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Transfer of a calibration model for the
prediction of lignin in pulpwood among four
portable near infrared spectrometers

Xiaoxue Zhang1, Xinyu Chen2, Zhixin Xiong1, Heinz W Siesler2 and Long Liang3

Abstract
In order to reduce the time and cost for near infrared (NIR) model development and maintenance, the transfer of NIR spectra
measured on four different portable spectrometers (one master and three target instruments) for predicting the lignin
content of pulp wood is investigated in this work. Eighty-two wood samples were prepared by chipping and grinding, and their
NIR spectra were recorded with four spectrometers. Calibration models for the determination of lignin in pulp wood have
been developed by partial least squares (PLS) regression, while average Mahalanobis distances (AMD) and average differences
of spectra (ADS) were used to quantify the spectral differences. Then piecewise direct standardization (PDS) has been applied,
and compared to direct standardization (DS), slope/bias correction (SBC) and canonical correlation analysis (CCA). The
accuracy of the models has been evaluated by comparing their prediction performance. The results indicated that the
prediction performances of the three target instruments are greatly improved by using the three algorithms. The advantage of
the PDS algorithm is that fewer samples are required for the transfer sets, which means lower model maintenance cost for
practical applications.When it comes to window size setting procedure, it was found that if there are large spectral differences
between the master and the target spectrometer, a large window size should be used and if the spectral difference is a
significant lateral shift, an asymmetric window with appropriate window size is necessary to ensure a good transfer per-
formance for the PDS algorithm.
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Introduction

As the second most abundant natural product and one of the
main components of wood,1 lignin is closely related to the
properties of wood and its processing and utilization per-
formance. For example in pulp and paper production, the
content of residual lignin directly determines the dosage of
bleach,2 which would affect the quality and quantity of pulp
as well as the burden of chemical recovery in black liquor.
Conventional chemical wet laboratory methods are time-
consuming, costly, and not convenient for handling a large
amount of wood samples.3 Near infrared (NIR) spectros-
copy on the other hand is rapid, non-destructive, has low
operational technical requirements, and is widely used in
the petroleum, pharmaceutical, chemical, food, forestry and
other industries.4–7 Many literature references that report
the application of NIR spectroscopy for the rapid detection
of wood content have been published.8–11

Portable near infrared spectrometers, which are small in
size and light in weight and have a wider range of adaption
to ambient temperature, humidity and vibration resistance,
are gradually being promoted for the on-site analysis of
various dispersed objects.12,13 However, in practice, it often
happens that a calibration model developed with the spectra

of one instrument cannot be used for the spectra recorded by
other instruments. This contributes to two main scenarios:
(1) using the same calibration model for other instruments
with different hardware of light sources, optical paths or
detectors; or (2) using the same calibration model to adapt
to new measuring conditions or different instrument per-
formances, such as temperature and humidity change,
sample morphology change, instrument aging and acces-
sory replacement.14–16 Since building a suitable calibration
model for NIR spectroscopy analysis requires a lot of time
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and material resources, it is necessary to choose a suitable
method for sharing models among portable spectrometers,
which is referred to as calibration model transfer.17

Many model transfer methods have been proposed.18–21

Among all the transfer methods, direct standardization (DS)
and piecewise direct standardization (PDS) algorithms are
the most commonly used methods.22 PDS is similar to the
DS algorithm, but the standardization of the PDS algorithm
is calculated by selecting different window sizes rather than
directly using the entire spectrum. Therefore the superiority
of PDS algorithm is attributed to its local character and
multivariate nature which enable simultaneously correction
of intensity differences, wavelength shifts and peak
broadening.23 In recent years, a calibration method based on
canonical correlation analysis (CCA) has also been widely
used.24 Compared to other model transfer methods, owing
to the ability of CCA to exploit the correlation between the
spectra of the master and the target instruments, it has
shown good performance and is therefore adopted for
model transfer in this work. In addition, the algorithm of
slope/bias correction (SBC) is also used for comparing and
validating the possible existence of an offset deviation.

All of the algorithms used in this study are model transfer
strategies that require standard samples. In practice, if fewer
standard samples are required in the algorithm, the detection
cost can be greatly reduced. Therefore, the number of the
transfer set could be an indicator for the evaluation of the
different algorithms.

When the PDS algorithm is used, choosing an appro-
priate window size plays an important role in model
transfer. If the window size is too small, the differences
between instruments might not be contained in the selected
spectrum, resulting in poor transfer performance. If the
window size is chosen too large, the selected spectral data
will involve some irrelevant information, which not only
requires too much computation, but leads to the phenom-
enon of overcorrection, which eventually also leads to poor
performance of the model transfer.25

In practice it often occurs, that the instruments used have
different design of detectors or light sources. Four different
portable instruments were used for the investigations in the
present work. With the aim to share the calibration model of
lignin in pulp wood among the four portable instruments,
DS, CCA, SBC and PDS algorithms were used to transfer
the master calibration model to three different target in-
struments. The selection of window size for the PDS al-
gorithm was also an issue in the present investigation.

Materials and methods

Samples and reference measurements

A set of 82 pulp wood samples from five species of
common pulp wood (Pinus massoniana, Cunninghamia
lanceolate, Acacia, Eucalyptus and Poplar), was provided
by the Institute of Chemical Industry of Forest Products,
Chinese Academy of Forestry. All those samples are
prepared by chipping and grinding pre-treatment, and the
chips that passed the 40 mesh sieve and were retained on
the 60 mesh sieves were collected for chemical analysis

and spectral acquisition. Then the wood powder were put
under environment condition with constant temperature
and humidity. When the moisture content of wood powder
is stabilized at about 12% and the difference of moisture
content does not exceed 0.1% in 24 h interval, the equi-
librium moisture content of wood powder is considered to
be fully reached. The content of acid insoluble lignin was
measured according to the People’s Republic of China
national standard method (GB/T 2677.8-1994). In this
method, 1g of sample extracted with benzene/ethanol is
first treated with 72% H2SO4 for 2 h at 20°C. Subse-
quently, the sample is diluted with water to reduce the
concentration of H2SO4 to 3% and boiled for 4 h to hy-
drolyse the polysaccharides to soluble monosaccharides.
Finally, the solid residue (acid insoluble lignin) is col-
lected and weighed. The measurement result and distri-
bution of lignin content are shown in Table 1.

Spectral acquisition

Spectra were collected with four different portable instru-
ments: a micro optical fibre NIR spectrometer from Insion
(Insion Gmbh, Heilbronn, Germany) equipped with a 10 W
halogen lamp while the other instruments were all from the
same company (Wuxi Intelligent Analysis Service Co. Ltd,
Wuxi, China) consisting of a IAS-2000 spectrometer
equipped with a 10 W tungsten halogen lamp and two IAS-
5000 spectrometers of IAS-5000 equipped with a 5 W
tungsten halogen lamp, where one was identified as 5000A
and the other was identified as 5000B. The light source
irradiation direction of IAS-5000 is bottom-up while it is
top-down for the IAS-2000. The two irradiation modes are
shown in Figure 1.

The wavelength of the IAS instruments range from
900-1700 nm with a spectral resolution of 16 nm, a
wavelength interval of 1 nm, a signal-to-noise ratio of
10000:1. An integration time of 10 ms was set for ac-
quisition. The Insion spectrometer’s wavelength range
extends from 844-1894 nm with a resolution of 16 nm, a
wavelength interval of 8 nm and an integration time of
20 ms was used for acquisition. Although all the in-
struments have a stationary diffraction grating, the Insion
uses a linear array detector and is designed monolithically
so that optical and electronic devices are integrated in one
small unit with no moving parts, while the IAS instru-
ments are MEMS-based and employ only a single-pixel
detector coupled with a digital mirror device (DMD).

Each sample was measured six times in different posi-
tions by accumulating 50 scans, and the average spectrum
was used for further processing. The IAS-5000B as denoted
as the master instrument while the IAS-5000A, IAS-2000
and Insion were considered as target instruments.

Model transfer techniques

In this study, the techniques of direct standardization (DS),
slope/bias correction (SBC), piecewise direct standardiza-
tion (PDS) and canonical correlation analysis (CCA) were
employed to transfer the calibration models from the master
to the target instruments.
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Direct standardization (DS). An important development in
multivariate model transfer is direct standardization (DS),22

which relates the spectra Am measured on the master in-
strument to the spectra Atmeasured on the target instrument
by the transformation matrix F

At ¼ AmF (1)

The transformation matrix F is estimated as

F ¼ Aþ
t Am (2)

Where A+
t is the generalized or pseudo-inverse of At.

Once F is calculated, the spectrum of a new, unknown
sample (Xunknown), measured on the target instrument can
be projected to the master instrument space, and then the
property values can be predicted by the old model.

Xstd ¼ XunknownF (3)

Slope/Bias Correction (SBC). The SBC algorithm is a model
transfer method based on the correction of the predicted
results between the master and the target instruments.26

Firstly, n samples are selected as the transfer sets from the
master and target instruments, respectively. Then, the
predicted results ym and yt of the transfer sets are calculated
by the model of master instruments. The corresponding
slope and bias are then assumed as follows

Slope ¼
P�

ys, i � ys
��
yt, i � yt

�
P�

ys, i � ys
�2 (4)

Bias ¼ yt � Slope � ys (5)

Finally, the predicted results Yt of the target instrument
can be corrected as follows

Yt, corr ¼ Slope � Yt þ Bias (6)

where Yt,corr is the prediction value matrix of the target
instrument after correction.

Piecewise direct standardization (PDS). In direct standardi-
zation, each wavelength of the master spectra is simul-
taneously related to all wavelengths of the target
spectra.22 However, in the actual spectra, the variations of
the spectroscopic data may be limited to small wavelength
regions only. Thus, piecewise direct standardization was
proposed in which each spectral data point Am,i measured
on the master instrument is related to the wavelengths in a
small window around the wavelength i measured on the
target instrument. The subset spectra At,i, which are
measured on the target instrument at nearby wavelengths
window from index i-k to i+w, are chosen and then the
regression vector bi is calculated by the PLS method. In
addition, the window can be symmetric (k = w) or
asymmetric (k ≠ w) which is decided by the extent of
wavelength shift. Normally an asymmetric window can
improve the model transfer result if there exist obvious
spectral shifts between the master and target instrument.
The regression vectors calculated for each window in the
data are assembled to form a banded diagonal matrix F.
Then the transformation matrix F is calculated by setting
the off-diagonal elements to zero as follows

F ¼ diag
�
bT1 , b

T
2 ,…bTi ,…bTn

�
(7)

where n is the number of wavelengths.
Then the spectrum Xunkown measured on the target in-

strument can be modified to match the spectrum measured
on the master instrument.

Table 1. The distribution of lignin in samples.

Species Number of samples Range (%w/w) Mean (%w/w) Standard deviation

Eucalyptus 24 21.49–27.56 23.73 1.2
Cunninghamia lanceolata 23 32.55–34.20 33.43 0.4
Poplar 13 14.81–20.50 17.99 2.1
Acacia 12 24.62–27.15 25.69 0.9
Pinus massoniana 10 28.47–28.95 28.63 0.2
Total 82 14.81–34.20 26.43 5.4

Figure 1. The diagram of two irradiation modes, (a) bottom-up irradiation (b) top-down irradiation.
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Canonical correlation analysis (CCA). The primary idea of CCA
is to calculate the correlation between two batches of spectra.24

Owing to its ability, it has been widely used in recent years.
The detailed calculation procedures are as follows:

Firstly, the transfer set measured on the master and target
instrument are assumed as Am and At, respectively. Am and
At can be executed by CCA

Lm ¼ AmWm (8)

Lt ¼ AtWt (9)

whereWm andWt denote the canonical weights, and Lm and
Lt stand for canonical scores of the master and target in-
struments, respectively.

Then, the transformation matrix F can be calculated as
follows

F1 ¼ Lþ
t Lm (10)

F2 ¼ Lþ
mAm (11)

F ¼ WtF1F2 (12)

where L+m and L+t are the pseudo-inverse of Lm and Lt,
respectively.

Next, the new samples Xunknown measured on the target
instrument can be converted to the master instrument space
by the transformation matrix F, and then the property values
can be predicted by the old model.

Spectral difference evaluation

The spectral differences between the master and the target
instruments were evaluated by the average difference of
spectra (ADS) and average Mahalanobis distance (AMD).
The ADS is used for evaluating the overall difference
between instruments. Low ADS values mean the spectral
difference between two instruments is small. The AMD is
used to evaluate the model transfer performance. The
transfer performance is evaluated by comparing the AMD
before and after transferring. A lower AMD value means
that the spectral difference between two instruments be-
comes smaller.

ADS ¼ 1

n

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
k¼1

���Ai
t, k � Ai

m, k

���
vuut (13)

Here, n stand for the number of samples, M stands for
the number of wavelengths. Ai

t,k, A
i
m,k denote the absorbance

of the k-th wavelength of the i-th sample of master and
target instrument, respectively.

AMD ¼ 1

m

Xm
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � μÞTΣ�1ðxi � μÞ

q
(14)

Here,m denotes the number of samples in the prediction set,
xi denotes the i-th sample, and μ denotes the mean of the
calibration set.

P
is the covariancematrix of the calibration set.

Model evaluation

The performance of the prediction model was evaluated by
the correlation coefficient between the predicted value and

the standard value (Rp), root mean square error of prediction
(RMSEP) and ratio of performance to standard deviation
(RPD) (Equations. (15)–(18)).

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
yi, predicted � yi, actual

�2
n

vuuut
(15)

Rp ¼
Pn
i¼1

�
yi,actual� yactual

��
yi,predicted � ypredicted

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
yi,actual � yactual

�2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

�
yi,predicted � ypredicted

�2
r

(16)

RPD ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p (17)

R2 ¼ 1�
Pn
i¼1

�
yi, predicted � yi, actual

�2
Pn
i¼1

�
yi, actual � yactual

�2 (18)

where n denotes the number of samples in prediction set,
yi,predicted is the predicted value of i-th sample, yi,actual is the
measured value of the i-th sample, yactual and ypredicted are
the mean of the measured and predicted value of the
samples in the prediction set. NOTE: It is possible that R2

calculated in this way can be negative, because the pre-
diction formula can perform worse than using the mean of
the set being predicted.

To establish an optimal model, higher RPD and Rp

values, along with lower RMSEP should be achieved. A
model with an RPD value exceeding 8.0 is excellent and can
be used in any analytical situation, values above five are
appropriate for quality control analysis, values of 3.0 and
upward are regarded as satisfactory for screening, and
values of 2.0–3.0 can be used for rough screening, whereas
a model is not suitable for prediction if the values are less
than 2.0.27,28

Software

The software package NIRSA (Chinese version 5.3) which
is a self-developed chemometrics tool based on Delphi 7.0
(Borland Software Corporation, Austin, USA) and MAT-
LAB 2018a (The MathWorks Inc, Natick, MA, USA) were
used in this study. The results provided by NIRSA are akin
to that of the Unscrambler software (CAMO AS, Oslo,
Norway), which has been reported in the literature.29

NIRSA was applied to pre-process the spectra, partition
calibration and prediction subsets and develop PLS models.
The other algorithms were calculated by using MATLAB
2018a.

Results and discussion

Multivariate calibration models

For the determination of the lignin content 82 sample
spectra were measured on the master instrument, using a
sample set partitioning based on the x-y distance (SPXY)
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algorithm to choose 62 samples for calibration, and 20
samples for validation. Then, PLS calibration models were
developed, which is the most common method for linear
regression of NIR spectral data. To eliminate irrelevant
information and noise, this research adopts several spectral
pre-processing methods which are commonly used, in-
cluding the first derivative, moving average filtering
(MAF), multiplicative scatter correction (MSC) and stan-
dard normal variate transformation (SNV). The merits of
the pre-processing methods are evaluated by the prediction
performance of the corresponding PLS analysis model.
According to many comparative studies, five points MAF
and MSC are used for pre-treatment since their modelling
performance was the best. The reason is based on the fact,
that MAF can improve the signal-to-noise ratio of the
original spectrum by spectral smoothing, while MSC can
eliminate the influence of different scattering coefficients
caused by uneven distribution of wood powder particles and
different particle sizes of the measured spectrum.30 After
selecting the appropriate pre-treatment method, the pre-
diction model for lignin was built by PLS. In this study, the
number of latent variables was set in the range of 2–14, and

determined by leave-one-out cross validation. Figure 2
shows the change of PRESS value of the lignin calibra-
tion model with the number of latent variables. As can be
seen from Figure 2, the PRESS value is the smallest when
the number of latent variables is 13. At this point, the Rc and
RMSEC values were 0.98 and 0.54% (w/w), and the
RMSECV value was 1.07% w/w) indicating that the model
had a good correlation and accuracy.

Spectral difference

Figure 3 shows the average spectra of 82 wood samples
acquired on two spectrometers of the IAS-5000 type
(5000A and 5000B), on the IAS-2000 spectrometer and the
Insion spectrometer. Figure 3(a) shows that the wavelength
range of the Insion spectrometer (844–1894 nm) is larger
than the one of the other instruments. However, its spectral
resolution is lower than the spectral resolution of the IAS
instruments. The sampling interval of the IAS instrument is
1 nm, but the corresponding interval of the Insion instru-
ment is 8 nm, which means there are fewer wavelength
points across the same spectral range. Therefore, it is es-
sential to align the wavelength of the target and master
instruments first. To match the data point interval of the
Insion instrument to the master instrument, piecewise linear
interpolation was adopted. Then, the wavelength range was
truncated to 900nm–1640 nm in order to match the master
instrument. Figure 3(b) shows the average spectra of the
four instruments after alignment. It can be seen from the
figure that apart from the common strong absorption peaks
of water near 1200 nm and 1450 nm there are only minor
spectral differences among the three instruments.

To compare the instrument difference between the three
target instruments and the master instrument, the average
spectral difference diagram is shown in Figure 4. As can be
seen from this figure, there is a larger difference between the
Insion and the master instrument. The largest difference can
be found in the range of 1400–1600 nmwhere the absorption
band of the first overtone of the ν(OH) band is located. Since
the IAS-5000A instrument is the same type as the master
instrument regarding the optical components, electronic
components and assembly process, the spectral difference for

Figure 2. The trend of prediction residual of error sum of
squares (PRESS) with the number of latent variables in partial
least squares.

Figure 3. (a) The average of the raw spectra acquired by four spectrometers. (b) The average spectra of the four instruments after
alignment.
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the corresponding sample is small. In contrast, the master and
the IAS-2000 instrument have different irradiation directions
of the light source, different light source power and a dif-
ferent assembly process, which cause larger differences in the
spectra. Because the detector and light source of the Insion
instrument are entirely different from the master instrument,
the spectral difference is the most obvious. The light
transmitting medium of the Insion spectrometer is an optical
fiber which leads to less background interference and energy
loss. Therefore, the absorbance of the average spectral dif-
ference shows an apparent discrepancy.

The model established by the master instrument was
used to predict the validation sets measured by the master
and target instruments, and the prediction results of the four
instruments are shown in Table 2. Additionally, the ADS
and AMD used for quantifying the spectral difference are
also included in Table 2.

Provided the same concentration range is considered, the
closer the correlation coefficient Rp between the measured
value and the predicted value is to 1, the better is the model
performance. It can be seen from Table 2 that the Rp values
of all IAS instruments (the master and two target instru-
ments) are greater than 0.94, and the prediction result of the
master instrument is the best with a RPD value greater than
5. Therefore, the NIR calibration model established on the
master instrument IAS-5000B can be applied to rapidly
determine the chemical compositions of pulp woods if their
spectrum is also recorded on the same device. In contrast,
the two target instruments show a poor performance based
on their RMSEP and RPD values.

The relatively high positive values of Rp with large
RMSEP and low RPD values of the three target instruments
mean that the predicted values tend to move in line with the
measured values but with a larger bias error which lead to a
lower R2 or even a negative value that can be derived from
Table 2 and Figure 5. There are parallel trends between
three instruments from the same manufacturer which are
similar to the contour line for predicted and measured
values (Y = X). The predicted scatter diagram of the master
instrument basically coincides with the contour line and
there are upward and downward offsets of the two target
instruments relative to this line. However, the poor per-
formance on all the evaluation indicators for the Insion
instrument (Table 2) was also obvious from Figure 5. The
low Rp of the Insion instrument manifests an inconsistent
trend with the other instruments in the scatter plot. This
prediction performance is due to the differences between
the light sources and detectors of the Insion and the master
instruments. It can also be concluded that the performance
of the model cannot be independently evaluated by Rp,
because RMSEP, R2 and RPD metrics play a better role in
measuring the systematic errors in model transfer. There-
fore, the value Rp was not considered further in the model
transfer evaluation.

According to the prediction results above, the model
established on the master instrument cannot be directly used
or shared among the three target instruments before em-
ploying an appropriate method of model transfer.

In order to analyse the spectral differences, the average
difference of spectra (ADS) between the validation sets of
the master and the three target instruments was calculated.
The ADS of the master instrument and the 5000A, 2000 and
Insion instruments are 0.2186, 0.2371 and 0.2628, re-
spectively (Table 2). After comparing the values, it can be
concluded that there is a larger ADS between the master
instrument and the Insion instrument. The average Maha-
lanobis distances (AMD) of spectra between the calibration
set and all validation sets were calculated and presented in
the final column in Table 2. It can be seen from Table 2 that
compared to the IAS-5000A instrument, there are relatively
large distance values for the three target instruments.
Among the target instruments, the value of the IAS-5000A
instrument is the lowest owing to it being an identical model
to the master instrument.

Comparison of model transfer methods

All of the algorithms used in this study are model transfer
strategies that require standard samples, and the number of
samples selected for the transfer set has a large influence on

Figure 4. The diagram of spectral differences for the target and
master instruments.

Table 2. Prediction results of lignin content and the spectral difference for the validation sets measured with the four instruments before
model transfer.

Instrument Rp R2
Root mean square error
of prediction

Ratio of performance to
standard deviation

Average differences
of spectra

Average Mahalanobis
distances

Master IAS-5000B 0.990 0.96 0.84 5.2 0.195
Target IAS-5000A 0.98 0.59 2.77 1.6 0.219 1.6
Target IAS-2000 0.97 �3.5 9.21 0.5 0.237 13.9
Target Insion 0.72 �0.84 5.86 0.7 0.263 7.9

Zhang et al. 213



the model transfer performance. In this study the Kennard-
Stone (KS) algorithm was adopted to select 5, 10, 15, 20, 30
samples from all the samples measured on the master in-
strument and two target instruments, respectively, as the
transfer set. DS, PDS and CCA algorithms were then used
to transfer the model built on the IAS-5000B master in-
strument to the target instruments, IAS-5000B, IAS-2000
and Insion. The performance of the four algorithms is
summarized in Table 3, Figure 6 and 7.

The best prediction results for the three target instru-
ments as a function of the three transfer methods, the size of
transfer set and the window of the PDS, are shown in
Table 3. As can be seen from the last two columns of this
table, the ADS and AMD has been largely reduced after the
transfer process. This means, that after spectral transfer, the
spectra of target and master instrument are very similar. For
the IAS-5000A and IAS-2000 instruments, the prediction
results are improved by DS, PDS and CCA algorithms. For
the IAS-5000A spectrometer, the best performance can be
obtained if 30 samples were selected as the transfer set
while using the CCA algorithm. The values of Rp, RMSEP
and RPD are 0.97, 1.29 and 3.4, respectively, which are
slightly better than those of DS. For the IAS-2000 in-
strument, the application of the CCA algorithm leads to a
considerable improvement in the prediction of lignin as
illustrated by the significant decrease in RMSEP (0.90) and
improvement in RPD (4.8). For the Insion spectrometer, the
best prediction performance (Rp = 0.90 RMSEP = 1.97
RPD = 2.2) is found when DS is used for the transfer
procedure. This is due to the fact that most of the data points
of the Insion spectra are obtained by interpolation and the
differences between the Insion and the master instrument
are mainly a systematic bias. The method of SBC normally
can be applied when the instrumental difference is small.26

Although the master IAS-5000B and target IAS-5000A
belong to one product of the same series, the differences
between them are not compensated well by the SBC
method, not to mention the other two target instruments.
Therefore, SBC is not discussed further.

In practice, the number of standard samples also affects
the time consumption of model transfer. Thus, the number of
the standard samples is also worth careful consideration. The

change of the RMSEP value with the number of standard
samples for the three target instruments using the three
model transfer algorithms is shown in Figure 6. Since there
are only 62 samples for calibration, a maximum of 50% of
the samples in the calibration set is selected for the transfer
set to obtain representative results. It can be seen from
Figure 6(a) that, as the number of samples in the transfer
set increases, the useful information in the transfer set also
increases, and the RMSEP of the three instruments shows
an overall trend of decreasing. Therefore, the lowest
RMSEP is found when the number of samples in the
transfer set is 30 for all target instruments. Figure 6(b)
shows the trend of the RMSEP value for two target in-
struments when the PDS algorithm is adopted. As can be
observed in Figure 6(b), the minimum RMSEP was ob-
served when the number of samples in the transfer set for
the two IAS instruments is 10. For the Insion spectrometer,
the minimum RMSEP (4.8) occurs when the number of
samples in the transfer set is 5, and as the number of
samples in the transfer set increases, the RMSEP value
also increases. This is clear evidence, that the PDS al-
gorithm is not suitable for this model transfer. Figure 6(c)
shows the RMSEP trend for the three target instruments
when the CCA algorithm is used. Thus, it can be con-
cluded, that the trend for the three instruments is similar to
the application of the DS algorithm. The lowest RMSEP is
found when the number of samples in the transfer set is 30
for all target instruments.

Since the selection of an appropriate window size is
required for the PDS algorithm, a variety of different
windows sizes have been tried based on the prior knowl-
edge of the lowest RMSEP with 10 samples in the transfer
set. The relationship between RMSEP and window size for
the IAS-5000A spectrometer is shown in Figure 7(b). The
best transfer performance (RMSEP = 1.34) is found when
the window size is set to 8. For the IAS-2000 instrument,
the best performance (RMSEP = 0.97, RPD = 4.4) is found
when setting the window size to 30. Comparing the two
instruments, it is necessary to select a larger window size for
the PDS model transfer of the IAS-2000 to include the inter-
instrumental differences to the master instrument.

Comparing the three model transfer algorithms, con-
trary to the DS and CCA algorithms the PDS algorithm
requires a complex window size selecting procedure.
Nevertheless, the PDS method can transfer the spectral
data of the two target instruments successfully with only
10 samples in the transfer set and obtain a good prediction
performance, whereas the DS and CCA algorithms require
a minimum of 30 samples. In conclusion, the DS and CCA
algorithms are simpler and do not require a complex
parameter selection procedure. With the PDS algorithm a
better model transfer performance can be achieved with a
smaller number of samples in the transfer set. Therefore, in
practical applications, the PDS algorithm is the better
choice as model transfer method compared to DS and
CCA, because of the fewer samples needed for the transfer
set, which means model maintenance cost is lower.
However, if there are significant systematic differences
among the master and the target instrument, it can occur
that no acceptable result can be obtained by PDS but the
simple DS algorithm can be a good alternative.

Figure 5. Predicted scatter diagram for lignin of master model
for master and target instruments before model transfer。.
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Table 3. The prediction results of transferring the lignin calibration model of the IAS-5000B instrument to the three target instruments by
direct standardization, piecewise direct standardization and canonical correlation analysis. (k: number of wavelengths on the left side of the
center wavelength, w: number of wavelengths on the right side of the center wavelength, window size=1+k+w).

Instrument Method

Number
of
standard
samples

Window
size

Partial
least
squares
number R2

Root mean
square
error
of
prediction

Ratio of
performance
to standard
deviation

Average
differences
of spectra

Average
Mahalanobis
distances

IAS-5000A DS 30 0.91 1.32 3.3 0.1189 0.211
SBC 5 0.37 3.45 1.3 1.6
CCA 30 0.91 1.29 3.6 0.1175 0.209
PDS 10 8 k3w4 1 0.90 1.34 3.2 0.1014 0.322

IAS-2000 DS 30 0.95 0.93 4.6 0.1297 0.253
SBC 10 �11.8 15.5 0.3 13.9
CCA 30 0.96 0.90 4.8 0.1276 0.239
PDS 10 30 k14w15 1 0.95 0.97 4.5 0.1300 1.4

Insion DS 30 0.79 1.97 2.2 0.1607 0.210
SBC 30 �4.1 9.75 0.4 7.9
CCA 30 0.79 1.99 2.2 0.1608 0.214
PDS 5 8 k7w0 1 �0.22 4.77 0.9 0.1683 1.160

DS: direct standardization; SBC: slope/bias correction; CCA: canonical correlation analysis; PDS: piecewise direct standardization.

Figure 6. The trend of root mean square error of prediction with the number of transfer samples when using (a) the direct standardization
algorithm, (b) the piecewise direct standardization algorithm, and (c) the canonical correlation analysis algorithm.
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Once PDS is used for the model transfer, it is mandatory
to determine the window size. It can be either symmetrical
(k = w) or asymmetrical (k ≠ w) centered on each calibrated
wavelength. When wavelength shifts can be ignored, a
symmetric window can be used; if wavelength shifts are
obvious, the transfer performance can be improved by
choosing an asymmetric window. As it can be seen from
Table 3, good results can be obtained when an asymmetric

window size was selected. This illustrates that there are
wavelength shifts between the master instrument and the
target instruments which can also be observed in
Figure 8(a), where the average spectra of the prediction set
of the three instruments are illustrated. As can be seen from
this figure, there are lateral shifts between the three in-
struments and vertical offsets between the IAS-2000 and
IAS-5000 instruments. For the accentuation of the lateral

Figure 7. The trend of root mean square error of prediction with different window sizes for the piecewise direct standardization transfer
to the (a) IAS-2000 and (b) IAS-5000A instruments.

Figure 8. The average spectra of the prediction set measured on the three spectrometers (a) before spectra transfer (b) after longitudinal
translation and truncation (c) after spectra transfer and (d) after truncation.
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shift, the spectra along the y-axis were truncated to the
1400–1600 nm wavelength range in Figure 8(b).

To demonstrate the transfer performance in more detail,
the average spectra of the three instruments after transfer are
plotted in Figure 8(c). This figure demonstrates, that al-
though the spectra of the three instruments are essentially
coincident, there are still small discrepancies that can be
further accentuated by truncation (Figure 8(d)). Never-
theless, comparison of the figures before and after transfer
demonstrates, that the vertical offset and the lateral shift are
largely eliminated by the PDS algorithm.

Conclusion

The main purpose of this study is to share the master
calibration models for lignin determination of pulp wood
with three different target instruments. Due to the differ-
ences hardware, optical design and structure designs of the
four instruments, the impact of their spectral differences on
the DS, SBC, PDS and CCA model transfer algorithms was
comparatively evaluated. In what follows the results of
these investigations are summarized:

(1) The ADS and AMD parameters were used to
evaluate the differences between the master and
target spectrometers. Both of them were signifi-
cantly decreased by the transfer process, viz. the
spectra of the target instruments became more
similar to the spectra measured by the master in-
strument. Furthermore, ADS is a more sensitive
criterion to measure the differences among in-
struments since the largest ADS was observed
practically between the master and the Insion
instrument.

(2) All three target instruments can be successfully
transferred by CCA. For the Insion spectrometer,
the transfer performance of DS is slightly better
than CCA. This means if there are significant
systematic differences, a simple algorithm like DS
might be a good choice. For the IAS-2000 and the
IAS-5000A instruments, good model transfer ef-
fects can be obtained by the PDS algorithm with
only a few standard samples, which is a great ad-
vantage of the PDS algorithm.

(3) When using a PDS for model transfer, a proper
choice of window size is very important. A large
window should be chosen if there are significant
differences between instruments. If wavelength
shifts cannot be ignored between the master and the
target instruments, an asymmetric window of ap-
propriate size has to be selected to ensure a good
PDS algorithm transfer performance.
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