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Abstract: Comparative hydrodynamic loads caused by a focused wave acting on differently sized
slender vertical cylinders placed in a wave canal were predicted at model scale using an unsteady
Reynolds-averaged Navier-Stokes (URANS) solver and the Morison equation. This paper focused,
first, on wake effects that need to be considered for the structural design of tripod configurations and,
second, on the influence of these wake effects on wave-induced loads. For the Morison approach,
flow velocities were gathered at incremental representative locations along the length of the cylin-
ders, whereby the use of a central differencing approach obtained the associated flow accelerations.
A first scenario dealt with a small- and a large-diameter cylinder, implemented individually at two
immersion depths. A second scenario considered medium- and large-diameter cylinders arranged
in a tripod configuration, where the upstream and downstream cylinders had the same diameter.
For the single cylinder, impact loads obtained by both methods compared favorably to experimental
measurements. For the tripod configuration, however, impact loads obtained by both methods
differed due to the influence of wake effects. Thus, it was necessary to determine the influence of
wake effects to assess the structural integrity of tripod configurations.
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hitps://doi.org/10.3390/jmse10091211 Slender cylindrical structures are widely used not only for offshore structures and
wind tower foundations, but also for so-called pump towers in liquefied natural gas (LNG)
tanks. Such towers are subject to sloshing-induced hydrodynamic impact loads. To reli-
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where dF represents the force per segment length, p is the density of the fluid phase, Cp; is
the inertia coefficient, U is the flow velocity, ¢ is time, ‘fi—ltl is the acceleration of the flow, A is
the cross-sectional area of the cylinder, dS is the cylinder’s segment length, Cp is the drag
coefficient, and D is the cylinders diameter.

When using the Morison equation, the structure itself is not directly part of the nu-
merical flow model, i.e., the presence of the structure does not affect the water particle
conditions of the Creative Commons  Kinematics. The geometry, flow velocity, flow acceleration, fluid density, and drag and
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creativecommons.org/ licenses /by / into the Morison equation. Keulegan and Carpenter were amongst the first to perform
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experiments to determine drag and inertia coefficients [2]. They introduced the dimension-
less Keulegan and Carpenter parameter K¢ to relate the amplitude of the oscillating wave
velocity, the wave period, and the cylinder’s diameter. Sarpkaya later introduced a new
parameter B relating K¢ and the Reynolds number Re [3].

As sloshing tests in a model tank provide mainly statistical data on sloshing-induced
impact loads acting on pump towers [4-7], it is difficult to precisely understand all physical
phenomena necessary to accurately predict these loads. Impact loads occur quickly and
are susceptible to local flow conditions [8]. Therefore, we decided to model the effect of a
predefined focused wave acting on a pump tower configuration at a specific location in a
wave canal. This enabled us to better observe and pinpoint local phenomena.

The hydrodynamic loads acting on a tripod configuration consisting of three cylinders
were considered, where two downstream cylinders were located in the wake of an upstream
cylinder. The upstream cylinder generated a wake field and, depending on the flow’s
Reynolds number and the distance between the upstream and downstream cylinders, this
wake may influence the loads acting on the downstream cylinders. In the wake field, the
fluid’s mean velocities were less than the free stream velocities [9], thereby reducing the
drag forces acting on the downstream cylinders [10,11].

An increase of wave loads was observed for cylinders installed side by side [12]. These
loads were higher for regular non-breaking waves than for irregular non-breaking waves
that were generated from a JONSWAP spectrum. Experimental investigations yielded
modified drag and inertia coefficients for cylinders that were installed either in tandem or
side by side [13]. Without calculating loads, numerical simulations with two side-by-side
circular cylinders of Li et al. [14] illustrated the influence of the gap between the cylinders
for a free surface flow. Tong et al. [15] investigated a steady uniform flow around two
staggered cylinders at a low Reynolds number of Re = 1 x 10%. The presence of a second
cylinder altered the pressure distribution and the location of stagnation points on the
surface of both cylinders. A reciprocal influence between an upstream and a downstream
cylinder was also observed when the spacing ratio 4 (with L being the distance of the center
between the cylinders) was less than 3.5 for Re = 5.8 x 10*, equal to 3.5 for Re = 8.3 x 10%,
and slightly higher than 3.5 for Re = 1.1 x 10° [16] for cylinders being installed in tandem.
Zdravkovich investigated the influence on the drag coefficient for different spacing ratios
between two cylinders that were installed in tandem. He found that the influence of the
downstream cylinder on the upstream cylinder is significant when the spacing ratio is less
than 3.5 for subcritical Reynolds numbers [17].

This paper dealt with the investigation of hydrodynamic loads on single cylinders and
cylinders arranged in a tripod configuration. The Morison equation was used to calculate
the wave loads on the cylinders in undisturbed waves. These wave loads were compared
to those acting on the cylinders in disturbed waves, where all cylinders were geometrically
modeled. For the configuration consisting of large-sized cylinders, Reynolds numbers
ranged between Re = 5.0 x 10* and Re = 1.6 x 10°; for the configuration consisting
of medium-sized cylinders, the Reynolds numbers ranged between Re = 4.3 x 10* and
Re = 1.3 x 10°. The tripod configuration represented a simplified LNG pump tower
structure with staggered and side by side arrangements of the cylinders.

Using a turbulence model, the validation study was performed for the case with a
single cylinder and presented in our conference paper [11]. It was summarized in this
paper and extended by an additional validation study, also using a laminar flow model.

2. Test Case Description

The experiments of hydrodynamic loads acting on the cylinders were performed in a
wave canal of 0.65 m width and 16.77 m length [18]. The initial water level was 0.667 m. A
hydraulically powered flat-type wave maker generated the focused waves. A vertical wall
installed at a distance of 12.53 m from the wave maker limited the tank’s test length.

The first scenario comprised tests of two single steel cylinders situated vertically in the
canal at a longitudinal distance of 11.62 m from the wave maker and 0.91 m from the rear
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wall. A six degrees-of-freedom load sensor was fixed to a flange mounted at the top of each
cylinder. This load sensor was enclosed in a frame whose height position was adjustable.
Both cylinders had a length of 0.80 m, but they were each fixed at two different height
positions to enable investigating impact loads at different immersion depths. In their low
positions, the lower end of the cylinders was situated 0.198 m above the tank’s bottom; in
their high positions, 0.398 m above the tank’s bottom. The small cylinder’s diameter was
Dgyan = 0.0889 m; the large cylinder’s diameter was Djgyq, = 0.1524 m. The purpose of
these first scenario tests was to compare experimental data with numerical predictions.
The second scenario dealt with hydrodynamic loads acting on the cylinders in a tripod
configuration, immersed to a depth of 0.469 m below the free surface. In this scenario, the
investigated diameters were De4iy, = 0.1230 m and Dy, = 0.1524 m. The longitudinal
distance between the center of the downstream cylinders and the rear wall was 0.91 m. The
longitudinal distance between the center of the downstream cylinders and the upstream
cylinder was two times the diameter. The upstream cylinder was located on the centerline of
the wave canal and the downstream cylinder was located one diameter transversally from
this centerline. The upstream and downstream cylinders always had the same diameter.

3. Experimental Setup

An MC12 series AMTI multi-component transducer was used to measure hydrody-
namic loads at a sampling frequency of 2000 Hz [18]. This transducer’s load capacity
ranged between 100 N and 250 N for forces in the vertical direction, between 50 N and
125 N for forces in the longitudinal and transverse directions, between 50 Nm and 125 Nm
for torques about the vertical axis, and between 100 Nm and 250 Nm for torques about the
longitudinal and transverse directions. The load sensor was rigidly bolted on a movable
support mounted above the wave canal. With this movable support, the sensor could
be adjusted along the vertical axis to keep the single cylinder at the low and the high
position. The cylinders were bolted through a fixation plate to the longitudinal center of
the sensor [18].

To account for the effect of Newtonian viscosity, the non-breaking focused wave was
generated on the basis of the Ricker spectrum with a peak period of Tp = 2.617 s. The focal
point of the focused wave was set at a longitudinal distance of x = 11.69 m from the wave
maker [18]. The position of the focal point was thus close to the center of the cylinders in the
first scenario; specifically, it was positioned at a distance of 11.62 m from the wave maker.
Table 1 lists the focused wave’s greatest height of Ay, = 0.214 m and the two parameters of
m =1.42 and T = 0.2285, which had to be specified to generate this wave in the first and
second scenarios.

Table 1. Parameters of the wave for the first and second scenarios.

Ay (m) m x (m) T Tp (s)
0.214 1.42 11.69 0.2285 2.617

4. Numerical Method

An Eulerian approach defined our liquid—gaseous two-phase flow according to the
volume of fluid (VoF) method:

o= = ()

where «; is the volume fraction of phase i, V; is the volume of the respective phase i, and V
is the volume of the cell.

Velocities, pressures, etc., were calculated for each grid cell of the computational
domain. An appropriate coordinate system was defined to identify the location and time
assigned to each liquid and gaseous particle of the respective cell [19]. Energy, mass, and
momentum had to be conserved. For the prevailing two-phase flow, exchange terms for
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energy, momentum, and mass accounted for the interactions of the two phases [20]. The
term for the continuity equation is defined as follows:

d
at</v pdV) —|—Ap'v-da = /VZZ Sp;0idV, (©)]

where v is the mass-averaged velocity, and a is the surface area. The product S, -p; accounts
for the phase source term in the mass source term. The term for the momentum equation is
defined as follows:

0
5 (/V pz;dV) + ﬁpv@vda = - f;‘ pI-da+]i T~da+/vpng+ /Vfde— Ei Xipivg; ®vg;-da, 4)

where p is the pressure, I is the unity tensor, T is the viscous stress tensor, g is the gravity, f,
is the vector of the body forces, and v, is the diffusion velocity. The term for the energy
equation is defined as follows:

a -1
at(/v pEdV> +£[va+p+2i ipiHiog;| da = —j{qq -da+£rv-da+/vfbvdv+/vs,gdv, 5)

where E is the total energy, H is the total enthalpy, 4" is the heat flux vector, and Sg is a
user-defined energy source term.

The simulations for the first scenario were performed with a turbulence model as well
as with a laminar model to investigate the necessity of using a turbulence model for the
single cylinder case. The simulations for the second scenario were performed solely with
the turbulence model because the wake generated by the upstream cylinder affected the
downstream cylinders of the tripod configuration.

As it was necessary to employ an unsteady approach to simulate the two-phase flow,
the VoF method was combined with a URANS solver for the turbulence model and only
with the Navier-Stokes (NS) equations for the laminar model. An averaged value of the
velocity, the pressure, the viscous stress tensor, the total energy, and the heat flux was
implemented in the URANS calculations. This resulted in a change of the terms for the
conservation equations. The continuity equation was written as follows:

0

2 () = | E v

where 7 is the averaged velocity. The momentum equation was changed to:

d _ _ _ = _ _
8t</v pvdV) +]€4pv®v-da = —]{4 pI-da—i—f{q(T—i— TRANS)~da+/Vpng+/Vfde—Zi X004 ®0g;-da, (7)

where 7 is the averaged pressure, T is the averaged viscous stress tensor, and 7 ; is the
averaged diffusion velocity. A RANS stress tensor T 4ns was added to the mean viscous
stress tensor in the momentum equation:

ulul  ulol  ulw! 2
Trans = —p | otul  wrol vrwl | + 5k, 8)
3
wlu!  wlol  wlw!

where 1/, v/, and w’ are the fluctuating components of the velocity along the x-, y-, and
z-axis, and k is the turbulent kinetic energy. The RANS stress tensor was also implemented
in the energy conservation equation:

0 e " _ _ _ C = S 7 L "
N < /V pEdV) n fA [00H + 5+ X, aipiHivg, | -da = - fA 7 da+ fA (T+ Trans)oda+ /V fyodV + /V SpdV,  (9)

where E is the averaged total energy and 5// is the averaged heat flux vector.
The conservation equations of momentum and mass were solved consecutively with
the segregated flow solver. The segregated flow solver relied on a semi-implicit method for
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pressure linked equations (SIMPLE) algorithm to couple the pressure and velocity fields.
With the predictor-corrector approach, a pressure correction equation generated a velocity
field that satisfied the continuity equation. This pressure correction equation consisted of
parts of the momentum and continuity equations. A pressure gradient p; was computed
and replaced the pressure in the momentum equations:

pfziaopfﬁﬂipﬂ, (10)
ap + 1
where 7y and a7 denote the average for each of the coefficients in the momentum equation
for two adjacent cells 0 and 1, and pgy and py; are face values that were interpolated from
reconstructed gradients and cell values. The continuity equation was rewritten for the
pressure—velocity coupling:

¥, (ng* +iin) = 0, an
where 1" is the uncorrected face mass flux, which was obtained by solving the discrete

momentum equations with an approximated pressure field p*. As the continuity was not
yet satisfied with the approximated pressure field, it needed the corrected mass term i14":

. . ‘ me* (9
e = Qr(py' — p1') + ﬁ (aD Tp;pwind' (12)

where py’ and p,’ are the cell pressure corrections. The uncorrected mass flux r1¢* is then
defined as follows:

. v + v}

mf*:pfa< 02 1>—’Yf/ (13)
where v and v} are the velocities after solving the discrete momentum equations with
the approximated pressure field. The Rhie-Chow dissipation factor vy prevents the de-

velopment of physically unrealistic checker boarding of pressure caused by the linear
interpolation from the cell centers to the faces of the cells:

T =Qr <P1 —Po— W}-ds), (14)

where V p} is the volume-weighted average of the cell gradients of pressure and Qr defined

. W+ W )
Qf_pf(”()"‘“l)aa, )

as follows:

/ . . .
where Pupwind 1 defined as:

/ b X
o _ I forms* >0
pupwznd - {p/l fOT’ mf* <0’ (16)
In the URANS simulations, the shear stress transport (SST) k—w model of Menter [21]
was used to solve for turbulence. The term for the transport equations for the kinetic energy
k was:

9

57 (k) + V(okv) = V[(p + oypie) V] + P — pp” fp: (wk — woko) + S, (17)

where y is the dynamic viscosity, oy is a model coefficient, yi; is the turbulent eddy viscosity,
Py is a sum of production terms consisting of a turbulent, a buoyancy and a non-linear
production term, B* is a model coefficient, fg: is a free-shear modification factor, w is
the specific dissipation rate, wg and kg are ambient turbulence values to counteract the
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turbulence decay, and Sy are the user-specified source terms. The term for the transport
equations for the specific dissipation rate w was:

%(pw) + V(pw) = V(4 + owpt) Vw| + Pu — pBfp (w2 - w%) + S, (18)
where P, is a sum of production terms consisting of a specific dissipation production and a
cross-diffusion term, B is a model coefficient, fﬁ is a vortex-stretching modification factor,
and S, is the user-specified source terms. The high-resolution interface capturing (HRIC)
scheme [22] was used to discretize the transport equation for the volume fraction of water
and air. The normalized variable diagram (NVD) [23] and normalized variables were used
for the HRIC scheme. The normalized face value ¢ was calculated on the NVD using a
combination of the upwind and downwind differencing schemes:

gc if gc <0

_ ) 28c if 0<&c<05
=3 1 if 05<& <1’
gc if 1< ¢c

(19)

where ¢ is the normalized cell value. The normalized face value is improved by consider-
ing the local value of the Courant number (CFL) Co:

_ %

Co =
Vp.

At, (20)

where a 5 is the face area, At is the time step size, and Vp. is the control volume of the
donor cell. A correction of the normalized face value (’,’J’E was implemented to avoid stability
problems during the simulations and to fulfill the convective boundedness criterion (CBC):

éc if Co < Coy
& =1 o+ (& —c)&a=8 if Co<Co<Coy, (21)
¢c if Coy < Co

where Co; denotes the lower limit and Co,, the upper limit for the CFL number. The HRIC
scheme is used when CFL numbers are below Co;,. A blending of the HRIC scheme and
the first-order upwind scheme (FOU) is used when CFL numbers are between Co; and Co,,.
Only the FOU is used if the CFL number is greater than Co,,.

5. Numerical Setup

To reduce the computational domain from 12.53 to 4.53 m, longitudinal and vertical
velocities and wave heights were pre-calculated for a longitudinal distance of 8.00 m
from the wave maker. By incorporating a re-derived Boussinesq-type model [24] and
implementing an advanced shoaling enhancement operator, an accurate distribution of
vertical velocities was obtained that always satisfied the kinematic bottom boundary
condition. An advanced potential formulation improved the effectiveness of the prior
models [25-27] by converting the velocity formulation and, thus, enhancing the relation
between both formulations.

The liquid phase of the two-phase flow was defined as incompressible water with a
density of 1000 kg/m?, and the ambient air was assumed to be compressible.

The simulations discretized time implicitly to second-order, and a second-order scheme
together with the mid-point rule discretized space. Initially, a flat wave defined the VoF
wave model with a water height at 0.667 m. The multi-phase VoF model was used with the
high-resolution interface capturing scheme (HRIC). A CFL of 0.5 specified the lower limit
for the HRIC scheme, and a CFL of 1.0 as the upper limit. Use of a sharpening factor of
0.1 for the HRIC scheme [7] ensured obtaining accurate results. The surface average CFL
number was kept below 0.2 during an entire simulation.
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Seven prism layers surrounded the cylindrical structures. The specified thickness
of the first prism layer ensured that all y+ values in the URANS simulations were below
3.0 and, on this basis, the physical area of the viscous sublayer was defined. As initial
conditions, the static temperature of 293.15 K, the hydrostatic pressure of the flat VoF wave,
and the zero velocity were defined. For the URANS simulations, the initial condition for
the turbulent kinetic energy k was 0.001 J/kg and, for the specific dissipation rate w, it was
1.0x107*1/s

The x-axis defined the length of the numerical canal; the y-axis, its width; and the
z-axis, its height. The computational domain ranged from x = 0 m, defined as its inlet,
to x =4.53 m, defined as its back wall. The canal had a width of 0.65 m, ranging from
z = —0.669 m to z = 0.52 m. The origin of the coordinate system was situated at the canal’s
centerline and the intersection of the undisturbed water level with the inlet. The cylinders
in the first scenario as well as the cylinders in the second scenario and all walls, except the
top wall, were defined as walls with the no-slip condition. The top wall was defined as a
pressure outlet; one part of the inlet, as the velocity inlet; and the other part, as a wall.

Table 2 lists particulars describing the arrangement for the cylinders in the experimen-
tal setup, with the corresponding particulars describing the arrangement for the numerical
setup in brackets. No brackets indicate that the arrangements in both setups were the same.

Table 2. Cylinder particulars describing the arrangement for the cylinders in the experimental setup
and for the numerical setup (in brackets).

Cylinder Size Length (m) Diameter (m) Longitudinal x Transversal x Vertical Position (m)
Single Cylinder Upstream Downstream
Low Position High Position Low Position Low Position
11.62 (3.62) x 0 x 11.62 (3.62) x 0 x
Small 0.8000 0.0889 —0.469—0.331 —0.269—0.531
(—0.469—0.52) (—0.269—0.52)
Scenario 1
11.62 (3.62) x 0 x 11.62 (3.62) x 0 x
Large 0.8000 0.1524 —0.469—0.331 —0.269—0.531
(—0.469—0.52) (—0.269—0.52)
. (3.374) x (0) x (3.62) x (0.123) x
Medium 0.8000 0.1230 (—0.469—0.52) (—0.469—0.52)
Scenario 2 (3.3152) x (0) (3.62) x (0.1524)
. x (0) x .62) x (0. X
Large 0.8000 0.1524 (—0.469—0.52) (—0.469—0.52)

For 434 heights along the z-axis, two distinct files stored the local vertical and horizon-
tal velocities and the wave elevation at the inlet. This length extended from z = —0.667 m to
z =0.199 m, and a distance of 0.002 m separated these incremental heights from each other.
A total of 434 blocks were created to allocate the data to the velocity inlet. The first block
had a height of 0.001 m and comprised data for the first point. The following blocks had a
height of 0.002 m and consisted of data of the remaining 433 points. The rest of the inlet,
extending from z = 0.2 m to z = 0.52 m, was defined as a wall with the no-slip condition.

To validate the numerical method, predicted impact forces acting on the single large
cylinder were compared with experimentally measured impact loads. Some simulations
implemented the laminar flow model and others the turbulent flow model. Two sets of
three successively finer grids were generated on which to compute the simulations. The
refinement ratio of v/2 was applied for the spatial as well as the time step sizes to ensure
obtaining the same Courant number for each grid. Table 3 lists the number of cells and the
associated time step sizes of the coarse, medium, and fine grid.

The cells of all grids were hexahedral, and each cell was aligned at the origin of its
coordinate system located at the intersection between the gaseous and the liquid phase. As
a result, all cells contained either 100% of the gaseous phase or 100% of the liquid phase at
the beginning of the simulation. Thus, at the start no unintentional mixing of the individual
phases occurred.



J. Mar. Sci. Eng. 2022, 10,1211

8 of 25

Table 3. Number of cells (CVs) and time steps sizes of grids used to validate the numerical method.
Data from [11].

Coarse Grid Medium Grid Fine Grid
(1,085,131 CVs) (2,829,244 CVs) (7,519,511 CVs)

Time Step (Start) (s)

Time Step (s) Time Step (Start) (s) Time Step (s) Time Step (Start) (s) Time Step (s)

Set 1

8 x 1073

2 %1073 5.657 x 1073 1.414 x 1073 4 %1073 1x10°3

Set 2

5.657 x 1073

1.414 x 1073 4 %1073 1x1073 2.828 x 1073 7.071 x 10~*

Grids were refined in the vicinity of the free surface, ranging from z = —0.10 to 0.20 m,
and at the cylinder to dissolve the wave shape and the higher velocities more accurately
and to prevent unwanted vortices forming at the cylinders. Cell lengths were 0.0125 m for
the coarse grid, 0.00884 m for the medium grid, and 0.00625 m for the fine grid. For the
remaining area, the cell length was 0.025 m for the coarse grid, 0.01768 m for the medium
grid, and 0.0125 m for the fine grid. The cell length in the vicinity of the cylinder was
0.00625 m for the coarse grid, 0.00442 m for the medium grid, and 0.003125 m for the fine
grid. The total thickness of the prism layer was 0.00532 m for the coarse grid, 0.00376 m for
the medium grid, and 0.00266 m for the fine grid, whereas the thickness of the first prism
layer was 0.031 x 10~ m for all grids. Figure 1 shows a side view and Figure 2 a top view
of the grids (at z = 0 m) surrounding the large cylinder.

Figure 1. Side view of grid refinement in the vicinity of the large cylinder and at the free surface.

The simulations for the second scenario were obtained only with the implemented
turbulent model. The time step size and basic grid structure were based on results from
our previous validation study [11] and adapted for the tripod configuration. A prism layer
thickness of 0.00266 m was defined for the large-sized cylinders and 0.00215 m for the
medium-sized cylinders. The thickness of the first prism layer was 0.031 x 103 m for the
large cylinders and 0.03 x 103 m for the medium-sized cylinders, thereby obtaining the
same low wall y+ number. Seven prism layers were considered. The cells surrounding the
upstream and downstream cylinders were 0.003125 m long, which enabled to accurately
capture the turbulent flow in the area between the cylinders and, therefore, to account for
the vortex-induced interaction between the cylinders. To evaluate the effectiveness of the
Morison equation, the cylinders were removed from the numerical canal, and the velocities



J. Mar. Sci. Eng. 2022, 10,1211 9 of 25

and accelerations were gathered at the positions of the removed cylinders. Figure 3 depicts
a top view of grid refinement in the vicinity of the three large cylinders at the height of
z = 0 m. Table 4 lists particulars for the numerical cases.

}// 4

N <
AP

Figure 2. Top view of one half of the grid refinement in the vicinity of the large cylinder at z = 0 m.

Figure 3. Top view of grid refinement in the vicinity of the large cylinders in the tripod configuration
atz=0m.
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Table 4. Overview of the numerical cases.

Flow Model

Cylinder Immersion
during Validation
Study (m)

Quantity of
Simulations

Cylinder Immersion after

Cylinder Sizes Validation Study (m)

Low Position High Position = Low Position

Scenario 1

Laminar

6 (3 each with

Set 1 and Set 2) —0.469

Large

Turbulent

4 (2 each with
Morison and
Small URANS for —0.269 —0.469

both positions)

Turbulent

6 (3 each with
Set 1 and Set 2)
for low position;
Large 4 (2 each with —0.469 —0.269 —0.469
Morison and
URANS for
both positions)

Scenario 2

Turbulent

6 (2 each with
. Morison and
Medium URANS for all —0.469

three cylinders)

Turbulent

6 (2 each with
Morison and
Large URANS for all —0:469

three cylinders)

6. Validation

Two simulations were conducted per grid with the turbulence model and two sim-
ulations per grid with the laminar model. Set 1 comprised simulations with the larger
time steps and set two simulations with the finer time step, see Table 3. Thus, the CFL
number differed only between the two sets and remained the same within each set. The
least squares method [28] was used to obtain grid and time step independent solutions for
a constant CFL number [29].

The two top graphs of Figure 4 plot time histories of the longitudinal load, based on
the laminar flow model, acting on the large cylinder obtained on the three grids of set 1
and set 2. The black line depicts experimentally measured loads; the yellow line, loads
computed on the coarse grid; the red line, loads computed on the medium grid; the blue
line, loads computed on the fine grid. To better distinguish differences between peak load
predictions, the two bottom graphs of Figure 4 present zoomed views of these time histories
representing time intervals within the small rectangular box in the top graphs of Figure 4.
As seen, for both sets the predicted load obtained on the coarse grids came closest to the
measured load. Furthermore, with increasing grid fineness computed loads increased and
deviated more from the measured loads.

The upper graph of Figure 5 plots time step refinement ratio versus grid spacing
refinement ratio for simulations based on the laminar model. This grid spacing refinement
ratio x;; is defined as follows:

SpaCinggridi_setj

Xjj = ————, 22
/ Spacmggridl_setl 22)

where indexes i = 1, 2, 3 refer to the coarse, the medium, and fine grids, respectively, and
indexes j =1 and 2 refer to sets 1 and 2, respectively. The time step refinement ratio y;; is
defined as follows:
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tgridl-fset]-

Yij = 1 (23)

gridy_sety ’
where f represents the time step, indexes i = 1, 2, 3 refer to the coarse, the medium, and
fine grids, respectively, and indexes j = 1 and 2 refer to sets 1 and 2, respectively. The
denominator of this ratio is always the largest time step, i.e., the time step of grid 1 in set 1.
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Figure 4. Time histories of wave-induced loads acting on the large cylinder obtained on the three
grids of set 1 (top left) and set 2 (top right) and zoomed views of the associated load peaks of set 1
(bottom left) and set 2 (bottom right) based on the laminar flow model.
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Figure 5. Time step refinement ratio versus grid spacing refinement ratio (a) and grid spacing and
time step independent longitudinal impact load versus the arithmetic mean of the x;; and y;; (b) based
on the laminar flow model.
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The number of control volumes remained the same for set 1 and set 2. Thus, the grid
spacing differed only between the coarse, the medium, and the fine grid. Recall that the
refinement factor of /2 was the same for the grid spacing and the time step size.

The lower graph of Figure 5 plots the grid spacing and time step independent longitu-
dinal impact load versus the arithmetic mean Xj; of x;; and y;; defined as follows:

5. — i yl]/

ij = > (24)

The cyan line represents the time step and grid independent solution for the impact
load in set 1; the green line, the time step and grid independent solution for the impact
load in set 2. Sets 1 and 2 yielded the impact loads of 29.57 N and 29.62 N, respectively,
and the experimentally measured impact load was about 28.55 N. Thus, the numerically
computed impact load deviated by about 3.6% from the measured impact. Recall that these
load computations were based on the laminar flow model.

The two top graphs of Figure 6 plot time histories of the longitudinal load, here based
on the turbulent flow model, acting on the large cylinder obtained on the three grids of set 1
and set 2. As in Figure 4, the black line depicts experimentally measured loads; the yellow
line, loads computed on the coarse grid; the red line, loads computed on the medium grid;
the blue line, loads computed on the fine grid. Here, too, the two bottom graphs of Figure 6
present zoomed views of these time histories representing time intervals within the small
rectangular box in the top graphs of Figure 6. As seen, the predicted impact load obtained
on the finest grid in set 2 compared best to the experimentally measured impact load.
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Figure 6. Time histories of wave-induced loads acting on the large cylinder obtained on the three
grids of set 1 (top left) and set 2 (top right) and zoomed views of the associated load peaks of
set 1 (bottom left) and set 2 (bottom right) based on the turbulent flow model. The data were from
ref. [11].

Sets 1 and 2 yielded the discretization independent impact loads of 28.54 N and
28.52 N, respectively, see Figure 7. The favorable agreement between the measured impact
load of 28.55 N and the discretization independent impact loads in both sets indicated that
the computations were able to yield reliably predictions. Table 5 summarizes these results
and lists the calculated and measured value for the impact loads and the deviation between
both. Recall that these load computations were based on the turbulent flow model.
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Figure 7. Time step refinement ratio versus grid spacing refinement ratio (a) and grid spacing and
time step independent longitudinal impact load versus the arithmetic mean of the x;; and y;; (b) based
on the turbulent flow model. The data were from ref. [11].

Table 5. Discretization-independent predictions and impact loads from the coarse, medium, and fine
grids and their deviations from experimental measurements (in brackets).

Coarse Grid Impact (N) Medium Grid Impact (N)  Fine Grid Impact (N) and  Discretization Independent

and Deviation from and Deviation from Deviation from Impact (N) and Deviation
Experiments (%) Experiments (%) Experiments (%) from Experiments (%)
Laminar (SST) k-w Laminar (SST) k-w Laminar (SST) k-w Laminar (SST) k-w

Set1  2841(049) 27.39(4.06) 28.73(0.63) 27.65(3.15) 2898(1.51) 27.99(1.96) 2957 (3.57)  28.54(0.035)
Set2  2851(0.14) 2749 (3.71) 28.88(l.16) 27.76(2.78) 29.18(2.21) 28.14 (1.44) 29.62 (3.75)  28.52(0.11)

These uncertainty studies demonstrated that loads based on the turbulent flow model
yielded more accurate and higher predictions than those based on the laminar flow model.
Therefore, subsequent computations were carried out with the turbulence model on the
finest grid with the time step for set 2. Of course, the grid was adapted for the differently
sized cylinders and the tripod configuration accordingly.

7. Comparison of Load Coefficients for Single Cylinder and Cylinders in the Tripod
Configuration Considering the Influence of Wake Effects

In the first scenario, longitudinal flow velocities were pre-calculated at 210 points
along the z-axis located at the single cylinder’s longitudinal position of x = 3.62 m. These
probe points, separated by 0.0032 m from each other, extended from z = —0.4674 m to
z = 0.2014 m. The length per segment dS, therefore, was 0.0032 m for a cylinder immersed
to a depth of z = —0.4690 m.

However, for a cylinder immersed to a depth of z = —0.2690 m, the pre-calculation of
flow velocities started at the 64th probe point located at z = —0.2658 m. To avoid repeating
the simulation with different positions of the probe points, the segment length dS was
increased to 0.0064 m. Thus, flow velocities were obtained at every second probe point for
this cylinder. Figure 8 shows the arrangement and location of the single cylinder in this first
scenario and the 210 probe points at which the longitudinal velocities were pre-calculated.
For illustrative purposes, only 22 of the 210 probes are shown in Figure 8.
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Figure 8. Arrangement of a single cylinder in the first scenario (top) and the 210 probe points (only 22
in this figure for illustrative purposes) at which longitudinal velocities were pre-calculated (bottom).

In the second scenario, velocities were obtained at 80 probe points along the z-axis
located at the three cylinders’ longitudinal positions, i.e., at a total of 240 probe points. These
probe points were separated by a distance of 0.0086 m from each other and extended from
z = —0.4647 m to z = 0.2147 m. The cylinders were immersed to a depth of z = —0.4690 m.
Figure 9 shows the arrangements of the three cylinders for the tripod configuration in
the second scenario and the 240 probe points at which longitudinal velocities were pre-
calculated. For illustrative purposes, only 27 of the 240 probes are shown in Figure 9.

Figure 9. Arrangement of the three cylinders for the tripod configuration in the second scenario (top)
and the 240 vertical probe points (only 27 in this figure for illustrative purposes) at which longitudinal
velocities were pre-calculated (bottom).
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Figure 10 plots time histories of the temporal waveform at the longitudinal positions
of the single cylinders and of the downstream cylinders, which is located at x = 3.62 m, of
the medium-sized upstream cylinder, which is located at x = 3.374 m and of the large-sized
upstream cylinder, which is located at x = 3.3152 m.
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Figure 10. Temporal waveform of the focused wave at the longitudinal locations of (a) x = 3.62 m,
(b) x =3.374 m and (c) x = 3.3152 m.

Figure 11a plots time histories of pre-calculated flow velocities at the probe points
in the first scenario for the single cylinder immersed to a depth of z = —0.4690 m; and
Figure 11b for the single cylinder immersed to a depth of z = —0.2690 m. A color bar
indicates the vertical position of the probe points.
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Figure 11. Time histories of pre-calculated flow velocities at probe points in the first scenario for the
single cylinder immersed to a depth of z = —0.4690 m (a) and to a depth of z = —0.2690 m (b). The
color bar indicates the vertical position of the probe points.
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Figures 12 and 13 plot time histories of pre-calculated flow velocities for the tri-
pod configuration considered in the second scenario. The time histories in Figure 12
refer to the configuration consisting of the large-diameter cylinders; the time histories in
Figure 13, to the configuration consisting of the medium-diameter cylinders. Graph (a) of
Figures 12 and 13 refers to flow velocities at the upstream cylinder; Graph (b) refers to flow
velocities at the starboard downstream cylinder; Graph (c) refers to flow velocities at the
portside downstream cylinder.

1.25 01717 =
= 1.00{[(a I g3t €
g€ o i
[) N 0. S
O 0.50 ’§:§§§§E
s g 025 201677 8
=g 000 ———— ~ s
82 _0.25 \/ ~0:2950 @
L% : J -03374 o
"8 =00 e
—0.75 204647 &

10 11 12 13
1.25 _
= 1.00{[() ' I§§§2§ E
2% ors 8L <
8§ 0 ~0.0347.2
2 50 0.0777 B
£5 02 e
zg 000 — \ engs
53 _0.25 - 02927 ©
=% 0. : 283379
o — Sae

e 11 12 13
1.25 01803 =
— 1.001](c) Ig‘égzg £
£¢ o i =
() : 0. S
ST 050 00975
5g 025 S Siara
zb 000 T 203987 &
52 _025 012927 @
=% 0. g 203378
" o —_— E 5]

10 11 12 13

Time (s)

Figure 12. Time histories of flow velocities at probe points in the second scenario at the upstream
cylinder (a), at the downstream starboard cylinder (b), and at the downstream portside cylinder
(c) for the tripod configuration consisting of large-diameter cylinders. The color bar indicates the
vertical position of the probe points.
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Figure 13. Time histories of flow velocities at probe points in the second scenario at the upstream
cylinder (a), at the downstream starboard cylinder (b), and at the downstream portside cylinder
(c) for the tripod configuration consisting of medium-diameter cylinders. The color bar indicates the
vertical position of the probe points.
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The times between maximum and minimum flow velocity in Figures 11-13 were
multiplied by a factor of two, and these times were treated as a wave period of the focused
wave representing the period of a sloshing motion acting on a single vertical cylinder
or on a typical tripod configuration of a pump tower. A previous investigation of ours
demonstrated that this approach yielded practically relevant estimates [11].

To establish load coefficients, the wave period needed to be specified as this enabled
determining Sarpkaya’s beta factor S [3]:

D2

B = oT, (25)

where ¢ is the kinematic viscosity, and T}, is the wave period. Sarpkaya defined drag
coefficients Cp and inertia coefficients Cys as a function of the Keulegan and Carpenter
parameter K¢ [2]:

_ UnTy
= =5
where U, is the oscillating flow’s maximum velocity at the point where the load is acting,
that is, at the probe points in our case.

In the first scenario, the wave period 1.87 s and the maximum velocity were the same
for all simulations because the location of the probe points along the single cylinder did not
change. In the second scenario, the longitudinal position of the upstream cylinder differed
from that of the downstream cylinders and, thus, the wave period was modified. While the
wave period for the downstream cylinders remained at about 1.87 s in all simulations, the
modified wave period was 2.32 s for the large-diameter upstream cylinder and 2.29 s for
the medium-diameter upstream cylinder.

In the first scenario, the § parameter turned out to be 12,383 for the large-diameter
cylinder and 4214 for the small-diameter cylinder, and the K¢ parameter was 13.7 for the
large-diameter cylinder and 23.4 for the small-diameter cylinder.

In the second scenario’s configuration with the medium-diameter cylinders, § and K¢
were 6587 and 19.6, respectively, for the upstream cylinder, and 8066 and 16.7, respectively,
for the downstream cylinders.

In the second scenario’s configuration with the large-diameter cylinders, g and K¢
were 9981 and 15.9, respectively, for the upstream cylinder and 12,383 and 13.7, respectively,
for the downstream cylinders.

Sarpkaya performed experimental tests for § values of 4480, 6555, 8370, and 11,525 [3,30].
From his tests for § = 4480, drag and inertia coefficients were extracted for the small-
diameter cylinder in the first scenario; from his tests for B = 6555, drag and inertia
coefficients were extracted for the upstream cylinder in the configuration with the medium-
diameter cylinders; from his tests for § = 8370, drag and inertia coefficients were extracted
for the downstream cylinders in the configuration with the medium-diameter cylinders,
and from his tests for f§ = 11,525, drag and inertia coefficients were extracted for the
large cylinder in the first scenario and the upstream and downstream cylinders in the
configuration with the large-diameter cylinders. Table 6 lists these extracted drag and
inertia coefficients as well as the associated wave periods and ff and K¢ values.

To compare the predicted hydrodynamic loads against experimental measurements,
the coefficient cy was introduced, which expresses the normalized loads as follows [7]:

Kc (26)

F
o (27T2‘ #'sz) “A Area

, (27)

Cy =

where F represents the hydrodynamic load, Tp the peak period, Ay the maximum wave
height of the respective focused wave, and A4, the surface area of the cylinder.
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Table 6. Wave periods, B and K¢ values, and extracted drag and inertia coefficients for the first and

second scenarios.

Scenario Cylinder Size Cylinder Position Ty (s) B Kc () Cp () Cym ()
Small 1.87 4214 23.4 0.66 1.7
1
Large 1.87 12,383 13.7 0.68 1.77
Upstream 2.29 6587 19.6 0.684 1.714
Medium
) Downstream 1.87 8066 16.7 0.65 1.79
Upstream 232 9981 15.9 0.71 1.68
Large
Downstream 1.87 12,383 13.7 0.68 1.77
Figure 14 presents comparative time histories of load coefficient c, for the low- and
high-positioned cylinder in the first scenario. A black line identifies c, values based on
experimentally measured loads; a dark red line, ¢, values based on URANS computed
loads; an indigo line, ¢, values based on loads calculated with the Morison equation.
Figure 14a,c of this figure refer to loads acting on the small-diameter cylinder in its low
and high positions, respectively; Figure 14b,d of this figure refer to loads acting on the
large-diameter cylinder in its low and high positions, respectively.
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Figure 14. Time histories of load coefficient ¢, in scenario 1 for the small-diameter cylinder in its low
position (a), for the large-diameter cylinder in its low position (b), for the small-diameter cylinder in
its high position (c), and for the large-diameter cylinder in its high position (d).

Generally, in all four cases the computed and calculated loads compared favorably
to measurements, especially in the vicinity of the impacting load peaks. However, after
impact, predicted loads differed somewhat from measurements although the URANS
computed loads acting on the large-diameter cylinder agreed fairly well with measurements.
Nevertheless, for the small-diameter cylinder, the Morison equation yielded loads that
closely matched the URANS computed loads even after impact. After impact, not only
the URANS simulations, but also the Morison equation based solutions had difficulties
reproducing the temporal progression. This could have been due to the reduced stiffness of
the small-diameter cylinder.
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Figure 15 presents the comparative frequency spectra of load coefficient ¢y, derived
via a fast Fourier transform (FFT), for the low- and high-positioned cylinder in the first
scenario. Again, a black line identifies ¢, values based on experimentally measured loads;
a dark red line, ¢, values based on URANS computed loads; an indigo line, c, values
based on loads calculated with the Morison equation. Figure 15a,c of this figure refer to
loads acting on the small-diameter cylinder in its low and high positions, respectively;
Figure 15b,d of this figure refer to loads acting on the large-diameter cylinder in its low
and high positions, respectively.

Figure 15. Frequency spectra of load coefficient ¢, in scenario 1 for the small-diameter cylinder in
its low position (a), for the large-diameter cylinder in its low position (b), for the small-diameter
cylinder in its high position (c), and for the large-diameter cylinder in its high position (d).

The URANS computed load coefficients and experimental measurements compared
favorably for the large-diameter cylinder in its low position. There were two visible peaks
at about 0.5 Hz and 3 Hz. Although load coefficients based on the Morison equation were
somewhat lower than measured coefficients, they had two peaks at these same frequencies.
The same tendency was observed for the small-diameter cylinder in its low position at
the first peak. Four peaks characterized the spectrum of the load coefficient based on
experimental measurements. Load coefficients from URANS computations and from the
Morison equation yielded three visible peaks. The second and third peaks were at the
same frequency as the third and fourth peaks of the coefficients based on experiments
although the experimentally based peaks were slightly larger. The number of peaks and
their occurrence frequency were nearly the same for the small-diameter cylinder in its high
position. The URANS based coefficients were higher at the first peaks. Load coefficients
based on experiments and on the Morison equation matched favorably at the first peak.
Coefficients for the large-diameter cylinder in its high position compared favorably to both
coefficients based on predictions and measurements. The frequency of the first peak shifted
slightly to a higher value for the large-diameter cylinder in its low position.

Figure 16 presents comparative time histories of load coefficients for the medium-
diameter cylinders in their tripod configuration, i.e., in the second scenario. The dark
red line identifies the URANS computed coefficients and the indigo line, the coefficients



J. Mar. Sci. Eng. 2022, 10,1211

20 of 25

calculated with the Morison equation. These identifications apply also to the Figures 17-19.
Graphs (a) of these figures refer to coefficients for the upstream cylinder; Graphs (b) refer
to coefficients for the downstream starboard cylinder; Graphs (c) refer to coefficients for
the downstream portside cylinder. For the upstream cylinder, the impact from the Morison
equation was slightly higher than the impact from for URANS computation; however,
for both downstream cylinders, the impact from the Morison equation was slightly lower
than the impact from the URANS computation. For the upstream cylinder, the temporal
progression of load coefficients obtained from both methods agreed better than for the
two downstream cylinders. The wake effect from the upstream cylinder could not be
captured by the Morison equation because the upstream cylinder was not accounted for in
these computations.
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Figure 16. Time histories of load coefficient ¢, in scenario 2 for the medium-diameter upstream
cylinder (a), for the medium-diameter downstream starboard cylinder (b), and for the medium-
diameter downstream portside cylinder (c).
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Figure 17. Frequency spectra of load coefficient ¢, in scenario 2 for the medium-diameter upstream
cylinder (a), for the medium-diameter downstream starboard cylinder (b), and for the medium-
diameter downstream portside cylinder (c).
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Figure 18. Time histories of load coefficient cy in scenario 2 for the large-diameter upstream cylin-
der (a), for the large-diameter downstream starboard cylinder (b), and for the large-diameter down-
stream portside cylinder (c).
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Figure 19. Frequency spectra of load coefficient cy in scenario 2 for the large-diameter upstream
cylinder (a), for the large-diameter downstream starboard cylinder (b), and for the large-diameter
downstream portside cylinder (c).

Figure 17 presents comparative frequency spectra of load coefficient cy, derived via a
fast Fourier transform (FFT), for medium-diameter cylinders in their tripod configuration,
i.e., in the second scenario. The first peak of the coefficients occurred at nearly the same
frequency for all cylinders, and this peak was slightly higher on the upstream cylinder for
the calculations with the Morison equation. The opposite was noticeable for the down-
stream cylinders. For the upstream cylinder, the two methods yielded coefficients that
agreed more closely with each other than for the two downstream cylinders. The greater
difference for the two downstream cylinders occurred because the wake and the associated
flow interaction between the two transverse downstream cylinders could not be considered
by the Morison equation.

Figure 18 presents comparative time histories of load coefficients for the large-diameter
cylinders in their tripod configuration, i.e., in the second scenario. For the upstream cylinder,
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the impact predicted by both methods matched well. However, this was not so with the
load coefficients for the medium-diameter upstream cylinder, see Figure 16. The Morison
calculated load coefficients for the downstream cylinders were lower than the URANS
coefficients. The temporal progression of coefficients from these two methods matched
more closely for the upstream cylinder, which was also so with the load coefficients for the
medium-diameter upstream cylinder.

Figure 19 presents comparative frequency spectra of load coefficient cy, derived via
a fast Fourier transform (FFT), for the large-diameter cylinders in their tripod configura-
tion, i.e., in the second scenario. For the upstream cylinder, the first peak from the two
methods matched favorably. For the downstream cylinders, coefficients from the URANS
computations exceeded those from the Morrison equation. This same tendency was also
found for the medium-diameter cylinders; see Figure 17. This trend was expected as the
missing upstream cylinder in the calculations with the Morison equation was unable to
generate a wake on the downstream cylinders. Again, the flow interaction between the two
downstream cylinders could not be captured by the Morison equation, because they were
not accounted for in these simulations.

Sarpkaya [3,30] investigated drag and inertia coefficients for single cylinders with-
out wake effects and flow interactions between cylinders being installed in a transverse
row. Hildebrandt et al. [13] demonstrated that a wake field and flow interaction between
cylinders in tandem and in a transverse row affected drag and inertia coefficients. In a pre-
vious investigation of ours [11], this led us to consider using the Morison equation for two
cylinders in tandem, where an upstream cylinder created a wake field at the location of the
downstream cylinder. As only the upstream cylinder was implemented, the downstream
cylinder was considered missing. Then the velocities at the downstream cylinder, caused
by the upstream cylinder’s wake field, were used to calculate the loads acting on the down-
stream cylinder via the Morison equation. It turned out that this method provided favorable
results to efficiently assess impact loads on differently sized downstream cylinders.

Figure 20 presents URANS predicted velocities of the flow field surrounding the
implemented tripod configuration made up of the medium-diameter cylinders, taken
after a simulation time of 12.0002 s. Streamlines represent these flow velocities located on
37 vertical planes. As seen, flow velocities at the sides of all three cylinders were higher
than free flow velocities, and they were accelerated in the gap between the downstream
cylinders. The contraction of the streamlines in the gap between the downstream cylinders
indicates an acceleration of the flow at this location. This was expected because the fluid
flow had to pass through a reduced cross-section.

a Velocity: Magnitude (m/s)
.Z 2< 0.000 0.1280 0.2560 0.3840 0.5120 0.6400 0.7680 0.8960 1.024 1.152 1.280

Figure 20. URANS predicted flow velocities at z = —0.074 m of the flow field surrounding the tripod
configuration, consisting of the medium-diameter cylinders, taken after a simulation time of 12.0002 s.
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These URANS simulations nicely captured the wake generated behind the upstream
cylinder as it influenced the flow past the downstream cylinders. For comparison, Figure 21
presents the simulated streamlines without the presence of the cylinders, taken at the same
time. As seen, the flow field was undisturbed as no cylinders were implemented. Of
course, the method via the Morison equation could not account for such a phenomenon.
The accelerated flow velocities in the gap between the downstream cylinders caused a
certain amount of suction, and the influence of this suction was largely responsible for the
deviation between hydrodynamic loads acting on the downstream cylinders obtained from
URANS simulations and from calculations using the Morison equation.

A Velocity: Magnitude (m/s)
'Z 2< 0.000 0.09000 0.1800 0.2700 0.3600 0.4500 0.5400 0.6300 0.7200 0.8100 0.9000

Figure 21. Flow velocities at z = —0.074 m of the flow field without the tripod configuration, taken
after a simulation time of 12.0002 s.

8. Conclusions and Outlook

An unsteady URANS solver and the Morison equation were used to predict hydrody-
namic loads from a single focused regular wave acting on slender vertical cylinders. The
first scenario dealt with single cylinders; the second scenario dealt with three cylinders in a
tripod configuration similar to an LNG pump tower.

First, for an individually mounted large-diameter cylinder, preliminary comparative
URANS simulations were performed using a laminar and a turbulent flow model. As more
accurate results were obtained with the turbulent flow model, this model was chosen for
all subsequent URANS simulations.

Experimentally measured loads on two single cylinders of different diameters and
different immersion depths were compared to loads obtained from the URANS solver and
from the Morison equation. The first load peak was captured more accurately on the large-
sized cylinder than on the small-sized cylinder. After the load peak, the URANS-based
temporal progression of the load acting on only the large-diameter cylinder compared
favorably to experimental measurements. The reduced stiffness of the small-diameter
cylinder affected load progression after the load peak.

For the tripod configuration, peak loads on the upstream cylinder obtained from the
URANS solver were slightly less than peak loads from the Morison equation. The opposite
was the case for peak loads on the downstream cylinders.

Of course, only the URANS simulations were able to capture the wake generated
behind the upstream cylinder and the flow interaction between the two downstream
cylinders of the tripod configuration. Nevertheless, using the Morison equation yielded
loads within an acceptable range of accuracy. However, this accuracy depended solely on
the choice of appropriate drag and inertia coefficients.

We demonstrated that a dedicated investigation had to be performed to assess hydro-
dynamic loads acting on single cylinders in a tripod configuration. This paper dealt with
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wake effects on wave induced loads acting on cylinders of different configurations. Such
loads may be useful to assess the structural integrity of LNG pump towers installed in
partially filled tanks.
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