
����������
�������

Citation: Batra, A.; Sheikh, F.; Khaliel,

M.; Wiemeler, M.; Göhringer, D.;

Kaiser, T. Object Recognition in

High-Resolution Indoor THz SAR

Mapped Environment. Sensors 2022,

22, 3762. https://doi.org/10.3390/

s22103762

Academic Editors: Maris Bauer and

Fabian Friederich

Received: 17 April 2022

Accepted: 12 May 2022

Published: 15 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Object Recognition in High-Resolution Indoor THz SAR
Mapped Environment
Aman Batra 1,* , Fawad Sheikh 1 , Maher Khaliel 1,2 , Michael Wiemeler 1, Diana Göhringer 3

and Thomas Kaiser 1

1 Institute of Digital Signal Processing, Universität Duisburg-Essen, 47057 Duisburg, Germany;
fawad.sheikh@uni-due.de (F.S.); maher.ahmed@uni-due.de (M.K.); michael.wiemeler@uni-due.de (M.W.);
thomas.kaiser@uni-due.de (T.K.)

2 Benha Faculty of Engineering, Benha University, Benha 13511, Egypt
3 Chair of Adaptive Dynamic Systems, Technische Universität Dresden, 01069 Dresden, Germany;

diana.goehringer@tu-dresden.de
* Correspondence: aman.batra@uni-due.de

Abstract: Synthetic aperture radar (SAR) at the terahertz (THz) spectrum has emerging short-range
applications. In comparison to the microwave spectrum, the THz spectrum is limited in propagation
range but benefits from high spatial resolution. The THz SAR is of significant interest for several
applications which necessitate the mapping of indoor environments to support various endeavors
such as rescue missions, map-assisted wireless communications, and household robotics. This
paper addresses the augmentation of the high-resolution indoor mapped environment for object
recognition, which includes detection, localization, and classification. Indoor object recognition is
currently dominated by the usage of optical and infrared (IR) systems. However, it is not widely
explored by radar technologies due to the limited spatial resolution at the most commonly used
microwave frequencies. However, the THz spectrum provides a new paradigm of possible adaptation
of object recognition in the radar domain by providing image quality in good compliance to optical/IR
systems. In this paper, a multi-object indoor environment is foremost mapped at the THz spectrum
ranging from 325 to 500 GHz in order to investigate the imaging in highly scattered environments
and accordingly create a foundation for detection, localization, and classification. Furthermore, the
extraction and clustering of features of the mapped environment are conducted for object detection
and localization. Finally, the classification of detected objects is addressed with a supervised machine
learning-based support vector machine (SVM) model.

Keywords: synthetic aperture radar; terahertz imaging; indoor imaging; high-resolution indoor
environment; indoor object recognition

1. Introduction

Object recognition is the core of many emerging applications such as autonomous
vehicles, household robotics, face-id smartphones, and security [1]. The object recognition
technique involves a set of collective computer vision tasks for the analysis of objects in a
digital image. The tasks could be the detection, localization, and classification of objects,
which are a subset of object recognition. This technique primarily belongs to the field of
computer vision, where mainly optical sensors such as an RGB camera and light detection
and ranging (LiDAR) are employed [1–3]. Therefore, the optical sensors dominate the field,
owing to the very high spatial resolution available in the range of µm [4] at the optical
spectrum. However, the optical sensors are limited in terms of penetration depth and highly
dependent on environmental conditions such as daylight and weather. In this regard, radar
imaging prevails.

In the 1950s, synthetic aperture radar (SAR) was developed as an alternative to optical
imaging systems for defense applications [5]. SAR is a remote sensing technique and is
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well known for 2D and 3D imaging. In this technique, the radar sensors are mounted
on a mobile platform, and a large aperture is synthesized to acquire high angular or
cross-range resolution. Presently, it is used in a wide variety of applications such as
topographic imaging, meteorology, surveillance, land and vegetation structure observation,
and underground resource exploration [5,6]. State-of-the-art SAR applications are mainly
based on the microwave spectrum. This spectrum benefits from a large penetration depth
and sensing range, but the available spatial resolution is limited. This limitation hinders
the adaptation of vision-based object recognition techniques to radar imaging or sensing.
In SAR technology, the spatial resolution is classified into range and cross-range resolution,
which are directly proportional to frequency, bandwidth, and antenna dimensions.

Recently, the terahertz (THz) spectrum has attracted significant interest [7]. The novel
extension of SAR to the THz spectrum enables a new era of SAR applications. Due to
the available large bandwidth, smaller wavelengths, and compact antennas at the THz
spectrum, sub-mm spatial resolution is achievable [8]. In comparison to the microwave
spectrum, the THz spectrum is limited in sensing range due to higher atmospheric at-
tenuation, free space path loss, and lower transmit power [9,10]. Despite the previously
mentioned limitations, the THz SAR sensing is suitable for short-range applications, es-
pecially in indoor environments. An application example is the indoor rescue mission
for emergency scenarios, where multiple sensors are employed. In this case, the optical
and infrared (IR) sensors might not provide any useful information. However, the THz
SAR sensors can generate a high-resolution map of the environment. The map could be
extended for the autonomous detection, localization, and classification of objects such as
humans and electrical wires, which will be extremely dangerous in such situations.

Complementary to the indoor THz SAR applications, many novel THz SAR testbeds
are proposed in the literature in areas such as the automobile [11], non-destructive test-
ing [12], and security [13]. The object recognition serving security purposes is presented
in [14–17]. In [14–16], imaging is conducted with a photonics system, where the signal to
noise ratio is limited and also images have lower contrast. Active imaging with the fre-
quency modulated continuous wave (FMCW) radar system is employed in [17]. The prime
focus in [14–17] is the recognition of objects beneath the clothes targeting security applica-
tions. Recently, object analysis at the THz spectrum from the NDT perspective is presented
in [12]. In the automotive field, object recognition based on radar-cross-section (RCS)
sensing is of significant interest and powered by the commercially available radar chips at
77 GHz [18]. In this paper, indoor environment profiling is in the foreground.

The paper’s contribution is foremost to generate a high-resolution 3D indoor envi-
ronmental map, where the environment is enriched with multiple objects. The map is
generated at the THz spectrum of 325–500 GHz with a vector network analyzer (VNA)-
based testbed. The indoor objects are considered in a group of 2 and 4. Concealed and
hidden object scenarios are also considered to validate the objectives of object recognition in
both free-space and concealed cases. The high-resolution environment map is processed for
object recognition (detection, localization, and classification). For object detection, speeded
up robust features (SURF) [19] are extracted, and features are clustered in groups based on
the density-based spatial clustering of applications with noise (DBSCAN) algorithm [20,21].
Due to the 3D mapped environment, 3D positions of the detected objects can be estimated
with an accuracy in the range of mm. Finally, the classification of detected objects is
addressed using machine learning techniques. The THz training dataset is scarce, and
especially for indoor objects, no public-domain dataset is available. Hence, a dataset is de-
veloped and a supervised machine learning-based support vector machine (SVM) model is
implemented. Lastly, the model robustness is also evaluated. It is worth to mentioning that
some of the work presented in this paper belongs to the principal author’s dissertation [22].

The remainder of the paper is organized as follows. Section 2 explains the SAR signal
processing. In Section 3, a multi-object environments mapping with the THz SAR technique
is demonstrated. Section 4 addresses object detection and localization. The classification of
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the detected objects is presented in Section 5. Lastly, the concluding remarks and outlook
perspectives are presented in Section 6.

2. SAR Theoretical Model

This section explains the 3D SAR signal processing in consideration of monostatic
configuration, where the transmitter and receiver are collocated and driven by the same
reference oscillator. The SAR principle could be explained as a radar sensors or transceiver
system, which is mounted on a mobile platform and synthesizes a large antenna aperture
in order to acquire high-angular resolution. Here, the aperture is synthesized by following
a certain trajectory along cross-range directions. During the trajectory, electromagnetic
(EM) waves are transmitted toward the target along the range direction and echoes are
recorded, which form the raw data. For target analysis, the raw data are processed with an
image reconstruction algorithm. In the following subsection, the mathematical model of
raw data acquisition considering point targets and image reconstruction is presented.

2.1. Raw Data

In this paper, a planar aperture configuration is applied, where the 3D imaging is
acquired by implementing a 2D trajectory along the azimuth and elevation directions.
Figure 1, which is reproduced from [22], presents the 3D imaging geometry, where the x-, y-
and z-axis represent range, azimuth, and elevation directions, respectively. The transceiver
located at position Pu,v transmits and records the backscattered EM waves at each aperture
position. The parameters (u, v) are the respective azimuth and elevation coordinates based
on the presented geometry, where u ∈ (1, U), v ∈ (1, V), whereas U and V are the total
number of aperture positions along the u or y-axis and v or z-axis, respectively. The total
number of aperture positions in the 2D scanning track can be given by N = U ×V.

Let us consider that the transceiver at position Pu,v transmits a signal p(t) which could
be of any waveform such as Gaussian or chirp. The received signal, which is a time-delayed
version of the transmitted signal and backscatted by K scatterers, could be expressed by (1)

s(t, Pu,v) =
K

∑
k=1

Ak p(t− td,k), (1)

where td,k =
2Rk

c is the round-trip delay, and Rk is the slant range between the kth scatterer
located at position (xk, yk, zk) and transceiver [5]. Furthermore, Ak is the amplitude of the
reflectivity from the kth scatterer, which is assciated with the target RCS. At each aperture
position, the backscattered signal s(t, Pu,v) is recorded and forms the raw data. In Figure 1,
the reference position is defined as Rref, and the coordinates of the scatterer position and
transceiver could be positive or negative from the considered reference center of origin.

Figure 1. Three-dimensional (3D) imaging geometry (reproduced from [22]).
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2.2. Image Reconstruction

The raw data are processed further with time- or frequency-domain image reconstruc-
tion algorithms. For example, Backprojection Algorithm (BPA) is a time-domain algorithm
and Range Doppler and Omega-K are frequency-domain algorithms. In this work, BPA is
used due to its simplicity. Although BPA requires more computational power, it has inher-
ent massive parallelism to accelerate image reconstruction for real-time applications [23].
In addition, the BPA algorithm is less sensitive to motion errors [24].

For a VNA-based testbed, the raw data are gathered in the frequency domain and
zero-padded before the transformation to time-domain defined as sz(t, Pu,v) using inverse
Fourier transform. The zero-padding is performed for increasing the resolution in the
time-domain. Based on BPA, in the 3D image reconstructed grid I, voxel value at location
(xi, yj, zk) is given by (2)

I(xi, yj, zk) = ∑
U

∑
V

sz(td,ijk, Pu,v) exp(j2π fmintd,ijk) (2)

where td,ijk is the round-trip delay between the scatterer at the voxel position (xi, yj, zk)
in I and transceiver assumed at position Pu,v, and fmin is the minimum frequency of the
zero-padded signal. At the THz spectrum, a high-resolution 3D image is generated with
Equation (2).

The resolution defines the minimum resolvable distance between two scatterers. In the
SAR technique, the spatial resolution is defined along the range and cross-range directions.
The range resolution is proportional to bandwidth Bw and given by (3)

rx =
c

2Bw
. (3)

For the presented imaging geometry in Figure 1, the cross-range resolution is propor-
tional to the antenna half power beamwidth and represented by (4)

ry = rz =
λRref
2Ls

, (4)

where λ is the center frequency and Ls is the synthetic aperture length. For a trajectory
of length Ls = λRref/La, where La is the antenna diameter, the cross-range resolution
could be approximated as La/2 [25]. It could also be defined as the maximum achievable
cross-range resolution if the previously mentioned condition of Ls is fulfilled.

To summarize, the large available bandwidth in addition to small wavelengths and
compact antennas at the THz spectrum results in high spatial resolution. For example,
Bw = 175 GHz and La = 1.93 mm provide a range resolution of 0.86 mm and cross-range
resolution of 0.965 mm.

3. Multi-Object Environment Mapping

This section addresses 3D multi-object environment mapping. The objective is firstly
to demonstrate a THz SAR-based 3D multi-object mapping, especially with indoor objects
in a cluttered environment. The second objective is to generate a high-resolution map
that can be elaborated for object detection, localization, and classification. The following
subsections present the measurement setup and the acquired 3D SAR images.

3.1. Measurement Setup

For realization of the above described objectives, four cases are presented. In cases I
and II, two objects are considered, which are displaced horizontally and vertically as shown
in Figure 2 (left) and (middle). Figure 2 is reproduced from [22]. Case III combines both
previous cases with four objects scattered horizontally and vertically, as shown in Figure 2
(right). Here, the considered objects are a keyboard, calculator, mobile phone, and universal
serial bus (USB) stick, as shown in Figure 2. Furthermore, in case IV, the THz sensing of
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concealed and hidden objects is considered. In this case, an object (calculator), is placed in
a cardboard box, as shown in Figure 3.

Figure 2. Photograph of objects (reproduced from [22]) in (left) case I, (middle) case II, and
(right) case III.

Figure 3. Measurement setup of case IV and the indoor environment.

The measurement setup is shown in Figure 3, where a VNA coupled with a fre-
quency extender is employed as a THz radar transceiver. A rectangular horn antenna
with La = 1.93 mm and an average antenna gain of ∼25 dB at the frequencies of interest is
connected to the extender waveguide flange. The VNA operates in the frequency range
of 10 MHz to 67 GHz. The low-frequency signal from the VNA is up-converted by the
frequency extender into the desired THz spectrum of 325–500 GHz. To form the synthetic
aperture by implementing a 2D trajectory, the frequency extender is mounted on the Y-Z
stages. At each position Pu,v, S11 reflection coefficients are captured, which forms a stop-
and-go approximation system. It is also worth mentioning that the measurements are
performed without a prior wireless channel subtraction. Hence, the measurements are
recorded in the presence of noise or clutter. The noise in this scenario is the unwanted
reflections from all the objects existing in the environment except the imaging object—for
example, a wooden block on which the box is mounted, as shown in Figure 3. However,
most of the reflections from non-interested objects will not be focused by applying a time-
gating window. The multi-path clutter/noise will be non-coherently superimposed due to
the recorded measurements at different aperture positions.

The measurement parameters are shown in Table 1 along with the distribution of
the objects in all four cases. The aperture lengths are considering based on the refer-
ence range and mapping area. In case 3 only, a set of two Ls,y is considered to optimize
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the measurement time by not measuring the empty area below the mobile phone. For
Ls,z ∈ (1, 233)mm, it is 300 mm, and it is 270 mm for Ls,z ∈ (234, 284)mm.

Table 1. Measurement parameters of 3D multi-object imaging.

Symbol Parameter Case I Case II Case III Case IV

fc
center

frequency 412.5 GHz 412.5 GHz 412.5 GHz 412.5 GHz

Bw bandwidth 175 GHz 175 GHz 175 GHz 175 GHz

Rref
reference

range 1 m 1 m 1 m 1 m

Ls,z
aperture along

z-axis
240 mm 340 mm 284 mm 310 mm

Ls,y
aperture along

y-axis
200 mm 150 mm 300 mm,

270 mm
250 mm

∆uy step size
along y-axis

1 mm 1 mm 1 mm 1 mm

∆uz step size
along z-axis

1 mm 1 mm 1 mm 1 mm

Nf
number of

frequency bins
3001 3001 3001 3001

PT
base transmit

power
−10 dBm −10 dBm −10 dBm −10 dBm

- imaging
objects

mobile,
USB stick

calculator,
USB stick

keyboard,
mobile,

calculator,
USB stick

calculator

3.2. 3D SAR Image

The generated raw data are processed with BPA, and 3D SAR image matrix I is
generated using Equation (2). For cases I–III, the raw or measurement data produced in [22]
are used for SAR image reconstruction.

Visualization of the 3D images in a 2D plane is also one of the concerns. Therefore,
the maximum intensity projection (MIP) method is used for visualization. Based on
this method, the voxels with maximum intensity in each range layer of I are projected.
The projected images for cases I–III are shown in Figure 4. In the presented SAR images,
a nice visualization of the object’s surface in a 2D plane is in the foreground for the purpose
of object recognition. The objects are projected in close approximation to the Rref. Another
method of visualization is a scattered plot, which provides the information in context of
the position in 3D space, but the object’s shape is challenging to observe. Hence, the MIP is
considered for better visualization.

For case I, both objects are well mapped, as shown in Figure 4a. The keys of the
mobile phone are clearly visible. The right side of the mobile phone is intentionally left
unfocused in this imaging case. The core target for object detection and classification is
that the object should be detected and classified even if the image consists of artifacts.
Moreover, in case I, the USB stick shape is also well observable in Figure 4a. The metallic
component and the plastic material of the USB stick body are discernible. Moreover,
the small rectangular holes in the metallic component are observable. Figure 4b shows
the SAR image for case II. Similar to the previous case, both objects are well mapped,
and the complete shape of the calculator is observable. Furthermore, Figure 4c presents the
resulting SAR image for case III with four objects. In this case, a well-focused SAR image
showing all the four objects is generated. Smaller structures of the objects, such as keys of
the keyboard/mobile/calculator, are well displayed.
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Figure 4. SAR image of object’s surface using MIP method in (a) case I, (b) case II and (c) case III.

The resulting SAR images for case IV are presented in Figure 5. Firstly, the box surface
image is shown in Figure 5a. For sensing the object inside the box, the depth layer needs to
be analyzed. It is analyzed by truncating the image plane along the range with a time-gating
window. At a depth layer of 21 mm, the imaging object (calculator) is extracted and shown
in Figure 5b. A high-resolution image of the calculator is obtained, which is of similar
accuracy as in cases II and III. The magnitude is relatively normalized to the reflection from
the box surface. It can be seen that the box surface results in an attenuation of ∼10 dB.
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Figure 5. SAR image using MIP method in case IV of projected (a) box’s surface and (b) object’s surface.

To summarize, in all the four cases, high-resolution SAR images are generated, which
are in good compliance to the optical sensors such as RGB cameras. Especially, in case
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IV, the optical sensors do not provide any information. Moreover, in addition to the
object surface image in all the cases, the inside components such as the microcontroller
of the object’s body can be precisely mapped. In the following section, the acquired
high-resolution SAR images will be further evaluated for object detection and localization.

4. Object Detection and Localization

This section addresses the detection and localization of objects in a high-resolution
SAR image. For the presented multi-object THz SAR imaging (cases I–IV), the objective is
to acquire the identification in terms of the number of mapped objects and their respective
positions in a 3D environment. The localization information is provided in reference to
the transceiver position. The positions based on the environment geometry can also be
extracted if the transceiver position is known in reference to the environment geometry.
For example, let us consider indoor THz SAR sensing assisted with an indoor localization
system presented in [26]. The localization system tracks the SAR trajectory and provides
the transceiver position (px, py, pz) in reference to the indoor room geometry of a certain
dimension. Based on the object localization approach in this work, the object position
(tx, ty, tz) can be obtained from the 3D SAR image. To be noted, the positions (tx, ty, tz)
can be positive or negative based on the reference position considered for acquiring SAR
geometry. With the fusion of transceiver (in reference to room geometry) and object
positions (in reference to the mapped environment), the actual positions of the object in the
room can be given by (5)

Zob(x, y, z) = (px + tx, py + ty, pz + tz) (5)

Hence, if the objects are detected in the SAR image, their respective positions could
be provided. The geometric properties such as the height, length, width, and thickness
of the detected objects could be acquired as well. Figure 6 presents the workflow for
object detection. The method comprises three stages: image formation, features extraction,
and clustering. The description of these stages is explained in the following subsections.

Figure 6. Workflow of the object detection.

4.1. Image Formation

In this block, the input is a high-resolution SAR image for cases I–IV presented in
Section 3. The input image is generated in a grayscale color scheme. The scheme is selected
as the SAR image pixels do not represent RGB values such as the image generated with
optical systems. In addition, to be noted, the input image is in the portable network
graphics (PNG) format. Any other graphics format such as joint photographic experts
group (JPEG) can also be considered.

In the image formation block or module, the grayscale SAR image is processed to
reduce the clutter and artifacts. For object detection, the boundaries of the object are
of significant importance in comparison to object shape, components, or parts. In this
scope, the standard approaches are based on edge detectors such as Canny detector [27]
and combined corner/edge detector, for example, Harris detector [28]. However, these
approaches are challenging in the field of radar imaging as the SAR image does not have
sharp boundaries in comparison to optical images. Therefore, in view of artifacts/clutter
removal and focusing on object boundaries, the image is suppressed based on a certain
threshold. The grayscale image consists of values between 0 and 255, where black color is
represented by 0, and 255 represents a white color. Hence, the SAR image pixel intensities
representing the EM field magnitude are normalized in the grayscale range. A threshold
of 1 dB is selected, which defines the pixel intensity below 1 dB of the normalized maxi-
mum intensity (white color) as a minimum gray-scale value (black color). The concept of
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threshold parameter selection can be explained with the noise floor or dynamic range of
the presented VNA-based testbed.

With a VNA-based testbed, the noise floor or level is related to the intermediate
frequency (IF) Bw. For example, the noise floor at different IF Bw for a similar VNA-based
testbed in the spectrum range of 220–330 GHz is presented in [29]. In this work, IF Bw is
10 KHz, where the noise floor is around −85 dB. In the normalized grayscale SAR image,
the maximum intensity is represented by this noise floor. Based on the considered threshold,
every EM wave reflection from the environment with a magnitude of 1 dB above the noise
floor is considered in the threshold-based image formation.

Following this approach of image formation, the parts of the object even with a lower
backscattering coefficient are considered. It is beneficial in forming the boundaries of the
object in the proposed method of object detection. Considering a case I SAR image as an
input image, the output of the image formation block is shown in Figure 7a. In the resultant
image, it can be seen that only the continuous shape along with boundaries is in focus.
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Figure 7. Output of object detection workflow for case I, (a) threshold image, (b) extracted features
positions, (c) key points position, and (d) key points cluster grouping.

4.2. Features Extraction

The next module after image formation is the extraction of interest points and descrip-
tors from the image. There are many algorithms available for features extraction such as
scale-invariant feature transform (SIFT) [30] and SURF [19]. In this work, SURF is employed
as it is invariant to the scale, color, and geometric variations. The SURF relies on the integral
image that can be computed and evaluated faster. The acceleration is essential for real-time
applications. The SURF algorithm consists of a detector and descriptor. The detector is
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based on the Hessian matrix for finding the key or interest points, where the Hessian
matrix elements are given by the convolution of image pixel position and the Gaussian
second-order partial derivative. In this algorithm, the descriptor is based on the Haar
wavelet response. A detailed explanation of the algorithm is available in [19].

In case I, Figure 7a is input to the feature extraction module. As the output of this
module, Figure 7b,c show the positions of the extracted feature’s key points, respectively.
Most of the extracted features and key points are within the boundaries of the objects.

4.3. Clustering

The next module after the feature extraction is clustering of the key points. Two widely
used clustering algorithms are k-means [31] and DBSCAN [20,21]. In k-means, the key
points are grouped into k clusters, where the k needs to be defined for clustering. Hence,
this algorithm can not be applied in this work, where the focus is on autonomous object
detection. A priori knowledge of k is not available, as the task is to obtain the number of
clusters, which relatively defines the number of objects. On the other hand, the DBSCAN
algorithm clusters the key points based on the density. It basically forms the clusters of a
dense region without any prior knowledge of the number of clusters. Hence, the DBSCAN
methodology is applied in this work.

In this methodology, the clusters are formed by identifying the number of minimum
neighboring points within a specified radius. The radius εr is defined as the maximum
distance between two key points that can be mapped to the same cluster. The key points
or data points identified by the DBSCAN algorithm are categorized into the core, border,
and noise. The core points are those which fall within the εr, whereas the border points
are defined as the points positioned on the edge of εr. Lastly, the noise is defined as points
which neither fit the core nor border points. Hence, the key point clusters are obtained
with core and border points. The noise points will simply be discarded. In this work,
for clustering, 10 minimum points are selected. Based on the size of the considered object
and acquired high-resolution SAR images, it is expected that at least 10 key points are
obtained for each object under the feature extraction module. The εr parameter associated
with the distance of 1.5 cm is selected. This implies that the objects can be clustered
successfully if the objects are at least separated by a distance of 1.5 cm and a minimum of
10 key points are available for each object. Moreover, the parameters can be adapted based
on the sensing environment.

To summarize, extracted key points using the features extraction module are provided
as an input to the clustering module. As an output, the clusters of key points are obtained
as shown in Figure 7d for case I. Here, two clusters are obtained and hence validate the
presented module.

4.4. Detected Objects

Based on the above-described modules, the detection of objects is obtained. The work-
flow is implemented in MATLAB. For case I, the detected objects are marked in the SAR
image shown in Figure 8a. In case I, both of the objects are detected, and their respective
locations (tx, ty, tz) can be extracted. The coordinates ty and tz can be directly obtained from
the center of the object’s cluster or the center of the rectangular window with red borders
shown in Figure 8a. For example, for object 1, ty and tz are 3 cm and 1 cm, respectively.
Similarly, for object 2, ty = −3.5 cm and tz = 3 cm. The coordinate tx can be obtained
directly from the volumetric analysis where the generated 3D SAR image matrix I from
Section 3 based on Equation (2) is used.

Similarly, for the other cases II–IV, the objects are detected based on the presented
workflow. In cases II and IV, the parameter εr is adapted in accordance to meet the distance
of 1.5 cm due to the different imaging grid sizes and pixel dimensions. In case III, due to
the large number of objects, they are in closer proximity compared to other cases. Therefore,
a shorter distance of 1 cm is considered. Moreover, in cases II and III, the image formation
threshold is the same as 1 dB. However, in case IV, due to the concealed scenario, higher
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artifacts are observed as the EM wave bounces in the box, and hence, a higher threshold of
1.5 dB is applied.

Figure 8b–d show the detected objects in cases II, III, and IV, respectively. All the
objects (two in case II, four in case III, and one in case IV) are correctly detected, thereby
validating the proposed model of object detection for the THz SAR sensing.
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Figure 8. Detection of objects in an SAR image marked in a red rectangular window: (a) two in case I,
(b) two in case II, (c) four in case III, and (d) one in case IV.

5. Object Classification

This section addresses the classification of the detected objects as presented in Figure 8.
For classification, a supervised machine learning-based method is employed. The method
classifies the detected objects into different classes. Based on the presented cases, the objects
can be classified into four classes: “Keyboard”, “Calculator”, “Mobile”, and “USB Stick”.
The workflow for object classification is presented in Figure 9. In the following subsections,
the modules or blocks of the workflow are described.
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Figure 9. Workflow for object classification.

5.1. Dataset

The dataset for training the model is devised with train–test split approach, where
the dataset is categorized into two parts known as the training set and validation set.
The train–test slip approach is employed for evaluating the proposed model performance
during the training phase. The training set is primarily used for training the model. This
set includes the images for which the classifier knows the actual labels during the training
phases. On the other hand, the classifier does not know about the labels of the images in
the validation set. In this work, 70% of the provided dataset is used for training, and the
remaining 30% is used for validation.

Moreover, the collection of the SAR images of the detected objects in cases I–IV serves
as the test dataset for final prediction or classification. Generally, the test dataset is different
than the dataset for training the model. This condition can only be validated if there is a
vast availability of the training data, which is not applicable currently for the emerging
THz imaging technology. To the best of the author’s knowledge, there is no public training
dataset available for THz images of indoor objects, especially for the considered objects.
The SAR images provided in this work are one of the finest images of considered indoor
objects. In this work, three schemes are applied to differentiate between the test and
training dataset.

Firstly, the SAR raw data are processed only for the 3D space where the object is
present. Hence, it results in the SAR image generation of the object instead of the complete
case environment. In addition, it is analogous to the measurement performed individually
with all the objects. Secondly, only case III is considered for the input data generation as
the objects overlap each other in cases I, II, and IV. Lastly, to enrich the input dataset, SAR
images of different format and dimensions being small and large are considered. Hence,
based on the above three methodologies, the dataset used for training is well distinctive
from the test dataset. The dataset is formed of 30 SAR images.

To summarize, the training dataset consists of four classes: keyboard, mouse, mobile,
and USB stick, and the classes consist of multiple SAR images of these objects.

5.2. Words Vocabulary

Based on the SURF method as explained previously in Section 4, features are extracted,
where the dataset is provided as an input. The extracted features are given as input to the
word vocabulary module. It forms a bag of words (BoW) or features using the k-means
clustering algorithm [21]. As a result, k different clusters are formed, where features in one
cluster resemble each other and differ from those in other clusters. The center of each cluster
is a visual word or feature. The BoW model creates a visual dictionary of image features.

5.3. Model Training and Evaluation

The output of the BOW creation module is fed to the model training module. The cre-
ated feature vectors are used to train the classifier. In this work, a supervised machine
learning-based Support Vector Machine (SVM) classifier [21] is employed. The classifier cat-
egorizes the data based on a best-fit hyperplane. The hyperplane is the decision boundary.
Both linear and non-linear boundaries are supported by SVM. Based on the boundaries,
the objects are classified into different classes. The features on one side of the boundary dif-
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fer from the features on the other side of the boundary. For example, in case II, the features
of the calculator SAR image would be separated from the features of the USB stick SAR
image through the hyperplane. The detailed description of the SVM algorithm is available
in [21,32].

The proposed model performance is evaluated with training, validation, and predic-
tion accuracy. The prediction accuracy is also known as model accuracy. The evaluation
is based on the correct classification or labeling over total instances. The training and
validation accuracy are associated with their respective dataset with the test and split
approach, whereas the prediction accuracy is obtained through the test dataset. The goal is
to acquire higher accuracy, which defines the correctness of the developed model.

5.4. Classified Objects

In the last step of the proposed object classification workflow, the detected object SAR
images, which form the test dataset, are provided as input to the trained model. As an
output, the respective predicted class or label is obtained. It is worth mentioning that
the presented workflow is implemented as an extension of object detection in the same
environment (MATLAB), and various available libraries of the above-described algorithms
are used.

Based on the workflow, the detected objects presented in Figure 8 are provided for
classification, and the results are summarized in Figure 10. In cases I–IV, all of the objects
are correctly predicted as presented in Figure 10a–d, thus classifying the objects in the THz
SAR images. For example, the detected object 2 (shown in Figure 8a) in case I is correctly
classified as a USB stick in Figure 10a.

R
y
(cm)

R
z
(c

m
)

(a)

R
y
(cm)

R
z
(c

m
)

(b)

R
y
(cm)

R
z
(c

m
)

(c)

R
y
(cm)

R
z
(c

m
)

(d)

Figure 10. Classification of objects in (a) case I, (b) case II, (c) case III, and (d) case IV.
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Finally, for the model robustness evaluation, firstly truncated (incomplete) or modified
SAR images of the objects are considered. These images are shown in Figure 11, where (a–d),
(e–h), (i–l), and (m–p) are the modified images considered in the test dataset of the keyboard,
calculator, USB stick, and mobile, respectively. All of these modified images are correctly
classified except for Figure 11g,l, which are of a mobile and a USB stick. The addressed
robustness evaluation is beneficial as in many cases such as time-critical applications,
generating a precise focused SAR image might be complex. In addition, there could be
cases that introduce unintentional artifacts. However, based on the proposed method, there
is a possibility or opportunity of classifying the object in images with artifacts.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
Figure 11. Modified SAR images test dataset with different dimensions and focus plane (a–d) key-
board, (e–h) mobile, (i–l) USB stick, and (m–p) calculator.

The novelty of the proposed object recognition can be expanded by further evaluating
the robustness based on rotated object image and SAR image at a different frequency
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spectrum, which is accomplished with an imaging technique other than the SAR such
as inverse-SAR [5,8]. The principle of inverse-SAR to acquire high angular resolution is
similar to SAR. A prime difference is that for inverse-SAR, the movement is performed by
the imaging object instead of the transceiver.

With regard to the rotated object image, the reconstructed SAR image of a calculator
in case II is rotated with random angles along the y- and z-axis or yaw and pitch directions.
The rotated image is presented in Figure 12a. The image is evaluated for classification,
and the object is correctly classified. Furthermore, raw data of the mobile phone, mounted
on the Y + Z translational stage at a range reference distance of ∼1.2 m, are gathered in
a frequency spectrum of 220–330 GHz using the inverse-SAR technique. The important
measurement parameters can be briefly described as Nf = 3001 and the aperture length
along both the y- and z-axis is 15 cm with a step-size of 1 mm. The detailed description
of the VNA-based measurement setup for the spectrum of 220–330 GHz, such as em-
ployed antenna dimensions and half power beamwidth, is available in [8]. In reference to
Equations (3) and (4), a high-resolution SAR image similar to the spectrum of 325–500 GHz
can be reconstructed in the selected spectrum of 220–330 GHz. Based on the measurement
data, the acquired SAR image of the mobile phone in the spectrum of 220–330 GHz is
shown in Figure 12b. This image is also correctly classified with the implemented model,
which is trained with the mobile phone image of the spectrum 325–500 GHz. Hence, it can
be summarized that the model is quite robust.

With the test-split approach, both training and validation accuracy of 100% is achieved.
Based on the predicted results procured for cases I–IV as presented in Figure 10, the pre-
diction accuracy of 100% is achieved. With the inclusion of the robustness evaluation,
the combined prediction accuracy based on results presented in Figures 10–12 is ∼93%.

(a) (b)
Figure 12. (a) Rotated SAR image of a calculator and (b) SAR image of the mobile phone in the
frequency spectrum of 220–330 GHz.

6. Conclusions

The presented work focused on acquiring a high-resolution indoor environment map
using the THz SAR technique and extended the map with object recognition (detection,
localization, and classification). The multi-object indoor environment with four cases
including the concealed/hidden object sensing is considered. In addition to object recogni-
tion, the evaluation also emphasizes generating a map of a scattered rich environment as
the objects are displaced closely. The considered objects are a keyboard, calculator, USB
stick, and mobile phone. In all four cases, the objects are well mapped in the frequency
spectrum of 325–500 GHz. The object in look-through or concealed/hidden object imaging
is well mapped, as shown in case IV. The box in case IV provides an attenuation of around
−10 dB. The acquired SAR map of all the cases is investigated for object recognition.

The proposed model for object detection, localization, and classification is presented
and validated. The objects are localized in reference to the transceiver position, and
localization accuracy associated with mm spatial resolution is achievable. The proposed
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workflow for object detection includes image formation, features extraction, and clustering
modules. The obtained number of valid clustered groups based on the grouping conditions
and group positions provides information on the detected objects. In the four considered
cases, all the objects are correctly detected. The detected objects are input to the SVM-based
trained model for classification. The developed model performance is evaluated with
training, validation, and prediction accuracy. Based on the test-split approach, 70% of
the dataset is used for training, and 30% is used for model validation. The trained model
achieved the training and validation accuracy of 100%. All the objects in the test dataset
based on the considered four cases are correctly classified, and the prediction accuracy of
100% is obtained. Model robustness is also evaluated.

To summarize, the presented results validate the high-resolution environment map
generation at the THz spectrum and extension of the map for object recognition, which was
primarily dominated by the use of optical spectrum. As an outlook, an enormous training
dataset of THz images will be made available publicly, and different machine learning
methods will be investigated for comparative analysis.
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