We now
count chiral edge modes passing through EF along cuts indicated by blue dotted lines
in Figs. 6.2(c, d). For sample A, one right-moving chiral edge is found within the 1st

BZ indicated by a green arrow, implying Chern number C = +1 for the 2D subsystem.
While for sample B, one left-moving Fermi arc implies C = −1. In the same way,
we can obtain C = −1(+1) for the 2D subsystem at the negative ky as indicated
by pink dotted lines for sample A (B). Therefore, when the 2D slice is swept from
negative ky to positive ky, the Chern number should changes by +2(−2) for sample
A (B), corresponding to presence of topological chiral charge C = +2(−2) at the BZ
center for sample A (B). Based on the discussion described in Sec. 2.5.3, a reversal
of the Fermi-arc velocities and the corresponding opposite sign of Chern numbers
between sample A and B suggests the different handedness of chiral crystals. Unlike
the results of PdGa shown in Fig. 2.13 [120], the handedness of the crystal structure
can not be distinguished by LEED here for CoSi. The LEED pattern of sample A
indeed shows multiple domains confirmed by changing the beam position, while that
of sample B shows a single domain in a large region. Considering the lower quality
of the LEED spots and the observed bands, and appearance of multiple domains on
sample A, one of the enantiomers with one handedness might be unstable and not be
able to be synthesized with as high quality as sample B. A recent study reported band
dispersions of two enantiomers with opposite handedness for CoSi, though the quality
of dispersions with both enantiomers is slightly different [194]. For the high-resolution
momentum microscope experiment, we measured sample B.

6.2 Photon-energy dependence
To identify bulk and surface states, we performed photon-energy-dependent measure-
ments. Figure 6.3 shows measured Fermi-surface cuts at the photo energies hν =
36 eV, 44 eV, 56 eV with p-polarized light. One can clearly observe the Fermi arc
extending from the BZ corner to the BZ center for all photon energies. One can
also see a circular electron pocket centered at the X point for all photon energies.
These photon-energy-independent features belong to surface states. Thus, we name
the electron pocket the surface electron (SE) pocket. One can find that photoemission
intensity increases around the BZ center with increasing photon energy. As described
in Fig. 2.11(e) and in Sec. 2.5.3, a star-shaped hole pocket develops in the 3D BZ and
exists around the Γ point. We then conclude that intensity around the BZ center re-
flects the hole pocket. A section at hν = 36 eV cuts through the X points, suggesting
almost no intensity. A section at hν = 44 eV partially cuts through the hole pocket
between the X and Γ points. A section at hν = 56 eV cuts through the center of the
hole pocket at the Γ point. Since the star-shaped hole pocket corresponds to a flat
band composing the unconventional fermion, as seen in the next section, we name it
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bulk flat (BF) band.

Figure 6.3: Fermi-surface cuts measured at the photon energies hν = 36 eV (a), 44
eV (b), 56 eV (c) with p-polarized light.

6.3 Dichroism and orbital contribution in the band
structure

We focus on the band structure at the high-symmetry Γ point, where the unconven-
tional fermion is predicted, and uncover a polarization-dependent band structure for
the first time. Figures 6.4 and 6.5 show energy development of momentum maps ex-
cited with p- and s-polarized light at a photon energy of hν = 56 eV, respectively. At
E = EF the BF band is pronounced with p-polarization indicated by an orange arrow,
while being less pronounced with s-polarization. At E = EF − 0.05 eV, some parts of
the BF band is found to be suppressed with p-polarization indicated by a transparent
orange arrow with BD but enhanced with s-polarization. The elliptic contour of the
BD band centered at the Γ point becomes bigger towards deeper biding energies. Dif-
ferent parts of the elliptic contour are pronounced with different polarizations clearly
seen at E = EF − 0.3 eV. Considering that different light polarization probes different
orbital symmetries descried in Sec. 3.4.1, this suggests the orbital symmetry of the
BF and BD band abruptly changes even within the same state.

Our observation clearly shows the band structure of the FA indicated by green
dotted lines in Fig. 6.4 as a guide to the eye. The top right FA extending from
the BZ center rotates clockwise with increasing binding energy as indicated by a
blue arrow in Fig. 6.8(a), providing evidence for the helicoid arc. This helicoid arc
realizes van Hove singularity (VHS), namely the singularity in the electronic structure
as recently predicted and experimentally observed in Ref. [125]. As summarized in
Figs. 6.8(a-d), different parts of the helicoid arc rotating clockwise (blue arrow) and
counterclockwise (red arrow) approach each other and touch at a generic momentum
at E = EVHS = EF−0.05 eV, and then are separated into two parts. Overall shape of the
FA is consistent rather with the calculation in Ref. [125] than Fig. 2.12. Conditions
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6 Chiral topological semimetal CoSi

of surface calculations in CoSi strongly affect the shape of the FA and whether the
SE band appears [109, 111, 112, 114, 117, 125]. Further precise surface calculation is
needed to clarify the FA and surface states.

Figures 6.6 and 6.7 show photoemission intensities obtained with IR+IL and IR−IL
(circular dichroism (CDAD)) at a photon energy of hν = 56 eV, respectively. The
BF band exhibits a strong CDAD, which visualizes the shape of the star hole pocket
clearly. The top left star is enhanced with right circularly polarized light (orange color
code), whereas the bottom right star with left circularly polarized light (green color
code). Careful inspection of the CDAD reveals that the BF band and the BD band
indeed merge near EF. For instance, the orange top left star extends from the positive
kx with a smaller radius (right part) via the positive ky to the negative kx with a larger
radius (main part, i.e, the BF band), i.e., forms a half-arc-like feature around the
upper side of the BZ center. The green bottom right star forms a half-arc-like feature

Figure 6.4: Energy development of momentum distribution of photoemission intensity
measured at a photo energy of hν = 56 eV (Γ point) with p-polarized light. High
symmetry points of the surface Brillouin zone are indicated by the corresponding red
labels. Blue dotted line indicate sections for energy-momentum diagrams displayed
in Fig. 6.10. BD: Bulk Dirac band. BF: Bulk flat band (corresponding to the star-
shaped hole pocket). SE: Surface electron pocket. FA: Fermi arc. FA(VHS): Position
of the van Hove singularity (VHS). Green dotted lines indicate the FA as a guide to
the eye. Orange and green arrows indicate bulk and surface bands, respectively.
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Figure 6.5: Momentum distribution of photoemission intensity obtained with s-
polarized light. Symbols as in Fig. 6.4.

Figure 6.6: Momentum distribution of photoemission intensity IR + IL obtained with
right- and left-polarized light. Symbols as in Fig. 6.4.

79



6 Chiral topological semimetal CoSi

Figure 6.7: Momentum distribution of photoemission intensity IR−IL showing circular
dichroism. Symbols as in Fig. 6.4.

Figure 6.8: van Hove singularity of the helicoid Fermi arc in CoSi. (a-d) Energy
development of the helicoid Fermi arc observed in our study. (e) Cartoon illustration
of the helicoid arc. As a function of binding energy, two helicoid arc move closer
together, and then touch at a singularity energy E = EVHS, and finally move away
with a different connectivity. Red, blue and black arrows indicate the moving direction
of the helicoid arc.
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around the lower side of the BZ center. The right part of the orange star and the
left part of the green star composes a small ring centered at the Γ point, i.e., the BD
band. The elliptic contour of the BD band seems to be separated by orange and green
bands clearly seen at E = EF − 0.3 eV. We have already observed the abrupt intensity
change of the BD band excited with p- and s-polarized light. Here, the abrupt change
of the CDAD sign again suggests that the orbital character of the BD band abruptly
changes even within the same state. Nevertheless, the IR + IL map [Fig. 6.6] exhibits
almost even intensity for the state. This is because circularly polarized light can
probe all orbital symmetries and the IR + IL map compensates the asymmetry of the
intensity. The FA exhibits finite intensity for p- and s-polarization, while a weak
CDAD compared to the BF band. We suppose that the spin angular momentum is
coupled to the orbital angular momentum here due to SOC, though we do not see
the spin-split FA within our experimental resolution. As shown in Fig. 2.12(b), the
spin-spilt FAs carry a mutually opposite spin. As described in Sec. 3.4.2, the CDAD
can probe the orbital angular momentum. In our measurement, the FA appears to
be degenerate in terms of the spin and orbital angular momentum, which may result
in a weak CDAD of the FA.

In order to access a question of whether the CDAD depends on a handedness of
the chiral crystals, we performed the CDAD with two samples with opposite hand-
edness as shown in Fig. 6.9. The SE bands centered at the X point exhibit the same
CDAD sign with both samples, i.e., orange signal at the positive kx side and green
signal at the negative kx side. The SE band is a trivial surface state, and exhibits
a mirror-symmetric band shape which does not reflect chirality. On the other hand,
not only a bulk-derived feature around the Γ point is mirrored due to the opposite
handedness of the chiral crystals, but also its CDAD sign is reversed between both
samples. This bulk band breaks a mirror symmetry for the band shape, reflecting
pronounced chirality. Even though the quality of sample A is not as good as sample
B, this measurement gives possible conclusions that the CDAD sign of trivial surface
states or/and not chiral-reflected bands is independent of the structural handedness,

Figure 6.9: Circular dichroism of two samples with a different handedness of the chiral
crystals. (a) Sample A. (b) Sample B.
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while that of bulk states or/and chiral-reflected bands depends on the structural
handedness.

Figure 6.10 show band-dispersion maps excited with differently polarized light,
indicating photoemission intensities obtained with p-polarized light (a, e), s-polarized
light (b, f), IR + IL (c, g), IR − IL (CDAD) (d ,h). Figures 6.10(a-d) and 6.10(e-
h) indicate energy-momentum diagrams along the X − Γ − X and the M − Γ − M
directions, respectively. The corresponding sections are indicated by blue dotted
lines in Fig. 6.4. An excellent agreement between experiment and calculated bulk
bands taken from Ref. [112] (dark blue lines) for the BD and BF bands provides
evidence for the presence of the unconventional fermion, consistent with previous
experimental [114, 116, 117] and theoretical [109, 111, 112] studies. We can now
confirm that the star-shaped hole pocket forms the bulk flat (BF) band in the energy-
momentum section. One can see that the dispersion of the SE band is centered at
the X point. The BF band is sensitive to p-polarization compared to s-polarization
and exhibits a strong CDAD. The BD cone and BF band are found to always exhibit
the opposite CDAD signal. For instance, at the positive kx side on the right hand
side, the BD cone exhibits orange signal, while the BF band green signal. One can

Figure 6.10: Band-dispersion maps excited with differently polarized light at a photon
energy of hν = 56 eV. Photoemission intensities obtained with p-polarized light (a,
e), s-polarized light (b, f), IR + IL (c g), IR − IL (circular dichroism) (d, h). Directions
of energy-momentum diagram along X−Γ−X (a-d) and M−Γ−M (e-h) are indicated
by blue dotted lines in Fig. 6.4. Dark blue lines indicate calculated bulk bands taken
from Ref. [112].

82



6.4 Summary

also see the dispersion of the FA, exhibiting finite intensity for p- and s-polarization,
while a weak CDAD, in contrast to the BF band. The behavior of these polarization-
dependent bands is consistent with the observed momentum maps shown in Figs. 6.4-
6.7. Based on criteria described in Sec. 3.4.1, the BF band sensitive to p-polarization
mainly consists of even orbitals. We saw the previous application of polarization-
dependent measurements to the type-I Weyl semimetals in Secs. 3.4.1 and 3.4.2. As
in the type-I Weyl semimetals, different response of these bands to light polarizations
indicates their different orbital character. Results obtained with p- and s-polarized
light together with calculated bands projected onto different orbitals [Fig. 3.11(d)]
and the CDAD together with calculated bands projected onto the orbital angular
momentum [Fig. 3.15(a)] clarified the full orbital texture of topologically non-trivial
bands in the type-I Weyl semimetals. We need such theoretical support to fully
understand our observation. We will make a more detailed discussion regarding the
orbital texture and its link to the band structure topology in Sec. 7.4.

6.4 Summary
We succeeded in obtaining a clean CoSi(100) surface by sputtering and annealing.
Compared to the frequently used cleavage, this procedure leads to reproducible sur-
face quality. We characterized two samples by electron diffraction, and determined
the handedness of the chiral crystals and accordingly the Chern number in connec-
tion with the Fermi velocity of the observed Fermi arc. By performing photon-energy
dependent measurements, we identify bulk states, e.g., the bulk Dirac (BD) cone and
the bulk flat (BF) band that compose an unconventional higher-topological-charge
fermion. We also identify surface states, e.g., the Fermi arc (FA). We clarified the van
Hove singularity of the helicoid Fermi arc. We revealed the polarization dependence
of these bands for the first time in chiral topological semimetals. Since differently
polarized light probes orbital characters, rich photoemission-intensity variations for
different states and even within the same states suggest rich orbital textures. The
bulk flat band is sensitive to p-polarization, suggesting that it mainly consists of even
orbitals. The bulk Dirac cone and the bulk flat band exhibit a strong circular dichro-
ism with an opposite signal, while the Fermi arc exhibit a weak circular dichroism.
The abrupt intensity change of the bulk Dirac cone and the bulk flat band suggests
that the orbital character of these bands abruptly changes even within the same state.
Overall, different response of these bands to polarizations is attributed to their dif-
ferent orbital character. The circular-dichroism measurements with different samples
with the opposite structural handedness give evidence that the sign of the circular
dichroism of the bulk states with a chiral band-dispersion shape is reversed between
chiral crystals of an opposite handedness.
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7 Discussion

7.1 Overview
As summarized in Table 7.1, we studied the type-II Dirac semimetal NiTe2, the type-II
Weyl semimetal MoTe2, and the chiral topological semiemtal CoSi, where different
topological phases, encoded by the Chern number, emerge depending on the crystal

NiTe2 1Td-MoTe2 CoSi
Type-II Dirac semimetal Type-II Weyl semimetal Chiral topological

semimetal
Crystal
structure

Preserved space-
inversion symmetry

Broken space-inversion
symmetry

Chiral

Chern
number

0 ±1 ±2 (±4)

Spin
texture

Orbital
texture

Table 7.1: Unconventional topological semimetals studied in this thesis.
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structure. The lower symmetries are, the higher the Chen number is that can be
realized. We experimentally deduced the Chern number from the number of Fermi
arcs based on the bulk-boundary correspondence described in Sec. 2.2.3. In MoTe2,
we found the Chern number C = ±1 manifested as one Fermi arc connecting one
pair of Weyl points. In the case of CoSi, terminated points of two long Fermi arcs
share one Weyl point, suggesting the Chern number C = ±2 (For details of the Chern
number analysis see Fig. 6.2 and Sec. 6.1).

Symmetries also affect the spin degree of band structures in connection with spin-
orbit coupling, in general. As described in Sec. 2.3.1, all bulk bands must be spin
degenerate in non-magnetic space-inversion symmetric materials, e.g., NiTe2, even
with SOC. Nevertheless, we observed spin polarized bulk bands in NiTe2 as shown in
Sec. 4.4 due to the lower symmetry of the surface probed by surface sensitive VUV
light, later discussed in detail in Sec. 7.2. If space-inversion symmetry is broken,
e.g., in the case of MoTe2 and CoSi, bulk bands can be spin polarized in inclusion of
SOC. In MoTe2, this manifests in an observed spin polarization of the bulk bands as
shown in Sec. 5.4. In CoSi, however, we did not observe spin-split bands, which were
predicted theoretically as outlined in Sec. 2.5.3, within our experimental resolution.
We thus conclude that CoSi possesses a quite weak SOC, consistent with previous
reports [114, 116, 117]. SOC play a crucial role to realize a Weyl-semimetal phase
in MoTe2 and a Dirac-semimetal phase in NiTe2. In contrast, the chiral topological
semimetal CoSi does not necessarily require SOC to realize a topological phase.

Up to now, we have seen that symmetries affect, in general, the spin degree of free-
dom of the electronic states, and topological phases encoded by the Chern number.
Band structure topology is characterized by the Berry curvature field and the Chern
number (see Sec. 2.2.2), which are closely related to the orbital texture as descried
in Sec. 3.4. Our motivation is to understand the spin and orbital texture of topo-
logical non-trivial bands. In the following sections, with the help of thin film band
structure calculation and symmetry arguments, we further strengthen our conclusion
and discuss the relationship between spin- and orbital-dependent band structures and
topology, especially, the topological chiral charge.

7.2 Spin texture of the Dirac and Weyl cones
In this section, we connect the observed spin textures of the Dirac cone in NiTe2 and
Weyl cones in MoTe2. As described in Sec. 5.4, a pair of Weyl cones in MoTe2 was
found to exhibit a reversed spin texture, where the spin splitting is caused by combi-
nation of SOC and the broken inversion symmetry of the 1Td crystal structure in the
bulk. We would like to compare our experimental results with theoretical calculations
performed in collaboration with Dr. Philipp Rüßmann as shown in Fig. 7.1. Density
functional theory (DFT) calculations were carried out for an eight layer thick film
of MoTe2 in the same way as described for the case of NiTe2 in Sec. 4.2. Further
details on the calculation setup can be found in Ref. [84]. Figures 7.1 (a, b) show
the calculated spin-polarized Fermi-surface contour and the band-dispersion map at
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Figure 7.1: Calculated spin polarization and orbital angular momentum. The spin
polarization Py (a, b) and the orbital angular momentum Ly (d, e) plotted on Fermi
surfaces (a, d) and band dispersions (b, e) is integrated over the central two MoTe2
layers of the eight layer film to account for the bulk-like character. The color scales
of Py and Ly are given in (c) and (f), respectively. The dashed grey lines in panel (d)
and the arrows in panel (e) serve as guides to the eye and indicate the position of the
Weyl points.

ky = 0.23 Å−1 cutting through the WPs, respectively. The calculated spin polariza-
tion in Fig. 7.1 indicates the bulk-like character integrated over the central 2 layers
of a 8-layer thick MoTe2 film. As in the experiments, the spin polarization along the
ky direction is shown. Careful inspection of the boundary between the electron- and
hole-pockets in the calculated Fermi surface [Fig. 7.1(a)] reveals a spin texture similar
to our experimental result excited by p-polarized light in Fig. 5.7(b). The good agree-
ment of the measurements with the calculation clarified that this experiment mainly
probes bulk-like states. Furthermore, our calculation confirms the spin-splitting of
the Weyl cone states, that we have observed experimentally by p-polarized light. We
can therefore conclude that the observed spin texture of even orbitals, probed by
p-polarized light in Fig. 5.7(b), closely corresponds to the ground state spin texture
of MoTe2.
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7.2 Spin texture of the Dirac and Weyl cones

Figure 7.2: Calculated layer-resolved spin polarization. y-component of spin polariza-
tion on the bulk Fermi surface at kz = 0.75π

c (a-c) and on the surface Fermi surface
(d-f) in the top Te (Te1) (a, d), the Ni (b, e), and the bottom Te (Te2) (c, f) atoms
are indicated. Plotted spin polarization in the Ni layer for bulk (b) is multiplied by a
factor of 500. An inset on the right hand side shows each atom composing NiTe2. In
the bulk, the Te1 and Te2 layers exhibit opposite spin contribution and spin polar-
ization vanishes in the Ni layer. At the surface, all layers exhibit the same spin sign.

In NiTe2, we observed a non-vanishing spin polarization in the bulk as described in
Sec. 4.4. However, all bulk bands must be spin degenerate in non-magnetic materials,
which naturally preserves time-reversal symmetry, with space-inversion symmetry due
to the Kramers theorem described in Sec. 2.3.1. As shown in Fig. 7.2, we performed
layer-resolved calculations. In the bulk [Fig. 7.2(a-c)], we found that (i) contribution
to the spin from the top Te layer (Te1) and the bottom Te layer (Te2) is opposite.
(ii) Spin polarization from the Ni layer is negligible.

This can be generalized as follows. Even in crystals with inversion symmetry, local
atomic site asymmetries rather than the global symmetry induce a local “hidden”
spin polarization [195]. Such a local spin polarization arises in two separate sectors
forming the inversion partners, e.g., the top and bottom Te layers in NiTe2. The
inversion partners with opposite spin polarization are degenerate in energy, which
compensates the total spin polarization. In NiTe2, the Te layers have compensating
spin polarization and in Ni spin polarization vanishes since it is located in the inversion
center [195, 196]. In sharp contrast to the bulk, layer-resolved spin polarization at the
surface shows different behavior and all layers exhibit the same spin sign as shown in
Fig. 7.2(d-f).

Considering the lattice constant c = 5.2699Å [80] and the escape depth of 5 − 10 Å
of photoelectrons excited by VUV light (see Sec. 3.1.4), we assume that the first two
Te-Ni-Te trilayers can be probed. There is a decay in the probing depth which means
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that in this stack of layers Vac-Tetop
1 -Ni1-Tebottom

1 -Tetop
2 -Ni2-Tebottom

2 -... one sees a
stronger contribution from Tetop

1 than Tebottom
1 , i.e, the observed spin of the emitted

photoelectrons does not cancel exactly. Then one sees smaller contributions from the
second Tetop

2 -Ni2-Tebottom
2 trilayer, where the signal coming from Tetop

2 would again
be larger than from Tebottom

2 . As already seen in Sec. 4.3, we indeed observed the
three-fold symmetric B1 and BD bands at hν = 67 eV, which is a clear signature of
the bulk states. Our experiment suggests that bulk states could be enhanced, while
surface states could be suppressed due to the low photoemission cross section at this
photo energy as in MoTe2. Therefore, we conclude that we observe a “hidden” spin
texture originating from the top Te layer in the bulk. In the framework of topology,
the degenerate Dirac cone in NiTe2 is formed by a superposition of two Dirac cones
coming from the top and bottom Te layers whose spin polarizations are opposite.

In MoTe2, broken inversion symmetry already in the bulk gives rise to spin-split
Weyl cones and pairs of non-degenerate chiral charges C = ±1. We conclude that a
reversed spin texture to pairs of Weyl cones is explained by the opposite topological
charge as described in Sec. 5.4, since the spin texture of the Weyl cones can be related
to the chiral charge of the Weyl points. As in MoTe2, the opposite spin polarization
coming from the top and bottom Te layers in NiTe2 is considered to reflect an opposite
topological charge C = ±1. In the bulk, not only the spin but also the topological
charge are compensated, corresponding to the topological charge C = 0 in Dirac
semimetals.

In conclusion, we find the same scenario for NiTe2 and MoTe2: a pair of Weyl
cones with opposite chirality exhibits a reversed spin polarization. Depending on the
symmetry of the crystal structure, the cones are degenerate in k space for inversion-
symmetric NiTe2 and separated for MoTe2 due to broken inversion symmetry. This
finding might apply to other topological quantum materials.

7.3 Symmetry-reflected spin texture in
transition-metal dichalcogenides

In this section, we discuss the observed spin texture in connection with symmetries.
Although TMDCs of the form MX2 posses a similar layered crystal structure consist-
ing of a stacking of X-M-X trilayers (see Fig. 2.8), different crystal structures lead to
different physical properties. Spin-polarization of bulk bands in MoTe2 is caused by
a broken space-inversion symmetry in the bulk, while a “hidden” spin polarization
in NiTe2 can be observed by lifting the inversion symmetry at the surface. Such a
hidden spin polarization has been also observed in semimetallic 2H−WSe2 [197] and
MoS2 [198], which preserve inversion symmetry. In this case each atom located in the
neighboring trilayer compensates the total spin polarization, while in 1T−NiTe2 and
PtSe2 [196] different Te (Se) atoms within the trilayer compensate the total spin po-
larization. This difference can be explained by a symmetry argument: in 1T−NiTe2,
by space inversion (r → −r) the top and bottom Te atoms within the trilayer can be
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mapped onto each other, where the top and bottom Te atoms form inversion partners
(see Sec. 2.4.5). In the case of 2H−MoS2 and WSe2, each atom can be mapped onto
that in the next inequivalent trilayer by space inversion. Therefore, each atom in
the neighboring trilayer forms an inversion partner and possesses an opposite spin
contribution.

Here, we would like to emphasize that the hidden spin texture is distinct from
topological and trivial surface states and Rashba states from a symmetry point of
view. The hidden spin texture in 1T -NiTe2, 2H-MoS2 and WSe2 is bulk states and
originates from local atomic site asymmetry in the bulk crystal and can be only seen
by probing a finite region e.g., the surface. This means that the probed region is not
space-inversion symmetric, allowing the observation of the “hidden” spin polarization.
However, in the sum over all layers the total spin polarization vanishes. Topological
and trivial surface states and Rashba state are a direct consequence of the lower
symmetry at the surface. In this context, these states represent a similar situation as
the hidden spin texture. For instance, Rashba states at metallic surface are caused
by broken space-inversion symmetry at the surface even in bulk inversion-symmetric
metals [199]. However, since these states only exist at the surface, the total spin
polarization does not vanish. Indeed, according to the layer-resolved spin polarization
at the surface in NiTe2 (Fig. 7.2(d-f)), all layers exhibit the same spin sign.

Figure 7.3: Calculated Px (a, d), Py (b, e), Pz (c, f) spin polarization. Constant-
energy maps at E = EF − 0.1 eV (a-c), EF − 0.5 eV (d-f). Px, Py, Pz change sign at the
mirror planes on the BD and B1 bands e.g., marked by black arrows and at positions
where corner-side parts (B1(Corner)) of the triangle-like B1 band merge with a center
part (B1(Center)) as the binding energy is increased, e.g, indicated by purple arrows.
Three mirror planes are indicated by black dotted lines.
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Here, we summarize symmetries of the observed spin textures in MoTe2 and NiTe2.
The observed spin texture is constrained by crystal and time-reversal symmetries. We
consider that the spin is an axial vector, i.e., after a mirror operation the spin vector
should be flipped. Since 1Td-MoTe2 possesses one mirror plane and no rotational
symmetry as shown in Fig. 5.4, Pz spin polarization was reported in Ref. [84]. Since
NiTe2 possesses a 3-fold rotational symmetry with 3 mirror planes (see Fig. 2.10(b)
and Sec. 2.4.5), our calculation shows a 3D spin polarization. For instance, in the
case of W(110), no Pz spin polarization is allowed due to a two-fold surface symmetry
and time-reversal symmetry [200].

Now we take a closer look at the 3D spin texture in NiTe2. Figure 7.3 shows the
calculated Px, Py, Pz spin polarization. One can find that Px, Py, Pz change sign at
the three mirror planes, e.g., marked by black arrows, on the BD and B1 bands and
at additional positions between the mirror planes on the B1 band e.g., indicated by
purple arrows. For instance, the in-plane spin vector rotates almost 180 degrees on
the position indicated by the black arrow as clearly seen in Fig. 4.7(f). The B1 band is
actually separated into corner-side parts of the triangle-like band indicated by a dotted

Figure 7.4: Bulk band structure along M −Γ−M ′. The red-white-blue color scale indi-
cates the y-component of the spin polarization in the top Te layer. The four panels in-
dicate the orbital integrated (total) spin polarization Py(E,k) = − 1

π ImTr[σyG(E,k)]
(in arb. units) as well as the contributions coming from the px, py and pz states,
respectively. The black arrow highlights a change in the spin polarization direction
due to overlapping and partially cancelling contributions from the px, py, and pz con-
tributions.
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line labeled B1(Corner) and a center part labeled B1(Center) in Fig. 7.3(b). These
two parts merge as the binding energy is increased. This merging point corresponds
to the spin sign-change position indicated by the purple arrows.

In order to consider the origin of such a complex spin texture, we calculated the
orbital-dependent spin polarization. Since the density of states near the Fermi level
is dominated by Te p orbitals, we display the spin components projected onto px, py,
and pz orbitals in the top Te layer in Fig. 7.4. One can see that the bands projected
onto different orbitals exhibit a different behavior of spin polarization. In the case
of topological surface states in Bi2Se3, Py (Px) changes sign at the same momentum
points kx = 0 (ky = 0) even for different orbitals as described in Fig. 3.12. Unlike
Bi2Se3, in NiTe2 Py changes sign at different momentum points for different orbitals.
Consequently, the orbital-integrated (total) spin polarization results in a change in
the spin polarization direction highlighted by the black arrow due to overlapping and
partially cancelling contributions from the px, py, and pz contributions. This explains
why a complex spin texture arises in NiTe2.

Overall, in this section we have seen that spin polarized and “hidden” spin polarized
states arise in connection with the inversion symmetry of a crystal and the spin texture
is constrained by crystal and time-reversal symmetries, which is consistent with our
observations

7.4 Orbital texture of topological bands
Interaction with circularly polarized light, in general, reflects the chirality of matter.
Coupling of chiral Weyl states to an electromagnetic field causes the chiral anomaly
as described in Sec. 2.4.2. In the context of optical responses, the correlation between
circularly polarized light and the intrinsic chirality of the Weyl states drives an uni-
directional photocurrent in response to the respective light helicity [56–58, 123, 124].
In photoemission experiments, the observation of the circular dichroism therefore
provides a probe for electronic chirality.

In MoTe2, a pair of Weyl cones exhibits a strong circular dichroism with reversed
sign, which reflects the opposite chirality of its wave function as shown in Sec. 5.3. For
a deeper understanding of the observed CDAD, we have also calculated the orbital
angular momentum Ly in the Fermi surface, shown in Figs. 7.1(d, e). As described in
Sec. 3.4.2, it has been shown that the CDAD probes the orbital angular momentum
of the wave function. The CDAD can be shown to be approximately proportional to
the projection of the orbital angular momentum L on the light propagation direction
[166, 169, 173]. A recent study further demonstrates that momentum mapping of
the orbital angular momentum reflects the chirality of the Weyl points in a Weyl
semimetal [173]. In our experimental geometry, where the light incidence is along
the y direction, the observed CDAD is sensitive to the Ly component of the orbital
angular momentum.

The orbital momentum of the wave functions on the Fermi level in Fig. 7.1(d) shows
a rich texture with sign changes at the positions of the Weyl points. This shows the

91



7 Discussion

correlation between the chirality of the Weyl points and the orbital texture of the
electronic structure around them [173]. Considering possible matrix element effects
we find a good agreement of the calculated values with our measurements that show
a crossing of the changing chirality around ky = 0.2 Å−1 (highlighted by dotted lines).
Figure 7.1(e) shows an energy-momentum section along the Γ − X direction. The
dispersion of the measured CDAD near the Weyl points (indicated by dashed lines in
Fig. 5.6(d)) agrees well with the calculated Ly values (see dashed lines in Fig. 7.1(e)).
This observation further supports our conclusion that strong CDAD with reversed
sign reflects the opposite chiral charge of the respective Weyl points.

In the case of CoSi, as described in Sec. 6.3, the bulk Dirac cone (BD) and the bulk
flat band (BF) that compose an unconventional higher-topological-charge fermion
exhibit a strong CDAD with an opposite signal. This suggests that the BD and
BF states carry an opposite chiral orbital angular momentum. The CDAD sign of
bulk states with a chiral band-dispersion shape is reversed between chiral crystals of
a different handedness, suggesting that these states carry an opposite chiral orbital
angular momentum. This also shows that the chiral orbital angular momentum is
linked to the crystal structure. Thus, the chiral electronic wave functions observed
in CoSi reflect structural chirality as well as chiral quasiparticle states. Based on
our observation in CoSi as well as MoTe2, the CDAD provides a direct fingerprint of
chiral quasiparticle states.

In contrast, the Fermi arc in CoSi exhibits a weak CDAD, and does not carry
a large orbital angular momentum. This can be explained when the spin angular
momentum is coupled to the orbital angular momentum. The spin-split Fermi arcs
carry a mutually opposite spin as shown in Fig. 2.12(b). However, we did not observe
the spin-split Fermi arc within our experimental resolution. Thus, the Fermi arc
appears to be degenerate in terms of the spin and orbital angular momentum in our
measurement (For a detailed description see Sec. 6.3).

As seen in Sec. 5.3, in MoTe2, we observed a signature of a chiral cone below the
Fermi level at the kx = 0 line. In the (kx, ky) constant-energy contour, this appears as
a relative positions of two hole bands with the positive and negative CDAD sign (For
details see Fig. 5.5(e).) Since a CDAD due to the asymmetric photoemission geometry
should vanish at the kx = 0 line, these states purely reflect an intrinsic chirality of
the wave functions (For details see Secs. 3.4.2 and 5.3). These states, which have
not been reported so far, can not be reproduced by our calculation and may be only
visualized by the CDAD. Whether these states are part of the Weyl topology are still
under investigation. We need further theoretical support to conclude this question.

As seen in Fig. 7.1, the calculated Py and Ly in MoTe2 show different textures. This
observation is similar to the type-I Weyl semimetal TaAs [173] [see Figs. 3.15(a, b)].
However, as demonstrated in Fig. 5.7(a), the observed spin texture of the Weyl cone
corresponds well to its CDAD texture for s-polarized light. This suggests a correlation
between the Py spin texture related to odd orbitals, probed by s-polarization, and the
Ly orbital angular momentum, probed by the CDAD.

As introduced in Sec. 3.4, differently polarized light probes different components
orbital of the initial state wave functions. Rich photoemission-intensity variations for
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different states and even within the same states in CoSi are observed with differently
polarized light. This suggests rich orbital textures. The bulk Dirac cone and the
bulk flat band, and the Fermi arc respond all differently to polarizations, suggesting
a different orbital character of their bands. As described in Sec. 3.4.1, the different
response of the Fermi arc and the bulk-like state in the type-I Weyl semimetal TaP to
p- and s-polarization suggests their different orbital characters [154]. In particular, a
reversal of the linear dichroism between the Fermi arc and the bulk-like state indicates
pronounced switches in the orbital texture, which distinguishes these bands. From
our work on CoSi together with the previous study of TaP, we conclude that different
topologically non-trivial bands are characterized by their different orbital characters.

A study of TaAs [173] (see Sec. 3.4.2) and our work on MoTe2 confirmed the sign
of the Chern number, either plus or minus, by relating it to the orbital angular
momentum probed by circular dichroism. We believe that our results of a rich orbital
texture in CoSi may experimentally deduce the Chern number of the unconventional
fermion, since the orbital texture is closely related to the Berry curvature field [173]
described in Sec. 3.4.2. For instance, the abrupt change of the CDAD in the BD
band suggests that the orbital angular momentum of this band abruptly changes
even within the same state, which is not observed in TaAs or MoTe2. This may be
related to the Berry curvature field describing a higher-topological charge. Further
theoretical support is needed to fully resolve the orbital texture of CoSi.
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8 Conclusion and outlook
We studied the type-II Dirac semimetal NiTe2, the type-II Weyl semimetal MoTe2,
and the chiral topological semiemtal CoSi, where different topological phases emerge
depending on the crystal structure. We discussed the relationship between spin- and
orbital-dependent band structure, symmetry, and topology.

In the type-II Dirac semimetal NiTe2, a spin polarization of bulk states is not
allowed for inversion-symmetric materials. An observed “hidden” spin polarization of
the bulk Dirac cone originates from the top Te atom of a Te-Ni-Te trilayer, namely, one
of the inversion partners. This is because inversion symmetry is broken at the surface
when surface sensitive VUV light predominantly probes the top few layers. This
is interpreted as a concept where the degenerate Dirac cone in NiTe2 is formed by a
superposition of two Dirac cones originating from the top and bottom Te layers whose
spin polarizations are opposite. We also give evidence for a helical spin-polarized
additional surface Dirac cone below the Fermi level, as in topological insulators.

In the type-II Weyl semimetal MoTe2, we captured a pair of chiral Weyl cones
exhibiting a strong circular dichroism with reversed sign, which gives evidence for
opposite chiral charges of the respective Weyl points. The observed circular-dichroism
texture is further supported by the calculated orbital angular momentum. A pair of
spin-split Weyl cones, caused by spin-orbit coupling and broken inversion symmetry,
was found to exhibit a opposite spin texture when probed by p-polarized light. The
spin texture of the Weyl cones can be explained by the opposite topological charge.

We succeeded in obtaining a clean surface of the chiral topological semimetal
CoSi(100) by sputtering and annealing. Compared to the frequently used cleavage,
this procedure leads to reproducible surface quality. We determined a handedness
of two chiral crystals and accordingly their chiral charge by associating them with
the Fermi velocity of the observed Fermi arc. The sign of the circular dichroism of
the bulk states with a chiral band dispersion is reversed between chiral crystals of an
opposite handedness. We revealed a polarization dependence of the bands forming a
higher-charge fermion as well as the Fermi arc. The different response of these bands
to light polarizations indicates their different orbital character, attributed to their
band structure topology.

In conclusion, the spin texture is strongly influenced by the crystal structure, in
general. Furthermore, we clarified that the spin texture of Dirac and Weyl cones can
reflect their topological charge: a pair of Weyl cones with opposite chirality exhibits
a reversed spin polarization. Depending on the symmetry of the crystal structure,
the cones are degenerate in k space for inversion-symmetric NiTe2 and separated
for MoTe2 due to broken inversion symmetry. The circular dichroism probes the
orbital angular momentum of the electronic wave functions that are linked to chiral
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quasiparticle states and structural chirality.
Our experimental works in collaboration with theory stimulate further studies. We

showed calculated orbital-dependent spin-polarized band structures in NiTe2. In the
future, we would like to perform spin-resolved measurements with differently polarized
light such that the spin of specific orbitals can be probed. This will further extend our
knowledge of the relationship between the spin and orbital texture of the bulk Dirac
cones, which is currently limited to the surface Dirac cone in topological insulators.
In order to fully understand the observed polarization-dependent band structures
in CoSi, we need band structure calculations projected onto different orbitals. In
this way, we can further discuss the relationship between orbital texture and band
structure topology, which may provide a fingerprint of its higher-charge fermion. As
shown in Fig. 2.12, the width of the spin-split Fermi arcs are small due to weak SOC
in CoSi. It was therefore not possible to resolve the splitting within our experimental
resolution. Stronger SOC gives rise to a larger width of the spin-split Fermi arcs,
which can be resolved experimentally. In order to clarify the spin texture of the
Fermi arc in chiral topological semimetals, we would like to perform spin-resolved
measurement on strong SOC materials PtGa [120] and PtGa [121].

As we have seen, symmetries play an important role to realize topological quan-
tum materials and lower symmetries can give rise to new exotic topological quantum
materials. In this thesis, we studied these materials in terms of the crystal structure
in 3D. This aspect can be further extended by realizing lower symmetries in different
ways. Low dimensionality such as atomic-layer topological quantum materials can be
interesting [201]. Breaking of time-reversal symmetry can be another way to realize
lower symmetries. Time-reversal-symmetry breaking in magnetic topological quan-
tum materials [202] can interesting, where magnetism and chirality can meet topology.
Since light breaks time-reversal symmetry, light-induced topological quantum mate-
rials can be another candidate [203]. These future studies together with our current
works will contribute to extending a full picture of topological quantum materials in
connection with symmetries, exploring new materials and phenomena, and a deeper
understanding of electronic structure as well as spin- and orbital-related phenomena.
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