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Abstract

With the rise of Advanced Driver Assistance Systems (ADAS), range sensors
and corresponding data processing methods are becoming more and more im-
portant. It plays a decisive role in one of the major future topics, autonomous
driving. Light Detection And Ranging (LiDAR) sensors are attracting atten-
tion due to their unique advantages in terms of high radial distance resolution.
Therein, Single Photon Avalanche Diode (SPAD)-based direct Time-Of-Flight
(TOF) LiDAR system shows a powerful ability regarding its simple measurement
principle and extremely high energy detection efficiency. This system measures
the distances based on the traveling time of laser photons to reach and return
to an object. However, one of the greatest challenges of such a system is high
background light, which causes a number of false triggers and interferes with
the desired signals. Moreover, due to the large volume of LiDAR data, classical
methods are only able to perform simple processing on low-level LiDAR data in
applications with a high demand on timing performance, such as ADAS. In the
subsequent high-level processing, only the depth information (i.e., point cloud) is
utilized and the used LiDAR front-end is considered as a black box. In this case,
most features in low-level LiDAR data are overlooked, resulting in low system ro-
bustness in harsh conditions, such as high background light and large distances.

This work seeks a breakthrough on the distance determination performance
of a SPAD-based direct TOF LiDAR system. In the scope of the work, a ma-
chine learning-based distance prediction approach, Multi-Peak Analysis (MPA),
is proposed for LiDAR time-correlated histograms to improve timing performance
and the system robustness against background light. First of all, the existing
methods based on the LiDAR system are reviewed. Concepts and attempts are
designed and carried out on the combination of machine learning and low-level
LiDAR data. Two datasets are used to assess the performance of MPA. Af-
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ter theoretical and simulative evaluations, MPA is designed and includes three
components: 1) a physics-guided feature extraction, 2) two distance prediction
algorithms (fully-connected neural network and naive Bayes classifier), and 3) a
correlation analysis in time and space. The evaluation results lead to the con-
clusion that MPA outperforms a widely-used classical digital processing in terms
of timing performance and distance determination with ˘5 % error bound with
various background light intensities and distances. Finally, MPA is implemented
on both a personal computer and a Field-Programmable Gate Array (FPGA)
module for runtime verifications. Demonstrations show a high agreement with
theoretical and simulative results and confirm the feasibility of MPA.
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Zusammenfassung

Mit dem Aufkommen von Advanced Driver Assistance Systems (ADAS) gewin-
nen Entfernungssensoren und entsprechende Datenverarbeitungsmethoden immer
mehr an Bedeutung. Sie spielen eine wichtige Rolle bei einem der großen Zu-
kunftsthemen, dem autonomen Fahren. Light Detection And Ranging (LiDAR)-
Sensoren ziehen aufgrund ihrer einzigartigen Vorteile in Bezug auf eine hohe ra-
diale Entfernungsauflösung die Aufmerksamkeit auf sich. Dabei zeichnet sich das
Single Photon AvalancheDiode (SPAD)-basierte direkte Time-Of-Flight (TOF)
LiDAR-System durch sein einfaches Messprinzip und seine extrem hohe Energie-
erfassungseffizienz aus. Dieses System misst die Entfernungen auf der Basis der
Laufzeit der Laserphotonen, die ein Objekt erreichen und zurückkehren. Eine der
größten Herausforderungen eines solchen Systems ist jedoch das starke Hinter-
grundlicht, das eine Reihe von Fehlmessungen verursacht und die gewünschten
Signale stört. Außerdem können klassische Methoden aufgrund der großen Men-
ge an LiDAR-Daten nur eine grundlegende Verarbeitung von Low-Level-LiDAR-
Daten in Anwendungen mit hohen Anforderungen an die zeitliche Leistung, wie z.
B. ADAS, durchführen. Bei der anschließenden High-Level-Verarbeitung werden
nur die Tiefeninformationen (d. h. die Punktwolke) verwendet und das verwen-
dete LiDAR-Frontend wird als Blackbox betrachtet. In diesem Fall werden die
meisten Merkmale in den Low-Level-LiDAR-Daten übersehen, was zu einer ge-
ringen Robustheit des Systems unter schwierigen Bedingungen führt, z. B. bei
hohem Hintergrundlicht und großen Entfernungen.

In dieser Arbeit wird ein Durchbruch bei der Entfernungsbestimmung mit ei-
nem SPAD-basierten direkten TOF-LiDAR-System angestrebt. Im Rahmen der
Arbeit wird ein auf maschinellem Lernen basierender Ansatz zur Entfernungsvor-
hersage, dieMulti-PeakAnalyse (MPA), für zeitkorrelierte LiDAR-Histogramme
vorgeschlagen, um die zeitliche Leistung und die Robustheit des Systems gegen-
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über Hintergrundlicht zu verbessern. Zunächst werden die bestehende Mess- und
Verarbeitungsmethoden für LiDAR-Systeme analysiert. Konzepte und Versuche
werden entworfen und auf der Kombination von maschinellem Lernen und Low-
Level-LiDAR-Daten durchgeführt. Zwei Datensätze werden verwendet, um die
Performance der MPA zu bewerten. Nach theoretischen und simulativen Auswer-
tungen wird die MPA entworfen und umfasst drei Komponenten: 1) eine phy-
sikbasierte Merkmalsextraktion, 2) zwei Algorithmen zur Entfernungsvorhersage
(fully-connected neural network und naive Bayes classifier) und 3) eine Korrelati-
onsanalyse in Bezug auf zeitliche und räumliche Informationen. Die Evaluierungs-
ergebnisse führen zu dem Schluss, dass die MPA eine weit verbreitete klassische
digitale Verarbeitung in Bezug auf die zeitliche Leistung und die Entfernungsbe-
stimmung mit einer Fehlergrenze von ˘5 % bei verschiedenen Hintergrundlichtin-
tensitäten und Entfernungen übertrifft. Schließlich wurden die MPA sowohl auf
einem PC als auch auf einem Field-Programmable Gate Array (FPGA)-Modul
implementiert, um Laufzeitüberprüfungen durchzuführen. Die Laufzeitdemons-
trationen zeigen eine hohe Übereinstimmung mit den theoretischen und simula-
tiven Ergebnissen und bestätigen die Funktionsfähigkeit der MPA.
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Chapter 1

Introduction

Traffic safety has always been a topic of great concern. In 2016, it is reported
that 1,099,032 traffic accidents took place, resulting in 25,651 fatalities and more
than 1.4 million injured people in Europe [1]. According to the report, accidents
caused by distraction, drugs, alcohol, fatigue, and over-speed driving account for
a large proportion. As summarized in [2], human errors, including distraction,
fatigue, and immature driving behavior, are the main causes of traffic accidents.
In order to reduce the safety hazards caused by human errors, Advanced Driver
Assistance Systems (ADAS) is gaining traction as a solution to assist driving
behavior. Therein, depth information for environmental interaction is one of the
most important sectors [3], which involves several range sensors and data process-
ing technologies. The development of range sensors has lasted more than 20 years
[4]. Common ranging technologies used in ADAS are radar, camera, ultrasonic,
and Light Detection And Ranging (LiDAR) [2]. An intuitive comparison among
radar, camera, and LiDAR is given in [5]. Since these ranging technologies have
their own strengths and weaknesses, sensor fusion in automotive receives increas-
ing interest to achieve performance beyond any single sensor technology. Among
these technologies, LiDAR provides high range resolution and long depth range
[5, 6, 7]. As applied in [8], the precise range information provided by the LiDAR
is indispensable for the safety in ADAS. Among all variants in the LiDAR fam-
ily, Single PhotonAvalancheDiode (SPAD)-based direct Time-Of-Flight (TOF)
LiDAR system shows a tendency to outperform other companions due to its ma-
ture stage on research and development and its powerful abilities [9].

Research has been carried out both in the hardware and the software of the
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LiDAR system. In hardware, although LiDAR technology has not been deployed
in production automobiles to date [5], many LiDAR-based product prototypes
are built both in the commercial sector [10, 11, 12, 13] and for research use
[14, 15, 16, 17, 18, 19, 20, 21]. Besides, several sensors are used for on-road
testing and analysis as well. Waymo’s fully self-driving technology, along with
the LiDAR system developed by themselves, has driven over 20 million miles
on real-world roads since 2009 [22]. In addition to the hardware, research on
LiDAR data processing is equally important. Therein, the study of the LiDAR
data generation is one of the most important fields. For example, CARLA is a
well-known open-source LiDAR data simulator for autonomous driving research.
It offers a variety of different virtual scenarios for detections. Compared to real
measurements, the parameters of synthetic data are highly configurable. Besides,
the simulation process is highly automated. This promotes the preliminary vali-
dation and optimization of data processing methods. In addition to the synthetic
data, real data is important as well, since measurements in ADAS involve a large
number of parameters, which are challenging for simulations, e.g., unknown in-
terference, system-induced error, vibration, and deviation in production. One
widely-used LiDAR data benchmark is KITTI [23], which contains datasets ac-
cumulated by LiDAR systems onboard moving vehicles. Based on these datasets,
numerous works are carried out to investigate useful information in LiDAR data,
including depth completion, object detection, tracking, and road detection.

1.1 Motivation

In autonomous driving applications, SPAD-based LiDAR systems and on-board
processing methods are responsible for environmental sensing and decision mak-
ing. Typically, the environment to be detected is changing rapidly and a system
needs to collect data and to analyze and extract useful information in a short
time. Therefore, the ability to quickly locate the position of objects in harsh
environments becomes one of key metrics for LiDAR sensor systems. Due to the
high dynamic degree of environments, the demand on precision of sensor systems
is relatively low compared to information update rate and system robustness.

Modern LiDAR systems can reach precision between centimeter and millimeter
for distance measurement. Therefore, they are well suited to meet the precision re-
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quirements of autonomous driving. However, system robustness and information
update rates impose significant challenges on LiDAR systems. On the one hand,
many promising hardware-level approaches, e.g., time-gating [24] and coincidence
detection [25], are proposed to improve measurement reliability. However, they
have a number of restrictions. Measurement reliability under extreme conditions,
e.g., changing ambient light and large distances, are still questionable. On the
other hand, although machine learning-based methods have proven their flexibil-
ity and adaptability in the field of LiDAR point cloud processing, they consider
the sensor front-end as a black box [26] and overlook the low-level data features,
e.g., photon statistics, noise features, and sensor characteristics. This makes these
methods highly dependent on the quality of point clouds and results in low ro-
bustness to environmental factors, such as background light. Therefore, holistic
analysis and investigation between sensor front-end and machine learning-based
processing methods should be carried out to improve the information utilization
and robustness of the system.

1.2 Objectives and Thesis Outline

This work focuses on SPAD-based direct TOF LiDAR systems. The key idea is to
investigate detection reliability and timing performance by embedding measure-
ment and sensor internal processes into machine learning framework. Thus, the
work pursues two main objectives. First, by constructing the whole LiDAR data
processing workflow, different features in low-level LiDAR data are studied and
characterized. Second, low-level LiDAR data are combined with the concept of
machine learning to investigate a new data pre-processing method for allocating
coarse object distance under harsh conditions, with focus on robustness against
background light and real-time performance.

To achieve the overall objectives, sub-objectives are specified as follows:

• Studies on decomposition and construction of the LiDAR data workflow.

• Investigation and characterization of LiDAR data forms and features.

• Research on machine learning-based concepts and algorithms.

• LiDAR data generation, including synthetic data and real data.
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• Design of a feature extraction process based on the concept of pattern recog-
nition and feature transformation.

• Fusion of machine learning algorithms with low-level LiDAR data features.

• Hypotheses and verifications of machine learning algorithms on SPAD-based
direct TOF LiDAR data.

• Evaluation of system performance with the focus on robustness and timing
performance.

• Optimization and runtime demonstration.

According to the previously described research objectives, the work is struc-
tured as follows:

In chapter 2, the fundamental of related areas is presented, including LiDAR
systems and their working principles, related mathematics, and machine learning
algorithms in data processing.

In chapter 3, the state-of-the-art in the field of SPAD-based direct TOF Li-
DAR data processing is provided. The chapter starts with the framework of
a data processing workflow. Different data forms as well as the correspond-
ing representative processing methods in LiDAR systems are discussed, including
hardware-level processing, classical digital processing, and machine learning. As a
result, challenges of the current development are discussed according to their cat-
egories, namely LiDAR front-end, data pre-processing, machine learning-related,
and ADAS-related challenges. Finally, the uncharted research areas and their
values are indicated, and the research gaps are proposed.

In chapter 4, a designed LiDAR data processing approach, i.e., Multi-Peak
Analysis (MPA) on Time-Correlated Histogram (TC-Hist)s, is proposed and
explained thoroughly. First, a measurement principle for TC-Hist, i.e., First
Photon Counting (FPC), is introduced. Second, a physics-guided feature extrac-
tion process is presented, which is governed by the Poisson statistics and focuses
on local maxima in a TC-Hist. Third, distance prediction algorithms, including
a Fully-Connected Feed-Forwarded Neural Network (FNN), a binomial estima-
tion, and aNaive Bayes Classifier (NBC) in the application of previous extracted
features, are described. In addition, a correlation analysis aiming at improving
LiDAR data reliability is explained, which considers the information of TC-Hists
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in spatial and temporal dimensions simultaneously. At the end of this chapter, a
summary of the whole approach is given.

In chapter 5, detailed result analysis and discussion are provided. At the be-
ginning of this chapter, the used datasets, including a dataset with synthetic
TC-Hists and a dataset with real TC-Hists, are introduced and the correspond-
ing parameters are specified. After that, important evaluation metrics in terms
of feature extraction, prediction, comparison, and optimization are presented.
Based on the synthetic TC-Hists and the specified metrics, the parameter de-
termination of MPA introduced in chapter 4 is conducted. Subsequently, three
optimization approaches, i.e., ablation study of background suppression, stride
analysis, and threshold analysis, are introduced aiming at improving the perfor-
mance and timing. The last part of this chapter deals with the performance on
the real TC-Hists.

Chapter 6 devotes to the system implementation and demonstration of the
proposed approach. A LiDAR system is used as the demonstration platform and
MPA is implemented using software LabVIEW [27] on aPersonalComputer (PC)
as well as on a Field-Programmable Gate Array (FPGA) module. In particular,
a step-by-step implementation process on the FPGA module is explained and
the applied approximations are introduced. Finally, the runtime demonstration
results are provided.

Chapter 7 gives the summary of this work with the focus of contributions to
LiDAR data processing field. Furthermore, outlooks are indicated to provide
information and inspiration for future research.
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Chapter 2

Background

2.1 LiDAR Systems

This work focuses on the data generated by the SPAD-based TOF system. In this
section, components and working principles in the system are introduced, includ-
ing SPADs, flash and scanning LiDAR systems, and direct TOF measurements.
Finally, the definition of the light intensity is specified.

2.1.1 Single Photon Avalanche Diode and Quenching Cir-
cuit

A photodiode is a p-n junction, which is supplied with voltage in the reverse direc-
tion, shown in Figure 2.1. In this case, the space charge zone, i.e., a zone without
free charge carriers, is created between the p and n regions. When a photon
strikes the zone with sufficient energy, the energy is absorbed by the space charge
zone and an electron-hole-pair is generated. Due to the presence of the applied
electric field, the electron drifts into the n region and the hole drifts into the p
region. Since the anode (+) and the cathode (-) are conductively connected, a
current flow occurs. However, such a photodiode cannot generate sufficient elec-
trical signals for detection with limited incident photons. Therefore, an internal
amplification for the charge carriers generated by incident photons is applied. By
using a high electric field within the photon diode, the created electron-hole-pair
is accelerated and generates further pairs through atomic collision. Such a diode
is called Avalanche PhotoDiode (APD).

7



Chapter 2. Background

N

P

Space Charge

Zone Hole

Electron Photon
+
-

Current Flow

+

-

Figure 2.1: Working principle of an APD.

SPAD is a special APD that is biased beyond the breakdown voltage. In this
case, the energy of a single photon is able to trigger the avalanche effect and
breaks down the photon diode. Afterwards, the current reaches a significant
value, which can be detected easily. This allows a SPAD to detect extremely
weak photon energy. The operating mode of SPAD is referred to as Geiger mode
[28]. After the breakdown, SPAD lost the ability to detect further photons. In
practice, a quenching circuit is necessary to initialize a SPAD to the biased state
[24]. The initialization is categorized into a quenching phase and a reset phase.
They can be constructed either in passive or in active mode. In the passive
mode, SPAD is connected to a specific circuit, which automatically releases the
current caused by the activation of SPAD and resets it back to the initial state
after a relatively long time. In the active quenching phase, the applied voltage
on a SPAD is reduced to keep the current flow caused by the breakdown as low
as possible until the current is completely exhausted, so that the occurrence of
the after-pulsing, heating of the photodiode, and the crosstalk can be minimized.
In the active reset phase, the applied voltage is set back to the desired level
to activate the functionality of a SPAD. The insensitive time of SPAD is also
referred to as dead time [29]. A specific use of quenching circuit called time-gating
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is followed by section 3.2. Further knowledge of SPAD regarding Complementary
Metal-Oxide Semiconductor (CMOS) technology is referred to [28].

The detection principle gives SPAD an ideal photon detection efficiency un-
der low background light. Meanwhile, it makes a distinction of the source of an
incident photon impossible. Besides, when background light is present, SPAD
reaches saturation more easily than other detectors [30]. Therefore, the technol-
ogy for handling background light is one of the most important components in a
SPAD-based system.

2.1.2 Scanning LiDAR Systems

A scanning LiDAR system uses different approaches to steer the direction of a
laser source and obtains distances of all pixels in series. Within a measurement
period, the laser source only illuminates a single spot (or a sub-area) in a scene.
Therefore, this system typically preserves a high laser intensity reflected on each
pixel and is suitable for long-range object detection.

A rotating mechanism is one of the most used approaches in a scanning Li-
DAR system. By mounting the rotating mechanism with a laser emitter, the
working principle of such a system is straightforward: Each sub-area of the scene
is scanned in sequence. With a uniform scanning speed, it can provide a wide
Field-Of-View (FOV). Thus, this kind of LiDAR system becomes the most
popular option for many commercial LiDAR sensors [31]. However, an accurate
rotating mechanism occupies a relatively large place and requires high power con-
sumption. Moreover, since a moving component is prone to error, its reliability
and durability are critical for an application with a high demand on safety.

To avoid the drawbacks caused by moving components, many alternative so-
lutions are proposed, e.g., Optical Phase Array (OPA) [32]. An OPA system
typically includes light splitters, phase shifters, and antennas [33]. To control the
final projection direction of a beam array, the phase shifters perform different
phase delays to the beam array split by a light splitter. An OPA-based system
doesn’t have any mechanical moving component, and provides an extremely high
scanning speed (e.g., 100 kHz) over a large FOV [31]. As a drawback, thermal dis-
tortions have a significant impact on the accuracy of steering angles [34]. Since
research and development are still in an early stage, OPA is considered as an
emerging solution for LiDAR systems in ADAS and requires more investigations
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in the future [33].
Micro-Electro-Mechanical Systems (MEMS) is another competitive solution

to OPA. A MEMS system applies a scanning silicon mirror, which is first intro-
duced in the 1980s [35]. The mirror is deployed in a LiDAR sensor front-end and
reflects the laser into the detection environment. By applying a stimulus, such as
an electrostatic, magnetic, thermal, or piezoelectric signal, the deflection angle of
the mirror can be precisely controlled to project the laser in a desired direction.
Although the fabrication of MEMS mirrors is not fully standardized, it is based on
a very mature semiconductor integrated-circuit industry. Therefore, the MEMS
industry is growing rapidly with a progressive standardization [36]. Compared
to a rotating LiDAR system, the MEMS technology has a smaller FOV, while
offering a higher lifetime and anti-vibration performance. At present, the MEMS
LiDAR system shows a number of commercial advantages, particularly in terms
of balancing lightness, compactness, and power consumption [34].

Nevertheless, scanning LiDAR systems suffer from the following problems:
1) The received depth information is asynchronous. The degree of asynchrony
depends on the scanning pattern, the scanning speed, and the relative motion
between the LiDAR system and the object. To cope with this effect precisely,
a complex compensation approach is required. 2) In order to keep a reasonable
frame rate, the number of measurements on a single point is typically low. This
makes scanning LiDAR systems highly rely on the quality of a single measure-
ment, which is challenging to guarantee in a complex detection environment.

2.1.3 Flash LiDAR Systems

A flash LiDAR system has the simplest hardware construction among all systems
in the LiDAR family. The laser source in such a system illuminates the whole
detection scene at once. After that, the reflected laser photons reach all SPADs
within the same measurement observation window. This means each SPAD only
receives a small energy portion of the laser source. Since the desired laser photons
can be significantly reduced by factors such as the laser attenuation regarding
distance, the divergence of the illuminating area, and the backscattering at the
object, the number of received laser photons on each SPAD are relatively small.
This characteristic limits the maximum detection range of a flash LiDAR system.
In order to detect distances reliably, plural measurements are conducted and
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accumulated to obtain statistical information of the incoming photons.
Flash LiDAR systems offer multiple advantages. First, the measurements on

all pixels are obtained with a single laser emission and are therefore highly syn-
chronized. No further calibration algorithm is required for asynchronous effects
and moving artifacts. In addition, the system is considered to be more durable
and compact to other alternatives, since it has a solid-state construction with
minimal controlling units. Because of this reason, the system has a high ro-
bustness to vibrations, which is always present in applications of ADAS. As
a limitation, a flash LiDAR system typically has a narrow FOV, since a wide
FOV will significantly shorten the maximum detection range. Besides, the spa-
tial resolution of the system can only be improved by increasing the alignment
density of SPADs and the corresponding circuits, which places high demands on
microcircuit processes and increases the cost.

2.1.4 Direct Time-of-Flight Measurement

A SPAD-based direct TOF LiDAR front-end consists of laser emitters, SPAD
arrays, and a Time-to-Digital Converter (TDC). One measurement of a direct
TOF measurement is described as follows: TDC starts with the emission of a
laser pulse. The laser pulse travels through the air and is reflected by the object.
Afterwards, TDC stops with the detection of an arrived photon. The time du-
ration between a laser emission and a detected photon by a SPAD is defined as
TTOF. Since TDC has a resolution of TTDC, TTOF can be represented by a digital
timestamp T 1TOF with

T 1TOF “ t
TTOF

TTDC
uTTDC . (2.1)

Since a direct TOF measurement involves a round trip time, the resulting distance
resolution dTDC is given by

dTDC “
c
2 TTDC , (2.2)

where c represents the speed of light. Normally, a TDC has a picosecond resolu-
tion, which is far beyond the precision requirements in this work. Therefore, the
following approximation holds:

T 1TOF « TTOF . (2.3)
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In particular, TTOF of the photon reflected by a target object is defined as TObj.
Accordingly, the object distance dObj is calculated by

dObj “
c
2 TObj . (2.4)

The direct TOF measurement is simple, efficient, and precise. By specifying
the control scheme of SPADs, it is suitable for many different applications, such
as autonomous driving, geodesy, aerospace, and medicine.

2.1.5 Light Specification

With an assumption that the incoming light is coherent, the phase, frequency,
and amplitude of its electromagnetic field are constant. The intensity of light can
be defined by irradiance Ipλq with rIs “ W {m2, which refers to the amount of
light radiation with a wavelength of λ obtained per unit area. Accordingly, the
irradiance on the detector surface is defined as ISensorpλq and is given by the su-
perposition of laser irradiance IL, Sensorpλq and background irradiance IB, Sensorpλq,
i.e.,

ISensorpλq “ IL, Sensorpλq ` IB, Sensorpλq . (2.5)

In the scope of this work, the light propagation process is represented by a model
shown in Figure 2.2. The propagation of a laser starts with a laser emission. By
assuming a homogenous irradiation with a point laser source with power PL, the
laser irradiance on an object surface at dObj is calculated by

IL,Objpλq “ F1
PLpλq

d2
Obj FFOV

, (2.6)

where F1 refers to the attenuation factor caused by a dissemination medium
between the sensor and the object. FFOV represents a transmission factor deter-
mined by the FOV of a LiDAR system. Consequently, IL,Objpλq is reflected back
and the laser irradiance IL, Sensorpλq on the sensor surface is given by

IL, Sensorpλq “ FDet F1 FRft IL,Objpλq , (2.7)

where FRft refers to the attenuation factor during reflection, including object re-
flectance and the type of reflection (e.g., diffuse reflection). FDet refers to the
attenuation factor at the detector side, including the diameter of receiving aper-
ture, lens transmittance, and the imaging ratio between scene and sensor surface.
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Figure 2.2: Light propagation model in a LiDAR system.

The specification for background light is slightly different from that of a laser
source. In the following context, sunlight is used as an example, since it is the
most common interference of LiDAR systems in ADAS. Figure 2.3 shows a so-
lar spectrum [37] regarding the international standard ISO 9845-1. Therein, the
intensity of sunlight is defined by the spectral irradiance as

ISpec “
ISpλq

λ
, (2.8)

where ISpλq refers to solar irradiance. According to different conditions, back-
ground light reaching the sensor surface includes direct irradiance and indirect
irradiance (being reflected at least once by other objects). They are summarized
by IB, Sensorpλq as

IB, Sensorpλq “ FDet F2 ISpλq , (2.9)

where F2 refers to the attenuation factor of background light caused by corre-
sponding dissemination media shown in Figure 2.2.

In addition to the irradiance, the light intensity can be defined by the number
of photons per unit time as well due to its quantum nature. This is of particular
concern, since SPAD is a digital detector and has the ability to detect the energy
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Figure 2.3: Spectral irradiance of sunlight [37]. The standard spectrum for
space applications is referred to as AM0. It has an integrated power of 1366.1
W {m2.

of a single photon. According to Planck, the energy of a photon WPh is

WPh “
h c
λ

(2.10)

with h “ 6.626 ˆ 10´34 W s2. Thus, the photon flux φ on the sensor surface is
given by

φpλq “
ISensorpλq

WPh
. (2.11)

Afterwards, the corresponding photon detection rate rpλq at a SPAD detector is
calculated by considering a range of λ (typically determined by the used optical
bandpass filter) using

r “ ηPDE FFill APixel

ż

φpλqdλ , (2.12)

where ηPDE is the photon detection efficiency, FFill refers to the fill factor of a
SPAD array, and APixel is the area of a pixel. Thus, the laser photon detection
rate rL given by

rL “ ηPDE FFill APixel

ż

FDet F
2
1 FRft PLpλq

WPh d2
Obj FFOV

dλ (2.13)
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according to (2.6) and (2.7). The background photon detection rate rB is given
by

rB “ ηPDE FFill APixel

ż

FDet F2 ISpλq

WPh
dλ . (2.14)

according to (2.9).

2.2 Mathematical Statistics in LiDAR Systems

In this section, the basics of probability theory and commonly used probability
distributions are presented.

2.2.1 Probability Theory

Probability theory describes the occurrence of events as a regular phenomenon
through mathematical models. Cumulative distribution function (also mentioned
as distribution function) P px ď Xq denotes the probability of taking a value x
smaller than or equal to a given value X. If x is a continuous variable, P px ď Xq
can be further represented by Probability Density Function (PDF) ppxq as

P px ď Xq “
ż X

´8

ppxqdx . (2.15)

In the case of discrete events, the function is calculated by summing up all asso-
ciated values as

P pk ď Kq “
ÿ

kďK
P pkq , (2.16)

where k represents the discrete event counts and P pkq is a Probability Mass
Function (PMF). In particular, if k is continuous and refers to all values within
a range pX1, X2s in x, P pkq can be calculated from ppxq using

P pkq “

ż X2

X1

ppxqdx . (2.17)

2.2.2 Continuous Probability Distributions

A basic probability model is the uniform distribution Upxq

Upxq “

#

1
b´a

, a ă x ă b

0 , else
. (2.18)
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The normal distribution is another common mathematical model. PDF of a
normal distribution N px |µ, σ2q is defined as

N px |µ, σ2
q “

1
σ
?

2π
e´

px´µq2

2σ2 , (2.19)

where µ and σ denote the expected value and the variance, respectively. Accord-
ing to the central limit theorem [38], many natural processes follow the normal
distribution when the observation time tends to infinity.

2.2.3 Discrete Probability Distributions

If outcome y of an event is a Boolean value, where the probability of y “ 1 is P
and the probability of y “ 0 is p1 ´ P q, it can be described using the Bernoulli
distribution PBernoulli with

PBernoullipy, P q “ P y
p1´ P q1´y “

#

P , y “ 1
1´ P , y “ 0

. (2.20)

The probability of observing k success on n independent Bernoulli trials is known
as the binomial distribution PBpk, n, P q, which is calculated as

PBpk, n, P q “
n!

k!pn´ kq!P
k
p1´ P qn´k . (2.21)

Another common model is the Poisson distribution given by

PPpk, µq “
µk

k! e
´µ , (2.22)

where µ represents the expected number of random events per unit time (or unit
area). In particular, if a binomial distribution has a large n and a small P , the
Poisson distribution can be used as an approximation to the binomial distribution,
where µ “ nP . Commonly, when n ě 20 and P ď 0.05, the difference between
these two distributions can be neglected.

2.2.4 Bayes’ Theorem

Bayes’ theorem describes the probability of an event, based on prior knowledge
of conditions that might be related to the event [39]. With the given event A and
B, the conditional probability is defined by Bayes’ theorem as

P pA |Bq “
P pB |AqP pAq

P pBq
(2.23)

with the following definitions:
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- P pA |Bq: The probability of event A after the occurrence of event B. It is
a posterior probability.

- P pAq: The probability of event A. It is a prior probability.

- P pB |Aq: The probability of event B after the occurrence of event A. It is
a posterior probability.

- P pBq: The probability of event B. It is a prior probability.

2.2.5 Parameter Estimation Methods

Maximum Likelihood Estimation (MLE) is a typical method to estimate the
class-conditional probability. With an assumed probability distribution P pxq with
a parameter θ and a data sequence X “ tx1, ..., xnu, the method estimates θ
such that the probability of observing the data sequence X is maximized. In
practice, each element xi is assumed to be independent to each other and follows
an identical probability distribution for simplification. In this case, the joint
probability of observing X with θ is written as:

P pX | θq “
n

ź

i“1
P pxn | θq . (2.24)

The probability estimation by θ for a given X is made explicitly by the likelihood
function:

Lpθ |Xq “ PθpXq . (2.25)

Afterwards, the maximum probability of observing X with respect to θ is given
by

θ̂MLE “ arg max
θ

Lpθq . (2.26)

If the likelihood function is continuous and differentiable, the extreme value for
θ can be solved by derivation. To prevent the underflow caused by a series of
multiplications, the log-likelihood is applied, i.e.,

LLpθq “ logP pX | θq “
n

ÿ

xi

logP pxi | θq (2.27)

Maximum A Posteriori estimation (MAP) is another method used for param-
eter estimation. Compared to MLE, MAP introduces the prior probability and
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obtains the maximum probability of X with respect to (2.23). In this case, (2.26)
can be rewritten as

θ̂MAP “ arg max
θ
P pθ |Xq “ arg max

θ

P pθqP pX | θq

P pXq
. (2.28)

Since MAP considers the prior probability distribution P pθq in the calculation,
it offers advantages over MLE, when the number of samples for observation is
limited.

2.3 Machine Learning for Data Processing

The concept of machine learning exists for decades. With the development of
computer technology, many machine learning algorithms have been successfully
applied and shown powerful ability in different fields. In this section, the principle
of machine learning is introduced. Besides, the used machine learning method,
i.e., the fully-connected neural network and the naive Bayes classifier are ex-
plained in detail.

2.3.1 Concept of Machine Learning

As introduced before, probability theory aims at objective laws behind the event
of observation. In the concept of probability and statistics, model building and
parameter calculation are rule-based. Thus, there is a clear derivation process be-
tween observations and results. Although this process is logical, transparent, and
traceable, it often encounters performance bottlenecks in practical applications, if
the issues to be addressed are highly complex and contain a large number of inter-
nal connections that are difficult to model precisely using probability theory. On
the contrary, machine learning is an empirical method based on given datasets.
More precisely, it obtains empirical information from given datasets (training
data) and focuses on achieving the highest performance in similar datasets (val-
idation data) by optimizing this information. The characteristics of machine
learning are summarized as:

- It is a result-oriented method, which creates a mapping from inputs to out-
puts without establishing mathematical functions explicitly. This results in
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a highly flexible optimization process with a utilization of all possible con-
nections and has proved to far outperform other rule-based counterparts in
some applications. Meanwhile, the result-oriented process with high flexi-
bility often creates unexplainable mapping models from inputs to outputs,
which is also mentioned as a black-box model, resulting in low comprehen-
sibility, transparency, and traceability.

- In machine learning, empirical information (usually referring to parameters
in a machine learning model) is obtained automatically based on training
datasets. Thus, the performance of machine learning heavily depends on
these datasets. Powerful machine learning solutions can be designed only if
training datasets with a considerable size and high diversity are available.

- Machine learning models require the availability of an initial model, which
will be optimized step-by-step [40]. Although most models are pervasive,
they still have their own strengths and weaknesses and tasks they are spe-
cialized in. Therefore, the choice of a suitable model and a starting point
can critically influence the final performance for a task.

In the following subsections, the working principles of two basic machine learning
models used in this work are introduced.

2.3.2 Artificial Neuron and Fully-Connected Neural Net-
work

Artificial neural network (mentioned as neural network in the following context)
is defined as “massively parallel interconnected networks of simple elements and
their hierarchical organizations which are intended to interact with the objects
of the real world in the same way as biological nervous systems do.” [41]. Neural
network has been proved to be a very general statistical framework for modeling
posterior probabilities given a set of samples [42]. It can be constructed to solve
both regression and classification tasks. In 1943, the basic model of an artifi-
cial neuron, shown in Figure 2.4 (a), has been proposed [43] and is still in use
today. The model specifies mathematical computations from an input sequence
tx1, ..., xi, ... xnu to an output y. First, xi is weighted by its corresponding weight
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Figure 2.4: Basic principle of neural network. (a) Artificial neuron. (b) FNN
with a 4ˆ 6ˆ 4ˆ 2 structure.

value wi. Afterwards, the intermediate value v is calculated by summing up all
weighted xi and a specified bias to the current neuron, namely

v “
n

ÿ

i“1
wi xi ` bias . (2.29)

Consequently, the activation function f takes v as input and calculates the output
y by

y “ fpvq . (2.30)

The commonly used activation functions include Rectified Linear Unit (ReLU),
sigmoid, tangens hyperbolicus (tanh), leaky ReLU, Exponential Linear Unit
(ELU), and softmax. A neural network is created by connecting plural neurons
to each other with a specified structure. Figure 2.4 (b) shows an example of an
FNN with the structure of 4ˆ 6ˆ 4ˆ 2. It consists of an input layer, two hidden
layers, and an output layer. Neurons in each layer are connected to all neurons
of the next layer by weights. The training of an FNN is an error minimization
process between a given label y˚ and an output y. This process is carried out by
updating all weights using the algorithm of error backpropagation. Typically, the
error is calculated by a loss function Loss. For a regression task, Mean Square
Error (MSE) given by

LossMSE “

řn
i“1py

˚ ´ yq2

n
. (2.31)

20



2.3. Machine Learning for Data Processing

or Mean Absolute Error (MAE) given by

LossMAE “

řn
i“1 |y

˚ ´ y|

n
. (2.32)

can be used. For a classification task, the cross-entropy loss and its variants are
often applied. The basic cross-entropy loss is given by

LossCE “ ´py logpy˚q ` p1´ yq logp1´ y˚qq . (2.33)

The update of wi for minimizing Loss is calculated by an optimization strategy
according to its partial derivation with a given update rate η using

w1i “ wi ´∆wi “ wi ´ η
BLoss

Bwi
, (2.34)

where η determines the stride of each update. This optimization strategy is also
mentioned as gradient descent. Many variants based on the gradient descent
are proposed to improve the learning speed and the prediction performance of
a neural network. Therein, Adaptive moment estimation (Adam) is one of the
most effective optimization strategies. The detailed implementation of Adam is
referred to [44].

2.3.3 Naive Bayes Classifier

NBC is a classification method based on (2.23). Frequently, event B refers to
class c and event A refers to an input data sequence X in machine learning.
Furthermore, the target to be estimated is the posterior probability P pc |Xq.
Therefore, Bayes’ theorem can be rewritten as

P pc |Xq “
P pX | cqP pcq

P pXq
. (2.35)

NBC predicts P pc |Xq by estimating P pX | cq, P pcq, and P pXq based on a given
dataset. Apparently, the estimation of P pX | cq suffers from attribute explosion,
since it represents a joint probability among all x P X, which contains a massive
number of combinations. To cope with this problem, NBC assumes that for
given classes c, all x P X are independent to each other. Therefore, the following
equation holds:

P pX | cq “ P px1, x2, ..., xn | cq “
n

ź

i“1
P pxi | cq . (2.36)
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Table 2.1: Confusion Matrix.

Prediction
Truth Positive Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

P pcq is simply estimated by the portion of a corresponding class c in the dataset
using

P pcq “
Nc

NS
, (2.37)

where Nc refers to the number of samples in class c and NS refers to the number
of samples in the given dataset. P pXq is calculated as

P pXq “
ÿ

c

P pX | cqP pcq . (2.38)

Since P pXq is the same for all possible c, it can be neglected in the calculation.
Therefore, NBC is represented by

fNBC “ arg max
c
pP pX | cqP pcqq . (2.39)

It is a generative model. In practice, NBC offers several advantages: 1) If an
application has a high demand on real-time performance, the application of a
LookUp-Table (LUT) is possible, since P pX | cq and P pcq can be pre-calculated
on a given training dataset. 2) If the data to be observed continuously change over
time, the concept “lazy learning” can be carried out, which only trains the model
when an execution request is received; 3) The application of incremental learning
is possible, since new parameters can be easily calculated using old parameters
with new data.

2.3.4 Confusion Matrix

The confusion matrix is an important performance measurement for machine
learning algorithms. Table 2.1 shows a basic layout of such a matrix for the case
of binary classification. Therein, samples in a dataset are classified into positive
and negative ones. The four terms in the table are specified as:
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- TP: The number of correct predictions, where the predictions are positive.

- FP: The number of false predictions, where the predictions are positive.

- TN: The number of correct predictions, where the predictions are negative.

- FN: The number of false predictions, where the predictions are negative.

The performance of a machine learning algorithm can be assessed by observing
these four terms and their relations to each other. In practice, the confusion ma-
trix can be applied to a multi-classification problem as well by creating individual
confusion matrices for every two classes.

2.4 Monte-Carlo-Method

Monte-Carlo-Method (MCM) refers to a class of stochastic methods. In some
stochastic problems, there are a large number of basic events. The probabilities
of these events are given and a joint probability among them is hidden and of
interest. Due to exponential correlation properties among the events, it is im-
practical to obtain the joint probability directly using probability theory. In this
case, MCM can be applied. First, a number of samples are generated based on
the probabilities of basic events. Afterwards, MCM makes observations and per-
forms statistical modeling on these samples to derive the approximate solution of
the joint probability.

For example, with a given probability mass function P piq, where i P t1, ..., nu,
the task is to determine the probability of a specific i having the maximum occur-
rences in NT trials. If n " 1, probabilistic derivations are extremely challenging,
since a large number of arrangements and combinations exist, which are difficult
to categorize and simplify. By applying the concept of MCM, one simulation
of NT random trials following P piq refers to a sample. By accumulating suffi-
cient samples with simulations, the task can be approximated by the statistics
of i having the maximum counts among the samples. Apparently, as the num-
ber of samples increases, the approximation will gradually converge to the true
probability. This is one generic property of MCM.
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SPAD-Based LiDAR Data
Processing

A SPAD-based direct TOF LiDAR system can be decomposed into three parts,
i.e., hardware, software (processing algorithms), and data forms, as shown in
Figure 3.1. Therein, the hardware component includes a LiDAR front-end, a
data pre-processing unit, and a data processing unit. The LiDAR front-end is
responsible for laser emission, photon detection, and LiDAR measurement data
generation. The data pre-processing unit normally includes a data pre-processing
algorithm, which makes distance determination from low-level LiDAR data. The
data processing unit is installed with powerful processing algorithms for high-
level properties in point clouds. These three elements usually have their own
encapsulations and collaborate with each other by transmitting processed data.

In the following sections, important research and development in the field
of SPAD-based LiDAR data processing are reviewed. First, a LiDAR system
structure is proposed. Afterwards, data forms in the LiDAR system and their
corresponding processing approaches are introduced. Finally, challenges are sum-
marized and research gaps are proposed.

3.1 LiDAR System Structure

The main goals of ADAS are analyzing environmental information collected through
sensors and ultimately obtaining comprehensible high-level properties and deci-
sions. To illustrate different stages of development in data processing, a system
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Figure 3.1: LiDAR system and data processing workflow [45]. Therein, purple
components refer to different level of hardware, red components refer to software
for data processing, and blue components refer to different data forms.

structure is necessary. A generic architecture for simulation of ADAS sensors was
proposed in [46]. Based on this, a LiDAR-specific system structure was intro-
duced for object detection in [47]. However, the former focuses on commonality
among multiple sensors for ADAS, while the latter places more emphasis on ob-
ject detection by LiDAR sensors. Neither involves different stages in LiDAR data
processing. Therefore, a LiDAR system model focused on data transfer in Fig-
ure 3.2 is illustrated to study the characteristics of different data forms and the
hierarchy of corresponding analysis approaches. The LiDAR structure is divided
into three parts: a LiDAR front-end, a data pre-processing unit, and a data pro-
cessing unit. The LiDAR front-end includes all necessary hardware units for the
execution and delivery of LiDAR measurements. The data pre-processing unit
typically refers to an embedded system, which is responsible for data storage and
early-stage data analysis. The data processing unit refers to an advanced cal-
culation unit. It can be seen that different data processing procedures involve
different data forms as inputs, including timestamp, TC-Hist, and point cloud.

In the following sections, the data processing workflow is divided into three
parts regarding these data forms. Each section starts with the formation of
the corresponding data form. Afterwards, research related to the data form is
presented. Finally, existing challenges are summarized and research gaps are
proposed. For consistency and clarity purposes, four important time durations
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Figure 3.2: LiDAR system structure and data transformation. ε1 and ε2 refer
to the control signals from master devices.

are specified as follows:

- A measurement cycle refers to the time duration between two consecutive
laser pulses, which includes an observation window, a custom function win-
dow, data readout, initialization, and a safety margin.

- A TC-Hist generation period refers to the time duration for the generation
of a TC-Hist, which includes a plurality of measurement cycles, the time of
TC-Hist formation, and a safety margin.

- A data generation frame refers to the time duration for the generation of
TC-Hists from all pixels.

- A data processing frame refers to the time duration of distance determina-
tion for all pixels, which includes a data generation frame and data process-
ing time.

3.2 Digital Timestamp

As described in 2.1.4, a digital timestamp refers to TTOF with the resolution of
TTDC. The timestamp is the first accessible data form in the LiDAR system.
Although SPAD is one of the ideal detectors in the direct TOF measurement, it
is prone to background light due to its high sensitivity. Thus, one of the greatest
obstructions in a SPAD-based LiDAR system is background light [17]. Consider-
able timestamps with incorrect information are generated during a measurement
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process, which degrades the system reliability and limits the applicable range
in terms of light conditions. Moreover, as the dead time is unavoidable, SPAD
suffers from a saturation effect under high background light [30].

3.2.1 Optical Bandpass Filter

Since laser sources used in LiDAR systems generate laser pulses with a specific
wavelength (typically a value between 800 nm and 1550 nm), while solar irradiance
includes the full wavelength range, an optical bandpass filter is often applied as
a universal solution to remove the irradiance at unwanted wavelengths [48]. In
practice, due to the fluctuations in the wavelength of a Fabry-Perot laser source,
the allowed bandwidth is typically larger than 40 nm [49]. The use of more
complex laser sources can further reduce the bandwidth but increases product
price. Nevertheless, since solar irradiance is highly significant in the wavelength
range used in LiDAR systems [37, 50], Süss et al. pointed out that the remaining
background light can still saturate a SPAD, even when a 50 nm optical bandpass
filter is used [51].

3.2.2 Coincidence Counting

Coincidence counting, which originates from [25], is another effective measure-
ment approach to further reduce false timestamps. This approach can be inte-
grated into the read-out unit of a sensor front-end, as shown in Figure 3.2. It
involves several SPADs in one pixel. These SPADs work in parallel. During the
initialization, a minimum photon number NCoin and a coincidence time interval
tCoin are defined. The coincidence counting starts from the first photon-triggered
event on a SPAD at time t. Afterwards, the event is retained for tCoin. If at
least NCoin ´ 1 events are further triggered within pt, t ` tCoin), t is outputted
and recorded as a timestamp. Otherwise, the event is released and the activated
SPAD is put back into operation after a reboot time. Obviously, NCoin and tCoin

work as a threshold. It has a strong inhibitory effect on photon rates below the
coincidence threshold, resulting in a significant reduction in the generation rate
of timestamps. In this case, the saturation effect of a single SPAD is mitigated
and SNR can be improved [51]. LiDAR systems that use this method can operate
under strong background light [17, 52, 53, 54]. Furthermore, Beer et al. presented
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an adaptive coincidence counting method, which enables a runtime adjustment
possibility on NCoin and tCoin [14]. Nevertheless, the selection of a coincidence
threshold is challenging. An ideal threshold must be exactly between rB and the
overall photon detection rate rLB, where

rLB “ rB ` rL. (3.1)

A high threshold suppresses the desired laser photons as well, while a low thresh-
old barely reduces the negative effect from background light. However, rL strongly
depends on object reflection, object distance, and weather conditions, which can-
not be pre-defined in real-time. Although a large rL improves the effective range
of the coincidence counting, it is impractical due to restrictions on eye safety [55].
Furthermore, SPADs in the coincidence counting are triggered and rebooted more
frequently than it is in FPC. This results in some degree of statistical distortion
e.g., missed counts and the after-pulsing effect. While shortening the reboot-
ing time reduces missed count rate, it exacerbates the after-pulsing effect [14].
Besides, the coincidence counting requires a set of SPADs implemented in a sin-
gle pixel. This will lead to complex readout circuits and sparse distribution of
measurement points in space.

3.2.3 Time-Gating

To further reduce timestamps with incorrect information, a technique called time-
gating was introduced [24]. In a direct TOF LiDAR system, the emitted laser is
a short-pulsed beam with a pulse width of TP. Since the photon detection rate is
a superposition of rL and rB, the total photon detection rate regarding subsection
2.1.5 is determined by

rptq “ rB ` rLpεpt´ TObjq ´ εpt´ pTObj ` TPqqq (3.2)

with assumptions that rB and rL are constant. Wherein, step function ε is defined
as

εptq “

#

0, t ă 0
1, t ě 0

. (3.3)

Obviously, the desired signal is present only within rTObj, TObj ` TP]. Since TP

is much shorter than an observation window, a SPAD is exposed to background
photons most of the time during a measurement. Time-gating improves this
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situation by shortening the sensitive period of a SPAD. In an ideal case, by acti-
vating a SPAD right before TObj, the risk of a SPAD being triggered prematurely
by background photons can be minimized. Kostamovaara et al. demonstrated
the effectiveness of this technique in their experiment by applying different gate
windows [49]. The technique can be implemented by sending gate schemes to the
quenching circuits through ε2 in Figure 3.2 to control the activation and reboot-
ing of SPADs. The design of a gate scheme is typically twofold: (1) specifying a
number of gate windows of interest (prior-knowledge) and (2) measuring within
the specified gate windows. For example, Apple Inc. designed a gate scheme to
enable coarse and fine scanning to improve memory occupancy and measurement
quality [56]. The gate scheme divides a measurement into a coarse and a fine
phase. In the coarse measurement phase, SPAD is activated at the beginning of a
measurement cycle. Afterwards, a coarse position of an object is estimated using
the timestamps acquired in this phase. In the fine measurement phase, SPADs
are activated slightly before the determined coarse position to shorten the invalid
exposure time of SPADs. Compared to a full-range detection, the memory occu-
pancy using a gate scheme is typically smaller, since only a sub-range detection
result is stored.

Although the benefit of the time-gating technique is significant, its limitation is
quite obvious: A well-defined gate scheme is inevitable to ensure its effectiveness.
It is very challenging to determine such a gate scheme. In [56], the effort of
inferring a proper gate window is several times greater than directly inferring an
object distance. This results in a significant reduction in frame rate. Moreover,
the measurements of the technique highly rely on the prior-knowledge. If the
specified observation time window is incorrect, the following measurements fail
as well.

3.3 Time-Correlated Histogram

Since the negative effects caused by background light cannot be completely elim-
inated, the reliability of a single timestamp is low. To cope with this problem,
Time-Correlated Single-Photon Counting (TCSPC) technique [57, 58] is typi-
cally used. Nowadays, it can be divided into a synchronous and an asynchronous
mode, which correspond to a clock-driven architecture and an event-driven ar-
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chitecture, respectively [59]. Both modes collect plural consecutive timestamps
and form a statistical TC-Hist as their output. In such a TC-Hist, discrete times-
tamps are represented by monospaced adjacent bins on the x-axis. The bin width
corresponds to TTDC. Timestamps with the same value are accumulated in the
same bin and the y-axis shows the number of timestamps within each bin. In
contrast to a timestamp, A TC-Hist contains not only distance information, but
also noise characteristics, sensor characteristics, and photon statistics. The va-
riety of information in a TC-Hist makes a reliable and precise analysis possible.
Approaches were proposed for TC-Hist and were implemented at the stage of
data pre-processing in Figure 3.2.

3.3.1 Maximum Detection and Digital Filters

According to (3.2), rL and rB are superposed at the position of an object in a
TC-Hist. Thus, distance information corresponds to a local maximum. Therefore,
processing algorithms on TC-Hist revolve around a maximum detection. The
simplest solution is global maximum detection. It directly compares the count
value of each individual bin and does not consider the influence of noise and a
laser waveform. Thus, it is only applied in a noiseless detection scenario with
sufficient measurements in a TC-Hist. However, only limited measurements can
be carried out due to the timeliness of measurements. Moreover, background
noise is often present in ADAS. As a solution, digital filtering is applied. It
consists of three steps:

1) The desired distance information of an object is spread over multiple bins.
Therefore, a mean filter is often used to highlight high-density bin groups,
so that the global maximum detection can be applied on a TC-Hist with
a sparse photon distribution as well. In the case of sufficient measurement
data in a TC-Hist, this step can usually be skipped.

2) To suppress the significance of background photon counts, noise removal
is performed by an estimation of the noise level in a TC-Hist. A common
way is background subtraction. It is applied before the global maximum
detection.

3) In order to improve the precision of distance information, some modern
processes extract a bin group around the global maximum and apply an
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interpolation algorithm. After that, the second filtering is implemented to
obtain the desired information. For example, a matched-filter aims at the
bin group with the highest SNR [60], a center-of-mass algorithm allocates
the position of the center of gravity for each bin group [61], and a Gaussian
curve fitting matches the given bin group to a Gaussian distribution [62].
However, this step brings no benefit if the global maximum obtained from
previous steps deviates significantly from ground truth.

The filtering process enables a comprehensive analysis due to the use of complex
filters on a TC-Hist. However, it requires a complete TC-Hist as input and results
in relatively long processing time.

3.3.2 Other Approaches

In addition to the widely accepted solutions, research was conducted on some spe-
cific problems and corresponding approaches were proposed. In [61], a likelihood
ratio test is applied for the estimation of the laser pulse shape based on MLE.
Although a superior result was reported over other methods, the experiment in
this work was only carried out within 2m. To the best of our knowledge, the
proposed method calculates a joint probability of each bin. Therefore, an exorbi-
tant computational cost is required if the detection range increases. To simplify
the computation of MLE, an approximation, i.e., the log-matched filter is applied
in [63]. However, for single-pixel estimation, the effectiveness of the MLE-based
methods strongly depends on SNR and the number of samples [64]. When SNR
is low and the number of samples is small, they give inaccurate estimations.

A determination of distance using the global maximum is error-prone, espe-
cially in the case of few measurements accumulated in a TC-Hist and high back-
ground light, since a group of concentrated incorrect measurements caused by
coincidence can create a maximum as well. Thus, the first and second global
maxima from a TC-Hist were observed in [17]. It can be seen from the ex-
periment that the first and second global maxima show different details of the
detection environment and there is a certain degree of complementarity. How-
ever, maxima selection based on its amplitude alone cannot avoid the negative
effects from strong background light. Moreover, an analysis of maxima selection
and subsequent data processing are not covered in their work.
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Except for background interference, LiDAR system faces another critical prob-
lem: excess data amount. High depth resolution means that a TC-Hist contains
a massive number of bins. In combination with the number of pixels, a LiDAR
system can produce several gigabytes of data in a few seconds. This results in a
large memory occupation and a high real-time throughput requirement for data
transmission. Zhang et al. proposed a partial histogram readout method to re-
duce memory occupation of a TC-Hist [19]. The method includes a current and a
previous TC-Hist generation period. The current period utilizes a smaller depth
resolution than the previous period. The previous period gives a subpart of the
complete histogram as a proposal by global maximum detection. The current
period only records measurements in this subpart. The process is repeated until
the required depth resolution is reached. Since the data acquired in each interme-
diate TC-Hist generation period cannot be reused, multiple generation periods
are required to output one partial histogram, resulting in a degradation of the
data frame. Moreover, the premise of this method is low background light, since
the method has low noise tolerance due to the effect of histogram folding.

The analysis of system-induced distortions is another topic of concern. The
pile-up effect, which is an aberration that existed in a SPAD-based system, is
studied and the corresponding post-processing approach was proposed on the
synchronous TCSPC process [65]. Besides, Rapp et al. focused their research on
the asynchronous TCSPC process and proposed two Markov chain-based methods
for histogram modeling and detector dead time compensation [66]. In their work,
the positive effect of the presence of dead time was reported as well.

Nevertheless, most existing approaches using TC-Hist for distance determina-
tion focus on improving precision while overlooking the robustness of algorithms
to interference. The reliability of these approaches is significantly reduced when
background light is strong or the number of measurements per TC-Hist is limited.
Therefore, it is necessary to develop an approach that focuses on the robustness
of distance prediction and the processing frame rate.

3.4 Point Cloud

A TC-Hist only represents measurement information on one pixel, which is not
sufficient to restore an entire detection environment. Therefore, a point cloud is
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created by accumulation, alignment, and mapping of distance information from
all pixels. The point cloud is a three-dimensional data form, which contains rich
spatial information among pixels. Processing approaches on point cloud take
place in the data processing unit in Figure 3.2 and can be categorized into 1)
data compression, 2) depth information optimization, and 3) high-level property
inference.

3.4.1 Data Compression

In general, LiDAR data generation and processing are conducted in different
hardware units. Since a raw point cloud is typically large, a high transmission
throughput is required. Hornung et al. presented their Octomap, which is an
open-source framework for three-dimensional mapping [67]. The framework is
based on octrees and uses a probabilistic occupancy estimation and synthesizes
probabilistic representation, modeling of unmapped areas, and efficiency with re-
spect to runtime performance and memory usage. Although it acts more as a
mapping structure than a compression algorithm, it substantially improves mem-
ory efficiency. Golla et al. argued that the real-time performance of a compression
method is necessary for robotics [68]. They introduced a real-time compression
method supporting incrementally acquired data and local decompression. The
compression method can compress 1.5 million points per second.

3.4.2 Depth Information Optimization

Due to the characteristics of LiDAR measurements, point cloud inherits some lim-
itations, such as low spatial resolution and sparse desired laser photons caused
by low reflectivity or high background intensity. These limitations can signif-
icantly degrade the performance of point cloud-based processing methods [69].
Altmann et al. proposed a new Bayesian reflectivity and depth model when an
incoming photon flux is very low [70]. The model establishes Markovian depen-
dencies according to spatial correlations with neighboring pixels. Subsequently,
an adaptive Markov chain Monte Carlo algorithm is applied to compute Bayesian
estimates of interest and perform Bayesian inference. Block-matching and three-
dimensional filtering (BM3D in short) is an image denoising strategy based on
sparse three-dimensional transform-domain collaborative filtering [71]. The strat-
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egy first builds blocks by searching for proximity pixels with similar features in
an image, which is referred to as grouping. After that, a collaborative filtering by
shrinkage in the transform domain is applied to remove noise. Finally, the image is
recovered by reverse transformation. The strategy was introduced to LiDAR data
in [63]. In addition, Kirmani et al. presented a technique to obtain single-pixel
distance information based on the spatial correlations of neighboring pixels [72].
This work was extended in [63] and a better Root Mean Square Error (RMSE)
was reported in terms of depth recovery compared to the case using BM3D and
a log-matched filter. Most recently, a pre-processing filtering step on noisy point
clouds was introduced in [73], where a guided three-dimensional point cloud filter
and an iterative guidance normal filter were designed for producing high-quality
LiDAR point clouds.

Except for solid rule-based approaches, machine learning has achieved great
success in depth information optimization as well. In [74], an up-sampling method
based on a ConvolutionalNeuralNetwork (CNN) was presented on LiDAR point
clouds to deal with limited spatial resolution. Cheng et al. introduced a feedback-
loop to automatically clean noise data in a point cloud [69]. In addition, limi-
tations of LiDAR point clouds can be compensated by depth completion, which
includes not only optimization, but also reconstruction of depth information by
analyzing different sensor data jointly. This approach is also known as sensor fu-
sion. The most common example is the fusion between LiDAR point clouds and
images. In contrast to a LiDAR point cloud, an image from a camera has much
higher pixel resolutions, while the depth estimation from it alone is ambiguous
and unreliable [75]. Therefore, an image has good complementary properties to
a point cloud. The so-called “depth images” generated from them often inher-
its high resolution from the image and accurate depth information from LiDAR
data. For example, Ma et al. fused 100 correlated LiDAR points as guidance of
depth information to an encoder-decoder-based CNN [75]. As reported, depth
estimation with their fusion method significantly outperforms that of monocular
images alone. On the contrary, Ferstl et al. used an anisotropic diffusion ten-
sor, calculated from a high-resolution intensity image, to guide the upsampling
of a LiDAR point cloud [76]. However, sensor fusion applications assume that a
LiDAR point cloud is noise-free and used as ground truth. Manual annotation
is required if a point cloud is noisy, which is barely possible in a dynamic out-
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door environment. To cope with this, a semi-supervised learning method using a
deep residual network with long-skip connections was introduced in [77]. In this
method, a CNN-based unsupervised image alignment and a supervised learning
using LiDAR point clouds as labels were seamlessly combined in a loss function.
In [69], based on a late-fusion strategy, an unsupervised end-to-end learning net-
work “LidarStereoNet” was proposed. The network correlates LiDAR and stereo
image data automatically without manual annotation.

3.4.3 High-Level Property Inference

By applying task-specific algorithms, high-level properties, e.g., object position,
size, movement, and category can be inferred from spatial information in a point
cloud. Gargoum et al. divided possible features for pattern recognition in LiDAR
data into on-road information, roadside information, and in conducting assess-
ment of highways [78]. According to [79], property inference involved in ADAS is
categorized into 1) vehicle and pedestrian detection, 2) driver’s state, behavior,
and identification, 3) traffic sign recognition, and 4) road detection and scene
understanding. The following review in this subsection covers mainly 1) and 4).

CNN shows a powerful ability in property inferences for the images [80]. Since
both images and point clouds represent digitalized detection environments and
are highly similar, CNN is applied to the point cloud for property inference as
well. Li et al. generated three-dimensional bounding boxes from LiDAR data
using a two-dimensional CNN [81]. In their further work, while retaining the
original idea of a two-dimensional CNN, a three-dimensional CNN was proposed
and achieved a clear improvement in average precision and orientation similarity
on KITTI benchmark [82]. Similar to the depth information optimization, the
complementarity between point cloud and image has inspired researchers to in-
vestigate joint solutions between them and received satisfactory results. In [83],
a point cloud was firstly up-sampled and then was aligned to a stereo image.
A deep CNN was used to the reconfigured data for object classification. Zhao
et al. pointed out that classical feature extraction methods in a CNN, e.g., a
sliding window [84], propose a large number of unnecessary candidate proposals
from an image and have a long extraction time [85]. To accelerate the extraction,
they employed the point cloud to generate region proposals. The proposals were
further mapped to stereo image for the determination of region-of-interest. This
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method reduces the total calculation time to a tenth of the sliding window. In
[86], a method named “multi-view three-dimensional object detection network
(MV3D in short)” was proposed, where a point cloud is converted to a front-view
image and a bird-view image. Afterwards, the front-view image, the bird-view
image, and an additionally-captured stereo image are concurrently processed by
individual convolutional layers. A deep fusion network is applied to jointly pre-
dict object class and correlated three-dimensional bounding boxes according to
the proposals generated by the three images. As reported, MV3D obtains more
than 25% average precision improvements for three-dimensional localization and
detection compared to other contemporaneous algorithms.

PointNet [87] is one of the pioneers in processing point clouds based on recur-
sive neural networks. Instead of transforming a point cloud into three-dimensional
voxel grids or images, the method directly uses point data as inputs and outputs
classification results or single-point-based segmentation. In order to improve the
ability to recognize fine-grained patterns and generalizability to complex scenes,
an upgraded version PointNet++ was presented [88], which applies PointNet re-
cursively on a nested partitioning of the input point set. Frustum-PointNet [89] is
the integrator of all PointNet versions, which generates a frustum point cloud by
combining LiDAR point clouds and images for a three-dimensional bounding box
estimation. Compared with the previous versions, Frustum-PointNet achieves
not only a better mean average precision but also a higher inference speed.

Despite the large scale of a network, a modern deep learning algorithm is
designed generally only for one specific task. This limits the reusability and
universality of a designed algorithm. Through the concept of transfer learning
[90, 91], the encoder-decoder network structure in [92], which shares an encoder
while designing individual decoders for different tasks, can reduce repetitive op-
erations arising from simple combinations of algorithms. However, as reported
in [69], even a small five-layer network contains 25,000 parameters. Ren et al.
argued that real-time performance in autonomous driving is as important as in-
ference accuracy and proposed their sparse blocks networks (SBNet in short) to
speed up the training and the calculation in CNN [93].

Although the point cloud-based methods are able to resist a small number of
noise by exploiting potential relationships between different measurement points,
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the noise is not handled adequately. Zhao et al. mentioned that the noise in point
cloud constrains the performance of their proposed method in the detection of
tiny objects at moderator hard levels of difficulty [85]. Moreover, although it is
not explicitly defined, the noise of point clouds in many studies refers to small
deviations of measured depth information relative to ground truth. Another type
of noise, namely false detection caused by background light, is rarely discussed.
It can easily occur in harsh measurement environments and is crucial to high-
level property inference. It is intractable to minimize its negative effects by
removing false detections with thresholding. The introduction of noise-related
features from low-level LiDAR data (e.g., TC-Hists) may be an effective solution
to further improve the quality of the point cloud.

3.5 Challenges

Although the development of LiDAR technology is driving the evolution of ADAS,
it still faces challenges from different sectors.

3.5.1 Challenges on LiDAR Front-End

A large number of possible components and configurable parameters make the
choice of LiDAR front-end quite versatile. This results in the difference in data
characteristics and application scenarios. However, there is a lack of a widely-
accepted standard to evaluate and guide these variants uniformly. In addition,
data optimization approaches in this stage are mainly employed to mitigate
the negative effects of background noise and hardware-induced signal distortion.
Since their working principles are closely related to physical laws and hardware
parameters, a new concept always requires a dedicated hardware implementation,
resulting in a long research cycle and low flexibility in terms of concept exten-
sion and real-time adjustment. Nevertheless, relying solely on upgrading LiDAR
hardware to obtain optimal data is prone to bottlenecks. Meanwhile, a balance
between performance and cost is hard to maintain. Compared to hardware, ad-
justments and adaptations on software are much easier and, in some cases, more
efficient. Thus, a holistic approach combining hardware adjustment strategies
and software processing algorithms may open up new possibilities.
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3.5.2 Challenges of Data Pre-Processing

The data pre-processing approaches are dedicated to removing interference and
to determining distance information in TC-Hist. These approaches must be per-
formed on embedded systems as much as possible to mitigate data transmission
overload. As a result, their performance is often limited by resources available on
embedded systems. Most pre-processing approaches simplify the diversity of in-
formation in TC-Hist, i.e., except for distance, other information, such as sensor
settings, noise features, and statistical characteristics, are not forwarded to the
next processing stage. This turns a sensor front-end and pre-processing procedure
together into a black box [26]. The subsequent processing can be significantly
misled and thus becomes meaningless, if the quality of distances provided by pre-
processing is low. A trade-off must be made on information diversity, processing
speed, memory requirement, accuracy, precision, and robustness to maximize the
ability of a pre-processing in different scenarios. Besides, a LiDAR system gener-
ates a large amount of data, which places a great deal of strain on available data
storage and transmission in an embedded system. However, reducing LiDAR data
requires a considerable number of additional operations. No research is found to
maintain the processing frame rate while reducing the amount of stored data.

3.5.3 Machine Learning-Related Challenges

Recent evidence shows that a simple machine learning network suffers from rela-
tively low accuracy [94] and its performance can be improved by adding additional
layers [95]. Thus, in order to achieve a satisfactory result, the scale of a machine
learning-based approach in a LiDAR system becomes larger and larger. How-
ever, it dramatically increases the number of parameters and the complexity of
the approach as well, which makes training of a network and real-time inference
challenging. Moreover, the traceability and interpretability of a very deep net-
work are low. Although the concept of ablation study is introduced to verify the
necessity of each unit, the exact functionality of each part remains unclear. This
makes a network less transparent and does not allow for an intuitive verification
of its uniqueness and plausibility.

Another great challenge is training data. In order to prevent a deep network
from overfitting, a well-labeled dataset with high diversity is required. How-
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ever, such a dataset is difficult to obtain in ADAS, since direct road testing
to collect real measurements with labels is inefficient and expensive. Although
a well-established LiDAR data benchmark KITTI [23] is widely used by point
cloud-based methods, low-level data and detailed sensor information are inacces-
sible. Besides, it is generated by Velodyne LiDAR systems. However, there is a
variety of different LiDAR front-ends in addition to the Velodyne systems. Point
clouds they generate can vary widely in terms of sparsity, precision, and accuracy.
Algorithms that have been proven effective on the KITTI dataset alone may not
be universal and generalizable to other datasets. Typically, further tuning and
verification are required.

In order to train a deep network adequately, raw data measured at different
time points are typically aggregated from distributed measurement front-ends to
a central processing module. To avoid transmission overload while to ensure the
availability of raw data at all times, most machine learning methods are trained
offline. Furthermore, some raw data are privacy protected and only allow to be
kept locally, which makes the transmission of raw data limited. Emerging con-
cepts, such as distributed learning and edge artificial intelligence, were proposed
to separate a deep network into several parts and train them locally. In the-
ory, these concepts not only reduce the amount of data to be transmitted, but
also abstract raw data through pre-processing and feature extraction, so that the
“encrypted” data can be transmitted instead of the original private data. Mean-
while, since the processing takes place near sensor front-ends, good information
timeliness can be achieved. Nevertheless, these concepts are in the early stage
of development. More efforts need to be invested to verify the feasibility and
effectiveness of these concepts in different applications.

3.5.4 ADAS-Related Challenges

In ADAS, detection scenarios are highly dynamic and the measured data are
directly related to safety. Therefore, the timeliness of a data processing method
is salient. In this case, obtaining information within a defined margin of error in
real-time is more valuable than striving for maximum precision in exchange for
timing performance. Meanwhile, the method must have an adaptive ability to
different scenarios and high robustness to counteract both environment-induced
and system-induced interference. This could be achieved by a closed-loop system.
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However, the feedback signals ε1 and ε2 shown in Figure 3.2 are barely enabled in
a state-of-the-art LiDAR system. Besides, for a machine learning-based system,
the change of parameters for measurements regarding feedback signals means
a large dynamic range of inputs, which complicates the learning process of an
algorithm and may cause unpredictable results. A possible approach is to design
a physics-based feedback rule and to normalize input data before being fed into
a black-box model, thus making a dynamic process relatively transparent and
predictable.

3.6 Research Gap

High distance precision provided by a LiDAR system is a key to safety. On the
one hand, a number of LiDAR hardware balancing cost and performance have
been manufactured in the market. They cover a wide range of measurement
scenarios and provide attractive features for ADAS applications. On the other
hand, point cloud-based approaches are evolving and massive data processing
methods are emerging regarding depth completion, high-level property inference,
and sensor fusion. Those approaches have demonstrated recognition capabilities
far beyond the eye on ideal sensor data. However, there is a gap between LiDAR
hardware and high-level data processing. No research was found, which has the
ability to combine both fields effectively, and can proceed with the development
of LiDAR systems in ADAS. In particular, the following research aspects need
to be studied:

- According to subsection 2.1.1, subsection 2.1.4, and subsection 3.2, the
greatest interference in a SPAD-based LiDAR system is background light,
especially for an outdoor detection scenario. Although various solutions
against background light were proposed, they reduce the frame rate of a
LiDAR system significantly. Considering an autonomous driving scenario,
where high background light is always present and a high frame rate is
required, reliable detection is challenging.

- Although machine learning-based approaches show great ability in the field
of data processing, they belong to the black-box model and suffer from low
transparency and interpretability. This makes prediction behaviors of the
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approaches in unknown situation unpredictable and untraceable. As it re-
lates to safety, the use of a black-box model is particularly critical in ADAS.
According to the development trend of machine learning proposed in [96],
an improvement in transparency and interpretability can be investigated us-
ing additional knowledge, e.g., physical laws, finite automata, logical rules,
and the formalized knowledge of experts.

- According to section 3.3, a TC-Hist retains multiple useful measurement
characteristics. Current TC-Hist processing methods are mostly rule-based,
which specify distance information as the only output. It means that the
conversion from TC-Hist to point cloud exists information loss and places
high demands on the reliability of TC-Hist processing methods. Moreover,
TC-Hist-based processing and point cloud-based processing are completely
separated. The latter considers the former as a black box and has no ac-
cess to the measurement information before point cloud, while the former
cannot adjust corresponding parameters according to the results of the lat-
ter. This results in an underutilization of LiDAR’s measurement data and
an inefficient processing procedure. Therefore, a more advanced and flex-
ible method, such as machine learning, should be applied to TC-Hist to
maximize the utility of the information. In addition, holistic considerations
should be made to improve the information exchange between TC-Hist and
point cloud.

- The large volume of a TC-Hist makes processing methods impossible to
analyze data comprehensively in real-time. A compact and reliable fea-
ture extraction method should be developed to reduce data volume and
to focus the processing only on important features. In addition, due to
the limitations on real data collection and annotation in ADAS, a machine
learning-based method that is less dependent on real data without sacrific-
ing its generalization capability should be investigated, for example training
a method with a hybrid dataset including real and synthetic data.
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Machine Learning-Based
Multi-Peak Analysis

In this chapter, a machine learning-based TC-Hist processing method named
MPA is proposed in order to overcome the research gap presented in section 3.6.
Preliminary studies of MPA are presented in [97] [98]. In particular, a TC-Hist
generation process based on FPC and TCSPC is provided. Using TC-Hist as the
input data, the principle of MPA is outlined by dividing it into three parts: 1)
physics-guided feature extraction, 2) machine learning-based distance prediction,
and 3) correlation analysis.

4.1 First Photon Counting

To determine the photon statistics of direct TOF measurements, the whole ob-
servation time window for incoming photons is defined as ∆T . Hence, a fraction
∆t P p0, ∆T s is further divided into m small time durations by

∆t “ ∆T
m

, (4.1)

where mÑ 8, resulting in ∆tÑ 0. Thus, the probability of receiving more than
one photon within ∆t can be neglected. In this case, the probability of receiving
a photon at time t is approximated by

P ptq “ rptq∆t . (4.2)

Under the assumptions that an event of receiving a photon is independent and
photon detection rate rptq is constant within pt, t`∆ts, the probability of receiv-
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ing k photons within pt, t`∆ts is the binomial function PB given by

PBpk |m, P ptqq “
m!

k!pm´ kq! P ptq
k
p1´ P ptqqm´k . (4.3)

Since m Ñ 8, the binomial distribution can approximate to the Poisson distri-
bution PP as

lim
mÑ8

PBpk |m, P ptqq “
P ptqk

k! e´P ptq “ µkt
k! e´µt “ PPpk, µtq , (4.4)

where µt is equal to P ptq. The analogy to the binomial theorem guarantees that
the distribution is normalized [99].

In order to further improve the resistance to background light, the TCSPC
technique is used to generate TC-Hists. Subsequently, FPC is applied to the
measurement process. In FPC, a SPAD is deactivated after the detection of the
first received photon and waits for the initialization of the next measurement.
This means only one timestamp is obtained in a measurement cycle. With the
assumption of an observation beginning at time t “ 0 s, the probability of receiv-
ing no photon within p0, T s according to (4.4) is

PPpk “ 0, µT q “ e´µT “ e´
şT
0 rptqdt

“ e´
řT
t“0 µt “

T
ź

t“0
PPpk “ 0, µtq . (4.5)

Therefore, the probability of receiving at least one photon within p0, T s is given
by

PPpk ą 0, µT q “ 1´ PPpk “ 0, µT q “ 1´ e´µT “
ż T

0
p1ptqdt , (4.6)

where p1ptq represents PDF of receiving the first photon at time t. By considering
the total photon detection rate rptq according to (3.2), PPpk ą 0, µT q becomes a
three-stage function given by

PPpk ą 0, µT q “

$

’

’

&

’

’

%

1´ erB T , 0 ď T ă TObj

1´ e´prB TObj`rLB pT´TObjqq , TObj ď T ă TObj ` TP

1´ e´prB pT´TPq`rLB TPq , T ě TObj ` TP

. (4.7)

Afterwards, p1ptq is derived by taking the derivative of T in (4.7):

p1ptq “

$

’

’

&

’

’

%

rB e´rB t , 0 ď t ă TObj

rLB e´rB TObj e´rLB pt´TObjq , TObj ď t ă TObj ` TP

rB erL TP e´rB t , t ě TObj ` TP

. (4.8)
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In a TC-Hist, the x-axis is discrete due to TDC resolution TTDC. Therefore, t is
represented by the bin number b using

b “ t
t

TTDC
u . (4.9)

In this case, the probability of receiving the first photon in b is calculated by the
integration of p1ptq across the bin width with

P1, b “

ż pb`1qTTDC

b TTDC

p1ptqdt . (4.10)

According to the principle of TCSPC, NM individual measurement cycles are
carried out and the received first photons are accumulated in a TC-Hist. By
assuming that measurement cycles included in a TC-Hist follow the same p1ptq,
the expected value µb is given by

µb “ NM P1, b . (4.11)

4.2 Physics-Guided Feature Extraction

Based on (4.10), an example of P1, b and one corresponding TC-Hist with specific
settings are shown in Figure 4.1. It is observed that an object distance corre-
sponds to a local maximum, because rL is only present and superposed on rB

within rTObj, TObj ` TPs. It also indicates that in a TC-Hist, signals outside this
region are noise. Thus, to avoid wasting a massive number of computations on
noise, a subsequent analysis can be focused on several significant local maxima
instead of the whole TC-Hist. For this purpose, a physics-guided feature extrac-
tion is designed as a three-step process: 1) convolution, 2) region division & local
maxima selection, and 3) feature preparation, shown in Figure 4.2.

4.2.1 Convolution

In Figure 4.1 (b), the measurement distribution is sparse with only 400 measure-
ments per TC-Hist and under a certain amount of background noise, resulting
in large jitters. In this case, the selection of maxima becomes critical. Since
TP is typically larger than TTDC, the received laser photons are spread over NP

adjacent bins. Therefore, a one-dimensional convolution kernel with size NP is
applied to the TC-Hist to strengthen the bin group containing the desired laser
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Figure 4.1: PMF and TC-Hist with specific parameter settings. (a) PMF of the
first received photon. (b) One of the corresponding TC-Hists. Therein, TTDC is
equal to 312.5 ps, rB is 5MHz, rL is 10MHz, TP is 5 ns, and NM is equal to 400.
TObj is set to 216.82 ns, i.e., the object bin number bObj is 693.

photons. Accordingly, the bin in a convolved TC-Hist is given by the first bin of
each convolution group. Similar to template matching, the optimal convolution
kernel must be determined in order to maximize the desired laser pulse shape.
The most basic convolution kernel is the constant kernel KConst, defined as

KConst, b “ 1, b P r1, ..., NPs . (4.12)

In addition, according to (4.8), the statistical characteristics of laser photons are
governed by the Poisson distribution as well. Therefore, an exponential kernel
KExp is designed as

KExp, b “ e´rLB TTDC b, b P r1, ..., NPs (4.13)

to match the ideal laser pulse shape. However, (4.8) assumes the emitted laser is
a rectangular pulse, which is impractical due to the response time and physical
limitations of a laser emitter. Normally, the laser is approximated by a Gaussian
function. Accordingly, a Gaussian kernel KGauss is chosen and defined as

KGauss, b “ e
´b2
2σ2 , b P r´3σ, ..., 3σs , (4.14)
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Figure 4.2: Process of physics-guided feature extraction. A raw TC-Hist is
first convolved and then divided into N sub-regions. Local maximum Mn and its
corresponding bin number bn are extracted from each sub-region. Subsequently,
fn is formed by applying Background Estimation and Subtraction (BES) onMn.
By coupling fn and bn, a sub-region feature Fn is created. Finally, feature group
F 1G is obtained based on Fn of all sub-regions.

where
3σ “ t

NP

2 u . (4.15)

Figure 4.3 (a) shows a convolved TC-Hist using a constant kernel. It can be
seen that the convolved TC-Hist is dense and thus more suitable for maxima
extraction compared to a raw TC-Hist with limited NM.

4.2.2 Region Division and Local Maxima Selection

In the next step, a convolved TC-Hist is divided into multiple sub-regions for
local maxima selection. The following aspects are considered:

- To guarantee the effectiveness of feature extraction, the probability of se-
lecting the desired object information should be maximized.

- Using FPC, the count value of a small bin number is likely to be larger
than that of a large bin number due to the presence of background noise.
Therefore, the tendency for selecting local minima with small bin numbers
should be avoided.
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- A laser pulse may create multiple local maxima within a bin group. The
portion of selected local minima originating from the same laser pulse should
be minimized in order to avoid information redundancy.

- The objective of feature extraction is to improve processing efficiency. There-
fore, the local maxima search should be as simple as possible while achieving
the performance requirements.

As a result, the concept of a sub-region division is proposed. First, a TC-Hist
is divided into N adjacent sub-regions. Each sub-region has the same sub-region
width WR calculated by

WR “
DMax

N
, (4.16)

where DMax refers to a given maximum detection range. Afterwards, a local
maximumMn is selected from each sub-region. This guarantees an even selection
of features on the x-axis. Obviously, N is equal to the number of selected features
NF and affects the accuracy of feature extraction. For example, if a large NF

is chosen, the probability of the maximum value being the laser pulse in the
sub-region where the laser pulse locates is considerably high. If a small NF is
chosen, this probability is relatively low. Examples are given in Figure 4.3 (b)
and (c). Therein, the desired local maximum is included in the selected features
when NF “ 12, while it is overlooked when NF “ 2. However, the increase of NF

increases the number of features from noise. On the one hand, these noise features
can interfere with distance predictions. On the other hand, the number of inputs
for the subsequent processing increases, resulting in an exponential growth in
computations. Therefore, the optimal distance division requires the selection of
as few sub-regions as possible while ensuring the highest possible success rate of
extracting the desired information. Since a direct determination of the optimal
NF suffers from the attribute explosion due to interdependence among a large
number of bins, the determination of WR is carried out using MCM. After the
extraction of NF local maxima from a TC-Hist, a local maximum Mn and its
correlated bin number bn are coupled as a region feature Fn, i.e., Fn “ tMn, bnu.
Finally, a feature group FG “ tF1, ..., FNu is formed to represent a complete
TC-Hist.
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Figure 4.3: Example of feature selection with different NF. The desired bin
number is around bin 693. (a) A convolved TC-Hist by applying a constant kernel
on the raw TC-Hist in Figure 4.1. (b) Selected local maxima with NF “ 12. The
selected bin number in sub-region 7 is 694, which corresponds to the desired bin
number. (c) Selected local maxima with NF “ 2. In this case, the selected local
maxima do not contain the desired bin number.

4.2.3 Feature Preparation

In this subsection, the extracted local maxima are pre-processed by removing
noise and normalization. Based on measured rB, the expected background count
is calculated regarding (4.11) by

µB, b “ NM P1, b | rL“0 “ NM rB

ż pb`1qTTDC

b TTDC

e´rB tdt . (4.17)
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Subsequently, a noise-reduced feature value fn is determined by a BES method
on Mn using

fn “
Mn ´

řbn`NP
b“bn

µB, b

maxnpMn ´
řbn`NP
b“bn

µB, bq
, (4.18)

where n P t1, ..., NFu. Similarly, a noise-reduced feature group F 1G “ t..., F 1n, ...u
is created, where F 1n “ tfn, bnu.

4.3 Distance Prediction Algorithms

In this section, the designs of different distance prediction algorithms for the
noise-reduced feature group F 1G are presented.

4.3.1 Fully-Connected Feed-Forward Neural Network

The powerful representation and generalizability of neural networks make them
one of the optimal choices among machine learning algorithms. However, training
a neural network directly on TC-Hists to infer exact distances is challenging. On
the one hand, if a classification network is used, a large number of classes is
required in order to maintain a high distance resolution, which results in an
attribute explosion. On the other hand, if a regression network is applied, a large
number of input attributes and a deep network are required to accurately model
the regression function. Besides, a regression typically provides only one output,
which makes a subsequent analysis on further useful information impossible.

To cope with these difficulties, a classification FNN and a distance recovery
process are designed to combine with the feature extraction introduced in section
4.2, shown in Figure 4.4. First, sub-region feature fn is separated from noise-
reduced feature group F 1G obtained in subsection 4.2.3. Afterwards, the feature
values are formed as an input vector IN “ tf1, ..., fNu. The FNN is trained,
validated, and tested by IN . To prevent the attribute explosion, a class group is
created with NF classes, which corresponds to the sub-regions and the extracted
features in section 4.2. Accordingly, an output vector to1, ..., oNu is calculated
using softmax function. on represents the score of the feature in the nth sub-
region being the object distance. The sub-region H with the highest score oH will
be chosen as the final prediction. Since the resolution provided by NF classes
is much lower than TTDC, a distance recovery process is introduced to restore
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Figure 4.4: Distance prediction with FNN. Based on F 1G in Figure 4.3, feature
sequence {f1, ..., fN} is inputted into an FNN and output vector {o1, ..., oN}
is obtained. Final output O is formed by coupling {o1, ..., oN} and {b1, ..., bN}
correspondingly. Predicted distance dPred is calculated using bH and dTDC.

distance precision. At first, each on is coupled to the corresponding bn and an
output O “ tpo1, b1q, ... pon, bnqu is formed. Subsequently, the distance prediction
dPred is calculated using bin number bH from sub-region H as

dPred “ dTDC bH . (4.19)

The configuration of FNN parameters is conducted in the following steps:

1) In order to exclude irrelevant parameters and to narrow the scope of pa-
rameter tuning, a preliminary grid search is carried out.

2) After the grid search, a number of the most relevant parameters are selected
and analyzed jointly.

Before training, the data for training and validation are shuffled so that the
classes in each training mini-batch are balanced. To minimize the random factor
introduced by weight initialization, each network structure is trained multiple
times individually. As a result, the optimal variant of FNN is determined.
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4.3.2 Binomial Estimation

Since rL defines the magnitude of a laser pulse, it directly influences the signifi-
cance of laser information (i.e., object distance) in a TC-Hist. However, according
to subsection 2.1.5, the propagation process of a laser pulse is highly uncertain and
involves a number of environmental and hardware-induced factors. Therefore, an
accurate estimation for rL is impractical. In contrast, rB can be well estimated
using the average photon counts during an observation window. Thus, instead
of pursuing laser information directly, an approach can be designed from another
perspective: analyzing whether features come from background light or not. This
is done by conducting an analysis for the statistical behavior of background light.
To this end, rB is estimated by counting the number of received photons dur-
ing a specific observation window. Afterwards, by assuming rL “ 0MHz, the
probability of receiving a photon in bin number b is given by

P1, b | rL“0 “

ż pb`1qTTDC

b TTDC

p1ptq | rL“0 dt “

ż pb`1qTTDC

b TTDC

rB e´rB tdt (4.20)

according to (4.10). Hereby, each probability P1, b is independent to P1, b1 , where
b1 ‰ b. Moreover, since each detected photon in a TC-Hist generation period
is independent and is assumed to be identically distributed, the probability of
obtaining k photons in b with NM trials can be calculated using (4.3) as

PBpk |NM, P1, b | rL“0q “
NM!

k!pNM ´ kq!
P k

1, b | rL“0 p1´ P1, b | rL“0q
NM´k . (4.21)

According to (4.8), the presence of rL causes P1, b to rise when t P rTObj, TObj `

TPq. The influence of rL on P1, b when t ě TObj ` TP is neglected, since TP is
small. These characteristics mean that the bins containing laser photons deviate
significantly from the background photon distribution, resulting in PB Ñ 0 and
thus allowing TObj to be allocated. An application of the binomial estimation on a
complete TC-Hist is extremely computational-expensive, because each bin must
be calculated using PB individually. Therefore, it is applied to the extracted local
maxima Mn introduced in subsection 4.2.2 to reduce unnecessary computation
on noise.

An example of PBpk |NM “ 400, P1, b | rL“0 “ 0.0247q is shown in Figure 4.5.
Apparently, the maximum probability is obtained around the expected value
µ. For the purpose of explanation, the distribution is divided into two parts

52



4.3. Distance Prediction Algorithms

according to µ. Since k corresponds to a local maximum, which is generally larger
than µ, the result tends to be located in the black area with a relatively small
PB. In particular, if rL is present, k will deviate from µ significantly, resulting in
an extremely small PB. Thus, the key to determining the object distance (i.e., k
with laser photons) is to identify the local maxima with small probabilities. To
improve the discriminatory ability at small probabilities and to transform them
to the probability of being the desired object information, PB is normalized by

PNorm, b “
´lnpPBpk |NM, P1, b | rL“0qq

ř

´lnpPBpk |NM, P1, b | rL“0qq
. (4.22)

PNorm, b directly represents the probability of the object distance at the associated
bin. The result of the binomial estimation using the input from Figure 4.3 (b) is
shown in Table 4.1. It can be seen that the local maxima at bin 59, 694, and 992
have PB lower than 1%, which are most likely to be the bin representing the object
distance. However, these probabilities are small, which may be indistinguishable
due to the underflow. Compared with PB, b of t0.291074, 0.000008, 0.433654u,
the corresponding PNorm, b of t9.686889, 27.118243, 9.025539u are more suitable
either as final outputs or as inputs for subsequent processing.
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Figure 4.5: Binomial probability with NM “ 400 and P1, b | rL“0 “ 0.0247. The
distribution is divided into a grey area and a black area according to the expected
value µ “ NM P1, b | rL“0 “ 9.88.

The binomial estimation is conducted for each feature Fn individually and
outputs a vector PNorm, which includes NF normalized probabilities PNorm, b.
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Table 4.1: Binomial estimation on the example in Figure 4.3. The object dis-
tance is at 32.50m. bn refers to the bin number of the selected feature in the nth

sub-region. PB, b and PNorm, b refer to corresponding probabilities with b “ bn.

bn dn /m Mn PB, b {% PNorm, b /%

59 2.763712 18 0.291074 9.686889
108 5.058998 15 1.201604 7.334844
305 14.286984 12 1.281738 7.227746
395 18.502816 8 7.815941 4.228542
467 21.875481 10 1.410607 7.068819
549 25.716572 9 1.657963 6.800791
694 32.508745 17 0.000008 27.118243
821 38.457751 7 1.481113 6.987907
954 44.687813 6 1.819096 6.646928
992 46.467831 7 0.433654 9.025539
1080 50.589977 4 7.467957 4.304095
1238 57.991104 3 11.627201 3.569657

4.3.3 Naive Bayes Classifier

Since TC-Hists with the same measurement parameters, e.g., background photon
rate rB and object distance dObj, follows the same probability distribution given
by (4.8), PNorm of TC-Hists exist a degree of similarity to each other. In this
subsection, NBC is introduced to model the sample distribution of PNorm and to
determine object distance accordingly.

The prerequisite of NBC is the attribute conditional independence. This is
guaranteed by the weak dependence of PB, b to PB, b1‰b regarding (4.21) and the
binomial estimation, which minimizes the effect of background noise floor. Ac-
cording to (2.39), NBC on the normalized probability is written as

fNBCpPNormq “ arg max
c
pP pPNorm | cqP pcqq , (4.23)

where c refers to one of the classes created for NBC. Therein, P pcq represents
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the portion of class c in a given dataset D, which is easily obtained by

P pcq “
Nc

NS
, (4.24)

where Nc is the number of TC-Hists in class c and NS refers to the total number
of samples (TC-Hists) in D. P pPNorm | cq refers to the probability distribution of
PNorm in class c. In the following calculation, the bin-wised probability PNorm, b | c

is transformed to the sub-region-wised probability PNorm, n | c. Hereby, n refers to
the sub-region where b is located.

The derivation process using NBC is decomposed into four steps, shown in
Figure 4.6. Each step is specified as follows:

1) Categorization: First, the effects of different parameters, e.g., rB and
dObj, are specified based on the observation of a given dataset D. Accordingly,
a class group with NNBC classes is created by grouping the dataset D regarding
the degree of similarity between PNorm of different TC-Hists. In contrast to FNN,
where the output classes are equal to NF, NNBC is not necessarily equal to NF.

2) Modeling: Based on observation results of the categorization, the mod-
eling of the posterior probability P pPNorm, n | cq is carried out using a suitable
probability distribution. The first attempt is assuming that PNorm, n | c follows a
normal distribution. In this case, (2.19) is applied and P pPNorm, n | cq is given by

P pPNorm, n | cq “ N pPNorm, n |P n, c, s
2
n, cq “

1
a

2πs2
n, c

e
´
pPNorm, n´Pn, cq

2

2s2n, c . (4.25)

Here, P n, c and sn, c are empirical values estimated based on samples in each class,
using

P n, c “

řNc
i“1 PNorm, n, i | c

Nc

and (4.26)

sn, c “

d

řNc
i“1pPNorm, n, i | c´ P n, cq

2

Nc

. (4.27)

However, PNorm may not follow a standard normal distribution. Therefore, two
distributions are further considered: (1) If a skewed distribution is observed on
PNorm, n | c, the modeling is carried out using a log-normal distribution by

P pPNorm, n | cq “ N plnpPNorm, n |P n, c, s
2
n, cq . (4.28)
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(2) If a multimodal distribution is observed, the modeling is conducted using a
Gaussian mixture distribution by

P pPNorm, n | cq “
M
ÿ

m“1
wm N pPNorm, n |Pm,n, c, s

2
m,n, cq , (4.29)

where M represents the number of Gaussian models and wm refers to the weight
of the mth model. Finally, the models form an identifier of the associated class.

3) Joint probability: After the modeling, the probability distribution is
created for each input PNorm, n | c. To determine the general similarity of a given
input data to a certain class, the joint probability P pPNorm | cq is given by

P pPNorm | cq “ lnp
N

ź

n“1
P pPNorm, n | cqq “

N
ÿ

n“1
lnpP pPNorm, n | cqq . (4.30)

4) Normalization: Finally, fNBC is normalized and the corresponding soft
decision is given by

oc “
fNBC, c

řNNBC
c“1 fNBC, c

. (4.31)

oH with the highest value is given by

oH “ arg max
c
pocq . (4.32)

Meanwhile, NNBC classes are converted to NF bin numbers accordingly. Similar
to the design of distance recovery in subsection 4.3.1, O “ tpo1, b1q, ... poN , bNqu

is formed and dPred of NBC is calculated using (4.19) as well.

4.4 Correlation Analysis

Both FNN and NBC generate soft decisions on for NF potential object distances.
Each soft decision represents the confidence level that the corresponding distance
is the object distance. Compared to hard decisions, which only provide an ab-
solute value as output, soft decisions are better suited to the optimization and
fine-tuning process with additional knowledge and reasonable assumptions, e.g.,
correlations in time and space. In this section, the design of correlations for MPA
is introduced.
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Figure 4.6: Process of NBC on PNorm from binomial estimation. During the
training process, samples in dataset D is categorized into multiple subset accord-
ing to their similarities and a statistical modeling is carried out on each subset
for obtaining the corresponding class identifier. In the prediction process, the
joint probability between an input and each class identifier is calculated and the
best-matched class is determined correspondingly.
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Figure 4.7: Correlation strategy. (a) Time correlation with three processing
steps. The output from the previous frame Opt´1q is correlated to the feature
group of the current frame FG, t. (b) Spatial correlation with four processing
steps. The outputs of neighboring pixels pi ˘ 1, jq is correlated to the feature
group of the central pixel FG, i, j. New predictions are obtained by inputting the
correlated feature F ˚G, t into FNN {NBC.

4.4.1 Correlation Strategies in Time and Space

In the field of object detection, a basic rule holds: The behavior of an object
is continuous and does not suddenly disappear and appear. This leads to two
hypotheses: 1) If the measurements of multiple TC-Hists for the same pixel
are temporally continuous, the object in a new TC-Hist will locate close to the
position of the object in a previous TC-Hists. 2) If the object is flat and occupies
multiple pixels, object distances among these pixels will locate close to each other.
To take the advantage of the information behind these hypotheses, two correlation
strategies are designed, shown in Figure 4.7. Both correlation strategies use the
output O (including NF potential distances and soft decisions) as the reference
in order to minimize irrelevant correlations from noise. However, the process of
time correlation is slightly different than that of spatial correlation. In the time
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domain, Opt´1q from the previous frame is used as a reference and is correlated to
the feature group FG, t of the current frame. Afterwards, a new prediction result
O˚t is obtained. To realize this, Opt´1q must be stored additionally for each pixel.
In contrast to the time correlation, which utilizes output results from the previous
time frame without adding further operations, Ot of all pixels without correlation
must be calculated additionally in the spatial correlation. Subsequently, Ot from
neighboring pixels pi ´ 1, jq and pi ` 1, jq are correlated to FG, t of the central
pixel pi, jq. Finally, O˚t, i, j is obtained by the second distance prediction on F ˚G, t.
This difference is illustrated in Figure 4.7, i.e., the time correlation has three main
processing steps, while the spatial correlation has four main processing steps.

4.4.2 Gain Function

Gain functions are determined in each sub-region individually. A key to an effec-
tive correlation algorithm is generating significant gain under desired conditions,
while minimizing negative influences under irrelevant conditions. To this end, ob-
ject behaviors and feature characteristics are studied. In sub-region n, a feature
fn or a soft decision on originates from

(1) a static/continuous moving object,

(2) the flat surface of an object,

(3) an object leaving/coming into FOV,

(4) the boundary of an object, or

(5) noise.

Apparently, the position (i.e., bin number bn) of a feature originating from an
object is relatively consistent. On the contrary, the position of a feature origi-
nating from noise is occurred by coincidence with a constrained NM. This results
in a randomly distributed bn of a noise fn (and the corresponding on). Based on
the information, critical detection scenarios and estimated characteristics in the
correlation analysis are summarized in Table 4.2. It can be seen that an ideal
correlation scenario in time (scenario 1) or in space (scenario 2) is represented
by a small difference in bn. A large difference in bn is caused by the state change
of the rear object between blocked and visible (scenario 3). The detection of a
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Table 4.2: Critical detection scenarios and estimated characteristics in the cor-
relation analysis. Five scenarios are listed regarding different conditions of data
from the original sample (fn) and data from the reference sample (on). Accord-
ingly, the estimated characteristics of bn in MPA are specified.

Condition
Scenario fn on Estimated Characteristics in MPA

1 (1) (1) Small pbn, t ´ bn, t´1q

2 (2) (2) Small pbn, i, j ´ bn, i˘1, jq

3 (3) (3) Large pbn, i, j ´ bn, i˘1, jq

4 (4) (4)
Large/Random pbn, t ´ bn, t´1q

Large/Random pbn, i, j ´ bn, i˘1, jq

5
(5) (1)-(5)

Random pbn, t ´ bn, t´1q

Random pbn, i, j ´ bn, i˘1, jq

(1)-(5) (5)
Random pbn, t ´ bn, t´1q

Random pbn, i, j ´ bn, i˘1, jq

boundary (scenario 4) involves two situations. If two pixels detect two sides of a
boundary, a large difference in bn between these pixels is observed. If a boundary
locates exactly in the laser transmission path of a pixel, the reflected laser echo is
weak and difficult to be detected due to the scattering at large angles, resulting
in a random difference in bn. Similarly, if at least a noise feature is involved
(scenario 5), a random difference in bn should be observed as well.

Clearly, a distinction of gain behaviors is required, i.e., a significant gain is
desired for scenario 1 and 2, while a gain for scenario 3 - 5 should be avoided.
In addition, it can be indicated that the desired gain behaviors in both time and
spatial correlations are identical for the given five scenarios, i.e., the gain should
increase with the decrease of the difference in bn. For the purpose of clarity, two
unified definitions are given: 1) The output from the previous frame or from the
neighboring pixel is defined as the reference data, which is represented by po1n, b1nq.
2) The feature of the current frame or from the central pixel is defined as the
original data, which is represented by pfn, bnq. Subsequently, the gain function
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G is given by
Gpo1n, ∆bnq “ α o1n e´

∆b2n
2β2 , (4.33)

where ∆bn “ pbn ´ b1nq. α refers to the impact factor of the reference amplitude
and β refers to the impact factor of ∆bn. Obviously, G is centered on the position
of bn and is proportional to o1n. With these characteristics, a significant gain is
generated only with a small ∆bn (i.e., the peak position in the nth sub-region of
the reference TC-Hist is close to the peak position in the same sub-region of the
original TC-Hist) and a noticeable o1n (i.e., the position of the reference peak has
a high probability to be the object distance). An example of the correlation in
MPA is shown in Figure 4.8. Therein, three sub-regions are assumed. In terms
of sub-region 1, although o11 is significant, the gain is small, since ∆bn is large.
Similarly, the gain in sub-region 3 is small as well with a small o13 and a small ∆bn.
In sub-region 2, since ∆bn is small and o12 is large, a significant gain is generated.
Thus, a noticeable gain is created only if the position of the reference information
is close to the feature of the original TC-Hist and the reference information has a
high probability to be the object distance. By the determination of the optimal α
and β for specific detection scenarios, the requirements based on Table 4.2 could
be fulfilled.

According to Figure 4.7, the time and the spatial correlation are determined
based on (4.33) separately. In terms of the time correlation, the feature gain
∆fTime, n is calculated by

∆fTime, n “ Gpon, t´1, bn, t ´ bn, t´1q . (4.34)

In terms of the spatial correlation, the feature gain ∆fSpace, n is expressed as

∆fSpace, n “ Gpon, i´1, j, bn, i, j ´ bn, i´1, jq `Gpon, i`1, j, bn, i, j ´ bn, i`1, jq . (4.35)

According to the process in Figure 4.7 and (4.33), ∆fn, t and ∆fn, i, j are deter-
mined independently of each other. Therefore, they can be applied to fn, t, i, j

jointly using
f˚n, t, i, j “ fn, t, i, j `∆fTime, n `∆fSpace, n . (4.36)

4.4.3 Scenario Analysis

The analysis of the correlation strategies in time and space requires a detection
scenario with a certain dynamic degree. For this purpose, a virtual scene is
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Figure 4.8: A correlation example. (a) Prediction results of a reference TC-Hist
. (b) Calculated gains for the original TC-Hist. (c) Extracted features of the
original TC-Hist.

created, shown in Figure 4.9. It consists of a LiDAR front-end, a background
wall, and multiple square objects. The LiDAR front-end is located in the lower
center and creates a FOV with an aperture angle of ϕ. The background wall
covers the whole FOV with a distance of dWall to reduce random signals caused
by the loss of laser echoes. The objects have the same size of wObj and are lined
up horizontally. In addition, they are moving to the right with a constant velocity
of vObj. The vertical distance of the objects to the LiDAR detector plane is dVert.
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vObj
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Figure 4.9: Bird’s-eye view of virtual detection scene for correlation analysis.
It includes multiple objects, a background wall, and a LiDAR front-end. The
objects are lined up in a row and have a constant velocity vObj to the right.
The LiDAR front-end locates at the lower center of the scene. It emits artificial
photons continuously within its FOV. The photons are reflected back once they
reach the surface of the objects or the background wall. Accordingly, dObj is
determined. By specifying other parameters, e.g., rB, rL, and TP, the TC-Hist
simulation for the scene is carried out.

The simulation starts with the generation of virtual lasers. The lasers are
emitted outward with the LiDAR front-end as the center of the circle in the
range of FOV. Afterwards, each laser is reflected back along the emission path
when it encounters the first object boundary. Accordingly, the object distance
dObj is determined. By specifying rB and rL for each laser path, a corresponding
TC-Hist group for the scene is created. In this simulation, the light propagation
follows the model shown in Figure 2.2. Finally, The correlation strategies are
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applied to TC-Hist groups of neighboring pixels and at consecutive time frames
simulated in the scene.

4.5 Other Optimization Approaches

In previous sections, MPA is designed to maximize the utility of the potential
information in TC-Hists and to achieve the optimal prediction accuracy. In this
section, further aspects are taken into consideration, including 1) real-time per-
formance, 2) ablation study, 3) result optimization.

4.5.1 Ablation Study for Background Suppression

As introduced in section 4.3, both FNN and NBC utilize the noise-reduced feature
as the input. In terms of FNN, the background suppression is carried out based
on the estimation of rB, which involves a real-time exponential approximation.
In terms of NBC, the binomial estimation is applied, which involves not only
exponential calculations but also factorials. Although they are only carried out
on NF selected features, it is still challenging on embedded systems.

Since the background information is already included in the local maximum
Mn, a machine learning-based algorithm could have the ability to learn the back-
ground pattern directly from Mn. Therefore, a proof of necessity for background
suppression is carried out by excluding BES in FNN variants and by excluding
the binomial estimation in NBC variants. The evaluation is conducted regarding
timing performance and prediction accuracy.

4.5.2 Convolution Stride

The value of a convolution stride affects the precision of extracted features and
the real-time performance of MPA. With a small stride, the distance resolution
in a feature TC-Hist is fine and a long processing time is required. Increasing
the stride decreases the distance resolution while the overall processing time is
reduced. Thus, the studies of applying different strides in MPA is of interest in
order to provide a guidance on stride settings for different application scenarios.
To this end, the stride is gradually increased and combined with the optimal FNN
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and NBC obtained in section 4.3. The impact of different strides is discussed by
observing the decreasing trends of the prediction accuracy.

4.5.3 Threshold Analysis

MPA predicts the final distance according to the value of o. However, if a re-
flected laser signal is weak or lost, the corresponding TC-Hist contains barely
desired object information. In order to reduce the misclassification rate and the
overall reliability of distance predictions, it is necessary to classify this case as an
indiscernible result rather than imposing a false distance prediction. A weak re-
flected laser signal means that rL Ñ 0. Based on (4.8), it results in a convergence
of the object features with the noise features. Based on the fact that determining
object distance distinctively is challenging under this condition, it is assumed
that the corresponding confidence level (i.e., the value of o) of the distance pre-
diction algorithm is in general lower than that with strong laser signals. Thus, a
threshold oTh is introduced to separate the distance predictions with respect to
the value of o. In this case, MPA is changed to a binary classification problem,
i.e., with a given oTh,

- if the highest prediction value oH ą oTh, oH is predicted as an object,

- if the highest prediction value oH ď oTh, oH is predicted as an indiscernible
result (noise).

For this specific problem, the optimization task is to determine a oTh that mini-
mizes the number of indiscernible results, while maximizing the accuracy of dis-
cernible results.
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Chapter 5

Results and Discussion

In this chapter, results of the proposed MPA variants in chapter 4 are evaluated
and discussed. At the beginning of this chapter, two datasets are introduced,
including a dataset with synthetic TC-Hists and a dataset with real TC-Hists
measured by a LiDAR system. Afterwards, performance matrices used in the
evaluation are presented. Subsequently, MPA with different components and
parameters is evaluated and the optimal configuration is determined based on
the dataset with synthetic TC-Hists. In addition, a lateral comparison among
different distance prediction algorithms and possible optimization approaches are
provided and analyzed. Finally, the performance of different MPA variants on
the dataset with real TC-Hists is provided and discussed.

5.1 Datasets

Two datasets are created and specified in this section.

5.1.1 Dataset D1

The first dataset D1 is based on MCM using a simulation tool. The tool generates
TC-Hists according to (4.8) and (4.10). The distribution is derived with the
given background photon rate rB, the object distance dObj, and the received laser
photon rate rL. D1 consists of 96,000 TC-Hists. TP, rL, and NM in each TC-Hist
is set to 5 ns, 10 MHz, and 400, respectively. The given rB are 1, 2, ..., 8 MHz
and the simulated dObj are from 0.5m to 60 m, with an interval of 0.5m. Each
TC-Hist consists of 1,310 bins with a bin width of TTDC “ 312.5 ps resulting in

67



Chapter 5. Results and Discussion

a maximum detection distance of 61.26m. The TC-Hists are evenly distributed
under each combination of the aforementioned parameters, i.e., each combination
includes 100 TC-Hists. In the following work, D1 is divided into training dataset
D1Train (50 %), validation dataset D1Val (20 %), and test dataset D1Test (30 %)
for evaluation. The division is carried out manually to ensure that each dataset
includes all simulation conditions.

5.1.2 Dataset D2

The second dataset D2 originates from the LiDAR system “Owl” developed
by Fraunhofer IMS (mentioned as the “Owl” in the following context). Rel-
evant parameters of the “Owl” are specified as follows: The used lasers emit
at 905 nm wavelength with 75 W peak power, 10 kHz pulse repetition rate, and
18.75 ns pulse width resulting in a mean optical emission power of 11.25mW.
The bandpass of the equipped optical filter is 905˘ 30 nm. D2 was accumulated
in a basement tunnel. The measurement environment is specified as: The to-
tal length of the tunnel is 25 m. The target object is a 1.5mˆ1.5m-sized white
board. One experimental setup is shown in Figure 5.1. During the data collec-
tion process, the target object was located at seven different distances. Since
the objective of this work is to infer the object distance from the raw TC-Hists,
the calibration and the offset of the LiDAR sensor are not part of the discus-
sion. Therefore, after setting up the object, the true object distances refer
to t3.19, 6.32, 11.38, 13.44, 16.77, 18.78, 21.59um, which are calculated based
on 20,000 measurements in the environment with minimized background light
(rB ă 1 kHz). During the accumulation of D2, a halogen floodlight was applied
and was aimed at the object in order to simulate high background light conditions.
The detected background photon rate rB is within (7, 9)MHz. For each distance,
1000 TC-Hists were taken and each TC-Hist contains 400 measurements.

5.2 Performance Metrics

In this section, performance metrics for the evaluation of the MPA components
are introduced.
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Figure 5.1: Front view of experimental setup. The total length of the basement
tunnel is 25 m. A 1.5mˆ1.5m-sized white board is used as the target object.
The LiDAR system “Owl” has a two-line SPAD detector array. The lines are
positioned 1 degree apart vertically to the ground. Each line is horizontal to
the ground and contains 192 pixels. A halogen floodlight is aimed at the object,
which creates a maximum rB of 9MHz. During the experiment, the object was
placed at different distances. The measurement data was accumulated from the
96th pixel of the upper detector line.

5.2.1 Metrics of Feature Extraction

In the physics-guided feature extraction, raw TC-Hists are pre-processed by three
convolution kernels. To characterize the proportion of the desired signals, SNR
after the convolution is observed. According to [100], SNR in a TC-Hist is defined
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as
SNR “

CObj ´ µB,Obj

CObj
, (5.1)

where CObj represents the received photon count and µB,Obj represents the ex-
pected count of background photons at the object distance. Another important
criterium is the accuracy of the feature extraction AccF, defined as

AccF “
NTrue

NS
, (5.2)

where NTrue denotes the number of true feature groups. A true feature group
must meet the following condition: D bNst in this feature group, that

p1´∆EqdObj ď dTDC bNst ď p1`∆EqdObj with ∆E “ 0.05 , (5.3)

where bNst represents the bin nearest to the object distance dObj in a feature
group FG. ∆E refers to the factor of a tolerable error margin. According to
(5.3), short-range objects have a narrower tolerable error margin than long-range
objects, which is suitable for a coarse object distance determination mentioned
in section 1.2. In addition, RMSE between bNst and dObj given by

RMSE “

d

řNS
i“1pdTDC bNst, i ´ dObj, iq2

NS
(5.4)

is used to evaluate the influence of feature extraction on distance precision.

5.2.2 Metrics of Prediction Algorithms

The assessment of a prediction algorithm involves performance metrics in multiple
aspects. In terms of the proposed FNN in MPA, which performs as a classifier, the
classification accuracy AccC measures the capacity of FNN to locate the object
sub-region and is given by

AccC “
TP` TN

TP` TN` FP` FN . (5.5)

Besides, based on the confusion matrix introduced in subsection 2.3.4, Positive
Predictive Value (PPV) (also mentioned as precision or specificity), defined as

PPV “
TP

TP` FP , (5.6)
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True Positive Rate (TPR) (also mentioned as recall or sensitivity), defined as

TPR “
TP

TP` FN , (5.7)

and the F1-Score, which measures the overall performance of PPV and TPR,
defined as

F1-Score “ 2 PPV ˆ TPR
PPV ` TPR “

2 TP
2 TP` FP` FN , (5.8)

are used to assess algorithm performance as well. Moreover, to evaluate the or-
dering ability of the algorithm, Area Under Curve (AUC) of Receiver Operating
Characteristic (ROC) curve is applied.

In addition to the aforementioned classification metrics, the distance prediction
accuracy AccD, defined as

p1´∆EqdObj ď dPred ď p1`∆EqdObj with ∆E “ 0.05 , (5.9)

represents the proportion of correct distance predictions dPred with the given ∆E.
It is applied to measure the capacity of the algorithms to locate the exact object
position. Each MPA variant is evaluated individually using these metrics and the
optimal parameters are determined correspondingly.

Finally, the comparison between different prediction algorithms is carried out
regarding AccC, F1-Score, AUC, and AccD. Except for the prediction perfor-
mance, the timing performance and the memory occupancy of different algo-
rithms are equally important. They are compared as well in order to assess the
implementation ability of each variant.

5.2.3 Metrics of Optimization Methods

Optimization methods are dedicated to improving the efficiency and reliability
of MPA variants. These methods have different emphases and therefore require
different metrics. In the ablation study of the background suppression and the
stride analysis, AccD and the processing time are observed easily obtained. In
the threshold analysis, the impact of a threshold oTh is studied based on oH.
As mentioned in subsection 4.5.3, the evaluation of MPA changes to a binary
classification problem. Under this specific context, positive samples refer to object
information, while negative samples refer to noise. Thus, TP, FP, TN, and FN
becomes
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- TP1: The number of correct predictions, where oH are predicted as object
information.

- FP1: The number of false predictions, where oH are predicted as object
information.

- TN1: The number of correct predictions, where oH are predicted as noise.

- FN1: The number of false predictions, where oH are predicted as noise.

Apparently, one optimization approach is to maximize TP1 and TN1. Therefore,
an accuracy metric AccTh depending on oTh is defined as

AccTh “
TP1 ` TN1

TP1 ` FP1 ` TN1 ` FN1 . (5.10)

Table 5.1 summarizes the applied metrics for different MPA processes.

Table 5.1: Performance metrics for different MPA processes.

MPA Process
Metric Feature Extraction Prediction Correlation Optimization

SNR
‘

RMSE
‘

AccF
‘

AccC
‘

F1-Score
‘

AUC
‘ ‘

AccD
‘ ‘ ‘

AccTh
‘

Timing
‘ ‘ ‘ ‘

Memory
‘ ‘ ‘ ‘

5.3 Parameter Determination

In this section, components in MPA, including the physics-guided feature extrac-
tion, two prediction algorithms (FNN and NBC), and the correlation analysis are
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evaluated with a group of parameters and the optimal settings are determined
according to their performance.

5.3.1 Parameters of Feature Extraction

Three kernels introduced in subsection 4.2.1 are evaluated regarding SNR, AccF,
and RMSE. First, calculated SNRs of each kernel are divided into 20 sub-groups
and plotted as a histogram, as shown in Figure 5.2. The statistic of the expo-
nential and the constant kernel are almost identical, while SNR of the Gaussian
kernel is smaller. In addition, the first SNR groups on the left of all kernels have
considerable values. They originate mostly from the TC-Hists with high rB and
large dObj. These TC-Hists have extremely few laser photons reflected by the
object and thus contain barely any object information. Afterwards, AccF and
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Figure 5.2: SNR statistics with different kernels. The x-axis refers to the value
of SNR and the y-axis refers to the number of samples within each value range
in D1.

RMSE of three kernels according to (5.2) and (5.4) are demonstrated in Figure
5.3. It is observed that all kernels perform similarly. In general, AccF increases
rapidly in the initial period and gradually stabilizes as NF increases. Besides,
RMSE decreases significantly when NF ă 5 and starts to saturate when NF ą 10.
Furthermore, RMSE is smaller than the pulse width (NP dTDC “ 0.75m) when
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NF ą 12. This implies that most feature groups have at least one fn containing
laser photons. It should be noted that an increase in NF leads to a linear increase
in feature extraction time and an exponential increase in the computational com-
plexity of a subsequent processing method. Therefore, a trade-off between NF

and AccF is required in practice.
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Figure 5.3: SNR comparison of three convolution kernels based on D1. The
left y-axis refers to RMSE and the right y-axis refers to the accuracy of feature
extraction. The x-axis refers to the number of features.

As a result, the constant kernel is selected, since it achieves a good general SNR
and has the best real-time adaptability. A detailed SNR of the constant kernel
regarding distance and background light is given in Table 5.2. The minimum
average of SNR is 0.16. It means dObj can be still represented by a local maximum
and explains the reason that AccF reaches 92.90% with only 12 features out of
1310 values. The following analysis focuses on the excess zone between rising
and saturated regions, i.e., NF P t8, 12, 16, 24u, to obtain the most efficient
parameters with the consideration of prediction accuracy and timing performance.

5.3.2 Parameters of Neural Network

The parameter determination of an FNN starts with a preliminary grid search.
Hyperparameters of FNN are selected and listed in Table 5.3. A discussion on the

74



5.3. Parameter Determination

Table 5.2: Average SNR after convolution by constant kernel. They are divided
into 48 sub-groups regarding dObj and rB.

rB /MHz
dObj /m 1 2 3 4 5 6 7 8

(0, 10] 1.00 0.93 0.87 0.82 0.77 0.73 0.69 0.65
(10, 20] 0.97 0.88 0.79 0.72 0.66 0.59 0.54 0.50
(20, 30] 0.94 0.81 0.71 0.62 0.55 0.48 0.42 0.37
(30, 40] 0.91 0.76 0.64 0.54 0.46 0.39 0.32 0.27
(40, 50] 0.88 0.71 0.58 0.47 0.38 0.31 0.25 0.21
(50, 60] 0.85 0.66 0.52 0.41 0.31 0.26 0.20 0.16

learning rate, the batch size, the optimizer, the number of hidden layers, and the
regularization method are excluded in the following discussion, since they show
little relevance to the performance of MPA during the grid search. Therefore,
they are pre-determined to fixed values. The focuses of this subsection are NF,
the number of hidden layer neurons NHN, and the type of activation functions.
A set of values for each is covered in Table 5.3 and their impacts on FNN based
on D1Val are discussed.

In Table 5.4, the F1-Score and AUC of the FNNs with different NF are shown.
It is observed that the standard deviations of both metrics are extremely small.
This means that NHN and the activation functions have barely influence on the
F1-Score and AUC. However, the average F1-Score decreases, while the average
of AUC increases with the increase of NF.

To discuss the impacts of NF, NHN, and activation functions on the prediction
accuracy, the transitions and trends of AccC,Val and AccD,Val are shown in Figure
5.4. In general, the FNN without activation function and hidden layer achieves
the best overall accuracy and stability with respect to both AccC,Val and AccD,Val.
Besides, in Figure 5.4 (a) and (b), it is clearly seen that AccC,Val decreases with
the increase of NF. However, this trend is not observed in Figure 5.4 (c) and
(d). Except for NF “ 8, with which AccD,Val is distinctly low, FNNs with NF “

t12, 16, 24u have only minor difference on AccD,Val. It should be mentioned that
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Table 5.3: FNN hyperparameters for evaluation of MPA. The parameters in the
left column are fixed values, while the parameters in the right column correspond
to multiple possible values.

Parameter Value Parameter Value

Learning rate 0.001 NF {8, 12, 16, 24}
Batch size 64 Hidden layers 0 or 1
Optimizer Adam NHN t0, NF, NF ` 10, NF ` 20}

Regularization None Activation function Sigmoid, ReLU, None

Table 5.4: Average and standard deviation of classification metrics regarding
NF. Each value is calculated with a corresponding NF and all combinations of
hidden layers, NHN, and activation functions specified in Table 5.3.

F1-Score {% AUC {%
NF Average Standard Deviation Average Standard Deviation

8 71.24 0.07 94.05 0.07
12 69.77 0.08 94.24 0.02
16 69.12 0.09 95.02 0.04
24 66.85 0.11 95.34 0.03

in exchange for a 0.3% increment on AccD,Val, the FNN with NF “ 24 has four
times as much computation and memory occupation as the FNN with NF “ 12.

To further clarify the cause of different characteristics between Figure 5.4 (a)
(b) and Figure 5.4 (c) (d), a specific example is provided in Figure 5.5. The figure
shows a segment of a TC-Hist after convolution and normalization in D1. In this
segment, the object bin bObj lies exactly on the boundary of two sub-regions. This
means each bin around the feature border (between bin 565 and 581) contains at
least a portion of laser photons. In this case, a small random fluctuation can cause
a position deviation of the maximum value among these bins. As shown in Figure
5.5, the maximum value is shifted from bin 566 (26.51m) to bin 568 (26.61m).
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Figure 5.4: Accuracy of FNN in D1Val with respect to different activation func-
tions, NHN, and NF. (a) Classification accuracy regarding activation functions.
(b) Classification accuracy regarding NHN. (c) Distance prediction accuracy re-
garding activation functions. (d) Distance prediction accuracy regarding NHN.
Each point refers to the average accuracy and the corresponding boundary lines
refer to the maximal/minimal accuracy. In (a) and (b), the points and the bound-
ary lines are calculated using all NHN. In (c) and (d), they are calculated using
all activation functions.

After the subsequent processing, the right region is inferred as the region where
the object locates, and 26.61m is inferred as dPred. Thus, the classification result
is annotated as false, while the distance prediction result is still counted as correct,
since the deviation is still within the defined ∆E according to (5.9).

In fact, the divergence between classification and distance prediction can be
separated into two cases:

- Case 1: The classification is false, while the distance prediction is correct.

- Case 2: The classification is correct, while the distance prediction is false.
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Figure 5.5: A section of TC-Hist after convolution and normalization. Its
classification result is false, while its distance prediction result is correct. The
object bin number bObj locates at the left sub-region and is represented by a
dotted vertical line, while the predicted bin number bH locates in the right sub-
region and is marked by a dashed vertical line.

The example in Figure 5.5 belongs to case 1. A statistical overview of these cases
in D1Val is provided in Figure 5.6. As shown in Figure 5.6 (a) and (b), the subset
of case 1 becomes larger with the increase of NF. Besides, most of the TC-Hists
appear with large distances and small errors. For example, with NF “ 12, the
proportion of case 1 is 0.97% in D1. Therein, 46.40% of the distance predictions
on this subset have errors within 0.43m. The statistics of the subset with case 2
is illustrated in Figure 5.6 (c) and (d). In contrast to case 1, it becomes smaller
with the increase of NF. Apparently, most of the TC-Hists with case 2 appear
within the object distances of 5 m. The corresponding error bound of these TC-
Hists is smaller than ˘0.25m according to (5.9). Since TP in D1 is 5 ns, i.e., the
laser pulse is about 0.75m wide, the derivation of the local maximum can be
easily greater than the error bound, resulting in an occurrence of case 2.

In the field of ADAS, the distance prediction result of MPA is of more interest
compared to the classification results. Therefore, the general system performance
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Figure 5.6: Divergence of classification and distance prediction results. The
symbol

ř

represents the corresponding proportion of the subset in D1Val. (a)
Statistics of case 1 regarding distance, bin size = 5 m. (b) Statistics of case 1
regarding errors, bin size = 0.43m. (c) Statistics of case 2 regarding distance,
bin size = 5 m. (d) Statistics of case 2 regarding errors, bin size = 1.14m. The
y-axis of each subplot represents the correlated proportion of TC-Hists in D1Val.

assessment is only conducted regarding AccD. Hence, the best parameters and
evaluation criteria of FNN are summarized as: NF “ 12, NHN “ 0, and activation
function except the output layer is discarded. In the following context, MPA using
FNN with these parameters is mentioned as FNN-MPA.

5.3.3 Parameters of Naive Bayes Classifier

Parameter optimization of NBC starts with an observation on the statistics of
the input PNorm, n. By taking NF “ 12 as an example, the statistics of sub-
regions when the object locates within sub-region 1 is shown in Figure 5.7. It
is observed that the statistics of PNorm, n approximate normal-like distributions.
According to Figure 5.7, the average value µ1 of the sub-region 1 is higher than
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Figure 5.7: Magnitude distribution of PNorm, n from sample group with class 1
in each sub-region. The bin width is equal to 0.01. Sub-plots (a) - (l) represent
the corresponding statistics in sub-region 1 - 12.

that of other sub-regions due to the presence of the object. In addition, an
abnormal rebound in the value region of r0.2, 0.4s is seen in 5.7 (b), resulting in
the shape of a bimodal distribution. To explain this, samples in Figure 5.7 (b)
are separated into two sub-groups, as shown in Figure 5.8. Since the width of
a laser pulse is 0.75m and the boundary of sub-region 1 and sub-region 2 is at
5.06m, the laser pulse reflected by dObj “ 5m is distributed in both sub-region
1 and 2. Thus, although dObj “ 5m locates in sub-region 1, it brings impacts to
the left of sub-region 2 as well. PNorm, n caused by this case is typically higher
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than PNorm, n from noise, resulting in a side-peak in the statistics. This situation
is called the “boundary effect”. As shown in Figure 5.8, by separating out the
distances causing the boundary effect, the statistics are well decomposed into two
single-peak distributions. Although the aforementioned examples and statistics
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Figure 5.8: Decomposition of statistics in Figure 5.7 (b). The samples are sep-
arated into a subset causing the boundary effect (dObj “ 5m) and a subset irrel-
evant to the boundary effect (dObj P t0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5um).

are based on a part of D1, where the objects locate within sub-region 1, their
characteristics are representative. After traversing all samples in D1, the general
characteristics are summarized as:

- If dObj of samples are within sub-region n, the statistic of the corresponding
PNorm, n approximates a normal-like distribution with a relatively high P n

and sn.

- If dObj of samples are outside sub-region n, the statistic of the corresponding
PNorm, n approximates a normal-like distribution with a relatively low P n

and sn.

- If dObj of samples are within sub-region n, the boundary effect is observed
at sub-region n´ 1 and sub-region n` 1. In this case, the statistics of the
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corresponding PNorm, n´1 and PNorm, n`1 approximate the bimodal distribu-
tions.

To further specify the statistical characteristics with different rB, samples in
D1 are divided into

NNBC “ NF NB “ 96 (5.11)

subgroups, where NB refers to the number of background conditions. Afterwards,
observations are carried out in three aspects: 1) The statistical parameters in the
sub-region where the object locates, i.e., PObj, n and sObj, n. 2) The statistical
parameters of noise, i.e., PNoise, n and sNoise, n. 3) The statistical parameters of
the boundary effect, i.e., PBE, n and sBE, n.

Figure 5.9 illustrates PObj, n and sObj, n of 96 classes. In general, PObj, n slowly
decreases with the increase of the sub-region number. Besides, as rB increases,
PObj, n decreases from 0.48 to 0.07. Its decreasing rate is rapid at the beginning
and gradually slows down. In addition, sObj, n with low rB fluctuates around 0.09
with the increase of the sub-region number. However, its decreasing rate becomes
evidently with the increase of rB and sObj, n is finally smaller than 0.04.

Figure 5.10 summarizes PNoise, n and sNoise, n of 96 classes. Compared to PObj, n,
PNoise, n decreases at a clearly slower rate (from 0.10 to 0.05) with the increase of
the sub-region number. Furthermore, in contrast to PObj, n, PNoise, n is inversely
proportional to rB. Besides, sNoise, n remains small and stable in all sub-regions,
while it increases as rB increases and finally reaches 0.03. Combined with afore-
mentioned characteristics of the object features, it is noticed that PObj, n converges
to PNoise, n and sObj, n converges to sNoise, n with the increase of rB and the sub-
region number. The decreasing statistical difference between object features and
noise features is due to the decrease of SNR in the raw TC-Hist. In particular,
PObj, n with rB P t6, 7, 8 uMHz in sub-region 12 are highly similar to each other
and close to PNoise, n. This brings challenges to distinguish them and makes a
distance prediction crucial.

To observe the boundary effect, two distance groups with the object distances
close to boundaries are formed. Therein, group 1 refers to the first distances on
the left side of boundaries, and group 2 refers to the first distances on the right side
of boundaries. Figure 5.11 illustrates the statistics of group 1. It is observed that
PBE, n and sBE, n strongly relates to the difference between dObj and sub-region
boundaries. As the object distance moves away from a sub-region boundary,
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Figure 5.9: Statistical parameters of object features PNorm, n in each sub-region.
(a) Average of object features PNorm, n. (b) Standard deviation of object features
PNorm, n.

PBE, n and sBE, n decrease. With rB “ 1MHz, it is clearly seen that PBE, n to the
left side of boundaries changes periodically as the sub-region number increases.
This trend is observed with the rest of rB as well. The reason is that the interval
of the distances in D1 is not equal to dTDC, which generates periodic changes
between dObj and sub-region boundaries. Besides, PBE, n is inverse-proportional
to rB and the decrease of PBE, n due to rB is more significant with large sub-
region numbers. As a result, not all samples in group 1 create visible side-peaks.
In Figure 5.11 (a), PBE, n of 40 out of 88 points drop to around 0.10, which is the
value range of noise features as well. This means that half of the samples in group
1 have similar characteristics as noise and cause barely side-peaks. Obviously,
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Figure 5.10: Statistical parameters of noise PNorm, n in each sub-region. (a)
Average of noise PNorm, n. (b) Standard deviation of noise PNorm, n.

the parameter characteristics of group 2 are symmetrical to group 1. Thus, the
proportion PBE of both groups creating visible side-peaks is estimated by

PBE «
NBE

NBE `N 1
BE

2 pNF ´ 1q
120 . (5.12)

where NBE refers to the number of samples creating visible side-peaks and N 1
BE

refers to the rest number of samples, which are barely different from noise. 120
refers to the number of different distances in D1. With NF “ 12, NBE “ 48, and
N 1

BE “ 40, PBE accounts for 10.00 % of D1.
Based on the aforementioned observations, the following aspects are considered

for parameter optimization:

- NF: Similar to the FNN, the influence of NF “ t8, 12, 16, 24u in NBC is

84



5.3. Parameter Determination

(a)
0.05

0.10

0.15

0.20

0.25

0.30

0.35
P

B
E

1 2 3 4 5 6 7 8 9 10 11 12
(b)

Sub-Region Number

0.02

0.03

0.04

0.05

0.06

0.07

s B
E

Sub-Region Boundary
rB = 1MHz

rB = 2MHz

rB = 3MHz

rB = 4MHz

rB = 5MHz

rB = 6MHz

rB = 7MHz

rB = 8MHz

Figure 5.11: Statistical parameters of boundary features PNorm, n caused by
distances in group 1. (a) Average of boundary features PNorm, n. (b) Standard
deviation of boundary features PNorm, n. Each point refers to 30 samples. Verti-
cal lines represent the positions of sub-region boundaries. Distances in group 1
“ t5, 10, 15, 20, 25, 30, 35, 40, 45.5, 50.5, 55.5um. These distances create side-
peaks in the statistics of the adjacent right-handed sub-regions.

evaluated. It should be noted that NF in NBC influences not only AccF,
but also the number of sub-region boundaries, which further affects the
boundary effect.

- Modeling: The statistics of PNorm, n show normal-like distributions. There-
fore, the optimal modeling is selected based on the evaluation among nor-
mal, log-normal, and multimodal functions.

- Boundary effect: In order to evaluate the degree of its impact, three strate-
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gies are considered for the boundary effect, namely: single-peak modeling
including boundary distances (S1), single-peak modeling excluding bound-
ary distances (S2), and bimodal modeling with additional modeling for the
boundary distances (S3).

- NNBC: It is observed that P n and sn of object features, noise features, and
the boundary effects change noticeably with the change of sub-region num-
bers and rB. Therefore, two categorizations are investigated: (1) categoriza-
tion regarding different sub-region numbers, i.e., NNBC “ NF and (2) cate-
gorization regarding both sub-region numbers and rB, i.e., NNBC “ NF NB.
It should be mentioned that in the prediction phase, step 3 introduced in
subsection 4.3.3 is only carried out with the classes corresponding to rB

of each input sample. This means that although the categorization with
NNBC “ NF NB requires more computations in the modeling phase, it has
the same computations in the prediction phase compared to the categoriza-
tion with NNBC “ NF.

Finally, the parameters are summarized in Table 5.5, where the rules are specified
based on the defined models (M) and strategies (S) above as:

- M1-S1: Modeling using normal distributions and the strategy S1.

- M2-S1: Modeling using log-normal distributions and the strategy S1.

- M1-S2: Modeling using normal distributions and the strategy S2.

- M2-S2: Modeling using log-normal distributions and the strategy S2.

- M1-S3: Modeling using bimodal distributions and the strategy S3.

- M2-S3: Modeling using log-bimodal distributions and the strategy S3.

The results are shown in Figure 5.12 and discussions are separated into the
following four aspects:

1) Normal function (M1) vs. Log-normal function (M2): In general,
the variants using log-normal functions (M2-S1, M2-S2, and M2-S3) have higher
AccD,Val than the variants using normal functions (M1-S1, M1-S2, and M1-S3), if
NF and the applied strategy S are the same. This corresponds to the observation
in Figure 5.7, where all sub-region statistics are slightly right-skewed. In this case,
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Table 5.5: Selected NBC parameters for MPA.

Parameter Name Value

NF {8, 12, 16, 24}
Rule M1-S1, M2-S1, M1-S2, M2-S2, M1-S3, M1-S3
NNBC {NF, NB NF}

a log-normal function normalizes the statistics to a standard normal distribution,
which leads to a better model matching than using a normal function directly.
The only exception is M1-S2 with NF “ 12 having an accuracy of 69.99%, which
is 0.14% higher than M2-R2 with NF “ 12.

2) S1 vs. S2 vs. S3: The variants with S2 outperform the variants with
S1. The reason is that the boundary distances cause deviations in P n and sn for
single-peak modeling (i.e., with normal and log-normal functions). As shown in
Figure 5.8, calculations of model parameters including the boundary distances
increase both P n and sn, which in turn leads to a mismatch between the model
and the statistics. In terms of bimodal distributions, the advantages of M1-
S3 and M2-S3 are barely observed compared to M1-S2 and M2-S2, respectively.
This result correlates to the observation in Figure 5.11, where side-peaks are only
visible with low rB and small sub-region numbers. An important fact is that a
distance prediction is straightforward under these conditions, since statistics of
object features are already unique to each other and easy to identify from noise.
In terms of the harsh conditions (i.e., high rB and large sub-region number),
under which a distance prediction is challenging, impacts of the boundary effect
is minor and can be neglected. This results in only minimal difference between
S2 and S3. However, in the case of NF “ 24, which involves the most boundaries,
the impact of the boundary effect reaches its maximum. In this case, M2-S3 with
NNBC “ NF NB shows a slightly better performance than M2-S2 and achieves the
highest AccD,Val among all variants. Considering that a bimodal function requires
twice the computations compared to a normal function, it is more efficient to
achieve a reliable performance by applying S2.

3) NF: AccD,Val of M1-S1 and M2-S1 increase slowly in the initial period with
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the increase of NF. As NF further increases, they start to decrease except for the
variant with NNBC “ NF NB. In particular, AccD,Val of M1-S1 reduces to 67.65%,
when NNBC “ 24. This is because the number of boundaries is proportional to
NF, resulting in the increase of PBE and the deviation of statistical parameters
mentioned in aspect (2). Except for M1-S1 and M2-S1, AccD,Val of other variants
are proportional to NF. However, similar to the case in FNN, a large NF not
only requires large memory space, but also involves additional calculations for
the binomial estimation, model parameters, and joint probabilities.

4) NNBC: Apparently, AccD,Val with NNBC “ NF NB is not only higher, but
also more stable than that with NNBC “ NF. This means that NF classes are
insufficient to generalize the statistical characteristics in D1. Thus, it is necessary
to perform models separately regarding different rB with NNBC “ NF NB.
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Figure 5.12: Distance prediction accuracy of NBC with different parameters in
D1Val. (a) AccD,Val with NNBC “ NF. (b) AccD,Val with NNBC “ NF NB.

In summary, M1-S1 and M2-S2 with NNBC “ NF have the lowest AccD,Val,
since they are strongly influenced by the negative impacts of the boundary effect.
Therefore, they are excluded as potential options. Besides, the variants with nor-
mal functions are excluded as well, because they are clearly inferior to the variants
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with log-normal functions for modeling of statistics in D1. Among the remaining
options, the variants with large NF achieve at most 0.82% accuracy improvement
while increasing both required memory space and computations. However, the
variants with NNBC “ NF NB require the same number of calculations for pre-
diction as the variants with NNBC “ NF and have similar performance to the
variants with large NF. This means that an increase in NB is more efficient than
an increase in NF. Therefore, the optimal parameters for NBC are specified as:

- NF: 12,

- Rule: M2-S2,

- NNBC: 96.

It achieves AccD,Val “ 69.31 % in D1Test. In the following context, MPA using
NBC with these parameters is mentioned as NBC-MPA.

5.3.4 Parameters of Correlation Analysis

To specify the impacts of α and β introduced in subsection 4.4.2, the following
conditions are considered:

1. The time and space correlations are applied simultaneously. Three output
groups are involved as reference data, i.e., Ot´1, i, j, Ot, i´1, j, and Ot, i`1, j.

2. The target object is assumed to be stationary and flat during the correlation,
i.e., the object distances of Ot, i, j, Ot´1, i, j, Ot, i´1, j, and Ot, i`1, j are the
same.

3. The background light condition is assumed to be constant during the cor-
relation.

4. Randomness of correlation is guaranteed by Ot, i, j ‰ Ot´1, i, j ‰ Ot, i´1, j ‰

Ot, i`1, j.

5. To guarantee a fair comparison, the involved TC-Hists in different MPA
variants are identical.

6. α P r0.001, 1000s.
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7. β P t16, 32, 64u.

The correlation is carried out in D1Test. Figure 5.13 shows the accuracy difference
∆AccD,Test after the correlation analysis. Therein, ∆AccD,Test is given by

∆AccD,Test “ AccD,Co ´ AccD,Test , (5.13)

where AccD,Co refer to the distance prediction accuracy in D1Test caused by the
correlation analysis. According to (4.33), G is proportional to α and β determines
the width of the gain area. When α “ 0.001 and β “ 16, the influence of
the reference is limited, resulting in small ∆AccD,Test. As α starts to increase,
∆AccD,Test of both FNN-MPA and NBC-MPA increases as well. In terms of
FNN-MPA, ∆AccD,Test reaches the maximum at α “ 1.0. As α further increases,
∆AccD,Test decreases and gradually stabilizes. In addition, the impact of different
β is small. A slight advantage is observed with β “ 32. In terms of NBC-
MPA, the maximum of ∆AccD,Test is reached at α “ 0.2. A significant drop-
off is seen as α further increases. The difference regarding α ą 0.2 between
FNN-MPA and NBC-MPA is due to the used normalization functions and their
working principles. In FNN-MPA, the normalization is carried out using (4.18)
and FNN determines the prediction results mainly according to the amplitudes
of input features in D1Train. In NBC-MPA, the normalization is carried out
using (4.22) and NBC determines the prediction results directly based on the
statistics in D1Train. As α increases, the impact of the reference data increases as
well, resulting in significant variations in feature amplitudes. However, after the
normalization in FNN-MPA, most amplitudes of object features are still similar
compared with the case without the correlation, while the statistical distributions
used in NBC-MPA are completely changed (i.e., overamplified µObj). Therefore,
NBC-MPA is more sensitive to α compared with FNN-MPA and ∆AccD,Test of
NBC-MPA becomes even negative when α ě 10.

In practice, the selection of α and β highly depends on the dynamic degree of
detection scenarios. Under the detection conditions specified at the beginning of
this subsection, the optimal parameters for the correlation analysis are determined
as αFNN “ 1.0, αNBC “ 0.2, and βFNN “ βNBC “ 32. In the following context,
the correlated FNN-MPA and NBC-MPA with these parameters are mentioned
as CO-FNN-MPA and CO-NBC-MPA. ∆AccD,Test of CO-FNN-MPA and CO-
NBC-MPA are 14.35 % and 13.15 %, respectively.
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Figure 5.13: ∆AccD,Test after correlation analysis. (a) ∆AccD,Test between CO-
FNN-MPA and FNN-MPA. (b)∆AccD,Test between CO-NBC-MPA and NBC-
MPA.

5.3.5 Comparative Discussion

In the following discussion, a widely-used Classical Digital Processing (CDP)
method, including an average filter, BES, and the global maximum detection, is
configured as a reference for comparison. CDP, FNN-MPA, the binomial estima-
tion, and NBC-MPA specified in the previous sections are compared regarding
AccD, timing performance, and memory occupancy.

Accuracy of Distance Prediction

In general, AccD,Test of FNN-MPA, the binomial estimation, and NBC-MPA are
higher than that of CDP. Since the binomial estimation only serves as a denoising
and pre-processing process for NBC, its AccD,Test is lower than that of FNN-MPA
and NBC-MPA. To compare their prediction performance in detail, AccD,Test is
further separated with respect to different dObj and rB, as shown in Figure 5.14.
In terms of low background light (rB “ 1MHz), AccD,Test of all approaches reach
almost 100% and have minor difference. Therefore, the following analysis focuses
on rB ě 2MHz.
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Figure 5.14: Comparison of distance prediction accuracy. D1Test is divided
into 48 subsets regarding dObj and rB. (a) CDP (overall AccD,Test = 59.34%).
(b) FNN-MPA (overall AccD,Test = 68.56%). (c) Binomial estimation (overall
AccD,Test = 67.09%). (d) NBC-MPA (overall AccD,Test = 69.31%).

As rB increases, the advantages of CDP are becoming evident in short-range
detections (dObj P p0, 10sm). To explain this, the confusion matrices of CDP and
NBC-MPA are shown in Figure 5.15. In Figure 5.15 (a), most samples with false
predictions are in the lower-left region of the confusion matrix and the samples in
the first columns take a large portion. This means CDP tends to make predictions
as small distances, which improves its AccD,Test with dObj ă 10m at the substan-
tial expense of its prediction ability on samples with large distances. This draw-
back is indicated by unbalanced precision and recall of CDP in Table 5.6 as well.
It compromises the overall performance and thus results in a low F1-Score. On the
contrary, false predictions are relatively evenly distributed. This means that pre-
diction results of NBC-MPA have no bias towards distance. Except for the short-
range detections, MPA variants outperform CDP under all other situations. In
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Figure 5.15: Confusion matrix based on classification results of D1Test. (a)
CDP. (b) NBC-MPA.

Table 5.6: Performance comparison regarding precision, recall, F1-Score, and
AUC.

Metric {%
Variant Precision Recall F1-Score AUC

CDP 75.21 60.46 60.00 -
FNN-MPA 69.72 70.14 69.60 94.16

Binomial Estimation 69.51 68.38 67.42 92.26
NBC-MPA 70.22 70.50 70.30 95.43

particular, FNN-MPA, the binomial estimation, and NBC-MPA reach the accu-
racy of 58.60%, 51.49%, and 60.53% with dObj P p30, 60sm and rB P p3, 6sMHz,
while CDP has the accuracy of only 32.64%. This shows the clear advantage of
the proposed variants with high background light in middle-range detections over
CDP. In the case that dObj P p40, 60sm and rB P p7, 8sMHz, all variants reach
their detection limits. Therein, NBC-MPA achieves the best AccD,Test (20.21%),
while FNN-MPA has the second highest AccD,Test (16.38%). The superiority of
NBC-MPA in this case is provided by its categorization process. NBC-MPA has
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considerably more classes than FNN-MPA and calculates models for different rB

separately, which gives it a superior discriminative ability under strong back-
ground light. Finally, by considering the observation in Table 5.2, it indicates
that with SNR “ 0.16 and NM “ 400, the received laser photons are insufficient
for making reliable distance predictions, since the random behaviors of photon
statistics are considerably high.

In summary, three variants proposed in this work outperform CDP, especially
with high rB and large dObj. Therein, NBC-MPA achieves the best overall accu-
racy. Besides, FNN-MPA provides a comparable prediction ability to NBC-MPA.

Correlation Results

To discuss detailed impacts of correlation analysis, ∆AccD,Test defined in sub-
section 5.3.4 is further separated regarding different dObj and rB, as shown in
Figure 5.16. In general, the characteristics of ∆AccD,Test using FNN-MPA and
NBC-MPA are fairly similar. Discussions are divided into four parts:
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Figure 5.16: Accuracy difference between distance prediction with and without
correlation. (a) ∆AccD,Test between AccD,Correlation of FNN and Figure 5.14 (b).
(b)∆AccD,Test between AccD,Correlation of NBC and Figure 5.14 (d).

1) rB PPP [1, 2]MHz: In this sub-area, AccD,Test without the correlation is
extremely high (average AccD,Test > 97%). Thus, there exists little space for
improvement. Nonetheless, AccD,Test of FNN-MPA and NBC-MPA still increases
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slightly. This implies that the correlation analysis has positive impacts in the
detection case with low background light.

2) rB PPP [3, 8]MHz
Ş
Ş
Ş

dObj PPP (0, 10]m: Considerable increments in AccD,Test

are observed in this sub-area. With the improvements of the correlation, the
inferiority of FNN-MPA and NBC-MPA are compensated and AccD,Test of both
variants exceed CDP without sacrificing the performance on large dObj.

3) rB PPP [3, 6]MHz
Ş
Ş
Ş

dObj PPP (10, 60]m and rB PPP [7, 8]MHz
Ş
Ş
Ş

dObj PPP

(10, 40]m: The correlations bring significant improvements in this sub-area. For
example, in Figure 5.16 (a), with rB “ 5MHz and dObj P p40, 50sm, the accuracy
is improved from 45.00% to 80.33%. However, according to condition 2 and 3
proposed at the beginning of subsection 5.3.4, both reference data and the original
data have similar AccD,Test of around 45%. This means that the correlation
provides notable improvements even if the involved data are less reliable. To
explain it, a specific correlation example is described as follows. First, the involved
sample A and B chosen from D1Test are illustrated in Figure 5.17. Clearly, both
distance predictions according to the original output results of sample A and
B are false. However, it is observed that the prediction values at the correct
object positions are considerably high. According to (4.33), the correlation is
carried out using the output of sample A as the reference data and the feature
group of sample B as the original data. Figure 5.18 illustrates the correlation
process. In Figure 5.18 (a), only one significant gain is generated at bin 907.
Subsequently, the gains are added to the original data and the correlated feature
group is formed, as shown in Figure 5.18 (b). Finally, by applying the same FNN
to the correlated features, the resulting prediction is corrected, as shown in Figure
5.18 (c). This example shows that correlations with positive effects rely not only
on the highest prediction value, but also on multiple potential object positions.
This characteristic gives the correlation analysis the ability to obtain the correct
prediction even when both the original and reference data are wrongly predicted.
It benefits a large number of samples and explains the significant improvement
observed in Figure 5.16.

4) rB PPP [7, 8]MHz
Ş
Ş
Ş

dObj PPP (40, 60]m: In this sub-area, the correlation
analysis brings a relatively small boost. It is observed that the improvement of
FNN-MPA is distinctly higher than that of NBC-MPA. Besides, the effects of
the correlation in both variants are positive even with rB “ 8MHz and dObj P

95



Chapter 5. Results and Discussion

0.0

0.2

0.4

0.6

0.8

1.0

f

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200
(a)

Bin Number

0.0

0.1

0.2

0.3

0.4

0.5

o

0 200 400 600 800 1000 1200
(b)

Bin Number

0.0

0.1

0.2

0.3

0.4

0.5

Figure 5.17: Samples and original predictions of FNN-MPA involved in the
correlation example. (a) The feature group and the original output results of
sample A. The object locates at bin 911, while the highest prediction value
without correlation is at bin 721. (b) The feature group and the original output
results of sample B. The object locates at bin 907, while the highest prediction
value without correlation is at bin 352.

p40, 60sm, where the original prediction accuracies are only 8.83% and 10.17%,
respectively. This indicates that gains between noise features are well suppressed
by the correlation analysis and the induced negative effects can be neglected.

Finally, the MPA variants with the correlation are tested in the virtual scenario
introduced in subsection 4.4.3. The parameters of the corresponding TC-Hist
generation are identical to that of D1. In addition, the parameter settings for the
virtual scenario are listed in Table 5.7. Prediction results of CDP, FNN-MPA,
and CO-FNN-MPA are shown in Figure 5.19. Therein, each point represents the
predicted distance of the corresponding variant. The color of the point refers to
the prediction certainty from 0% (deep blue) to 100% (deep red). Since CDP
provides only hard decisions, certainties of its predictions are assumed to be
100%, as shown in Figure 5.19 (a). In the given scenario, CDP only achieves
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Figure 5.18: Gain values and correlation results using sample A and B. (a)
Gain value ∆f . (b) Correlated feature group F ˚G of sample B. (c) Prediction
results on F ˚G. Gain values ∆f are calculated based on the correlations between
reference data A and original data B. Subsequently, ∆f are superimposed on the
feature values of B and the correlated feature values f˚n are obtained. Finally, a
new prediction o˚n is made by taking f˚n as the input of FNN.

47.92% prediction accuracy. Due to high background light, most of its false
predictions are within the vertical distance range of p0, 20sm. It is barely possible
to obtain precise scenario information based on these measurement points. As
shown in Figure 5.19 (b), the overall prediction accuracy of FNN-MPA reaches
75.52%. Furthermore, it is observed that the prediction points close to the objects
and the background wall have relatively high prediction certainties, while most
false prediction points have low prediction certainties. In terms of CO-FNN-
MPA, the overall prediction accuracy is further improved by 15.62%, as shown
in Figure 5.19 (c). The certainty difference between correct prediction points
and false prediction points is further increased (Most points close to the objects
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Table 5.7: Parameter settings of virtual scenario.

Parameter Unit Value

vObj [m/s] 5
wObj [m] 4
dObj [m] 25
dWall [m] 35
FOV [ ˝ ] 36

Number of Pixels - 192
rB [MHz] 5

and the background wall have more than 80% of prediction certainties, while the
prediction certainties of the rest of the points are less than 40%). Besides, it is
noticed that the right sides of both point groups close to the background wall
are slightly jittered. This is presumed to be induced by the residual effect of the
objects. As objects move to the right, the parts of the background wall that are
exposed to the LiDAR system shift to the right as well. In terms of the newly
exposed parts of the background wall (where the jitters occur), correlations from
the last time frame and from the right-side pixel are less effective. Nevertheless,
both FNN-MPA and CO-FNN-MPA show their capabilities in the given dynamic
scenario and improve the reliability of distance predictions significantly.

Timing Performance

The computation time of each variant is recorded in Table 5.9. Therein, although
an average filter used in CDP and a constant convolutional kernel used in MPA
variants are different in definitions, their computations and functionality in the
scope of this work are the same. Thus, these two calculation processes are col-
lectively referred to as convolution in the following context. It is seen that the
distance prediction of CO-FNN-MPA is faster than that of CDP. In addition,
the convolution time takes a large portion of the whole processing time. Due
to the feature extraction, BES in MPA only needs to be performed on NF “ 12
features, which requires considerably less computation time compared to BES in
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Figure 5.19: Prediction result demonstration in virtual scenario. (a) Predictions
of CDP, overall AccD “ 47.92%. (b) Predictions of FNN-MPA, overall AccD “

75.52%. (b) Predictions of CO-FNN-MPA, overall AccD “ 91.15%. Colors of
the prediction points represent the corresponding prediction certainties.

CDP. However, although the binomial estimation is carried out for NF “ 12
features as well, the computation time of 200 µs is required, since it involves a
large number of operations with factorials and exponents. In terms of distance
prediction, CDP only extracts the global maximum as the final prediction, thus
taking an extremely short time to complete. Since NBC calculates log-normal
functions for predictions, the computation time is clearly longer than that of
FNN requiring mainly matrix operations.

In summary, CO-FNN-MPA achieves the best timing performance (289µs),
while CDP, the binomial estimation, and CO-NBC-MPA require more time (320µs,
440µs, and 2507µs) to complete a distance prediction on one pixel.

Memory Occupancy

The number of values required for data storage in each variant is listed in Table
5.9. Normally, photon counts in a TC-Hist are represented by unsigned integers,
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Table 5.8: Average computation time for one pixel based on Intel(R) i7-3612QM
CPU. Only the most complex MPA variants are listed. The computation time of
other variants can be obtained by removing the time of irrelevant processes.

Time {µs
Process CDP CO-FNN-MPA CO-NBC-MPA

Convolution 230 230 230
Feature Extraction - 10 10

BES 90 10 -
Binomial Estimation - - 200

Correlation - 29 29
Distance Prediction 0 10 2038

Overall 320 289 2507

while parameters and prediction results are represented by floating-point num-
bers. After the convolution, the raw TC-Hist with photon counts is replaced
by convolved TC-Hist. Thus, the memory occupation for the former can be re-
leased. Although CDP has no pre-stored parameters, it requires considerably
more memory to store the feature value fn compared to MPA variants, since
it relies on the complete TC-Hist after the convolution. In terms of prediction
results, the MPA variants provide up to 12 potential distances and correspond-
ing certainties, which can be stored and further utilized to improve the result of
high-level property inference in subsequent processing.

As a result, CDP requires in total 1311 floating-point numbers, while MPA
variants require at most 264 floating-point numbers and 60 integers for processing.
Nevertheless, the minimum memory space must be equal to the raw TC-Hists
from pixels, since the processing can only be carried out after these TC-Hists are
saved. This places high demands on the memory space of a LiDAR system with
a large number of pixels.
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Table 5.9: Required memory space of data processing for a pixel. Only the
most complex MPA variants are listed, the required data amount of other MPA
variants can be obtained by removing data from irrelevant processes.

Required Amount of Data&Parameters
Data Type CDP CO-FNN-MPA CO-NBC-MPA

Raw TC-Hist Integer 1310 1310 1310
fn Float 1310 12 12
bn Integer - 12 12
wn Float - 144 -
P n Float - - 96
sn Float - - 96
b1n Integer - 36 36
o1n Float - 36 36
dPred Float 1 12 12
o˚n Float - 12 12

5.4 Optimization Approaches

5.4.1 Ablation Study for Background Suppression

In this section, the necessity of background suppression in MPA is studied.

BES in FNN-MPA

Although FNN-MPA requires only the background subtraction on NF selected
features, the background estimation is still challenging for embedded systems,
since a real-time exponential approximation with a small performance degrada-
tion is required. Therefore, an ablation study for BES is carried out. Instead
of using (4.18), the local maxima Mn are directly used as the input of FNN. In
this case, the patterns of background light are directly included in the input and
FNN must learn them additionally by training.

Figure 5.20 illustrates the differences in the training process. It can be seen
that the training speed of FNN without BES is clearly slower than that with
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BES. However, their performance finally converges in both D1Train and D1Val.
Besides, the performance regarding AccD,Test is assessed. For this purpose, three
background conditions are specified as follows:

- rAll “ t1, 2, 3, 4, 5, 6, 7, 8uMHz,

- rLow “ t1, 2, 3, 4uMHz,

- rHigh “ t5, 6, 7, 8uMHz.
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Figure 5.20: Training process of FNN with and without BES. (a) Training loss.
(b) Classification accuracy.

Consequently, in addition to FNN-MPA, three variants are introduced in order
to assess their general performance and generalization ability, namely:

- FNN1-MPA: FNN is trained without BES and with rB P rAll,

- FNN2-MPA: FNN is trained with BES and with rB P rLow,

- FNN3-MPA: FNN is trained without BES and with rB P rLow.

All training samples with the specified conditions are taken from D1Train. The
cross-comparison analysis based on the result shown in Table 5.10 is as follows:
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Table 5.10: Prediction accuracies on D1Test.

(a) AccD,Test / % of FNN-MPA.

rB / MHz
TTOF / m 1 & 2 3 & 4 5 & 6 7 & 8

(0, 20] 95.12 87.42 77.46 64.00
(20, 40] 98.88 83.62 57.62 35.38
(40, 60] 97.58 72.12 37.12 16.38

(b) AccD,Test / % of FNN1-MPA.

rB / MHz
TTOF / m 1 & 2 3 & 4 5 & 6 7 & 8

(0, 20] 94.75 84.38 72.96 59.71
(20, 40] 98.62 83.25 57.54 35.62
(40, 60] 97.62 72.50 37.54 18.00

(c) AccD,Test / % of FNN2-MPA.

rB / MHz
TTOF / m 1 & 2 3 & 4 5 & 6 7 & 8

(0, 20] 95.38 88.96 79.83 66.92
(20, 40] 98.62 82.54 54.29 30.29
(40, 60] 97.42 71.25 32.62 11.71

(d) AccD,Test / % of FNN3-MPA.

rB / MHz
TTOF / m 1 & 2 3 & 4 5 & 6 7 & 8

(0, 20] 94.75 88.25 78.83 58.17
(20, 40] 98.62 83.29 50.58 14.12
(40, 60] 97.88 70.62 20.62 1.46

1) Comparison between FNN-MPA and FNN1-MPA: In general, the
overall AccD,Test in Table 5.10 (a) is only 0.85% higher than that in Table 5.10 (b).
With rB P rHigh and dObj P p0, 20sm, table 5.10 (a) shows superior results than
Table 5.10 (b). Except for these, they are in a small range of accuracy differ-
ence between each other. This indicates that FNN can relatively self-learn the
background light information well with a comprehensive D1Train and the final
performance is comparable to FNN-MPA.

2) Comparison between FNN2-MPA and FNN3-MPA: As expected,
minor differences can be observed on AccD,Test in Table 5.10 (c) and (d) with rB P

rLow. However, since TC-Hists with rB P rHigh are excluded in D1Train, AccD,Test

of FNN3-MPA drops off significantly when background light is high. On the
contrary, as the background light has been subtracted, FNN2-MPA still retains
its prediction ability even without training on samples with high background
light.

3) Comparison between FNN-MPA and FNN2-MPA: A clear drop-off
can be observed in Table 5.10 (c) with rB P rHigh and dObj P p20, 60sm. Sur-
prisingly, a noticeable advantage is present on FNN2-MPA over FNN-MPA with
rB P rHigh and dObj P p0, 20sm. A possible reason is that under high background
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light, samples with large dObj have low SNRs, resulting in a characteristic dom-
inated by noise (local maxima decrease broadly exponentially with increasing
dObj). The lack of these samples in the training dataset makes FNN2-MPA to
treat them as samples with small dObj and high rB, whose local maxima show
the trend of an exponential decay as well. This results in a falsely high AccD,Test

on short-range samples in exchange for the prediction accuracy on long-range
samples.

4) Comparison between FNN1-MPA and FNN3-MPA: Compared to
Table 5.10 (d), AccD,Test in Table 5.10 (b) with rB P rHigh and dObj P p20, 60sm
is much higher. Similar to the comparison between FNN-MPA and FNN2-MPA,
the difference of AccD,Test between Table 5.10 (b) and Table 5.10 (d) with rB P

t5, 6uMHz and dObj P p0, 20sm reaches 7.08% due to the biased predictions on
short-range and long-range samples. However, AccD,Test in Table 5.10 (d) with
rB P t7, 8uMHz and dObj P p0, 20sm reduces rapidly and becomes slightly worse
than that in Table 5.10 (b). Clearly, due to both limitations (the lack of training
data with high rB and the absence of BES), FNN3-MPA is inferior to other
variants in most detection conditions.

Accordingly, it is concluded that in the scope of D1Test, BES can only be
discarded if the training data completely cover real measurement conditions.

Binomial Estimation in NBC-MPA

In NBC-MPA, the binomial estimation is performed as a background suppression
and normalization method. As shown in Table 5.9, the binomial estimation re-
quires a relatively long processing time. In the following experiment, instead of
using the binomial estimation, the extracted feature fn is simply normalized by

fNorm, n “
fn

řNF
n“1 fn

. (5.14)

and used as the input of NBC-MPA. This variant is mentioned as NBC˚-MPA
in the following context. Figure 5.21 shows AccD,Test of NBC˚-MPA. In general,
AccD,Test of NBC˚-MPA is 1.06% lower than NBC-MPA. In conditions with
low rB, NBC˚-MPA shows a comparable prediction ability with respect to NBC-
MPA. However, a high rB results in a significant noise level in the TC-Hist and
increases the randomness of features. As expected, the robustness of NBC˚-MPA
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Figure 5.21: Accuracy of NBC˚-MPA. D1Test is divided into 48 subsets regard-
ing dObj and rB. Overall AccD,Test “ 68.25%.

is worse than that of NBC-MPA as rB increases. With rB “ 8MHz, the accuracy
difference between NBC˚-MPA and NBC-MPA reaches 2.83%.

5.4.2 Stride Analysis

Achieving the optimal real-time performance of a LiDAR system has always been
a topic of interest. As shown in Table 5.9, the time for convolution takes a
large portion, where the convolutional stride is 1. Therefore, the influence of
different strides on CDP, FNN-MPA, and NBC-MPA is investigated. The overall
accuracy is shown in Table 5.11. With a big stride, both MPA variants have
smaller drop-off on AccD,Test than CDP. In terms of FNN-MPA, by increasing
the stride to 3, the convolution time is reduced to one-third of the original time
with only a decrease of 0.47% in AccD,Test. Interestingly, both MPA variants
with stride “ 5 have a lower AccD,Test than that with stride “ 7. This is caused
by a mismatch of the resulting resolution due to stride “ 5 and distances in D1,
where dObj P t0.5, 1, ..., 60um.

With the consideration that the stride mainly affects the precision of the
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Table 5.11: Overall accuracy on D1Test with different strides.

Stride
Accuracy {% 1 2 3 5 7

AccC,Test, FNN-MPA 70.47 70.23 69.97 68.51 67.35
AccD,Test, FNN-MPA 68.56 68.16 68.09 65.82 66.28
AccD,Test, NBC-MPA 69.31 68.92 68.83 66.44 67.23

AccD,Test, CDP 59.34 58.95 58.10 55.12 51.46

distance, the accuracies with dObj ă 10 m (corresponding to the error bound
smaller than ˘0.5m) are demonstrated in Table 5.12. Similar to the results with
dObj ă 10 m in Figure 5.14, CDP outperforms both MPA variants with stride =
1 due to the unbalance of predictions. However, with the increase of the stride,
AccD,Test of both MPA variants remain relatively stable, while the accuracy of
CDP decreases rapidly. Compared to Table 5.11, the drop-off on AccD,Test with
stride “ 5 is more obvious due to the mismatch in distances. It should be noticed
that AccC,Test of FNN-MPA is barely affected by the stride. Even with stride=7,
AccC,Test still maintains at 89.07%. Thus, with a large stride, the AccC can be
used as a guide for a sub-region in which the object distance locates. Afterwards,
subsequent processing and measurements with higher precisions can be conducted
only within this sub-region to restore the exact distance.

Table 5.12: Accuracy on D1Test with dObj ă 10 m.

Stride
Accuracy {% 1 2 3 5 7

AccC,Test, FNN-MPA 90.78 90.39 90.12 89.18 89.07
AccD,Test, FNN-MPA 80.41 77.64 78.13 65.42 73.73
AccD,Test, NBC-MPA 79.34 76.93 77.21 63.97 71.91

AccD,Test, CDP 86.22 82.11 75.80 56.56 36.61
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5.4.3 Threshold Analysis

The evaluation of the threshold is carried out in two aspects, i.e., (1) AccTh is
optimized by the global adjustment of oTh on D1Test and (2) AccTh is optimized
by weighted AccTh,B, where AccTh,B is adjusted locally on the data group with
the same rB in D1Test.

Figure 5.22 shows the relationship between AccTh and oTh of four variants
regarding aspect (1). It is seen that AccTh of the correlated variants are higher
than that of uncorrelated variants. This indicates that the correlation increases
the discrepancy of oH associated with objects and noise. However, the uncorre-
lated variants have a higher rise in AccTh and a smaller optimal oTh compared to
the correlated variants. Besides, AccTh of FNN-MPA and CO-FNN-MPA drop
off rapidly with oTh ą 0.9, while AccTh of NBC-MPA and CO-NBC-MPA are
relatively stable even with oTh “ 0.99. This means that most oH of the NBC
variants locate at the boundary of the value range (i.e., around 0.0 and 1.0).
Presumably, this is due to the fact that the NBC variants apply joint probability
distributions for predictions and are therefore more deterministic than that of the
FNN variants.

Table 5.13 shows locally adjusted oTh and the weighted AccTh based on aspect
(2). Although the optimal oTh regarding each rB is different from each other,
the weighted AccTh is only improved minimally in contrast to that of the global
optimization, especially when correlated variants are used. It indicates that the
distributions of oH under different rB have only little difference.

Table 5.13: Locally optimized oTh regarding rB P t1, 2, 3, 4, 5, 6, 7, 8uMHz and
weighted AccTh.

Variant oTh AccTh {%

FNN-MPA {0.49, 0.23, 0.35, 0.44, 0.51, 0.61, 0.67, 0.79} 81.97
CO-FNN-MPA {0.00, 0.70, 0.61, 0.52, 0.58, 0.62, 0.67, 0.77} 89.48
NBC-MPA {0.00, 0.48, 0.49, 0.54, 0.56, 0.58, 0.64, 0.63} 82.43

CO-NBC-MPA {0.00, 0.55, 0.61, 0.55, 0.57, 0.59, 0.67, 0.79} 88.07
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Figure 5.22: AccTh with global threshold adjustment. The maximum AccTh

of FNN-MPA, CO-FNN-MPA, NBC-MPA, and CO-NBC-MPA are achieved at
point p0.57, 80.42q, p0.67, 89.13q, p0.54, 82.16q, and p0.63, 87.74q, respectively.

5.5 Performance on Dataset D2

Finally, six variants introduced in previous sections are tested on D2. It should
be mentioned that rL in D1 and in D2 exists a degree of difference. In D1, rL is
assumed to be constant with the value of 10 MHz. In practice, rL is influenced
by the measurement environment. With the object distances in D2, rL with a
small distance is significantly higher than 10 MHz. A comparison between the
average received photon counts CObj in D2 and the expected photon counts µObj

at the object distance with rL “ 10 MHz is shown in Table 5.14. Apparently,
CObj reflected by close objects (within (0, 16.77]m) in D2 is at least twice as
much as µObj | rL“10 MHz with the same distance and rB. This results in high
SNRs on the extracted features. Figure 5.23 shows a raw TC-Hist from D2 and
its extracted features. Since FPC is used, incoming photons after the object
distance are blocked, resulting in extremely small count values in Figure 5.23 (a).
As shown in Figure 5.23 (b), after the convolution and the normalization, the
feature value of the object distance is clearly greater than other features due to
high rL. However, as dObj increases, CObj decays continuously with an exponential
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Table 5.14: Comparison of average counts in D2 and expected photon counts
with rL “ 10 MHz.

dObj {m rB {MHz CObj µObj | rL“10 MHz

3.19 8.35 20.24 1.84
6.32 8.58 11.43 1.55
11.38 8.35 3.84 1.17
13.44 8.80 2.62 1.02
16.77 8.53 1.65 0.85
18.78 8.63 1.20 0.76
21.59 7.07 1.00 0.74

trend and gradually approaches µTOF | rL“10 MHz. In this case, the characteristics
of the TC-Hists in D2 become similar to that in D1.

Overall Accuracy

The prediction results on D2 are shown in Table 5.15. Due to a high rL with
dObj P p0, 16.77sm, the input data is dominated by the object feature, while other
features have only minor effects. This greatly reduces the difficulty of distance
prediction. Therefore, the accuracies of all methods on D2 almost reach 100%.
As dObj further increases, the performance differences among different variants
starts to emerge. With dObj “ t18.78, 21.59um, AccD of CDP, FNN3-MPA,
and NBC˚-MPA are clearly reduced, while other MPA variants show a stable
performance on all distances. It should be noted that although the performance
difference between NBC-MPA and NBC˚-MPA is small in D1, the former shows
a better generalizability due to the applied binomial estimation and has a clearly
higher AccD with dObj “ 21.59 m over the latter.

Stride Analysis on Dataset D2

The overall accuracies of four variants with different strides on D2 are shown in
Table 5.16. With only seven different object distances on D2, there is some degree
of fluctuation in AccD. Similar to Table 5.11, the MPA variants outperform CDP
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Table 5.15: Prediction accuracy (AccD {%) of different variants on D2.

dObj /m
Variant 3.19 6.32 11.38 13.44 16.77 18.78 21.59

CDP 99.50 100 99.80 99.90 99.00 93.10 88.20
FNN-MPA 99.80 100 99.80 99.90 99.50 97.70 96.80
FNN1-MPA 99.80 100 99.80 99.90 99.50 97.00 97.60
FNN2-MPA 99.80 100 99.80 99.90 99.50 97.70 96.10
FNN3-MPA 99.80 100 99.80 99.90 98.80 87.00 88.50
NBC-MPA 99.80 100 99.70 98.80 99.20 96.80 94.60
NBC˚-MPA 99.80 100 99.70 99.80 99.10 96.20 84.60
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Figure 5.23: An example with dObj “ 6.32m from D2. (a) raw TC-Hist (b)
extracted features.

with all listed strides. Besides, FNN-MPA is slightly better than NBC-MPA,
which is observed in Table 5.11 as well.
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Table 5.16: Performance of variants with different strides on D2.

Stride
Accuracy {% 1 2 3 5 7

AccD, CDP 97.07 96.11 89.89 92.66 88.97
AccC, FNN-MPA 99.43 99.51 99.50 99.36 99.33
AccD, FNN-MPA 98.96 99.13 99.13 99.13 91.14
AccD, NBC-MPA 98.56 98.61 98.54 98.51 90.07

5.6 Comparative Conclusions

In the previous sections, a number of MPA variants are studied on dataset D1
and D2. Therein, the six most promising variants, including FNN-MPA with
stride = {1, 3}, the FNN1-MPA, CO-FNN-MPA, NBC-MPA, and CO-NBC-MPA,
are further listed together with CDP (as a benchmark) and compared jointly
regarding their AccD, timing, and required data amount, as shown in Table 5.17.
They are arranged in ascending order of AccD on D1. It can be seen that the
trend of AccD on D2 is slightly different than AccD on D1. This is due to the lack
of samples with dObj ą 30m on D2. In this case, AccD of the NBC-MPA variants
on D2 are slightly worse than that of the FNN-MPA variants as their strengths
are in the detection scenarios with 30m ă dObj ă 60m. It should be noted
that FNN-MPA with stride = 3 requires only 107µs for processing and achieves
comparable AccD both on D1 and D2 to FNN-MPA and NBC-MPA with stride
= 1. This gives it great potential for applications with high demands on real-time
performance. In terms of the variants with the correlation analysis, CO-FNN-
MPA with stride = 1 reaches the highest AccD on both D1 and D2. Besides,
compared to CO-NBC-MPA, it has clear advantages in respect of processing
speed and required data amount as well.

In summary, all listed MPA variants have better AccD on both D1 and D2
and they require less data amount compared to CDP. In particular, the FNN-
MPA variants are faster than others regarding the processing time, while the
NBC-MPA variants achieve the best AccD under the harshest conditions on D1.
Finally, CO-FNN-MPA shows the best performance in terms of AccD, timing,
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and the amount of required data and parameters.

Table 5.17: Comparative performance of CDP and six MPA variants on D1 and
D2. They are arranged from top to bottom in ascending order of AccD on D1.

AccD /%
Variant Stride D1 D2 Timing /µs Data & Parameters

CDP 1 59.34 97.07 320 1311
FNN1-MPA 1 67.71 99.09 250 192
FNN-MPA 3 68.09 99.13 107 192
FNN-MPA 1 68.56 98.96 260 192
NBC-MPA 1 69.31 98.56 2478 240

CO-NBC-MPA 1 82.46 99.29 2507 312
CO-FNN-MPA 1 82.91 99.34 289 264
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Chapter 6

System Implementation and
Demonstration

According to section 5.6, FNN-MPA and CO-FNN-MPA are selected and im-
plemented on the LiDAR system “Owl” developed by Fraunhofer Institute for
Microelectronic Circuits and Systems (IMS) using the programming environment
LabVIEW [27]. First, the hardware specifications of the “Owl” are introduced.
Afterwards, a PC-based demonstrator is presented, which includes porting the
trained CO-FNN-MPA to LabVIEW. Subsequently, an FPGA-based implementa-
tion is described with a step-by-step approximation and implementation process
for FNN-MPA. Finally, runtime tests of both implementations are demonstrated.

6.1 Demonstration Platform

The “Owl” [101], shown in Figure 6.1, is a direct TOF flash LiDAR system with
a sensor front-end and an embedded processing module. Its sensor front-end
includes a 2 ˆ 192 SPAD line detector, two laser diodes with a wavelength of
λ “ 905 nm, and a TDC with a resolution of 312.5 ps. The laser emitted from
each laser diode has 75W peak power and is expanded into a line via optics and
illuminates the scene with 36-degree FOV in the horizontal direction and 1 degree
in the vertical direction. Both lasers emit at a repetition frequency of 10 kHz with
a pulse width of 17.50 ns, resulting in a mean optical emission power of 11.24mW.
A TC-Hist generated by the “Owl” contains 400 measurement cycles. Each mea-
surement cycle includes two main time windows: 1) a TOF window and 2) a
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counting window. In the TOF window, the “Owl” detects the distance informa-
tion using the FPC procedure. In the counting window, the “Owl” operates in a
free-running mode and estimates the intensity of background light. The embed-

Figure 6.1: Flash LiDAR system “Owl” [101]. On the top is a camera, which is
used to capture detection scenes. In the main part of the system, there are two
laser sources on the left and right sides and a SPAD detector array in the middle.

ded processing module used by the “Owl” is an Enclustra Zynq-7000 Mars ZX3
FPGA module, which is responsible for the control signal generation and data
transmission. The module has an Artix-7 28 nm FPGA and an Advanced RISC
Machines (ARM) dual-core Cortex-A9 microprocessor. The ARM processor es-
tablishes control commands for data transmission between the sensor front-end
and a PC.

In addition to the hardware, a PC-based LabVIEW script for displaying mea-
surement results of the “Owl”, including the formation of TC-Hists and CDP, is
programmed at the beginning of this work.
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6.2 Implementation Solutions

The MPA variants are implemented both on a PC and on an FPGAmodule. First,
CO-FNN-MPA is implemented in LabVIEW on a PC, including the convolution,
the feature extraction, BE&S, a trained FNN, and the correlation analysis. CO-
FNN-MPA porting only involves code conversion from Python to the LabVIEW-
specific graphical language. No change is made regarding the realization of CO-
FNN-MPA.

Afterwards, FNN-MPA is implemented on the FPGA module of the “Owl”.
Since the used embedded processing module Enclustra Zynq-7000 Mars ZX3 is a
low-cost FPGA platform with only 18Kb dual Block Random Access Memory
(BRAM), the correlation analysis is discarded to maintain real-time performance.
Hence, optimization and approximation on FNN-MPA must be carried out for the
FPGA-based implementation, including (1) determination of a fixed-point arith-
metic, (2) data preparation and feature extraction, (3) BES, and (4) prediction
algorithm implementation.

6.2.1 Fixed-Point Arithmetic

Implementing fixed-point arithmetic units on FPGAs is much more efficient com-
pared with floating-point ones, because determining the position of decimal points
dynamically and dealing with corner cases require significant computational power.
Therefore, the floating-point arithmetic utilized in the PC-based implementation
is transformed into fixed-point arithmetic by specifying the value range of FNN-
MPA. The specification includes 1) the maximum photon counts in a TC-Hist,
2) weights, bias, and intermediate values of FNN.

Photon Counts

According to (4.11), the photon counts in a TC-Hist have a minimum value of 0
and are proportional to P1, b. Furthermore, according to (4.10) and (4.8), P1, b is
inverse-proportional to t and proportional to rB and rL. Based on the parameter
settings in D1, the maximum P1,Max is obtained with t “ 0, rB “ 8MHz, and
rL “ 10MHz. Thus, by considering the pulse width NP “ 16, TTDC “ 312.5 ns,
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and NM “ 400, P1,Max is calculated by

P1,Max “

ż pb`NPqTTDC

b TTDC

p1ptqdt « 0.08 . (6.1)

Hence, the value range r0, CMaxs that covers 99.99% conditions is determined
regarding (4.3) by

CMax “ arg min
CMax

pp

CMax
ÿ

k“0
PBpk |NM, P1,Maxqq ą 0.9999q “ 56 . (6.2)

Weights, Bias, and Intermediate Values of FNN

Based on the optimal parameters specified for FNN-MPA in subsection 5.3.2, the
intermediate value of FNN is determined according to (2.29). However, due to the
stacked-layer structure of FNN and the countless number of input combinations,
a direct determination of the global vMin and vMax is challenging.

Therefore, instead of the calculation of vMin and vMax, v1Min and v1Max are cal-
culated, where v1Min ă vMin and v1Max ą vMax, by modifying input x according to
the sign of the corresponding weight. By taking the minimum as an example,
if the inputs multiplied with negative weights take the maximum value and the
inputs multiplied with positive weights take zero, the result v1Min is smaller than
or equal to all other possible v. Thus, v1Min is given by

v1Min “

n
ÿ

i“1
wi x

1
i ` bias (6.3)

with

x1i “

#

maxipx1iq, wi ď 0
0, wi ą 0

. (6.4)

Consequently, the global minimum is selected among all v1Min. Similarly, v1Max

is calculated by maximizing inputs multiplied with positive weights and making
inputs multiplied with negative weights equal to zero.

Finally, the value range of FNN-MPA is summarized in Table 6.1. It can be
seen that the overall value range is r´55.54, 56.00s. Thus, a seven-bit integer
part, including a sign bit, is sufficient. Since the overall maximum bits of the
DSP block in Enclustra Mars ZX3 is 18, the remaining number of bits for the
fractional part is 11. As a result, the fixed-point arithmetic Q7.11 is utilized with
the value range of r´64, 64s with the precision of 0.000488.
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Table 6.1: Minimum and maximum values of generated weights and bias.

Value Type Minimum Maximum

Photon Counts Integer 0 56
w Float -22.54 14.44
bias Float -4.96 4.55
v Float -55.54 (v1Min) 37.57 (v1Max)

6.2.2 Data Preparation and Feature Extraction

In contrast to the PC-based implementation, the formation of TC-Hist is carried
out on the FPGA module. The steps of accumulating one single measurement
in a TC-Hist on FPGAs are: (1) fetching a digital timestamp, (2) calculating its
bin number, (3) searching for the corresponding memory, (4) fetching the value
in the memory, (5) increasing the value by one, and (6) writing the value back to
the same memory. After repeating these steps multiple times until reaching the
required NM, a raw TC-Hist is formed.

In the PC-based implementation, the feature extraction includes two separated
processing steps, i.e., the convolution and the local maximum extraction. In this
case, the required clock cycles are:

NPC “ NBpNP ` 2`NSum `NWrite `NFetch `NComq , (6.5)

where NB is the total number of bins in a TC-Hist. NFetch is the required number
of clock cycles for a simple fetching operation, while pNP ` 2q is the number
of clock cycles when the fetching operation is repeated NP times continuously.
NCom and NWrite are the numbers of clock cycles for the comparison and the
writing operation. Although the consecutive procedure causes barely negative
effects on a PC, it brings a great challenge on FPGA in timing. Therefore, an
optimization process is introduced, shown in Figure 6.2. The process combines
the convolution and the feature extraction to save redundant operations. In this
case, the optimized clock cycles are

NOpt “ NP ` 2`NBpNFetch `NSum `NComq . (6.6)
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Thus, the number of saved clock cycles ∆NCC by the optimization process is
approximated based on (6.5) and (6.6) as

∆NCC « NBpNWrite `NP ` 2q “ 27237 , (6.7)

Since the used main clock frequency is 6.25 ns, the proposed optimization saves
around 0.17ms for a TC-Hist from each pixel.
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Figure 6.2: The principle of updating LiDAR data registers with the assumption
of NP “ 3. In (a), the registers as cache are initialized. After that, the sum of
them is calculated. Before writing it to the register, it is compared to the previous
maximum, and the update is carried out if necessary. In the following steps, as
shown in (b), only the least recent data in the register array is updated and the
rest processes are identical.

6.2.3 Background Light Estimation

As introduced in subsection 4.2.3, the expected photon counts µB, b in bin b is
calculated according to (4.17). To further reduce the computations, the integra-
tion over rb TTDC, pb ` 1qTTDCs is approximated by the multiplication of TTDC

118



6.2. Implementation Solutions

and e´rB b TTDC , since TTDC is small. Thus, µB, b can be written as

µB, b “ NM rB TTDC e´rB b TTDC “ rB k1 krB b2 , (6.8)

with
k1 “ NM TTDC and k2 “ e´TTDC . (6.9)

Obviously, k1 and k2 are constants and can be pre-stored in registers. Further-
more, rB is approximated using the quantized value rBQ as

rBQ “

#

0 if rB ď 1 MHz
roundprBq else

, (6.10)

It should be noticed that rB and rBQ are both in units of [MHz]. Since b P
p0, 1310s, rBQ P p0, 8sMHz and both of them are integer, rB b can be represented
by an 18-bit integer value. Thus, the calculation of krB b2 is further accelerated by
loop-operations using a look-up-table, which includes the pre-calculated value of
{k2, k500

2 , k1000
2 , k2000

2 , k3000
2 , ..., k10000

2 }. In this case, the required loop operations
for krB b2 can be significantly reduced in cases that rB b " 500.

6.2.4 Prediction Algorithm Implementation

In terms of FNN, the trained weights and the bias values are stored in BRAM
blocks using the Q7.11 fixed-point arithmetic. For fast and reliable arithmetical
operations, the Digital Signal Processor (DSP) blocks of the FPGA module are
enabled. During the training process on a PC, the softmax is utilized as the acti-
vation function of the output layer for backpropagation and assigns a normalized
value to each output. A large resource occupation on FPGA is required due to
exponential calculations. Since the softmax function only acts as a scaling and
shifting function during the prediction process, where only the maximum of the
outputs is considered, the selection of the final prediction, i.e., the maximum
value, is not changed after the softmax function. Therefore, it is removed in the
FPGA-based implementation.

6.2.5 Software Simulation

A simulation for the aforementioned implementation steps is carried out on the
Xilinx Vivado Design Suite. The hardware resource utilization from a simula-
tion result is shown in Table 6.2. Firstly, an implementation with 384 pixels
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is deployed. It is seen that FNN-MPA has small occupations on most resources.
However, a high BRAM occupation (72.50%) is observed, causing more than 2800
timing violations. It should be mentioned that the resource utilization shown in
Table 6.2 includes not only FNN-MPA, but also other necessary processes, e.g.,
measurement accumulation and TC-Hists formation. The high BRAM occupa-
tion is mainly caused by the formation and storage of TC-Hists. After gradually
reducing the number of pixels (it reduces the number of TC-Hists per frame), an
implementation with 96 pixels is selected for stability purposes.

Table 6.2: FNN-MPA resource occupation on FPGA.

Memory Occupation {%
Resources 384 Pixels 96 Pixels

LUT as Logic 12.39 11.98
LUT as Memory 2.85 2.85

Slice Registers as Flip-Flop 8.97 8.85
Slice Registers as Latch 0 0

BRAM 72.50 21.07
DSP Blocks 6.82 6.82

6.3 Demonstration Results

In order to demonstrate runtime performance, an indoor detection scene and an
outdoor detection scene were constructed.

The indoor scene is set up in the same environment used for D2 in Figure 5.1.
However, in contrast to the setup in Figure 5.1, the halogen floodlight is aimed
directly at the detector array to create a higher coverage of high background light
(from 5 to 10MHz) over the entire detector array. Figure 6.3 shows the specified
indoor scene with an object at 20m. The runtime records of detection results
are shown in Figure 6.4. Due to high rB generated by the halogen floodlight, a
large number of noise points are observed in Figure 6.4 (a). Besides, since the
background light is incident from slanted above, the green detection points are
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Figure 6.3: Front view of indoor detection scene. The scene includes an object
at 20m, two side walls, and two background walls at 23m and 27.5m. A halogen
floodlight is aimed directly at the “Owl”. It creates high rB (from 5 to 10MHz)
over the entire detector array.

more affected than the red detection points. In Figure 6.4 (b), the noise points
are clearly reduced and the detection points from the object at 20m and the
background wall at 23m can be well identified. There are some noise detection
points at the edges of objects, since there are barely any laser echoes due to the
large incidence angle of the laser on the object edges. In terms of Figure 6.4
(c), the detection points of the object at 20m are clear and stable as well. Since
the pixel number in the FPGA-based implementation is reduced to 96, there are
only a few detection points recorded from the background wall. Therefore, it
cannot be observed if the FPGA-based implementation detects the background
wall correctly. However, it should be noticed that similar to Figure 6.4 (b), Figure
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6.4 (c) has barely any noise points in the area of short distances.
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Figure 6.4: Bird’s-eye view of indoor runtime records with experimental setup
in Figure 5.1. The green points represent the detection results from the upper
detector array and the red points represent the detection results from the lower
detector array of the “Owl” system. (a) CDP. (b) FNN-MPA on PC. (c) FNN-
MPA on FPGA.

The outdoor scene is shown in Figure 6.5. Since rB ă 3MHz, objects and
background walls can be clearly recognized in the detection results of all three
implementations. However, the numbers of noise points in Figure 6.5 (b) and
Figure 6.5 (c) are less than that in Figure 6.5 (a).
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Figure 6.5: Front view of outdoor detection scene. The scene includes an object
at 17.50m, a side wall, and two background walls at 27.50m and 28m. rB is within
(1, 3]MHz.
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Figure 6.6: Bird’s-eye view of outdoor runtime records. The green points rep-
resent the detection results from the upper detector array and the red points
represent the detection results from the lower detector array of the “Owl” sys-
tem. (a) CDP. (b) FNN-MPA on PC. (c) FNN-MPA on FPGA.
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Chapter 7

Summary

The overall objective of this work is to design a machine learning-based method
on low-level LiDAR data with focus on improving robustness against background
light and real-time performance of distance determination. In order to develop
the most suitable method, solutions available in the literature were first reviewed
with respect to LiDAR hardware, data workflow, and machine learning in the
field of distance measurements. On the basis of the review, multiple attempts to
combine machine learning and low-level LiDAR data were carried out with the-
ory and simulation for desired improvements. Ultimately, a novel approach called
MPA, including a physics-guided feature extraction, two machine learning-based
distance prediction algorithms, a correlation algorithm, and three optimization
possibilities, is proposed. MPA includes two main variants, i.e., FNN-MPA and
NBC-MPA. They are evaluated on a dataset with 96,000 synthetic TC-Hists
and a dataset with 7000 TC-Hists generated by the LiDAR system “Owl”. The
parameter determination of MPA is specified on the basis of comparative anal-
ysis. As a benchmark for comparison, one widely-used CDP method is utilized,
including an average filter, a background subtraction process, and a peak detec-
tion. Finally, two runtime demonstrations, including a PC-based implementation
and an FPGA-based implementation, are provided.

The entirety of the work leads to the conclusion that by using the concept of
machine learning, the integrity and efficiency of low-level LiDAR data processing,
i.e., TC-Hist, can be improved. The resulting distance determination with a ˘5 %
error bound is more reliable under high background light and faster than that of
CDP. In particular, outcomes based on the datasets used in this work are made
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as: 1) MPA outperforms CDP on both the synthetic and the real data, especially
when the object distance is large and the background light is high. Moreover,
FNN-MPA is at least 18.75% faster than CDP. NBC-MPA achieves a better
overall performance over FNN-MPA, while requiring considerably more time for
data processing. 2) With the specified parameters, a distance prediction is chal-
lenging with background photon detection rates greater than 5 MHz and object
distances from 40m to 60m. A TC-Hist accumulated under such conditions has
a low SNR. Since only a few laser signals are collected in a TC-Hist under these
conditions, we argue that instead of further development in processing algorithms,
a promising prediction result can only be obtained with an improvement before
or during the formation of a TC-Hist, e.g., increasing effective laser photon rate
or increasing the number of measurements per TC-Hist. 3) In terms of FNN-
MPA, the background suppression could be saved to improve the feasibility and
timing performance on hardware, when the possible background light intensities
in practice are well-covered in the training dataset. Nevertheless, a degradation
of generalizability is observed using both FNN-MPA and NBC-MPA. 4) Using
the correlation analysis proposed in this work, which utilizes the time and space
information at the level of TC-Hists, the reliability of distance prediction is vis-
ibly improved. 5) MPA has better stability than CDP as the convolution stride
increases. This enables implementation possibilities in applications requiring ex-
tremely high frame rate.

The contributions of the work can be divided into six aspects: 1) A joint
study is carried out between low-level LiDAR data features and machine learning
algorithms and a possible solution of combining them is proposed. 2) A physics-
guided feature extraction is designed, which reduces a complete TC-Hist (with
more than 1000 values) to multiple features (with dozens of values). By con-
figuring subsequent algorithms, e.g., FNN and NBC, the extracted features are
proved to be sufficient for object distance determination. In the datasets used in
this work, the proposed algorithms on these features even show a superior perfor-
mance over CDP, which relies on complete TC-Hist for distance determination.
It shows that the distance information could be determined by focusing most
computations on representative features instead of on the complete histograms,
which may significantly reduce the required data to be stored and transmitted
for processing. 3) The point cloud formed from the output of MPA has more
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information dimensions than traditional point clouds. For example, MPA pro-
vides not only the distance information, but also the corresponding certainty of
each measured point. This enables a distinguishability between object and noise.
Besides, MPA can provide multiple potential object distances for one TC-Hist.
This property could be beneficial for the application of multi-reflection analysis.
4) The correlation analysis proposed in this work is carried out at the TC-Hist
level. In contrast to a correlation at the point cloud level, the correlation analy-
sis involves multiple potential distances and photon statistics in time and space
domain. This results in a high suppression effect on noise and positive impacts
even when both the original data and the reference data are noisy. The working
principle could inspire future research in the field of low-level sensor data fusion.
5) In the field of high-level LiDAR data processing, such as depth completion and
object detection/tracking, the additional information provided by MPA (multiple
potential distances and prediction certainties) brings advantages in minimizing
the negative effects of noise points. 6) In ADAS, MPA could provide a reliable
and low latency solution for object distance determination in a fast-changing
environment due to its high robustness to the background light and short pro-
cessing time. In addition to the distance prediction, MPA has a high performance
in determining the region where the object locates. This could be useful in the
application relying on the region-of-interest.

In the scope of this work, the objectives proposed in section 1.2 were fulfilled.
In addition, the research gaps in section 3.6 were addressed. In summary, the
work has been successfully conducted and promising results have been obtained.
Potential works could be carried out in the future:

1) New data form: A large memory is required for storing TC-Hists of all
pixels. This results in high demands on memory space and the transmission
rate of LiDAR systems. In this work, it is observed that the distance prediction
performs well using a small number of key features from a complete TC-Hist.
Therefore, instead of TC-Hist, a new data form and a corresponding generation
process could be carried out, which directly outputs required key features using
a series of LiDAR timestamps. In this case, the volume of LiDAR data could be
reduced and the processing efficiency could be improved as well.

2) Further detection conditions: This work focuses on the system robust-
ness and distance prediction reliability under changing background light. Other
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conditions are of great interest as well, such as rain, fog, and multi-reflections.
MPA could be applied to extract and to process key features of these conditions
individually. Finally, a decision algorithm could be designed by considering MPAs
specified for different conditions aiming at making optimal predictions under var-
ious of complex detection scenarios.

3) Pixel-level object tracking: The correlation analysis in this work studies
the information correlation in time and space domain at the level of TC-Hist. It
could be extended to estimate the momentum vector of each pixel. Different
sensors, for example radars, could be used to provide velocity information of the
object.

4) Smart scanning: In addition to software-level extensions, a combination
with scanning mechanisms in time and space is attractive as well. With the po-
tential distances and prediction certainties provided by MPA, the LiDAR system
equipped with the scanning technology could have solid arguments for dynami-
cally adjusting the detection area in time and in space. In this case, the focus
and resources of a LiDAR system could be more rationally deployed and better
system performance could be achieved.
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Appendix A

Experimental Datasheets

Table A.1: Sub-region division and corresponding ranges in MPA with NF “ 12.

Sub-Region Range /m Sub-Region Range /m

1 [0, 5.06) 7 [30.35, 35.41)
2 [5.06, 10.12) 8 [35.41, 40.47)
3 [10.12, 15.18) 9 [40.47, 45.53)
4 [15.18, 20.24) 10 [45.53, 50.59)
5 [20.24, 25.29) 11 [50.59, 55.65)
6 [25.29, 30.35) 12 [55.65, 60.71)
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Table A.2: Accuracy of feature extraction on D1.

1 2 3 4 5 6 7 8

(0, 10] 93.50 93.40 91.25 89.70 87.50 83.50 82.60 76.40
(10, 20] 100 99.80 99.35 98.60 96.45 92.00 87.55 83.50
(20, 30] 100 99.85 98.95 97.45 93.75 90.50 84.10 80.55
(30, 40] 100 99.75 98.35 97.20 92.90 90.05 84.15 81.40
(40, 50] 100 99.70 99.00 96.35 94.55 91.35 88.70 85.20
(50, 60] 99.95 99.70 98.55 96.60 94.65 91.90 90.00 89.15

Table A.3: FNN prediction performance with NF “ 8 on DValid.

AF NHN AccC/% PPV/% DPR/% F1-Score/% AUC/%

None 0 71.75 71.35 71.75 71.29 94.01
None 8 71.67 71.39 71.67 71.19 94.01
None 18 71.7 71.34 71.7 71.26 94.01
None 28 71.63 71.38 71.63 71.19 93.98
ReLU 8 71.68 71.36 71.68 71.16 94.02
ReLU 18 71.71 71.39 71.71 71.26 94.02
ReLU 28 71.73 71.32 71.73 71.36 94.06
Sigmoid 8 71.57 71.26 71.57 71.12 93.96
Sigmoid 18 71.68 71.36 71.68 71.3 94.19
Sigmoid 28 71.7 71.35 71.7 71.3 94.2
Average 0 71.68 71.35 71.68 71.24 94.05
STD 0 0.05 0.03 0.05 0.07 0.07
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Table A.4: FNN prediction performance with NF “ 12 on DValid.

AF NHN AccC/% PPV/% DPR/% F1-Score/% AUC/%

None 0 70.44 70.01 70.44 69.87 94.24
None 12 70.28 70.05 70.28 69.64 94.23
None 22 70.33 69.91 70.33 69.78 94.23
None 32 70.3 69.91 70.3 69.79 94.22
ReLU 12 70.4 69.98 70.4 69.83 94.24
ReLU 22 70.4 69.94 70.4 69.82 94.28
ReLU 32 70.3 69.89 70.3 69.71 94.26
Sigmoid 12 70.19 69.76 70.19 69.65 94.23
Sigmoid 22 70.21 69.75 70.21 69.71 94.22
Sigmoid 32 70.4 70.0 70.4 69.9 94.29
Average 0 70.32 69.92 70.32 69.77 94.24
STD 0 0.08 0.09 0.08 0.08 0.02

Table A.5: FNN prediction performance with NF “ 16 on DValid.

AF NHN AccC/% PPV/% DPR/% F1-Score/% AUC/%

None 0 69.86 69.36 69.86 69.25 95.01
None 16 69.73 69.34 69.73 69.13 95.01
None 26 69.79 69.38 69.79 69.19 95.01
None 36 69.7 69.38 69.7 69.09 95.02
ReLU 16 69.71 69.32 69.71 69.18 94.96
ReLU 26 69.7 69.23 69.7 69.16 95.04
ReLU 36 69.65 69.28 69.65 69.04 95.05
Sigmoid 16 69.62 69.15 69.62 69.01 94.98
Sigmoid 26 69.55 69.08 69.55 68.94 94.99
Sigmoid 36 69.7 69.32 69.7 69.17 95.1
Average 0 69.7 69.28 69.7 69.12 95.02
STD 0 0.08 0.09 0.08 0.09 0.04
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Table A.6: FNN prediction performance with NF “ 24 on DValid.

AF NHN AccC/% PPV/% DPR/% F1-Score/% AUC/%

None 0 67.59 67.3 67.59 66.96 95.29
None 24 67.49 67.35 67.49 66.85 95.36
None 34 67.57 67.31 67.57 67.0 95.35
None 44 67.51 67.19 67.51 66.91 95.37
ReLU 24 67.48 67.28 67.48 66.91 95.35
ReLU 34 67.46 67.38 67.46 66.83 95.35
ReLU 44 67.53 67.22 67.53 66.89 95.41
Sigmoid 24 67.18 66.95 67.18 66.6 95.3
Sigmoid 34 67.26 67.11 67.26 66.7 95.32
Sigmoid 44 67.35 67.31 67.35 66.81 95.35
Average 0 67.44 67.24 67.44 66.85 95.34
STD 0 0.12 0.12 0.12 0.11 0.03

Table A.7: Saved values of (k2
b rB) as LUT.

pk2q
b rB

b rB Floating-Point Q7.11
1 0.99968754882 0.99951171875
500 0.85534532730 0.85498046875
1000 0.73161562895 0.73144531250
2000 0.53526142852 0.53466796875
3000 0.39160562668 0.39111328125
4000 0.28650479686 0.28613281250
5000 0.20961138715 0.20947265625
6000 0.15335496685 0.15332031250
7000 0.11219689052 0.11181640625
8000 0.08208499862 0.08203125000
9000 0.06005466789 0.05957031250
10000 0.04393693362 0.04345703125
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