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Abstract: For volumetric reconstruction of the refractive index field in a flow, background-
oriented schlieren (BOS) imaging which measures the deflection of light rays due to refractive
index variations is combined with an evolutionary tomographic algorithm for the first time,
called evolutionary BOS tomography (EBOST). In this work application to reactive flows is
presented. Direct non-linear ray-tracing of the reconstruction domain is used to evaluate the
fitness of solution candidates during the evolutionary strategy that was implemented to run on a
multi-GPU system. The use of a diversity measure and its consideration in a migration policy was
tested against a simple scheme that distributes the best chromosome (solution candidate) in an
island-based genetic algorithm. The extensive set of control parameters of the presented algorithm
was harnessed by a self-adaptive strategy taking into account the fitness function and operator
rates. Quantitative characterisation of the EBOST via numerical phantom studies, using flame
simulations as ground truth data is presented. A direct comparison to a state-of-the-art BOST
algorithm demonstrates similar accuracy for a turbulent swirl flame phantom reconstruction. A
series of experimental applications of the EBOST on several unsteady and turbulent flames is
also presented. In all cases, the instantaneous and time-averaged flame structure is revealed,
proving the benefit of EBOST for volumetric flow diagnostics.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Technological advances in computation, image processing and data acquisition have fostered the
use of improved methods for three dimensional (3D) flow imaging diagnostics via tomographic
techniques in different areas of research ranging from engineering to medical applications.
Projection measurements are gathered from different directions around a target volume and are
modelled in an inverse relation to the discretised target field. The inverse problem is typically
ill-posed and several algorithms exist for solving the resulting set of equations. Obtaining the
instantaneous 3D distributions of different quantities, such as velocity and density, in unsteady or
turbulent flows from experiments is extremely insightful, and has been demonstrated by combining
a tomography algorithm with different types of measurements such as particle image velocimetry
(PIV) [1], schlieren [2] and X-ray attenuation [3,4]. In case of reacting flows, luminescence from
added tracers or natural chemiluminescence that is due to the intermediary reactions have also
been used to reconstruct the flame shape [5–14]. The 3D data from reacting flows allows us to
advance our fundamental understanding of different processes and to improve burner systems, for
example to achieve higher efficiency and reduce harmful emissions. Additionally, experimental
3D datasets can be used to validate and/or enhance complex combustion modelling like in large
eddy simulation (LES). Algorithms that can provide successful reconstructions using a moderate
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number of projection measurements are particularly interesting since the experimental costs
will be reduced for the simultaneous measurement of transient flows. Furthermore, optical
access is typically limited in practical technical applications. Examples of iterative methods
that perform better than the conventional filtered back-projection algorithm when the number
of projections is small [15] include the algebraic reconstruction technique (ART) [16] and its
variants, and Bayesian approaches [17,18], where additional assumptions about the target field
can be incorporated into the inversion process. Generally, the above mentioned algorithms
struggle with solving non-linear tomographic problems, due to the formulation of the inverse
problem as a typically very large and ill-posed system of linear equations. Algorithms have been
presented to overcome this restriction, e.g. by Ma et al. [19], which relies on the assumption that
the non-linear dependency of the measurement on the reconstructed quantity can be modelled as a
factor. However, approaches featuring heuristics such as simulated annealing [20] or evolutionary
concepts are increasingly interesting due the steep increase in computing power over the recent
years and their advantages over standard iterative or gradient-based methods for solving non-linear
tomographic problems. A genetic algorithm (GA) for tomography has been introduced for
the first time by Kihm [21] where a 2D optical tomography problem was investigated with
numerically generated fields. Other evolutionary strategies have been developed in different
areas like electrical impedance tomography [22], multi-phase flow analysis [23] and medical
applications [24,25].

An evolutionary reconstruction technique (ERT) was developed by Unterberger et al. [13]
and used for volumetric reconstruction of the flame chemiluminescence for the first time. Like
other flame chemiluminescence reconstruction methods, the measurement model works with
the assumption that density is homogeneous inside the tomographic volume. However, an
actual flame zone contains variations in the refractive index which can be visualised using
background-oriented schlieren (BOS) measurements, and the 3D refractive index field can be
estimated using BOS tomography (BOST) [26–34]. For the BOST methods to date, the so called
paraxial approximation is made to allow the use of straight ray paths inside the reconstruction
domain; this is further explained in Sec. 2. Due to direct non-linear ray-tracing capability of
EBOST, this assumption is not made and thus EBOST can be applied to spatially constrained lab
environments as well as to flows where the density gradient is significantly large compared to
standard BOST applications.

Applications of GAs, especially in engineering, can involve a lot of parameters to control
the system, which is often different from investigations that study its fundamental nature. This
typically increases the complexity for the user and tuning the parameters is often only possible
with experience and expert knowledge of the model. Deterministic parameter tuning, where
mostly one parameter is changed at a time does not consider the complex interaction between
parameters and the likelihood to achieve an overall optimal set of parameters is therefore very
small. Parameter studies are also limited when the parameter space is too large and might only be
performed on subsets. A way to solve this problem is the introduction of self-adaptive parameter
control, which has become a common technique in evolutionary computation [35,36]. For
example a two-chromosome individual can be defined that is used to evolve a solution candidate
and a set of control parameters. Hinterding [37] applied such a two-chromosome approach for
self-adaption of parameters in a Cutting Stock Problem. Multi-chromosome methods were used
previously, e.g. by Juliff [38] on the Pallet Loading Problem and by Pierrot and Hinterding [39]
on a simple mixed integer problem. Here, we demonstrate the application of a meta-learning
system that holds a large set of control parameters to calculate the 3D refractive index field in
gaseous flows by EBOST. A two-chromosome approach is used where the first chromosome
represents the target field to be reconstructed and the second chromosome holds a staged system
of self-adapted control parameters. We apply a combined form of control, considering rates and
step size of the genetic operators and a weighting factor in the fitness function for regularisation.
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The EBOST is based on the ERT [13] which can incorporate beam-steering in the ray-tracing
scheme and allows the definition of a non-linear fitness function. Besides presenting the EBOST
algorithm, where ERT is combined with the BOS measurement model for the first time, the
ERT was conceptually improved by the introduction of new genetic operators. A hierarchy of
differently scaled operators is used to capture the natural occurrence of different scales in the
target field. Additionally, an efficient implementation for a GPU-cluster/multi-GPU system was
achieved by exploiting the inherent parallel nature of GAs that allows the population to be split
and lets them evolve separately on islands. Island-based GAs (IGAs) with specific migration
policies can leverage the evolutionary process and are suitable to minimise communication time
between the GPU devices which decreases the total run-time of the algorithm significantly. We
have investigated an IGA, which aims to increase the diversity of the island populations and was
proposed by Araujo et al. [40,41] under the name "MultiKulti Algorithm". In our application,
the comparison to a simple IGA that distributes the best global chromosome to all islands showed
a superior result in favour of the MultiKulti-strategy.

2. Background-oriented schlieren tomography

BOS is an established technique that is used for visualising the density field (derived from
refractive index gradients) [29] of a target flow. The BOS setup consists of a camera that images
an illuminated background pattern. Keeping the background illumination fixed, a reference
image at time t = 0 is captured without the target flow in place and a second image at time
t = 1 is taken with the target flow that contains refractive index variations. Comparing the
image pairs reveals the deflections caused by the target flow in the background pattern due to the
refractive index variations, as illustrated in Fig. 1. The deflections can be calculated by using a
dotted background pattern and applying a cross-correlation algorithm as used in PIV, for which
advanced commercial systems are available at a high cost. Other techniques feature different
types of structured backgrounds, e.g. wavelet noise [28], in combination with an optical flow
method, such as the methods proposed by Lucas and Kanade [42] or Horn and Schunck [43].
The 3D refractive index field can be derived by a suitable tomographic inversion technique using
measurements from different perspectives. Typical algorithms used for reconstructions are based
on filtered back-projection [27], ART [28] or based on a Bayesian approach [32,33]. These
methods use the paraxial assumption [27,28] to approximate the actual curved ray path in the
reconstruction volume by a straight ray. A single refraction event per ray is then assumed close to
the centre of the domain. The assumption is appropriate if the deflection magnitude in the probe

Fig. 1. BOS principle and ray deflection due to refractive index variations in the target flow.
For the reference (ref.) image the target flow is not present and points 1 and 2 are mapped
linearly on the sensor at locations 1’ and 2’, respectively. For the deflection (def.) image
the gradient in the density of the target flow distorts the ray path and a pattern at location 1
appears visually shifted by a distance δ to location 1” on the sensor.
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volume is very small compared to the voxel dimensions used for discretising the volume and
the distance of the volume to the background. Hence, a practical recommendation to increase
the measurement quality in these models is to increase the object-to-background distance [31].
Typically, distances range from 1.5 m to 2.50 m [27,28,31–33]. An exception to this, with a
distance of 0.5 m is presented by Liu et al. [34], but with a comparatively small volume of
interest of 27 mm cubed.

3. Reconstruction methodology

3.1. Generic ERT concept

Details of the ERT that we first developed to reconstruct the 3D chemiluminescence field of
turbulent flames can be found in [13] and here only a summary of the key elements is presented:
For the fitness evaluation, the ERT features volumetric ray-tracing, using a pin-hole camera
model, of a 3D scalar field to be evolved by a GA.

• A chromosome is defined as the reconstruction domain (3D scalar field) that is discretised
using cubic voxels.

• A gene is defined as the value with uniform distribution inside a voxel.

• A population of chromosomes is evolved by a GA where voxel-wise alterations (mutations)
are used in combination with selection and arithmetic averaging of chromosome pairs
(crossover).

• The fitness of a chromosome is measured by a suitable distance measure, e.g. L1 or L2

norm of the volume-rendered images of the chromosome and the measurement images.

• A stochastic mask is applied to incorporate a priori information and to increase the
efficiency of the optimisation.

Masking the reconstruction domain is a known technique that can improve the reconstruction
quality [30,33]. In contrast to the masking method presented by Nicolas et al. [30], the applied
mask in the ERT does not rely on the definition of a threshold value based on the measurement
data, which can typically be very noisy, making it difficult to distinguish real signal. The
stochastic mask that was developed for the ERT can incorporate prior information about the
target field based on the measurement images and a Metropolis sampling algorithm, before
initialising the reconstruction process. The stochastic mask provides voxel coordinates where
evolutionary operators are applied and is an efficient way to reduce the search space for the GA
and hence the runtime. The bin count of the 3D histogram of the sampled voxel coordinates is
proportional to the probability that a respective voxel will be selected for mutation. Figure 2
shows an example of a stochastic mask generated from a flame simulation phantom. For example,
voxel A in Fig. 2 has a lower bin count compared to voxel B and hence voxel B will be chosen for
mutation with a higher probability. The stochastic mask in our ERT is adapted on a low frequency
during the evolution, eg. every 10% of the total number of generations. Adaption consists of
recalculating the stochastic mask based on the best solution calculated so far. The sampling from
an intermediate solution requires a certain degree of convergence of the algorithm that can be
inferred from the slope of the stored fitness values of the best individual in each generation.

3.2. Evolutionary background-oriented schlieren tomography

For the EBOST, an optical flow (OF) calculation in combination with a wavelet-noise background
pattern was found to be a suitable low-cost solution. The OF method that is used here is based on



Research Article Vol. 30, No. 6 / 14 Mar 2022 / Optics Express 8596

Fig. 2. Example of a stochastic mask. Coordinate axes in voxels. Left: iso-surface at 0.5 of
the SwB1 DNS [44,45] phantom, downsampled to 43x50x43 voxels. Middle: slice of the
3D histogram of 9 million random voxel coordinates, sampled by a Metropolis algorithm
from 20 rendered views of the phantom. The dashed line shows the isoline at 0.5 of the
phantom. Right: normalised 3D histogram for values above 1.6e − 5.

the work of Horn and Schunck [43] where an image brightness function E(x, y, t) is assumed to
fulfil a conservation equation in the form of

dE

dt
=

∂E

∂x

dx

dt
+

∂E

∂y

dy

dt
+

∂E

∂t
= 0, (1)

where x and y are the image coordinates and t is time. The terms dx/dt and dy/dt are the
deflections, which are abbreviated with u and v, respectively, and form the deflection vector
d = [u, v]. The partial derivatives of E with respect to x, y and t are abbreviated with Ex, Ey and
Et, respectively. Horn and Schunck proposed the deflections in Eq. (1) can be determined by
minimising the following functional:

F =

∫ ∫ (

dE

dt

)2

+ α
(

∥∇u∥2
+ ∥∇v∥2

)

dxdy . (2)

The second term in Eq. (2) is an additional regularisation term as the plain optimisation problem
is ill-posed and doesn’t have a unique solution. Thus, the second term promotes a smooth
solution with a regularising parameter α. A Discrete version of Eq. (2) using partial derivatives
of E as suggested by Horn and Schunck [43], is the basis of the fitness function used in our GA.
The complete functional that is minimised by the GA and implemented in the EBOST is given as

F =

NC
∑

i=1

F̃i, (3)

where F̃i is the discrete functional for the measurement data of the i-th camera and NC is the
number of cameras. For chromosome selection by stochastic universal sampling (SUS) [46], the
absolute fitness value F is rescaled to a relative fitness value according to

relFit(i) = 1 −
F (i) − min(F )

max(F ) − min(F )
. (4)

The fitness value of a chromosome is determined by ray-tracing the refractive index field that
is associated with the chromosome. The floating point value of each gene in the chromosome
represents the local refractive index n(x, y, z), The deflection vector d is calculated by tracing
a ray from the centre of a pixel in the sensor plane of a pinhole camera to the background.
Between the sensor and entry to the reconstruction domain and from the exit of the domain to the
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background plane, the ray is assumed to follow a linear path. Inside the reconstruction domain
the propagation is described by the non-linear ray equation of geometric optics

d

ds

(

n
dp

ds

)

= ∇n, (5)

where the vector p describes the position of a hypothetical particle travelling along a path s
through the domain and s is an infinitesimal path length [32]. A full derivation of Eq. (5) can be
found in [47,48], and it can be cast into a system of two first order differential equations

n
dp

ds
= q, (6)

dq

ds
= ∇n, (7)

where q gives the local direction of the particle’s motion. These two equations are discretised by
an Euler-forward scheme for the ray-tracing by

pi+1
= pi
+

∆s

n
qi, (8)

qi+1
= qi
+ ∆s∇n, (9)

where ∆s is a chosen step size. The change in the propagating particle’s direction is determined
by the gradient of the refractive index, which is evaluated by linear interpolation. When the
intersection of a deflected ray with the background has been found, it can be linearly back-projected
onto the camera sensor to determine the deflection vector d by the difference of the starting and
end points of the traced rays. For example, in Fig. 1, the non-linear ray path starts at location 2’
and ends at location 1 at the background. The linear projection of location 1 is at location 1’ on
the sensor, hence the pattern at location 1 appears to be shifted by the distance δ = 1′′ − 1′ on the
sensor.

One of the target flow fields investigated in this paper is the highly turbulent reacting flow of
the Cambridge-Sandia SwB1 flame presented by Sweeney et al. [49,50], that has been subject
to experimental and computational studies, for example the DNS simulations by Proch et al.
[44,45]. The turbulent flow contains different length scales, ranging from the geometry of
the burner (large) down to very small Kolmogorov-dimensions [51]. To aid the capturing of
different scales, a hierarchy of differently sized mutation operators was introduced. The scaled
mutation operator (SMO) contributes to the random changes in the evolutionary process. The
SMO sets a cubic region of a particular size to a new value that is drawn from a truncated
normal distribution with standard deviation κ · (b − a), where κ is a free parameter and [a, b] is
a predefined interval of estimated refractive index values also used as cut-off values (expected
minimum and maximum values). The mean of the normal distribution equals the average
refractive index value of the nearest neighbours of the voxel that has been drawn from the
stochastic mask. Similarly, the scaled annihilation operator (SAO) sets a cubic region to a defined
ambient refractive index value. The annihilation operator was introduced in the original ERT
formulation [13] to set back gene values to their ground state, where the ground state was zero
intensity for the chemiluminescence applications, to help in sharpening the flame front structures
(against the black background from the imaging) and promoting hollow regions. For a premixed
flame, the density is typically lower on the burnt side of the flame front, separating the hot gas
products from the premixed unburned gases. In the EBOST application, the ground state is the
ambient refractive index value surrounding the open flame and hot gas plume. The SMO and
SAO hierarchies are defined as a series of operators acting on cubic regions with different edge
lengths l1 = 1, l2 = 2, l3 = 3, . . . , ld = s voxels. Each of the operators is applied with a different
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probability mpi, with i = 1, . . . , dm and api with i = 1, . . . , da for the mutation and annihilation,
respectively. The choice of the depths dm and da, that are the numbers of different operators
contained in the hierarchies, depends on the target field, but also on the total number of voxels
in the domain (NX by NY by NZ corresponding to width, height and depth, respectively). The
hierarchy depth also influences the convergence, which is further investigated in Sec. 4.1.

To simplify the application of the code for the user, and to achieve a consistent and self-adaptive
system the operator rates are integrated into the definition of the individual and an additional
chromosome par is defined, see Fig. 3. This chromosome does not only contain the rates mpi and
api, but also the parameters κ and α that were specified earlier. To self-adapt these parameters,
par is structured in 3 levels. A Gaussian operator is used to mutate a gene of a specific subset u

of par with a probability mru. Different values of u specify the inclusion of different genes of
level 0: for u = 1 the dm mutation operators, when u = 2 the da annihilation operators, and when
u = 3 and u = 4 the κ and α parameters are included, respectively. A new value for a gene is
sampled from a normal distribution N(µ,σ), where µ is the current value of the gene (level 0
gene) and σmru is a standard deviation. The rates mpi and api, as well as the parameters κ and α
are expected to change at different rates mru and with different step sizes σmru for adaption during
the evolutionary process. To achieve this, the parameters mru and σmru are defined to constitute
the level 1 genes of the meta-learning system. To reduce the set of free parameters further, a
third stage (level 2) is added to par that contains a single meta-learning rate mlr as a gene. In the
end, there is only one external parameter left for tuning, that is the standard deviation σmlr and
it defines the Gaussian mutation for mlr and level 1 parameters. The influence of σmlr on the
underlying levels is discussed in Sec. 4.2. Recombination of the chromosome par is performed
by a two-point crossover. With an adaptive rate for each operator, the total number of genes in
par depends on the user’s choice. For the phantom study in Sec. 4.1, the maximum number
of genes in par was 25 with dm = 9 and da = 5. In summary, an evolutionary strategy for a
population of combined individuals was defined where each individual constitutes a chromosome
box representing a discrete refractive index field and a chromosome par containing evolution
parameters.

Fig. 3. Definition of an individual with two chromosomes box and par. The chromosome
par is structured in three levels, called the meta-learning system. The free parameter σmlr
and the initial values of each gene are defined by the user. The parameters in level 0 are
influenced via a Gaussian mutation by level 1 and level 2, respectively. Only the level 0
genes can directly influence the chromosome box and its fitness value in an evolution step.



Research Article Vol. 30, No. 6 / 14 Mar 2022 / Optics Express 8599

The stochastic mask that is used for the EBOST is generated by sampling from |Et |, normalised
by its maximum. This differs from the original stochastic mask sampling outlined in [13] because
here, the measurement is different. The calculated deviations of the curved ray paths from the
straight rays are very small and result in deflections of magnitude in the pixel to sub-pixel range,
as will be discussed when presenting Fig. 16 in Sec. 6. Hence, beam steering is not considered in
the Metropolis sampling and it is assumed to have minor importance for the EBOST algorithm,
since it only results in a very small underweighting effect of regions in the domain that are visited
less often by the genetic operators compared to others.

3.3. Implementation of EBOST on a multi-GPU system

Ray-tracing features a very high degree of data parallelism and hence the EBOST algorithm was
implemented to run on a GPU server. NVIDIA’s CUDA API [52] and C programming were used
to achieve a runtime-optimised ERT scheme. The thread parallelism available on GPUs greatly
speeds up the rendering, arithmetic average calculation for offspring chromosome formation
and the fitness evaluation. For the implementation of fast reduction techniques and massive
parallel rendering, GPU-specific memory types such as shared, constant and texture data types
are available for cache-optimised memory access.

The MPI parallelisation allows us to run the code on a GPU cluster with multiple computing
nodes for high-resolution calculations. To alleviate the communication bottleneck between the
separate GPU memories an island-based genetic algorithm (IGA) was implemented and tested.
The global population of size P = np · N was split on np islands, where each island holds a
population of ci, i = 1, . . . , N individuals and is evolved by an MPI rank. Depending on the
number of available GPU devices ng, the MPI ranks can share a device or perform calculations
individually on a single GPU. A flowchart of the EBOST algorithm is presented in Fig. 4.

Fig. 4. Flowchart for the EBOST algorithm. The algorithm can be initialised on a host
system with multiple MPI ranks (np) and GPU devices (ng). The flowchart shows the EBOST
code from the perspective of a single island that is computed on an MPI rank. Minimal
requirements are np = 2 and ng = 1, as multiple ranks can perform computations on a
shared GPU device. Green boxes indicate computations that are performed mainly on the
GPU. A box with a green edge indicates a necessary memory transfer between GPU and
host memory. A red box indicates communication between MPI ranks and/or GPU devices.
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The decision of how many islands to use and the population size is not trivial. It can affect the
performance of the GA and the quality of the reconstruction and investigating these topics is out
of the scope of this paper. Based on a decision on the number of islands and the population size
P, the computing resources have to be chosen for optimal runtime performance and utilisation
rates of the GPUs. Therefore, the runtime of EBOST depends on the available type and number
of GPUs. For the presented reconstructions with real flame data in Sec. 6 and for the phantom
reconstructions in Sec. 5, several tests were performed and the results of the phantom studies
in Sec. 4 were considered, to ensure high quality reconstructions. The fitness value of the best
solution discovered in each generation is tracked for all reconstructions. This information was
used to define a suitable stopping criterion by a preset number of generations for the phantom
and experimental reconstructions. We ensured that the increase in the tracked fitness values was
marginal for at least the last 10% of the total number of generations. The starting generation for
the second stage Metropolis sampling, see Sec. 3.1, was chosen based on the same tracked fitness
values. For convenience and future applications adaptive stopping criterions can be investigated
based on the variance or the slope of tracked fitness values, the same holds for the starting
generation of the second stage Metropolis sampling.

3.4. Island-based GA (IGA)

Using distributed populations, where each island-population can explore different regions of the
search space, can improve the performance of a GA. For our particular application, the IGA comes
with the additional benefit of strongly reducing the run-time of the program. This is the case as
long as the migration policy of choice is not too costly and can be computed mostly on one device
with minimal requirements for information exchange. Different possibilities for implementing
parallel GAs can be found in the literature [53,54]. The MultiKulti strategy proposed by Araujo
et al. [41] was chosen as a foundation for further investigations. It offers a sound paradigm by
considering diversity in its migration policy and is intuitive in its application. We will outline the
MultiKulti approach, with its specific features for the EBOST here: All islands are arranged in
a ring topology. In a synchronous version, each island sends its average fitness-value f̄ to its
preceding node every νm generations. The average fitness-value f̄ serves as a threshold for the
sending node. The sending node will transfer a maximum number of k random individuals (the
complete chromosome c) with a fitness above the threshold. The individual with the highest
diversity will be accepted by the receiving node to replace the node’s individual with the lowest
fitness. Diversity is measured by the average L2 norm of the chromosome box between the sent
individual and each individual of the receiving node. The choice of the migration frequency νm
and the number of exchanged individuals k is predefined and the influence of νm on the IGA is
discussed in Sec. 4.3.

4. Phantom study on turbulent flame DNS data

It is very important to benchmark a new algorithm with phantom data, that is exactly known
ground truth where a direct and quantitative comparison is possible. In accordance with our
usual phantom study strategy, we use flame simulation results as ground truth, as a realistic
numerical representation of a flame. The phantom refractive index field was calculated from
DNS results of the Cambridge-Sandia SwB1 flame [44,45]. The high-resolution DNS field was
downsampled to a suitable domain size and the synthetic scene was generated comprising 20
cameras that are arranged equidistantly in a semi-circle, with a background plane facing each
camera. The distance from each camera pinhole to the reconstruction domain centre, which is
the defined origin of the world coordinate system, is 300 mm, and to the background plane is 950
mm. We evaluate the Pearson-correlation coefficient ρ [55] and the L2 norm error distance ϵ
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between the reconstructed data Dr and the ground truth data Dgt for the 3D fields via

ϵ =
L2(Dr − Dgt)

L2(Dgt)
. (10)

Here, the L2 norm yields for the ideal case of perfect data reconstruction ϵ = 0. The correlation
measure ρ indicates, whether a linear relationship between phantom and reconstructed data is
present. A correlation value close to ρ = 1 means that the data is trend wise almost identical.

Synthetic measurement data was produced by ray-tracing camera sensors with specifications
matching those in the experiment, see Sec. 6, using a step-size of ∆s = 0.1 mm. From the
rendered images the partial derivates Et, Ex and Ey from Eq. (1) were calculated and the respective
data was downsampled by a factor of 0.5 and cropped to reduce the ray-tracing costs. This
resulted in measurement data used by the EBOST algorithm to represent sensors containing 163
by 163 pixels of size 19.8 µm. A step-size of ∆s = 0.5 mm was used for the ray-tracing in the
reconstruction process. The scaled-down phantom field size is NX = 56 by NY = 65 by NZ = 56
voxels, with are solution of 1.08 mm. Each phantom test was repeated 10 times to obtain statistics.
The settings of the IGA used for the tests are summarised in the following points:

• Four islands, each containing a population of N = 12 chromosomes

• For each sub-population one elite was used, which was transferred unchanged to the next
generation

• Maximum number of generations is 200000

• Second-stage Metropolis sampling starts from 100000 generations, with resampling every
10000 generations

The population size typically affects the convergence of a GA, and the number used was chosen
based on previous tests that showed an acceptable trade-off between quality and total run time
for the above settings. The number of generations and starting generation for the second-stage
Metropolis sampling were selected based on tracked fitness values, see Sec. 3.3.

The investigations in Sec. 4.1 and 4.2 used a simple IGA, which distributes the globally
best fitting individual with a frequency of 100 generations to all islands to replace their worst
chromosome. The initialisation values of the chromosome par used for all the runs presented are
given in Table 1.

Table 1. Initialisation values of
chromosome par for the phantom study

Level 0 Level 1 Level 2

mpi = 0.01 mr1 = 0.02 mlr = 0.02

σmr1 = 0.02

api = 0.01 mr2 = 0.02

σmr2 = 0.02

κ = 0.2 mr3 = 0.02

σmr3 = 0.02

α = 4.0e − 3 mr4 = 0.02

σmr4 = 0.02
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4.1. Investigations of the operator hierarchy

The results of multiple runs that were performed using different operator hierarchies, for the
mutation and annihilation, are discussed here. The operators of size 1, 2, 3, 5, 7, 8, 9, 11, 13
and 15 voxels cubed were used. The standard deviation of the meta-learning rate was set to
σmlr = 5.0e − 4 (this choice is discussed further in Sec. 4.2). The cases, which are defined in
Table 2, were run ten times to compare the average of the performance measures (error distance
and correlation). In preliminary tests we observed, that the annihilation hierarchy does not need
to be expanded in the same manner as the mutation hierarchy. The choice of the hierarchies
influences the convergence rate. A hierarchy that is too small, e.g. using only single voxel
operators leads to a solution that is not converged well enough within the 200000 generations
limit. One long run per case with 106 generations was performed, which also lead to converged
solutions for case 1, but was in a premature state compared to the other cases, see performance
measures in Fig. 5. The hierarchy test results shown illustrate that even with a 5-fold longer
runtime the performance of the algorithm with a small hierarchy, e.g. cases 1,2 and 3, is not as
good as with an expanded one. Therefore, the additional degrees of freedom provided by the
expanded hierarchies (increasing case number) are valuable for improving the reconstruction
quality and runtime. As the data shows, this advantage tapered at the size of case 5. It can also
be observed that the standard deviation shrinks with an expanded hierarchy, which means more
stable results and better convergence properties in general.

Table 2. Case definitions for the mutation and
annihilation hierarchies

Case Mutation (voxels cubed) Annihilation (voxels cubed)

1 1 1

2 1,2 1,2

3 1,2,3 1,2

4 1,2,3,5 1,2,3

5 1,2,3,5,7 1,2,3

6 1,2,3,5,7,9 1,2,3

7 1,2,3,5,7,9,11 1,2,3,5

8 1,2,3,5,7,9,11,13 1,2,3,5

9 1,2,3,5,7,9,11,13,15 1,2,3,5,7

Fig. 5. Performance of the operator hierarchy, the mean and standard deviation (std) for
the correlation and error distances are shown. Increased case number reflects expanded
hierarchies.
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4.2. Investigations of the meta-learning system

The meta-learning system was investigated by varying the parameter σmlr, which was described
in Sec. 3.2. Statistics were obtained by running each parameter case ten times. The hierarchy
case 6 from the previous study was used for all the tests in this study. The study revealed that
generally a value below 0.001 lead to results of similar accuracy, see Fig. 6. As described in
Sec. 3.2, the relevant parameters for the reconstruction process are stored in level 0 (the levels
were detailed in Fig. 3), where self-adjustments should lead to a converged solution within an
acceptable runtime. The initial values for level 1 and 2 parameters were set such that this goal can
be achieved without any additional tuning by the user. For low values of σmlr, the meta-learning
rate mlr (the parameter in level 2) remains relatively close to its well chosen initial value, which
in turn allows enough variation in the preceding levels 1 and 0 to support increased reconstruction
accuracy. When σmlr is too large the variation in level 1 and 0 parameters is strong which can
potentially lead to premature convergence and hence lower reconstruction accuracy and fitness.
We could conclude that for σmlr values below 0.001, the system is able to achieve the desired
results. Our tests showed that with a value of σmlr = 5.0e − 4, enough dynamics (variation) is
introduced to move the entire system away from initialisation also for level 1 parameters. Chosen
mutation operator rates from level 0 were averaged for all the hierarchy cases from Table 2 (which
were run using σmlr = 5.0e − 4) on a single island for all generations and all 10 runs per case
are presented in Fig. 7. It can be seen that in general, the SMO operator rates in level 0 that
were obtained by averaging over the ensemble and then time, shown in Fig. 7 are lower for a
more expanded hierarchy, i.e. higher number cases. Our studies showed that although a low σmlr

value suppresses the variations in the meta-learning rate and level 1, the suppression influence
reduces in the preceding level 0. Further investigations on the dependency of the meta-learning
scheme on the initial values should be made in future, because the benefit of adaption in level
1 and 2 cannot be fully understood by the variation of σmlr alone. The accuracy of the final
reconstruction solution, resulting from the choice of parameters from our studies is shown later
for two different flame phantoms (unsteady Bunsen and turbulent SwB1) in Sec. 5.1, and also for
experimental results in Sec. 6.

Fig. 6. Variation of the meta-learning system parameter σmlr. The mean and standard
deviation (std) of the correlation and error distance are shown.

Finally, Fig. 8 shows the ensemble average α of the regularisation parameter α for the first 2000
generations, calculated for all cases listed in Table 2. The α rapidly drops from its initial value,
tapering off to a value of about α∗ = 3.67e−4. The average correlation and error distance between
the original and reconstructed phantoms, for the runs with the α parameter active and using case
6 of Table 2 are 0.9709 ± 0.0017 and 1.8982e − 5 ± 0.0113e − 5, respectively. Test runs with the
regularisation parameter deactivated (α = 0) and keeping everything else the same, showed a
similar average correlation and error distance, 0.9717 ± 0.0013 and 1.8195e − 5 ± 0.0659e − 5
respectively. Therefore, it appears that at least for the cases considered, the regularisation
parameter has no significant effect on the reconstruction quality. This is in-line with arguments
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Fig. 7. Exemplary averaged rates from level 0 of the meta-learning system, for all the
hierarchy cases listed in Table 2. The mean and standard deviation (std) of the SMO operator
rates from level 0 are shown

made by Grauer and Steinberg [33] where a completely different reconstruction algorithm for
BOST, based on the Bayesian formulation, is used.

Fig. 8. Averaged regularisation parameter α for the first 2000 generations, for all the cases
listed in Table 2

At the beginning of the evolutionary process the 3D field is initialised with the ambient
refractive index and the mutation operators might induce different spurious deflection vectors
before the onset towards convergence and a positive effect from the regularising factor could
be imposed on the evolutionary process. After all, the complete data for all generations, that is
partially shown in Fig. 8, shows a non-zero α for the complete reconstruction process. In the
end, the effect of the regularisation on the reconstruction quality is hard to analyse since α is
influencing the fitness function directly - especially in experimental reconstructions where no
ground truth data is available.

4.3. Investigations of the IGA

For the IGA implementations two sets of data were created and are compared, one for a simple
migration scheme and one for the MultiKulti scheme. For both sets, the values of the migration
frequency νm tested were 5, 10, 50, 100, 500, 1000 and 5000 generations. It can be seen in
Fig. 9 that the MultiKulti scheme generally leads to better fitness and correlation values, hence
better reconstructions. However, the error distances do not indicate a clear superiority for either
schemes. In both schemes no systematic dependency on the tested values for the migration
frequency is visible.

We also investigated the effect of a switched-off meta-learning scheme, which means that the
genes listed in level 0 will stay at their initialisation value, listed in Table 1. The performance
measures, displayed in Fig. 9, that were obtained as average of 10 runs using a migration frequency
of 100 generations, show that the meta-learning scheme is beneficial for the reconstruction not
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Fig. 9. Effect of various migration frequencies νm for the IGA schemes. The mean
correlation (left) and error distance (right) are presented for a simple migration and the
MultiKulti schemes. Additionally, one case for each migration policy with switched off
meta-learning system is shown.

only in terms of the correlation, but also for the error distance. Figure 9 also indicates that the
MultiKulti migration benefits more from the meta-learning than the simple scheme. For both
schemes the complete chromosome c is transferred, where the fitness/diversity was measured
with respect to the chromosome box. These findings hold at least for the runtime of 200000
generations and the hierarchies defined for case 6 in Table 2 that was applied for all runs in this
section.

4.4. Effect of imaging noise on the reconstruction quality

Imaging with electronic cameras is typically prone to different types of noise, e.g. shot noise,
which affect the measurement data, hence corrupting the information that is passed on to the
reconstruction algorithm. This is an experimental feature which can only be modelled in a
quantified phantom study. Different levels of noise, signal-to-noise ratio (SNR), were implemented
on the synthetic reference and deflection images. The SNR is defined by

SNR = 10 · log10

(
∑w

i

∑h
j f̂ (i, j)2

∑w
i

∑h
j (f̂ (i, j) − f (i, j))2

)

, (11)

where f̂ is the noisy image, f is the original noise-free image, w and h are the image width and
height, respectively [56]. Different SNR values were achieved by rescaling the variance of a
standard normal distributed random variable which was added to the noise-free images.

For each SNR test, 10 runs were conducted using the initialisation settings in Table 1 and the
hierarchy case 6 given in Table 2. Figure 10 shows the correlation and error distance between

Fig. 10. Mean and standard deviation (std) of the correlation (left) and error distance (right)
as a function of image signal-to-noise ratio (SNR). Statistics are obtained from 10 runs.
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the original and reconstructed phantoms as a function of the image noise level. The estimated
SNR from experiments is not expected to be higher than the values tested here. Furthermore, the
correlations increase to about 0.97 and plateau for SNR ≥ 6.79 dB indicating the robustness of
EBOST against this type of error.

5. EBOST reconstructions of flame phantoms

5.1. SwB1 and Bunsen flames

The turbulent SwB1 [44,45] and unsteady Bunsen [32] flame phantoms were reconstructed using
sensors that are equivalent in size to the CCD sensors in the experiment (659 by 494 pixels of
size 9.9 µm), and 20 different views of the synthetic scene.

For the SwB1 phantom, the chosen region of interest (ROI) from the rendered synthetic images
that contains the flame was 329 by 329 pixels in width and height, and hence the images were
cropped to this size. The reconstruction domain was discretised into NX = 108 by NY = 125 by
NZ = 108 voxels (genes) in width, height and depth, respectively. The voxel resolution in the
domain was 0.56 mm/voxel in all directions. The hierarchy case 9 from Table 2, which features
9 differently sized mutation operators and 5 annihilation operators was used. Exemplary slices
from the original and reconstructed phantoms are presented in Fig. 11, which had a correlation
of 0.98 and an error distance of ϵ = 2.53e − 5 between them, that was achieved within 800000
generations.

Fig. 11. Exemplary vertical slices at the burner centre from two perspectives, and horizontal
slices at y = 27 mm height above the burner (2.13 bluff body diameters in the downstream
direction), for the original and reconstructed turbulent SwB1 flame phantom’s refractive
index field n.

For the unsteady Bunsen flame phantom the ROI, and hence synthetic images were of size
260 by 230 pixels in width and height. The reconstruction domain was discretised into NX = 96
by NY = 86 by NZ = 96 voxels, each with a resolution of 0.5 mm/voxel, corresponding to
the original resolution of the LES simulation. The same EBOST settings were used for this
phantom reconstruction, except the largest 15 cubed mutation operator was omitted. The original
and reconstructed phantom’s refractive index fields are compared in Fig. 12. Within 800000
generations a correlation of 0.99 and error distance of ϵ = 2.76e − 5 was achieved between them.

Both flame phantom reconstructions show an underestimation of the refractive index, which is
symptomatic of other BOST efforts [32,33]. This could be due to numerical issues in the creation
of the phantom deflection data, i.e. the reference and deflection images. Other contributors to the
errors could be the discretisation of the field, the non-linear ray-tracing scheme and the finite
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Fig. 12. Exemplary vertical slices at the burner centre from two perspectives, and horizontal
slices at y = 1.5 mm height above the burner (0.17 nozzle diameters in the downstream
direction), for the original and reconstructed unsteady Bunsen flame phantom’s refractive
index field n.

resolution of the background texture. Since the scale of the deflections is in the sub-pixel to pixel
range, slight errors could lead to the observed deviation. Nevertheless, the reconstructions clearly
recover the structural detail with good accuracy and exhibit high correlations with the ground
truth.

5.2. Swirl flame phantom

Here we present a test case that uses an LES phantom of a central bluff-body swirl flame [11].
The 3D data of the refractive index field was downsampled and cropped to a field of NX = 75
by NY = 75 by NZ = 75 voxels. The same set of data was provided to Grauer and Steinberg
[33] to evaluate a recent state-of-the-art Bayesian method for BOST and we devised the exact
synthetic tomography scene; 9 cameras with lenses of focal length 10.0 mm and sensors with
500 by 500 pixels and backgrounds with a sine wave pattern at a distance of 1.5 m opposite to
each camera. In Fig. 13 slices of the EBOST reconstruction are shown. A correlation of 0.97

Fig. 13. Exemplary vertical slices at the burner centre from two perspectives, and horizontal
slices at y = 50.7 mm height above the burner (1.69 bluff body diameters in the downstream
direction), for the original and reconstructed turbulent swirl flame phantom’s refractive index
field n.
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Fig. 14. Schematic of the experimental BOST setup: 6 background patterns, which are
back-illuminated by 10 high power LED panels opposite 28 cameras. The gas supply system
and mass flow controllers shown are exemplary for the Cambridge-Sandia stratified burner.
The cameras are triggered simultaneously by a TTL generator and images are stored via a
network-hub (Ethernet connection) on a computer.

between phantom data and reconstruction was achieved. For the EBOST, the error distance was
ϵ = 2.38e − 5; Grauer and Steinberg [33] reported an error distance of approx. ϵ = 2.33e − 5.

It is interesting to note that the EBOST reconstructions do not exhibit the errors that are shown
in [33] at the upper and lower boundaries of the domain. In addition, it is worth noting that
the EBOST algorithm does not use a mask that requires thresholding, see Sec. 3.1. Setting all
voxel values below a threshold to the ambient refractive index can increase the reconstruction
quality, especially for phantom reconstructions because it eliminates noise in the respective areas
completely. However, it can be challenging with experimental data to define a threshold signal.

6. Experimental application of EBOST

6.1. Experimental procedure

Our generic multi-camera setup comprising 28 CCD cameras distributed equiangularly within
a total fan angle of 168◦ on one side of the burner, and 6 BOS backgrounds on the opposite
side, as shown in the schematic in Fig. 14 and the image in Fig. 15 ,was used. The Bunsen and
Cambridge-Sandia burners were exchanged for each experiment. Both burners were operated
with a premixed CH4/air mixture, using Bronkhorst mass flow controllers to regulate the flows.
The Cambridge-Sandia SwB1 has two streams; the inner with 11.4 CH4 / 144.0 air and the outer
with 34.8 CH4 / 441.7 air (units in SLPM). The co-flow for the SwB1 condition is half of the
actual rate specified by Sweeney et al. [49,50] (382.8 SLPM), because of limited supply of
pressurised air. The Bunsen is a regular single stream containing 1.5 SLPM CH4 and 7.0 SLPM
air.

The CCD cameras are from Basler, acA645-100 gm, containing 1/2′′ Sony ICX414
monochrome sensors with 659 by 494 pixels of size 9.9 µm. They were equipped with
Kowa C-mount objectives of 12 mm focal length. The BOS background (wavelet noise) pattern
was printed on six large white sheets of paper. The sheets were sandwiched between two flat
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Fig. 15. Generic multi-camera setup for multi-angular BOS measurements using 28 CCD
cameras and six background planes surrounding the Cambridge-Sandia burner operated with
the turbulent SwB1 condition.

plexiglas plates (each one 2 mm thick) of size 310 mm by 450 mm, and were mounted portrait on
the optical table. The backgrounds were back-illuminated using 10 high-power LEDs (Osram 200
W, 20000 lm). No problems were encountered with reflection issues from the plexiglas surfaces.
The f-stop used on all lenses was f/8, providing a compromise between deviation from the ideal
pinhole model and ability to measure enough light intensity for the low exposure times used. All
cameras were triggered simultaneously by one signal generator. For each test, 200 instantaneous
images per camera were captured. For reference images (without flame), the average of 20
images were used for each test. An exemplary image from one camera perspective that includes
the flame is shown in Fig. 16 (bottom row, left). It should be noted that the chemiluminescence
of the flame is not visible in the image, due to the light conditions that are necessary for BOS
measurements. The magnitude of the calculated OF deflection vector field for this camera view
and the absolute value of the derivative Et from Eq. (1) are shown in Fig. 16 (bottom row, middle)
and (bottom row, right), respectively. The calculated Et, Ex and Ey from Eq. (1) are the inputs for
the algorithm’s optimisation target, as explained in Sec. 3.2. Furthermore, |Et | serves as the
input for the stochastic mask sampling. The visual comparison of the experimental measurement
data and ray-traced phantom data in Fig. 16 shows similar deflection magnitudes. Differences
can result for example from the numerics, the camera model, the exact distance of the camera to
the object and to the background-plane, the gas composition that was used to derive the phantom
refractive index field and measurement noise.

For the scene registration, we used our in-house camera calibration algorithm, that is based on
an evolutionary optimisation method and uses a special 3D target [57]. The extrinsic parameters
of the cameras were calculated using one image of the target, which was placed on top of the
burner. For the intrinsic camera parameters, no pixel skew and no shift of the optical centre
were assumed. The distance of the camera pinhole to the image plane was assumed to be equal
to the focal length given by the manufacturer. In addition to the camera parameters, the exact
location and orientation of the BOS background planes must be determined with respect to the
common world coordinate system that includes all cameras. An optimisation strategy that is
similar to our camera calibration code was applied, but based on images of a 2D calibration
pattern, as shown in Fig. 17. The pattern was printed on paper and sandwiched between the
same plexiglas sheets, in a similar manner to the printed BOS background targets. The location
of the plexiglas sheets was fixed at all times. The BOS plane calibration algorithm minimises
the Euclidean distance between a reference image of the 2D target and a rendered view of the
target. Image distortions due to the optical system in the camera were not considered in this
calibration. The complete calibration procedure constitutes first finding the camera parameters
for the scene, and consecutively the calibrated BOS plane parameters. Successful application
of any experimental BOST requires an accurately calibrated measurement setup. Misaligned
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Fig. 16. Experimental image of the flame and ray-traced phantom scene from one camera
perspective (left) including region of interest (red box), magnitude of the OF calculated
deflections in pixel units (middle), and absolute value of the image brightness function
derivative |Et | (right). The camera exposure time used for capturing the experimental image
was texp = 300 µs.

Fig. 17. Exemplary images of the 3D (left) and 2D (right) targets for the camera and a BOS
plane, respectively, both shown in green. The rendered image based on the calibration result
for each case is shown in red and superimposed onto the actual target image, for the initial
guess and the final calibration solution.

cameras, which are cameras where the line-of sight vectors of the pinhole model do not match
the location and orientation of the real camera will cause artefacts in the reconstruction. An
additional source of error can be wrong information about the location and orientation of the
background planes. Since the plane calibration relies on the cameras’ extrinsic parameters, both
errors are not independent.

6.2. Unsteady Bunsen & turbulent SwB1 reconstructions

The instantaneous and time-averaged refractive index fields of the Bunsen flame were reconstructed
using a domain size of NX = 115 by NY = 100 by NZ = 115 voxels in width, height and depth,
respectively. The cuboid voxels had a size of 0.5478 mm and 0.5 mm in the width/depth and
height, respectively. In total, measurement from 27 of the cameras were used (one camera’s view
was blocked in the experiment). The exposure time was texp = 350 µs. Examples of the slices
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Fig. 18. Slices from reconstruction of the instantaneous (top row) and time-averaged
(bottom row) refractive index field n of the unsteady Bunsen flame. The vertical slices from
two perspectives at the burner centre and horizontal slices at y = 12.5 mm height above the
burner are shown. Images were captured with a camera exposure of texp = 350 µs.

Fig. 19. Slices from reconstructions of the instantaneous (top row) and time-averaged
(bottom row) refractive index field n of the turbulent SwB1 flame. The vertical slices from
two perspectives at the burner centre and horizontal slices at y = 27 mm height above the
burner are shown. Images were captured with a camera exposure of texp = 300 µs.

from the instantaneous and time-averaged reconstructions are presented in Fig. 18, illustrating a
sharp hot plume edge. The expected conical shape of the averaged Bunsen is also visible in the
slices.

The reconstruction domain for the SwB1 flame case contained NX = 108 by NY = 125 by
NZ = 108 cubic voxels of edge length 0.56 mm. All 28 camera measurements with an exposure
time of texp = 300 µs were used for the reconstructions. Exemplary slices from the instantaneous
and time-averaged flame reconstructions are shown in Fig. 19. Comparing the results with the
DNS phantom and its reconstruction from Fig. 11 qualitatively reveals that the EBOST faithfully
estimates the flame structure from the experiments.

Iso-surfaces of the Bunsen and SwB1 flame reconstruction are visualised for the instantaneous
cases in Fig. 20 revealing detailed structures of the refractive index fields.
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Fig. 20. Iso-surfaces from the the instantaneous refractive index field n of the Bunsen (a)
and SwB1 (b) flame reconstructions.

7. Conclusions

We have successfully demonstrated the application of an evolutionary strategy to background-
oriented schlieren tomography for the first time by using a set of adaptive parameters, called the
meta-learning scheme, and an island based genetic algorithm. Detailed studies on parameters of
importance, reconstructions of several phantom and experimental data were presented showing
good quantitative agreement between phantoms and their reconstructions and also good qualitative
agreement between experimental reconstructions and phantom data. In comparison to the most
recent advanced BOST algorithm, that was tested on phantom data only, the EBOST performed
convincingly, and quantitative error measures were at the same level. The fundamental difference
to other advanced BOST reconstruction methods is first of all the evolutionary approach to
tomography. The differences in the masking procedure as well as in the ray-tracing method were
explained and the benefits of the EBOST approach for practical applications were highlighted.

The reconstructed 3D refractive index field is proportional to the density that can be derived
by the Gladstone-Dale equation in a post-processing step. Density is typically lower on the burnt
side of the premixed flame, the hot gas region, and hence the reconstructed fields will help to
distinguish the burnt and unburnt zones. This provides very useful information for the analysis of
reactive flows. The applicability also extends to non-reactive flows such as general compressible
and multi-phase flows. From a modelling standpoint, the ERT method offers a very high degree
of flexibility for applications where the model cannot be linearised and standard reconstruction
methods like the ART are not applicable anymore.

The generic ERT method was adapted and improved by introduction of operator hierarchies,
and the computational efficiency was improved by a GPU implementation and deployment of
an IGA. A migration policy for the IGA was benchmarked against a simple migration scheme
showing results in favour of the non-trivial migration policy. Additionally, the complexity for the
user was reduced by the meta-learning system for adaptive parameter control. The meta-learning
scheme showed superior results to cases that used the same fixed set of initial values for the
parameters.
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