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Kurzfassung

Bei den meisten regelungstechnischen Verfahren handelt es sich um modellbasierte Me-
thoden, die eine präzise mathematische Beschreibung des betrachteten dynamischen Sys-
tems voraussetzen. Die modellbasierte Regelung erlaubt es steuerbare Eigenvorgänge im
System so zu beeinflussen, dass ein gewünschtes, vorgegebenes Systemverhalten erzielt
wird. Allerdings ist die Modellbildung der meisten technischen Systeme komplex und es
ist schwierig und zeitaufwändig oder sogar unmöglich eine exakte Beschreibung vorzuneh-
men. Zu den Schwierigkeiten bei der Modellbildung zählen unter anderem: Systempara-
meter, die nicht genau identifiziert werden können oder zeitvariant sind; Systemvorgänge,
die real existieren jedoch beim Modellbildungsprozess nicht berücksichtigt werden; Inter-
aktionen mit der Umgebung, wie sie sich bei modernen regelungstechnischen Systemen
wie bspw. Robotern ergeben und die zur Folge haben, dass unbekannte äußere Eingänge
auf das zu beschreibende System wirken. Aufgrund der erläuterten Komplexität der Mo-
dellbildung existiert im Allgemeinen eine Diskrepanz zwischen der modellierten und der
tatsächlichen Dynamik des Systems. Um die regelungstechnischen Ziele trotz vorhandener
Modelldiskrepanz garantiert einhalten zu können wird vom Regler die Eigenschaft der Ro-
bustheit gefordert. Der Sliding-Mode-Regler ist eine regelungstechnische Methode, welche
eine derartige Robustheit aufweist. Mittels des Sliding-Mode-Reglers kann eine Invarianz
der Systemdynamik gegenüber Störungen im Eingangskanal erreicht werden. Als Folge
wird trotz Modelldiskrepanz die gewünschte Systemdynamik garantiert erzielt. Jedoch be-
sitzt der Sliding-Mode-Regler trotz seiner Robustheit einige Nachteile, die im Folgenden
näher erläutert werden:

• Die konventionelle Sliding-Mode-Regelung führt zu einem hochfrequentem Schalt-
vorgang im Signal der Stellgröße, welcher als Rattern bezeichnet wird. Das Rattern
kann eine Beschädigung des zu regelnden Systems zur Folge haben, woraus sich
in praktischer Konsequenz die Nichtausführbarkeit des Reglers ergibt. Die Verwen-
dung von Sliding-Mode-Reglern höherer Ordnung erlaubt eine effektive Abmilderung
des Ratterns. Allerdings werden dazu typischerweise zusätzliche Zeitableitungen des
Messsignals benötigt, welche die Sensitivität des regelungstechnischen Ansatzes ge-
genüber Messrauschen erhöhen. Adaptive Sliding-Mode-Regler eignen sich ebenfalls,
um eine Dämpfung des Ratterns zu erzielen. Jedoch kann das Rattern nur bis zu
einem gewissen Grad gedämpft werden, da andernfalls die regelungstechnischen Ziele
nicht garantiert eingehalten werden können.

• Die Berücksichtigung von Nebenbedingungen im Rahmen der Sliding-Mode-Regelung
ist komplex, da hierfür der Sliding-Mode-Regler an sich modifiziert werden muss. Die
Nebenbedingungen können nicht durch Aufschalten bereits bekannter regelungstech-
nischer Ansätze wie bspw. dem Invarianz-Regler (Wolff and Buss, 2004) oder dem
Reference-Governor Ansatz (Bemporad, 1998) erzwungen werden. Die genannten
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Methoden versagen, da sie auf Systeme mit Modellunsicherheit, von der typischer-
weise bei der Sliding-Mode-Regelung ausgegangen wird, nicht angewandt werden
können. Sliding-Mode-Regler, die eine Berücksichtigung von Nebenbedingungen er-
lauben, existieren zwar, allerdings wird üblicherweise von Nebenbedingung ausge-
gangen, die zeitlich unveränderlich sind. Als Folge ist das Anwendungsfeld dieser
Regler limitiert. Ein weiteres Problem ist, dass die meisten sliding-mode-basierten
Regler eine Berücksichtigung von Nebenbedingungen nur theoretisch zulassen. In
der Praxis führt ein Großteil der entworfenen Verfahren zum Auftreten des Ratterns
und ist deshalb unausführbar. Eine nachträgliche Approximation des Reglergesetzes
erlaubt zwar eine Dämpfung des Ratterns, führt jedoch dazu, dass die Einhaltung
der Nebenbedingungen nicht mehr garantiert werden kann.

Beobachterbasierte Verfahren finden vielfältig Anwendung im Rahmen der Überwachung
und Regelung dynamischer Systeme. Typischerweise handelt es sich dabei um modellbasier-
te Methoden, welche eine exakte Modellbeschreibung voraussetzen. Die Gestaltungsprin-
zipien der Sliding-Mode-Regelung können auch zum Entwurf von Beobachtern verwendet
werden. Die Robustheit der daraus resultierenden sogenannten Sliding-Mode-Beobachter
ist jedoch bei weitem nicht so umfassend wie jene der Sliding-Mode-Regler. Entwurfsver-
fahren für Sliding-Mode-Beobachter, die eine Modellunsicherheit erlauben, existieren für
spezielle Klassen von Systemen. Dies sind insbesondere spezielle lineare Systeme mit un-
bekannten Eingängen und nichtlineare Systeme in Regelungsnormalform. Darüber hinaus
existieren Sliding-Mode-Beobachter für weitere Systemklassen, die meisten setzten jedoch
eine exakte Modellbeschreibung voraus.

Auf Grundlage der zuvor beschriebenen Nachteile und Limitierungen der Sliding-
Mode-Regelung und Beobachtung werden folgenden Thematiken innerhalb dieser Arbeit
behandelt.

Betrachtet wird ein nichtlinearer Ansatz zur Zustandsschätzung, welcher unter dem
Namen Smooth-Variable-Structure-Filter (SVSF) bekannt ist. Das SVSF basiert einer-
seits auf dem Prädiktor-Korrektor Schema des Kalman Filters und nutzt andererseits
bekannte Gestaltungsprinzipien der Sliding-Mode-Regelung und Beobachtung. Das Filter
ist anwendbar auf nichtlineare Systeme für die keine exakte Modellbeschreibung vorliegt.
Die Genauigkeit der Zustandsschätzung hängt stark von der Wahl der Filterparameter ab,
welche durch den Anwender vorgegeben werden. In dieser Arbeit wird das SVSF in eine
neuartige, äquivalente Beschreibung überführt, die Aufschluss darüber gibt, wie das Verhal-
ten des Filters über die Filterparameter beeinflusst werden kann. Anhand der äquivalenten
Beschreibung wird eine Gleichung zur Berechnung der Schätzfehlerkovarianzmatrix herge-
leitet. Die Berechnung der Schätzfehlerkovarianzmatrix erlaubt es eine neue Filter-Verstär-
kungsmatrix zu bestimmen, um den mittleren, quadratischen Schätzfehler zu minimieren.
Wird die neue Verstärkungsmatrix auf auf das SVSF angewandt, ergibt sich ein Algorith-
mus der identisch zu dem des erweiterten Kalman Filters (EKF) ist. Um die Robustheit
des SVSFs weitergehend zu untersuchen wird ein kombinierter Schätzansatz formuliert.
Der kombinierte Schätzansatz basiert auf einer Gewichtung der Verstärkungsmatrizen
des SVSFs und des EKFs. Zur Optimierung der eingeführten Gewichtungsfaktoren und
der Filterparameter wird ein Optimierungsschema entworfen. Das Optimierungsschema
bedarf weder Experimenten am realen System noch Kenntnis über eine exakte Modell-
beschreibung. Darüber hinaus ist das vorgeschlagene Optimierungsschema nicht auf die
betrachteten Filterverfahren beschränkt. Es kann grundsätzlich auf alle modellbasierten
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Filterverfahren angewandt werden für die keine exakte Modellbeschreibung vorliegt. Um
die Schätzgenauigkeit des kombinierten Ansatzes mit dem des SVSFs zu vergleichen, wird
ein Anwendungsbeispiel mit einer nichtlinearen Dynamik betrachtet. Das exakte Verhal-
ten des Systems wird als nicht bekannt angenommen. Zur Lösung der Schätzaufgabe steht
lediglich ein nominelles Systemmodell zur Verfügung, das vom realen Systemverhalten ab-
weicht. Die Filterparameter der beiden Schätzverfahren werden anhand des entworfenen
Optimierungsschemas bestimmt. Für das bei der Untersuchung verwendete System zeigt
sich, dass der kombinierte Ansatz dem SVSF hinsichtlich der Schätzgenauigkeit überlegen
ist. Bei Betrachtung der optimierten Filterparameter zeigt sich, dass die Robustheit des
kombinierten Ansatzes weitestgehend von der Verstärkungsmatrix des EKFs ausgeht. Als
Folge verhält sich der kombinierte Ansatz strukturell ähnlich zum EKF. Er weist jedoch
eine parametrierte Verstärkungsmatrix auf, die über das entwickelte Optimierungsschema
angepasst wurde. Mittels dieser Anpassung wird eine gesteigerte Robustheit gegenüber der
vorliegenden Modellunsicherheit erreicht, aus welcher sich die verbesserte Schätzleistung
des Filters ergibt.

Ferner wird in dieser Arbeit ein modifizierter Ansatz zur adaptiven Sliding-Mode-
Regelung entworfen. Der Ansatz hat zum Ziel den Effekt des Ratterns stärker abzumil-
dern als dies bei konventionellen adaptiven Sliding-Mode-Verfahren der Fall ist. Dafür
wird ein daten-basierter, adaptiver Sliding-Mode-Regler entwickelt. Dieser ist auf nichtli-
nearer Systeme mit hinreichend träger Dynamik anwendbar. Ein- und Ausgangsdaten des
Systems werden verwendet, um ein lokales, lineares Abbild des Systems zu identifizieren.
Das Systemabbild dient der Vorhersage zukünftigen Systemverhaltens. Die Systemidenti-
fikation findet rekursiv mittels eines Kalman Filters statt. Dabei wird das lokale Abbild
des Systems in jedem Zeitschritt, also online, über die empfangenen Daten aktualisiert.
Basierend auf der Vorhersagefähigkeit des lokalen Systemabbildes wird ein Optimierungs-
problem formuliert. Ziel der Optimierung ist es die quadratische Regelabweichung und die
Stellgrößenenergie zu minimieren. Die sich aus dem Optimierungsproblem ergebene opti-
male Stellgröße wird nachfolgend als Optimalregler bezeichnet. Der Optimalregler wird mit
einem adaptiven Sliding-Mode-Regler erster Ordnung kombiniert. Im Zusammenhang mit
dem verwendeten Sliding-Mode-Regler wird eine Gleitebene definiert, auf welcher die Re-
gelabweichung asymptotisch stabil konvergiert. Durch die Verwendung von Gewichtungs-
funktionen wird sichergestellt, dass die Systemzustände immer wieder hinreichend genau
an die Gleitebene herangeführt werden, falls sie den Bereich um die Gleitebene verlassen
sollten. Daraus folgt, dass die Beschränktheit des Regelfehlers garantiert werden kann.
In der direkten Umgebung um die Gleitebene wird die Reglerverstärkung des adaptiven
Sliding-Mode-Reglers abgesenkt und der Optimalregler dominiert die Stellgröße. Als Folge
davon kann das Rattern stark vermindert werden. Eine Sollwert-Regelung eines nichtlinea-
ren Systems wird betrachtet, um den datenbasierten Ansatz mit einem konventionellen,
adaptiven Sliding-Mode-Regler zu vergleichen. Im Gegensatz zum konventionellen Regler
erreicht der daten-basierte Ansatz eine stationäre Sollwertfolge, ohne dass merkliches Rat-
tern auftritt. Bezogen auf das betrachtete System lassen sich die genannten Ergebnisse
ohne konkretes Wissen über die Systemparameter erzielen.

Abschließend beschäftigt sich diese Arbeit mit der Berücksichtigung von Nebenbe-
dingungen im Rahmen der Sliding-Mode-Regelung. In diesem Zusammenhang wird ein
Sliding-Mode-Regler entworfen, der sich zur Regelung spezieller nichtlinearer Systeme un-
ter Nebenbedingungen eignet. Betrachtet wird die Klasse der nichtlinearen Systeme mit
einem relativen Grad zwei. Die Nebenbedingungen sind bezüglich der ersten Zeitableitung
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der Regelgröße formuliert. Erschwerend wird angenommen, dass sich die Nebenbeding-
ungen im Laufe der Zeit verändern können. Der zur Lösung des Problems entworfene
regelungstechnische Ansatz basiert auf einer Verknüpfung zweier untergeordneter Sliding-
Mode-Regler. Im Gegensatz zu den bisher existierenden Verfahren wird der Schaltvorgang
zwischen den beiden untergeordneten Reglern so gestaltet, dass keine Diskontinuitäten
im Signal der Stellgröße auftreten. Darüber hinaus lässt sich mit dem entworfenen Regler
eine Abmilderung des Ratterns erzielen, ohne dass es zu einer Verletzung der formulierten
Nebenbedingungen kommt. Da es sich bei dem vorgestellten Ansatz um eine Sliding-Mode-
Regelung handelt, ist keine exakte Modellbeschreibung erforderlich. Der entworfene Regler
garantiert die Konvergenz des Regelfehlers. Die Regelabweichung erreicht innerhalb end-
licher Zeit ein Fehlerintervall, in welchem der Regelfehler nach oben und unten beschränkt
ist. Die Grenzwerte des Fehlerintervalls lassen sich über die gewählten Reglerparameter
bestimmen. Zusätzlich kann die Konvergenz zeitlich quantifiziert werden. Es ist möglich
anzugeben wie lange es maximal dauert bis sich der Regelfehler innerhalb des spezifizierten
Fehlerintervalls befindet. Der entwickelte Ansatz eignet sich insbesondere für Anwendun-
gen bei denen sich die Nebenbedingungen zur Laufzeit ändern. Aus diesem Grund wird eine
Punkt zu Punkt Regelung eines Roboter Endeffektors betrachtet. Dabei ändern sich die
erlaubten Winkelgeschwindigkeiten der Roboterarme zur Laufzeit. Erschwerend soll der
Roboter eine Pick-and-Place Aufgabe lösen. Eine Traglast mit einer unbekannten Masse
soll aufgenommen und zu einem anderen Wegpunkt transportiert werden. Die Traglast
fungiert als Störung, die vom Regler ausgeregelt werden muss. Bevor die gestellte Aufgabe
praktisch gelöst wird, kann das Verhalten des Reglers auf Basis der entwickelten Theo-
rie vorhergesagt werden. So kann der auftretende stationäre Regelfehler vorab bestimmt
werden und die maximale Zeitdauer kann angegeben werden, die der Regler zur Vollen-
dung der gestellten Aufgabe benötigt. Die ermittelten theoretischen Ergebnisse lassen sich
anhand einer Simulation validieren. Da sich der vorgestellte Regler gut für die Regelung
von Robotern mit beschränkten Winkelgeschwindigkeiten eignet, wird ferner ein Konzept
zur sicheren Mensch-Roboter-Kooperation entworfen. Dieses Konzept garantiert, dass die
Geschwindigkeit des Roboters einen Sollwert nicht überschreitet, wenn der Mensch mit
dem Roboter in Kontakt ist. Das vorgestellte Konzept zur Mensch-Roboter-Kooperation
wird anhand eines entworfenen Szenarios getestet. Die theoretisch erreichbaren Ergebnisse
werden über eine Simulation abgesichert.
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Abstract

Most control approaches are model-based methods and require a precise mathematical
description of the considered dynamical system. System modeling offers the advantage
that the controllable system dynamics can be affected by control in such a way that some
given desired dynamics is achieved. However, most technical systems are complex and
it is difficult and time-consuming to describe them exactly or it may even be impossible.
Challenges that arise in system modeling can be for instance: parameters that are not
precisely known or that vary in time, dynamics that exist but are unmodeled, or espe-
cially for modern control systems interactions with the environment that lead to unknown
exogenous inputs. Consequently, it is common that a discrepancy between the modeled
dynamics and the true dynamics exists. The applied controller is required to be robust in
the sense that the control goals are also guaranteed to be achieved in presence of the model
discrepancy. Sliding mode control (SMC) is such a robust control method. It can make
the system dynamics invariant to disturbances that appear in the input channel so that
the desired dynamics are still achieved. However, besides its strong robustness properties
sliding mode control also has some disadvantages:

• Conventional sliding mode control leads to a high frequent switching effect in the
input signal denoted as chattering making the controller inapplicable in practice.
Higher order SMC approaches may effectively mitigate the chattering but typically
require higher order time derivatives of the measured signal. As a consequence, the
whole approach becomes more sensitive to noise. Adaptive SMC approaches have
been developed to reduce the chattering as well. However, chattering reduction can
only be achieved to a certain extend as otherwise the control goals may not be
achieved anymore.

• The handling of constraints in the context of sliding mode control is not straight
forward as due to the model uncertainty standard add-on control approaches like
the invariance control method (Wolff and Buss, 2004) or the reference governor ap-
proach (Bemporad, 1998) can not be applied directly. Constrained SMC approaches
exist but they typically only consider box constraints with time-invariant bounds
which limits the field of applications. Another problem is that most of the existing
constrained SMC approaches only solve the constrained control problem in theory
but are not applicable in practice due to chattering. Approximation techniques are
required to be applied to mitigate the chattering. However, as the approximation
techniques modify the original control laws it can not be guaranteed anymore that
the constraints remain satisfied in general.

State estimation approaches are widely applied in the field of control and system monitor-
ing. Typically, the estimation approaches are model-based methods and require a precise
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system description to be known. Design principles of sliding mode control can also be ap-
plied to design state estimation approaches leading to the so-called sliding mode observers.
However, in contrast to the SMCs the robustness of the sliding mode observers (SMOs)
is much more restricted. General design concepts for SMO approaches that can handle
model uncertainty only exist for specific classes of linear systems with unknown inputs and
for nonlinear systems in companion form. There exist SMO approaches for other classes
of systems as well, but most of them require a precise model description.

Based on the aforementioned limitations and problems of sliding mode control and
observation the following topics are discussed within this thesis.

A nonlinear state estimation approach denoted as smooth variable structure filter
(SVSF) is considered. The SVSF combines the predictor corrector scheme of the Kalman
filter with design elements known from sliding mode control and observation. It is appli-
cable to nonlinear systems and can handle model uncertainty. However, the estimation
performance of the SVSF highly depends on the choice of some tuning parameters. In this
thesis a reformulation of the SVSF is stated which gives an easy interpretation on how the
tuning parameters affect the behavior of the filter. An equation to determine the error
covariance of the reformulated filter is derived. Based on the error covariance a new filter
gain is determined which minimizes the mean squared estimation error. If the new gain is
applied to the reformulated filter it can be shown that the obtained estimation algorithm
equals the one of the extended Kalman filter (EKF). To further investigate the robustness
of the SVSF a combined estimation approach is formulated. The combined approach is
equal to the reformulated SVSF but has a combined gain consisting of a weighted sum of
the SVSF and the EKF gains. To optimize the filter parameters and weighting factors a
parameter optimization scheme is proposed. The scheme neither requires any experiments
on the real system to be conducted nor does it require the true system description to be
known. The optimization scheme is generic in the sense that it can be applied to optimize
any model-based state estimation approach that has to deal with an imprecise system
description. The performance of the proposed combined estimation approach is compared
with the one of the SVSF. A nonlinear system is simulated and the system description is
assumed to be unknown. Both, the parameters of the combined approach and the ones of
SVSF are optimized using the proposed scheme. For the considered system the combined
approach outperforms the SVSF. Further, from the optimized parameters it can be seen
that the robustness of the combined approach is mainly achieved by the EKF gain. That
means that the combined approach behaves structural similar to the EKF but with a pa-
rameterized gain that is optimized by the proposed optimization scheme to handle model
uncertainty.

Further, adaptive sliding mode control is considered in this thesis. The ability of adap-
tive sliding mode control to mitigate the chattering effect is improved. Therefore, a new
data-driven adaptive SMC for nonlinear systems is designed. The system description is not
necessarily required to be explicitly known but the dynamics are assumed to be sufficiently
slow. Input- and output-data of the system is applied to train a linear local model that
predicts the future system behavior. The local model is trained by a Kalman filter which
allows to update the model at each time step based on the incoming data of the system.
Using the prediction capabilities of the local model an optimization problem is formulated
to minimize the squared control error and the input energy. The optimal control input is
determined and combined with a first order adaptive sliding mode controller. Weighting
functions are introduced to guarantee reaching of a subspace around the sliding manifold
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from which follows that the tracking error is bounded. In the vicinity of the sliding sur-
face the gain of the sliding mode controller is scaled down. As a consequence, the control
law is dominated by the optimal control input and the chattering effect can be effectively
mitigated. Set point tracking of a nonlinear system is considered to compare the proposed
data-driven approach with a conventional first order adaptive SMC. In contrast to the
conventional adaptive SMC the developed approach achieves stationary accurate tracking
without noticeable chattering. For the considered specific system the control results of the
proposed method are achieved even without concrete knowledge of the system parameters.

Finally, the development of a constrained sliding mode controller is considered in this
thesis. The approach is applicable to nonlinear relative degree two systems and assumes
the first time derivative of the control variable to be constrained. The bounds of the con-
straints may explicitly depend on time. The controller is designed based on a combination
of two SMC sub-controllers. In contrast to the existing approaches a smooth transition
between the sub-controllers is achieved and chattering mitigation is considered in such
a way that it does not lead to constraint violation. As the developed method is based
on sliding mode control design it can handle model uncertainty. The proposed approach
guarantees convergence of the tracking error with respect to a domain that can be spec-
ified based on the controller parameters. In addition, a maximum time period can be
stated after which convergence of the tracking error is guaranteed to be achieved. As the
proposed controller allows to update the constraints online it is tested on a robotic system
with time-dependent velocity constraints. The angular velocities change online dependent
on the distance between the end effector and the waypoints. Moreover, the robot has to
accomplish a pick and place problem in which an unknown payload is considered. The
payload servers as a disturbance and is required to be rejected by the controller. Based
on the developed theory about the proposed controller the tracking error bounds can be
determined beforehand. The maximum time period that is required to accomplish the
pick and place problem can also be stated in advance. The results have been successfully
confirmed by simulation. As the proposed controller is well suited for velocity constraint
control of robotic systems a safety concept for human-robot collaboration tasks is devel-
oped in addition. The proposed concept guarantees that the robot velocity is restricted
to a desired value in the moment when the human and the robot are in contact with each
other. A scenario of human robot interaction is considered to test the developed concept.
The theoretical controller performance is confirmed by the simulation results.
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1 Introduction

Most technical systems cannot be modeled perfectly. There may be discrepancies between
the modeled and the actual system arising from e. g. parametric variations, unmodeled
dynamics, or unknown disturbances. As the uncertainties cannot be quantified exactly
it is typically stated that they arise within some known bounds. For this known bounds
the controller is required to be robust meaning that the closed loop system should still
be stable and the control goals should still be achieved. Sliding mode control (SMC) is
a control method that exactly provides this kind of robustness. It is well established and
can be applied to linear as well as nonlinear systems. Generally, the design of a sliding
mode controller is characterized by two main steps.

First, a sliding manifold is designed within the state space. The sliding manifold
defines a system mode “the sliding mode” in which desired dynamics such as state conver-
gence are achieved. Consequently, in sliding mode the states slide on the manifold towards
the origin of the state space. In addition, if the system is in sliding mode it is insensitive
to so-called matched uncertainties leading to great robustness.

The second design step is the derivation of the reaching law. The reaching law defines
the control input and guarantees that the sliding manifold is reached within finite-time.
The time period of reaching is denoted as reaching phase. In conventional SMC design the
reaching law is discontinuous and SMC can be regarded as a special type of variable struc-
ture control. The discontinuity of the reaching law leads to a high frequent switching of the
control input denoted as chattering. The chattering is the major drawback of conventional
sliding mode control. However, chattering can be effectively attenuated without the loss
of control accuracy by means of higher order sliding mode control (HOSMC). Higher order
SMC may be interpreted as the design of several sliding manifolds. The sliding mode is
then defined by the intersection of these manifolds and the reaching law forces the states
towards the intersection so that the sliding mode becomes active in finite-time. Based on
HOSMC design convergence of the system states or tracking error can also be achieved in
finite-time for any well-defined relative degree of the system. In conventional SMC design
this can only be achieved for relative degree one systems without the use of nonlinear
sliding manifolds. However, application of HOSMC approaches requires higher order time
derivatives of the so-called sliding variable to be known. In theory the higher order time
derivatives can be perfectly determined by means of sliding mode differentiators but only
if the measured signal is noise-free.

For many control methods such as for state feedback controllers or exact input-output
linearization approaches the system states are required to be known. Also for sliding mode
controllers knowledge of the system states may be required or advantageous. For example
for the sliding mode controller design of linear systems the system states are required to
be known to achieve state stability as the sliding variable has to be defined with respect
to the system states. In addition, for uncertain systems the bounds of the uncertainty
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Ch. 1. Introduction

can be reduced if the system dynamics is partially known including knowledge of the
states. To avoid measuring of all the states an observer is typically applied to estimate
the system states. As SMC is a robust control approach the observer has to be robust
too meaning that the states are required to be estimated without exact knowledge of the
system dynamics. This can be achieved by sliding mode observation (SMO) approaches
at least for some classes of systems. Typically, SMO approaches do not consider effects of
measurement or process noise and are described with respect to deterministic systems. A
problem of SMO approaches is that their robustness against model uncertainty is much
more restricted as it is the case for the SMC approaches. Sliding mode observers that can
handle model uncertainty exist for specific linear systems with unknown inputs. In this
case the SMO has a structure similar to the Luenberger observer but with an additional
discontinuous feedback of the output estimation error. This kind of SMO approaches also
allows to estimate the unknown input itself making it attractive for fault detection, local-
ization, and monitoring. For nonlinear systems robust SMO methods also only exist for
special system classes e. g. for nonlinear systems in companion form. There exist SMO
approaches for other types of systems as well but most of them require a precise model
description.

1.1 Motivation and Problem Statement

This thesis considers contributions to sliding mode control and observation. In particular
three main topics are discussed.

The first topic is about a sliding mode observation approach for nonlinear uncertain
systems known as the smooth variable structure filter (SVSF). The SVSF approach can be
considered as a sliding mode observer formulated with respect to discrete-time stochastic
systems. The filter makes use of the boundary layer concept known from sliding mode
control. The boundary layer is introduced to reduce the negative impact of measurement
noise on the estimation performance of the SVSF. From the literature it is known that the
SVSF has the ability to achieve improved estimation performance in comparison to the
Kalman filter if the system description is imprecise. However, the improved performance
can only be achieved if some filter parameters of the SVSF approach are properly tuned.
In contrast to the Kalman filter the SVSF approach does not propagate the error covari-
ance. An attempt to analytically minimize the SVSFs mean squared error (MSE) with
respect to the filter parameters has been undertaken in Gadsden et al. (2011b). Therefore,
a model to propagate the error covariance of the SVSF is proposed in Gadsden and Habibi
(2010) which is then used to find the filter parameters that minimize the MSE. The ap-
proach cannot be considered to be consistent. The propagation of the error covariance as
proposed in Gadsden and Habibi (2010) assumes the system dynamics to be linear and
precisely known which clearly contradicts the claim of the SVSF to be a robust estimation
approach for nonlinear systems. In addition, the gain of the SVSF is stochastic as it feeds
back the output estimation error which is a stochastic process. However, the estimation
error model proposed in Gadsden and Habibi (2010) is only mathematically correct if the
gain is assumed to be deterministic. In contrast to the aforementioned parametric opti-
mization a structural optimization of the SVSF approach is proposed by Gadsden et al.
(2011a). The formulated strategy considers a simple switching between the SVSF and the
Kalman filter gain. The Kalman filter gain is applied when the assumed system model
fits well to the true system dynamics. In this case the Kalman filter is known to achieve a
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Sec. 1.1. Motivation and Problem Statement

minimization of the MSE. However, if there is a discrepancy between the assumed model
and the true system behavior the SVSF gain is applied because it is considered to be
more robust. The switching of the gains is induced by a condition that is formulated with
respect to the optimized SVSF parameters. As a result the switching is also affected by
the inconsistencies of the SVSF parameter optimization approach of Gadsden and Habibi
(2010).

However, from a principal point of view it makes sense to optimize the SVSF parame-
ters as the filter has not been derived based on a minimization of the MSE. Consequently,
the following goals are formulated with respect to this thesis:

• Investigation of the effects of the SVSF parameters on the filters estimation perfor-
mance

• Derivation of an error model for the SVSF that is applicable to nonlinear systems
with imprecise model description

• Development of a parameter optimization process for the SVSF that does not require
the true estimation error to be known

The second topic discussed in this thesis is related to chattering attenuation. As
already mentioned higher order sliding mode control can be applied to effectively mitigate
chattering. However, HOSMC approaches require higher order time derivatives of the
sliding variable to be known. Typically, control approaches that rely on higher order time
derivatives are undesired because the estimation of the related time derivatives may be very
sensitive to measurement noise. First order conventional SMC does not rely on any time
derivatives of the sliding variable. With regards to these conventional SMC approaches
several adaptive gain methods have been proposed in the past fifteen years (e. g. Plestan et
al., 2010; Edwards and Shtessel, 2016). The goal of the adaptation strategies is to adjust
the controller gain online making it large enough to guarantee reaching of the sliding
surface but not too large to keep the chattering effect small. The main problem of the
adaptive gain approaches is that in the moment when the sliding manifold is reached and
the chattering occurs the SMC gain cannot be reduced to a value close to zero. This
cannot be achieved because the gain has at least to be chosen sufficient large to keep
the system on the sliding manifold. As a consequence the chattering effect cannot be
effectively mitigated by the existing adaptation strategies. This motivates the idea to
combine adaptive SMC with another control method able to take over control in the
vicinity of the sliding manifold so that the chattering can be avoided entirely. Adaptive
SMC has the advantage that it does not require a precise model description. Only the
relative degree of the system and the sign of the appearing Lie derivatives have to be known.
In addition, the so-called uncertainty bounds must be assumed to be finite. As adaptive
SMC does not require a complete system description it makes sense to combine it with
another control method for which the same holds true. This is obviously the case for model-
free control approaches. Commonly, two types of model-free controllers exist. Those with
given structure of the controller and those which formulate a generic controller based on a
local system description. The local system description allows to predict the future system
behavior. As a consequence, predictive control approaches can be formulated leading to
minimization of the squared control error and the control input energy. In the literature,
combination of MPC and SMC have already been considered. But to the best knowledge

3



Ch. 1. Introduction

of the author MPC has not been combined with adaptive SMC approaches before. This
thesis especially focuses on a combined model-free predictive control and adaptive SMC
approach that requires a minimal amount of system knowledge and allows mitigation of
the chattering effect. Therefore, the following goals are formulated with respect to this
thesis:

• Development of a data-driven control approach that in combination with an adaptive
SMC allows control of nonlinear systems and mitigation of the chattering effect

• Establishment of a local system description that is capable to predict the future
behavior of a class of nonlinear uncertain systems

• Formulation of a framework that combines predictive control and adaptive SMC

• Guarantee of tracking error boundedness for the proposed control approach

The third and last topic considered in this thesis is about constrained sliding mode
control. Generally, the most frequently used constrained control method is MPC. Even if
the system description is not precisely known robust MPC approaches such as tube MPC
(Langson et al., 2004) or min-max MPC (Raimondo et al., 2009) can be applied. However,
MPC relies on a prediction of the system behavior which might not fit well to every kind
of application. For instance, in scenarios in which human and robot interact with each
other it is not only required to predict the future behavior of the robot but also the future
behavior of the human. This interacting scenarios are safety critical meaning that the
correctness of the prediction of the human behavior must be guaranteed. As this is hard
to achieve in practice MPC might be considered to be unsuited. In contrast to that sliding
mode control does not rely on a prediction of the system behavior. In addition, the inherent
robustness property of SMC guarantees the constraints to be satisfied even in case of model
uncertainties. In comparison to MPC constrained SMC is typically less computationally
expensive as it is not the solution of any optimization problem. Consequently, SMC may
be considered to be of particular interest especially for constrained control of safety critical
systems that involve the behavior of humans. In the literature a wide variety of constrained
SMC approaches can be found. There exist approaches based on e. g. combined controllers
(Richter, 2011; Incremona et al., 2016; Song et al., 2016; Jasku la and Leśniewski, 2020),
parameter selection strategies (Bartoszewicz and Nowacka-Leverton, 2010; Pietrala et al.,
2018; Pietrala and Jasku la, 2019), positively robust invariant sets (Richter et al., 2007),
reference governor control strategies (Garelli et al., 2011), and prescribed performance
functions (Liu and Yang, 2017). Except for the reference governor approach of Garelli
et al. (2011) all aforementioned control strategies lead to discontinuous control laws that
generate chattering making the approaches inapplicable in practice. Smoothing of the
control laws based on the introduction of a smoothing boundary layer may be considered.
However, approximating the control laws may lead to constraint violations as stated in e. g.
Incremona et al. (2016). In addition, most constrained SMC approaches are restricted to
box constraints with constant bounds. However, constant bounds are undesired and limit
the filed of applications. For instance, in human-robot interaction it is important to limit
the robot velocity online dependent on the distance between the human and the robot. In
summary, the following goals are formulated with respect to this thesis:

• Development of a constrained sliding mode control approach for nonlinear systems
such as robots
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• Achievement of constrained control under the influence of disturbances and model
uncertainties

• Achievement of chattering mitigation without constraint violation

• Guarantee of control error convergence and analysis of control error dynamics and
control error bounds

1.2 Thesis Organization

This thesis is organized as follows.
In Chapter 2 the fundamentals of sliding mode control and observation are explained.

The requirements and design principles for conventional sliding mode control are discussed
for both, linear and nonlinear systems. The concept of integral sliding mode control is
introduced. Explanation is given about how integral sliding mode control servers as a
framework to combine SMC with other control methods. The chattering effect is dis-
cussed and basic techniques for chattering mitigation are explained. Higher order SMC
approaches are described with their ability to achieve finite-time convergence for systems
with generic relative degree. In addition, their application with respect to chattering mit-
igation is explained. Nonlinear sliding manifolds are introduced to achieve fast finite-time
convergence for conventional SMC approaches. Adaptive SMC methods are considered
as a relatively new approach for chattering mitigation. The basic theory of sliding mode
observers is introduced as well. Design principles for linear and nonlinear systems are
considered. In addition, differentiation based on sliding mode differentiators is discussed.

In Chapter 3 an estimation approach for nonlinear uncertain systems is described.
The approach is based on a combination of the smooth variable structure filter and the
Kalman filter. First, the SVSF is introduced. A reformulation of the SVSF is stated
and it is analyzed how the tuning parameters affect the behavior of the filter. The error
covariance matrix of the reformulated filter is determined and serves to calculate a new
filter gain that minimizes the MSE. Applying the new gain to the reformulated filter gives
a connection between the SVSF and the Kalman filter. A combined filtering approach is
formulated using elements from both, the SVSF and the Kalman filter. An optimization
scheme is proposed to optimize the tuning parameters of the considered filters. A nonlin-
ear chemical plant is considered to compare the estimation performance of the combined
approach with the one of the SVSF and the Kalman filter.

In Chapter 4 an approach for chattering mitigated control of uncertain nonlinear sys-
tems with slow dynamics is discussed. First, a data driven model-free controller is designed.
Therefore, local system dynamics are recursively identified based on a Kalman filter. The
identified dynamics is used to design a model-free predictive controller. The obtained pre-
dictive controller is tested on an uncertain nonlinear multi-input multi-output three-tank
water system to solve both, an unconstrained and a constrained set-point tracking prob-
lem. Subsequently, the predictive controller is combined with an adaptive SMC. Therefore,
additional assumptions are formulated. The chattering mitigated control approach is for-
mulated and its properties are studied. Finally, set-point tracking of a nonlinear uncertain
chemical plant is considered to compare the control performance of the proposed method
with the one of a conventional adaptive SMC.

In Chapter 5 a constrained SMC for uncertain nonlinear relative degree two systems
is developed. First, a literature review about constrained SMC is given. A well-known
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recent approach from the literature is studied. The controller is able to handle box con-
straints but it is inapplicable in practice due to chattering. After the literature review the
constrained control problem that is considered in this thesis is specified. Assumptions are
made required for the design of the proposed constrained controller. Possible implemen-
tation issues such as chattering or switching effects are avoided during the design process
of the controller. The mathematical properties of the developed SMC are analyzed. The
dynamics of the tracking error are studied and error bounds are given. Admissible values
for the controller parameters are stated guaranteeing the constraints to be satisfied and
the chattering to be mitigated. The proposed approach is applied to a multi-input multi-
output nonlinear robotic system. A pick and place problem with an unknown payload
and velocity constraints is considered. The constrained control problem can be solved by
the developed controller. In addition to the control method a safety concept for human-
robot collaborations tasks is proposed. The concept is described and its properties are
mathematically analyzed. In particular, safety margins with reduced angular velocities
are designed to guarantee the robot velocity to be restricted when human and robot are
in contact with each other. The developed concept and its theory are validated by simu-
lation.

In Chapter 6 a summary of the developed methods is given. The main design steps of
the approaches are described. Scientific results are highlighted and remaining limitations
are discussed. In addition, explanation about possible future works is given.
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2 Theoretical Background of

Sliding Mode Control and Observation

In this chapter the fundamentals of sliding mode control (SMC) and sliding mode ob-
servation (SMO) are introduced. A general review about the most important controller
and observer design methods is given. Linear systems as well as nonlinear systems are
considered. Bounded but unknown uncertainties are assumed to be present. Design prin-
ciples are introduced to achieve finite-time convergence of tracking or estimation errors in
presence of disturbances.

2.1 Sliding Mode Control

In the following the design of sliding mode controllers for linear and nonlinear systems is
discussed. The control task can be divided into two main design steps. First, the sliding
surface which characterizes the sliding mode is required to be designed. In the following
approaches are introduced to design linear sliding surfaces with asymptotic convergence or
nonlinear sliding surfaces with finite-time convergence. The second part of the controller
design defines the control law. The control law is designed in such a way that it guarantees
the sliding surface to be reached after a finite period of time called the reaching phase. As
a consequence, after the reaching phase the sliding mode is guaranteed to become active.
Related to the reaching of the sliding surface two main design principles are introduced
known as the unit vector and the relay control approaches. These two control methods are
conventional first order design approaches which are characterized by a discontinuous con-
trol law. Both control methods guarantee the sliding surface to be reached in finite-time
but generate a high frequent switching effect in the input signal known as chattering. To
make the controller applicable the chattering is required to be attenuated. Therefore, ap-
proximation techniques, adaptive control approaches as well as higher order sliding mode
controllers are introduced with their ability to mitigate the chattering.

Further, additional design methods of sliding mode control are considered. In partic-
ular, integral sliding mode control is applied to eliminate the reaching phase so that the
sliding mode is active from the beginning. Integral SMC is also shown to offer a suitable
framework to combine SMC with other control methods.

2.1.1 Linear Systems

A brief introduction to sliding mode control of linear systems is given as follows. A linear
time-invariant system

ẋ = Ax+Bu+Bξ, (2.1)
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with states x ∈ R
n, inputs u ∈ R

m, and uncertainties ξ ∈ R
m is considered. The state x is

assumed as known. The unknown uncertainties may comprise e. g. unmodeled dynamics,
nonlinear terms, or unknown inputs. As ξ acts in the same input channel as u it is called
a matched uncertainty. Let

σ = Sx = 0 (2.2)

define a sliding mode of system (2.1) where S ∈ R
m×n describes a set of hyperplanes. If

(2.2) holds then x evolves on the intersection of the hyperplanes and system (2.1) is said
to be in a sliding mode. The intersection of hyperplanes defined by (2.2) is also denoted as
the sliding surface. The goal is to design the sliding surface in such a way that x converges
to zero i. e. x slides towards the origin of the state space if it moves along the intersection
of the hyperplanes. When the system is in sliding mode the behavior of x is characterized
by the so-called sliding dynamics.

In the following it is assumed that (2.2) holds i. e. the system is assumed to be in
sliding mode. According to Shtessel et al. (2014, Chap. 2.2.1) the design of the sliding
surface which defines the sliding dynamics is discussed. The desired sliding dynamics can
be achieved by a proper choice of the matrix S. Consider a state transformation

z = Tx, (2.3)

where T ∈ R
n×n solves

TB =

[

0

B̄2

]

, (2.4)

with B̄2 ∈ R
m×m being nonsingular. The transformation matrix T is assumed to be

obtained from a QL decomposition which is described as follows. As B is a n by m matrix
with n ≥ m its QL decomposition is given by

B = Q

[

0
L

]

, (2.5)

with Q ∈ R
n×n being an orthogonal matrix and L ∈ R

m×m being a lower triangular matrix.
Consequently, if B̄2 of (2.4) is chosen lower triangular then an orthogonal transformation
matrix T = QT can be obtained from the QL decomposition of B. Based on (2.4) the
system can be transformed as

[

ż1

ż2

]

︸ ︷︷ ︸

ż

=

[

Ā11 Ā12

Ā21 Ā22

]

︸ ︷︷ ︸

Ā

[

z1

z2

]

︸ ︷︷ ︸
z

+

[

0

B̄2

]

︸ ︷︷ ︸

B̄

u+

[

0

B̄2

]

︸ ︷︷ ︸

B̄

ξ, (2.6)

with

Ā = TAT T , B̄ = TB, (2.7)

and partitions z1 ∈ R
(n−m) and z2 ∈ R

m. A system with an input matrix of the form of
B̄ is said to be in regular form. Applying the state transformation on (2.2) yields

σ = ST T z = S̄z =
[

S̄1 S̄2

] [

zT1 zT2

]T
= 0, (2.8)
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with S̄1 ∈ R
m×(n−m) and S̄2 ∈ R

m×m. Matrix S and its submatrices S̄1, S̄2 which
characterize the sliding mode are yet undefined. Let S̄2 be chosen nonsingular then

z2 = −Mz1, M = S̄−1
2 S̄1 (2.9)

can be obtained from (2.8). Substituting (2.9) in (2.6) yields the sliding dynamics

ż1 = (Ā11 − Ā12M)z1. (2.10)

Equations (2.9) and (2.10) describe the dynamics when system (2.1) is in sliding mode.
These dynamics are of reduced order as (2.9) has no dynamics and (2.10) has dynamics
of order n − m which is less then n. From (2.9) and (2.10) it can be detected that the
matched uncertainty ξ does not affect the reduced order system. This holds true in general
as long as the uncertainty is a matched uncertainty. The invariance of the reduced order
system with respect to the matched uncertainty is the main robustness feature of SMC
and often denoted as invariance property.

To achieve convergence of the transformed states the reduced order system must be
made asymptotically stable based on the choice of matrix M . It can be shown that
the matrix pair (Ā11, Ā12) is fully controllable if and only if (Ā, B̄) is fully controllable
(Edwards and Spurgeon, 1998, Proposition 3.3). As the transformation between (2.1) and
(2.6) preserves controllability it follows that (Ā11, Ā12) is fully controllable if and only if
(A, B) is fully controllable. Using pole placement a matrix M can be determined to make
the dynamics of (2.10) asymptotically stable. It follows that z1 converges to zero and from
(2.9) it follows that z2 also converges to zero. Consequently, from transformation (2.3) with
nonsingular T it follows that the original states x converge to zero. According to (2.9)
submatrix S̄1 can be obtained from M and any nonsingular matrix S̄2. Consequently, S
and thus the sliding mode (2.2) is completely defined. Regarding the choice of the desired
eigenvalues it may be required to make the dynamics of (2.10) not only asymptotically
stable but also to achieve desired locations of the eigenvalues that are least sensitive to
parameter perturbations ∆Ā11, ∆Ā12 of matrices Ā11 and Ā12. This design goal can be
realized by choosing orthogonal eigenvectors denoted as eigenstructure assignment. For
details see e. g. Edwards and Spurgeon (1998, Chap. 4.2.1). Classic LQR approaches
can also be applied to design the sliding manifold. It is shown in Shtessel et al. (2014,
Chap. 2.2.3) that the minimization problem

J =
1

2

∫ ∞

ts
xTQxdt, Q ≻ 0, Q = QT (2.11)

related to the original states x can be reformulated as a standard LQR design problem

J =
1

2

∫ ∞

ts
zT1 Q̀z1 + vT Q̄22v dt, Q̀ = Q̄11 − Q̄12Q̄

−1
22 Q̄

T
12, (2.12)

with virtual control input

v = z2 + Q̄−1
22 Q̄

T
12z1, (2.13)

subject to the dynamics

ż1 = Àz1 + Ā12v, À = Ā11 − Ā12Q̄
−1
22 Q̄

T
12. (2.14)

9
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The time instant ts denotes the time when the sliding surface is reached and the trans-
formed weighting matrix and its submatrices are given by

TQT T = Q̄ =

[

Q̄11 Q̄12

Q̄21 Q̄22

]

. (2.15)

The solution of this standard LQR problem is

v = −Q̄−1
22 Ā

T
12Pz1, (2.16)

where P is obtained from the Ricatti equation. Substituting (2.16) in (2.13) and comparing
the resulting equation with (2.9) determines M and finally the sliding mode. The LQR
design requires (À, Ā12) to be completely controllable (Edwards and Spurgeon, 1998,
Chap. 4.2.2). Based on Edwards and Spurgeon (1998, Proposition 3.3) it can be shown
that the matrix pair (À, Ā12) is completely controllable if and only if (A, B) is completely
controllable.

So far it has been assumed that (2.2) holds and system (2.1) is in sliding mode. In
the following a control law is derived that forces the system to be in sliding mode and
to remain in there. From a geometrical point of view the states x are forced to move
towards the sliding surface based on a suitable control law u. Following Shtessel et al.
(2014, Chap. 2.4.1) a control law

u = ul + unl (2.17)

comprised by linear and nonlinear terms is studied. The linear term is given by state
feedback

ul = −(SB)−1(SA−ΥS)x, (2.18)

and requires SB to be nonsingular. From transformation (2.3) it is known that

SB = ST TTB = S̄B̄ = S̄2B̄2 (2.19)

holds. As B̄2 is the lower triangular matrix of the QL decomposition and S̄2 was required
to be chosen nonsingular it follows

det{SB} = det{S̄2B̄2} = det{S̄2}det{B̄2} 6= 0. (2.20)

Matrix Υ ∈ R
m×m of (2.18) can be any stable matrix i. e. the real part of any eigenvalue

of Υ is less than zero. The effect of control input (2.18) can be further understood by
considering the dynamics of σ. Derivating (2.1) with respected to time and substituting
(2.2) yields

σ̇ = Sẋ = SAx+ SBu+ SBξ. (2.21)

Substituting (2.17) in (2.21) leads to

σ̇ = Sẋ = ΥSx+ SBunl + SBξ = Υσ + SBunl + SBξ. (2.22)

Consequently, if the uncertainty ξ and the nonlinear term unl are assumed zero then the
linear part of the control law drives the states towards the sliding manifold with dynamics

10
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dependent on the chosen eigenvalues of Υ. The rejection of the uncertainty is achieved by
the nonlinear term unl of the control law which is given as

unl = −(SB)−1ksφ(P2, σ), (2.23)

with

φ(P, σ) =







Pσ
‖Pσ‖ if ‖Pσ‖ 6= 0,

0 else.
(2.24)

The static gain ks is chosen as

ks ≥ ‖SB‖ξM + γ, (2.25)

with γ > 0 being a controller parameter and ξM being an upper bound of the uncertainty
ξ according to

‖ξ‖ ≤ ξM . (2.26)

Matrix P2 ∈ R
m×m is obtained from the Lyapunov equation

ΥP2 + P2ΥT = −Im, (2.27)

and is symmetric as well as positive definite. Due to the definition (2.24) the controller
(2.23) is denoted as unit vector approach and was first published by Ryan and Corless
(1984). Referring to Edwards and Spurgeon (1998, Chap. 3.6.1) it will be shown that the
control law (2.17) guarantees finite-time stability of σ. Let

V = σTP2σ, (2.28)

be a Lyapunov function candidate. Derivating (2.28) with respect to time leads to

V̇ = σ̇TP2σ + σTP2σ̇. (2.29)

Substituting (2.23) in (2.22) gives

σ̇ = Υσ − ksφ(P2, σ) + SBξ, (2.30)

and substituting (2.30) in (2.29) yields

V̇ = σT (ΥTP2 + P2Υ)σ + 2σTP2SBξ − 2ks
σTP 2

2 σ

‖P2σ‖
, (2.31)

for σ 6= 0. Based on the Euclidean norm

σTP 2
2 σ = σTP T2 P2σ = ‖P2σ‖2, (2.32)

and equation (2.27) expression (2.29) can be rewritten as

V̇ = −σTσ + 2σTP2SBξ − 2ks‖P2σ‖. (2.33)

11
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Applying the submultiplicative Frobenius norm leads to

V̇ ≤ −σTσ + 2‖σTP2‖‖SB‖ξM − 2ks‖P2σ‖,
= −σTσ + 2‖P2σ‖(‖SB‖ξM − ks), (2.34)

and substituting (2.25) in (2.34) yields

V̇ ≤ −σTσ − 2‖P2σ‖γ = −σTσ − 2γ

√

(P
1/2
2 σ)TP2(P

1/2
2 σ), (2.35)

where P
1/2
2 is defined as

P2 = P
1/2
2 P

1/2
2 . (2.36)

As P2 is symmetric the statement
√

λmin{P2}(P 1/2
2 σ)T (P

1/2
2 σ) ≤

√

(P
1/2
2 σ)TP2(P

1/2
2 σ) (2.37)

holds which in combination with (2.35) leads to

V̇ ≤ −2γ

√

λmin{P2}(P 1/2
2 σ)T (P

1/2
2 σ) = −2γ

√

λmin{P2}
√
V . (2.38)

Integrating (2.38) gives

− 1

γ
√

λmin{P2}
(

V (t)1/2 − V (t0)1/2
)

= t− t0, (2.39)

which shows that σ is finite-time stable with respect to zero.
Up until now state stability of system (2.1) has been considered. It was shown how

the states x can be made asymptotically stable even in presence of an uncertainty. In the
following reference tracking is considered. A common way to achieve reference tracking is
to apply integral control. Following Edwards and Spurgeon (1998, Chap. 4.4.2) the linear
time-invariant system (2.1) with m inputs u ∈ R

m is assumed to have m control variables
yr ∈ R

m according to

yr = Crx. (2.40)

System (2.1), (2.40) is transformed into regular form leading to
[

ż1

ż2

]

︸ ︷︷ ︸

ż

=

[

Ā11 Ā12

Ā21 Ā22

]

︸ ︷︷ ︸

Ā

[

z1

z2

]

︸ ︷︷ ︸
z

+

[

0

B̄2

]

︸ ︷︷ ︸

B̄

u+

[

0

B̄2

]

︸ ︷︷ ︸

B̄

ξ, (2.41)

yr = C̄rz, (2.42)

with

Ā = TAT T , B̄ = TB, C̄r = CrT
T , (2.43)

and states z1 ∈ R
(n−m), z2 ∈ R

m, and z ∈ R
n. Let w ∈ R

m be the reference variable
which is assumed to converge to a desired constant set-point wc ∈ R

m. Signal w can be
generated based on

ẇ = Φw −Φwc, (2.44)

12
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with design matrix Φ chosen asymptotically stable so that the error dynamics

ẇ − ẇc = Φ(w − wc), (2.45)

converge to zero asymptotically. An integral state µ ∈ R
m is introduced as

µ =

∫

w − yr, (2.46)

and system (2.41)–(2.42) is augmented according to
[

µ̇
ż

]

︸︷︷︸

ζ̇

=

[

0 −C̄r
0 Ā

]

︸ ︷︷ ︸
∗
A

[

µ
z

]

︸︷︷︸

ζ

+

[

0

B̄

]

︸︷︷︸
∗
B

u+

[

0

B̄

]

︸︷︷︸
∗
B

ξ +

[

I
0

]

︸︷︷︸

N

w, (2.47)

where ζ ∈ R
(m+n) denotes the augmented state being defined as

ζ =

[

µ
z

]

. (2.48)

The augmented system (2.47) is partitioned as

[

ζ̇1

ζ̇2

]

=





∗

A11

∗

A12
∗

A21

∗

A22





[

ζ1

ζ2

]

+





∗

B1
∗

B2



u+





∗

B1
∗

B2



 ξ +

[

N1

N2

]

w, (2.49)

with ζ1 ∈ R
n and ζ2 ∈ R

m defined as

ζ1 =

[

µ
z1

]

, ζ2 = z2. (2.50)

Comparing (2.49) with (2.41) and (2.47) yields the identities






∗

A11

∗

A12
∗

A21

∗

A22




 =








0 −C̄r,1 −C̄r,2
0 Ā11 Ā12

0 Ā21 Ā22







,





∗

B1
∗

B2



 =









0

0

B̄2









,




N1

N2



 =









I

0

0









,

(2.51)

where C̄r,1 and C̄r,2 are defined by

C̄rz =
[

C̄r,1 C̄r,2
]
[

z1

z2

]

. (2.52)

Let

σ = Sζ =
[

S1 S2

]
[

ζ1

ζ2

]

= 0, (2.53)

with S ∈ R
m×(n+m) define a sliding mode of the augmented system (2.49), where S2 ∈

R
m×m is chosen nonsingular. It is assumed that the system is in sliding mode so that

ζ2 = −Mζ1, M = S−1
2 S1, (2.54)
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holds. Substituting (2.54) in (2.49) and considering the identities (2.51) yields the dynam-
ics of ζ1 according to

ζ̇1 = (
∗

A11 −
∗

A12M)ζ1 +N1w. (2.55)

It can be shown (Edwards and Spurgeon, 1998, Lemma 4.1) that the matrix pair (
∗

A11,
∗

A12)
is fully controllable if system (2.41) has no invariant zeros at the origin and its matrix pair
(Ā, B̄) is fully controllable. Regarding invariance of the state transformation it follows that

the matrix pair (
∗

A11,
∗

A12) is fully controllable if system (2.1), (2.40) has no invariant zeros
at the origin and (A, B) is fully controllable. Based on e. g. pole placement the dynamics
of (2.55) are made asymptotically stable which defines M and according to (2.54) the yet
undefined matrix S1. From (2.45) it is known that limt→∞w(t) = wc holds. Consequently,
as the dynamics of (2.55) are asymptotically stable it is limt→∞ ζ̇1(t) = 0 and from (2.54)
it follows that limt→∞ ζ̇2(t) = 0 holds. As ζ1 and ζ2 define the augmented state ζ it can
be concluded that limt→∞ ζ̇(t) = 0 holds. Considering (2.47) with limt→∞ ζ̇(t) = 0 shows
that limt→∞ yr(t) = wc must hold true. Consequently, set-point tracking is achieved and
the state z is stable as well as its pendant x. To reach the designed sliding mode the
control law

u = −(S2B̄2)−1
(

S
∗

Aζ −Υσ + S1N1w + ksφ(P2, σ)
)

, (2.56)

is proposed based on the unit vector approach. The quantities φ(·), Υ, and P2 are defined
as before. The sliding variable σ is defined based on (2.53) and the static gain is chosen
as

ks ≥ ‖S2B̄2‖ζM + γ, (2.57)

with γ > 0 being a controller parameter. Derivating (2.53) with respect to time yields

σ̇ = Sζ̇ = S
∗

Aζ + S
∗

Bu+ S
∗

Bξ + SNw, S
∗

B = S2B̄2, SN = S1N1. (2.58)

Substituting (2.56) in (2.58) leads to

σ̇ = Υσ − ksφ(P2, σ) + S2B̄2ξ. (2.59)

As (2.30) and (2.59) only differ by SBζ and S2B̄2ζ it is straight forward to show that
control law (2.56) guarantees finite-time stability of σ.

So far it has been assumed that the state vector x of the dynamical system (2.1) is
known. Under certain conditions it is also possible to achieve stabilization of system (2.1)
based on output feedback control. Instead of x the outputs

y = Cx, (2.60)

with y ∈ Rp are required to be known and are feed back to the system. From classic
output feedback control u = −Ky it is known that if system (2.1), (2.60) is completely
controllable and observable and if it satisfies the dimensional requirement

m+ p+ 1 ≥ n, (2.61)
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then the eigenvalues of the closed loop system matrix A−BKC can be placed arbitrarily
(Edwards and Spurgeon, 1998, Chap. 2). Similar restrictions have to be made to design a
sliding mode

σ = SCx = Sy, (2.62)

based on the outputs y so that it induces arbitrary desired dynamics of x (Edwards and
Spurgeon, 1998, Chap. 5.3 & 5.4). The strategy suggested in Edwards and Spurgeon (1998)
to design the sliding surface and the related control law involves two state transformations.
For details see e. g. Edwards and Spurgeon (1998). Instead of measuring all states of x it
is also possible to estimate the states by an observer. However, the states are required to
be estimated in presence of the uncertainty ξ. Sliding mode observers can be applied to
solve such kind of estimation problems. If the linear system equals a chain of integrators
high-gain observers can also be applied to estimate the states in presence of uncertainties
(Khalil, 2002, Chap. 14.5). In addition, applications of PI-observers can be found in e. g.
Hu et al. (2013); Söffker et al. (1995) to estimate the states as well as uncertainties.

Up to now the disturbance ξ has been assumed to be a matched uncertainty. Consider
a linear time-invariant system

ẋ = Ax+Bu+ f, (2.63)

with states x ∈ R
n, inputs u ∈ R

m, and an uncertainty term f ∈ R
n. Following Shtessel

et al. (2014, Chap. 2.4.2) system (2.63) can be transformed into regular form which yields
the dynamics

ż1 = Ā11z1 + Ā12z2 + f̄u, (2.64)

ż2 = Ā21z1 + Ā22z2 + B̄2u+ f̄m, (2.65)

in transformed and partitioned coordinates z. The transformed uncertainty f̄ = Tf can
be partitioned into the two terms f̄u and f̄m. If the system is in sliding mode it follows
from (2.8) and (2.9) that the dynamics are

ż1 = (Ā11 − Ā12M)z1 + f̄u, (2.66)

z2 = −Mz1, (2.67)

where (2.66) denotes the reduced order dynamics. The unmatched uncertainty f̄u is the
input of the reduced order system whereas the matched uncertainty f̄m does not appear
at all. The effect of f̄u on z1 depends on the design of the matrix Ā11 − Ā12M . Even in
presence of the unmatched uncertainty the stability of z1 can still be guaranteed. Therefore,
the uncertainty f̄u has to satisfy several conditions and the matrix M is required to be
suitably designed. For details see e. g. Shtessel et al. (2014, Chap. 2.4.2).

2.1.2 Nonlinear Systems

Consider a nonlinear input-affine square system of the form

ẋ = f(x) +
m∑

i=1

gi(x)ui = f(x) + g(x)u, (2.68)
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yr,1
yr,2

...
yr,m










︸ ︷︷ ︸

yr

=










h1(x)
h2(x)

...
hm(x)










︸ ︷︷ ︸

h(x)

, (2.69)

with states x ∈ R
n, inputs u ∈ R

m, and control variables yr ∈ R
m. According to the

definition of Isidori et al. (1995, Chap. 5.1) system (2.68)–(2.69) is assumed to have a
well-defined vector of relative degree (r1, . . . , rm). Further, the total relative degree r is
assumed to satisfy r = r1 + · · ·+ rm < n. Based on the made assumptions it is stated by
Isidori et al. (1995, Proposition 5.1.2) that a diffeomorphism

Φ: x→
[

ζ
η

]

, (2.70)

is guaranteed to exist that transforms system (2.68)–(2.69) into the form










yr,1
yr,2

...
yr,m










=










ζ1
1

ζ2
1
...
ζm1










,










ζ̇1
1

ζ̇2
1
...

ζ̇m1










=










ζ1
2

ζ2
2
...
ζm2










,










ζ̇1
2

ζ̇2
2
...

ζ̇m2










=










ζ1
3

ζ2
3
...
ζm3










. . .










ζ̇1
r1−1

ζ̇2
r2−1
...

ζ̇mrm−1










=










ζ1
r1

ζ2
r2

...
ζmrm










, (2.71)










ζ̇1
r1

ζ̇2
r2

...

ζ̇mrm










= a(ζ, η) +B(ζ, η)u, (2.72)

η = q(ζ, η) + p(ζ, η)u, (2.73)

with the transformed states η and ζ. Here state ζ is specified by

ζ =










ζ1

ζ2

...
ζm










, ζi =










ζi1
ζi2
...
ζiri










, (2.74)

and vector a(ζ, η) and matrix B(ζ, η) are defined based on the Lie derivatives of the system
according to

a =










Lr1

f h1

Lr2

f h2

...
Lrm

f hm










, B =










Lg1
Lr1−1
f h1 Lg2

Lr1−1
f h1 . . . LgmL

r1−1
f h1

Lg1
Lr2−1
f h2 Lg2

Lr2−1
f h2 . . . LgmL

r2−1
f h2

...
...

. . .
...

Lg1
Lrm−1
f hm Lg2

Lrm−1
f hm . . . LgmL

rm−1
f hm










. (2.75)

The assumption of the vector of relative degree to be well-defined implies that matrix
B(ζ, η) is invertible (Isidori et al., 1995, Chap. 5.1). Following Slotine and Li (1991,
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Chap. 7.4) a vector

σ =










σ1

σ2
...
σm










, (2.76)

of sliding variables is defined based on the polynomials

σi = (
d

dt
+ λi)

ri−1ei, λi > 0, 1 ≤ i ≤ m. (2.77)

In (2.77) quantity ei denotes the tracking error

ei = yr,i − wi, (2.78)

of control variable yr,i related to a reference wi(t) that may depend on time. Choosing λi
as λi > 0 makes the polynomial in (2.77) Hurwitz. Derivating σ of (2.77) with respect to
time yields

σ̇i =
∂riyr,i
∂tri

+ ̺i(ei) = ζ̇iri
+ ̺i(ei), (2.79)

so that due to ζ̇iri
from (2.72) the input u appears in σ̇i. The term ̺i(ei) is assumed as

known as it only depends on the known design parameter λi and the time derivatives of
ei. The time derivatives of ei can be determined based on high-gain observers or sliding
mode differentiators. The sliding mode of the nonlinear system is defined as

σ =










σ1

σ2
...
σm










= 0. (2.80)

Consequently, if the system is in sliding mode σi = 0 holds and due to the Hurwitz
polynomial asymptotic convergence of the tracking error is achieved. Stabilization can be
enforced by choosing the reference values and its time derivatives as wi(t) = 0, ẇi(t) = 0,
ẅi(t) = 0, · · · . To force the system on the sliding surface a Lyapunov function candidate
Vi = 0.5σ2

i is considered. If

σ̇iσi ≤ −
µi√

2
|σi|, µi > 0, (2.81)

holds for σi 6= 0 then Vi is a Lyapunov function. Condition (2.81) is also referred to as
reachability condition (Shtessel et al., 2014, Chap. 1). Dividing (2.81) by |σi| 6= 0 leads to
an equivalent expression of the reachability according to

sgn(σi)σ̇i ≤ −
µi√

2
, µi > 0. (2.82)

In the following it is shown that finite-time convergence of the sliding variable can be
guaranteed if the reachability condition is satisfied. Integrating (2.81) leads to

|σi(tf )| − |σi(t)| = −
µi√

2
(tf − t), tf ≥ t, (2.83)
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so that the sliding surface can be reached in finite-time i. e. |σi(tf )| equals zero after the
finite time interval

tf − t =
|σi(t)|

√
2

µi
. (2.84)

Following Slotine and Li (1991, Chap. 7.4) it is assumed that the system is not accurately
known. In particular, the true values of a and B are unknown. Instead known quantities
ă and B̆ are introduced which describe the nominal system behavior. Uncertainty bounds
are defined according to

|ai − ăi| ≤ ai,M , (2.85)

B = (Im + ∆)B̆, (2.86)

where ∆ = (∆ij) ∈ R
m×m is a m by m matrix with elements ∆ij being bounded as

|∆ij| < Dij, Dii < 1. (2.87)

The matrix D = (Dij) ∈ R
m×m defined by the elements Dij is assumed to have a maximum

eigenvalue less than one i. e.

λmax{D} < 1. (2.88)

In addition, it is assumed that B̆ is invertible and ai,M is finite. Consider a control law of
the form

u = −B̆−1(ă+ ̺+ ϑ(k, σ)), (2.89)

where

̺ =
[

̺1(e1) ̺2(e2) . . . ̺m(em)
]T
, (2.90)

is known and ϑ(k, σ) is defined as

ϑ(k, σ) =
[

k1sgn(σ1) k2sgn(σ2) . . . kmsgn(σm)
]T
, (2.91)

based on a set of controller gains kj ∈ R with j = 1 . . . m. As (2.91) defines a vector
of switching functions controller (2.89) is denoted as relay control approach. It is an
alternative sliding mode control approach to the already introduced unit vector method.
Substituting (2.89) in (2.72) yields










ζ̇1
r1

ζ̇2
r2

...

ζ̇mrm










= a− (Im + ∆)× (ă+ ̺+ ϑ(k, σ)), (2.92)

and substituting (2.92) in (2.79) leads to

σ̇i = ai − ăi − ki(1 + ∆ii)sgn(σi)−
m∑

j=1

∆ij(ăj + ̺j)−
m∑

j=1,
j 6=i

kj∆ijsgn(σj). (2.93)
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Substituting (2.93) in the reachability condition (2.82) and rearranging gives

(1 + ∆ii)ki ≥ sgn(σi)(ai − ăi)−
m∑

j=1

∆ij(ăj + ̺j)sgn(σi)

−
m∑

j=1,
j 6=i

kj∆ijsgn(σj)sgn(σi) +
µi√

2
. (2.94)

A lower bound of the left side of (2.94) and an upper bound of the right side of (2.94) can
be obtained according to

(1−Dii)ki ≥ ai,M +
m∑

j=1

Dij |ăj + ̺j |+
m∑

j=1,
j 6=i

kjDij +
µi√

2
, 1 ≤ i ≤ m, (2.95)

where 0 ≤ |∆ii| < Dii < 1 from (2.87) has been used to obtain the bound on the left side
and the controller gains kj have been assumed to be non-negative. The m equations of
(2.95) can also be written as

(Im −D)k = z, (2.96)

with k ∈ R
m being the vector of controller gains and z ∈ R

m being defined by the entries

zi = ai,M +
m∑

j=1

Dij |ăj + ̺j|+
µi√

2
, 1 ≤ i ≤ m. (2.97)

According to the Frobenius-Perron Theorem (see Slotine and Li, 1991) equation (2.96) has
a solution with non-negative elements of k if the entries of z are non-negative (which is
the case) and the largest eigenvalue of matrix D is less than one (which is also the case
by assumption). Consequently, the previously made assumption about the non-negative
gains kj is indeed true.

As the sliding surface is reached in finite-time and the sliding dynamics are asymptot-
ically stable due to the Hurwitz polynomials it follows stability of the transformed state
ζ. If internal dynamics according to (2.73) exist it is required to prove stability of the
transformed state η in addition.

So far the considered nonlinear system has been assumed to be input-affine. Consider
a nonlinear non-input-affine system

ẋ = f(x, u), (2.98)

yr = h(x), (2.99)

with states x ∈ R
n, inputs u ∈ R

m, and control variables yr ∈ R
m. According to e. g.

Bartolini and Punta (2012, 2010) system (2.98) can be made input-affine by introducing
the augmented state

xa =
[

xT uT
]T
, (2.100)
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and a virtual control input v = u̇. In terms of the augmented state the dynamics of the
nonlinear system can be written as

[

ẋ
u̇

]

︸︷︷︸

ẋa

=

[

f(x, u)
0

]

︸ ︷︷ ︸

f̄(xa)

+

[

0
Im

]

︸ ︷︷ ︸

ḡ

v, (2.101)

yr = h̄(xa), (2.102)

which is an input-affine system with respect to the virtual control input v ∈ R
m. Con-

sequently, v can be determined based on the design principles of input-affine systems.
Finally, the control input u is obtained by solving the differential equation

u̇ = v. (2.103)

Choosing the relay control approach

v = −B̆−1(ă+ ̺+ ϑ(k, σ)), (2.104)

with ϑ being defined by (2.91) shows that the right hand side of (2.103) will be discon-
tinuous as it depends on the signum function. An ordinary differential equation with
discontinuous right hand side can not be interpreted in the classical way as Lipschitz
continuity is not satisfied which guarantees existence and uniqueness of the solution. A
common way in the field of SMC to treat that kind of problems is to apply the method
of Fillipov (Filippov, 2013) which defines an average solution at the point of discontinuity.
Alternatively, the signum function can be approximated by a saturation function which
makes the right hand side of the differential equation continuous.

2.1.3 Integral Sliding Mode Control

Integral sliding mode control (ISMC) is a control approach that offers a framework to
combine SMC with other control methods such as state feedback, optimal control, MPC
etc. In addition ISMC has the ability to eliminate the reaching phase i. e. the phase in
which the sliding surface is reached is eliminated so that the system is in sliding mode
from the beginning. Elimination of the reaching phase is relevant as the dynamics of the
system are invariant to matched uncertainties in sliding mode but not in the reaching
phase. The concept of ISMC was first proposed by Utkin and Shi (1996). In the following
explanation is given based on Utkin and Shi (1996); Shtessel et al. (2014). Consider a
nonlinear input-affine system

ẋ = f(x) + g(x)u + g(x)ξ, (2.105)

with states x ∈ R
n, inputs u ∈ R

m, and matched uncertainties ξ ∈ R
m. Assume some

nominal control input u0 to be given that leads to desired dynamics of (2.105) in absence
of the uncertainties. In case of nonlinear systems u0 may be a feedback linearization or
backstepping approach that is designed to achieve desired closed loop dynamics

ẋ0 = f(x0) + g(x0)u0, (2.106)
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of the nonlinear system. As the desired dynamics (2.106) are only achieved in absence of
the uncertainty a SMC control input uSMC is introduced to compensate the effect of ξ. A
combined control input

u = u0 + uSMC , (2.107)

is considered where uSMC is yet undefined. In addition a sliding mode

σ(t) = G(x(t) − x(t0)) +Gz(t) = 0, (2.108)

z(t) = −
∫ t

t0
f(x) + g(x)u0 dτ, (2.109)

with sliding variable σ ∈ R
m and a design matrix G ∈ R

m×n is defined. According to
(2.108) the initial state x(t0) of the system is required to be known to appropriately define
σ. In the context of ISMC the sliding mode (2.108) does not define the desired system
dynamics. The sliding mode is only required to compensate the effect of the uncertainty.
This compensation can be achieved by any matrix G for which Gg(x) is nonsingular. Let

uSMC = (Gg(x))−1(Υσ − ksφ(P2, σ)), (2.110)

with

φ(σ) =







P2σ
‖P2σ‖ if ‖P2σ‖ 6= 0,

0 else,
(2.111)

define the unit vector control input. Matrix P2 is obtained from the Lyapunov equation

ΥP2 + P2ΥT = −Im, (2.112)

where Υ ∈ R
m×m is an asymptotically stable matrix. The scalar gain ks is assumed to

satisfy

ks ≥ ‖Gg(x)‖‖ξ‖ + γ, γ > 0. (2.113)

Similarly to the proof of Section 2.1.1 it can be shown that finite-time stability of σ can
be achieved based on the combined control law

u = u0 + uSMC . (2.114)

However, from the definition of the sliding mode according to (2.108) it can be seen that
no reaching phase exists as σ(t0) = 0 holds. It follows that the states are on the sliding
surface at the beginning. As control input (2.114) provides convergence of σ with respect
to the origin the states remain exactly on the sliding surface thereafter. Consequently,
control input (2.114) can be thought to be an input for which

σ̇(t) = 0, (2.115)

holds. Substituting (2.105) in the time derivative of (2.108) leads to

σ̇ = G
(

f(x) + g(x)(u0 + uSMC + ξ)
)

−G
(

f(x) + g(x)u0

)

,

= Gg(x)(uSMC + ξ) = 0. (2.116)

As Gg(x) is nonsingular by assumption it follows uSMC(t) = −ξ(t). Consequently, by
applying control law (2.107) the desired dynamics (2.106) are achieved because the SMC
cancel out the uncertainty term.
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2.1.4 Chattering

The previously introduced unit vector and relay SMC approaches guarantee finite-time
convergence of the sliding variable σ with respect to zero. Consequently, the states reach
the sliding surface in finite-time and remain on it. However, in practice stability of σ
can only be achieved with respect to a domain but not with respect to zero. The main
reason for that is the sampling of the input signal when the SMC law is implemented
on a microcontroller. The input will in general not be reduced at the moment when the
state trajectory reaches the sliding surface. Instead, the input will be applied too long so
that the states are pushed beyond the surface. As a consequence a high frequent zigzag
motion across the sliding surface is induced. In particular, the sliding variable σ switches
across the sliding surface with a high frequency. The resulting problem is that the control
law which directly depends on σ induces discontinuous switchings in the signal of the
control inputs. This effect of high frequent switching in the input signal is denoted as
chattering. Chattering is undesired because it may lead to e. g. wear, material stress or
damage, excitation of unwanted dynamics, heat losses in electric power converters, etc.
(Utkin, 2011). A common way to mitigate chattering is to approximate the control law by
some smooth approximation that makes the control input continuous. Let

u = −ksφ(P2, σ), φ(P, σ) =







P2σ
‖P2σ‖ if ‖P2σ‖ 6= 0,

0 else,
(2.117)

be a controller designed based on the unit vector approach, where ks > 0 denotes some
static controller gain, σ ∈ R

m is the sliding variable and P2 ∈ R
m×m is a symmetric

positive definite matrix. Following (Edwards and Spurgeon, 1998, Chap. 3.7) a so-called
smoothing boundary layer

B =

{

x ∈ R
n : σ(x)TP2σ(x) <

δ2

2

}

, (2.118)

with size δ > 0 is introduced, where the sliding variable σ(x) is naturally defined in terms
of the states x ∈ R

n. Within the layer the control input is scaled down linearly according
to

u = −ks
P2σ

δ
, ‖P2σ‖ < δ, (2.119)

whereas the control input

u = −ks
P2σ

‖P2σ‖
, ‖P2σ‖ ≥ δ, (2.120)

is applied as usual if the states are outside of the layer. From the approximation (2.119),
(2.120) it follows that finite-time stability of σ can still be achieved but with respect to
the domain B of the boundary layer. By scaling down the control input it is intended to
avoid that the states cross the sliding surface which would induce a switch of the control
input. A very similar approximation can be formulated for the relay SMC approach. For
details see e. g. Slotine and Li (1991).
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2.1.5 Higher Order Sliding Mode Control

The aforementioned unit vector and relay SMC approaches are first order sliding mode
controllers. That means that the control input appears in the first time derivative of the
sliding variable. For instance consider a nonlinear SISO system

ẋ = f(x) + g(x)u,

yr = h(x), (2.121)

with x ∈ R
n, u ∈ R, yr ∈ R and well defined relative degree two i. e. r = 2. Considering

first order SMC design the sliding variable σ ∈ R is defined as

σ = ė+ λe, λ > 0, (2.122)

according to (2.77), where e = yr −w denotes the tracking error with respect to reference
w. As the system has relative degree two it follows that the input appears in the first time
derivative of σ if σ is defined as in (2.122). By first order SMC design σ can be driven to
zero in finite-time. It follows that the tracking error e converges asymptotically to zero
as defined by the Hurwitz polynomial of (2.122). However, it would be more advanced to
define a sliding variable according to

σ = e, (2.123)

so that by enforcing σ = 0 convergence of the tracking error can even be achieved in
finite-time. As the system has relative degree two it follows that the input appears in the
second time derivative of σ if σ is defined as in (2.123). Derivating (2.123) two times with
respect to time yields

σ̈ = L2
fh(x) − ẅ + LgLfh(x)u = Ψ(x,w) + Γ(x)u. (2.124)

Assume the bounds

|Ψ(x,w)| ≤ ΨM , 0 < Γm ≤ Γ(x) ≤ ΓM , (2.125)

to be finite. A control law that enforces σ = 0 and σ̇ = 0 in finite-time is called a
second order sliding mode controller. As shown in Levant (2003) it is always possible to
formulate a second order SMC based on (2.124). More generally, a controller that ensures
σ = σ̇ = σ̈ = · · · = δr−1σ/δtr−1 = 0 in finite-time is named r-th order sliding mode
controller. Based on

δrσ

δtr
= Lrfh(x) − drw

dtr
+ LgL

r−1
f h(x)u = Ψ(x,w) + Γ(x)u, (2.126)

with finite uncertainty bounds

|Ψ(x,w)| ≤ ΨM , 0 < Γm ≤ Γ(x) ≤ ΓM , (2.127)

it is always possible to formulate a r-th order SMC. A framework to design generic r-th
order SMCs for nonlinear input-affine SISO systems is proposed by Levant (2003). The
controller has the form

u = −α× sgn(ϕr(σ, σ̇, . . . , δ
r−1σ/δtr−1), α > 0, (2.128)
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where ϕr is a function dependent on the order r of the SMC and the time derivatives of σ.
Another framework for the design of generic r-th order SMCs has been derived by Dinuzzo
and Ferrara (2009). The approach of Dinuzzo and Ferrara (2009) solves an optimization
problem that guarantees minimization of the sliding variable in the reaching phase under
the influence of worst case disturbances.

Following Levant (2003) higher order sliding mode control (HOSMC) can also be
applied to attenuate chattering. For instance, assume σ should be driven to zero in finite-
time based on (2.126). Consider (2.126) to be derivated l ≥ 1 times with respect to time.
Consequently, an r + l order description

δr+lσ

δtr+l
= Ψ̄(x, u,w) + Γ(x)v, v =

δlu

δtl
, (2.129)

with virtual control input v can be obtained, where Ψ̄(x, u,w) may depend on the time
derivatives of u up to the order of l − 1. Assuming the uncertainty bounds

|Ψ̄(x, u,w)| ≤ ΨM , 0 < Γm ≤ Γ(x) ≤ ΓM , (2.130)

to be finite a SMC of order r + l can be formulated according to

δlu

δtl
= v = −α× sgn(ϕr+l(σ, σ̇, . . . , δ

r+l−1σ/δtr+l−1), α > 0. (2.131)

Based on the virtual control input v the SMC (2.131) drives σ and its corresponding time
derivatives to zero in finite-time. The right hand side of (2.131) is discontinuous and the
differential equation has to be interpreted in the sense of Filippov. However, as the time-
derivative δlu/δtl is defined the input signal u obtained from (2.131) is time-continuous
for l = 1 and even smooth for l > 1. This is in contrast to the discontinuous signal given
by (2.128). Consequently, the chattering is attenuated.

A drawback of the family of HOSMCs proposed by Levant (2003) is that for a r-th
order SMC all time derivatives of σ up to the order of r − 1 are required to be known.
In theory these time derivatives can be exactly determined by an (r − 1)-th order sliding
mode differentiator but only under the assumption that the measured signal is noise-free.
Typically the noise is amplified with every increasing order of the time derivative which
can have a negative effect on the performance of the applied controller. A framework for
the design of generic r-th order sliding mode differentiators has also been proposed by
Levant (2003).

A popular HOSMC is the so-called supertwisting approach proposed by Levant (1993).
The supertwisting approach is a second order SMC developed based on a first order de-
scription

σ̇ = Ψ(x,w) + Γ(x)u, |Ψ(x,w)| ≤ ΨM , 0 < Γm ≤ Γ(x) ≤ ΓM . (2.132)

It generates a time-continuous control input

u = −λ|σ|1/2 × sgn(σ) + u1, λ > 0, (2.133)

u̇1 = −α× sgn(σ), α > 0, (2.134)

with attenuated chattering. The design parameters λ and α have to be chosen sufficient
large to achieve finite-time convergence of σ and σ̇ (Shtessel et al., 2014; Levant, 1993).
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Although the supertwisting approach is a second order SMC it does not require any time-
derivative of σ to be known. Like for the first order relay and unit vector SMC approaches
the sliding variable σ of the supertwisting approach can be defined based on the polynomial

σ = (
d

dt
+ λ)r−1e, λ > 0, (2.135)

which allows reference tracking of systems with any order of relative degree r. The advan-
tage of applying the supertwisting method instead of the first order unit vector or relay
approaches is that the chattering is reduced without any loss of the control accuracy.

2.1.6 Nonlinear Sliding Manifolds

Besides higher order SMCs conventional first order relay or unit vector SMC approaches
can provide finite-time convergence of the tracking error as well if they are combined
with a class of nonlinear sliding manifolds named terminal sliding modes (TSM). Instead
of asymptotic convergence known from linear sliding modes the nonlinear TSMs provide
finite-time convergence improving e. g. the tracking performance of the closed loop system.
Terminal sliding modes were introduced by Venkataraman and Gulati (1992). In addition,
the approach described by Zhihong et al. (1994) is also often cited as an initial contribution
to the field of TSM control. In Yu and Zhihong (2002) a sliding manifold with a linear
and a nonlinear term has been proposed. The new method is denoted as fast terminal
sliding mode (FTSM) control approach. In comparison to the TSM the convergence rate
of the FTSM is increased for large tracking errors. A brief introduction to FTSM control
is given as follows using the reformulation of the sliding manifolds from Yu et al. (2005).
A nonlinear input-affine SISO system

ẋ = f(x) + g(x)u, (2.136)

yr = h(x), (2.137)

with states x ∈ R
n, input u ∈ R, and control variable yr ∈ R is considered. The system

is assumed to have a well-defined relative degree of two. According to Yu et al. (2005) a
FTSM is defined as

σ = ė+ αe+ β|e|γsgn(e) = 0, α > 0, β > 0, 0 < γ < 1, (2.138)

e = yr − w, (2.139)

where e denotes the tracking error with respect to reference w(t) and quantities α, β, γ
are tuning parameters that affect the error convergence. As the system has relative degree
two it follows that the input u appears in the first time derivative of σ given by

σ̇ = L2
fh(x) + LgLfh(x)u − ẅ + αė+ γβė|e|γ−1 = Ψ(x,w) + Γ(x)u. (2.140)

The uncertainty bounds

|Ψ(x,w)| ≤ ΨM , 0 < Γm ≤ Γ(x) ≤ ΓM , (2.141)

are assumed to be finite. Based on (2.140) a first-order SMC can be design to drive σ to
zero in finite-time. After the sliding manifold has been reached the dynamics induced by
the FTSM lead to finite-time convergence of the tracking error. More specifically (2.138)
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can be solved for e which does not require any interpretation in the sense of Fillipov as all
terms are continuous. Let t0 be the time instant at which the sliding manifold is reached
i. e. σ(t0) = 0 then the tracking error decreases as

− 1

α(1− γ)

(

ln

(

α|e(t)|1−γ + β

β

)

− ln

(

α|e(t0)|1−γ + β

β

))

= t− t0 = τ, (2.142)

over the time interval τ (Yu and Zhihong, 2002).
Originally, TSMs have been proposed for relative degree two systems. However, using

a chain of interconnected TSMs as proposed by Yu and Zhihong (2002) it becomes possible
to achieve finite-time convergence of the tracking error for any systems with relative degree
r greater two. Following Yu and Zhihong (2002) the chain has to be selected as

σ0 = ė+ α0e+ β0|e|γ0 ,

σ1 = σ̇0 + α1σ0 + β1|σ0|γ1 ,

σ2 = σ̇1 + α2σ1 + β2|σ1|γ2 ,

...

σi = σ̇i−1 + αiσi−1 + βi|σi−1|γi , (2.143)

with i = r − 2 and relative degree r ≥ 2. The tuning parameters that affect the error
convergence may be chosen as

0 < αj , 0 < βj,
r − j − 1

r − j < γj < 1, 0 ≤ j ≤ i. (2.144)

The control law is designed based on a conventional first order SMC that drives σi to zero
in finite-time. When the sliding mode σi = 0 is reached the remaining sliding variables
σj with 0 ≤ j ≤ i − 1 decrease to zero successively. Finally, when σ0 = 0 is achieved the
tracking error is forced to decrease to zero in finite-time.

The TSM as well as the FTSM approach may lead to singularities. In particular, if in
(2.140) the expressions e = 0 and ė 6= 0 are assumed to hold then σ̇ is undefined and no
control input can be determined. A terminal sliding mode control approach that avoids
this singularities is the nonsingular terminal sliding mode control method of Feng et al.
(2002).

2.1.7 Adaptive Sliding Mode Control

Typically, in the field of sliding mode control the uncertainty bounds of the system are
assumed unknown but finite. In this case convergence of the sliding variable can be
achieved by choosing the gain of the SMC sufficient large. The SMC gain is usually chosen
conservatively meaning that the uncertainty bounds are overestimated. Consequently, the
selected gain is too large in the sense that convergence could also be achieved by a smaller
gain. In practice that makes a difference because the chattering effect associated with the
larger gain is also larger. This motivates the idea of an adaptive controller gain being
sufficient large to achieve convergence of the sliding variable but not too large. Following
Utkin and Poznyak (2013a) the existing gain adaptation strategies can be divided into two
main categories: sigma based adaptive sliding mode control approaches and equivalent
control based adaptive sliding mode control approaches.
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The first sigma based adaptive SMC approach was proposed by Huang et al. (2008).
It is a first order relay control approach for input-affine nonlinear SISO systems that
guarantees finite-time convergence of the sliding variable by adaptively increasing the
controller gain. Consider the first order description

σ̇ = Ψ + Γu, (2.145)

with finite but unknown uncertainty bounds

|Ψ| ≤ ΨM , 0 < Γm ≤ |Γ| ≤ ΓM . (2.146)

From first order SMC design it is known that finite-time convergence of σ can be achieved
by a relay controller

u = −k × sgn(σ) (2.147)

with a sufficient large gain i. e. k > ΨM/Γm. However, the uncertainty bounds are
unknown and defining the gain based on trial and error may lead to too large controller
gains. Instead Huang et al. (2008) proposes to adapt the gain according to

k̇ = −ka|σ|, ka > 0, (2.148)

where ka is user-defined. It can be proven that adapting the gain based on (2.148) guar-
antees finite-time convergence of σ. However, applying (2.148) can easily lead to too large
controller gains because in the moment when |σ| already decreases and the gain is suffi-
cient large it is still increased. Another drawback is that the gain can never be decreased.

Two first order SMCs based on the sigma adaptation scheme have been proposed by
Plestan et al. (2010). These controllers have the ability to reduce the controller gain.
However, in the simulation results depicted in Plestan et al. (2010) a noticeable amount
of chattering is still present. In Obeid et al. (2018) the sigma adaption scheme is applied
to guarantee that the sliding variable converges to a domain specified by the user. Once
the domain has been reached the SMC gain is adapted based on control barrier functions
(CBF). The adaptation based on CBFs guarantees the sliding variable to remain bounded
with respect to a specified tunable domain. The approach achieves enhanced chattering
mitigation in comparison to the method of Plestan et al. (2010).

An adaptive SMC approach based on the equivalent control method has been pro-
posed by Edwards and Shtessel (2016). It can be applied to nonlinear input-affine MIMO
systems that have a first order description of the form

σ̇ = Ψ + Γu, (2.149)

with σ ∈ R
m. It is required that Γ = Im holds which typically can only be achieved based

on model knowledge of the considered system. The bounds

‖Ψ‖ ≤ ΨM , ‖Ψ̇‖ ≤ Ψ̇M , (2.150)

are required to be finite but may be unknown. The main idea of the adaptive equivalent
control based approaches is to first estimate the equivalent control input. The equivalent
control input is the input that keeps the system in sliding mode. In sliding mode it is
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σ = 0 and to keep the system in sliding mode σ̇ = 0 is required to hold. Consequently,
the equivalent control input is

ueq = −Ψ, (2.151)

according to (2.149). However, Ψ is not known. But it is known that the unit vector
approach

u = −(k(t) + η)
σ

‖σ‖ , k(t) > 0, η > 0, (2.152)

with sufficient large gain (k(t) + η) keeps the system in sliding mode. Assume the system
to be in sliding mode and the gain of the unit vector control law to be sufficient large to
keep the system in there. Under this conditions an estimation ûeq ∈ R

m of the equivalent
control input can be obtained from a bank of low pass filters of the form

τi ˙̂ui,eq + ûi,eq = −(k(t) + η)
σi
‖σ‖ , 1 ≤ i ≤ m. (2.153)

It is proven in Utkin (1992, Lemma of Chap. 2.4) that under the assumption that the
system is in sliding mode the estimation error |ûi,eq−ui,eq| can be made arbitrary small by
choosing the time constant τi > 0 sufficient small. Following Edwards and Shtessel (2016)
safety margins are introduced to guarantee

1

α
‖ûeq‖+ ǫ >

1

α
‖ûeq‖ −

ǫ

2
> ‖ueq‖, (2.154)

to hold. The parameters α ∈ ]0, 1[ and ǫ > 0 are user-defined. Based on (2.154) and the
adaptive gain k(t) the quantity

δ(t) = k(t)− 1

α
‖ûeq(t)‖ − ǫ, (2.155)

is introduced that indicates if the gain should be reduced or increased. Consequently, the
gain is adapted according to

k̇(t) = −ρ(t)× sgn(δ(t)). (2.156)

In (2.156) the gain ρ(t) > 0 is also adaptive and further specified in Edwards and Shtessel
(2016). The approach proposed by Edwards and Shtessel (2016) guarantees that the
adaptive gain is finite-time stable with respect to the domain

|k(t)− 1

α
‖ûeq(t)‖| ≤

ǫ

2
. (2.157)

It follows from (2.154) that

k(t) > ‖ueq‖ = ‖Ψ‖, (2.158)

holds true. Consequently, the gain is larger than the uncertainty term and it is guaranteed
that the sliding mode remains established by applying the unit vector control input (2.152).
The adaptation law of Edwards and Shtessel (2016) can also be applied to tune the gain of
the supertwisting approach as well as the gain of a family of higher order SMCs. However,
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in these cases not all controller parameters can be tuned by adaptation. At least one
gain parameter is still required to be selected by the user which can be chosen too large.
Another first order adaptive SMC based on the equivalent control method is proposed by
Utkin and Poznyak (2013b). The approach is applicable to nonlinear input-affine SISO
systems. Prior to the application of the controller a minimal gain value has to be selected
by the user. During the runtime of the controller the approach has the ability to reduce the
controller gain to the predefined minimal value but only if for that gain value the sliding
mode is still guaranteed to remain established. The approach requires knowledge about
the uncertainty bounds. The proposed method is also applied to adapt the parameters of
the supertwisting approach. Again the problem appears that only one controller parameter
is adapted and another parameter is required to be selected sufficient large by the user.

Gain adaptation of the twisting and the supertwisting approach has been subject to
several contributions in the past. For instance in Shtessel et al. (2012) a law for the
adaptation of both controller gains of the supertwisting approach is proposed. It can be
guaranteed that the sliding variable and its time derivative converge towards a domain
after a finite-time. However, the bounds of this domain remain imprecise and are not
known. In addition the gains are known to remain bounded but it is not clear if minimal
values are achieved for them.

2.2 Sliding Mode Observation

Sliding mode controllers have been shown to provide strong robustness features making
them attractive for the control of linear and nonlinear uncertain systems. However, some
of the considered approaches directly depend on the system states and others may benefit
from the knowledge of those states. For example, in the field of linear systems the sliding
surface is typically designed within the state space. As a consequence, the sliding variable
directly depends on the system states and the state stability may only be achieved based
on the knowledge of those states. For the control of nonlinear systems knowledge of the
systems states may also be advantageous. Partial or nominal knowledge about the input-
output dynamics can help to reduce the uncertainty bounds. As a result, the required
controller gains can be decreased so that the occurring chattering is less severe. However, to
state some nominal input-output dynamics knowledge about the system states is required.

In the following sliding mode observer design concepts are presented. The review of the
approaches can be divided into two main sections: methods applicable to linear systems
and methods applicable to nonlinear systems.

2.2.1 Linear Systems

A linear time-invariant system

ẋ = Ax+Bu+Mξ, (2.159)

y = Cx, (2.160)

with unknown states x ∈ R
n, unknown uncertainties ξ ∈ R

q, known inputs u ∈ R
m, and

known measurements y ∈ R
p is considered. In the following, x̂ denotes the estimation of

state x and ŷ denotes the estimation of the system outputs y. Further, the state estimation
error is denoted by x̃ = x̂− x and the output estimation error is denoted by ỹ = ŷ − y.

29



Ch. 2. Theoretical Background of Sliding Mode Control and Observation

Assume the matrix pair (A,C) to be observable and the uncertainty to be zero i. e.
ξ = 0. According to Shtessel et al. (2014, Chap. 3.2) an observer

˙̂x = Ax̂+Bu+Gν, (2.161)

is considered, where ν ∈ R
p defines a discontinuous feedback of the output estimation

error according to

νi = ρ× sgn(ỹi), ỹi = ŷi − yi. (2.162)

The switching gain 0 < ρ ∈ R and the matrix G are design parameters. The observer
stated in (2.161) is denoted as Utkin observer. Its structure is identical to that of the
classical Luenberger observer except for the discontinuous feedback. Under the premise
of observability and sufficient boundedness of the initial estimation error x̃(t0) as well as
proper design of ρ and G it can be shown that the Utkin observer guarantees finite-time
convergence of the output estimation error ỹ(t) and asymptotic convergence of the state
estimation error x̃(t). For the design procedure see e. g. Shtessel et al. (2014, Chap. 3.2).

According to Edwards and Spurgeon (1998, Chap. 6.2.4) the Walcott-Zak observer
is introduced as follows. The Walcott-Zak observer is an estimation approach that can
handle model uncertainty. Let the input shaping matrix M of system (2.159) be equal
to B so that the uncertainty is matched. Furthermore, let p ≥ m hold for the number
of measurements and inputs. Assume the matrix pair (A,C) to be observable and the
matrices B and C to have full rank. In addition, let the uncertainty be bounded as

‖ξ‖ ≤ ξM . (2.163)

The observer

˙̂x = Ax̂+Bu−Gỹ + P−1CTF T ν, (2.164)

with discontinuous feedback

ν =







−ρ F ỹ
‖F ỹ‖ , if ‖F ỹ‖ 6= 0,

0, else,
(2.165)

of the output estimation error ỹ is denoted as Walcott-Zak observer. The scalar 0 < ρ ∈ R

and matrices G, P , and F are design parameters. As the system is observable G can be
designed so that A0 = A−GC has eigenvalues with real parts smaller zero. It follows that
some symmetric P ≻ 0 can be found from the Lyapunov equation

A0P + PAT0 = −Q, (2.166)

with Q ≻ 0 being a symmetric design matrix. Related to P and F the constraint

CTF T = PB, (2.167)

has to be achieved. The switching gain has to be chosen sufficient large i. e.

ρ ≥ ξM + η, (2.168)
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with 0 < η ∈ R being user-defined. Under the made assumptions it can be shown that the
output estimation error ỹ converges to zero in finite-time and that the state estimation er-
ror x̃ is quadratically stable (Edwards and Spurgeon, 1998, Chap. 6.2.4). The Walcott-Zak
observer is a robust estimation approach with strong finite-time convergence. However, it
requires the constraint (2.167) to be satisfied which is nontrivial and restrictive.

A more generic and well-established observer for linear uncertain system has been
developed by Edwards and Spurgeon (1994). In the following explanation is given accord-
ing to Edwards and Spurgeon (1994), Edwards and Spurgeon (1998), and Edwards et al.
(2000). For the dynamic system (2.159)–(2.160) assume M and C to have full rank and
assume

q ≤ p < n, (2.169)

to hold. Let the uncertainty be unmatched but bounded according to

‖ξ‖ ≤ ξM . (2.170)

Consider an observer of the form

˙̂x = Ax̂+Bu−Glỹ +Gnν, (2.171)

with

ν =







−ρ‖M‖ P2ỹ
‖P2ỹ‖ , if ‖P2ỹ‖ 6= 0,

0, else,
(2.172)

like the Walcott-Zak observer. It is proven in Edwards et al. (2000, Proposition 1) that
an observer of the form (2.171)–(2.172) with converging state estimation error in presence
of bounded disturbances ξ exists if and only if

rank{CM} = q, (2.173)

holds and the invariant zeros

Z0 =
{

z0 ∈ C | rank{P (z0)} < min{n+ rank{M}, n + rank{C}}
}

, (2.174)

defined by

P (z) =

[

zIn −A −M
−C 0

]

, (2.175)

are all on the negative conjugate complex plane i. e. Z0 ⊆ C−. In the following it is
assumed that (2.173) and Z0 ⊆ C− hold true. Under the made assumptions it can be
guaranteed that a state transformation x→ Tx exists which brings the observer (2.171)–
(2.172) into a special canonical form. For the exact definition of T and how to achieve it
numerically see e. g. Edwards and Spurgeon (1998, Chap. 6.3.1). Let

Ā = TAT−1 =

[

Ā11 Ā12

Ā21 Ā22

]

, (2.176)
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with Ā11 ∈ R
(n−p)×(n−p), Ā12 ∈ R

(n−p)×p, Ā21 ∈ R
p×(n−p), Ā22 ∈ R

p×p be the transformed
system matrix. Assume Gl and Gn to be defined by

Gl = T−1

[

Ā12

Ā22 − Ās,22

]

, Gn = T−1

[

0
Ip

]

, (2.177)

where Ās,22 ∈ R
p×p is any matrix whose eigenvalues have real parts smaller zero. Further,

let P2 be the solution of the Lyapunov equation

Ās,22P2 + P2Ā
T
s,22 = −Q, (2.178)

with symmetric Q ≻ 0 being user-defined and let the switching gain be chosen sufficient
large according to

ρ ≥ ξM + η, (2.179)

where 0 < η ∈ R is user-defined. Then for the observer (2.171)-(2.172) it can be proven that
the output estimation error ỹ is finite-time stable and the state estimation error x̃ converges
quadratically (Edwards and Spurgeon, 1998, Proposition 6.1 and Corollary 6.1). The
observer developed by Edwards and Spurgeon (1994) can also be applied to estimate the
unknown uncertainties themselves. An estimation ξ̂ of the uncertainties can be achieved
by a smoothed version

ξ̂ = −ρ‖M‖(MTM)−1MT P2ỹ

‖P2ỹ‖+ δ
, (2.180)

of the output error feedback ν, where 0 < δ ∈ R denotes a tuning parameter. It can be
shown that ξ̂ → ξ holds by choosing δ arbitrary small i. e. δ → 0.

2.2.2 Nonlinear Systems

Sliding mode observers for different classes of nonlinear systems are discussed as follows.
Consider a nonlinear system

δnx1

δtn
= f(x, u), (2.181)

in companion form which is characterized by the definition

x =
[

x1 δx1/δt δ2x1/δt
2 . . . δn−1x1/δt

n−1
]

, (2.182)

of the state vector x ∈ R
n. The inputs u ∈ R

m as well as the states are assumed unknown
except for the first state which is assumed to be measured according to

y = x1. (2.183)

Due to the definition of the vector (2.182) the state estimation problem is in fact a dif-
ferentiation problem. Consequently, a higher order sliding mode differentiator (HOSMD)
can be applied to solve the problem. The differentiation approach proposed by Levant
(2003) will be considered as follows. A suitable parameter tuning of the differentiator is
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further described in Levant (2009). For system (2.181) it is assumed that f : Rn×R
m → R

is unknown but has a known Lipschitz constant L > 0 i. e.

∀t1, t2 : |f(t2)− f(t1)| ≤ L|t2 − t1|. (2.184)

Then differentiation can be achieved according to

ż0 = −λnL1/(n+1)|z0 − y|n/(n+1)sgn(z0 − y) + z1, (2.185)

ż1 = −λn−1L
1/n|z1 − ż0|(n−1)/nsgn(z1 − ż0) + z2, (2.186)

...

żn−1 = −λ1L
1/2|zn−1 − żn−2|1/2sgn(zn−1 − żn−2) + zn, (2.187)

żn = −λ0Lsgn(zn − żn−1), (2.188)

where zi converges to δix1/δt
i in finite-time if the parameters 0 < λi ∈ R are suitably

chosen. The parameters can be selected iteratively. Starting with n = 1 the parameters
λ0 and λ1 are tuned then for n = 2 the parameters λ0, λ1 remain unchanged while λ2 has
to be selected sufficient large. In the next step λ0, λ1, λ2 remain unchanged and λ3 is
selected sufficient large. The procedure is repeated up to the desired value of n. A suitable
choice of parameters guaranteeing convergence always exists.

Sliding mode differentiators can also be applied to a wider class of nonlinear systems.
Consider a nonlinear input-affine system

ẋ = f(x) + g(x)u, (2.189)

yr = h(x), (2.190)

with states x ∈ R
n, input u ∈ R, and control variable yr ∈ R. Assume the system to have

relative degree r = n. Then Φ: x→ ζ with

ζ =










ζ1

ζ2
...
ζn










=










h(x)
Lfh(x)

...

Ln−1
f h(x)










, (2.191)

defines a diffeomorphism (Isidori et al., 1995, Proposition 4.1.3). In the new coordinates
the system is in companion form with dynamics

δnζ1

δtn
= a(ζ) + b(ζ)u, (2.192)

where

y = ζ1, (2.193)

is assumed to be measured. The companion form is achieved as r = n holds from which
follows that no internal dynamics exist. Consequently, all transformed states ζ can be
estimated by a sliding mode differentiator.

In the following a sliding mode observer for nonlinear systems in so-called triangular
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input form is considered. The observer has originally been proposed by Barbot et al. (1996).
The given explanation refers to Barbot et al. (2002, Chap. 4). Consider a nonlinear system

ẋ = f(x) + g(x, u), (2.194)

yr = h(x), (2.195)

with states x ∈ R
n, input u ∈ R, and control variable yr ∈ R. The system is required to

be input-to-state stable in finite-time, which is described as that the state cannot grow
unbounded in finite-time if u is bounded. It is assumed that g(x, 0) = 0 holds for all
x ∈ R

n. Let Φ: x→ ζ with

ζ =










ζ1

ζ2
...
ζn










=










h(x)
Lfh(x)

...

Ln−1
f h(x)










, (2.196)

define a state transformation. The Jacobian









∂ζ1

∂x1

∂ζ1

∂x2
. . . ∂ζ1

∂xn
∂ζ2

∂x1

∂ζ2

∂x2
. . . ∂ζ2

∂xn

...
...

. . .
...

∂ζn

∂x1

∂ζn

∂x2
. . . ∂ζn

∂xn










, (2.197)

is assumed nonsingular so that Φ is a diffeomorphism. The resulting dynamics are












ζ̇1

ζ̇2
...

ζ̇n−1

ζ̇n












=












ζ2 + b1(ζ, u)
ζ3 + b2(ζ, u)

...
ζn + bn−1(ζ, u)
a(ζ) + bn(ζ, u)












, (2.198)

with

a(ζ, u) = Lnfh(x), bi(ζ, u) =
∂Li−1

f h(x)

∂x
g(x, u). (2.199)

Further, it is required to assume that bi only depends on u and ζ1, ζ2, . . . ζi so that (2.198)
can be written in so-called triangular input form












ζ̇1

ζ̇2
...

ζ̇n−1

ζ̇n












=












ζ2 + b1(ζ1, u)
ζ3 + b2(ζ1, ζ2, u)

...
ζn + bn−1(ζ1, ζ2, . . . , ζn−1, u)

a(ζ) + bn(ζ, u)












, (2.200)

where

y = ζ1, (2.201)
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is assumed to be measured to achieve estimation of state ζ. The sliding mode observer













ˆ̇ζ1
ˆ̇ζ2
...

ˆ̇ζn−1
ˆ̇ζn














=












ζ̂2 + b1(y, u) + λ1sgn(y − ζ̂1)

ζ̂3 + b2(y, ζ̃2, u) + λ2sgn(ζ̃2 − ζ̂2)
...

ζ̂n + bn−1(y, ζ̃2, . . . , ζ̃n−1, u) + λn−1sgn(ζ̃n−1 − ζ̂n−1)

a(y, ζ̃2, . . . , ζ̃n) + bn(y, ζ̃2, . . . , ζ̃n, u) + λnsgn(ζ̃n − ζ̂n)












, (2.202)

with

ζ̃2 = ζ̂2 + λ1sgn(y − ζ̂1), (2.203)

ζ̃3 = ζ̂3 + λ2sgn(ζ̃2 − ζ̂2), (2.204)

...

ζ̃n = ζ̂n + λnsgn(ζ̃n−1 − ζ̂n−1), (2.205)

is proposed by Barbot et al. (1996). Under the made assumptions it can be guaranteed
that a set of tuning parameters 0 < λi ∈ R exists for which ζ̂i converges to ζi in finite-
time (Barbot et al., 2002, Theorem 50). Although the observer cannot handle model
uncertainty it has the advantage that it only requires the first state to be measured which
is also derivative-free.

2.3 Summary

In this chapter the basics of sliding mode control and sliding mode observation are in-
troduced. With regards to sliding mode control definitions and explanations about the
reaching and sliding phase are given. The design of sliding surfaces as well as control laws
is considered. At the moment when the states reach the sliding surface the system is said
to be in sliding mode. The dynamics in sliding mode are named the sliding dynamics. The
sliding dynamics are of reduced order and are defined based on the design of the sliding sur-
face. For linear MIMO systems well-known methods such as pole placement can be applied
to design the sliding surface. This allows to achieve asymptotic convergence of the states if
the underlying system is controllable. To achieve reference tracking an augmented system
description with an integral state can be considered. For nonlinear MIMO systems a state
transformation based on the vector of relative degree can be applied. The transformation
serves as a basis to design the sliding surface to achieve either state stabilization or refer-
ence tracking. For linear as well as nonlinear systems the sliding dynamics are shown to be
unaffected by matched uncertainties. This invariance is a strong property of sliding mode
control and leads to its great robustness. The unit-vector and relay control approaches
are introduced which guarantee that the sliding surface is reached in finite-time. The
concept of integral sliding mode control allows to eliminate the reaching phase so that the
states are on the sliding surface from the beginning. Furthermore, integral SMC provides
a framework to combine sliding mode controllers with other control methods such as state
feedback, MPC, etc. Chattering is introduced as an undesired effect resulting from the
discontinuous switching of conventional first order sliding mode controllers. A boundary
layer based approximation technique is presented which provides a trade-off between con-
trol accuracy and chattering mitigation. The concept of higher order sliding mode control
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is introduced to design control laws that are continuous in time so that the chattering
is highly attenuated. Higher order SMCs also give the possibility to achieve finite-time
stabilization of systems with relative degree greater one. Similarly, finite-time convergence
of the tracking error can be guaranteed. Nonlinear sliding manifolds have been presented
with their ability to improve the closed loop behavior so that faster error convergence and
stabilization can be achieved. The interconnection of nonlinear sliding manifolds allows
finite-time convergence of systems with relative degree greater one even if conventional
first order SMCs are applied. Adaptive SMC approaches are introduced with their ability
to reduce the chattering. Sliding mode-based observation of linear and nonlinear systems
is considered. The observers are typically designed based on a discontinuous feedback of
the output estimation error. For linear systems general methods exist to estimate the
state in presence of uncertainties. However, requirements related to e. g. invariant zeros
have to be satisfied. Besides the states also the uncertainties themselves can be estimated
which is denoted as unknown input estimation. States of nonlinear systems in companion
form can be observed using sliding mode differentiators. These estimators only require
Lipschitz continuity but not any model knowledge.
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3 Combined Smooth Variable Structure and

Kalman Filter Estimation Approach

State estimation plays an important role in the field of control. System states are required
to be known for the calculation of commonly used controllers such as state feedback, exact
input-output linearization approaches, equivalent control methods, or backstepping control
approaches. Noise reduction of measured signals is desirable to improve the performance of
controllers under real conditions. Unknown input estimation is beneficial for the rejection
of disturbances that may affect the system behavior. In addition, model-based filtering
approaches are useful for system monitoring in order to detect and localize faults.

As discussed in Section 2.2 sliding mode observers can be applied to achieve both state
as well as unknown input estimation. However, SMO approaches are typically formulated
with respect to deterministic systems. Measurement and process noise are not considered
in the design process. High switching gains generally have a negative impact on the noise
sensitivity of sliding mode differentiators (Levant and Yu, 2018; Levant, 2003). However,
higher gains are required to achieve error convergence of the differentiator if noise with high
amplitudes is present or if the Lipschitz constant of the underlying signal is large. Related
to stochastic systems a relatively large variety of estimation approaches exists. Unknown
input estimation approaches for linear systems may be divided into two main categories:
the minimum variance unbiased and the augmented state Kalman filtering approaches.
Minimum variance unbiased filtering approaches (Kitanidis, 1987; Gillijns and De Moor,
2007) are characterized by the fact that the dynamics of the unknown input is not modeled.
Instead the unknown input is directly estimated from the innovation process of the filter.
In the field of augmented state filtering (Anderson and Moore, 1979; Hmida et al., 2012)
the dynamics of the unknown input is assumed as piece-wise constant and integrated into
the system description. Standard Kalman filtering is applied to estimate the augmented
state including the unknown input. In Ding et al. (2020) it has been recently proven
that minimum variance unbiased filtering is actually a special case of augmented state
Kalman filtering. Apart from unknown input estimation approaches several other robust
filtering methods exist. In case of known uncertainty bounds a so-called robust Kalman
filter (Dong and You, 2006) can be applied to estimate the states of a linear uncertain
system. In the field of H∞ filtering robustness is achieved by minimizing the effect of
the worst possible disturbance on the estimation error (Hassibi et al., 1999). Multiple-
model approaches (Blom and Bar-Shalom, 1988) are a powerful tool for state estimation
of uncertain systems as well. In combination with particle filters the multiple model
approach can also be applied to nonlinear systems (Martino et al., 2017).

The smooth variable structure filter (SVSF) introduced in Habibi (2007) is claimed to
be a robust estimation approach for the state estimation of uncertain nonlinear systems.
It is formulated in discrete-time domain and explicitly considers measurement noise. The
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SVSF follows the predictor-corrector scheme of the Kalman filter but also shows elements
that are typical for sliding mode observers and sliding mode control. For instance, the
SVSF discontinuously feds back the output estimation error which is common for sliding
mode observers. In addition, the smoothing boundary layer concept is applied to the
SVSF but not to mitigate the chattering rather to mitigate the negative impact of the
measurement noise on the estimation performance of the filter.

In the following the working principle of the SVSF approach is explained in accordance
to Habibi (2007). Based on the discontinuous feedback of the output error the estimated
state trajectory is driven into a region around the true state trajectory called existence
subspace. Due to measurement noise which is typically assumed to be white the estimated
state trajectory shows a zigzag like motion characterized by high frequent switches when it
reaches the existence subspace. This behavior of high frequent switches induced by noise
is denoted as chattering although it differs from chattering known in the field of SMC.
The chattering may be attenuated by introducing a smoothing boundary layer in which
the hard switching of the filter gain is approximated by a saturation function. This may
lead to improved estimation performance of the filter but depends on the selected width
of the introduced boundary layer.

A serious limitation of the SVSF approach is that all system states have to be measured
and the measurement model is required to be linear. However, at least in the field of
object tracking it is possible to bypass the limitation. Although nonlinear measurement
models are common in tracking a linear measurement model can be achieved by applying
a measurement conversion (see e. g. Longbin et al., 1998) and measurements of the object
velocities can also be derived from the measured positions. An advantage of the SVSF
approach is that neither measurement noise nor process noise covariances are required to be
known. But as already mentioned the performance of the SVSF approach depends on the
width of the introduced smoothing boundary layer. This width is a tuning parameter and
has to be selected by the user. In Gadsden and Habibi (2010); Gadsden et al. (2011b) an
optimization of the smoothing boundary layer width is considered. First, an estimation
error model for the SVSF has been proposed in Gadsden and Habibi (2010) and later
in Gadsden et al. (2011b) this error model is applied to minimized the estimation error
with respect to the boundary layer width. As a consequence, optimal values for the
tuning parameters are achieved in theory. However, the derived estimation error model
is equivalent to the one of the Kalman filter. It is therefore only applicable to linear
systems and requires exact model knowledge including a precise descriptions of the system
dynamics and the noise covariances. This clearly contradicts the claim of the SVSF to
be a robust estimation approach for nonlinear uncertain systems. Nevertheless, at least a
maximum a posteriori estimation of the noise covariances can be obtained and is discussed
in Tian et al. (2019). The requirement of the system dynamics to be precisely known and
linear remains.

Combinations of the SVSF with the extended Kalman filter, the unscented Kalman
filter, the cubature Kalman filter, and the particle filter have been studied in Al-Shabi et
al. (2013); Gadsden et al. (2011a, 2014a). To combine the SVSF with the aforementioned
filters the uncertainty of the system is estimated online based on a calculation of an optimal
smoothing boundary layer width. In case of a large width (large uncertainty) the SVSF
is applied to achieve robustness whereas in case of a small width (small uncertainty) the
Kalman filtering approaches are applied to minimize the mean squared estimation error
(MSE). However, the formulated combination of the SVSF approach and the Kalman
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filter cannot be considered to be consistent. If the Kalman filter gain is applied at the
moment when the model uncertainty is sufficient small then the calculated gain may still
be erroneous. The reason for the erroneousness is that the Kalman filter gain requires
knowledge of the error covariance which has to be updated at each time step. Assume the
model to be imprecise. Then the error covariance will be updated incorrectly. If later the
model becomes more precise and the Kalman filter gain is applied the gain may still be
far away from being optimal as the error covariance has been update incorrectly in the
previous time steps.

Further optimizations of the SVSF are studied in the literature. A SVSF that in
addition to the states also estimates modeling errors is proposed in Cao et al. (2017).
In Spiller et al. (2018) the SVSF gain is replaced by an adaptive gain with the goal to
minimize the MSE and to guarantee boundedness of the estimation error.

Several applications of the SVSF approach can be found in the literature. The filter has
been applied to estimate the states and parameters of an uncertain linear hydraulic system
in Habibi (2007). A multiple-model approach has been formulated for fault detection e. g.
to detect leakage of a hydraulic system (Gadsden et al., 2013). The state of charge and
state of health of batteries is estimated in Kim et al. (2015) and Afshari et al. (2018).
A multiple-model approach has been applied for target tracking in Gadsden et al. (2010)
and a SVSF based probabilistic data association (PDA) approach has been proposed for
tracking in cluttered environment (Attari et al., 2013). For multiple object tracking a
SVSF based joint-PDA approach has been developed by Attari et al. (2015). Online
multiple vehicle tracking on real road scenarios has been investigated in Luo et al. (2019).
Several SVSF based simultaneous localization and mapping algorithms have been proposed
e. g. Demim et al. (2016), Allam et al. (2017), Liu and Wang (2018). Training of neural
networks based on the SVSF approach has been studied in Ahmed et al. (2011) with the
goal to classify engine faults. Dual estimation of states and model parameters has been
considered in Al-Shabi and Habibi (2011) based on a combination of the bi-section method
and the SVSF. The attitudes of satellites are synchronized based on the SVSF approach
in Cao et al. (2017).

In this chapter a combination of the SVSF and the Kalman filter is proposed to
improve the estimation performance with respect to the original SVSF algorithm. First, a
reformulation of the SVSF is derived from which unique features of the filter are identified.
A new gain for the SVSF is proposed to achieve minimization of the MSE as well as
robustness with respect to modeling errors. It is shown that if the new gain is applied
to the SVSF then the obtained algorithm equals the one of the extended Kalman filter.
A combined estimation approach is formulated that makes use of the original SVSF gain
as well as the Kalman filter gain. A training scheme is developed to optimize the tuning
parameters of the proposed filter. The optimized parameters provide insights on what
contributes to the robustness of the proposed new filter: the SVSF gain, the Kalman filter
gain, or the combination of both.

Some of the results presented in this chapter are preliminary discussed in Spiller and
Söffker (2020a). This includes the proposed scheme for the optimization of the filter
parameters and the theoretical analysis that establishes the link between the SVSF and
the Kalman filter algorithm.

The chapter is structured as follows. In Section 3.1 the SVSF algorithm and its
properties are studied. A reformulation of the SVSF is stated which facilitates the analysis
of the filter. In Section 3.2 the SVSF gain is replaced by a new deterministic gain with the
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goal to minimize the MSE. Based on the derived gain a direct link to the Kalman filter
is drawn. The combination of the SVSF and the Kalman filter is proposed in Section 3.3.
The scheme that is used for the tuning of the filter parameters is described in Section 3.4.
The estimation performance of the SVSF in comparison to the novel combined filtering
approach is studied in Section 3.5. The chapter is summarized in Section 3.6.

3.1 Smooth Variable Structure Filter

Let the dynamics of a nonlinear system be described by the discrete-time model

xk+1 = fk(xk, uk), (3.1)

yk = xk + rk, (3.2)

with states xk ∈ R
n, inputs uk ∈ R

m, and measurements yk ∈ R
n. Quantity rk denotes

the measurement noise which is assumed to be white. The measurement model (3.2) is
introduced for notational convenience. It can always be obtained from the more general
model

ȳk = Hxk + r̄k, (3.3)

with ȳk, r̄k ∈ R
n and H ∈ R

n×n as the SVSF approach requires H to be invertible. The
SVSF is derived in Habibi (2007). Although the requirement of H to be invertible is
not explicitly stated in Habibi (2007) it is in fact necessary because otherwise the filters
corrective switching term (Habibi, 2007, eq. (27)) may not satisfy the stability theorem
that guarantees boundedness of the estimation error (Habibi, 2007, Theorem 1). From
the full rank condition of H it follows that full state measurements are required which is
the major limitation of the SVSF approach.

Consider f̆k(·) to be a nominal possibly imprecise description of the true system dy-
namics fk(·). According to Habibi (2007) an estimation x̂k of the system states xk can be
obtained based on the following filter algorithm

ỹk = yk − x̂k, (3.4)

x̂k+1|k = f̆k(x̂k, uk), (3.5)

ỹk+1|k = yk+1 − x̂k+1|k, (3.6)

Λk+1 = (|ỹk+1|k|+ Φ|ỹk|) ◦ sgn(ỹk+1|k), (3.7)

x̂k+1 = x̂k+1|k + Λk+1, (3.8)

where Λk+1 is a corrective switching term. The diagonal matrix

Φ = diag

{[

φ1 φ2 . . . φn
]T
}

∈ R
n×n, (3.9)

is defined by the filter parameters 0 ≤ φi < 1 and is denoted as convergence rate. In
Habibi (2007, Theorem 1) and more specifically in Habibi (2007, eq. (30)) it is shown that
algorithm (3.4)–(3.8) guarantees asymptotic stability of the output estimation error ỹk+1.
The output error dynamics are given by

|ỹi,k+1| = φi|ỹi,k|, (3.10)
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where ỹi,k+1 denotes the i-th element of vector ỹk+1 and 0 ≤ φi < 1 is the eigenvalue
making the dynamics asymptotically stable. As the output error converges to zero the
statement

lim
k→∞

x̂k → lim
k→∞

yk, (3.11)

holds true for the state estimations. If the measurement noise is bounded then (3.11)
guarantees the estimation error to be bounded too. This error boundedness can even
be achieved in presence of model uncertainties. However, from (3.11) it follows that it
is unnecessary to apply the filter at all because the state estimations converge to the
measurements and the measurements are all given. Consequently, the filter is useless.

The algorithm (3.4)–(3.8) generates a switching effect which is induced by noise and
model uncertainty. When the a posteriori output error ỹk+1 becomes close to zero the
switching term Λk+1 of (3.7) not necessarily converges to zero. The a priori output error
ỹk+1|k that affects the switching gain may still significantly deviate from zero due to the

measurement noise and the model uncertainty of f̆k(·). Because of the high frequent
switching of the white noise a high frequent switching of the gain Λk+1 may be induced
to push the sliding variable ỹk+1 in direction of the sliding surface ỹk+1 = 0. This effect
is denoted as chattering in Habibi (2007) and it is suggested to apply the smoothing
boundary layer concept known from SMC for its mitigation. Therefore, Habibi (2007)
proposes to modify algorithm (3.4)–(3.8) as follows

ỹk = yk − x̂k, (3.12)

x̂k+1|k = f̆k(x̂k, uk), (3.13)

ỹk+1|k = yk+1 − x̂k+1|k, (3.14)

Λ̄k+1 = (|ỹk+1|k|+ Φ|ỹk|) ◦ sat(Ψ−1ỹk+1|k), (3.15)

x̂k+1 = x̂k+1|k + Λ̄k+1, (3.16)

where sat(·) is a smooth approximation of the switching function sgn(·). The diagonal
matrix Ψ is define as

Ψ = diag

{[

ψ1 ψ2 . . . ψn
]T
}

∈ R
n×n, (3.17)

based on the smoothing boundary layer width ψi > 0 ∈ R. Let ỹi,k+1|k denote the i-th
element of vector ỹk+1|k. The saturation function sat(·) is defined according to

sat(Ψ−1ỹk+1|k) =















ϕ

(
ỹ1,k+1|k

ψ1

)

ϕ

(
ỹ2,k+1|k

ψ2

)

...

ϕ

(
ỹn,k+1|k

ψn

)















, ϕ

(
a

b

)

=







1 for a
b > 1,

−1 for a
b < −1,

a
b for |ab | ≤ 1,

(3.18)

as it is known from the smoothing boundary layer concept of SMC. The introduced al-
gorithm (3.12)–(3.16) is called the smooth variable structure filter. As the SVSF approx-
imates the switching function by a saturation function asymptotic convergence of |ỹk|
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cannot be guaranteed anymore. This is to some extend desired as a zero output estima-
tion error leads to estimations of the form x̂k = yk = xk + rk which deviate from the true
states by the value of the measurement noise. However, it remains unclear how to select
the boundary layer width to achieve mitigation of the noise so that the estimation perfor-
mance is improved. In Habibi (2007) it is argued that the width ψi should be bounded
from below. The width should exceed a threshold value which is defined by the assumed
uncertainty of the model and the maximum amplitude of the noise (Habibi, 2007, eq. (33)).
An upper bound of ψi is not considered in Habibi (2007). Nevertheless, assume ψi → ∞
to hold for all i ∈ {1, . . . , n}. In this case Λ̄k → 0 holds which can be seen from (3.15)
and (3.18). For Λk → 0 the filter ignores the measurements i. e. x̂k+1 → x̂k+1|k (cf. (3.13),
(3.16)). This may easily lead to unstable error dynamics due to the model uncertainty. In
several papers e. g. Luo et al. (2019); Afshari et al. (2018); Ahmed et al. (2016) the SVSF
parameters are tuned by trial and error using the root mean squared error (RMSE) of the
true states. This tuning strategy appears to be unrealistic as the true states are not avail-
able in practice. To optimize the filter parameters the error covariance of the SVSF has
been derived in (Gadsden and Habibi, 2010; Gadsden et al., 2011b). The idea is to model
the MSE of the SVSF and to propagate the error covariance similarly to the Kalman filter.
The optimal tuning parameters of the SVSF are those ones that minimize the MSE. This
optimized parameters are part of a couple of contributions (e. g. Gadsden et al., 2011a,
2013, 2014a,b). But, as already mentioned in the introductory part of this chapter there
are problems related to the error covariance derivation of the SVSF. Propagating the error
covariance requires linearity of the system and exact model knowledge which contradicts
the claim of the SVSF to be a robust estimation approach for nonlinear systems.

In the following the effect of the boundary layer width on the behavior of the SVSF is
studied. Therefore a reformulation of the SVSF is stated in Theorem 1. The reformulation
is originally derived in Spiller et al. (2018).

Theorem 1 (Reformulation of SVSF algorithm).
Assume the convergence rate of the SVSF to be zero i. e. Φ = 0n×n and the initial estima-
tion to be x̂0 ∈ R

n. Consider the following algorithm

x̂RF,k+1|k = f̆k(x̂RF,k, uk), (3.19)

ỹRF,k+1|k = yk+1 − x̂RF,k+1|k, (3.20)

x̂RF,k+1 = yk+1 − Λ̃k+1ỹRF,k+1|k, (3.21)

Λ̃k+1 = diag

{

1n −
∣
∣
∣sat(Ψ−1ỹRF,k+1|k)

∣
∣
∣

}

, (3.22)

with initial estimation x̂RF,0 = x̂0. For identical inputs Uk = {u0, u1, . . . , uk} and mea-
surements Yk = {y0, y1, . . . , yk} the estimations of the SVSF and its reformulation (3.19)–
(3.22) are identical i. e. x̂k|k−1 = x̂RF,k|k−1 and x̂k = x̂RF,k.

Proof. For Φ = 0 the switching term (3.15) can be written as

Λ̄k+1 = sat(Ψ−1ỹk+1|k) ◦ |ỹk+1|k|. (3.23)

It follows

x̂k+1 = yk+1 − ỹk+1|k + sat(Ψ−1ỹk+1|k) ◦ |ỹk+1|k|, (3.24)
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for the a posteriori estimation (3.16). Let ỹi,k+1|k be the i-th element of ỹk+1|k. From
the definition of saturation function (3.18) and the boundary layer widths ψi > 0 ∈ R it
follows

ϕ

(

ỹi,k+1|k
ψi

)

|ỹi,k+1|k| = sgn(ỹi,k+1|k)|ỹi,k+1|k| = ỹi,k+1|k,

= |sgn(ỹi,k+1|k)|ỹi,k+1|k =

∣
∣
∣
∣
∣
∣

ϕ

(

ỹi,k+1|k
ψi

)
∣
∣
∣
∣
∣
∣

ỹi,k+1|k, (3.25)

for
∣
∣
∣
ỹi,k+1|k

ψi

∣
∣
∣ > 1 and

ϕ

(

ỹi,k+1|k
ψi

)

|ỹi,k+1|k| =
ỹi,k+1|k
ψi

|ỹi,k+1|k|,

=
|ỹi,k+1|k|

ψi
ỹi,k+1|k =

∣
∣
∣
∣
∣
∣

ϕ

(

ỹi,k+1|k
ψi

)
∣
∣
∣
∣
∣
∣

ỹi,k+1|k, (3.26)

for
∣
∣
∣
ỹi,k+1|k

ψi

∣
∣
∣ ≤ 1. Consequently,

sat(Ψ−1ỹk+1|k) ◦ |ỹk+1|k| = |sat(Ψ−1ỹk+1|k)| ◦ ỹk+1|k, (3.27)

holds which applied to (3.24) yields

x̂k+1 = yk+1 − Λ̃k+1ỹk+1|k, Λ̃k+1 = diag

{

1n −
∣
∣
∣sat(Ψ−1ỹk+1|k)

∣
∣
∣

}

. (3.28)

From the stochastic gain (3.22) and the definition of saturation function (3.18) it
can be stated that the filter relies more on the predictions x̂k+1|k if the boundary layer
widths ψi are increased. For decreasing widths ψi the filter tends to disregard the a priori
estimations and relies more on the measurements. If the output error lies outside of the
boundary layer, i. e. |ỹi,k+1|k| exceeds the boundary layer width ψi, then the filter has the
ability to completely ignore the a priori estimations. This makes sense as the predictions
may rely on an imprecise model description f̆(·). However, the SVSF was not designed
to minimize an estimation error criterion similar to the MSE. This motivates the idea to
combine the SVSF with the Kalman filter gain so that robustness and to some extent
minimization of the MSE can be achieved. Combinations of the SVSF with the EKF, the
UKF, the cubature Kalman filter, and the particle filter can be found in Gadsden et al.
(2014a,b, 2011a). All proposed combinations are based on the strategy to switch between
the SVSF and the Kalman filter gain. If the uncertainty of the model is considered to be
small the KF gain is applied otherwise the SVSF gain is used. To evaluate the uncertainty
of the model a time-varying boundary layer width Ψvar is calculated. If Ψvar exceeds a
user-defined threshold the model is considered as uncertain and the Kalman filter gain is
replaced by the SVSF gain. However, the proposed method can not be considered to be
consistent. The calculation of the Kalman filter gain is based on the error covariance which
is required to be updated at each time step. Once modeling discrepancies exist the error

43



Ch. 3. Combined Smooth Variable Structure and Kalman Filter Estimation Approach

covariance matrix will be updated incorrectly. As a consequence the determined Kalman
filter gain may be for away from being optimal even if the model fits well at a considered
current time step. In addition, the calculation of the variable boundary layer width Ψvar

also directly depends on the erroneous error covariance. Further, it is not mentioned how
the threshold value for the switching between the filter gains is determined. The threshold
appears to be tuned by trial and error based on the RMSE which is not realistic.

3.2 Relation between Smooth Variable Structure and Kalman Filter

As discussed previously the robustness of the SVSF is achieved by the introduction of
the smoothing boundary layer. The width of layer controls in the influence of the a
priori estimation on the a posteriori estimation. If the output error exceeds the boundary
layer width the a priori estimation is completely ignored. This leads to robustness as
due the model uncertainty the a priori estimation is likely to be erroneous. However, the
SVSF approach has not been derived to minimize an estimation error criterion such as the
MSE. This motivates the idea to combine the SVSF with another filtering approach that
minimizes the MSE. Therefore, the error covariance of the reformulated SVSF (3.19)–(3.22)
is studied. The stochastic gain Λ̃k of (3.22) is replaced by a yet undefined deterministic
gain Kk with the goal to minimize the MSE. This will give a direct link between the SVSF
approach and the Kalman filter. The equations of the error covariances are derived as
follows.

First, it is required to further specify the noise of the measurement model

yk = xk + rk. (3.29)

The noise rk ∈ R
n is assumed as white with mutual stochastically independent samples

described by the mean E{rk} = 0 and the covariance matrix

E{rirTj } = Rδij . (3.30)

In (3.30) the symbol δij denotes the Kronecker delta. The measurement noise covariance
matrix is assumed to be positive definite i. e. R ≻ 0.

From (3.1), (3.2), and (3.19)–(3.22) it follows that the state estimation error and the
output estimation error can be determined as

x̃k+1 = xk+1 − x̂k+1 = Kk+1ỹk+1|k − rk+1, (3.31)

x̃k+1|k = xk+1 − x̂k+1|k, (3.32)

and

ỹk+1|k = yk+1 − x̂k+1|k = x̃k+1|k + rk+1, (3.33)

where the yet undefined deterministic gain Kk+1 in (3.31) replaces the stochastic gain
Λ̃k+1 of the reformulation of the SVSF. Let the output error covariance be defined as
Sk+1 = E{ỹk+1|kỹ

T
k+1|k}. From (3.33) it follows

Sk+1 = E
{

(x̃k+1|k + rk+1)(x̃k+1|k + rk+1)T
}

. (3.34)
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Assume the a priori error covariance to be defined as

Pk+1|k = E{x̃k+1|kx̃
T
k+1|k}. (3.35)

Expanding (3.34) and considering (3.35) as well as R = E{rk+1r
T
k+1} yields

Sk+1 = Pk+1|k +R+ E{rk+1x̃
T
k+1|k}+ E{x̃k+1|kr

T
k+1}. (3.36)

The value of the remaining expectations in (3.36) is studied as follows. The a priori
estimation error x̃k+1|k is known to directly depend on the noise realizations rj with
j ∈ {0, 1, . . . , k} but not on the realization rk+1. The realizations rj with j ∈ {0, 1, . . . , k}
and rk+1 are independent of each other due to the independent white noise assumption.
Realization rk+1 can not have any effect on x̃k+1|k. Both random variables are stochasti-

cally independent. It follows E{rk+1x̃
T
k+1|k} = E{rk+1}E{x̃Tk+1|k} and E{x̃k+1|kr

T
k+1} =

E{x̃k+1|k}E{rTk+1}. The zero-mean noise assumption i. e. E{rk} = 0 leads to

Sk+1 = Pk+1|k +R. (3.37)

Let the a posteriori error covariance be defined as

Pk+1 = E
{

x̃k+1x̃
T
k+1

}

. (3.38)

Substituting (3.31) in (3.38) yields

Pk+1 = E
{

(Kk+1ỹk+1|k − rk+1)(ỹTk+1|kK
T
k+1 − rTk+1)

}

. (3.39)

Expanding (3.39) and considering the definition of the output error covariance Sk+1 yields

Pk+1 = Kk+1Sk+1K
T
k+1 +R− E{rk+1ỹ

T
k+1|kK

T
k+1} − E{Kk+1ỹk+1|kr

T
k+1}. (3.40)

Based on (3.33) the two remaining expectations in (3.40) can be written as

E
{

rk+1(x̃Tk+1|k + rTk+1)KT
k+1

}

= RKT
k+1, (3.41)

E
{

Kk+1(x̃k+1|k + rk+1)rTk+1

}

= Kk+1R, (3.42)

where E{rk+1x̃
T
k+1|k} and E{x̃k+1|kr

T
k+1} again vanish due to the stochastic independency

of rk+1 and x̃k+1|k. Finally, the a posteriori error covariance is achieved as

Pk+1 = Kk+1Sk+1K
T
k+1 +R−RKT

k+1 −Kk+1R. (3.43)

The error covariance (3.43) can also be written as

Pk+1 = Kk+1Sk+1K
T
k+1 +R

−RS−1
k+1Sk+1K

T
k+1 −Kk+1Sk+1S

−1
k+1R+RS−1

k+1R−RS−1
k+1R, (3.44)

which is equivalent to

Pk+1 = R−RS−1
k+1R+ (Kk+1 −RS−1

k+1)Sk+1(Kk+1 −RS−1
k+1)T . (3.45)

Based on the derived error covariance (3.45) the filter performance is optimized as
follows. A new filter gain that minimizes the MSE is obtained from Theorem 2. In
Theorem 3 the new gain is applied to the SVSF which gives a link to the Kalman filter.
The presented connection between the SVSF and the Kalman filter is originally described
in Spiller and Söffker (2020b).
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Theorem 2 (Optimal deterministic gain of reformulated SVSF).
The gain

Kk+1 = Kopt,k+1 = RS−1
k+1 = R(Pk+1|k +R)−1, (3.46)

minimizes the a posteriori MSE i. e. the trace of Pk+1 according to (3.45).

Proof. From (3.45) it is known that Kk+1 only affects the term

Πk+1 = (Kk+1 −RS−1
k+1)Sk+1(Kk+1 −RS−1

k+1)T . (3.47)

Matrix Sk+1 is a covariance matrix. Consequently, it is positive semi-definite. Matrix
Πk+1 is also positive semi-definite as

0 ≤ b(a)Sk+1b
T (a), b(a) , a(Kk+1 −RS−1

k+1), (3.48)

holds for any a ∈ R
n. The minimal trace of a positive semi-definite matrix is zero. As

that zero value is achieved for Kopt,k+1 from (3.46) it is the optimal gain.

Theorem 3 (Relation between SVSF and KF).
The state prediction (3.19) and the correction (3.21) of the SVSF approach equal the one
of the extended Kalman filter if the switching gain Λ̃k+1 of (3.22) is replaced by the optimal
gain Kopt,k+1 from (3.46).

Proof. 1 The state prediction (3.19) obviously equals the one of the extended Kalman
filter. Regarding the correction step (3.21) it follows that

x̂k+1 = yk+1 −Kopt,k+1ỹk+1|k = x̂k+1|k + ỹk+1|k −Kopt,k+1ỹk+1|k,

= x̂k+1|k + (In −Kopt,k+1)ỹk+1|k = x̂k+1|k +Kkal,k+1ỹk+1|k, (3.49)

with

Kkal,k+1 = In −Kopt,k+1, (3.50)

holds if Λ̃k+1 of (3.22) is replaced by Kopt,k+1 known from (3.46). As the introduced
Kkal,k+1 of (3.50) equals the Kalman filter gain

Kkal,k+1 = In −Kopt,k+1 = In −R(Pk+1|k +R)−1,

= (Pk+1|k +R)(Pk+1|k +R)−1 −R(Pk+1|k +R)−1,

= Pk+1|k(Pk+1|k +R)−1, (3.51)

step (3.49) and thus (3.21) is identical to the correction step of the Kalman filter.

1The authors thank the anonymous reviewers of the European Control Conference 2020 for the insight-
ful comments and suggestions related to the proof of the theorem.
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3.3 Combined Estimation Approach

In this section a combination of the SVSF and the extended Kalman filter is proposed. As
mentioned before a combination of both filters has already been described in Gadsden et
al. (2014b). The approach developed by Gadsden et al. (2014b) simply switches between
the Kalman filter and the SVSF gain. To apply the Kalman filter gain the estimation
error covariance is needed to be known. For the update of the error covariance a precise
linear system description is required which makes the approach of Gadsden et al. (2014b)
insufficient for the state estimation of nonlinear uncertain systems. The combined estima-
tion approach that is described in this section is based on a weighted sum of the SVSF
and the Kalman filter gain. The error covariance that is required to calculate the Kalman
filter gain is also estimated. As a consequence the proposed approach is applicable to non-
linear uncertain systems. The filter introduces additional tuning parameters. This tuning
parameters are determined in a subsequently described parameter optimization process.

To apply the Kalman filter gain Kopt,k+1 of (3.46) the a priori error covariance Pk+1|k
has to be determined. The error covariance cannot be updated based on the Kalman
filter equations as that would require linearity of the system and full model knowledge.
Consequently, the error matrix Pk+1|k itself is estimated. This avoids a wrong update of
the error covariance based on an imprecise system description. The estimation of the error
covariance is described as follows.

According to (3.37) the state error covariance Pk+1|k is related to the output error
covariance Sk+1 which motivates to estimate Pk+1|k as

P̂ k+1|k = Ŝk+1 −R, (3.52)

with

Ŝk+1 =
1

N

k+1∑

j=k−N+2

ỹj|j−1ỹ
T
j|j−1,

=
1

N

k+1∑

j=k−N+2

(

x̃j|j−1x̃
T
j|j−1 + rjx̃

T
j|j−1 + x̃j|j−1r

T
j + rjr

T
j

)

, (3.53)

and 1 ≤ N . Estimating Ŝk+1 based on the output error ỹk+1|k is common in the field
of adaptive Kalman filtering (e. g. Yang and Gao, 2006; Hide et al., 2003). Assume the
estimation error x̃k+1|k to be constant. Let rk+1 be ergodic in the sense of

1

N

k+1∑

j=k−N+2

rj = 0,
1

N

k+1∑

j=k−N+2

rjr
T
j = R, (3.54)

then the true error covariance

Pk+1|k = Ŝk+1 −R, (3.55)

can be obtained from (3.53).
Additional information about Pk+1|k is obtained by considering the suboptimal gain

Ksub,k+1 = 0n×n. Let Popt,k+1 denote the error covariance if the optimal gain Kopt,k+1

is applied and let Psub,k+1 denote the error covariance if the suboptimal gain Ksub,k+1 is
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applied. Substituting Kk+1 of (3.45) by Ksub,k+1 gives Psub,k+1 = R. As the filter with
the optimal gain minimizes the MSE the inequality

tr{Popt,k+1} ≤ tr{R} = tr{Psub,k+1}, (3.56)

can be stated. If Pk+1 ≈ Pk+1|k is assumed which holds for a sufficient small sampling
time then

P̂ k+1|k = ζR, ζ ∈ [0, 1], (3.57)

may be considered as an estimation of Pk+1|k.
As the SVSF is a recursive estimation approach the relation of Pk+1|k to its previous

value Pk|k−1 should be considered. For a small sampling time this can be roughly described
by

P̂ k+1|k = P̂ k|k−1. (3.58)

To find an estimation P̂
⋆
k+1|k of Pk+1|k that fits best to the established equations (3.52),

(3.57), and (3.58) a weighted least squares (WLS) estimation problem is formulated. The
importance of the individual equations is expressed by weighting factors 0 < α, β, γ ∈ R

which are determined subsequently in a parameter optimization process. Based on the
vector operator “vec” the WLS problem

p⋆k+1|k = arg min
pk+1|k

‖bk+1 −Apk+1|k‖2W , P̂
⋆
k+1|k = vec−1

{

p⋆k+1|k
}

, (3.59)

with

A = In ⊗






In
In
In




 , bk+1 = vec













Ŝk+1 −R
ζR

P̂
⋆
k|k−1













, ζ ∈ [0, 1],

W = In ⊗






αIn 0 0
0 βIn 0
0 0 γIn




 ,

and 0 < α, β, γ is considered. The solution of this WLS estimation problem is

P̂
⋆
k+1|k =

1

α+ β + γ

(

α(Ŝk+1 −R) + βζR+ γP̂
⋆
k|k−1

)

, (3.60)

which is a weighted sum of the solutions of the individual equations (3.52), (3.57), and
(3.58). Based on the substitution

ᾱ =
α

α+ β + γ
, β̄ =

β

α+ β + γ
, γ̄ =

γ

α+ β + γ
, (3.61)

with

ᾱ+ β̄ + γ̄ = 1, (3.62)
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the number of weighting factors is reduced by one yielding

P̂
⋆
k+1|k = ᾱ(Ŝk+1 −R) + β̄ζR+ (1− ᾱ− β̄)P̂

⋆
k|k−1, (3.63)

subject to

0 < ᾱ, β̄, ᾱ+ β̄ < 1. (3.64)

The estimated error covariance P̂
⋆
k+1|k of (3.63) is not guaranteed to be positive semi-

definite. However, from the definition of a covariance matrix it can be shown that every
covariance matrix must be positive semi-definite. To solve the problem all negative eigen-
values of P̂

⋆
k+1|k are replaced by non-negative ones. The resulting positive semi-definite

matrix is denoted as P̂
†
k+1|k. The post-processing step that guarantees positive semi-

definiteness is described as follows. Matrix P̂
⋆
k+1|k is symmetric according to (3.63) if a

symmetric initial matrix P̂ 0 is chosen which is assumed to hold. As P̂
⋆
k+1|k is symmetric

it can always be diagonalized according to

D⋆
k+1 = LTk+1P̂

⋆
k+1|kLk+1, (3.65)

where D⋆
k+1 ∈ R

n×n is a diagonal matrix with diagonal elements d∗
ii,k+1 corresponding to

the eigenvalues of matrix P̂
⋆
k+1|k. Let Dk+1 ∈ R

n×n define a diagonal matrix with diagonal
elements dii,k+1. Based on d∗

ii,k+1 the diagonal elements dii,k+1 are determined according
to

dii,k+1 =







d⋆ii,k+1 if d⋆ii,k+1 is > 0,

η × r̃ii,k+1 if d⋆ii,k+1 is ≤ 0,
η ∈ (0, 1]. (3.66)

In (3.66) the scalar r̃ii,k+1 ≥ 0 denotes the i-th diagonal element of the transformed noise
covariance R̃k+1 = LTk+1RLk+1 and the parameter η is a scaling factor. The scaling factor

is optimized subsequently. The modified error covariance P̂
†
k+1|k is calculated as

P̂
†
k+1|k = Lk+1Dk+1L

T
k+1. (3.67)

Finally, an estimation P̂
†
k+1|k of the state error covariance is achieved. Substituting Pk+1|k

of (3.46) by P̂
†
k+1|k gives an estimation of the Kalman filter gain according to

K̂opt,k+1 = R(P̂
†
k+1|k +R)−1. (3.68)

The combination of the SVSF and the Kalman filter is described as follows. Let Ξk+1

denote the gain of the combined approach. To some extent it should be equal to the
estimated Kalman filter gain

Ξk+1 = K̂opt,k+1 = R(P̂
†
k+1|k +R)−1, (3.69)

and to some extend it should also be equal to the gain of the SVSF approach

Ξk+1 = diag
{

1n − |Ψ−1ỹk+1|k|
}

. (3.70)
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The SVSF gain of (3.70) is the gain Λ̃k+1 of the reformulation of the SVSF according to
(3.22) for the case that all output errors lie inside the boundary layer i. e. ∀i : |ỹi,k+1|k| ≤ ψi.
Based on (3.69) and (3.70) the WLS estimation problem

ξ⋆k+1 = arg min
ξk+1

‖bk+1 −Aξk+1‖2W , Ξ⋆k+1 = vec−1
{

ξ⋆k+1

}

, (3.71)

with

A = In ⊗
[

In
In

]

, bk+1 = vec












R(P̂
†
k+1|k +R)−1

diag

{

1n −
∣
∣
∣Ψ−1ỹk+1|k

∣
∣
∣

}












,

W = In ⊗
[

ιIn 0
0 υIn

]

,

and 0 < ι, υ is formulated which has the solution

Ξ⋆k+1 =
1

ι+ υ

(

ι

(

R(P̂
†
k+1|k +R)−1

)

+ υ × diag

{

1n −
∣
∣
∣Ψ−1ỹk+1|k

∣
∣
∣

})

. (3.72)

The number of weighting factors is reduced by one using the substitution

ῑ =
ι

ι+ υ
, ῡ =

υ

ι+ υ
, ῑ+ ῡ = 1. (3.73)

As a consequence

Ξ⋆k+1 = ῑ

(

R(P̂
†
k+1|k +R)−1

)

+ (1− ῑ)× diag

{

1n −
∣
∣
∣Ψ−1ỹk+1|k

∣
∣
∣

}

, (3.74)

is obtained which is subject to

0 ≤ ῑ ≤ 1. (3.75)

The matrix Ξ⋆k+1 of (3.74) is the gain of the combined approach. Substituting Λ̃k+1 of
(3.21) by Ξ⋆k+1 gives the a posteriori estimation

x̂k+1 = yk+1 − Ξ⋆k+1ỹk+1|k, (3.76)

of the combined filter. As previously discussed the SVSF has the ability to completely
ignore the a priori estimations if the the output error exceeds the boundary layer width.
To implement this feature on the combined filter the a posteriori estimation of (3.76) is
slightly modified. The modification is described as follows. The function Θ: Ψ, ỹk+1|k →
Θ(Ψ, ỹk+1|k) ∈ R

n×n is introduced according to

Θ(Ψ, ỹk+1|k) = diag

{[

ϑ1 . . . ϑn
]T
}

, ϑi =







0 for |ỹi,k+1|k| > ψi,

1 for |ỹi,k+1|k| ≤ ψi.
(3.77)

Modifying the a posteriori estimation as

x̂k+1 = yk+1 −Θ(Ψ, ỹk+1|k)× Ξ⋆k+1ỹk+1|k, (3.78)
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implements the desired feature on the combined filter.
Finally, the combined estimating approach of the SVSF and the Kalman filter is

summarized as

x̂k+1|k = f̆k(x̂k, uk), (3.79)

ỹk+1|k = yk+1 − x̂k+1|k, (3.80)

x̂k+1 = yk+1 −Θ(Ψ, ỹk+1|k)× Ξ⋆k+1ỹk+1|k, (3.81)

Θ(Ψ, ỹk+1|k) = diag

{[

ϑ1 . . . ϑn
]T
}

, (3.82)

ϑi =







0 for |ỹi,k+1|k| > ψi,

1 for |ỹi,k+1|k| ≤ ψi,
(3.83)

Ξ⋆k+1 = ῑ

(

R(P̂
†
k+1|k +R)−1

)

+ (1− ῑ)× diag

{

1n −
∣
∣
∣Ψ−1ỹk+1|k

∣
∣
∣

}

, (3.84)

with

Ψ = diag

{[

ψ1 ψ2 . . . ψn
]T
}

, 0 < ψi, 0 ≤ ῑ ≤ 1,

and

P̂
†
k+1|k = Lk+1Dk+1L

T
k+1,

so that Lk+1 diagonalizes P̂
⋆
k+1|k according to

D⋆
k+1 = LTk+1P̂

⋆
k+1|kLk+1,

with

P̂
⋆
k+1|k = ᾱ(Ŝk+1 −R) + β̄ζR+ (1− ᾱ− β̄)P̂

†
k|k−1, (3.85)

subject to

Ŝk+1 =
1

N

k+1∑

j=k−N+2

ỹj|j−1ỹ
T
j|j−1, 0 < ᾱ, β̄, ᾱ+ β̄ < 1, 1 ≤ N, ζ ∈ [0, 1],

and diagonal matrix Dk+1 being obtained from

dii,k+1 =







d⋆ii,k+1 if d⋆ii,k+1 is > 0,

η × r̃ii,k+1 if d⋆ii,k+1 is ≤ 0,
η ∈ (0, 1],

where dii,k+1 denotes the i-th diagonal element of diagonal matrix Dk+1, d⋆ii,k+1 denotes
the i-th diagonal element of diagonal matrix D⋆

k+1, and r̃ii,k+1 denotes the i-th diagonal

element of the transformed noise covariance R̃k+1 = LTk+1RLk+1.
As the proposed filter requires full state measurements a direct link between the

known output estimation error and the unknown state estimation error can be stated by
the following theorem.
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Theorem 4 (Estimation error of combined filtering approach).
The estimation error of the a posteriori estimation

x̂k+1 = yk+1 − Ξ†
k+1ỹk+1|k, (3.86)

Ξ†
k+1 , Θ(Ψ, ỹk+1|k)× Ξ⋆k+1,

of the combined filtering approach (3.79)–(3.84) is bounded by

‖x̃k+1‖ ≤ ‖Ξ†
k+1ỹk+1|k‖+ a, (3.87)

if the measurement noise is bounded by ‖rk‖ < a. In addition, if |ỹi,k+1|k| > ψi is satisfied
and the measurement noise is bounded by |ri,k+1| < bi then also

|x̃i,k+1| ≤ bi, (3.88)

holds.

Proof. Substituting (3.86) in the definition of the a posteriori error gives

x̃k+1 = xk+1 − yk+1 + Ξ†
k+1ỹk+1|k = Ξ†

k+1ỹk+1|k − rk+1. (3.89)

The general statement (3.87) follows by applying the triangle inequality on (3.89). The
specific statement (3.88) results from the definition of switching function (3.77) which
yields the a posteriori estimation x̂i,k+1 = yi,k+1 in case of |ỹi,k+1|k| > ψi (cf. (3.81)).
Then it is

x̃i,k+1 = xi,k+1 − x̂i,k+1 = xi,k+1 − yi,k+1 = −ri,k+1, (3.90)

which leads to (3.88).

3.4 Parameter Optimization

The previously described combined filtering approach introduces tuning parameters that
are required to be optimized to achieve improved estimation performance. In this section a
scheme for the parameter optimization is described which is originally proposed in Spiller
and Söffker (2020b). The considered optimization scheme can be applied to optimize any
state estimator that has to deal with an imprecise model description. For the optimization
neither the true systems states are required to be know nor any experiments on the real
system have to be undertaken. A nominal system description is assumed to be available
which is not required to accurately describe the true dynamics of the system. Some a
priori knowledge is assumed to be given that describes the maximum range that the true
system parameters may vary from the known nominal values. Based on that knowledge
training models are generated. The training models consist of system parameters that
vary from the nominal values by the specified parameter ranges. The optimization can be
divided into two steps: training and test procedure. The main idea of the training process
is to simulate the true system behavior based on training models but to let the filter run
based on the nominal model. The true states of the training models are known so that the
estimation performance can be optimized with respect to those states. As a consequence,
during training the parameters of the filter are optimized to achieve improved performance
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Training Test

ȳk

ūk−1

P
P⋆ = arg minP J(P)

J(P) =
∑

k ‖x̄k − x̂k‖2

Parameters P
Nominal Model Nominal Model

Training Model True Behavior

Simulated System

Untrained Filter

Parameter

Optimization

Real System

Trained Filter

uk−1

ykP⋆

x̄k

x̂k

Parameters P⋆

Figure 3.1: Filter parameter optimization. Training: the training is based on a specific
system description called training model which simulates model uncertainty. The training
model equals the known nominal system description but with varied system parameters
to account for the model uncertainty. The filter receives measurements from the training
model but uses the nominal model for the state estimation. The filter parameters are
optimized by comparing the filter estimates with the true states of the training model.
Test: the filter is applied to the real system, it runs with the optimized tuning parameters,
and uses the known nominal system description for the state estimation.

in presence of model discrepancy. In the test phase the filter is applied to the true system
using the optimized parameters from the training procedure. A formal description of the
optimization concept is given as follows.

A nonlinear discrete-time system of the form

xk+1 = fk(xk, uk) + qr, (3.91)

yk = hk(xk) + rk, (3.92)

is considered, where qk and rk are assumed to be noise processes with known probability
density functions pq and pr. It is assumed that a possible imprecise description of the

dynamics of (3.91) is given by f̆k(·). In addition, it is assumed that the discrepancy between
fk(·) and f̆k(·) is not structural meaning that the discrepancy only results from different
values of the system parameters. The model f̆k(·) is denoted as the nominal system
description which has system parameters with so-called nominal values. The measurement
model hk(·) is assumed to be precisely known. For the training procedure the training
models have to be generated. Let Np be the number of system parameters and let pnom,i

denote the nominal value of parameter i. Some a priori knowledge about the amount of
model uncertainty is assumed to be available. More precisely, parameter pnom,i is known
to be varied by ̺i percent to account for the severity of model uncertainty that is related
to the parameter i. Let the uniform distribution

Z ∼ U(a, b), (3.93)
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of a random variable Z be defined by the probability density function

fZ(z|a, b) =







1
b−a if b ≥ z ≥ a,
0 else.

(3.94)

It is suggested to obtain the i-th parameter p
(j)
i of the j-th training model by drawing a

sample from

p
(j)
i ∼ U

(
(1− ̺i/100)pnom,i, (1 + ̺i/100)pnom,i

)
. (3.95)

Repeating the procedure for all Np system parameters forms one set of training parameters
which defines one training model j. The training procedure is described as follows.

Assume P to be the sequence of filter parameters that are required to be optimized.

Let ū
(j)
k be the inputs that are applied to training model j. Based on ū

(j)
k and the prob-

ability density function pq of the process noise the states x̄
(j)
k of the j-th training model

are generated. Using the known measurement model hk(·) and the probability density

function pr of the measurement noise the measurements ȳ
(j)
k of the j-th training model

are generated. Suppose x̂k|Ω(j)
k to be the estimations of a filter that runs based on the

nominal model but receives data Ω
(j)
k = {Ū (j)

k , Ȳ
(j)
k } from the training model j, i. e. inputs

Ū
(j)
k = (ū

(j)
0 , ū

(j)
1 , . . . , ū

(j)
k ) and measurements Ȳ

(j)
k = (ȳ

(j)
0 , ȳ

(j)
1 , . . . , ȳ

(j)
k ). The optimized

parameters P⋆j for that filter are given by

P⋆j = arg min
P

Jj(P) = arg min
P

∑

k

‖x̄(j)
k − x̂k|Ω

(j)
k (P)‖2, (3.96)

where Jj denotes the cost function. The optimization problem (3.96) can be solved by e. g.
genetic approaches.

During training several training models can be generated so that several sets of op-
timized filter parameters P⋆1 ,P⋆2 ,P⋆3 . . . are obtained. For the test procedure a selection
has to be made with respect to these sets. For instance, the mean or the median of the
optimized parameters can be taken into consideration to define the parameters of the filter
that is applied to the real system. Finally, an overview of the discussed filter optimization
strategy is given in Fig. 3.1.

In the following the parameter optimization of the combined estimation approach
(3.79)–(3.84) of Section 3.3 is considered. The set of tuning parameters of the combined
approach is given by

SCA = (ᾱ, β̄, ῑ, η, ζ,Ψ, N). (3.97)

Assume the optimization scheme to be applied to the SVSF and the combined estimation
approach. As both filters are related to each other a statement about the estimation
performance during the training phase can be made by the following theorem.

Theorem 5 (Training performance of combined filtering approach).
Let the parameters of the reformulated SVSF and the combined filtering approach be tuned
as illustrated in Fig. 3.1. Assume the filters to be run with the same initial state estimation

and same data Ω
(j)
k generated by a training model j. Suppose that the obtained solutions of
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CAf , q, Tf

CA, q, T

TcTc

Figure 3.2: Continuous stirred tank reactor (Spiller et al. IFAC2020)

the optimization process (3.96) are global minima, i. e. the optimization procedure e. g. a
genetic approach finds the best possible solution for (3.96). Let JRF,j be the global minimum
found for the reformulated SVSF approach and let JCA,j be the global minimum found for
the combined approach. Then the statement JRF,j ≥ JCA,j holds true.

Proof. The space of the tuning parameters of the reformulated SVSF is

SRF = Ψ (3.98)

and the tuning parameters of the combined approach are defined by the parameter space

SCA = (ᾱ, β̄, ῑ, η, ζ,Ψ, N). (3.99)

From (3.79)–(3.84) it can be seen that for

S⋆CA = (ᾱ, β̄, 0, η, ζ,Ψ, N) (3.100)

the combined approach reduces to the reformulated SVSF and the parameter space SRF

lies within S⋆CA.

3.5 Application to Nonlinear Uncertain System

In this section state estimation of a chemical plant is considered to evaluate the perfor-
mance of the original SVSF and the combined estimation approach (CA). In addition, the
extended Kalman filter (EKF) with tuned parameters is applied. According to Seborg et
al. (2010) and Magni et al. (2001) a chemical reaction in a continuous stirred tank reactor
(CSTR) is considered. The reactor with its inputs and outputs is visualized in Fig. 3.2.
In the reactor a species A reacts to a species B. The inlet stream is only composed of
species A whereas the effluent flow is composed of a mixture of A and B. The effluent
flow concentration of species A is denoted as CA and the reactor temperature is denoted
as T . The dynamics of CA and T are described by the nonlinear time-continuous model

[

ẋ1

ẋ2

]

︸ ︷︷ ︸

ẋ

=





q
V (CAf − x1)− k0x1exp

(

− E
Rx2

)

a(x) + UA
V ρCp

(u+ Teq,c − x2)





︸ ︷︷ ︸

f(x,u)

, (3.101)
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Table 3.1: Parameters of continuous stirred tank reactor (Magni et al. (2001))

Description Parameter Unit Nominal Real Training

Tank volume V l 100 92 [80, 120]

Feed flow rate q l/min 100 94 [80, 120]

Feed concentration CAf mol/l 1 0.98 [0.8, 1.2]

Feed temperature Tf K 350 354 [280, 420]

Density ρ g/l 1000 953 [800, 1200]

Enthalpy −∆H J/mol 5e4 4.91e4 [4e4, 6e4]

Exponential factor E
R K 8750 8893 [7000, 10500]

Frequency factor k0 min−1 7.2e10 7.68e10 [5.76e10, 8.64e10]

Heat transfer UA J/minK 5e4 4.68e4 [4e4, 6e4]

Specific heat Cp J/gK 0.239 0.299 [0.191, 0.287]

Cooling temperature Teq,c K 300 300 300

Interval [a,b]: parameter for training equals a sample z drawn from uniform distribution Z ∼ U(a, b).

a(x) =
q

V
(Tf − x2) +

(−∆H)k0x1

ρCp
exp

(

− E

Rx2

)

,

where state x1 denotes CA and state x2 denotes T . The input u = ∆Tc is the change of
the coolant stream temperature related to a nominal value Teq,c. The system parameters
are given in Table 3.1. As all considered filters are formulated in the discrete-time domain
a discretization of the considered system is performed. Based on the Euler method the
nonlinear discrete-time system

xk+1 = f(xk, uk)× Ts + xk, (3.102)

is obtained, where Ts denotes the sampling time. The system has slow dynamics and the
sampling time is chosen as Ts = 0.1 s. The measurement model is

yk = xk + rk, (3.103)

where rk is assumed to be zero-mean, white Gaussian noise described by the covariance
matrix

R = E{rkrTk } =

[

σ2
CA

0

0 σ2
T

]

, σCA
= 0.8× 10−3

[

mol

l

]

, σT = 0.5 [K]. (3.104)

The initial state of the system is assumed to be

x0 =

[

0.875 [mol/l]
325 [K]

]

. (3.105)

The considered filters are all initialized based on the measurement

x̂0 = y0 = x0 + r0, (3.106)
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Table 3.2: Training process: computational effort and achieved accuracy with respect to
the five training models (Training I, Training II, Training III, Training IV, Training V)

Iterations Convergence J(P⋆) FLOPS Time [min]

Training I

EKF 4189 yes 0.3755 181e7 3.59

SVSF 4800 yes 0.4951 86e7 2.38

CA 7074 yes 0.3697 11071e7 215.18

Training II

EKF 2873 yes 0.5908 124e7 2.59

SVSF 5223 yes 0.5139 94e7 2.67

CA 11045 yes 0.3659 20625e7 410.51

Training III

EKF 3907 yes 0.8531 169e7 3.28

SVSF 3672 yes 0.8538 66e7 1.74

CA 9093 yes 0.5751 1664e7 34.70

Training IV

EKF 3296 yes 0.4280 142e7 2.87

SVSF 4753 yes 0.3167 86e7 2.40

CA 11542 yes 0.2018 21387e7 414.53

Training V

EKF 4001 yes 0.8534 173e7 3.45

SVSF 3578 yes 0.8538 64e7 1.78

CA 9093 yes 0.5751 1664e7 34.36

Based on the Genetic Algorithm of MATLAB with default parameters, Iterations: calls of
cost function, Convergence: change of cost function falls below tolerance, J(P⋆): minimum
value of cost function, FLOPS: floating point operations, Time: computational time, Hardware:
4xCPU@3.7GHz with 8 GB memory

with the initial error covariance

P̂
†
0 = P0 = R. (3.107)

The Jacobian of the system which is required to be known to apply the extended Kalman
filter is stated in Appendix A.1.

3.5.1 Training Results

In the following the optimization of the tuning parameters of the SVSF, the combined es-
timation approach, and the extended Kalman filter is discussed. As previously explained,
training models are required to be generated first. These training models are obtained by
varying the values of the system parameters as follows. To account for the model uncer-
tainty of the plant a variation of 20 percent from the nominal value is considered. This
variation of 20 percent is a guess of the true model uncertainty and is assumed as a priorly
known. Following the optimization scheme the i-th parameter of the training model j is

obtained from the uniform distribution p
(j)
i ∼ U((1−0.2)pnom,i, (1+0.2)pnom,i). Repeating

the step for all parameters i ∈ {1, 2, . . . , 10} forms one training model. To account for the
different combinations and variations of the system parameters five training models are
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Table 3.3: Combined approach: optimized parameters and total exceedings of the bound-
ary layer width related to the five training models (Training I, Training II, Training III,
Training IV, Training V)

Training I Training II Training III Training IV Training V

ᾱ 0.194050 0.267800 0.008947 0.279587 0.008947

β̄ 0.000121 0.000063 0.000046 0.026638 0.000046

1− ᾱ− β̄ 0.805829 0.732138 0.991007 0.693775 0.991007

ῑ 0.999999 0.999996 0.999996 0.970876 0.999996

1− ῑ 0.000001 0.000004 0.000004 0.029124 0.000004

η 0.406164 0.070489 0.147509 0.047929 0.147509

ζ 0.782612 0.998330 0.915384 0.603115 0.915384

ψ1 782730 344703 361599 528841 361599

ψ2 338831 564855 86378 370922 86378

N 293 356 5 353 5

|Θ|* 0/12000 0/12000 0/12000 0/12000 0/12000
* Counts the times the boundary layer width is exceeded according to (3.77) and divides it by

the maximum number of possible exceedings.

build which are denoted as Training I, Training II, and so on. For each training model the
filter parameters are optimized so that five sets of optimized parameters are obtained for
each filter. In Table 3.1 an overview of the true system parameters, the nominal system
parameters, and the parameter ranges used to build the training models is given.

The following filter parameters are optimized. For the SVSF the original filter algo-
rithm (3.12)–(3.16) is considered with the tuning parameters

SSV SF = (φ1, φ2, ψ1, ψ2), (3.108)

where φ1, φ2 denote the convergence rates and ψ1, ψ2 the boundary layer widths of the
two system states. The parameters of the combined approach are

SCA = (ᾱ, β̄, ῑ, η, ζ, ψ1 , ψ2, N). (3.109)

To account for the model uncertainty the extended Kalman filter is applied based on a
parametrization of the process noise covariance. Therefore, the process model (3.102) is
considered to be affected by an additive noise term according to

xk+1 = f(xk, uk)× Ts + xk + qk. (3.110)

The noise qk is assumed to be zero-mean, white noise with covariance Q = E{qkqTk }. The
covariance Q is unknown and according to

SEKF = (q11, q12, q22), Q =

[

q11 q12

q12 q22

]

, (3.111)
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the elements of Q are considered to be the tuning parameters of the EKF approach. The
measurement noise covariance R is known as stated in (3.104).

The optimization problem (3.96) is solved based on the “genetic algorithm” of MAT-
LAB with default settings. One iteration of the optimizer simulates the system response
of the input

uk = 2sin

(
2π

8× 60
Tsk

)

+ 1, (3.112)

for a time span of 60 [min]. After the end of the iteration the filter parameters change
according to the optimizer and the next iteration starts. During the optimization only
one realization of measurement noise is considered so that the cost function does not
vary due to noise. The computational time required for the optimization and the achieved
estimation accuracy are shown in Table 3.2. For all training models the combined approach
achieves the best estimation performance. Compared to the EKF the SVSF approach does
not show improved estimation accuracy in general. The EKF as well as the SVSF are
computationally more efficient than the combined approach. The optimized parameters
of the combined approach are given by Table 3.3. Considering the gain

Ξ⋆k+1 = ῑ

(

R(P̂
†
k+1|k +R)−1

)

+ (1− ῑ)× diag

{

In −
∣
∣
∣Ψ−1ỹk+1|k

∣
∣
∣

}

, (3.113)

of the combined approach it can be stated that the second term with the prefactor 1− ῑ is
of minor importance as the optimized values of 1 − ῑ are very small. As the second term
denotes the SVSF gain it can be concluded that the SVSF gain does not contribute well
to the achieved performance of the combined approach. In addition, from the last row of
Table 3.3 it can be seen that the optimized boundary layer widths are so large that the
output error never exceeds the boundary layer widths. As a consequence, the switching
function Θ described by (3.82)–(3.83) does not have any effect on the combined approach.
The feature of the SVSF to neglect the a priori estimation if the output error exceeds
the boundary layer width does not contribute at all to the performance of the combined
approach. The gain (3.113) of the combined approach is dominated by the first term which
is the estimated Kalman filter gain. The estimated Kalman filter gain is affected by the
estimation

P̂
⋆
k+1|k = ᾱ(Ŝk+1 −R) + β̄ζR+ (1− ᾱ− β̄)P̂

†
k|k−1, (3.114)

of the error covariance according to (3.85). Regarding the optimized parameters of Table
(3.3) it can be stated that the last term of (3.114) contributes most. The first term may
have a noticeable effect whereas the second one is of minor importance. Consequently,
a Kalman filter with a gain that is mostly steady-state but may have small adaption
according to (3.52) shows best results in the training process. As the gain is mostly
steady state the initial value is of great importance. The initial gain value depends on
the initial error covariance P0. The true initial error covariance is always known if the
states are initialized based on the measurements as stated in (3.106). In that case the
initial estimation error is R and the true initial error covariance is given by (3.107). For
the sake of completeness the optimized parameters of the EKF and the SVSF are given
in Appendix A.2.
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Table 3.4: Test performance: mean µ and variance σ2 of the estimation error criterion
cerror over 100 realizations of the system response

System input Parameter set EKF SVSF CA Meas.*

Step
uk = +5 K

Training I
µ 0.2867 0.2738 0.1995 0.8887

σ2 7.94e-05 1.42e-04 8.90e-05 3.76e-04

Training II
µ 0.5086 0.2715 0.1978 0.8887

σ2 1.14e-04 1.39e-04 8.99e-05 3.76e-04

Training III
µ 0.8475 0.8090 0.1963 0.8887

σ2 3.35e-04 3.77e-04 7.80e-05 3.76e-04

Training IV
µ 0.3997 0.2361 0.1844 0.8887

σ2 7.78e-05 7.63e-05 7.54e-05 3.76e-04

Training V
µ 0.8480 0.8090 0.1963 0.8887

σ2 3.36e-04 3.77e-04 7.80e-05 3.76e-04

Step
uk = −5 K

Training I
µ 0.2834 0.2566 0.1187 0.8925

σ2 6.34e-05 1.32e-04 5.03e-05 2.83e-04

Training II
µ 0.5079 0.2540 0.1210 0.8925

σ2 1.07e-04 1.29e-04 6.60e-05 2.83e-04

Training III
µ 0.8512 0.8121 0.1094 0.8925

σ2 2.57e-04 3.01e-04 3.98e-05 2.83e-04

Training IV
µ 0.3788 0.1980 0.1054 0.8925

σ2 6.88e-05 5.86e-05 4.74e-05 2.83e-04

Training V
µ 0.8516 0.8120 0.1094 0.8925

σ2 2.57e-04 3.01e-04 3.98e-05 2.83e-04

* Meas.: Considering the measurements as state estimations i. e. x̂k = yk

3.5.2 Test Results

In this section the SVSF, the combined estimation approach, and the EKF are applied to
the CSTR system with their previously optimized filter parameters. The considered real
system parameters that are used to simulate the true behavior of the CSTR system are
shown in Table 3.1. The step responses of the states CA and T are generated for each step
input that is applied to the system. In total two step inputs are considered: u = 5 [K] and
u = −5 [K]. The time span of the step responses is 6 [min]. All considered filters are run
in parallel with the same inputs i. e. the same system inputs and the same measurements
which have same noise realizations. The filtering performance is evaluated based on the
mean squared estimation error according to

cerror =
1

Ns

Ns∑

k=0

x̃Tk x̃k, (3.115)
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Figure 3.3: Comparison of the estimated states for step response uk = +5 [K]. The
filters are run with the parameter set that achieved the best test performance according to
Table 3.4: EKF (Training I), SVSF (Training IV), CA (Training IV). Achieved estimation
performance of the shown time series: EKF (cerror = 0.2986), SVSF (cerror = 0.2482),
CA (cerror = 0.1883), Meas. (cerror = 0.9067). (a) State estimations of CA (b) State
estimations of T

where Ns denotes the number of samples that are generated within the simulated time
span of 6 [min]. To account for variations of the estimation performance due to noise the
step responses of the CSTR system are simulated 100 times. The filters are applied to
that 100 realizations and the mean µ and variance σ2 of the estimation error criterion
cerror are determined. The obtained results are visualized in Table 3.4.

Considering the results for the step inputs u = 5 [K] and u = −5 [K] separately it
can be stated that the worst estimation result of the combined approach is still better
than the best estimation result of the other filters. For both step inputs u = 5 [K] and
u = −5 [K] one realization of the step responses is plotted in Fig. 3.3 and 3.4. In addition,
the estimated states of the filters are visualized. Each filter is applied with the set of
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Figure 3.4: Comparison of the estimated states for step response uk = −5 [K]. The
filters are run with the parameter set that achieved the best test performance according to
Table 3.4: EKF (Training I), SVSF (Training IV), CA (Training IV). Achieved estimation
performance of the shown time series: EKF (cerror = 0.2888), SVSF (cerror = 0.2063),
CA (cerror = 0.1034), Meas. (cerror = 0.9162). (a) State estimations of CA (b) State
estimations of T

optimized parameters that achieved the best estimation performance according to Table
3.4. From visual inspection of the graphs it can be seen that the deviation between the
true and the estimated states is less severe in case of the combined estimation approach
than it is for the other filters.

3.6 Summary

This chapter is about state estimation of nonlinear uncertain systems. The smooth variable
structure filter and its theory are introduced. The SVSF is an estimation approach that
can be applied to nonlinear uncertain systems. It is a nonlinear discrete-time filtering
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approach that follows the predictor-corrector scheme of the Kalman filter. The boundary
layer concept is applied to the SVSF to handle erroneousness of the a priori estimation
that may arise from the imprecise system description. It is shown in this chapter that
the a priori estimation is neglected if the output error exceeds the boundary layer width.
This feature is identified as a feature that may make the SVSF more robust in comparison
to other estimation approaches. However, the performance of the SVSF highly depends
on user-defined parameters. In addition, the SVSF does not minimize any estimation
performance criterion such as the mean squared error. Therefore, a combination of the
SVSF and the Kalman filter is proposed. First, a reformulation of the SVSF is stated.
The reformulation facilitates the design of the combined estimation approach as it gives a
direct link between the Kalman filter and the SVSF. The combined approach should unify
the robustness of the SVSF and the optimality of the Kalman filter. Therefore, the gain of
the combined approach is formulated as a weighted sum of the SVSF and the Kalman filter
gain. To apply the Kalman filter gain the error covariance is required to be known. The
error covariance can not be recursively updated at each time step as that would require a
linear precisely known system description. For that reason the error covariance itself is also
estimated. The proposed combined estimation approach introduces several new tuning
parameters like the weighting factors of the combined gain. A parameter optimization
scheme is developed that can be applied to optimize any state estimation approach that
is required to handle parametric model uncertainty. Parametric model uncertainty means
that the discrepancy of the models only arises from the system parameters and is not
structural. The proposed optimization scheme neither requires the true states of the real
system to be known nor does it require any experimental data from the real system. The
main idea of the proposed scheme is to design so-called training models from the known
uncertain model description. This uncertain system description is denoted as the nominal
model. The parameters of the nominal model are varied to determine the training models.
The training models are used to simulate model discrepancy. This discrepancy arises as the
filters make use of the nominal model but the incoming measurements are generated by the
training models. As a consequence, the filter parameters can be optimized to handle the
artificially generated model discrepancy. The developed combined estimation approach,
the SVSF, as well as the extended Kalman filter are applied to a chemical plant to evaluate
their estimation performance. All considered filters are optimized based on the proposed
scheme. The combined estimation approach achieves the best performance during the
optimization. It is also most accurate when it is applied to the real system. From the
optimized weighting factors of the combined approach it can be stated that neither the
boundary layer concept nor the SVSF gain contribute well to the achieved robustness. The
combined approach with optimal weights behaves similar to a Kalman filter with a gain
that is nearly steady-state. Only small gain adaptions may appear initiated by changes
of the output estimation error. Finally, the originally claimed superiority of the SVSF
against the Kalman filter cannot be confirmed in general. For future comparisons of the
SVSF and the Kalman filter it is recommended to also tune the parameters of the Kalman
filter in a suitable manner to achieve a fair comparison.
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4 Chattering Mitigated Control of

Uncertain Nonlinear Systems with Slow Dynamics

Chattering is known to be an undesired effect of conventional first order sliding mode
control. It describes the high frequent switching of the control input that results from the
discontinuity of the control law. Chattering mitigation has been subject to many research
contributions in the past. A simple concept is the boundary layer approach introduced
in Slotine (1984). It approximates the control law of the SMC in the near of the slid-
ing surface. As a consequence, the chattering is mitigated but also the control accuracy
is reduced. The approach requires to find a compromise between control accuracy and
chattering attenuation. Higher order SMCs which drive the sliding variable and its time
derivatives of corresponding order to zero can be applied to achieve chattering mitigation
without any loss of the control accuracy (Levant, 2003). However, higher order SMCs
require knowledge of higher order time derivatives. The time derivatives can be estimated
by means of sliding mode differentiators. But the differentiators are sensitive to measure-
ment noise which may have negative effects on the controlled system. Additionally, the
higher order SMCs of Levant (2003) are restricted to the SISO case and require tuning of
the controller gains. Another possibility to reduce chattering is the usage of exponential
power reaching laws. These reaching laws reduce the switching gain in the near of the
sliding surface so that mitigation of the chattering is achieved. The idea of the power
reaching law is introduced in Gao and Hung (1993) and improved regarding the reaching
time in Fallaha et al. (2010). Another problem appearing in practice is that the unknown
uncertainty bounds of the system are overestimated. As the switching gain depends on
these bounds the chattering effect can increase if the bounds are chosen too large. There-
fore, SMC approaches with adaptive gains are proposed (Huang et al., 2008; Plestan et al.,
2010; Obeid et al., 2018; Edwards and Shtessel, 2016). The goal is to adaptively control
the SMC gain so that the value of the gain is as small as possible but still large enough
to keep the sliding mode established.

To mitigate the chattering combinations of SMC with other control methods may be
considered. Due to its robustness sliding mode control is typically applied when the sys-
tem description is not precisely known. As a consequence, the additional controller has to
deal with model uncertainty too. Model-free control obviously does not require a precise
model description. The combination of SMC and model-free control may provide some
advantages. The SMC may dominate the control law during the reaching phase so that
boundedness of the tracking error can be guaranteed whereas the model-free controller
may dominate the control law in the near of the sliding surface so that chattering mitiga-
tion is achieved. Combinations of sliding mode and model-free control have already been
considered in the literature. In Weng and Gao (2017) the dynamics of the sliding variable
is estimated using input-output data. For the identified dynamics an equivalent control
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law can be stated which reduces the required gain of the switching function and mitigates
chattering. Also in Fei and Ding (2012) factors of the equivalent control law are adapted
online using a radial basis function neural network. Intelligent PID control is combined
with SMC in Wang et al. (2016). The PID controller is formulated with respect to a local
system description to achieve reference tracking. As a result the SMC gain can be reduced
but must be sufficient to account for the modeling errors of the local model. In Esmaeili
et al. (2019); Ren et al. (2019) a dynamic linearization of the system behavior is obtained
from input-output data to state an equivalent control law that reduces the required SMC
gain.

To avoid high control inputs of the SMC, to mitigate chattering, and to make track-
ing more efficient combinations of SMC and MPC have also been proposed. However, the
design of the MPC typically requires at least some local description of the input-output
dynamics of the system. In Garcia-Gabin et al. (2009); Mitić et al. (2013) the quadratic
value of the sliding variable is minimized over a considered time horizon. The obtained
solution defines a predictive controller which keeps the states on the sliding surface. To
guarantee that the sliding surface will be reached a conventional SMC with saturation
function is added. The approach of Xu and Li (2011) is based on a MPC that is designed
to reach the sliding surface. A switching gain is not required and the MPC guarantees
to reach the sliding surface even in the presence of disturbances. However, only linear
systems are considered. In Rubagotti et al. (2010) MPC is combined with integral SMC.
The integral SMC is used to eliminate matched uncertainties which simplifies the design
of a robust MPC approach.

In this chapter chattering mitigated control of nonlinear uncertain systems with suf-
ficient slow dynamics is considered. A data-driven approach is developed. Based on
input-output data of the system a linear local model is identified. The parameters of the
local model are estimated by means of a Kalman filter. This allows to identify the system
dynamics recursively and to update the local model online. The local model is used to
predict the future system behavior. An optimization problem is formulated to minimize
the squared tracking error and the input energy. The solution of the optimization prob-
lem defines a so-called receding horizon controller. As the identified dynamics are not
guaranteed to describe the true system behavior exactly the receding horizon controller is
combined with an adaptive SMC. The combined control law is designed in such a way that
boundedess of the control tracking error can be guaranteed. In addition, the model-free
controller dominates the control law in the vicinity of the sliding surface so that chatter-
ing mitigation is achieved. The focus of the proposed data-driven approach is to achieve
chattering mitigated control without concrete system knowledge. The proposed approach
makes adaptive SMC more efficient. The drawback of existing adaptive SMC strategies is
that the controller gain cannot be reduced to small values. Sufficient large controller gains
are always required to keep the system in sliding mode. However, the proposed method
allows to scale down the SMC gain to zero as the model-free controller can take over. As
a consequence, the chattering is highly reduced. The developed controller is tested on an
uncertain nonlinear systems with slow dynamics. The proposed control method achieves
accurate tracking without noticeable chattering in the stationary phase. For the consid-
ered specific system it is also shown that the control goals are achieve without knowing
any concrete value of the system parameters.

The chapter is organized as follows. In Section 4.1 the model-free receding horizon
controller is designed and as a proof of concept it is applied to a nonlinear system. The
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proposed data-driven approach that combines the receding horizon controller with an adap-
tive SMC is described in Section 4.2. The section also considers a performance evaluation
of the proposed control method.

4.1 Model-Free Control

In traditional model-based control a system model is derived based on the physical under-
standing of the underlying process. The obtained model may be imprecise due to param-
eter uncertainties, unmodeled dynamics, or changes of the operating conditions (Villagra
et al., 2012; Hou and Wang, 2013). Additionally, the modeling process may be complex,
time consuming, and expensive (Piga et al., 2017; Tanaskovic et al., 2017).

Due to increased computational capabilities data-driven controllers (DDC) are get-
ting more and more popular. According to Hou and Zhu (2013) DDC approaches can be
splitted up into two main categories.

The first category considers approaches in which a priori knowledge about the con-
troller structure is assumed to be known. Typically, the parameters of the controllers are
determined or tuned by experiment. The classical PID controller belongs to this kind
of DDC approaches as it is usually tuned by experiments based on e. g. the method of
Ziegler-Nichols. Another approach of the category is the intelligent PID (iPID) controller
proposed by Fliess and Join (2008). The iPID controller has a fixed structure that is for-
mulated based on a local system description. The parameters of the controller are required
to be tuned by experiment. In comparison to the original PID the proposed iPID shows
better tracking performance and increased robustness (Agee et al., 2015). Virtual refer-
ence control introduced in Campi et al. (2002) is another DDC approach. It can be applied
to linear SISO systems and requires a desired closed loop transfer function to be stated.
Based on input-output data the transfer function of the controller is calculated in such a
way that the desired closed loop dynamics is achieved as accurately as possible. Iterative
feedback tuning is a DDC approach proposed by Hjalmarsson et al. (1994). The goal is to
find optimal controller parameters that minimize the squared tracking error. Therefore,
the gradient of the system output with respect to the controller parameters is estimated
based on experiments. Iterative learning control is a DDC approach for repetitive control
tasks (Longman, 2000). The control task is repeated iteratively to update a sequence of
control inputs so that after repeating the task several times the control accuracy improves.
A learning rule is applied that feds back the control error to update the sequence of control
inputs. The feedback gain of the learning rule is required to be tuned by experiment.

The second class of DDC approaches is based on the strategy to first identify an ap-
proximate system description and then calculate a generic control input based on that.
Classical subspace identification approaches which determine a linear prediction equation
based on orthogonal projections belong to this group (Favoreel et al., 1999). The usage
of neural networks (Doherty et al., 1997) or support vector machines (Iplikci, 2006; Shin
et al., 2010) for the identification process is also common practice. Another strategy for
the identification is the so-called dynamic linearization method proposed by Hou and Jin
(2011). The approach continuously updates a linear prediction model based on input and
output data.

In the following sections a receding horizon controller is determined based on a data-
driven approach. In Section 4.1.1 the local dynamics of a nonlinear system are identified.
A prediction equation is formulated that describes the input and output dynamics of the
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system. In Section 4.1.2 an optimization problem is stated and a receding horizon con-
troller is determined that minimizes the squared tracking error and the input energy. In
Section 4.1.3 the receding horizon controller is tested on a nonlinear MIMO system. For
the performance evaluation a set-point tracking problem with constraints is considered.
In addition, the prediction capabilities of the identified local model are evaluated.

4.1.1 Recursive System Identification

In the following a local model is identified that describes the input and output dynamics
of a nonlinear system. The local model is assumed to be linear which simplifies the
identification process and the subsequently considered determination of the control input.
To achieve adequate approximation capabilities of the local model the nonlinear system is
required to have sufficient slow dynamics. As the local model is linear its parameters can
be identified recursively through a Kalman filter. This allows to update the local model
at every time step based on the incoming data of the system. Finally, the local model is
rewritten to form a linear prediction equation of the system dynamics. This prediction
equation is subsequently used to formulate an optimization problem from which a receding
horizon controller is obtained.

The recursive system identification that is described as follows is originally proposed
in Spiller et al. (2020).

A nonlinear discrete-time MIMO system is considered with an input-output behavior
that is described by the nonlinear autoregressive exogenous (NARX) model

yk+1 = fk(yk, . . . , yk−ny+1, uk, . . . , uk−nu+1), 1 ≤ ny ∈ N, 2 ≤ nu ∈ N. (4.1)

In (4.1) the number of delayed outputs is denoted by ny and the number of delayed inputs
is denoted by nu. Let the outputs yk ∈ R

r and inputs uk ∈ R
m define the argument

sk =
[

yTk . . . yTk−ny+1 uTk . . . uTk−nu+1

]T
∈ R

rny+mnu , (4.2)

of function fk(sk). Based on the Taylor series the i-th component of yk+1 can be expressed
as

yi,k+1 = yi,k + (sk − sk−1)TDfi,k(sk−1)

+
1

2
(sk − sk−1)TD2fi,k(sk−1)(sk − sk−1) + . . . , 1 ≤ i ≤ r, (4.3)

where Dfi,k and D2fi,k denote the gradient and Hessian of the i-th component of fk. Let
the considered system have sufficient slow dynamics meaning that ∆sk = |sk − sk−1| is
sufficient small so that the influence of the higher order terms in (4.3) can be neglected.
It follows that the dynamics are approximately described by the linearized input-output
behavior

yk+1 ≈ A1,kyk +A2,kyk−1 + · · ·+Any+1,kyk−ny

+Nkuk +B1,kuk−1 +B2,kuk−2 + · · · +Bnu,kuk−nu , (4.4)

with Ai,k ∈ R
r×r, Bj,k ∈ R

r×m, and Nk ∈ R
r×m. The quantities Ai,k, Bj,k, Nk in (4.4)

define the transfer function matrix of a linear MIMO system. As a consequence, equation
(4.4) completely describes the input-output behavior of a linear system (Isermann and

68



Sec. 4.1. Model-Free Control

Münchhof, 2010, Chap. 17). The matrix polynomial (4.4) can be rewritten as a linear
neural network

yk+1 ≈ Akȳk +Nkuk +Bkūk−1 + bk =
[

Ak Nk Bk bk
]

︸ ︷︷ ︸

Zk

[

ȳTk uTk ūTk−1 1
]T

︸ ︷︷ ︸
pk

, (4.5)

with weighting matrices

Ak =
[

A1,k A2,k . . . Any+1,k

]

, Bk =
[

B1,k B2,k . . . Bnu,k

]

, Nk, (4.6)

inputs

ȳk =
[

yTk . . . yTk−ny

]T
, ūk−1 =

[

uTk−1 . . . uTk−nu

]T
, uk, (4.7)

and bias vector bk ∈ R
r. The matrix of the network weights has the dimension Zk ∈ R

r×n

with n = r(ny + 1) +m(nu + 1) + 1 and the input vector is of dimension pk ∈ R
n.

A vector

ζk = vec(Zk) (4.8)

of the unknown network parameters is obtained by applying the vector operator on the
weighting matrix Zk. The dimension of ζk ∈ R

nr grows quadratically with r. Based on the
vectorization the unknown network parameters can be estimated and recursively adapted
by means of a Kalman filter. This allows online adaptation of the matrix polynomial
(4.4) so that an updated system description is available at each time step k. According to
Haykin (2001) a well-known Kalman filter-based estimation of the network parameters

ζ̂k = vec(Ẑk), (4.9)

is given as

ζ̂k+1|k = ζ̂k, (4.10)

Pk+1|k = Pk +Q, (4.11)

ζ̂k+1 = ζ̂k+1|k +Kk+1(yk+1 −Hk+1ζ̂k+1|k), (4.12)

Kk+1 = Pk+1|kH
T
k+1(Hk+1Pk+1|kH

T
k+1 +R)−1, (4.13)

Pk+1 = Kk+1RK
T
k+1 + (Inr −Kk+1Hk+1)Pk+1|k(Inr −Kk+1Hk+1)T , (4.14)

where the output matrix

Hk+1 = pTk ⊗ Ir, (4.15)

is obtained by applying the vector operator on (4.5). The output matrix is time-variant
and has to be updated at each time step based on the vector pk. The received data of the
real system

{yk+1, pk} = {yk+1, ȳk, uk, ūk−1}, (4.16)

that is required to run the Kalman filter algorithm is assumed to be noise-free. Otherwise
the measurement noise would affect the output matrix in (4.15). The Kalman filter is
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known to be the solution of a recursive WLS estimation problem (see e. g. Sorenson, 1970).
Consequently, algorithm (4.10)–(4.14) minimizes

Λ = arg min
(ζ⋆

i
)k
i=0

‖ζ0 − ζ⋆0‖2P−1
0

+
k∑

i=0

‖yk −Hkζ
⋆
k‖2R−1 +

k−1∑

i=0

‖ζ⋆k+1 − ζ⋆k‖2Q−1 , (4.17)

where Λ = (ζ̂i)
k
i=0 are the Kalman filter estimations. The weighting matrices Q = αInr and

R = βIr with scaling factors 0 ≤ α ∈ R, 0 < β ∈ R are considered to be design variables to
control the training process of the neural network. From the WLS problem (4.17) it can be
seen that matrix R determines how exact the network parameters are estimated so that the
predicted output fits to the received output of the true system. The matrix Q influences
the learning rate of the network i.e. the rate of change of the estimated parameters. The
estimated parameters of the network have to adapt during offline training but also online.
The online adaptation is important as the behavior of the true system may change due to
e. g. different operating conditions. The mean reason to apply the Kalman filter for the
estimation process is the possibility to recursively update the local linear model online.
It would also be possible to apply subspace identification methods. However, orthogonal
projections actually solve least squares estimation problems (see e. g. Favoreel et al., 1999).
Consequently, also from subspace identification a least squares estimation of the matrix
polynomial (4.5) would be obtained.

Based on the estimated matrix polynomial (4.5) the linear one step ahead prediction
equation

yk+1 ≈ Âkȳk + N̂kuk + B̂kūk−1 + b̂k, (4.18)

is formulated. By defining a state vector

x̄k =
[

ȳTk ūTk−1 b̂
T
k

]T
, (4.19)

the linear state space description





ȳk+1

ūk
b̂k+1






︸ ︷︷ ︸

x̄k+1

≈






Ā11 Ā12 Ā13

0 Ā22 0
0 0 Ir






︸ ︷︷ ︸

Ā






ȳk
ūk−1

b̂k






︸ ︷︷ ︸

x̄k

+






N̄1

N̄2

0






︸ ︷︷ ︸

B̄

uk, (4.20)

yk =
[

Ir 0 . . . 0
]

︸ ︷︷ ︸

C̄

x̄k, (4.21)

with

Ā11 =

[

Âk
T

]

, Ā12 =

[

B̂k

0

]

, Ā13 =

[

Ir
0

]

,

N̄1 =

[

N̂k

0

]

, Ā22 =

[

0
S

]

, N̄2 =

[

Im
0

]

,

and

T =










Ir 0 . . . 0 0
0 Ir . . . 0 0
...

...
. . .

...
...

0 0 . . . Ir 0










, S =










Im 0 . . . 0 0
0 Im . . . 0 0
...

...
. . .

...
...

0 0 . . . Im 0










,
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is obtained. The dimension of the state vector x̄k is n̄× 1 with n̄ = r(ny + 2) +mnu. The
matrix C̄ is of dimension r × n̄, the matrix T is of dimension rny × r(ny + 1), and the
matrix S is of dimension m(nu − 1)×mnu.

4.1.2 Predictive Control

In this section two model-free control strategies are considered. First, a LS solution
with minimal Euclidean norm is determined from the one step ahead prediction (4.18).
Second, a receding horizon controller is realized based on the identified linear state space
description (4.20)–(4.21).

Suppose yk to be the measured system outputs and

zk = Lyk, (4.22)

to be the control variables with zk ∈ R
l and L ∈ R

l×r. A set-point tracking problem is
considered where the reference values are denoted by zref,k. Multiplying the prediction
equation (4.18) by L yields

zref,k+1 = LÂkȳk + LN̂kuk + LB̂kūk−1 + Lb̂k, (4.23)

with uk being the desired control input to achieve zref,k+1 ≈ yk+1. A solution uk of the
equation

ck = zref,k+1 − LÂkȳk − LB̂kūk−1 − Lb̂k = LN̂kuk, (4.24)

can always be found if matrix LN̂k ∈ R
l×m has full row rank. However, the rank of LN̂k

is unknown as the matrix depends on the network weights which are estimated online.
What can be guaranteed is that at least one LS solution of (4.24) exists as the so-called
normal equation

(LN̂k)T ck = (LN̂k)
TLN̂kuk, (4.25)

always has at least one solution uk (see Kailath et al., 2000, Lemma 2.A.2 ). If LN̂k

does not have full column rank then an infinity amount of LS solutions exists (Kailath et
al., 2000, Lemma 2.2.3). As in control minimization of the input energy is desirable it is
suggested to choose the LS solution with minimal norm ‖uk‖. This solution with minimal
norm can be obtained from a singular value decomposition (SVD). Let p be the rank of
LN̂k. It follows that the SVD of LN̂k is given by

LN̂k =
[

U1 U2

]
[

Σ1 0
0 0

]
[

V1 V2

]T
, (4.26)

where Σ1 ∈ R
p×p is a diagonal matrix of the form

Σ1 = diag

{[

σ1 . . . σp
]T
}

, (4.27)

with 0 ≤ σi ∈ R denoting the singular values of LN̂k. Matrices U1 and V1 have p columns.
According to Demmel (1997, Proposition 3.3) the LS solution with minimal Euclidean
norm ‖·‖ can be determined as

u†
k = V1Σ−1

1 UT1 ck. (4.28)
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In the sequel u†
k will be denoted as min-LS solution i. e. minimal Euclidean norm LS

solution. If the matrix LN̂k has full column rank then the LS solution is unique and
coincides with the min-LS solution (4.28). This follows from the fact that the SVD equals
the Moore–Penrose inverse (Demmel, 1997, Definition 3.2).

The min-LS solution is based on a one step ahead prediction of the system outputs.
However, from MPC it is known that consideration of a prediction horizon is more effective
regarding minimization of input energy and squared tracking error. Consequently, the
receding horizon control problem

→
u

∗
= arg min

→
u

1

2





k+np−1
∑

i=k

eTi Qcontei +
k+nc−1∑

i=k

uTi Rcontui



 , (4.29)

→
u =

[

uTk uTk+1 . . . uTk+nc−1

]T
,

subject to

yk+1 = Âkȳk + N̂kuk + B̂kūk−1 + b̂k, (4.30)

ȳk =
[

yTk yTk+1 . . . yTk−ny

]T
, (4.31)

ūk−1 =
[

uTk−1 yTk . . . uTk−nu

]T
, (4.32)

zk = Lyk, (4.33)

ek = zk − zref,k (4.34)

Ac
→
u ≤ bc, (4.35)

is considered. The quantities Qcont � 0 and Rcont � 0 denote weighting matrices. The
length of the control horizon is quantified by 1 ≤ nc ∈ N and the length of the prediction
horizon np is chosen as nc < np. Within the control horizon the input uk can be varied.
After the end of the control horizon the input is kept fixed until the end of the prediction
horizon is reached. This distinction between control and prediction horizon is made to
reduce the computational load as less control inputs are required to be determined (Wang,
2009). Equations (4.30)–(4.33) describe the assumed system dynamics according to the
identified model (4.18). The tracking error ek is defined by equation (4.34). Output
constraints yk ∈ Yk ⊆ R

r as well as input constraints uk ∈ Uk ⊆ R
m are defined by

the convex polytope (4.35). Let 0 ≤ nconst ∈ N denote the number of constraints then
Ac ∈ R

nconst×ncm and bc ∈ R
nconst. The optimization problem (4.29) can be solved by

rewriting it as a quadratic program see e. g. Wang (2009). This is a standard problem in
linear MPC and a brief solution according to Wang (2009) is given as follows. The state
space model (4.20)–(4.21) is augmented by the reference variable according to

[

x̄k+1

zref,k+1

]

︸ ︷︷ ︸

x̃k+1

=

[

Ā 0
0 Il

]

︸ ︷︷ ︸

Ã

[

x̄k
zref,k

]

︸ ︷︷ ︸

x̃k

+

[

B̄
0

]

︸︷︷︸

B̃

uk. (4.36)

The tracking error

ek =
[

LC̄ −Il
]

︸ ︷︷ ︸

C̃

x̃k, (4.37)
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is considered to be the output of the augmented model. From (4.36)–( 4.37) the prediction
equation of the tracking error













ek
ek+1

ek+2

ek+3
...

ek+np−1














︸ ︷︷ ︸
→
e

=















C̃

C̃Ã

C̃Ã
2

C̃Ã
3

...

C̃fÃ(np − 1)















︸ ︷︷ ︸

Q

x̃k

+














0 0 0 . . .

C̃B̃ 0 0 . . .

C̃ÃB̃ C̃B̃ 0 . . .

C̃Ã
2
B̃ C̃ÃB̃ C̃B̃ . . .

...
...

...
. . .

C̃fÃ(np − 2)B̃ C̃fÃ(np − 3)B̃ C̃fÃ(np − 4)B̃ . . .














︸ ︷︷ ︸

T







uk
...

uk+np−2







︸ ︷︷ ︸
→
ũ

,

(4.38)

with

fÃ(x) =







Ã
x

if x ≥ 0,

0(n̄+l)×(n̄+l) else,
(4.39)

is obtained. Substituting (4.38) in (4.29) yields the quadratic program

→
u

∗
= arg min

→
u

1

2

→
u
T
G

→
u + dT

→
u, (4.40)

subject to

Ac
→
u ≤ bc, (4.41)

with

G = MTT T Q̃contTM + R̃cont, Q̃cont = Inp ⊗Qcont,
dT = x̃TkQT Q̃contTM, R̃cont = Inc ⊗Rcont.

The matrix M is the move blocking matrix which is defined according to



















ũk
ũk+1

...
ũk+nc−2

ũk+nc−1

ũk+nc

...
ũk+np−2




















︸ ︷︷ ︸
→
ũ

=




















Im 0 . . . 0 0
0 Im . . . 0 0
...

...
. . .

...
...

0 0 . . . Im 0
0 0 . . . 0 Im
0 0 . . . 0 Im
...

...
...

...
0 0 . . . 0 Im




















︸ ︷︷ ︸

M










uk
uk+1

...
uk+nc−1










︸ ︷︷ ︸
→
u

. (4.42)
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h1

h3

h2

Q13 Q32Q10 Q20

Q1 Q2

Figure 4.1: Three tank water system

To reduce the computational load the move blocking matrix keeps the system inputs
fixed if the end of the control horizon has been reached. As stated in Hiriart-Urruty and
Lemaréchal (2013, p. 291) an optimization problem is convex if its objective function is
convex and the feasibility set is a convex set. The objective function of (4.40) is convex as
G is positive semi-definite. The feasibility set is convex as (4.41) is a convex polytope. The
hard constraints of (4.41) may lead to infeasibility problems as discussed in e. g. Kerrigan
and Maciejowski (2000). If the output variables leave the admissible region caused by some
disturbance (like inaccuracy of the trained system model) then the optimization problem
is unfeasible. Even if the output variables are inside the admissible region a conflict of
constraints may appear. It could happen that the control input has to exceed its limits
to keep the output variables in the admissible region. To avoid infeasibility problems the
hard constraints are reformulated as soft constraints. Soft constraints do not guarantee
the hard constraints to be satisfied in general. However, using so-called slack variables
the hard constraints will be almost satisfied in practice. A description of the considered
optimization problem with reformulated soft constraints based on slack variables can be
found in Appendix B. From the optimized chain of control inputs

→
u

∗
=
[

u∗T

k u∗T

k+1 . . . u∗T

k+nc−1

]T
,

the first input u∗
k is applied to the system. In the sequel u∗

k is denoted as predictive control
(PC) solution.

4.1.3 Application Example

In this section the previously discussed model-free controllers namely the PC approach
and the min-LS approach are applied to a nonlinear uncertain system with slow dynamics.
A three tank water system as shown in Fig. 4.1 is considered. According to Hou and Jin
(2011) the dynamics of the water levels in the tanks are described by

SAḣ1 = Q1 −Q13 −Q10, (4.43)

SAḣ3 = Q13 −Q32, (4.44)

SAḣ2 = Q2 +Q32 −Q20, (4.45)
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Table 4.1: Parameters of three tank water system (Hou and Jin (2011))

Parameter Symbol Value

Section of cylinders SA 0.0154 [m2]

Section of connections Sn 5e-5 [m2]

Maximum liquid levels hmax 0.6 [m]

Maximum supply flow rates Qmax 0.0001 [m3/s]

Outflow coefficient γ1 0.22

Outflow coefficient γ2 0.28

Outflow coefficient γ3 0.27

with

Q13 = γ1Snsgn(h1 − h3)
√

2g|h1 − h3|, (4.46)

Q32 = γ3Snsgn(h3 − h2)
√

2g|h3 − h2|, (4.47)

Q20 = γ2Snsgn(h2)
√

2g|h2|, (4.48)

Q10 = γ2Snsgn(h1)
√

2g|h1|, (4.49)

where h1, h2, h3 are the water levels of the three tanks, Q1, Q2 are the incoming water
flows from pump 1 and 2, Q10, Q20 are the flows in the outflow valves of tank 1 and 2,
and Q13, Q32 are flows in the connecting pipes of tank 1, 2, and 3. The system parameters
are assumed as unknown and are summarized in Table 4.1. The control goal is to achieve
set-point tracking of the water levels h1 and h2 based on the inlet streams Q1 and Q2.
The input signals are restricted to

0 ≤ Q1 ≤ Qmax, 0 ≤ Q2 ≤ Qmax. (4.50)

All levels h1, h2, h3 are measured. The system is discretized based on the Euler method
with a sampling time of 1 [s], and a simulation duration of 1500 [s]. The initial water levels
are zero i. e. h1(t0) = h2(t0) = h3(t0) = 0 [m]. The network parameters are tuned by trial
and error based on the tracking performance of the resulting controllers. The number of
delayed network inputs is set to ny = nu = 2 and the network weights are initialized with
x̂0 = 133, P0 = I33 × 1010. A learning rate of α = 0.001 is considered and β is chosen
as β = 0.01. The network is initially trained from t∗ = 0...5000 [s] based on the system
outputs generated by the inputs

Q1 = Q2 =







0.00002 cos
(

2π
1000 t

∗
)

+ 0.00008 if t∗ mod 333 is even,

0 otherwise.
(4.51)

Related to the cost function of the PC approach the weighting matrices Qcont = I2 and
Rcont = I2 are considered.
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Table 4.2: Performance evaluation w/o constraints

Time horizon
∑N
i=1 u

2
i /N

∑N
i=1 e

2
i /N

min-LS one step 2.7332569e-9 0.0032333

PC np = 10, nc = 9 2.7643026e-9 0.0032186

PC np = 20, nc = 19 2.7650868e-9 0.0032099

PC np = 30, nc = 29 2.7655725e-9 0.0032064

PC np = 40, nc = 39 2.7665269e-9 0.0032047

PC np = 50, nc = 49 2.7666369e-9 0.0032041

PC np = 60, nc = 59 2.7669043e-9 0.0032039

PC np = 70, nc = 69 2.7672953e-9 0.0032039

PC np = 80, nc = 79 2.7743995e-9 0.0032062

PC np = 90, nc = 89 2.7746371e-9 0.0032063

Unconstrained Control Problem

For the set-point tracking problem the reference values of h1 and h2 are chosen as

href,1(t) =







0.15 [m] if t ≤ 400 [s],

0.3 [m] if 400 [s] < t ≤ 700 [s],

0.15 [m] if 700 [s] < t ≤ 1500 [s],

(4.52)

href,2(t) =







0.2 [m] if t ≤ 400 [s],

0.4 [m] if 400 [s] < t ≤ 700 [s],

0.2 [m] if 700 [s] < t ≤ 1000 [s],

0.05 [m] if 1000 [s] < t ≤ 1500 [s],

(4.53)

where t = 0 . . . 1500 [s] denotes the simulation time.
The tracking performance of both controllers is evaluated in Table 4.2. Different

lengths of the prediction horizon are considered for the PC approach. The min-LS ap-
proach has no tuning parameters and always achieve the given result. The best tracking
performance of the PC approach is achieved if 60 or 70 time steps (60 or 70 seconds) are
chosen for the length of the prediction horizon. Due to the limited prediction capabilities
of the neural network further enhancement of the prediction horizon leads to a loss of
control accuracy. The closed loop behavior is visualized by the time series of Fig. 4.2.
The main difference between the two controllers occurs after 16.67 seconds when the set-
point switches from href,2 = 0.2 [m] to href,2 = 0.05 [m]. This switching instantly leads
to a relatively high tracking error of control variable h2. The predictive control approach
anticipates that a reduction of the water level h1 will improve the overall control accuracy.
Although the reduction initially induces a control error related to h1 it reduces the water
level h3 of the middle tank. As the amount of water in the middle tank is reduced the wa-
ter level h2 can decrease more quickly so that the overall control performance is improved.
This effect is only present if the length of the prediction horizon is sufficient large. In Fig.
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Figure 4.2: Tracking performance of model-free controllers. Parameters of PC approach:
np = 60 and nc = 59 (prediction horizon of 60 [s]). (a) Water level h1 of left tank. (b)
Water level h3 of middle tank. (c) Water level h2 of right tank.

4.3 the control inputs of both approaches are visualized. At around 16.67 seconds when
the switching from href,2 = 0.2 [m] to href,2 = 0.05 [m] occurs control input Q1 of the PC
approach temporarily goes to zero leading to the improved overall performance.

The prediction capabilities of the network are evaluated in Fig. 4.4a. Starting from
time instant 10 [min] the network is fed with its own outputs for a considered prediction
horizon of 15 [min]. Naturally, the prediction accuracy decreases over time. To measure
the adaption of the network the change of the network weights according to

∆Zk = Zk − Zk−1, (4.54)

is considered. Matrix Zk as defined in (4.5) contains all network parameters. It is suggested
to apply the Frobenius norm to (4.54) to obtain a scalar value reflecting the absolute change
of the network parameters. The resulting time series ‖∆Zk‖ is visualized in Fig. 4.4b. It
can be observed that the amount of adaption decreases over time. Adaption is present
especially when set-points and control inputs change.
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Figure 4.3: Control inputs of model-free controllers. (a) Input flow Q1 of left tank. (b)
Input flow Q2 of right tank.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

(a)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0

2

4

6

8

10

(b)

Figure 4.4: Performance evaluation of neural network. (a) Network predictions compared
with true system outputs. Prediction starts at 10 [min] and ends at 25 [min] so that a
prediction horizon of 15 [min] is considered. (b) Adaption of network weights exemplarily
given for the closed loop system controlled by the min-LS approach.

Constrained Control Problem

For the constrained control problem the references defined by (4.52) and (4.53) remain
the same. In addition, the water level of tank three is restricted according to

h3 ≤ 0.3 [m]. (4.55)

By modifying the output matrix C̃ in (4.38) the constraint can be formulated as a poly-
tope Ac

→
u ≤ bc. The constraint is implemented as a soft-constraint using a vector of slack

variables ν. Details about the implementation of the constraint can be found in Appendix
B. Minimizing the term νT ν enforces the slack variables to be close to zero which guaran-
tees the constraints to be almost satisfied. The performance of the PC approach for the

78



Sec. 4.1. Model-Free Control

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

(a)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

(b)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

(c)

Figure 4.5: Constrained model-free control. Application of PC approach with np = 60,
nc = 59, and weights W = I60 × w, where w ≥ 0 is related to the minimization of the
slack variables ν according to Appendix B equations (B.5)–(B.7). Minimization of νT ν:
(a) Not enforced (w = 0). (b) Slightly enforced (w = 5). (c) Highly enforced (w = 100).

constrained control problem is visualized in Fig. 4.5. The figure shows that the constraint
is enforced by minimizing the term νTν. From the figure also the predictive nature of the
controller can be detected. The water levels of tanks h1 and h2 decrease before h3 reaches
the bound of the constraint.

4.1.4 Summary

In this section model-free control of nonlinear systems with sufficient slow dynamics is con-
sidered. A data-driven approach is proposed which identifies a local model that describes
the input-output dynamics. The system identification is achieved through a Kalman filter.
That allows to update the local model at each time step based on the incoming measure-
ments of the true system. The local model is applied to predict the future behavior of
the nonlinear system. Two controllers for set-point tracking problems are proposed. The
min-LS approach considers a one step ahead prediction of the system behavior. The goal

79



Ch. 4. Chattering Mitigated Control of Uncertain Nonlinear Systems with Slow Dynamics

is to determine a control input that generates the desired system outputs after one time
step. As such a control input is not guaranteed to exist the LS solution is considered
instead. The LS solution is guaranteed to exist and it provides the solution with the least
squared tracking error. The LS solution is not guaranteed to be unique. Therefore, the
LS solution with minimal Euclidean norm is selected to achieve minimization of the input
energy. The second proposed method is the model-free predictive controller. An optimiza-
tion problem is stated in which the system behavior is predicted over a horizon of multiple
time steps. For the considered horizon the squared tracking error and the input energy are
minimized. In addition, input and output constraints may be considered. The solution of
the optimization problem defines the predictive controller. Both proposed controllers are
applied to a nonlinear MIMO system with slow dynamics. The dynamics of the system are
completely unknown. Two set-point tracking problems are considered. One with and one
without constraints. The min-LS approach solves the set-point tracking problem without
constraints whereas the predictive controller can solve both the unconstrained and the
constrained set-point tracking problem. In comparison to the min-LS approach the pre-
dictive controller achieves better control accuracy. In addition, the prediction capabilities
of the local model are confirmed. The local model is also shown to adapt online especially
if changes of the control set-point appear.

4.2 Combined Adaptive Sliding Mode and Receding Horizon Control

In this section the previously developed model-free predictive controller is combined with
an adaptive SMC. The primary goal of the controller design is to achieve chattering mit-
igated sliding mode control. In addition, the proposed combination of the controllers
should guarantee the control tracking error to be bounded. To achieve the desired goals
a boundary layer is introduced. Outside of the boundary layer the control input of the
model-free controller is suppressed and the gain of the SMC is increased. As a result,
the states are guaranteed to be pushed towards the sliding surface. When the sliding sur-
face is approached and the states are within the boundary layer the model-free predictive
controller becomes active and the gain of the SMC is scaled down. Consequently, in the
vicinity of the sliding surface the control input is dominated by the model-free controller
which greatly mitigates the chattering effect.

The subsequently described concept is originally developed in Spiller and Söffker
(2020a).
The section is organized as follows. In Section 4.2.1 additional assumptions are made that
are required to combine the proposed model-free predictive controller with an adaptive
SMC. In Section 4.2.2 the new chattering mitigated controller is proposed. In Section
4.2.3 the developed control method is applied to a nonlinear uncertain system and its
performance with regards to chattering mitigation is studied.

4.2.1 Additional Assumptions

In addition to the requirements that are stated in Section 4.1.1 the following assumptions
are made. The nonlinear system is assumed to be input-affine according to

ẋ = a(x) + b(x)u,

y = h(x).
(4.56)
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Further, it is assumed that the number of inputs u ∈ R
m equals the number of control

variables z ∈ R
m. The control variable z(t) and the tracking error e(t) are defined identical

to its discrete-time pendants i. e.

z(t) = Ly(t), e(t) = zref (t)− z(t). (4.57)

For each control variable a sliding manifold is defined. Let σ ∈ R
m be a vector of sliding

variables then the sliding manifolds are defined by

σi = ani,i
∂ni

(∂t)ni
ei + ani−1,i

∂ni−1

(∂t)ni−1
ei + · · ·+ a0,iei = 0, 1 ≤ i ≤ m, (4.58)

with 1 ≤ ni ∈ N. The coefficients aj,i with j = 1, . . . , ni are chosen so that the dynamics
of ei are asymptotically stable. The nonlinear system (4.56) is restricted to the class of
systems for which the following holds true. It is assumed that ni of (4.58) can be chosen
so that the input ui appears in the first time derivative of σi but not the inputs uj with
j 6= i. As a consequence, the dynamics of the sliding variables are of the form

σ̇ = v
(

x, zref , t
)

+M (x, t)u, (4.59)

where M (x, t) is a diagonal matrix

M (x, t) =










m1 (x, t) 0 . . . 0
0 m2 (x, t) . . . 0
...

...
. . .

...
0 0 . . . mm (x, t)










. (4.60)

The quantity sgn(mi) is assumed as known and the uncertainty bounds

|vi| ≤ vM,i, 0 < mm,i ≤ |mi|, (4.61)

are assumed to be finite but with unknown concrete values.

4.2.2 Chattering Mitigated Control Approach

In the following the model-free predictive controller is combined with an adaptive SMC to
guarantee boundedness of the tracking error and to achieve chattering mitigated control.
The SMC is designed in the continuous-time domain. Therefore, the predictive control
input u⋆k is transformed into the time-continuous signal

u⋆(t) = u⋆k, (4.62)

where t and k are selected from

kTs ≤ t < (k + 1)Ts, (4.63)

with Ts denoting the sampling time. The proposed combined control input is

ui = ηi(σi)u
⋆
i −

µi(σi)

sgn
(
mi (x, t)

)sgn (σi) , 1 ≤ i ≤ m, (4.64)
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Algorithm 1 Chattering mitigated sliding mode controller

Inputs σi, u
⋆
i , ψi ≥ 0, κi > 0, η̃i from (4.67), µ̃i from (4.68), ki(t0) > 0

if |σi| ≤ ψi then ⊲ If σi is inside the boundary layer then . . .
ki ← µ̃i(ψi) ⊲ Reset SMC gain
ηi(σi)← η̃i(σi)
µi(σi)← µ̃i(σi)

else if |σi| > ψi then ⊲ If σi is outside the boundary layer then . . .
k̇i ← κi|σi| ⊲ Increase SMC gain
ηi(σi)← 0 ⊲ Suppress predictive controller
µi(σi)← ki(t) ⊲ Apply adaptive SMC gain

end if

ui ← ηi (σi)u
⋆
i −

µi(σi)
sgn(mi(x,t)) sgn (σi)

Output ui(t)

with weighting functions ηi (σi) ∈ R and µi (σi) ∈ R selected as

ηi (σi) ∈ [0, 1], 0 ≤ µi (σi) . (4.65)

The weighting functions adapt online based on a boundary layer that is introduced. The
boundary layer is assumed to have a user-defined width 0 < ψi ∈ R. The adaptation of the
weighting functions is given by Algorithm 1 and is described in detail as follows. Outside
the boundary layer (|σi| > ψi) the predictive control input is suppressed as ηi = 0 holds
and the SMC gain ki is continuously increased based on the dynamics

k̇i = κi|σi|, (4.66)

where 0 < κi ∈ R is user-defined.
The SMC gain adaptation (4.66) is originally published by Huang et al. (2008) with

the goal to avoid an overestimation of the controller gain by the user. As a result, the
amount of chattering may be reduced. However, the approach of Huang et al. (2008) does
not allow the SMC gain to decrease, it can only be increased as stated by (4.66). As a
consequence, the controller gain may easily become too large as in the moment when |σi|
starts to decrease and to converge to zero the gain ki is still increased.

In contrast to the adaptive SMC proposed by Huang et al. (2008) the newly developed
chattering mitigated SMC allows a resetting of the controller gain to a smaller value. As
stated by Algorithm 1 the SMC gain is increased according to (4.66) as long as the sliding
variable is outside the boundary layer i. e. |σi| > ψi. As outside the boundary layer the
SMC gain is continuously increased it can be guaranteed that |σi| converges towards the
domain ψi in finite-time. As a consequence, the boundary layer is reached in finite-time.
Within the boundary layer the SMC gain ki is set back to a user-defined value µ̃i(ψi) and
the weighting functions ηi and µi are defined based on some utility functions η̃i(σi) ∈ R

and µ̃i(σi) ∈ R. Withing the boundary layer it is desired to scale down the gain of the
SMC so that chattering mitigation is achieved when the sliding surface is approached. On
the other hand the model-free predictive controller has to be become active to take over
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control. Therefore, it is suggested that the utility functions should satisfy the conditions

lim
|σi|→0

η̃i(σi) = 1,
∂η̃i(σi)

∂|σi|
< 0, lim

|σi|→ψi

η̃i(σi) = 0, (4.67)

lim
|σi|→0

µ̃i(σi) = 0,
∂µ̃i(σi)

∂|σi|
> 0, (4.68)

for |σi| ∈ [0, ψi[. A family of functions satisfying (4.67) and (4.68) is e. g.

η̃i(σi) =
(|ψi| − |σi|)p
|ψi|p

,
∂η̃i(σi)

∂|σi|
= −p(|ψi| − |σi|)p−1

|ψi|p
, (4.69)

µ̃i(σi) = ξ|σi|,
∂µ̃i(σi)

∂|σi|
= ξ, (4.70)

with 0 < p ∈ R and 0 < ξ ∈ R being tuning parameters.
For the sake of completeness the following theorem is stated which shows that the

tracking error of the proposed control method is bounded.

Theorem 6 (Boundedness of tracking error of Algorithm 1).
Suppose |σi(t1)| > ψi to hold at time instant t1. Then a finite-time t2 ≥ t1 exists so that
|σi(t2)| ≤ ψi holds true. As the sliding variable is a continuous function it follows that
|σi(t)| is bounded from above. If (4.58) is selected Hurwitz then boundedness of the sliding
variable implies boundedness of the tracking error.

Proof. The control law outside the boundary layer is given by

ui = − µi(σi)

sgn
(
mi(x, t)

) sgn (σi) , (4.71)

which is obtained from (4.64) with ηi(σi) = 0. Substituting (4.71) in (4.59) yields

σ̇i = vi(x, t)− µi(σi)|mi(x, t)|sgn(σi). (4.72)

Consider

µi(σi) ≥
γ + vM,i

mm,i
, (4.73)

with any 0 < γ ∈ R to be satisfied by the controller gain. The right hand side of (4.73) is
known to be bounded as quantities vM,i and mm,i are finite according to (4.61). Substi-
tuting (4.73) in (4.72) yields

σ̇i ≤ −γ, (4.74)

in case of σi > 0 and

σ̇i ≥ γ, (4.75)

in case of σi < 0. Suppose |σ(t1)| > ψi to hold at time instant t1. From Algorithm 1 it is
known that as long as |σi| > ψi holds the control input coincides with (4.71) and the gain
ki is continuously increased. Consequently, a finite-time instant t̃1 ≥ t1 exists at which
(4.73) is satisfied. It follows that equations (4.74) and (4.75) hold true and a finite-time
instant t2 ≥ t̃1 ≥ t1 can be found at which |σ(t2)| ≤ ψi holds.
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4.2.3 Application Example

In this section the performance of the previously introduced chattering mitigated sliding
mode controller (CM-SMC) is evaluated. The CM-SMC from (4.64) is compared with the
developed predictive controller (PC) from (4.40), and a conventional adaptive SMC from
the literature. The continuous stirred tank reactor (CSTR) from Section 3.5 is considered
for the performance evaluation. The dynamics of the system is given by

[

ẋ1

ẋ2

]

︸ ︷︷ ︸

ẋ

=





q
V (CAf − x1)− k0x1exp

(

− E
Rx2

)

a(x) + UA
V ρCp

(Teq,c − x2)





︸ ︷︷ ︸

f̃(x,u)

+

[

0
UA
V ρCp

]

︸ ︷︷ ︸
g

u, (4.76)

a(x) =
q

V
(Tf − x2) +

(−∆H)k0x1

ρCp
exp

(

− E

Rx2

)

,

where state x1 ∈ R denotes the effluent flow concentration CA and state x2 ∈ R denotes
the reactor temperature T . The input u ∈ R denotes the change of the coolant stream
temperature ∆Tc which is limited by |∆Tc| ≤ 50 [K]. All states are measured according to

y = x =

[

x1

x2

]

, (4.77)

and the control goal is to achieve reference tracking of the effluent flow concentration

z = y1 = x1. (4.78)

To apply the developed controllers it first has to be checked if the CSTR system
satisfies the assumptions related to the CM-SMC and the PC approach. In the following
only the requirements of the CM-SMC approach are checked as this also guarantees the
requirements of the PC approach to be satisfied. As required, the system (4.76) is input-
affine and also the number of inputs and control variables is identical. The input-output
behavior of the CSTR system is required to be described by the NARX model (4.1).
Substituting x of (4.76) by y and applying the Euler discretization shows that the discrete-
time input-output behavior of system (4.76)–(4.77) is of the form (4.1). It is also known
that the CSTR system has slow dynamics which can be seen from the step responses in
Section 3.5. Consequently, the input-output behavior is approximately described by the
linearized model (4.4) as required. In the following it is shown that the dynamics of the
sliding variable can have the form (4.59) as it is required. The relative degree of system
(4.76)–(4.77) is two which yields the dynamics

z̈ = L2
f̃
h (x) + LgLf̃h (x)u, (4.79)

where the Lie derivatives are

L2
f̃
h (x) =

q2

V 2
(CAf − x1) + x1k0exp

(

− E

Rx2

)

×


exp

(

− E

Rx2

)(

k0 − x1
−∆HEk0

ρCpRx2
2

)

+ φ(x)



 , (4.80)
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and

LgLf̃h (x) = −k0x1
UAE

V ρCpRx2
2

exp

(

− E

Rx2

)

, (4.81)

with

φ(x) =
q

V
− q

V x1

(

CAf − x1

)

− Eq

Rx2
2V

(Tf − x2)− UAE

V ρCpRx
2
2

(Teq,c − x2).

Let the sliding variable be defined as

σ = ė+ λe = żref − ż + λ(zref − z), λ > 0, (4.82)

leading to

σ̇ = z̈ref − z̈ + λżref − λż, (4.83)

with the reference signal zref assumed smooth and bounded. Substituting z̈ of (4.79) in
(4.83) and ż = ẋ1 of (4.76) in (4.83) gives

σ̇ = v (x, t) +m (x, t) u, (4.84)

with

v (x, t) = z̈ref − L2
f̃
h (x) + λżref − λ

q

V
(CAf − x1) + λk0x1exp

(

− E

Rx2

)

, (4.85)

m (x, t) = −LgLf̃h (x) . (4.86)

Consequently, the dynamics (4.84) of the sliding variable is in the desired form (4.59).
The uncertainty bounds of v(x, t) and m(x, t) are assumed to be finite as it is required.
According to (4.64) the sign of m(x, t) is also required to be known to state the control
law of the CM-SMC approach. From (4.81) and (4.86) it follows that

sgn
(
m (x, t)

)
= sgn



k0x1
UAE

V ρCpRx2
2

exp

(

− E

Rx2

)

 , (4.87)

has to be evaluated. Comparing (4.87) with the system parameters shown in Table 3.1 the
following can be stated. The flow concentration x1, the tank volume V , the density ρ, the
reactor temperature x2, the specific heat capacity Cp are all positive. According to Seborg
et al. (2010) quantity UA is the product of heat area A and heat transfer coefficient U
which are both positive. Following Seborg et al. (2010) quantity k0 is a positive prefactor of
the Arrhenius equation and E/R is the fraction of activation energy E and gas constant R
which are both positive. Consequently, without knowing any concrete system parameter
the sign of m(x, t) is known to be positive. Finally, all requirements of the CM-SMC
approach are achieved.

As the sign of m(x, t) is known it follows from (4.64) that the control law of the
CM-SMC approach can be stated as

u = η(σ)u⋆ − µ(σ)sgn (σ) . (4.88)
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The utility functions η̃(σ) and µ̃(σ) that in combination with Algorithm 1 define the
weightings η(σ) and µ(σ) are chosen in accordance to (4.67)–(4.68). Following (4.69)–
(4.70) the utility functions are given as

η̃(σ) =
(|ψ| − |σ|)p
|ψ|p , µ̃(σ) = ξ|σ|, ψ = 0.5, p = 1, ξ = 10, (4.89)

with ψ, p, and ξ being determined by trial and error based on the tracking performance
of the resulting controller. In the same way the controller parameters κ and k(t0) are
determined as κ = 10 and k(t0) = 20. The parameter λ of (4.82) is chosen as λ = 0.05 so
that the sliding dynamics are asymptotically stable.

From Theorem 6 it is known that the CM-SMC approach provides boundedness of
the tracking error. However, it is also required to show that the states x1 and x2 of the
CSTR system (4.76) remain stable. Let

Φ :

[

x1

x2

]

→
[

z
ż

]

, (4.90)

define a state transformation. According to the dynamics ż = ẋ1 of system (4.76) and the
definition of the control variable z = x1 it is

[

z
ż

]

=




x1

q
V (CAf − x1)− k0x1exp

(

− E
Rx2

)



 . (4.91)

In the following it will be checked if Φ defines a diffeomorphism so that stability of the
transformed states z and ż implies stability of the states x1 and x2. The stability of z
and ż is guaranteed. This follows directly from (4.82) as boundedness of σ is provided by
the controller as stated in Theorem 6. Consequently, it is only required to show that Φ
defines a diffeomorphism which according to Slotine and Li (1991, Lemma 6.2) is the case
if the Jacobian dΦ/dx has full rank. The Jacobian is

dΦ

dx
=




1 0

− q
V x1 − k0exp

(

− E
Rx2

)

−k0x1
E
Rx2

2

exp
(

− E
Rx2

)



 , (4.92)

and it has full rank if

−k0x1
E

Rx2
2

exp

(

− E

Rx2

)

6= 0, (4.93)

holds. It follows that the effluent flow concentration x1 ≥ 0 has to be nonzero to achieve
(4.93) and the reactor temperature x2 ≥ 0 has also to be nonzero as (4.93) is not defined
for x2 = 0. A reactor temperature of x2 = 0 [K] cannot be achieved due to physical limits.
The effluent flow concentration of species A is very unlikely to become zero as this would
mean that in the reactor the complete input flow CAf of species A has to react to species
B. However, x1 > 0 can be guaranteed by choosing zref ≫ 0 as the tracking error is
bounded.

For the simulation of the considered system the following initializations and reference
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values are considered. The initial flow concentration is CA(t0) = 0.875 [mol/l] and the
initial reactor temperature is T (t0) = 325 [K]. The set-points

zref (t) =







0.80 [mol/l] if t ≤ 4 [min],

0.75 [mol/l] if 4 [min] < t ≤ 8 [min],

0.70 [mol/l] if 8 [min] < t ≤ 12 [min],

0.85 [mol/l] if 12 [min] < t ≤ 15 [min],

(4.94)

define the reference values for tracking, where the simulation duration is 15 [min]. The
sampling time is chosen as Ts = 1 [s].

The CM-SMC approach is compared with the adaptive SMC approach (A-SMC) of
Plestan et al. (2010). The A-SMC approach is further described in Appendix C including
the selection of the related controller parameters. The selection of the parameters of the
local linear model (neural network) that is recursively identified through the Kalman filter
is discussed as follows. The number of delayed inputs is selected as ny = 3 and the number
of delayed outputs is selected as nu = 2 based on trial and error. The network weights are
initialized based on the estimated initial state ξ̂0 = 118 with an initial error covariance
selected as P0 = I18 × 1010. The learning rate α is chosen as α = 0.01 and the weighting
factor β is selected as β = 0.001. The network is initially trained based on the system
outputs generated by the input

u(t⋆) = At(t
⋆)× cos

(

ωt(t
⋆)t⋆

)

, t⋆ = 0...20 [min], (4.95)

where ωt(t
⋆) and At(t

⋆) vary according to ωt(t
⋆) ∈ [2π/3000, 2π/50] and At(t

⋆) ∈ [0.5, 2.5].
The weighting matrices that define the receding horizon control problem (4.29) are selected

as Qcont = 1 and Rcont = 0.001. According to (4.78) the matrix L of (4.22) is L =
[

1 0
]

.

The prediction and control horizon are chosen as np = 20 (20 seconds) and nc = 19 (19
seconds).

The performance of the controllers is evaluated based on Fig. 4.6 and Table 4.3.
From a principal point of view set-point tracking is achieved by all considered approaches.
However, the PC approach shows overshooting when the set-point switches. The CM-SMC
approach avoids the overshooting and requires least time to become stationary accurate.
Regarding the control inputs all approaches show chattering when the set-point changes.
But the PC and the CM-SMC approach are stationary accurate without noticeable chat-
tering whereas the A-SMC approach shows chattering all the time. In Fig. 4.6d the
weighting functions of the CM-SMC approach are shown for a specific time interval. It
can be seen that the switching of the set-point leads to higher activity of the SMC. The

Table 4.3: Tracking performance with respect to the reference values defined by (4.94).

CM-SMC A-SMC PC
∫

(e(t)2/Tsim)dt 584.61 623.59 605.90
∫

(u(t)2/Tsim)dt 327.18 742.45 564.23

Switchings 28 257 62

Switchings: Number of switchings from sgn(u) = 1 to
sgn(u) = −1 and vice versa, Tsim = 15 [min].
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Figure 4.6: Performance evaluation of chattering mitigated SMC (CM-SMC), adaptive
SMC (A-SMC), and predictive controller (PC). (a) Tracking performance. (b) Control
inputs. (c) Tracking performance on specific time interval. (d) Weighting functions on
specific time interval.

adaptive gain of the SMC shows several peaks. As a result, the states are pushed towards
the sliding surface which reduces the tracking error in the transient phase and avoids the
overshooting. At the end of the transient phase the SMC gain decreases whereas the
receding horizon controller is scaled up. As a consequence, in the subsequently following
stationary phase no visible chattering occurs.

Although the proposed CM-SMC method is only compared with the A-SMC approach
of Plestan et al. (2010) similar results can be expected for comparisons with other adaptive
SMC approaches. In adaptive sliding mode control it is common to estimate the equivalent
control input in order to reduce the SMC gain. However, in general the equivalent control
input is not zero because some control effort is required to keep the system in sliding
mode. Consequently, the SMC gain can not be scaled down to zero by any adaptive SMC
approach. But from the conducted simulation it can be seen that the adaptive gain of the
proposed CM-SMC method can be scaled down to a value close to zero. This is possible
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because the predictive controller takes over the control action when the SMC becomes in-
active. As the SMC gain is scaled down closely to zero no noticeable chattering is present
in the stationary phase.

4.2.4 Summary

In the previous sections chattering mitigated control of uncertain nonlinear systems with
sufficient slow dynamics is considered. A model-free predictive controller is combined with
an adaptive SMC to mitigated the chattering and guarantee boundedness of the tracking
error. The activity of the predictive controller and the adaptive SMC is controlled by
weighting functions. The weighting functions adapt online based on the concept of a
boundary layer. Within the boundary layer when the sliding surfaced is approached the
model-free predictive controller dominates the control law so that chattering mitigation is
achieved. Outside the boundary layer the gain of the SMC is continuously increased so
that the states are pushed towards the sliding surface and the tracking error is guaran-
teed to be bounded. A nonlinear system with slow dynamics is considered to study the
performance of the proposed chattering mitigated control approach. For the considered
system the proposed approach can be applied without knowing any concrete values of the
system parameters. In comparison to a conventional adaptive SMC from the literature
the proposed approach shows less chattering. In particular, the proposed controller is
stationary accurate without any noticeable chattering. The mitigation of the chattering
is achieved as the predictive controller takes over the control action in the vicinity of the
sliding surface. This allows to scale down the adaptive SMC gain of the proposed approach
to very small values. As a result, the chattering problem is in fact avoided. The ability to
scale down the SMC gain to very small values makes the proposed method advantageous
in comparison to the existing adaptive SMCs from the literature. The existing adaptive
SMC approaches cannot scale down the gain to values close to zero as a minimal amount
of control action is required to keep the system in sliding mode.
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5 Constrained Control of

Uncertain Relative Degree Two Nonlinear Systems

Constrained control problems arise in many applications such as in autonomous vehicles,
process industry, traffic control, or robotics.

Model predictive control is widely applied in industry due to its ability to control
MIMO systems that are subject to constraints. In addition, MPC approaches forecasts
the future system behavior in order to minimize a defined performance index so that a
high control accuracy can be achieved (Rawlings and Mayne, 2009). However, MPC is
model-based which means that parametric or external uncertainties may have a negative
influence on the control performance. To overcome the problem so-called robust MPC
approaches have been developed. The strategy behind the min-max approaches is to mini-
mize the performance index for the worst possible sequence of the disturbance (Raimondo
et al., 2009). The method is known to be computationally demanding and due to its con-
servative selection strategy it may lead to suboptimal performance results (Bemporad et
al., 2003). Scenario optimization is another robust MPC approach (Calafiore and Fagiano,
2012; Schildbach et al., 2014). A finite number of disturbance realizations is drawn from a
known probability measure of the disturbance. The obtained finite number of realizations
forms one scenario for which the performance index is minimized. Dependent on the num-
ber of disturbance realizations it can be determined how likely it is that the solution of
the optimization problem indeed satisfies the constraints and reaches the terminal region.
Tube based MPC is another robust control strategy. It guarantees the system states to re-
main in a tube around the nominal trajectory although some disturbances may be present
(Langson et al., 2004). The method was first proposed for linear systems (Langson et al.,
2004) and later extended to nonlinear systems (e. g. Cannon et al., 2011).

Besides MPC several other constrained control approaches exist. An important ap-
proach is the invariance control method proposed by Wolff and Buss (2004). It can be
applied to nonlinear systems that are subject to constraints. The approach is based on an
exact input-output linearization. The time derivatives of the output variable form a set
of transformed states. Constraints imposed on the original states can be expressed in the
transformed state domain based on a so-called invariance function. The control strategy is
based on two control laws. The nominal controller and the invariance controller. The nom-
inal controller can be any control law guaranteeing stability of the system or convergence
of the tracking error. The invariance controller guarantees satisfaction of the constraints.
The invariance function serves as a switching condition to decide if it is required to ap-
ply the invariance controller or the nominal controller. In Kimmel and Hirche (2014) the
switching between the invariance controller and the nominal controller is formulated with
respect to an optimization problem. This ensures that the invariance controller equals the
nominal controller as close as possible. Another constrained control method is the refer-
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ence governor approach. As described in Garone et al. (2017) an asymptotically stable
closed loop system is considered as a basis for the reference governor design. It is assumed
that state or input constraints are required to be satisfied. The main idea of the reference
governor method is to modify the reference signal so that satisfaction of the constraints
can be guaranteed for all future time steps. The approach was first established for lin-
ear systems (Gilbert and Tan, 1991) and later extended to nonlinear systems (Bemporad,
1998). Control barrier functions (CBF) in combination with control Lyapunov functions
(CLF) can also be applied to enforce constraints. In Ames et al. (2014) a quadratic pro-
gram is formulated with the goal to minimize a desired performance index. In addition,
the quadratic program is subject to a CBF and a CLF. The solution of the optimization
problem gives a control input that guarantees the constraints to be satisfied. The approach
has been extended in Rauscher et al. (2016) to handle multiple constraints. In addition,
the work of Rauscher et al. (2016) provides a framework to adapt a given nominal control
input in such a way that the adapted solution guarantees the constraints to be satisfied.
Therefore, a quadratic program subject to a set of CBFs is formulated. The solution of
the optimization problem not only guarantees the constraints to be satisfied it also pro-
vides the control input that is most similar to the nominal controller. In Hsu et al. (2015)
a method for the construction of CBFs is developed. Based on the obtained CBFs it is
exemplarily shown that a constrained robot locomotion control problem can be solved.

Constrained SMC approaches can also be found in the literature. The authors in
Incremona et al. (2016) make use of a state transformation to express the constraints in
terms of the sliding variables. A combination of first order and higher order SMCs is ap-
plied to drive the sliding variables to zero without violating the constraints. The approach
provides a maximum domain of attraction for relative degree one and two systems. A con-
strained sliding mode control approach that can be applied to nonlinear relative degree
two systems and also guarantees a maximum domain of attraction is described in Ding et
al. (2018). The proposed controller requires the constraints to be stated in terms of the
sliding variables. In contrast to the approach of Incremona et al. (2016) the constrained
control method of Ding et al. (2018) is not based on a combination of sub-controllers and
therefore avoids switching effects. In Bartoszewicz and Nowacka-Leverton (2010) parame-
ters of a linear time-varying sliding surface are optimized to achieve either input saturation
or satisfaction of velocity or acceleration constraints. The considered system has relative
degree three. Another approach optimizing the parameters of a nonlinear sliding surface is
proposed in Pietrala and Jasku la (2019). The controller can be applied to relative degree
two systems to achieve position control under velocity constraints. Sliding mode reference
conditioning (SMRC) proposed by Garelli et al. (2011) is a control strategy that is sim-
ilar to the reference governor approaches. The SMRC method is an outer loop control
approach that manipulates the reference signal of an already controlled system. By ma-
nipulating the reference signal the closed loop system is kept in a sliding mode in which
the constraints are satisfied. The constraints can be formulated with respect to the closed
loop states. Only bounds of the time derivatives of the closed loop states are required to be
known for the design of the SMRC approach. The method can also be applied to nonlinear
systems. In Richter et al. (2007) the class of linear time-invariant systems with bounded
disturbances is considered. A sliding mode controller is applied and robust positive invari-
ant (RPI) sets of the closed loop dynamics are determined. The intersection of a state
constraint set and the RPI of the closed loop dynamics is studied further. Conditions are
derived to check if this intersection itself is a RPI. In Richter (2011) output constrained

92



control of linear single input systems is considered. Multiple sliding mode controllers are
combined with each other using a min-max selection strategy. The min-max selection
scheme is a multi-controller approach known from e. g. aerospace industry where it is used
for constrained turbo engine control (Litt et al., 2009). Instead of linear controllers the
approach of Richter (2011) applies SMCs within the framework. The approach proposed
in Song et al. (2016) considers robust constrained control of nonlinear systems that satisfy
the so-called conic sector constraint (ElBsat and Yaz, 2013). State feedback and SMC are
combined in order to guarantee that the quadratic norm of the output variables does not
exceed a defined threshold neither in the reaching phase nor within the sliding mode. In
Pietrala et al. (2018) a time-varying nonlinear sliding mode is designed. The parameters
of the sliding manifold are optimized to achieve velocity-constrained control of relative
degree two systems. For the consideration of input and state constraints a control scheme
that combines first order SMCs is proposed in Jasku la and Leśniewski (2020). The ap-
proach can be applied to linear time-invariant systems with bounded disturbances. In Liu
and Yang (2017) prescribed performance functions are formulated to guarantee that the
tracking error remains within prescribed performance bounds. This also allows to satisfy
constraints that are formulated with respect to the tracking error. The contribution of
Innocenti and Falorni (1998) considers sliding mode control of linear systems. Conditions
are derived under which satisfaction of polygonal state constraints can be achieved.

In this chapter a robust constrained sliding mode control approach for nonlinear rel-
ative degree two systems is developed. The first time derivative of the control variable is
assumed to be constrained with bounds that may explicitly depend on time. The system
description may be imprecise. Only the control variable and its first time derivative are
assumed to be known. The uncertainty bounds of the system are assumed to be finite. The
developed controller is a combination of SMC sub-controllers. Discontinuities that may
result from the switching of the sub-controllers are avoided by a proper controller design.
In addition, mitigation of the chattering effect is considered. For the proposed controller it
is analytically shown that the constrained control problem can be solved. The convergence
of the tracking error is studied and error bounds dependent on the controller parameters
are stated. Chattering mitigation is achieved by introducing a boundary layer. Although
the boundary layer is applied the constraints can still be guaranteed to be satisfied if the
controller parameters are suitably chosen. In contrast to the already existing constrained
SMC approaches the proposed method has the following advantages. The considered con-
straints may have time-varying bounds, whereas most of the existing approaches deal with
box constraints. As a consequence, the application field of the proposed approach is less
limited. Most of the existing constrained SMCs are based on discontinuous control laws.
Due to the discontinuities chattering occurs and the controllers can not be applied in
practice. To mitigate the chattering the boundary layer concept may be used. However,
the boundary layer approach modifies the control law so that constraint violation may
occur. In contrast to that the proposed constrained SMC guarantees the constraints to
be satisfied also if the chattering is mitigated through the boundary layer concept. The
existing approaches that are based on combination of sub-controllers may introduce addi-
tional discontinuities that result from the switching between the control laws. Although
the proposed control strategy is also based on a combination of sub-controllers the transi-
tion between the introduced sub-controllers is guaranteed to be smooth.

A preliminary version of the proposed constrained SMC is studied in Spiller and Söffker
(2021). However, this preliminary version of the controller does not consider the nonlinear
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sliding manifold that is presented in this chapter to improve the error convergence of the
controller. In addition, the preliminary version described in Spiller and Söffker (2021) does
not consider the analysis of the relevant practical controller implementation that is given
within this chapter.

The chapter can be divided into two main sections. In Section 5.1 the new robust
constrained sliding mode control approach is introduced. This includes the introduction
of mathematical assumptions and definitions, the derivation of the control laws and the
definition of the input selection strategy as well as the mathematical analysis of the con-
troller properties, and finally the consideration of an application example. In Section 5.2
human-robot collaboration is considered as a specific application example of robust con-
strained control. Based on the introduced new constrained sliding mode control approach
a safety concept applicable in the field of human-robot collaboration is proposed. The
concept is mathematically analyzed and finally tested on a simulated robotic system.

5.1 Controller Design

In this section the new constrained sliding mode control approach is presented. First, a
detailed review of the constrained control approach of Incremona et al. (2016) is given in
Section 5.1.1. In Section 5.1.2 the constrained control problem is formulated and mathe-
matical preliminaries are introduced. The new constrained SMC is described in Section
5.1.3 and the controller properties are studied in Section 5.1.4. Constrained control of a
robotic system based on the developed approach is considered in Section 5.1.5.

5.1.1 Review of Constrained Control Approach

Among the aforementioned constrained SMC approaches the contribution of Incremona
et al. (2016) arises special interest as it provides a maximum domain of attraction for
nonlinear relative degree one and two SISO systems. In addition it is to some extent a
general approach as it can handle any constraints that may be expressed in terms of the
sliding variables. Following Incremona et al. (2016) an input-affine nonlinear system

ẋ = f(x) + g(x)u,

yr = h(x), (5.1)

with states x ∈ R
n, input u ∈ R, and control variable yr ∈ R is considered. The relative

degree r is assumed to be one or two. Let the sliding variable σ ∈ R
r be defined as

σ =







σ1 if r = 1,
[

σ1 σ2

]T
=
[

σ1 σ̇1

]T
if r = 2,

(5.2)

with σ1 ∈ R. An admissible region of σ is introduced according to

Sb =







{σ ∈ R : σ1 ∈ [
¯
σ1, σ̄1]}, if r = 1,

{σ ∈ R
2 : σ1 ∈ [

¯
σ1, σ̄1] ∧ σ2 ∈ [

¯
σ2, σ̄2]}, if r = 2,

(5.3)

with constants
¯
σ1,

¯
σ2 < 0 and σ̄1, σ̄2 > 0. The admissible region (5.3) describes box

constraints that are formulated with respect to the sliding variables. Following Incremona
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et al. (2016) a domain of attraction SI ⊆ R
r is defined. The subspace SI defines all initial

values for which the sliding variables decrease to zero in finite-time without violating the
constraints. Formally SI is given by

SI = {σ0 = σ(t0) ∈ R
r : σ(t, σ0) ∈ [

¯
σ, σ̄] ∧ σ(t⋆, σ0) = 0}, t⋆ ≥ tf , (5.4)

where σ(t, σ0) is the trajectory of σ(t) with initial value σ0, quantities
¯
σ, σ̄ ∈ R

r are the
bounds of the box constraints, and tf is a finite-time instant (Incremona et al., 2016).

For the relative degree one case the dynamics of the sliding variable σ1 = yr − w is
given by

σ̇1 = Lfh(x) + Lgh(x)u − ẇ = Ψ(x,w) + Γ(x)u, (5.5)

where w denotes the reference value. The uncertainty bounds

Ψ(x,w) ≤ ΨM , 0 < Γm ≤ Γ(x) ≤ ΓM , (5.6)

are assumed to be finite. The controller design is trivial and leads to a conventional
first-order SMC

u = −α× sgn(σ1), (5.7)

which drives σ1 to zero in finite-time for sufficient large gains α > ΨM

Γm
. If σ1(t0) ∈ [

¯
σ1, σ̄1]

holds initially then the controller naturally avoids constraint violation because satisfying
the reachability condition implies that σ̇1 < 0 holds in case of σ1 > 0 and that σ̇1 > 0
holds in case of σ1 < 0. Consequently, the achieved domain of attraction is maximal.

The controller for the relative degree two case is studied as follows. The controller is
described based on Incremona et al. (2016) although a very similar controller has already
been proposed before in Rubagotti et al. (2010). The dynamics of the sliding variable
σ1 = yr − w is given by

σ̈1 = σ̇2 = L2
fh(x) + LgLfh(x)u− ẅ = Ψ(x,w) + Γ(x)u, (5.8)

where the uncertainty bounds

Ψ(x,w) ≤ ΨM , 0 < Γm ≤ Γ(x) ≤ ΓM , (5.9)

are assumed finite. The control law is stated as

u =







−α× sgn
(

σ1 +
σ2|σ2|

2αl

)

if (σ1, σ2) ∈ Sb, (5.10)

−α× sgn(σ2) if (σ1, σ2) 6∈ Sb, (5.11)

with α > ΨM

Γm
being sufficient large and αl being defined as αl = Γmα − ΨM (Incremona

et al., 2016). As proven in Dinuzzo and Ferrara (2009) control law (5.10) is a second order
SMC meaning that if the sliding variables remain in the admissible region Sb and (5.10)
is active all the time then σ1 and σ2 reach the sliding surface

σ1 +
σ2|σ2|

2αl
= 0, (5.12)
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(a)
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Figure 5.1: Visualization of space σ ∈ S ⊆ R
2. (a) Box constraints of admissible region

Sb and sliding surface σ1 + σ2|σ2|
2α1

= 0 according to (5.12). (b) Regions of S defining σ̇2 as
stated by (5.21).

in finite-time. Further, after the sliding surface has been reached the variables σ1 and σ2

slide on the sliding surface towards the origin and become zero in finite-time. The sliding
manifold (5.12) is visualized in Fig. 5.1 (a). If the sliding variables do not remain within
the admissible region Sb it follows that the control law (5.11) becomes active to push σ2

back towards the bounds
¯
σ2 and σ̄2 of the admissible region. The closed loop dynamics of

σ1 and σ2 are studied as follows. Defining αh = ΓMα+ ΨM and substituting (5.10)–(5.11)
in (5.8) yields

|σ̇2| ∈ {x ∈ R : 0 ≤ x ≤ ΨM ∨ αl ≤ x ≤ αh}, (5.13)

as u = α, u = −α, or u = 0 may be applied. According to (5.8) and (5.10)–(5.11) the
following cases

S1 = {(σ1, σ2) ∈ R
2 : (σ1, σ2) ∈ Sb ∧ σ1 > −

σ2|σ2|
2αl

}, (5.14)

S2 = {(σ1, σ2) ∈ R
2 : (σ1, σ2) ∈ Sb ∧ σ1 < −

σ2|σ2|
2αl

}, (5.15)

S3 = {(σ1, σ2) ∈ R
2 : (σ1, σ2) ∈ Sb ∧ σ1 = −σ2|σ2|

2αl
}, (5.16)

S4 = {(σ1, σ2) ∈ R
2 : (σ1, σ2) 6∈ Sb ∧ σ2 = 0}, (5.17)

S5 = {(σ1, σ2) ∈ R
2 : (σ1, σ2) 6∈ Sb ∧ σ2 < 0}, (5.18)

S6 = {(σ1, σ2) ∈ R
2 : (σ1, σ2) 6∈ Sb ∧ 0 < σ2}, (5.19)

can be defined as shown in Fig. 5.1 (b) to further evaluate the dynamics σ̇2 of (5.8).
Considering the different cases the closed loop dynamics

σ̇1 = σ2, (5.20)
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σ̇2 =







U+ if (σ1, σ2) ∈ S2 ∪ S5,

U− if (σ1, σ2) ∈ S1 ∪ S6,

U0 if (σ1, σ2) ∈ S3 ∪ S4,

(5.21)

αl ≤ U+ ≤ αh, −αh ≤ U− ≤ −αl, −ΨM ≤ U0 ≤ ΨM ,

are achieved. Based on the system dynamics (5.20)–(5.21) the phase portrait of σ1 and
σ2 can be analyzed. For instance, assume σ1 and σ2 to remain in S1 during a time
interval [t1, t2] then the right hand side of the differential equation (5.21) equals U− which
is continuous and allows integration. Studying the phase portrait requires the relation
between σ1 and σ2 to be known. Consequently,

δσ1 = σ2δt, (5.22)

δσ2 = U−δt, (5.23)

is considered which leads to

δσ1 =
σ2

U− δσ2. (5.24)

Integration of (5.24) yields

− 1

2αl

(

σ2
2(t⋆1)− σ2

2(t1)
)

≤ σ1(t⋆1)− σ1(t1) ≤ − 1

2αh

(

σ2
2(t⋆1)− σ2

2(t1)
)

, (5.25)

for σ2(t) ≥ 0 with t ∈ [t1, t
⋆
1] where t1 ≤ t⋆1 ≤ t2 and

− 1

2αh

(

σ2
2(t2)− σ2

2(t⋆2)
)

≤ σ1(t2)− σ1(t⋆2) ≤ − 1

2αl

(

σ2
2(t2)− σ2

2(t⋆2)
)

, (5.26)

for σ2(t) ≤ 0 with t ∈ [t⋆2, t2] where t1 ≤ t⋆2 ≤ t2. Let

σ1(t1) = σ̄1 − σ̄2
2/(2αl), σ2(t1) = σ̄2, (5.27)

be the initial values of the sliding variables then the resulting trajectory σ(t, σ(t1)) lies
between the bounds shown in Fig. 5.2 (a).

It can be seen that the trajectory may reach the sliding surface or the bound
¯
σ2 of the

constraints. If the sliding surface is reached directly then σ slides towards the origin and
becomes zero. If the bound is reached and slightly exceeded afterwards then control law
(5.11) is activated and σ moves alongside of the bound in direction of the sliding surface.
So finally also in this case the sliding surface is reached and σ becomes zero. Similar
results regarding convergence and achievement of constraints can be obtained for region
S2. For instance, if the trajectories of S1 shown in Fig. 5.2 (a) are reflected on the σ1 and
σ2 axis then possible trajectories of region S2 are obtained.

Regarding the shape of the trajectories shown in Fig. 5.2 (a) it can be seen that if
the initial point (5.27) would be shifted to the right then the trajectory may violate the
constraints. Consequently, the admissible region does not coincide with the domain of
attraction. In fact it is shown in Incremona et al. (2016, Theorem 2) that the domain
of attraction SI has the shape shown in Fig. 5.2 (b) which is also the maximum obtain-
able domain of attraction. In Incremona et al. (2016, Theorem 2) it is as well formally
proven that σ(t) converges to zero in finite-time if σ(t0) ∈ SI holds for the initial value.

97



Ch. 5. Constrained Control of Uncertain Relative Degree Two Nonlinear Systems

(a)

SI

(b)

Figure 5.2: (a) Evolving trajectories of region S1 with specific initial value (5.27) on the
bound σ̄2. (b) Visualization of domain of attraction SI which is also a positive invariant
set.

It is also shown that SI is a positive invariant set meaning that if σ(t0) ∈ SI holds then
σ(t, σ(t0)) ∈ SI holds for the trajectory and the constraints are never violated.

In summary the considered constrained control approach provides a maximum do-
main of attraction and finite-time convergence of the sliding variables. It can handle any
constraints formulated in terms of the sliding variables. However, the approach also has
disadvantages. For instance, consider the initial values σ1(t0) <

¯
σ1 and σ2(t0) = 0. Then

control law (5.11) is applied as 6∈ Sb holds. Control law (5.11) forces σ2(t) to remain
zero. As σ2 = σ̇1 = 0 holds it follows that σ1 remains smaller

¯
σ1 and never converges to

zero. Another drawback of the consider approach is that the control laws (5.10) and (5.11)
themselves are discontinuous and in addition switching between the control laws takes
place when entering or leaving the admissible region. From a practical point of view such
a controller is inapplicable as it induces chattering in the input signal. The chattering
may be attenuated by introducing a smoothing boundary layer. However, in this case
achievement of constrained control cannot be guaranteed anymore which is also explicitly
stated in Incremona et al. (2016, Remark 3). Another disadvantage of the approach pro-
posed by Incremona et al. (2016) is that the bounds of the constraints are required to
be static. This widely limits the field of applications. For instance, consider a relative
degree two mechanical system that should be controlled with respect to some position.
Then constraints could be formulated with respect to position and velocity. However, the
approach of Incremona et al. (2016) does not allow the velocity constraints to be updated
online based on a distance to some obstacle for example.

5.1.2 Problem Formulation and Assumptions

In the following the class of nonlinear input-affine systems

ẋ = f(x) + g(x)u, (5.28)

yr = h(x), (5.29)
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with states x ∈ R
n, control variable yr ∈ R, and control input u ∈ R is considered. The

control goal is to achieve set-point tracking according to

lim
t→∞

yr(t) = w, (5.30)

in compliance with constraints that are defined by the upper bound

c1 : yc1
(t) = sc1

ẏr(t) ≤ lc1
(t), sc1

= +1, lc1
(t) > 0, (5.31)

and the lower bound

c2 : yc2
(t) = sc2

ẏr(t) ≤ lc2
(t), sc2

= −1, lc2
(t) > 0, (5.32)

of the constrained variable ẏr(t). The reference variable w ∈ R is assumed constant and
the bounds 0 < lci

(t) ∈ R of the constraints may depend on time. The only accessible,
measured quantity is the control variable yr and its first order time derivative ẏr. The
system (5.28)–(5.29) is assumed to have a relative degree of two. Consequently, the input
appears in the second time derivative of the control variable according to

ÿr = L2
fh(x) + LgLfh(x)u = Ψ(x) + Γ(x)u. (5.33)

The uncertainty bounds

∣
∣Ψ(x)

∣
∣ ≤ ΨM , 0 < Γm ≤ Γ(x) ≤ ΓM , (5.34)

are assumed to be finite.
In the following mathematical definitions are introduced which later on play an im-

portant role for the design of the controller. A sliding manifold related to the each of the
constraints is defined as

σci
(t) = −ηci

(t) + yci
(t) = 0, (5.35)

with ηci
(t) ∈ R being a continuous function and ηm,ci

∈ R being a constant chosen as

∀t : 0 < ηm,ci
< ηci

(t) < lci
(t). (5.36)

Related to the lower bound ηm,ci
of the auxiliary function ηci

(t) the constant ηm ∈ R is
introduced according to

0 < ηm < min{ηm,c1
, ηm,c2

}. (5.37)

The auxiliary function ηci
(t) is assumed to be continuously differentiable with η̇ci

(t) satis-
fying the condition

0 ≤ max
t

{

|η̇c1
(t)|, |η̇c2

(t)|
}

< η̇M , (5.38)

where η̇M ∈ R is assumed to be a finite constant. A nonlinear sliding manifold

σr = −ėr − αer − β|er|γsgn(er) = 0, 0 < γ < 1, (5.39)
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with tuning parameters 0 < α ∈ R, 0 < β ∈ R, and γ ∈ R is introduced. The sliding mani-
fold (5.39) defines a so-called terminal sliding mode which provides finite-time convergence
of the tracking error

er = w − yr. (5.40)

The sliding manifold (5.39) is originally developed by Yu and Zhihong (2002). More details
about terminal sliding modes including the concept proposed by Yu and Zhihong (2002)
can be found in the introductory Section 2.1.6. In order to solve the constrained control
problem it is further assumed that factor α of (5.39) satisfies

α =
η̇M
ηm

+ µα > 0, µα > 0, (5.41)

where µα ∈ R is a user-defined parameter. In the subsequently discussed analysis of the
developed controller it will be shown that (5.41) is a sufficient condition ensuring the
convergence of sliding variable σr. Finally, it is assumed that yr = h(x) and ẏr = Lfh(x)
are continuous functions so that σr and σci

are continuous.

5.1.3 Controller Design and Implementation Issues

In the following the proposed constrained controller is derived in a bottom-up manner.
That means that the controller is first stated as a combination of SMC sub-controllers
and afterwards it is analytically shown that the proposed control method can solve the
constrained control problem. The main idea that motivates the design of the proposed
controller can be understood as follows. The controller consists of two SMC sub-controllers.
The first SMC is designed to guarantee reaching of the sliding manifold σr = 0 that is
defined based on (5.39). The terminal sliding mode that is induced by σr = 0 provides fast
finite-time convergence of the tracking error. The second SMC guarantees reaching of the
additional sliding manifold σci

= 0 defined by (5.35). The sliding manifold σci
= 0 is used

to avoid constraint violation. Therefore, the manifold σci
= 0 is placed in the admissible

region below the bound lci
(t) of the constraint. If the constrained variable lays inside the

admissible region but is going to violate one of the bounds the second SMC becomes active
to force the constrained variable towards the manifold σci

= 0. As the manifold σci
= 0

lays below the bound lci
(t) it follows that the violation of the constraint is avoided.

The challenges that are related to the proposed controller design are: the derivation of
control laws that guarantee reaching of the introduced sliding manifolds, the achievement
of smooth transition between the SMC sub-controllers, the mitigation of chattering, the
handling of the time-variant bounds, and the analysis of the controller performance.

In the following the two SMC sub-controllers are designed. In particular it is required
to derive the control laws that guarantee reaching of the introduced sliding manifolds
σr = 0 and σci

= 0. The control law that guarantees reaching of the manifold σr = 0 is
denoted as ur and is studied first. A Lyapunov function candidate Vr = 0.5σ2

r is considered
to reach σr = 0 in finite-time. Consequently, it has to be shown that V̇r = σ̇rσr ≤ − µr√

2
|σr|

with µr > 0 holds true for σr 6= 0. Derivating (5.39) with respect to time yields

σ̇r = ÿr + αẏr + βγẏr|er|γ−1, (5.42)

and substituting (5.33) in (5.42) gives

σ̇r = Ψ + Γur + αẏr + βγẏr|er|γ−1. (5.43)
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Substituting (5.42) in V̇r leads to the reachability condition

σ̇rσr = Ψσr + Γurσr + αẏrσr + βγẏr|er|γ−1σr ≤ −
µr√

2
|σr|, µr > 0, (5.44)

of the sliding surface σr = 0. Dividing (5.44) by 0 > −|σr| and Γ > 0 yields

−sgn(σr)ur ≥
µr + ΨM

√
2

Γm
√

2
+
α+ βγ|er|γ−1

Γ
ẏrsgn(σr), (5.45)

which is solved by

ur =







−sgn(σr)

(

µr+ΨM

√
2

Γm

√
2

+ α+βγ|er|γ−1

Γm
|ẏr|

)

, if ẏrsgn(σr) ≥ 0,

−sgn(σr)

(

µr+ΨM

√
2

Γm

√
2
− α+βγ|er|γ−1

ΓM
|ẏr|

)

, if ẏrsgn(σr) < 0.
(5.46)

In the following the control law uci
is derived which guarantees reaching of the manifold

σci
= 0. A Lyapunov function candidate Vci

= 0.5σ2
ci

is considered and the structure of
the control law is assumed to be

uci
= ur − sci

kci
sgn(σci

). (5.47)

Derivating (5.35) with respect to time and substituting (5.31)–(5.33) into the time deriva-
tive leads to

σ̇ci
= −η̇ci

+ sci
Ψ + sci

Γuci
. (5.48)

Multiplying (5.48) by σci
yields the reachability condition

σci
σ̇ci

= σci
sci

Ψ + σci
sci

Γuci
− σci

η̇ci
≤ −µci√

2
|σci
|, µci

> 0. (5.49)

Dividing (5.49) by |σci
| and −Γ < 0 and considering the uncertainty bounds gives

− sgn(σci
)sci

uci
≥ µci

+ ΨM

√
2

Γm
√

2
− η̇ci

Γ
sgn(σci

). (5.50)

Substituting the controller structure (5.47) in (5.50) leads to the condition

kci
≥ µci

+ ΨM

√
2

Γm
√

2
− η̇ci

Γ
sgn(σci

) + sci
sgn(σci

)ur, (5.51)

which is required to be satisfied by the controller gain. From (5.51) the control law

uci
= ur − sci

kci
sgn(σci

), (5.52)

with gain

kci
=
µci

+ ΨM

√
2

Γm
√

2
+
|η̇ci
|

Γm
+ sci

sgn(σci
)ur +

α+ βγ|er|γ−1

Γm
|ẏr|, (5.53)
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Algorithm 2 Ideal constrained sliding mode controller

Inputs σci
(t) from (5.35), σr(t) from (5.39), ẏr(t) from (5.29), η̇ci

(t) from (5.36), µr
from (5.44), µci

from (5.49), α from (5.41), β, γ both from (5.39), Γm, ΓM , ΨM all
from (5.34)

if ∀ci : sci
ẏr ≤ ηci

then ⊲ Inside admissible region and distant from bounds
if ẏrsgn(σr) ≥ 0 then

u← −sgn(σr)×
(

µr+ΨM

√
2

Γm

√
2

+ α+βγ|er |γ−1

Γm
|ẏr|

)

else

u← −sgn(σr)×
(

µr+ΨM

√
2

Γm

√
2
− α+βγ|er |γ−1

ΓM
|ẏr|

)

end if

else if ∃ci : sci
ẏr > ηci

then ⊲ Outside admissible region or approaching a bound

u← −sci
sgn(σci

)×
(
µci

+ΨM

√
2

Γm

√
2

+
|η̇ci

|
Γm

+ α+βγ|er |γ−1

Γm
|ẏr|

)

end if

Output u(t)

is obtained. The additional term +α+βγ|er |γ−1

Γm
|ẏr| becomes relevant for the subsequently

discussed controller analysis. By substituting (5.53) in (5.52) it can be shown that control
law (5.52) is equivalent to

uci
= −sci

sgn(σci
)×

(

µci
+ ΨM

√
2

Γm
√

2
+
|η̇ci
|

Γm
+
α+ βγ|er|γ−1

Γm
|ẏr|

)

. (5.54)

However, to achieve smooth transitions between the control laws ur and uci
it is desirable

to have control law uci
in the form of (5.52) which will be further discussed.

An ideal version of the proposed controller that does not consider any smoothness of
the input signal is described by Algorithm 2. It is a simple switching between the control
laws (5.46) and (5.54) of the SMC sub-controllers. If the constrained variables are inside
the admissible region and in sufficient distance to the bounds then the control law (5.46)
is applied to achieve reference tracking. If the constrained variable violates a bound or
lays inside the admissible region but is approaching a bound too closely then control law
(5.54) is applied to enforce the constraints. However, Algorithm 2 can not be applied in
practice. Due to the discontinuous control laws and the discontinuous switching between
the sub-controllers chattering is generated which makes the whole approach infeasible.

To avoid the problem of discontinuities smoothing boundary layers are introduced as
follows. Therefore, the smooth approximation

sat(a) =







sgn(a) for |a| ≥ 1,

a for |a| < 1,
(5.55)

of the signum function is defined. The smooth approximation (5.55) is applied to the
reaching laws (5.46) and (5.52) to replace the signum function. Consequently, an approx-
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Algorithm 3 Practical implementation of constrained sliding mode controller

Inputs σci
(t) from (5.35), σr(t) from (5.39), ẏr(t) from (5.29), η̇ci

(t) from (5.36), µr
from (5.44), µci

from (5.49), α from (5.41), β, γ both from (5.39), Γm, ΓM , ΨM all
from (5.34), ǫci

> 0, ǫr > 0

if ẏrsgn(σr) ≥ 0 then

u∗
r ← −sat(σr

ǫr
)×

(

µr+ΨM

√
2

Γm

√
2

+ α+βγ|er|γ−1

Γm
|ẏr|

)

else

u∗
r ← −sat(σr

ǫr
)×

(

µr+ΨM

√
2

Γm

√
2
− α+βγ|er|γ−1

ΓM
|ẏr|

)

end if

if ∀ci : sci
ẏr ≤ ηci

then ⊲ Inside admissible region and distant from bounds
u← u∗

r

else if ∃ci : sci
ẏr > ηci

then ⊲ Outside admissible region or approaching a bound

u← u∗
r − sci

sat

(
σci

ǫci

)

×
(

µci
+ΨM

√
2

Γm

√
2

+
|η̇ci

|
Γm

+ sci
sat

(
σci

ǫci

)

u∗
r + α+βγ|er|γ−1

Γm
|ẏr|

)

end if

Output u(t)

imation

u∗
r =







−sat(σr

ǫr
)×

(

µr+ΨM

√
2

Γm

√
2

+ α+βγ|er|γ−1

Γm
|ẏr|

)

, if ẏrsgn(σr) ≥ 0,

−sat(σr

ǫr
)×

(

µr+ΨM

√
2

Γm

√
2
− α+βγ|er|γ−1

ΓM
|ẏr|

)

, if ẏrsgn(σr) < 0,
(5.56)

of the reaching law ur is obtained by substituting sgn(σr) of (5.46) with sat(σr

ǫr
) and an

approximation

u∗
ci

= u∗
r − sci

sat

(

σci

ǫci

)

×



µci

+ ΨM

√
2

Γm
√

2
+
|η̇ci
|

Γm
+ sci

sat

(

σci

ǫci

)

u∗
r +

α+ βγ|er|γ−1

Γm
|ẏr|



 , (5.57)

of the reaching law uci
is obtained by substituting sgn(σci

) of (5.52) with sat(
σci

ǫci
). In

(5.56) the parameter 0 < ǫr ∈ R defines the width of the smoothing boundary layer
that is introduced with respect to the sliding surface σr = 0 and in (5.57) the parameter
0 < ǫci

∈ R defines the width of the smoothing boundary layer that is introduced with
respect to the sliding surface σci

= 0. Based on the approximated reaching laws u∗
r and

u∗
ci

a practical controller implementation is formulated that avoids the problem of the
discontinuities. The practical controller implementation is described by Algorithm 3. In
the following it is shown that the practical controller implementation provides a smooth
transition between the SMC sub-controllers. First, the conditions ∀ci : sci

ẏr ≤ ηci
and

∃ci : sci
ẏr > ηci

are studied that according to Algorithm 3 induce the switching of the
sub-controllers. From (5.31), (5.32), and (5.35) it follows that statement ∀ci : sci

ẏr ≤ ηci
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ẏr(t)

+lc1
(t)

−lc2
(t)

+ηc1
(t)

−ηc2
(t)

u(t) = u∗
ci

(t)

u(t) = u∗
r(t)

Time t

Figure 5.3: Control input selection dependent on constrained variable ẏr(t).

is equivalent to ∀ci : σci
≤ 0 and statement ∃ci : sci

ẏr > ηci
is equivalent to ∃ci : σci

> 0.
According to Algorithm 3 the switch between the sub-controllers (5.56) and (5.57) occurs
if σci

changes from zero to a positive value or vice versa. Let σci
→ 0+ denote that σci

approaches 0 from the right hand side. In case of σci
→ 0+ it follows from (5.57) that

u∗
ci
→ u∗

r holds. Consequently, the transition between the control laws is smooth. In
addition, the chattering effect occurring around the sliding surfaces σr = 0 and σci

= 0
can be mitigated by choosing the boundary layer widths ǫr and ǫci

properly.
Finally, a graphical illustration of the practical controller implementation is given by

Fig. 5.3. It can be seen that the control input equals u∗
r(t) if the constrained variable is in

the region between the auxiliary functions ηc1
(t) and ηc2

(t). In this region the constraints
are satisfied so that u∗

r(t) is applied to achieve reference tracking. If the constrained
variable leaves the region between ηc1

(t) and ηc2
(t) then the control input switches to

u∗
ci

(t). The switch of the control input guarantees the constraints to remain satisfied if
the auxiliary function ηci

(t) is properly chosen. That can be understood as follows. First,
the sliding surfaces σc1

(t) = ẏr(t) − ηc1
(t) = 0 and σc2

(t) = −ẏr(t) − ηc2
(t) = 0 are

considered. Both surfaces are illustrated in Fig. 5.3 by the graphs ηc1
(t) and −ηc2

(t).
From the controller design it is known that the control input uci

(t) guarantees reaching
of the sliding manifold σci

(t) = 0. Consequently, if uc1
(t) would be applied it can be

guaranteed that ẏr(t) is pushed towards the graph ηc1
(t) and if uc2

(t) would be applied
it can be guaranteed that ẏr(t) is pushed towards the graph −ηc2

(t). Both graphs ηc1
(t)

and −ηc2
(t) are located inside the admissible region defined by the bounds of lc1

(t) and
lc2

(t). As a result, constraint violation can be avoided by applying input uci
(t). The

remaining problem is that the practical controller implementation generates the control
input u∗

ci
(t) instead of the desired input uci

(t). Nevertheless, satisfaction of the constraints
can still be guaranteed if the auxiliary function is properly chosen. Assume the auxiliary
function ηci

(t) > 0 to be chosen in sufficient distance to the bound lci
(t) > 0 so that

σci
(t) = sci

ẏr(t) − ηci
(t) > ǫci

holds in case of sci
ẏr(t) = lci

(t). As σci
(t) > ǫci

holds
for the considered case it follows from the smooth approximation (5.55) that sat(σci

/ǫci
)

and sgn(σci
/ǫci

) are identical. The boundary layer width ǫci
is always positive leading

to sgn(σci
/ǫci

) = sgn(σci
). Finally, as sat(σci

/ǫci
) = sgn(σci

) holds the control inputs
u∗
ci

(t) and uci
(t) equal each other in case of sci

ẏr(t) = lci
(t) and the constraint violation
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is avoided.

5.1.4 Controller Analysis

In the following it is shown that the proposed control method can solve the constrained
control problem. The mathematical properties of the proposed approach are discussed.
That includes the analysis of the tracking error convergence as well as the study on how
the tuning parameters affect the controller performance. The ideal controller (Algorithm
2) is a special case of the practical controller implementation (Algorithm 3) which can
be seen by choosing the boundary layer widths ǫr > 0 and ǫci

> 0 arbitrary small. As
a consequence, Algorithm 3 is discussed subsequently as it is the more general approach
and the method that is relevant in practice.

The main results of this section are summarized as follows. In Theorem 8 it is proven
that the constraints can be guaranteed to be satisfied if the auxiliary function ηci

is suitably
chosen. The condition that the auxiliary function has to met is given by the inequality
(5.61). In Theorem 12 the convergence of the sliding variable σr is studied. It can be
guaranteed that |σr| converges to a domain that depends on the boundary layer widths
ǫr and ǫci

. The domain is specified by the inequality (5.95). The convergence of |σr| with
respect to the specified domain can be achieved in finite time. A maximum time interval
that is required for the convergence is given by (5.97). In Theorem 14 the convergence of
the tracking error er is proven. The tracking error is shown to be bounded after a finite
time. The error bounds can be determined by solving the nonlinear equation (5.119).
The bounds depend on several controller parameters such as the tuning parameters of the
sliding manifold σr = 0 and the smoothing boundary layer widths ǫr and ǫci

. A maximum
time interval after which the tracking error is guaranteed to be within the specified bounds
is given by (5.121). In Corollary 15 the domain of attraction is discussed. The considered
domain of attraction is specified by (5.141). It is shown that the proposed control method
provides the maximum possible domain of attraction.

In the following the theorems and the corollary as well as required lemmata are stated.

Lemma 7.

Consider control of system (5.28)–(5.29) based on Algorithm 3. There exists some finite-
time tf so that σci

is upper bounded by the smoothing boundary layer width ǫci
i. e.

σci
(t) ≤ ǫci

, (5.58)

holds for t ≥ tf .

Proof. From Algorithm 3 it is known that if

σci
= −ηci

+ siẏr ≥ ǫci
> 0, (5.59)

holds then the control input equals (5.57) which in fact equals (5.52) as sat(σci
/ǫci

) =
sgn(σci

) holds due to (5.59) and (5.55). As control input (5.52) satisfies the reachability
condition (5.49) it follows that

σci
(t) ≤ ǫci

, (5.60)

holds for t ≥ tf with tf being some finite-time instant.
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Theorem 8 (Achievement of constraints related to Algorithm 3).
Consider control of system (5.28)–(5.29) based on Algorithm 3. Let the auxiliary function
ηci

(t) be chosen as

ǫci
≤ lci

(t)− ηci
(t), (5.61)

with bound lci
(t) > 0 and smoothing boundary layer width ǫci

> 0. There exists some
finite-time tf so that the constraints are satisfied for t ≥ tf i. e.

− lc2
(t) ≤ ẏr(t) ≤ lc1

(t), (5.62)

holds for t ≥ tf . If ∀ci : σci
(t0) ≤ ǫci

holds true for the initial time instant t0 then tf = t0.

Proof. From Lemma 7 it is known that

σci
= −ηci

(t) + sci
ẏr(t) ≤ ǫci

, (5.63)

holds for t ≥ tf with tf being finite. Substituting (5.61) in (5.63) leads to sci
ẏr(t) ≤ lci

(t)
from which (5.62) follows.

Lemma 9.

Consider control of system (5.28)–(5.29) based on Algorithm 3 with µc1
chosen as µc1

≥ µr.
Let σr(t) ≥ ǫr > 0 hold for t ∈ [t1, t2] where ǫr > 0 is the user-defined smoothing boundary
layer width. It follows that σr(t) decreases to ǫr in finite-time according to

σr(t) ≤ κ− ̺(t− t1), (5.64)

κ = max
{

σr(t1), σr(t1) + σc2
(t1)

}

, σc2
(t1) = −ẏr(t1)− ηc2

(t1),

̺ = min

{

µr√
2
, µaηm

}

,

with t ∈ [t1, t2].

Proof. It will be shown that for the possible control inputs u = u∗
r , u = u∗

c1
, and u = u∗

c2

the sliding variable σr ≥ ǫr > 0 decreases to ǫr in finite-time.
Step 1: Consideration of control input u = u∗

r according to (5.56). From the reach-
ability condition (5.44) and the definition of the smooth approximation (5.55) it follows
that

σ̇r ≤ −
µr√

2
, (5.65)

holds in case of σr ≥ ǫr.
Step 2: Consideration of control input

u = u∗
c1

= u∗
r − sat

(

σc1

ǫc1

)

× k∗
c1
, (5.66)

with

k∗
c1

=




µc1

+ ΨM

√
2

Γm
√

2
+
|η̇c1
|

Γm
+ sat

(

σc1

ǫc1

)

u∗
r +

α+ βγ|er|γ−1

Γm
|ẏr|



 , (5.67)

106



Sec. 5.1. Controller Design

according to (5.57). The saturation function sat(σc1
/ǫc1

) is bounded as

0 ≤ sat

(

σc1

ǫc1

)

≤ 1, (5.68)

because σc1
> 0 holds if u = u∗

c1
is applied. Input u∗

r is part of (5.66) and (5.67). As
u = u∗

c1
is only applied if σc1

= −ηc1
+ ẏr > 0 holds it follows that ẏr > 0 holds and

according to (5.56) quantity u∗
r is

u∗
r = −µr + ΨM

√
2

Γm
√

2
− α+ βγ|er|γ−1

Γm
|ẏr| < 0, (5.69)

in case of σr ≥ ǫr > 0 and ẏr > 0. Substituting (5.69) in (5.67) and considering (5.68)
yields

0 ≤ µc1
− µr

Γm
√

2
+
|η̇c1
|

Γm
≤ k∗

c1
, (5.70)

in case of µc1
≥ µr > 0. As k∗

c1
is non-negative and due to (5.68) it follows u∗

c1
≤ u∗

r from
(5.66). For σr > 0 the reachability condition

σ̇r = Ψ + Γu+ αẏr + βγẏr|er|γ−1 ≤ − µr√
2
, µr > 0, (5.71)

known from (5.44) is satisfied if inequality

u ≤ −µr + ΨM

√
2

Γm
√

2
− α+ βγ|er|γ−1

Γ
ẏr, (5.72)

holds. As stated in Step 1 the reachability condition is satisfied for u = u∗
r if σr ≥ ǫr holds.

As u∗
c1
≤ u∗

r holds it is

u∗
c1
≤ u∗

r ≤ −
µr + ΨM

√
2

Γm
√

2
− α+ βγ|er|γ−1

Γ
ẏr, (5.73)

and the reachability condition is also satisfied for u = u∗
c1

. Consequently,

σ̇r ≤ −
µr√

2
, (5.74)

holds.
Step 3: Consideration of control input u = u∗

c2
according to (5.57).

Case I :
It is first studied the behavior of σr if input u(t) = u∗

c2
(t) is applied on some time

interval t ∈ [t1, t2) but not at time instant t2. As u = u∗
c2

is applied if and only if σc2
> 0

holds it is σc2
(t) > 0 and σc2

(t2) = 0. Consequently, σc2
(t⋆) ≥ 0 with t⋆ ∈ [t1, t2] holds.

According to (5.39) and (5.40) it is

σr(t
⋆) = ẏr(t

⋆)− αer(t⋆)− β|er(t⋆)|γsgn(er(t
⋆)), (5.75)

for t⋆ ∈ [t1, t2]. As σc2
(t⋆) = −ηc2

(t⋆)− ẏr(t⋆) ≥ 0 holds it follows from (5.36) and (5.37)
that

ẏr(t
⋆) ≤ −ηc2

(t⋆) < −ηm < 0, ηm > 0, (5.76)
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holds. As σr(t
⋆) > 0 and ẏr(t

⋆) < 0 hold it can be seen from (5.75) that er(t
⋆) < 0 holds.

Consequently, equation (5.75) is

σr(t
⋆) = ẏr(t

⋆)− αer(t⋆) + β|er(t⋆)|γ , (5.77)

for t⋆ ∈ [t1, t2]. From (5.77), (5.76), and er = w − yr it follows that

σr(t
⋆) ≤ −ηc2

(t⋆)− αw + αyr(t1) + β|er(t1)|γ

+

∫ t⋆

t1
αẏr(τ)dτ +

∫ t⋆

t1
γβẏr(τ)|er(τ)|γ−1dτ, (5.78)

holds for any time t⋆ ∈ [t1, t2], where γβẏr|er|γ−1 is the time derivative of β|er|γ in case
of er < 0. Consider α to be a positive constant

α =
η̇M
ηm

+ µα, (5.79)

as stated in (5.41). From (5.76) and (5.38) it follows that inequality

α =
η̇M
ηm

+ µα ≥
η̇c2

(t)

ẏr(t)
+ µα, µα > 0, (5.80)

holds. Substituting α > 0 from (5.80) in (5.78), considering ẏr(t
⋆) ≤ −ηm < 0 from (5.76),

and considering that β, γ are positive leads to

σr(t
⋆) ≤ −αw + αyr(t1) + β|er(t1)|γ − ηc2

(t1)− µαηm(t⋆ − t1). (5.81)

Adding ẏr(t1) − ẏr(t1) to (5.81) and considering the definition of σr according to (5.77)
yields

σr(t
⋆) ≤ ẏr(t1)− αer(t1) + β|er(t1)|γ − ẏr(t1)− ηc2

(t1)− µαηm(t⋆ − t1),

= σr(t1)− ẏr(t1)− ηc2
(t1)− µaηm(t⋆ − t1), µaηm > 0, (5.82)

for t⋆ ∈ [t1, t2].
Case II :

It is now studied the behavior of σr if input u(t) = u∗
c2

(t) is applied on some time
interval t ∈ (t1, t2) but not at time instants t1 and t2. It follows that σc2

(t) > 0, σc2
(t1) = 0,

σc2
(t2) = 0, and σc2

(t⋆) ≥ 0 with t⋆ ∈ [t1, t2] hold. According to (5.39) it is

σr(t
⋆) = ẏr(t

⋆)− αer(t⋆)− β|er(t⋆)|γsgn(er(t
⋆)), (5.83)

for t⋆ ∈ [t1, t2]. As σc2
(t⋆) = −ηc2

(t⋆)− ẏr(t⋆) ≥ 0 holds it follows from (5.35), (5.36), and
(5.37) that

ẏr(t
⋆) ≤ −ηc2

(t⋆) < −ηm < 0, ηm > 0, (5.84)

holds. Considering ẏr(t
⋆) < 0 and σ(t⋆) > 0 it can be seen from (5.83) that er(t

⋆) < 0
holds which leads to

σr(t
⋆) = ẏr(t

⋆)− αer(t⋆) + β|er(t⋆)|γ . (5.85)
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From (5.84), (5.85), and er = w − yr it follows that

σr(t
⋆) ≤ −ηc2

(t⋆)− αw + αyr(t1) + β|er(t1)|γ

+

∫ t⋆

t1
αẏr(τ)dτ +

∫ t⋆

t1
γβẏr(τ)|er(τ)|γ−1dτ, (5.86)

holds for any time t⋆ ∈ [t1, t2]. Substituting

α =
η̇M
ηm

+ µα ≥
η̇c2

(t)

ẏr(t)
+ µα, µα > 0, (5.87)

in (5.86) and considering ẏr(t
⋆) ≤ −ηm < 0 as well as β > 0, γ > 0 leads to

σr(t
⋆) ≤ −αw + αyr(t1) + β|er(t1)|γ − ηc2

(t1)− µαηm(t⋆ − t1). (5.88)

As σc2
(t1) = −ηc2

(t1) − ẏr(t1) = 0 holds it follows −ηc2
(t1) = ẏr(t1). Replacing −ηc2

(t1)
by ẏr(t1) in (5.88) and considering the definition of σr from (5.85) yields

σr(t
⋆) ≤ σr(t1)− µaηm(t⋆ − t1), µaηm > 0, (5.89)

for t⋆ ∈ [t1, t2].
Step 4: Occurrence of Case I and Case II of Step 3. It will be shown that Case I

of Step 3 can only occur if u = u∗
c2

is applied first, meaning that once input u = u∗
r or

u = u∗
c1

has been applied Case I of Step 3 can not occur anymore.
According to Algorithm 3 input u = u∗

r or u = u∗
c1

are only applied if σc2
= −ηc2

−ẏr ≤
0 holds. Consider u = u∗

r or u = u∗
c1

to be applied before the input switches to u = u∗
c2

.
That means that there exists a time instant t1 with σc2

(t1) = −ηc2
(t1) − ẏr(t1) = 0 just

before σc2
switches to a positive number inducing the switch of the input to u = u∗

c2
. As

σc2
(t1) = 0 holds it is Case II that has to be considered and not Case I which would

require σc2
(t1) > 0.

Step 5: Rate of decrease. Let µc1
≥ µr and σr(t) ≥ ǫr > 0 hold for some interval

t ∈ [t1, t2]. From (5.65), (5.74), (5.82), (5.89), and Step 4 it follows that σr(t) decreases
to ǫr in finite-time according to

σr(t) ≤ κ− ̺(t− t1), (5.90)

κ = max
{

σr(t1), σr(t1)− ẏr(t1)− ηc2
(t1)

}

,

̺ = min

{

µr√
2
, µaηm

}

,

with t ∈ [t1, t2].

Lemma 10.

Consider control of system (5.28)–(5.29) based on Algorithm 3 with µc2
chosen as µc2

≥ µr.
Let σr(t) ≤ −ǫr < 0 hold for t ∈ [t1, t2] where ǫr > 0 is the user-defined smoothing boundary
layer width. It follows that σr(t) increases to −ǫr in finite-time according to

σr(t) ≥ κ+ ̺(t− t1), (5.91)

κ = min
{

σr(t1), σr(t1)− σc1
(t1)

}

, σc1
(t1) = ẏr(t1)− ηc1

(t1),
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̺ = min

{

µr√
2
, µaηm

}

,

with t ∈ [t1, t2].

Proof. The proof can be found in Appendix D. It is similar to the proof of Lemma 9.

Lemma 11.

Consider control of system (5.28)–(5.29) based on Algorithm 3. Let

∀t : max
{

σc1
(t), σc2

(t)
}

≤ ζ, (5.92)

σc1
(t) = ẏr(t)− ηc1

(t), σc2
(t) = −ẏr(t)− ηc2

(t), (5.93)

hold for t ≥ tf and let µci
≥ µr hold. Then |σr(t)| is finite-time stable with respect to the

domain ǫr + ζ with ǫr > 0 being the user-defined smoothing boundary layer width. More
specifically |σr(t⋆)| decreases as

|σr(t⋆)| ≤ |σr(t1)| − ̺(t⋆ − t1), ̺ = min

{

µr√
2
, µaηm

}

, (5.94)

if |σr(t⋆)| ≥ ǫr + ζ with t⋆ ∈ [t1, t2] and t1 ≥ tf .

Proof. Let condition (5.92) hold for t ≥ tf . It follows from Lemma 9 and 10 that a finite-
time instant tf2 ≥ tf exists for which |σr(tf2)| = ǫr holds. Then according to Lemma 9
and 10 and condition (5.92) it follows that |σr(t)| is captured within the domain ǫr + ζ for
t ≥ tf2. Sliding variable |σr(t)| is finite-time stable with respect to the domain ǫr + ζ for
t ≥ tf .

Theorem 12 (Boundedness of sliding variable related to Algorithm 3).
Consider control of system (5.28)–(5.29) based on Algorithm 3. Let the controller param-
eters be chosen as µci

≥ µr. There exists a finite-time instant tf so that

|σr(t)| ≤ ǫr + ǫc,M , ǫc,M = max{ǫc1
, ǫc2
}, (5.95)

holds for t ≥ tf with ǫr, ǫc1
, ǫc2

> 0 being the user-defined smoothing boundary layers.
Assume

|σr(t⋆)| > ǫr + ǫc,M , (5.96)

to hold at some time instant t⋆. Further assume |σr(t⋆)| ≤ σr,M and σci
(t⋆) ≤ ǫci

to hold
at t⋆. It can be stated that (5.95) is achieved for tf = t⋆ + τ at the latest with

τ =
σr,M − (ǫr + ǫc,M)

̺
, ̺ = min

{

µr√
2
, µaηm

}

. (5.97)

If ∀ci : σci
(t0) ≤ ǫci

holds initially then t⋆ = t0.

Proof. From Lemma 7 it is known that

σci
(t) ≤ ǫci

, (5.98)
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holds for t ≥ t⋆ with t⋆ being some finite-time instant. Following Lemma 11 the upper
bound of σci

as stated in (5.92) can be defined based on (5.98) which leads to

ζ = ǫc,M = max{ǫc1
, ǫc2
}. (5.99)

It follows from Lemma 11 that |σr| remains in the domain ǫr + ǫc,M after a finite-time.
The statement (5.97) about τ is achieved by rearranging (5.94).

Lemma 13.

Assume the constraints to be satisfied according to Theorem 8 i. e.

− lc2
(t) ≤ ẏr(t) ≤ lc1

(t), (5.100)

holds for t ≥ tf . Let the sliding variable σr be bounded as |σr(t)| ≤ σr,M for t ≥ tf . For
t ≥ tf the tracking error |er(t)| is finite-time stable with respect to a domain er,M > 0.
The domain is obtained as the solution of

αer,M + βeγr,M = σr,M +
µe√

2
, (5.101)

with α, β, and γ known from the sliding manifold (5.39) where α is chosen as stated in
(5.41). Quantity µe may be selected as

0 < µe ≤ ηm
√

2. (5.102)

More specifically |er(t)| decreases as

d|er(t)|
dt

≤ − µe√
2
, (5.103)

for t ≥ tf if |er(t)| > er,M holds.

Proof. Let some function V (t) be defined as V (t) = |er(t)|. To make |er(t)| finite-time
stable it is desired to achieve

V̇ = sgn (er) ėr ≤ −
µe√

2
, µe > 0, (5.104)

for er 6= 0. Based on the definition of the sliding variable σr from (5.39) it can be stated
that

− ẏr = ėr = −σr − αer − β|er|γsgn(er), (5.105)

holds. Substituting (5.105) in (5.104) gives

α|er|+ β|er|γ = αer + β|er|γ ≥
µe√

2
− σr, (5.106)

for er > 0 and

α|er |+ β|er|γ = −αer + β|er|γ ≥
µe√

2
+ σr. (5.107)
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for er < 0. As

µe√
2

+ σr,M ≥
µe√

2
− σr,

µe√
2

+ σr,M ≥
µe√

2
+ σr, (5.108)

hold true, the equations (5.106) and (5.107) can be achieved for all |er| ≥ er,M with er,M
being the solution of

α|er,M |+ β|er,M |γ =
µe√

2
+ σr,M . (5.109)

As a result |er| is finite-time stable with respect to the domain er,M .
The rate of decrease according to (5.104) is restricted as it depends on the constrained

variable ėr = −ẏr. The bounds of the constrained variable are given by (5.100).
The largest and smallest values of ẏr that are obtainable in presence of the constraints

can be seen if σci
is rearranged according to

σci
+ ηci

= siẏr ≤ lci
. (5.110)

As stated in the proof of Theorem 8 satisfaction of the constraints (5.100) is achieved by
enforcing

σci
(t) ≤ ǫci

, (5.111)

to hold for t ≥ tf . Consequently, in presence of the constraints the maximum value σci

can have is ǫci
> 0. Quantity ηci

is known to be lower bounded by ηm as stated in (5.36)
and (5.37), so that the values of ẏr that surely can be achieved may be in the range of

siẏr = σci
+ ηci

≤ ǫci
+ ηm. (5.112)

However, from Algorithm 3 it is known that ẏr is only not constrained by the controller if
it is in the range of −ηc2

(t) ≤ ẏr(t) ≤ ηc1
(t). Consequently,

ẏr ∈ [−a,+a], a , ηm, ηm < min
t
{ηc1

(t), ηc2
(t)}, (5.113)

describes a range of values of ẏr = −ėr that can be achieved by (5.104) for sure as for
that specific range the values of ẏr are guaranteed to be not constrained by the controller.
Rewriting (5.104) as

− sgn(er)ẏr ≤ −
µe√

2
, (5.114)

it follows that µe can be selected as stated in (5.102). Consequently, the rate of decrease
is suitably described by (5.103).

Theorem 14 (Convergence of tracking error related to Algorithm 3).
Consider control of system (5.28)–(5.29) based on Algorithm 3. Let

∀ci : σci
(t0) ≤ ǫci

, (5.115)

and

|σr(t0)| ≤ σr,M , (5.116)
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hold initially and let ηci
be selected as

ǫci
≤ lci

(t)− ηci
(t). (5.117)

Further assume µci
to be chosen as µci

≥ µr. There exists a finite-time tf for which the
tracking error |er| remains in the domain er,M i. e.

|er(t)| ≤ er,M , (5.118)

holds for t ≥ tf . The domain er,M is given by the solution of

αer,M + βeγr,M = ǫr + ǫc,M +
µe√

2
, 0 < µe ≤ ηm

√
2, (5.119)

where ǫc,M is related to the smoothing boundary layer widths according to

ǫc,M = max{ǫc1
, ǫc2
}. (5.120)

The time instant tf is achieved at

tf = t0 + τ1 + τ2, (5.121)

τ1 =
σr,M − (ǫr + ǫc,M)

̺
, ̺ = min

{

µr√
2
, µaηm

}

, (5.122)

τ2 = (er,M⋆ − er,M )

√
2

µe
, (5.123)

at the latest where er,M⋆ solves

αer,M⋆ + βeγr,M⋆ = ǫr + ǫc,M + lc(t0 + τ1), (5.124)

with lc being defined by

lc(t) = max{l1(t), l2(t)}. (5.125)

If lc(t0 + τ1) is not known beforehand er,M⋆ can also be obtained as the solution of

αer,M⋆ + βeγr,M⋆ = ǫr + ǫc,M + lM , ∀t : lc(t) ≤ lM . (5.126)

In addition to the constraints defined by lci
the inequality

|ẏr(t)| ≤ ǫr + ǫc,M + αer,M + βeγr,M , (5.127)

holds for t ≥ tf .

Proof. As (5.115), (5.116), and µci
≥ µr hold Theorem 12 can be applied from which

follows that

|σr(t)| ≤ ǫr + ǫc,M , (5.128)

is achieved for t ≥ t0 + τ1 at the latest with τ1 as stated in (5.122). Due to (5.115) and
(5.117) it follows from Theorem 8 that the constraints are satisfied from the beginning i. e.

− lc2
(t) ≤ ẏr(t) ≤ lc1

(t), (5.129)
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holds for t ≥ t0. It follows from Lemma 13 that for t ≥ t0 + τ1 the tracking error |er(t)| is
finite-time stable with respect to the domain er,M given by the solution of (5.119).

In the following it is shown that |er(t0 + τ1)| is bounded as

|er(t0 + τ1)| ≤ er,M⋆ , (5.130)

where er,M⋆ may be taken as the solution of any of the two equations: (5.124) or (5.126).
Consider σr to be rearranged as

−αer(t0 + τ1)− β|er(t0 + τ1)|γsgn(er(t0 + τ1)) = σr(t0 + τ1)− ẏr(t0 + τ1), (5.131)

according to its definition stated in (5.39). Multiplying (5.131) by minus one gives

αer(t0 + τ1) + β|er(t0 + τ1)|γsgn(er(t0 + τ1)) = −σr(t0 + τ1) + ẏr(t0 + τ1). (5.132)

From (5.131) statement

−αer(t0 + τ1)− β|er(t0 + τ1)|γsgn(er(t0 + τ1)) ≤ ǫr + ǫc,M + |ẏr(t0 + τ1)|, (5.133)

and from (5.132) statement

αer(t0 + τ1) + β|er(t0 + τ1)|γsgn(er(t0 + τ1)) ≤ ǫr + ǫc,M + |ẏr(t0 + τ1)|, (5.134)

may be concluded, where |σr(t0 + τ1)| ≤ ǫr + ǫc,M is known to hold due to (5.128). Con-
sidering (5.133) for er < 0 and (5.134) for er ≥ 0 both times yields

α|er(t0 + τ1)|+ β|er(t0 + τ1)|γ ≤ ǫr + ǫc,M + |ẏr(t0 + τ1)|. (5.135)

Consequently, |er(t0 + τ1)| is bounded as stated in (5.130).
It was already shown that |er(t)| is finite-time stable with respect to the domain er,M

for t ≥ t0 + τ1. In the following a time span τ2 is specified so that (5.118) holds for
t ≥ t0 + τ1 + τ2 at the latest. With the result of (5.130) the missing time span τ2 can be
determined. From Lemma 13 it follows that τ2 is obtained as

τ2 =
(
er,M⋆ − er,M

)
√

2

µe
≥
(
|er(t0 + τ1)| − er,M

)
√

2

µe
, (5.136)

by integrating (5.103).
The remaining statement (5.127) follows by rearranging σr according to

ẏr(t) = σr(t) + αer(t) + β|er(t)|γsgn(er(t)). (5.137)

Applying the triangle inequality on (5.137) and considering that er(t) is bounded by er,M
for t ≥ tf yields

|ẏr(t)| = |σr(t) + αer(t) + β|er(t)|γsgn(er(t))| ≤ ǫr + ǫc,M + αer,M + βeγr,M , (5.138)

with t ≥ tf .
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Corollary 15 (Domain of attraction related to Algorithm 3).
Let

∀ci : σci
(t0) ≤ ǫci

, (5.139)

hold initially and let ηci
be selected as

ǫci
≤ lci

(t)− ηci
(t). (5.140)

Suppose µci
to be chosen as µci

≥ µr. Consider a domain of attraction to be specified as

SI = {Y0 : − l2(t) ≤ ẏr(t,Y0) ≤ l1(t) ∧ |w − yr(t⋆,Y0)| ≤ er,M}, (5.141)

Y0 = {yr,0, ẏr,0},

where yr,0 = yr(t0), ẏr,0 = ẏr(t0) denote initial values and yr(t,Y0), ẏr(t,Y0) denote
trajectories initiated by those initial values. Further, t⋆ is specified as t⋆ ≥ tf with tf being
a finite-time instant and er,M is defined by the solution of

αer,M + βeγr,M = ǫr + ǫc,M +
µe√

2
, 0 < µe ≤ ηm

√
2, (5.142)

ǫc,M = max{ǫc1
, ǫc2
}.

Consider system (5.28)–(5.29) to be controlled based on Algorithm 3. A maximum possible
domain of attraction according to (5.141) is achieved.

Proof. The desired goal

−l2(t) ≤ ẏr(t,Y0) ≤ l1(t), |w − yr(t⋆,Y0)| ≤ er,M , (5.143)

can be achieved by satisfying the constraints (Theorem 8) and reaching the domain er,M
of the tracking error in finite-time (Theorem 14). From Theorem 8 and 14 it is known that
the only restrictions that are made with respect to yr,0, ẏr,0 are (5.115)–(5.117) which can
be reformulated as

∀t, ci : σci
(t0) = −ηci

(t0) + sci
ẏr(t0) ≤ ǫci

≤ lci
(t)− ηci

(t), (5.144)

based on (5.35) and

|σr(t0)| = |ẏr(t0)− α(w − yr(t0))− β|w − yr(t0)|γsgn(w − yr(t0))| ≤ σr,M , (5.145)

based on (5.39). Related to (5.145) it is required that some finite σr,M > 0 exists that
solves the inequality. Such a σr,M can always be found as |σr(t0)| is just the initial value
of |σr| which is always finite. Consequently, yr,0 and ẏr,0 are not restricted by (5.145).
Considering (5.144) it follows

sci
ẏr(t0) ≤ lci

(t0) ⇔ −lc2
(t0) ≤ ẏr(t0) ≤ lc1

(t0). (5.146)

Consequently, only ẏr(t0) is restricted. But it is restricted to the maximal possible domain.
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xca

yca

q1

q2
d2

d1

Fy

τ2

τ1

Figure 5.4: Two-link robot with rotary joints. The joint angles are denoted by q1 and
q2, the link length are given by d1 and d2, the input torques are symbolized by τ1 and τ2,
and the unknown payload is denoted as Fy. The input torques are highlighted in blue and
the unknown payload is shown in red.

5.1.5 Application Example

In this section the proposed constrained controller is applied to a robotic system. The
robot is a two-link robot with rotary joints as shown in Fig. 5.4. The goal is to achieve
velocity-constrained point to point control of the robot. In particular, the end effector
should be driven to different way points while the angular velocities of the joints are
restricted. As shown in Siciliano et al. (2010) the dynamics of the considered two-link
robot can be derived based on Lagrange equations of the second kind. Following Siciliano
et al. (2010, Chap. 7) the dynamic equation

B(q)q̈ + C(q, q̇)q̇ + fvq̇ + fssgn(q̇) + g(q) = τ + ξ(q, Fy), (5.147)

is obtained where B(q) describes the moments of inertia, C(q, q̇) accounts for the cen-
trifugal and Coriolis effects, fv and fs represent coefficients of static and viscous friction
torques, g(q) are the moments generated by earth gravity, τ are the actuator torques, and
ξ(q, Fy) are the moments generated by an external force Fy applied to the end effector.
The related terms are given by

B(q) =

[

b1 + b2cos(q2) b3 + b4cos(q2)
b3 + b4cos(q2) b5

]

, C(q, q̇) = −c1sin(q2)

[

q̇1 q̇1 + q̇2

−q̇1 0

]

,

g(q) =

[

g1cos(q1) + g2cos(q1 + q2)
g2cos(q1 + q2)

]

, ff (q̇) = fvq̇ + fssgn(q̇),

ξ(q, Fy) = Fy

[

d1cos(q1) + d2cos(q1 + q2)
d2cos(q1 + q2)

]

,

in detail. The model parameters are summarized in Table 5.1. The joint angles, angular
velocities, and actuator torques are defined as

q =

[

q1

q2

]

, q̇ =

[

q̇1

q̇2

]

, τ =

[

τ1

τ2

]

, (5.148)
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Table 5.1: Parameters of two-link robot according to Siciliano et al. (2010)

b1 131.5 [kg m2/rad] b2 6.0 [kg m2/rad]

b3 13.0 [kg m2/rad] b4 3.0 [kg m2/rad]

b5 112.0 [kg m2/rad] c1 3.0 [kg m2/rad2]

g1 309.0 [kg m2/s2] g2 98.1 [kg m2/s2]

fv 0.2 [kg m2 (s rad)−1] fs 0.4 [kg m2/s2]

d1 0.6 [m] d2 0.4 [m]

and the position of the end effector in the Cartesian domain is given by

hca(q) =

[

xca
yca

]

=

[

d1cos(q1) + d2cos(q1 + q2)
d1sin(q1) + d2sin(q1 + q2)

]

. (5.149)

The control goal is to move the end effector from an initial waypoint A (WP-A) to
a waypoint C (WP-C) via an interim waypoint B (WP-B). During the movement the
angular velocities of the joints are restricted. In addition a pick and place problem is
considered. At WP-B a payload of 80 [kg] is picked up simulated by an external force
Fy = 80 [kg] × 9.81 [m/s2]. The goal is to move the robot to WP-C while carrying the
payload. The external force is unknown to the controller same as the friction coefficients
fv and fs of the robot.

The Cartesian coordinates of the waypoints and their corresponding joint angles are
shown in Table 5.2. The initial angular velocities of the links are zero i. e. q̇1(t0) = q̇2(t0) =
0 [rad/s]. The constraints of the angular velocities depend on time and are introduced as
follows. Let lci,j define the i-th constraint of the angular velocity q̇j i. e.

−lc2,j ≤ q̇j ≤ lc1,j. (5.150)

The bound lci,j of the constraints is given by a quadratic function

lci,j(qj) =







φci,j(qj) if φci,j(qj) ≤ cc,
cc if φci,j(qj) > cc,

(5.151)

φci,j(qj) = ac(wj − qj)2 + bc, 0 < bc ≤ cc, i, j ∈ {1, 2},

where wj denotes the reference angle of joint angle qj in radiant. Consequently, the bound
lci,j > 0 decreases quadratically dependent on the tracking error wj − qj. Based on cc an
upper limit and based on bc a lower limit of lci,j is defined. For the considered example

Table 5.2: Reference values in Cartesian coordinates (xca, yca) and joint angles (w1, w2)

xca [m] yca [m] w1 [◦] w2 [◦]

WP-A 0.900 0.100 26.511 −51.318

WP-B −0.700 0.500 168.873 −62.720

WP-C 0.100 0.400 117.562 −136.817
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the constants ac, bc, cc in (5.151) are given as ac = 0.6 [1/(s rad)], bc = 10×2π/360 [rad/s],
and cc = 70× 2π/360 [rad/s].

To achieve the desired control goals the actuator torques τ have to be suitably selected.
Therefore, the following MIMO controller

τ = C(q, q̇)q̇ + g(q) +B(q)ν, (5.152)

with auxiliary control inputs

ν =
[

ν1 ν2

]T
, (5.153)

is introduced. Substituting (5.152) in (5.147) gives the input-output dynamics

q̈1 = Ψ1(q, q̇, Fy) + Γ1ν1, Γ1 = 1, (5.154)

and

q̈2 = Ψ2(q, q̇, Fy) + Γ2ν2, Γ2 = 1, (5.155)

where Ψ1 and Ψ2 denote uncertainties related to the unknown friction terms fs, fv, and
the unknown external disturbance ξ. The input-output dynamics (5.154) and (5.155) have
both a relative degree of two with respect to the control variable qj and the introduced
auxiliary control input νj. The uncertainty bound ΨM,j defined by

|Ψj | ≤ ΨM,j, j ∈ {1, 2}, (5.156)

is assumed to be finite. According to (5.154)-(5.155) quantity Γj equals one. As a conse-
quence, suitable values of the bounds Γm,j and ΓM,j defined by

0 < Γm,j ≤ Γj = 1 ≤ ΓM,j, j ∈ {1, 2}, (5.157)

are known and can be selected based on (5.157). As the input-output dynamics have rela-
tive degree two and the uncertainty bounds are finite the proposed constrained controller
can be applied. The proposed controller guarantees that set-point tracking of qj can be
achieved while constraints are imposed on the angular velocity q̇j. Consequently, the pro-
posed constrained controller solves the constrained control problem by applying suitable
control inputs νj . The auxiliary control inputs νj that the constrained controller provides
are defined by Algorithm 3. To apply the algorithm the following auxiliary functions and
sliding variables are introduced. According to (5.36) the auxiliary functions ηci,j(t) are
stated as

∀t : 0 < ηm,ci,j < ηci,j(t) < lci,j(t), (5.158)

and the quantities ηm,j and η̇M,j related to the auxiliary functions are defined by

0 < ηm,j < min{ηm,c1,j, ηm,c2,j}, (5.159)

and

0 ≤ max
t

{
|η̇c1,j(t)|, |η̇c2,j(t)|

}
< η̇M,j. (5.160)
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In accordance to (5.35) the sliding variable related to the sliding surface σci,j = 0 is defined
as

σci,j = −ηci,j + sci
q̇j, (5.161)

and based on (5.39) the sliding variable related to the sliding surface σr,j = 0 is introduced
as

σr,j = q̇j − αjer,j − βj |er,j |γj sgn(er,j). (5.162)

In (5.162) the quantities αj and er,j are defined by

αj =
η̇M,j

ηm,j
+ µα,j , er,j = wj − qj. (5.163)

The quantities βj > 0 and 0 < γj < 1 are tuning parameters of the sliding surface σr,j = 0
and the parameter µα,j > 0 is user-defined. Following Algorithm 3 the auxiliary control
inputs are given by

νj(t) =







u∗
r,j(t) if ∀i : σci,j(t) ≤ 0,

u∗
ci,j

(t) if ∃i : σci,j(t) > 0,
(5.164)

with u∗
r,j and u∗

ci,j
being defined as

u∗
r,j =







−sat(
σr,j

ǫr,j
)×

(

µr,j+ΨM,j

√
2

Γm,j

√
2

+
αj+βjγj |er,j |γj −1

Γm,j
|q̇j|
)

, if q̇jsgn(σr,j) ≥ 0,

−sat(
σr,j

ǫr,j
)×

(

µr,j+ΨM,j

√
2

Γm,j

√
2
− αj+βjγj |er,j |γj −1

ΓM,j
|q̇j|
)

, if q̇jsgn(σr,j) < 0,

and

u∗
ci,j = u∗

r,j − sci
sat

(

σci,j

ǫci,j

)

×



µci,j + ΨM,j

√
2

Γm,j
√

2
+
|η̇ci,j |
Γm,j

+ sci
sat

(

σci,j

ǫci,j

)

u∗
r,j +

αj + βjγj|er,j |γj−1

Γm,j
|q̇j |


 .

The smoothing boundary layer widths ǫr,j and ǫci,j may be chosen greater zero same as
the tuning-parameters µr,j and µci,j.

In the following a valid selection of the controller parameters is discussed. The auxil-
iary function ηci,j(t) has to be greater zero and smaller than lci,j(t) and is chosen as

ηci,j(t) = lci,j(t)− ǫci,j , (5.165)

where it is assumed that the smoothing boundary layer width ǫci,j > 0 is sufficient small
so that lci,j(t) ≥ bc = 0.1745 > ǫci,j holds. The choice of the upper bound η̇M,j defined by
(5.160) is discussed next. Based on (5.151) the time derivative of ηci,j is obtained as

|η̇ci,j| = |l̇ci,j| =







|φ̇ci,j|, if φci,j ≤ cc,
0, else,

(5.166)
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Table 5.3: Controller parameters related to control input νj (parameterization of both
controllers identical)

µr,j 75 µci,j 75 µa,j 35 βj 5 γj 0.8 ǫr,j 0.007

ǫci,j 0.007 η̇M,j 1.94 ηm,j 0.166 Ψ̂M,j 10 ΓM,j 1 Γm,j 1

where |φ̇ci,j| is given by

|φ̇ci,j| = |
dφci,j

dqj
q̇j| = | − 2ac(wj − qj)q̇j | = 2ac|wj − qj||q̇j |. (5.167)

According to (5.151) the terms |wj − qj| and |q̇j | of (5.167) become maximal for

max{|wj − qj|} =

√

cc − bc
ac

, max{|q̇j |} = cc. (5.168)

By substituting (5.168) in (5.167) it follows that the upper bound η̇M,j can be selected in
accordance to

∀i, t : |η̇ci,j(t)| ≤ 2accc

√

cc − bc
ac

= 1.9368 < η̇M,j. (5.169)

The choice of the lower bound ηm,j defined by (5.159) is discussed as follows. From (5.151)
it is known that the auxiliary function ηci,j is bounded as

∀i : ηm,j < 0.1745 = bc − ǫci,j ≤ lci,j − ǫci,j = ηci,j, (5.170)

so that ηm,j can be obtained from (5.170). The parameter αj is chosen based on (5.163). As
stated in (5.157) the uncertainty bounds Γm,j and ΓM,j are known to be Γm,j = ΓM,j = 1.
The uncertainty bound ΨM,j is assumed to be finite. In the field of sliding mode control it
is typically to assume that the uncertainty bounds are finite (Shtessel et al., 2014). Based
on that assumption the bound ΨM,j can be increased by trial and error until the controller

provides the desired convergence. For the considered example Ψ̂M,j = 10 is assumed to
be a suitable choice of ΨM,j. In a post-processing step it will be shown by simulation that

Ψ̂M,j is indeed a sufficient upper bound of |Ψj(q, q̇, Fy)|. The remaining controller param-
eters µr,j, µci,j, µa, βj , γj are chosen based on Theorem 14 to achieve desired convergence
of the tracking error. Finally, the controller parameters are summarized in Table 5.3.

In the following it is shown that for the chosen controller parameters it can be guar-
anteed that the constrained point to point robot control problem is solved. Moreover,
the bounds of the tracking error can be quantified and a maximum time interval that
is required for the error convergence can be stated as well. This allows to determine a
maximum time interval that the controller requires to solve the control problem without
conducting any simulation at all. The following proposition considers the movement of the
end effector from WP-A to WP-B. The remaining tracking error of the end effector with
respect to WP-B is determined and the maximum time interval is stated that is required
to guarantee that the tracking error will be in the given bounds.

Proposition 16.

Consider the robot to be initially located at WP-A with the configuration stated in Table 5.2
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and with zero angular velocities. The control goal is to move the end effector from WP-A
to WP-B without violation of the constraints. Let the bounds lci,j be given by (5.151) with
ac = 0.6 [1/(s rad)], bc = 10 × 2π/360 [rad/s], cc = 70 × 2π/360 [rad/s], let the auxiliary
functions ηci,j be defined as stated in (5.165), and let the controller parameters be chosen
as shown in Table 5.3 assuming that Ψ̂M,j is sufficient large to be an upper bound of |Ψj |.
By applying the MIMO controller (5.152) the following can be stated:

• The reference angle w1 = 168.873 [°] of WP-B is reached after 34.2 [s] at the latest
with a remaining tracking error in the range of ±0.0122 [°].

• The reference angle w2 = −62.720 [°] of WP-B is reached after 14.3 [s] at the latest
with a remaining tracking error in the range of ±0.0122 [°].

• The constraints defined by (5.151) are never violated and after 34.2 [s] the angular
velocities are bounded as |q̇j| ≤ 1.71 [°/s].

Proof.
Consideration of tracking performance: The initial values of the sliding variables are
bounded as

|σr,1(t0)| = |q̇1(t0)− α1er,1(t0)− β1|er,1(t0)|γ1sgn(er,1(t0))| ≤ 127 , σr,M,1, (5.171)

and

|σr,2(t0)| = |q̇2(t0)− α2er,2(t0)− β2|er,2(t0)|γ2sgn(er,2(t0))| ≤ 11 , σr,M,2. (5.172)

Based on Theorem 14 stability of the tracking error with respect to the domain

|er,j(t)| ≤ er,M,j, (5.173)

can be achieved for t ≥ tf,j and tf,j = t0 + τ1,j + τ2,j being finite. Let µe,j be chosen as
µe,j = ηm,j

√
2/100 it follows from Theorem 14 that er,M,j is given by the solution of

αjer,M,j + βje
γj

r,M,j = ǫr,j + ǫc,M,j +
µe,j√

2
, 0 < µe,j ≤ ηm,j

√
2, (5.174)

ǫc,M,j = max{ǫc1,j, ǫc2,j},

which yields er,M,j = 0.0122 [°] for j = 1 and j = 2. The time period τ1,j can be calculated
as

τ1,j =
σr,M,j − (ǫr,j + ǫc,M,j)

̺j
, ̺j = min

{

µr,j√
2
, µa,jηm,j

}

, (5.175)

leading to τ1,1 = 21.86 [s] and τ1,2 = 1.90 [s]. Time period τ2,j is given by

τ2,j = (er,M⋆,j − er,M,j)

√
2

µe,j
, (5.176)

where er,M⋆,j is obtained from

αjer,M⋆,j + βje
γj

r,M⋆,j = ǫr,j + ǫc,M,j + lM . (5.177)
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From (5.151) it is known that lM = 70× 2π/360 [rad/s] holds. Then er,M⋆,j is obtained as
er,M⋆,j = 1.2321 [°] and τ2,j is τ2,j = 12.31 [s].
Achievement of constrained control: As the initial angular velocities are zero it is σci,j(t0) <
0. According to (5.165) the auxiliary function is chosen as

ηci,j = lci,j − ǫci,j. (5.178)

It follows from Theorem 8 that the constraints are always satisfied. The statement |q̇j | ≤
1.71 [°/s] is obtained from (5.127) of Theorem 14 which states

|q̇j(t)| ≤ ǫr,j + ǫc,M,j + αjer,M,j + βje
γj

r,M,j = 1.7034 [°/s], (5.179)

for t ≥ tf,j.

In Proposition 16 the movement of the end effector from WP-A to WP-B is consid-
ered. In the next proposition the movement from WP-B to WP-C is studied. The initial
conditions of the robot at WP-B are defined by the results of Proposition 16. In partic-
ular, the error bound provided by Proposition 16 defines the initial location of the end
effector around WP-B and the bounds of the constrained variable provided by Proposition
16 define the initial values of the angular velocities.

Proposition 17.

Consider the robot to be initially located in the near of WP-B according to

|168.873 [°] − q1(t0)| ≤ 0.0122 [°], | − 62.750 [°] − q2(t0)| ≤ 0.0122 [°]. (5.180)

Let the initial angular velocities be bounded as

|q̇j(t0)| ≤ 1.71 [°/s]. (5.181)

The control goal is to move the end effector from WP-B to WP-C without violation of
the constraints. Let the bounds lci,j be given by (5.151) with ac = 0.6 [1/(s rad)], bc =
10 × 2π/360 [rad/s], cc = 70 × 2π/360 [rad/s], let the auxiliary functions ηci,j be defined
as stated in (5.165), and let the controller parameters be chosen as shown in Table 5.3
assuming that Ψ̂M,j is sufficient large to be an upper bound of |Ψj|. By applying the MIMO
controller (5.152) the following can be stated:

• The reference angle w1 = 117.562 [°] of WP-C is reached after 20.5 [s] at the latest
with a remaining tracking error in the range of ±0.0122 [°].

• The reference angle w2 = −136.817 [°] of WP-C is reached after 24.0 [s] at the latest
with a remaining tracking error in the range of ±0.0122 [°].

• The constraints defined by (5.151) are never violated and after 24.0 [s] the angular
velocities are bounded as |q̇j| ≤ 1.71 [°/s].

Proof.
Consideration of tracking performance: According to Table 5.2 the initial tracking errors
are bounded as

|er,1(t0)| ≤ |117.562 [°]− 168.873 [°]|+ 0.0122 [°] = 0.8958 [rad], (5.182)
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|er,2(t0)| ≤ | − 136.817 [°]− 62.720 [°]|+ 0.0122 [°] = 1.2934 [rad], (5.183)

leading to

|σr,1(t0)| ≤ |q̇1(t0)|+ α1|er,1(t0)|+ β1|er,1(t0)|γ1 ≤ 47 , σr,M,1, (5.184)

|σr,2(t0)| ≤ |q̇2(t0)|+ α2|er,2(t0)|+ β2|er,2(t0)|γ2 ≤ 67 , σr,M,2. (5.185)

Then according to Theorem 14

|er,j(t)| ≤ er,M,j, (5.186)

can be achieved for t ≥ t0 + τ1,j + τ2,j with µe,j = ηm,j
√

2/100, er,M,j = 0.0122 [°], τ1,1 =
8.1 [s], τ1,2 = 11.6 [s], and τ2,j = 12.4 [s].
Achievement of constrained control: From Theorem 8 it is known that

σci,j(t0) = −ηci,j(t0) + sci
q̇j(t0) ≤ ǫci,j, (5.187)

has to hold to guarantee the constraints to be always satisfied. From (5.151) and (5.165)
it follows that

ηci,1(t0) ≥ 37
2π

360
[rad/s]− ǫci,1,

= ac
(

(|117.562 − 168.873| − 0.0122)
2π

360
[rad]

)2
+ bc − ǫci,1, (5.188)

ηci,2(t0) ≥ 67
2π

360
[rad/s]− ǫci,2,

= ac
(

(| − 136.817 − 62.720| − 0.0122)
2π

360
[rad]

)2
+ bc − ǫci,2, (5.189)

holds. Multiplying (5.188) and (5.189) by minus one and adding sci
q̇1(t0) respectively

sci
q̇2(t0) yields

σci,1(t0) = −ηci,1(t0) + sci
q̇1(t0) ≤ −37

2π

360
[rad/s] + ǫci,1 + sci

q̇1(t0), (5.190)

σci,2(t0) = −ηci,2(t0) + sci
q̇2(t0) ≤ −67

2π

360
[rad/s] + ǫci,2 + sci

q̇2(t0). (5.191)

According to (5.181) it is known that |q̇j(t0)| ≤ 1.71 [°/s] holds so that from (5.190) and
(5.191) it can be concluded that (5.187) is achieved.

The remaining statement that |q̇j | is bounded by 1.71 [°/s] after 24 [s] is obtained from
(5.127) of Theorem 14 stating

|q̇j(t)| ≤ ǫr,j + ǫc,M,j + αjer,M,j + βje
γj

r,M,j = 1.7034 [°/s], (5.192)

for t ≥ tf,j.

By considering the results of Propositions 16 and 17 it can be guaranteed that the
constrained robot control problem is solved in finite time. From Proposition 16 it fol-
lows that the movement of the end effector from WP-A to WP-B takes a maximum of
34.2 [s]. The remaining tracking error with respect to WP-B is in the range of ±0.0122 [°].
Considering the end effector to be located around WP-B with an error of ±0.0122 [°] it
follows from Proposition 17 that the end effector reaches WP-C within 24.0 [s]. After the
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(a) (b)

(c)

Figure 5.5: Trajectory of the end effector in the Cartesian domain and visualization of
the robot configuration (joint angles) at the waypoints. (a) At WP-A. (b) At WP-B. (b)
At WP-C.

24.0 [s] the tracking error with respect to WP-C is also guaranteed to be in the range of
±0.0122 [°]. Finally, the constrained control problem is considered as a whole. Based on
the stated results it follows that the movement of the end effector from the initial WP-A
to WP-C takes at most 58.2 [s]. The final tracking error with respect to WP-C is in the
range of ±0.0122 [°]. The propositions 16 and 17 also guarantee that the constraints are
never violated, neither during the movement from WP-A to WP-C, nor after WP-C has
been reached with the stated accuracy.

The control problem has been shown to be solved. However, it is also required to
guarantee that the system remains stable. Therefore, the following proposition is stated.

Proposition 18.

Consider the robotic system (5.147) to be controlled by the proposed MIMO controller
(5.152). Assume the initial angular velocities of the system to be bounded as

σci,j(t0) ≤ ǫci,j. (5.193)
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Figure 5.6: Controller performance during movement from WP-A to WP-B. Time series
of joint angles and angular velocities. Visualization of tracking performance, constrained
variables, and effect of the payload. (a) First joint. (b) Second joint.

Let the bounds lci,j be given by (5.151) with ac = 0.6 [1/(s rad)], bc = 10 × 2π/360 [rad/s],
cc = 70 × 2π/360 [rad/s], let the auxiliary functions ηci,j be defined as stated in (5.165),
and let the controller parameters be chosen as shown in Table 5.3 assuming that Ψ̂M,j

is sufficient large to be an upper bound of |Ψj|. Then the closed loop system is always
state-stable.

Proof. The states of the system are: q1, q2, q̇1, q̇2. From Theorem 14 it follows that the
tracking error is bounded which yields boundedness of states q1 and q2. From Theorem 8
it follows that the constraints are always satisfied meaning that the constrained variables
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Figure 5.7: Controller performance during movement from WP-B to WP-C. Time series
of joint angles and angular velocities. Visualization of tracking performance, constrained
variables, and effect of the payload. (a) First joint. (b) Second joint.

q̇1 and q̇2 remain within finite bounds.

In the following a simulation is conducted to confirm the results provided by the
Propositions 16 and 17. Therefore, the closed loop robotic system is discretized based
on the Euler method and simulated with a sampling time of 0.1 [ms]. The simulation
is performed as follows. The reference angles only change from WP-B to WP-C if the
tracking errors of both joint angles related to WP-B reach the domain of ±0.0122 [°]. The
simulation only terminates if the tracking errors of both joint angles related to WP-C
reach the domain of ±0.0122 [°].
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(a)

(b)

Figure 5.8: Further controller performance evaluation. (a) Visualization of input torques
and rejection effect related to the payload. (b) Proof that Ψ̂M,j is indeed an upper bound
of |Ψj |.

The simulation results are visualized by the Fig. 5.5–5.8. In Fig. 5.5 the trajectory of
the end effector is shown in the Cartesian domain. It can be seen that the point to point
control problem is solved from a principal point of view. In addition, it can be observed
that the robot configurations at the waypoints correspond to the desired joint angles of
Table 5.2. In Fig. 5.6 the movement of the end effector from WP-A to WP-B is considered.
The angles q1 and q2 of the first and second joint are shown as well as the corresponding
angular velocities q̇1 and q̇2. In addition, the bounds of the constraints are visualized and
the desired domain |wj−qj| ≤ 0.0122 [°] of the tracking error is shown that can be achieve
according to Proposition 16. From Fig. 5.6 it can be seen that the tracking error bounds
are reached within 5 [s] for both joints. That confirms the results of Proposition 16 which
states that the tracking error convergence is guaranteed to be achieved after a maximum
of 34.2 [s]. It can also be seen from Fig. 5.6 that during the movement from WP-A to
WP-B the constraints are never violated. In Fig. 5.7 the movement of the end effector
from WP-B to WP-C is visualized. Again, the angles q1 and q2 of the first and second
joint and their corresponding angular velocities q̇1 and q̇2 are illustrated. The bounds of
the constraints are shown as well as the domain |wj− qj | ≤ 0.0122 [°] of the tracking error
that is desired to be achieved according to Proposition 17. It can be seen from Fig. 5.7
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that WP-C is reached with the desired accuracy after 4 [s] at the latest. That confirms the
results of Proposition 17 which guarantees that the convergence of the tracking error is
achieved within 24 [s]. From Fig. 5.7 it can also be observed that the constraints are never
violated while the end effector moves to WP-C and remains there. The input torques τ1

and τ2 that are generated by the proposed constrained controller are shown in Fig. 5.8a.
The chattering is well attenuated but some peaks of the control input can be observed.
From Fig. 5.8a also a rejection effect can be detected which occurs in the moment when
the payload is applied to the robot for the first time. In Fig. 5.8b it is confirmed that the
assumed upper bound Ψ̂M,j of the uncertainty term |Ψj | is indeed chosen sufficient large.
As shown by Fig. 5.8b the unknown payload mainly contributes to the uncertainty term.

Finally, the simulation results confirm that the proposed constrained controller solves
the desired control problem. For an uncertain nonlinear MIMO system constrained control
is achieved with bounds that depend on time. The controller is shown to provide the
desired tracking error convergence. The control goals are achieved also in presence of an
unknown exogenous disturbance.

5.1.6 Summary

In the previous sections a robust control approach for constrained control of nonlinear
relative degree two systems is proposed. The developed controller is a combination of
two SMC sub-controllers. Based on these sub-controllers reaching of two sliding manifolds
is achieved. One sliding manifold is formulated for the tracking error convergence. The
other sliding manifold avoids the constraint violation. A control algorithm is stated that
defines the conditions for the input selection of the SMC sub-controllers. The algorithm
guarantees that the transition between the control inputs of the sub-controllers is smooth.
In addition, the chattering effect can be mitigated by adapting some tuning parameters
of the controller. The proposed controller assumes the first time derivative of the control
variable to be constrained. The bounds of the constraints may be time-varying. The
developed approach is robust as the model description of the nonlinear system is allowed
to be imprecise. Only finite uncertainty bounds are assumed. For the proposed controller
it is analytically proven that the constrained control problem can be solved. Moreover,
tracking error bounds are stated that dependent on the controller parameters. Finite-
time convergence of the tracking error with respect to those bounds is guaranteed. A
maximum time interval can be determined after which the convergence is achieved. A
condition dependent on the tuning parameters is formulated which guarantees that the
constraints are always satisfied. The condition is only slightly restrictive. The controller
is tested on a nonlinear MIMO robotic system. A constrained point to point control
problem is considered in which the robot is disturbed by an unknown payload that is
applied to the end effector. It is analytically shown that the proposed controller solves the
constrained robot control problem. Moreover, the tracking error bounds can be quantified
and a maximum time interval can be stated after which the control problem is guaranteed
to be solved. The analytical results are confirmed by simulation.

5.2 Safe Robot Control in Human-Robot Collaboration Tasks

Human-robot interaction and collaboration appears in an increasing amount of applica-
tions. This includes the field of healthcare, service, and assistance (Yu et al., 2015; Su et
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al., 2018) as well as the domain of manufacturing (Zanchettin et al., 2015; Robla-Gómez
et al., 2017). In industry robots typically take over repetitive or dangerous tasks. In the
past the workspace of the robot was clearly separated from that of humans. However,
an increasing demand of shared workspaces in which humans and robots collaborate with
each other can be expected for the future (Robla-Gómez et al., 2017). In assembly lines
skillful operations undertaken by humans may be directly supported by the capabilities
of robots to increase flexibility and efficiency (Robla-Gómez et al., 2017; Ceriani et al.,
2015).

Human-robot collaboration requires shared workspaces or even physical contact be-
tween robots and humans. In order to avoid injuries the robot velocity is typically re-
stricted dependent on the distance between the robot and the human (Zanchettin et al.,
2015). However, the robot should still be able to efficiently complete desired control tasks
(Kimmel and Hirche, 2017). Trajectory planning is an approach that offers the ability to
achieve desired goals subject to constraints. But in the field of human-robot collaboration
this kind of path planning methods may be considered to be unsafe as they require a
prediction of the human behavior (Mainprice and Berenson, 2013). Instead of planning a
collision-free trajectory the approach of Zanchettin et al. (2015) calculates the maximal
velocity along a predefined nominal path for which the robot is still able to stop without
colliding with the human. To improve safety in shared workspaces Faroni et al. (2019)
formulates an optimization problem in which the distance between the human and the
robot is maximized. However, this kind of spatial separation may be undesired for the col-
laboration of humans and robots. So-called dynamic windowing approaches are proposed
in e. g. Wilkie et al. (2009); Saranrittichai et al. (2013). They assume the velocities of the
obstacles to be known and to remain constant. Based on that assumption suitable robot
velocities are determined that do not lead to collisions in the future. Another class of
robot control approaches are the reactive control methods that generate repulsive forces
that are applied to the robot. Among this methods the potential field method may be
most known which is originally described in Khatib (1986). The potential field method
generates repulsive forces dependent on how the robot and the obstacles are located to
each other. The forces are applied to the robot to avoid collisions. In addition to the
original approach proposed by Khatib (1986) various extensions can be found (e. g. Ceri-
ani et al., 2015). In the field of human-robot collaboration physical contact between the
human and the robot may even be desired. Therefore, the approach proposed by Magrini
et al. (2015) locates the contact point between the human and the robot and regulates the
contact forces. Generally, the application of lightweight robots is desirable in the field of
human-robot collaboration as it leads to reduced severity of collisions (Bauer et al., 2016).
In addition, elastic actuators and compliant materials are developed to further increase
safety (Yu et al., 2015).

Restricting the workspace or velocity of the robot does only guarantee safety if the for-
mulated constraints are enforced by control. Model predictive control (MPC) is a powerful
constrained control method. But in the context of human-robot collaboration the human
behavior is required to be predicted which may be considered to be unsafe. However,
contributions in which MPC approaches are applied for human related tasks can be found.
In Matschek et al. (2020) a MPC is applied to achieve constrained robot assisted surgery.
The human behavior i. e. its breathing is predicted by Gaussian processes. Bipedal robots
carrying objects together with humans are considered in Agravante et al. (2019). A MPC
is applied to stabilize the robot. The distance between the foot center points of the robot
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and the contact point of the resulting ground contact forces is minimized. As a result the
vertical stability of the robot is enhanced. In addition, constraints are enforced to keep
the contact points of the ground contact forces in an admissible region. Forces resulting
from the human-robot interaction are predicted using the model of an inverted pendulum.
Constrained robot control approaches that do not rely on the prediction of the human
behavior can also be found in a wide variety. In Kimmel and Hirche (2017) impedance
control is applied as a compliant nominal controller to achieve reference tracking of the
robot end effector. Geometrical constraints are formulated to avoid collisions with body
parts of the human e. g. the hands. The constraints are enforced by means of invariance
control. However, as the robot evades from the human the approach impedes contact
which may be unfavorable in human-robot collaboration scenarios. An approach enforcing
the end effector to remain in a bounding box so that it can be touched by the human
from outside is proposed in Kimmel et al. (2012). Again invariance control is applied to
enforce the constraints. A similar approach with bounding box constraints can be found in
Rauscher et al. (2016). The constraints are enforced by means of control barrier functions.
Control of a bipedal robot that evades from dynamic obstacles is considered in Agrawal
and Sreenath (2017). The obstacles are described by ellipses and constraint satisfaction is
achieved using control barrier functions. A three level robot control scheme is proposed in
Solanes et al. (2018). The first level consists of a sliding mode controller that enforces the
constraints. A possible constraint is e. g. to keep the orientation of an object admissible
so that it can be transported together by human and robot. The second level is an admit-
tance controller (see Landi et al., 2017) which defines how the robot should move if it is
pushed by the human. The third level can be applied if the robot is a so-called redundant
robot. In this case the controller allows to bring the robot into a more safe configuration
which is more distant from the obstacles. Only one of the three control levels can be
applied at once. The active control law is selected based on a task prioritization scheme.

In the following a safe robot control concept is introduced. The approach is designed
to handle safety critical situations in which humans and robots interact with each other.
The proposed approach is exemplarily designed for a two-link robot with rotatory joints.
It may be extended to different classes of robots. The human is described as a circular
scalable obstacle in a two-dimensional plane. The safety concept is based on three geomet-
rical zones: a stop zone, a safety disk, and an outer zone. The stop zone is a geometrical
construction that moves with the robot. The borders of the stop zone are guaranteed to
have a distance to the links, the joints, and the end effector of the robot that is greater
than a user-defined value. If the obstacle enters the stop zone the controller aims to keep
the robot at its current position to avoid severe collisions. The safety disk is a geometrical
zone that is equal to the work space of the robot plus a safety margin. If the obstacle is
within the safety disk then the absolute angular velocities of the robot are restricted to a
minimum value. The outer zone lays outside of the safety disk. It is a zone in which the
upper bounds of the absolute angular velocities are gradually increased or decreased. If
the obstacle moves towards the robot the bounds are decreased if it moves away from the
robot the bounds are increased. The constraints that are formulated based on the three
introduced geometrical zones are enforced by applying the proposed constrained controller
of Section 5.1.3 (Algorithm 3). For that controller the tracking error bounds and the re-
quired time for the tracking error convergence are studied in Section 5.1.4. Based on that
results it can be guaranteed that the absolute velocity of any point on the robot does not
exceed a user-defined value at the moment when the robot and the obstacle collide with
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each other. Consequently, the proposed concept offers a strategy to design the maximum
velocity of the robot during a collision.

The new aspect of the proposed safety concept with regards to the literature is the ro-
bustness that is provided by the applied constrained sliding mode controller. The proposed
safety concept explicitly makes use of the developed Algorithm 3 of Section 5.1.3. Algo-
rithm 3 provides capabilities to solve the desired control problem as it can handle model
uncertainty and allows to consider constraints with time-varying bounds. In contrast to
that most of the existing human-robot control concepts do not provide any robustness
at all. For instance, the aforementioned concepts that are developed by Kimmel and
Hirche (2017) and Kimmel et al. (2012) are not robust. In both approaches the invariance
controller is applied which is a constrained control method but not a robust one as it
requires exact model knowledge. Also the constrained robot control concepts proposed
by Rauscher et al. (2016); Agrawal and Sreenath (2017) are not robust. The applied con-
strained controller that is formulated based on control barrier functions requires an exact
model description.

The section is organized as follows. In Section 5.2.1 the proposed concept for safe
human-robot collaboration is mathematically described. The geometrical zones are intro-
duces, the control algorithm is stated, and the mathematical properties of the proposed
method are studied. In Section 5.2.2 a specific scenario of human-robot interaction is
simulated to test the developed safety concept.

5.2.1 Safety Concept

In this section the concept of safe human-robot interaction is introduced. The considered
robot is assumed to be the two link robot known from the application example of Section
5.1.5. The concept is described with respect to a two-dimensional plane (x, y) ∈ X ⊂ R

2

with coordinates x and y. The coordinates are formulated with respect to the coordinate
system that is visualized in Fig. 5.9 (a). The origin of the coordinate system is located
at the center point of the first joint of the robot. The human is described by a circular
obstacle

O = {(x, y) ∈ R
2 |
√

(x− xoc)2 + (y − yoc)2 ≤ ro}, (5.194)

with center point

poc =

[

xoc
yoc

]

, (5.195)

and scalable radius ro > 0. Every point (xo, yo) ∈ O is considered to be part of the
obstacle. The velocity of the obstacles center is assumed to be bounded according to

ṗoc =

[

ẋoc
ẏoc

]

, voc =
√

ẋ2
oc + ẏ2

oc ≤ voc,M , (5.196)

with the upper bound vo,M assumed as known. The geometrical zones of the safety concept
are visualized in Fig. 5.9 (b). There are three zones: the outer zone, the safety disk, and
the stop zone. The outer zone is a geometrical zone that is described by a circular contour
graph. Within the outer zone the allowed absolute joint velocities gradually decrease if the
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Figure 5.9: (a) Definition of coordinates x and y. The origin of the coordinate system is
located at the first joint J1 of the two-link robot. (b) Visualization of safety concept with
contour graph, safety disk, and stop zone.

obstacle approaches the robot. The admissible absolute velocities decrease until a circular
region denoted as safety disk is reached. The safety disk is defined as a circle

D = {(x, y) ∈ R
2 |
√

x2 + y2 ≤ d1 + d2 + b}, b > 0, (5.197)

where d1 and d2 are the lengths of the first and second link of the robot and b is a tuning
parameter. Consequently, the safety disk is comprised of the working area of the robot
plus a safety distance. In accordance to (5.150) the time-varying bounds of the angular
velocities of the robot are denoted by lci,j. Dependent on the position of the obstacle in
the two-dimensional plane the bound lci,j is given as

lci,j =







llow, if poc ∈ D,
φ, if poc /∈ D ∧ φ ≤ lhigh,
lhigh, if poc /∈ D ∧ φ > lhigh,

(5.198)

φ = llow +m

(√

x2
oc + y2

oc − d1 − d2 − b
)

, m > 0, lhigh > 0, llow > 0.

In (5.198) quantity lhigh denotes the maximum possible bound and quantity llow denotes
the minimal possible bound. From (5.198) it follows that within the safety disk D the
bound of the allowed absolute joint velocities is always restricted to the minimal value
llow. In addition, it can be concluded from (5.198) that in the outer zone the allowed
absolute velocities may gradually increase, but not beyond the value defined by lhigh. The
stop zone is a geometrical construction that moves with the robot. The structure of the
stop zone is visualized in Fig. 5.10. Formally, the stop zone

S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5, (5.199)
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Figure 5.10: Definition of stop zone. The stop zone is the union of the shown geometric
figures. The Euclidean distance between any point on the edge of the stop zone and any
point on the robot is at least b.

is defined by the union of five geometric figures. The geometric figure

S1 = {(x, y) ∈ R
2 |
√

x2 + y2 ≤ b}, (5.200)

describes a circle around the first joint. The rectangle

S2 = {(x, y) ∈ R
2 | A1 ∧ A2}, (5.201)

A1 :

[

x
y

]

= α1

[

cos(q1)
sin(q1)

]

+ β

[

−sin(q1)
cos(q1)

]

, (5.202)

A2 : 0 ≤ α1 ≤ d1, −b ≤ β ≤ b, (5.203)

has its longitudinal axis aligned with the first link. The circle

S3 = {(x, y) ∈ R
2 |
√

(x− d1cos(q1))2 + (y − d1sin(q1))2 ≤ b}, (5.204)

is related to a circular area around the second joint. The rectangle

S4 = {(x, y) ∈ R
2 | A3 ∧ A4}, (5.205)

A3 :

[

x
y

]

= d1

[

cos(q1)
sin(q1)

]

+ α2

[

cos(q1 + q2)
sin(q1 + q2)

]

+ β

[

−sin(q1 + q2)
cos(q1 + q2)

]

, (5.206)

A4 : 0 ≤ α2 ≤ d2, −b ≤ β ≤ b, (5.207)

has its longitudinal axis aligned with the second link. The circle

S5 = {(x, y) ∈ R
2 | A5}, (5.208)

A5 :
√
a ≤ b, (5.209)

with

a = (x− d1cos(q1)− d2cos(q1 + q2))2 + (y − d1sin(q1)− d2sin(q1 + q2))2, (5.210)
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Algorithm 4 Stopping of robot

Inputs IsOutside.bool, w⋆j , wj

if IsOutside.bool = 1 and poc ∈ S then

IsOutside.bool← 0
w⋆j ← wj
wj ← qj

end if

if IsOutside.bool = 0 and poc /∈ S then

IsOutside.bool← 1
wj ← w⋆j

end if

Output wj
It is assumed that po(t0) /∈ S and IsOutside.bool(t0) = 1 hold initially.

describes a circular area around the end effector. Within the stop zone the bounds of
the constraints are set to the minimum value llow. This follows from (5.198) as the stop
zone is part of the safety disk D. Consequently, the goal of the stop zone is not to alter
the bounds of the constraints. Instead, the stop zone aims to keep the robot fixed at its
current position. This is achieved by redefining the set points wj of the joint angles. The
strategy is described by Algorithm 4. If the obstacles center enters the stop zone the set
points wj are set to the current values qj of the joint angles. The original set points are
stored in a variable denoted as w∗

j . If the obstacles center leaves the stop zone the set
points wj are reset to the values w∗

j so that the robot can continue with the initial set
point tracking task. The stop zone has a design parameter b. As shown by Fig. 5.10 the
stop zone can be scaled up based on b. The borders of the stop zone are guaranteed to
have a distance to the links, the joints, and the end effector of the robot that is greater
than b. This allows to slow down the robot to a desired velocity when it collides with the
obstacle. Finally, the robot is formally defined. The robot is composed of all points R
given by

R = {(x, y) ∈ R
2 | (A6 ∧ A7) ∨ (A8 ∧ A9)} (5.211)

A6 :

[

x
y

]

= α1

[

cos(q1)
sin(q1)

]

, (5.212)

A7 : 0 ≤ α1 ≤ d1, (5.213)

A8 :

[

x
y

]

= d1

[

cos(q1)
sin(q1)

]

+ α2

[

cos(q1 + q2)
sin(q1 + q2)

]

, (5.214)

A9 : 0 ≤ α2 ≤ d2, (5.215)

that are located on link one or two.
From Section 5.1.5 it is known that the MIMO controller (5.152) can be applied

to achieved constrained control of the considered robot. The auxiliary inputs νj of the
MIMO controller are defined based on (5.164). The sliding surfaces σci,j = 0, σr,j = 0, the
uncertainty bounds ΨM,j, ΓM,j, Γm,j, the smoothing boundary layer widths ǫr,j, ǫci,j, the
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controller parameters µrj
, µci,j , αj , βj , γj and the tracking errors er,j are all defined in

accordance to Section 5.1.5. The auxiliary function ηci,j and its describing quantities ηm,j
and η̇M,j are defined as stated in (5.158)–(5.160). The auxiliary function ηci,j is selected
as

ηci,j = lci,j − ǫci,j , ǫci,j > 0, (5.216)

where the bound lci,j of the constraints is defined by (5.198). In the following the quantities
ηm,j and η̇M,j are determined that are required to be known to selected the controller
parameter αj as stated by (5.163). Derivating (5.216) with respect to time and considering
(5.198) yields

|η̇ci,j| = |l̇ci,j| =







|φ̇|, if poc /∈ D ∧ φ ≤ lhigh,
0, else,

(5.217)

with

|φ̇| = | ∂φ
∂xoc

ẋoc +
∂φ

∂yoc
ẏoc| = |

m
√

x2
oc + y2

oc

(ẋocxoc + ẏocyoc)|, (5.218)

≤ m
√

x2
oc + y2

oc

‖poc‖‖ṗoc‖ = m‖ṗoc‖. (5.219)

Regarding (5.219) it is known that the obstacle velocity is bounded as ‖ṗoc‖ = voc ≤ voc,M .
Consequently, the controller parameter η̇M,j is required to be selected as

∀t, i : |η̇ci,j(t)| ≤ mvoc,M < η̇M,j. (5.220)

For the controller parameter ηm,j it follows from (5.198) and (5.216) that ηm,j has to be
selected as

∀t, i : 0 < ηm,j < llow − ǫci,j ≤ ηci,j(t). (5.221)

In the following the mathematical properties of the proposed safety concept are studied.
The subsequently stated theorem guarantees the constraints to be always satisfied if the
auxiliary function ηci,j is chosen in accordance to (5.216).

Theorem 19 (Achievement of constrained robot control).
Consider a two link robot as shown in Fig. 5.4 with dynamics described by (5.147). Let O
define a circular obstacle as stated in (5.194). Assume the robotic system to be controlled
by the MIMO controller (5.152) whose auxiliary inputs ν are defined based on Algorithm
3. Consider the bounds lci,j of the constraints to be defined by a circular contour graph as
stated in (5.198). Assume the set point of the robot to be shifted as defined by Algorithm
4 if the obstacles center enters or leaves the stopping zone. Let the auxiliary function ηci,j

be selected as stated in (5.216) and assume

∀i, j : σci,j(t0) ≤ ǫci,j , (5.222)

to hold initially. Then the constraints are always satisfied i. e.

− lc2,j(t) ≤ q̇j(t) ≤ lc1,j(t), (5.223)

holds for t ≥ t0.
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Proof.
Step 1: Consider a change of the set point to occur at some time instant t⋆. It will

be shown that if the constraints are satisfied up until t⋆ they will remain satisfied after
the change of the set point. From definition (5.197) it follows that the stop zone is a
subset of the safety disk. Assuming the constraints to be satisfied up until t⋆ it follows
|q̇j(t⋆)| ≤ llow from the definition of the contour graph (5.198). Following (5.216), (5.198)
the auxiliary function is

ηci,j(t
⋆) = llow − ǫci,j, (5.224)

at t⋆. Substituting (5.224) into the definition of σci,j according to

σci,j = −ηci,j + sci,j q̇j, (5.225)

and considering |q̇j(t⋆)| ≤ llow yields

σci,j(t
⋆) = ǫci,j − llow + sci,j q̇j ≤ ǫci,j − llow + llow = ǫci,j. (5.226)

It follows from Theorem 8 that the constraints remain satisfied after the change of the set
point.

Step 2: By applying Theorem 8 it follows that the constraints are satisfied from
beginning starting with the initial time instant t0. So the constraints are indeed satisfied
up until possible changes of the set points appear.

The main result of the mathematical analysis is stated by the next theorem. It is
shown that the maximum velocity of the robot during a possible collision with the obstacle
can be designed based on the proposed safety concept. Therefore, the scaling parameter
b of the stop zone has to be selected sufficiently large so that the inequality (5.228) is
satisfied. The inequality is mainly affected by the time interval τ that describes how fast
the tracking error convergence of the controller can be realized. In case of a collision the
velocity of the robot is guaranteed to be upper bounded by the value that is stated in
(5.229). If the obstacle leaves the stop zone without entering it again the tracking error
converges in finite-time. In particular, the angle qj is guaranteed to reach its initial set
point wj in finite-time with a precision that is described by equation (5.239).

Theorem 20 (Boundedness of robot velocity at time of collision and tracking error con-
vergence).
Consider a two link robot as shown in Fig. 5.4 with dynamics described by (5.147). As-
sume the robotic system to be controlled by the MIMO controller (5.152) whose auxiliary
inputs ν are defined based on Algorithm 3. Consider the bounds of the constraints to be
defined by a circular contour graph as stated in (5.198). Let ηci,j be selected as stated in
(5.216) and let the controller parameters satisfy (5.220) and (5.221). Assume µci

to be
chosen as µci

≥ µr. Further assume

∀i, j : σci,j(t0) ≤ ǫci,j , (5.227)

to hold initially. Let an obstacle O with radius ro be defined based on (5.194) and let the
velocity of the obstacles center be bounded as voc ≤ voc,M with voc,M assumed as known.
Consider the stopping zone S to be defined according to (5.199) and let (xr, yr) ∈ R define
all points on the robot, where R is given by (5.211). Assume the set point of the robot to
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be shifted as defined by Algorithm 4 if the obstacles center enters or leaves the stopping
zone. If the scaling parameter b of the stopping zone satisfies

b ≥
(
voc,M + llow(d1 + 2d2)

)
τ + ro, (5.228)

then the velocity vr(xr, yr) of any point (xr, yr) ∈ R on the robot is bounded by

vr(xr, yr) ≤ q̇M(d1 + 2d2), (5.229)

in the moment when (xr, yr) collides with the obstacle i. e. (xr, yr) ∈ O. In (5.229)
quantity q̇M > 0 is a design value that defines the controller parameters according to

2ǫr,j + 2ǫc,M,j +
µe,j√

2
≤ q̇M , 0 < µe,j ≤ ηm,j

√
2, (5.230)

ǫc,M,j = max
i
{ǫci,j}. (5.231)

Time span

τ = max
j
{τ1,j}+ max

j
{τ2,j}, (5.232)

is obtained from

τ1,j =
llow − (ǫr,j + ǫc,M,j)

̺j
, ̺j = min

{

µr,j√
2
, µa,jηm,j

}

, (5.233)

and

τ2,j = (er,M⋆,j − er,M,j)

√
2

µe,j
, (5.234)

where er,M⋆,j solves

αjer,M⋆,j + βje
γj

r,M⋆,j = ǫr,j + ǫc,M,j + llow, (5.235)

and er,M,j solves

αjer,M,j + βje
γj

r,M,j = ǫr,j + ǫc,M,j +
µe,j√

2
. (5.236)

In addition the following holds. Let the obstacles center enter the stopping zone at
time instant t⋆ and assume the center to remain in the stop zone at least until t⋆ + τ then

vr(xr, yr) ≤ q̇M(d1 + 2d2), (5.237)

and

|q̇j | ≤ q̇M , (5.238)

hold until the center leaves the stop zone again.
If it is known that the obstacle will leave the stop zone without entering it again then

the convergence of the tracking error can be guaranteed. The angular velocity qj reaches
its initial reference value wj after a a finite-time t† with an accuracy of

|wj(t)− qj(t)| ≤ er,M,j, t ≥ t†. (5.239)

The upper bound er,M,j of (5.239) is obtained from (5.236).
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Proof.
Outline: First, an outline of the proof is given. Consider the obstacles center to enter

the stopping zone so that the set point of the robot is shifted according to Algorithm 4. At
that moment the obstacles center is located at the edge of the stopping zone. The definition
of the stopping zone guarantees that the distance between any point on the robot and the
edge of the stopping zone is at least b. Based on Theorem 14 it is possible to determine
the time span τ that is required to bound the angular velocities as |q̇j| ≤ q̇M . During
time span τ the points on the robot may move no more than the distance llow(d1 + 2d2)τ
in direction of the obstacle and the obstacle may move no more than voc,Mτ towards the
robot. The stopping zone can be scaled up based on parameter b. Consequently, choosing
b as b ≥ (voc,M + llow(d1 + 2d2))τ + ro guarantees that a collision of the obstacle with any
point on the robot may only occur after τ when the angular velocities are guaranteed to
be bounded by the desired value of q̇M . The proof is discussed in detail as follows.

Step 1: The time span τ after which the angular velocities are bounded by q̇M
is determined. From Theorem 19 it is known that the constraints are always satisfied.
Consider the obstacles center to enter the stopping zone at some time instant t⋆. The
obstacles center is located at the edge of the stopping zone at t⋆. According to Algorithm
4 the set point is shifted. The angular velocities are known to be bounded as |q̇j| ≤ llow
because the stopping zone is a subset of the safety disk which has the velocity bound llow.
It follows that

|σr,j(t⋆)| = |q̇j(t⋆)− αjer,j(t⋆)− βj |er,j(t⋆)|γj sgn(er,j(t
⋆))| = |q̇j(t⋆)| ≤ llow, (5.240)

holds due to the shifted set point and the bounded angular velocity. Substituting (5.119)
in (5.127) it follows from Theorem 14 that

|q̇j(t)| ≤ q̇M , q̇M > 0, (5.241)

can be achieved for t ≥ t⋆ + τ if

2ǫr,j + 2ǫc,M,j +
µe,j√

2
≤ q̇M , 0 < µe,j ≤ ηm,j

√
2, (5.242)

ǫc,M,j = max
i
{ǫci,j}, (5.243)

holds. Following Theorem 14 time span τ can be calculated according to

τ = max
j
{τ1,j + τ2,j}, (5.244)

where τ1,j is

τ1,j =
llow − (ǫr,j + ǫc,M,j)

̺j
, ̺j = min

{

µr,j√
2
, µa,jηm,j

}

, (5.245)

due to the bound (5.240) and τ2,j is

τ2,j = (er,M⋆,j − er,M,j)

√
2

µe,j
. (5.246)

Assume the obstacles center to remain in the stopping zone after time instant t⋆. Then it
is

lc,j(t
⋆ + τ1,j) = max

{
lc1,j(t

⋆ + τ1,j), lc2,j(t
⋆ + τ1,j)

}
≤ llow, (5.247)
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and according to (5.124) it follows that er,M⋆,j of (5.246) can be obtained from

αjer,M⋆,j + βje
γj

r,M⋆,j = ǫr,j + ǫc,M,j + llow. (5.248)

Quantity er,M,j of (5.246) is the solution of

αjer,M,j + βje
γj

r,M,j = ǫr,j + ǫc,M,j +
µe,j√

2
, (5.249)

as stated in (5.119).
Step 2: The required size of the scaling parameter b of the stop zone is determined.

Assume the angular velocities to be bounded as

|q̇j | ≤ Ω. (5.250)

The velocity vr(xr,l1 , yr,l1) of any point (xr,l1 , yr,l1) on link one of the robot is given by

vr(xr,l1 , yr,l1) =
√

ẋ2
r,l1

+ ẏ2
r,l1
, (5.251)

with
[

xr,l1
yr,l1

]

= α1

[

cos(q1)
sin(q1)

]

, 0 ≤ α1 ≤ d1. (5.252)

Substituting

ẋr,l1 = −α1q̇1sin(q1), (5.253)

ẏr,l1 = α1q̇1cos(q1), (5.254)

in (5.251) and considering (5.250) yields

vr(xr,l1, yr,l1) = α1|q̇1| ≤ α1Ω ≤ d1Ω. (5.255)

The velocity vr(xr,l2 , yr,l2) of any point (xr,l2 , yr,l2) on link two of the robot is given by

vr(xr,l2 , yr,l2) =
√

ẋ2
r,l2

+ ẏ2
r,l2
, (5.256)

with
[

xr,l2
yr,l2

]

= d1

[

cos(q1)
sin(q1)

]

+ α2

[

cos(q1 + q2)
sin(q1 + q2)

]

, 0 ≤ α2 ≤ d2. (5.257)

From

ẋr,l2 = −d1q̇1sin(q1)− α2(q̇1 + q̇2)sin(q1 + q2), (5.258)

ẏr,l2 = d1q̇1cos(q1) + α2(q̇1 + q̇2)cos(q1 + q2), (5.259)

and the angle addition and subtraction theorems it follows

ẋ2
r + ẏ2

r = d2
1q̇

2
1 + α2

2(q̇1 + q̇2)2 + 2d1α2q̇1(q̇1 + q̇2)cos(q2), (5.260)

≤ d2
1q̇

2
1 + α2

2(q̇1 + q̇2)2 + 2d1α2(|q̇1|2 + |q̇1||q̇2|), (5.261)
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which leads to

ẋ2
r + ẏ2

r ≤ d2
1Ω2 + 4α2

2Ω2 + 4d1α2Ω2 = Ω2(d1 + 2α2)2 ≤ Ω2(d1 + 2d2)2, (5.262)

if (5.250) is considered. Substituting (5.262) in (5.256) gives

vr(xr,l2, yr,l2) =
√

ẋ2
r,l2

+ ẏ2
r,l2
≤ (d1 + 2d2)Ω. (5.263)

Consequently, from (5.255) and (5.263) it follows that the velocity vr(xr, yr) of any point
(xr, yr) ∈ R on the robot is bounded as

vr(xr, yr) ≤ (d1 + 2d2)Ω. (5.264)

From the definition of the stop zone according to (5.199) and Fig. 5.10 it is known that
the Euclidean distance between any point on the edge of the stop zone and any point
(xr, yr) ∈ R on the robot is at least b. At time t⋆ the obstacles center appears at the
edge of the stop zone and the angular velocities are bounded by |q̇j | ≤ llow as long as the
obstacles center remains in the stop zone. It follows from (5.264) that during the time span
τ the maximum distance that any point (xr, yr) may move towards the obstacles center
is (d1 + 2d2)llowτ . The maximum distance that the obstacles center may move towards a
point on the robot is voc,Mτ as the obstacles center velocity is known to be bounded as
voc ≤ voc,M . Consequently, if the scaling parameter satisfies (5.228) a collision between
the obstacle and the robot can occur at time instant t⋆ + τ at the earliest. As after the
time span τ the angular velocities are bounded by q̇M it follows from (5.264) that the
velocity of the robot is bounded as stated in (5.229) if it collides with the obstacle.

Step 3: Achievement of tracking error convergence if the path of the robot is not
blocked. In this case it follows from (5.118) and (5.119) of Theorem 14 that

|wj(t)− qj(t)| ≤ er,M,j, (5.265)

holds. The upper bound er,M,j of (5.265) is obtained from (5.249). The convergence of the
tracking error described by (5.265) is achieved in finite-time as stated by Theorem 14.

5.2.2 Application Example

In this section the previously introduced safe robot control concept is applied. A scenario is
considered in which human and robot interact with each other. The scenario is illustrated
by Fig. 5.11. The end effector of the robot moves from a waypoint A (WP-A) to a waypoint
B (WP-B). An obstacle is initially located in the outer zone. The obstacle moves towards
the safety disk. When the obstacle has reached the safety disk the end effector of the
robot is still on its movement from WP-A to WP-B. As the robot continues moving the
obstacle will enter the stop zone. This forces the robot to stop. After a short period of
time the obstacle continues its movement. It leaves the safety disk and clears the path
of the robot. The robot continues its movement and finally reaches WP-B. To show that
the proposed safety concept is robust against model uncertainties an unknown payload is
applied to the end effector of the robot. The payload is active all along and it is described
by the external force Fy = 9.81 [m/s2]× 80 [kg]. The circular obstacle is assumed to have
a radius ro = 0.5 [m] and a velocity voc that is bounded as voc ≤ 1 [m/s]. The values of the
waypoints are defined in Table 5.4. The parameters of the contour graph (5.198) are given
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Figure 5.11: Visualization of considered scenario between obstacle and robot. The robot
moves from WP-A to WP-B while the obstacle enters and leaves the safety disk.

as lhigh = 30 [°/s], llow = 10 [°/s], and m = 0.15 [rad m/s]. The controller parameters are
selected as follows. The auxiliary function ηci

is chosen as stated in (5.216). According to
(5.220) quantity η̇M,j is obtained from

∀t, i : |η̇ci,j(t)| ≤ mvoc,M = 0.1500 < η̇M,j, (5.266)

and according to (5.221) parameter ηm,j is selected based on

∀t, i : 0 < ηm,j < 0.1735 = llow − ǫci,j ≤ ηci,j(t), (5.267)

The boundary layer width ǫci,j in (5.267) is ǫci,j = 0.001. The uncertainty bound Ψ̂M,j

is assumed to be 10 and it is confirmed by simulation that for Ψ̂M,j = 10 quantity |Ψj |
is indeed upper bounded by Ψ̂M,j. The scaling parameter of the stop zone is chosen as
b = 1.75 [m]. The selected controller parameters are summarized in Table 5.5.

Based on the controller parameters and the Theorems 19 and 20 a proposition is
stated as follows. The proposition guarantees that the velocity constraints of the robot
are always satisfied for the considered scenario. In addition, if the robot collides with the
obstacle the velocity of the robot is restricted to 0.011 [m/s]. If the robot and the obstacle
do not collide but the obstacle is at least for 1 [s] in the stop zone then the velocity of robot
is also restricted to 0.011 [m/s] until the obstacle leaves the stop zone again. Regarding
the tracking error convergence it can be guaranteed that WP-B is reached in finite-time
with an accuracy in the range of ±0.0024 [°].

Table 5.4: Reference values in Cartesian coordinates (xca, yca) and joint angles (w1, w2)

xca [m] yca [m] w1 [◦] w2 [◦]

WP-A 0.900 0.100 26.511 −51.318

WP-B −0.700 −0.100 153.714 92.388
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Table 5.5: Controller parameters related to control input νj (parameterization of both
controllers identical)

µr,j 10 µci,j 10 µa,j 25 βj 5 γj 0.7 ǫr,j 0.001

ǫci,j 0.001 η̇M,j 0.16 ηm,j 0.17 Ψ̂M,j 10 ΓM,j 1 Γm,j 1

Proposition 21.

Consider a two link robot as shown in Fig. 5.4 with dynamics described by (5.147). Assume
the robotic system to be controlled by the MIMO controller (5.152) whose auxiliary inputs
ν are defined based on Algorithm 3. Consider the bounds of the constraints to be defined
by a circular contour graph as stated in (5.198) with lhigh = 30 [°/s], llow = 10 [°/s], and
m = 0.15 [rad m/s]. Let the auxiliary function ηci,j be defined as stated in (5.216). Assume
the controller parameters to be chosen as stated in Table 5.5 and assume Ψj to be bounded
as |Ψj | ≤ Ψ̂M,j. Further assume the initial angular velocities of the robot to be zero. Let
the obstacle be defined as O based on (5.194) with radius ro = 0.5 [m] and let (xo, yo) ∈ O
be a point lying within the bounds of the obstacle. Assume the velocity of the obstacles
center to be bounded as voc ≤ 1 [m/s]. Consider (xr, yr) ∈ R to be any point on the links
of the robot and let vr(xr, yr) be the velocity of any of that points. Consider the stop zone
S to be defined according to (5.199) with scaling parameter b = 1.75 [m]. Assume the set
point of the robot to be shifted as defined by Algorithm 4 if the obstacles center enters or
leaves the stopping zone. Then the following can be stated:

• The constraints defined by contour graph (5.198) are never violated.

• If there exists a point (xr, yr) on the robot that coincides with the obstacle, i. e.
(xr, yr) ∈ O, then the robots velocity on that point is bounded as vr(xr, yr) ≤
0.011 [m/s] and the angular velocities are bounded as |q̇j| ≤ 0.43 [°/s].

• If the obstacle center enters the stop zone and remains in there for at least 1 [s] then
the robots velocity on any point (xr, yr) is bounded as vr(xr, yr) ≤ 0.011 [m/s] and
the angular velocities are bounded as |q̇j| ≤ 0.43 [°/s] until the obstacles center leaves
the stop zone again.

• The angular velocities qj are guaranteed to converge to the initial set points wj with
an accuracy of |wj(t)− qj(t)| < 0.0024 [°] after t ≥ t† where t† is finite.

Proof. Theorem 19 can be applied as the auxiliary function ηci,j is chosen according to
(5.216) and due to

∀i, j : σci,j(t0) = −ηci,j(t0) + sci
q̇j(t0) < 0 ≤ ǫci,j, ǫci,j > 0, ηci,j(t0) > 0,

which is satisfied as the initial angular velocities are zero. It follows from the theorem that
the constraints are never violated.

The remaining statements are obtained from Theorem 20. Based on the controller
parameters of Table 5.5 it follows from (5.230) that q̇M may be selected as

2 max
j
{ǫr,j}+ 2 max

j
{ǫc,j}+

µe,j√
2

= q̇M = 0.424 [°/s], (5.268)
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Figure 5.12: (a) Obstacles center enters stop zone. (b) Obstacles center leaves stop zone.

with µe,j chosen as µe,j = ηm,j
√

2/50. Equation (5.229) gives

vr(xr, yr) ≤ q̇M (d1 + 2d2) = 0.0104 [m/s], (5.269)

and (5.232) leads to

τ = max
j
{τ1,j}+ max

j
{τ2,j} = 0.9944 [s]. (5.270)

The selection of the scaling parameter b is sufficient as (5.228) yields

b = 1.75 [m] ≥ 1.7374 [m] =
(

voc,M + llow(d1 + 2d2)
)

τ + ro. (5.271)

The convergence of the tracking error is studied as follows. From the description of the
considered scenario according to Fig. 5.11 it is known that the obstacle finally leaves the
stop zone. As er,M,j of (5.265) equals 0.0024 [°] it follows that the tracking error is bounded
by

|wj(t)− qj(t)| < 0.0024 [°], t ≥ t†, (5.272)

after a finite-time t†.

In the following the stated results of Proposition 21 are confirmed by simulation. The
closed loop system is simulated using the Euler method with a sampling time of 0.05 [ms].
The robot is located at WP-A initially with zero angular velocities. The simulation ter-
minates if the robot reaches the reference angles of WP-B with an error in the range of
±0.0024 °. The simulation results are discussed as follows. In Fig. 5.12 two specific situ-
ations are depicted namely when the obstacles center enters the stop zone and when the
obstacles center leaves the stop zone. The figure shows that the robot is stopped while
the obstacle moves across the stop zone. In Fig. 5.13 the joint angles q1 and q2 and their
corresponding velocities q̇1 and q̇2 are visualized. It can be seen that the constraints are
never violated. With regards to the tracking performance the figure shows that the set
point changes to the current value of the joint angles when the obstacle enters the stop
zone. As long as the obstacle remains in the stop zone the robot is kept fixed by the
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Figure 5.13: Visualization of bounds, constrained variables, set points, and control
variables. (a) First joint. (b) Second joint.

controller. When the obstacle leaves the stop zone the set point switches back to its initial
value and the robot continues moving. Finally, the end effector reaches WP-B. In Fig.
5.14 the maximum velocity of the robot is visualized. Formally, the maximum velocity of
any point (xr, yr) ∈ R on the robot is given by

max
xr ,yr

{vr(xr, yr)}. (5.273)

Based on (5.264) an upper bound vr,M(t) of (5.273) can be stated as

vr(xr(t), yr(t)) ≤ max
xr(t),yr(t)

{vr(xr(t), yr(t))},
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Figure 5.14: Maximum velocity vr,M (t) according to (5.274) guaranteed to be bounded
by 0.011 [m/s] if obstacle remains at least 1 [s] in the stop zone.
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Figure 5.15: (a) Input signals. (b) Proof that ΨM,j is indeed an upper bound of |Ψj|.

≤ max{|q̇1(t)|, |q̇2(t)|}(d1 + 2d2) , vr,M(t). (5.274)

The upper bound vr,M (t) of (5.274) is depicted in Fig. 5.14. It can be seen that the
maximum velocity of the robot is below 0.011 [m/s] if the obstacle stays in the stop zone
for at least 1 [s]. The velocity remains bounded by 0.011 [m/s] until the obstacle leaves
the stop zone again. In Fig. 5.15 (a) the control inputs are visualized. The chattering is
well attenuated but the changes of the set points induce some peaks in the control signals.
In Fig. 5.15 (b) the disturbance term |Ψj| is shown to be indeed upper bounded by the
assumed value Ψ̂M,j = 10 of the uncertainty bound. Finally, all statements of Proposition
21 are confirmed by the simulation results.

145



Ch. 5. Constrained Control of Uncertain Relative Degree Two Nonlinear Systems

5.2.3 Summary

In the previous sections a safety concept for human-robot interaction is proposed. The
concept is exemplarily designed for a two-link robot with rotary joints. The human is
described by a scalable circular obstacle in a two-dimensional plane. The proposed strat-
egy is based on three geometrical zones. These zones guarantee that the joint velocities
decrease if the robot is approached by the obstacle. Within the working area of the robot
the admissible velocities are restricted to a minimum value. Moreover, in the vicinity of
the robot a stop zone is defined. If the obstacle is located within the stop zone the robot
is forced to stop. The proposed concept can be applied to design the maximum velocity of
the robot that occurs during a collision with the obstacle. The robot does not evade from
the obstacle. Consequently, the developed strategy allows any kind of interaction between
human and robot and guarantees that the appearing robot velocities are uncritical. The
main advantage of the suggested method with regards to the literature is the ability to
handle model uncertainty. The velocity constraints are guaranteed to be satisfied as long
as the uncertainty bounds are chosen sufficiently large which can be achieved by exper-
imental tuning. The proposed concept is tested on a specific scenario of human-robot
interaction. Model uncertainty is simulated by a applying an unknown exogenous payload
to the end effector. Based on the chosen controller parameters concrete bounds for the
robot velocity can be determined. The simulation results confirm that the robot velocity
is indeed bounded by the values that are provided through the theory.
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6 Conclusions and Perspectives

This thesis considers three main contributions to sliding mode control and observation: An
optimization of the smooth variable structure filter, a chattering mitigated adaptive sliding
mode control approach, and a constrained sliding mode controller for nonlinear uncertain
systems. The novelties of the three approaches are summarized as follows. The achieve-
ments in terms of the formulated goals of Section 1.1 are highlighted and a perspective on
possible future works is given.

6.1 Summary and Conclusions

The smooth variable structure filter is a state estimation approach for discrete-time non-
linear systems. It follows the predictor corrector scheme of the Kalman filter and utilizes
elements known from sliding mode control and observation. The smooth variable structure
filter can handle model uncertainty but its performance highly depends on the width of the
smoothing boundary layer which is a tuning parameter. In this thesis a novel reformulation
of the SVSF approach is stated. The reformulation gives insights on how the smoothing
boundary layer width affects the behavior of the filter. If the output estimation error
exceeds the width of the boundary layer the filter ignores the a priori estimation. This
behavior of the filter seems to be reasonable as the a priori estimation can be imprecise
due to the uncertainty of the model. The SVSF does not minimize any estimation per-
formance criterion like the Kalman filter does. To improve the estimation performance of
the SVSF a new filter gain is derived that minimizes the MSE. Therefore, the a posteriori
error covariance of the reformulated filter is determined. The original filter gain is replaced
by a gain that minimizes the MSE. The filter with the optimized gain is shown to behave
equally to the extended Kalman filter. To achieve a compromise between robustness and
minimization of the MSE a combination of the smooth variable structure and the Kalman
filter is proposed. In addition, a parameter optimization scheme is developed to optimize
the tuning parameters of the original SVSF and the new combined estimation approach.
The optimization scheme neither requires any data from the true system to be known
nor does it require any knowledge about the true system description. In the optimization
scheme a training process is considered. Within the training the parameters of the known
nominal system description are varied to simulate model uncertainty. As the true states of
the simulated system are known the estimation performance of the filter can be optimized
under the influence of model uncertainty. This finally leads to a robustification of the
filter. For the combined estimation approach it can be guaranteed that the performance
in the training process is at least as good as the one of the original SVSF. The proposed
combined estimation approach is tested on an uncertain nonlinear system. Its estimation
performance is compared to the one of original SVSF. The parameters of the combined
approach and the SVSF are optimized based on the proposed scheme. The results clearly
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show that the state estimations of the combined approach are more precise than the ones
of the SVSF. From the optimized parameters it can be concluded that at least for the
considered example the SVSF gain does not contribute well to the robust estimation per-
formance of the combined approach. Instead the combined approach behaves similar to a
parameterized Kalman filter that is optimized to handle model uncertainty.

In adaptive sliding mode control the controller gain is adaptively adjusted to reduce
the chattering effect. As pointed out in this thesis all adaptive SMC approaches suffer
from the problem that the controller gain can not be effectively reduced on the sliding
surface. This is the case because on the sliding surface the so-called equivalent control
input is required to be applied to keep the system in sliding mode. As the controller
gain can not be effectively reduced on the sliding surface a remaining chattering effect is
present. To overcome the problem a data-driven adaptive SMC approach is developed in
this thesis. The suggested approach is based on a model-free controller and an adaptive
SMC. The model-free controller is active on the sliding surface to avoid the chattering and
the adaptive SMC is active otherwise to guarantee boundedness of the tracking error. The
model-free controller is a predictive controller that is formulated based on a local linear
system description. The local system description is identified through a Kalman filter and
describes the system behavior in the near future. Based on the incoming measurements
of the system the Kalman filter keeps the local model up-to-date. To achieve a suitable
prediction performance of the local model the true system is required to have sufficient
slow dynamics. The predictive controller is obtained by solving a standard linear MPC
problem. A nonlinear MIMO three tank water system is considered to test the predic-
tive controller and the prediction capabilities of the local model. The dynamics of the
system are assumed unknown. Set-point tracking as well as handling of constraints can
be achieved by the proposed model-free controller. The new chattering mitigated slid-
ing mode control approach is formulated by combining the model-free controller with an
adaptive SMC. Weighting functions are introduced to achieve chattering mitigation and
boundedness of the tracking error. The new data-driven adaptive SMC is tested on a
nonlinear chemical plant. The approach is stationary accurate with no noticeable amount
of chattering.

Constrained control approaches can be found in a wide variety of applications. Slid-
ing mode based methods offer the ability to handle model uncertainty. The provided
robustness is especially interesting for safety-critical systems that consider for example
the interaction of humans and robots. The application field of the existing constrained
SMCs is rather limited. Often the constrained control problem is only solved in theory but
the stated controllers are infeasible in practice due to chattering. Most of the approaches
only consider box-constraints so that the bounds of the constraints can not be updated
online. In this thesis a new constrained sliding mode control approach for nonlinear rel-
ative degree two systems is developed. The first time derivative of the control variable
is assumed to be constrained and the upper and lower bounds may explicitly depend on
time. An accurate system description is not required only finite uncertainty bounds are
assumed. The suggested approach is based on a combination of two SMC sub-controllers.
The sub-controllers guarantee reaching of two sliding manifolds. One manifold is designed
to achieve set point tracking the other manifold avoids constraint violation. Smooth tran-
sitions between the sub-controllers are guaranteed. Chattering mitigation can be achieved
without violating the constraints. For the proposed controller it is analytically proven
that the constrained control problem can be solved. Sufficient conditions related to the
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controller parameters are derived to guarantee convergence of the tracking error and satis-
faction of the constraints. Moreover, the tracking error bounds are stated and a maximum
time is determined after which convergence with respect to the bounds is achieved. The
developed approach is applied to a robotic systems. A point to point robot control prob-
lem subject to velocity constraints is considered. The robot is disturbed by an unknown
payload that is applied to the end effector. Based on the developed theory and the selected
controller parameters concrete values for the tracking error bounds are stated. A specific
time interval is determined after which the considered control problem is guaranteed to
be solved. The theoretical results are confirmed by simulation. Further, the developed
constrained controller is applied within a proposed concept for safe human-robot interac-
tion. The safety concept is exemplarily designed for a two-link robot with rotary joints.
A scaleable circular obstacle in a two-dimensional plane is used to describe the human.
Three geometrical zones are defined that restrict the velocity of the robot. Physical con-
tact between the robot and the human is allowed by the concept. The maximum velocity
of the robot that occurs during a possible collision with the obstacle is a design value.
Consequently, the concept can be applied for any human-robot interaction and guarantees
that the appearing velocities are uncritical. In contrast to existing safety concepts the pro-
posed strategy is robust. As the developed constrained SMC is applied within the stated
concept robustness against model uncertainty is achieved. This is of special interest in
safety critical applications. A specific scenario of human-robot interaction is considered to
validate the proposed concept. To simulate model uncertainty an unknown external pay-
load is applied to the end effector. Based on the selected controller parameters a specific
velocity can be determined that is not exceeded by the robot in case of a collision. The
theoretical results are confirmed by simulation.

6.2 Perspectives

The smooth variable structure filter does not show general superiority when the system
description is imprecise. The combined estimation approach that is formulated in this
thesis achieves a better estimation performance although it primarily behaves like an op-
timized Kalman filter. In addition, the application field of the SVSF approach is limited
as it requires full state measurements. As a consequence, it seems to be more promising
to further improve the ability of the Kalman filter to handle model uncertainty. For linear
systems many methods already exist like the robust Kalman filtering approach of Dong
and You (2006). In case of linear observable systems it is even possible to estimate the
whole state space description and the Kalman filter gain from input-output data (Qin,
2006). The challenge is to achieve a robustification of the Kalman filter in case of non-
linear uncertain systems. An optimal Kalman filter gain can be determined if the error
covariance is known. The estimation of the error covariance that is described in this thesis
is based on the assumption of full state measurements. However, the estimation strategy
could be modified to handle systems for which the states are not measured entirely. The
error covariance could be simply parameterized and the introduced parameters may be
optimized based on the optimization scheme that is proposed in this thesis.

The developed data-driven adaptive SMC approach of this thesis can indeed mitigate
the chattering effect. However, the formulated approach is only applicable to nonlinear
systems with sufficient slow dynamics. In addition, no mathematical analysis of the model-
free predictive controller which is part of the proposed control concept is provided. The
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convergence of the model-free predictive controller is not guaranteed. To make the pro-
posed approach applicable to a wider class of systems nonlinear neural networks could
be used for the system identification. Nonlinear networks can provide enhance prediction
capabilities but may lead to nonlinear non-convex optimization problems that are hard to
solve. However, so-called input convex nonlinear networks exist (Amos et al., 2017). This
networks lead to convex optimization problems which facilitate the design of the model-
free predictive controller.

Although the developed constrained sliding mode control approach is formulated with
respect to single input relative degree two systems it can be applied to MIMO systems as
well. This is the case if the system is fully actuated like it is for the robotic MIMO system
that is considered in this thesis. Also other mechanical systems such as autonomous un-
derwater vehicles are commonly fully actuated and have a relative degree of two related
to position control. However, it may still be advantageous to reformulate the proposed
constrained controller for nonlinear MIMO systems. This can be achieved by applying
the sliding mode control concept of Slotine and Li (1991, Chap. 7.4) that is described in
Section 2.1.2. The advantage of the reformulation of the controller would be that a further
degree of model uncertainty could be considered.
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Spiller, M. and D. Söffker (2020). ‘On the Relation Between Smooth Variable Structure
and Adaptive Kalman Filter.’ Frontiers in Applied Mathematics and Statistics 6, 61.
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A Simulation Study of Section 3.5

A.1 Jacobian of Discrete-time CSTR System

The Jacobian of the time-continuous system

[

ẋ1

ẋ2

]

=

[

f1(x, u)
f2(x, u)

]

= f(x, u), (A.1)

f1(x, u) =
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is given by
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 ,

so that the Jacobian of the discrete-time system

xk+1 = f(xk, uk)× Ts + xk
︸ ︷︷ ︸

fd(xk,uk)

, (A.2)

with sampling time Ts is obtained as

Jd(xk) =
∂fd
∂xk

= J(xk)× Ts + I2. (A.3)

A.2 Optimized Parameters of EKF and SVSF

The optimized parameters of the extended Kalman filter and the smooth variable structure
filter are shown in Table A.1. The parameters correspond to the training process described
by Table 3.2.
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Ch. A. Simulation Study of Section 3.5

Table A.1: Optimized parameters of EKF and SVSF

Training I Training II Training III Training IV Training V

EKF

q11 0.4857705 0.4896970 18.365799 0.1054488 18.410656

q12 -0.000100 0.0000347 0.0000360 0.0000460 0.0000472

q22 0.0112983 777.61160 143.88359 369.08842 246.75960

SVSF

ψ1 4.0112549 4.0348145 0.0635671 6.0151829 0.0635484

ψ2 6.4780212 6.1078125 1.2476379 3.2376635 1.2476431

φ1 0.9999891 0.9999695 0 0.9999843 0

φ2 0.9999389 0.7109375 0.0002407 0.9999542 0
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B Quadratic Program with Soft-Constraints

In the following the hard constraints of a quadratic program are reformulated as soft-
constraints. This is a well-known procedure. Explanation can be found in e. g. Mikuláš
(2013). Consider the quadratic program

arg min
u

1

2
uTGu+ dTu, (B.1)

with hard constraints

Acu ≤ bc, (B.2)

and 0 � G ∈ R
m×m, Ac ∈ R

p×m, d ∈ R
m, u ∈ R

m, bc ∈ R
p. The constraints are rewritten

as soft-constraints

Acu ≤ bc + ν, (B.3)

based on a vector of slack variables (νi) = ν ∈ R
p. To enforce the constraints minimization

of the slack variables |νi| with i = 1, . . . , p is desired. Therefore, the cost function is
modified as

arg min
u, ν

1

2
uTGu+ dTu+

1

2
νTWν, (B.4)

with the additional weighting matrix 0 � W ∈ R
p×p. The modified cost function can be

rewritten as a quadratic program

arg min
ũ

1

2
ũT G̃ũ+ d̃

T
ũ, (B.5)

subject to

Ãcũ ≤ bc, (B.6)

with

ũ =

[

u
ν

]

, G̃ =

[

G 0
0 W

]

, d̃ =

[

d
0

]

, Ãc =
[

Ac −In
]

, (B.7)

Then the constraints defined by (B.2) are almost satisfied for increasing weights of W .
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C Adaptive Sliding Mode Controller of Plestan

In Plestan et al. (2010) an adaptive SMC is proposed that has the ability to decrease the
controller gain in the near of the sliding surface. The controller is described by Algorithm
5. Outside the boundary layer the SMC gain is continuously increased to guarantee finite-
time convergence of the sliding variable. Inside the boundary layer the gain is reset. This
resetting is based on an estimation of the equivalent control input i. e. an estimation
of the input that is required to keep σ on the sliding surface. The estimation of the
equivalent control input is achieved based on a low-pass filtering of the switching term
sgn(σ). The filtered signal γ1 is multiplied with k̄2. The equivalent control input is given
by the statement k̄2γ1 + k̄3.

In Section 4.2.3 the A-SMC approach is compared with the model-free predictive
controller (PC) and the chattering mitigated sliding mode controller (CM-SMC). The
controller parameters of A-SMC are tuned by visual inspection of the chattering effect
and the tracking performance. The following values are chosen: ǫ1 = 1, k̄1 = 10, k̄3 = 2,
τ1 = 100, kA−SMC(t0) = 20, and γ1(t0) = 0.

Algorithm 5 Adaptive SMC (A-SMC) of Plestan et al. (2010)

Input σ(t), ǫ1 > 0, τ1 > 0, k̄1 > 0, k̄3 > 0, kA−SMC(t0) > 0, γ1(t0)

if |σ| ≤ ǫ1 then ⊲ If σ is inside the boundary layer . . .
kA−SMC(t)← k̄2|γ1|+ k̄3 ⊲ Reset SMC gain
with
k̄2 ← kA−SMC(t∗)
t∗ directly after t∗− so that |σ(t∗)| ≤ ǫ1 and |σ(t∗−)| > ǫ1
τ1γ̇1 + γ1 ← sgn(σ)

else if |σ| > ǫ1 then ⊲ If σ is outside the boundary layer . . .
k̇A−SMC ← k̄1|σ| ⊲ Increase SMC gain

end if

u← −kA−SMC × sgn (σ)

Output u(t)

171





D Proof of Lemma 10

Proof. It will be shown that for the possible control inputs u = u∗
r , u = u∗

c1
, and u = u∗

c2

the sliding variable σr ≤ −ǫr increases to −ǫr < 0 in finite-time.
Step 1: Consideration of control input u = u∗

r according to (5.56). From the reach-
ability condition (5.44) and the definition of the smooth approximation (5.55) it follows
that

σ̇r ≥
µr√

2
, (D.1)

holds in case of σr ≤ −ǫr.
Step 2: Consideration of control input

u = u∗
c2

= u∗
r + sat

(

σc2

ǫc2

)

× k∗
c2
, (D.2)

with

k∗
c2

=




µc2

+ ΨM

√
2

Γm
√

2
+
|η̇c2
|

Γm
− sat

(

σc2

ǫc2

)

u∗
r +

α+ βγ|er|γ−1

Γm
|ẏr|



 , (D.3)

according to (5.57). The saturation function is bounded as

0 ≤ sat

(

σc2

ǫc2

)

≤ 1, (D.4)

because σc2
> 0 holds if u = u∗

c2
is applied. Input u∗

r is part of (D.2) and (D.3). As u = u∗
c2

is only applied if σc2
= −ηc1

− ẏr > 0 holds it follows that ẏr < 0 holds and u∗
r is

u∗
r =

µr + ΨM

√
2

Γm
√

2
+
α+ βγ|er|γ−1

Γm
|ẏr| > 0, (D.5)

in case of σr ≤ −ǫr. Substituting (D.5) in (D.3) and considering (D.4) yields

0 ≤ µc2
− µr

Γm
√

2
+
|η̇c2
|

Γm
≤ k∗

c2
, (D.6)

in case of µc2
≥ µr. From (D.2) it follows u∗

c2
≥ u∗

r . The reachability condition

σ̇r = Ψ + Γu+ αẏr + βγẏr|er|γ−1 ≥ µr√
2
, µr > 0, (D.7)
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known from (5.44) is satisfied if inequality

u ≥ µr + ΨM

√
2

Γm
√

2
− α+ βγ|er|γ−1

Γ
ẏr, (D.8)

holds. As stated in Step 1 the reachability condition is satisfied for u = u∗
r if σr ≤ −ǫr

holds. As u∗
c2
≥ u∗

r holds it is

u∗
c2
≥ u∗

r ≥
µr + ΨM

√
2

Γm
√

2
− α+ βγ|er|γ−1

Γ
ẏr, (D.9)

and the reachability condition is also satisfied for u = u∗
c2

. Consequently,

σ̇r ≥
µr√

2
, (D.10)

holds.
Step 3: Consider application of control input u = u∗

c1
according to (5.57).

Case I :
It is first studied the behavior of σr if input u(t) = u∗

c1
(t) is applied on some time

interval t ∈ [t1, t2) but not at instant t2. As u(t) = u∗
c1

(t) is applied at time instants t but
not at instant t2 it follows that σc1

(t) > 0 and σc1
(t2) = 0 hold. Consequently, σc1

(t⋆) ≥ 0
with t⋆ ∈ [t1, t2] holds. According to (5.39) it is

σr(t
⋆) = ẏr(t

⋆)− αer(t⋆)− β|er(t⋆)|γsgn(er(t
⋆)), (D.11)

for t⋆ ∈ [t1, t2]. As σc1
(t⋆) = −ηc1

(t⋆) + ẏr(t
⋆) ≥ 0 holds it follows from (5.35), (5.36) and

(5.37) that

ẏr(t
⋆) ≥ ηc1

(t⋆) > ηm > 0, ηm > 0, (D.12)

holds. As σr(t
⋆) < 0 and ẏr(t

⋆) > 0 hold it can be seen from (D.11) that er(t
⋆) > 0 holds.

Consequently, equation (D.11) can be simplified as

σr(t
⋆) = ẏr(t

⋆)− αer(t⋆)− β|er(t⋆)|γ . (D.13)

From (D.13), (D.12), and er = w − yr it follows that

σr(t
⋆) ≥ ηc1

(t⋆)− αw + αyr(t1)− β|er(t1)|γ

+

∫ t⋆

t1
αẏr(τ)dτ +

∫ t⋆

t1
γβẏr(τ)|er(τ)|γ−1dτ, (D.14)

holds for any time t⋆ ∈ [t1, t2]. Substituting

α =
η̇M
ηm

+ µα ≥ −
η̇c1

(t)

ẏr(t)
+ µα, µα > 0, (D.15)

in (D.14) and considering ẏr(t
⋆) ≥ ηm > 0 as well as β > 0, γ > 0 leads to

σr(t
⋆) ≥ −αw + αyr(t1)− β|er(t1)|γ + ηc1

(t1) + µαηm(t⋆ − t1). (D.16)
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Adding ẏr(t1) − ẏr(t1) to (D.16) and considering the definition of σr according to (5.39)
yields

σr(t
⋆) ≥ ẏr(t1)− αer(t1)− β|er(t1)|γ − ẏr(t1) + ηc1

(t1) + µαηm(t⋆ − t1),

= σr(t1)− ẏr(t1) + ηc1
(t1) + µaηm(t⋆ − t1), µaηm > 0, (D.17)

for t⋆ ∈ [t1, t2].
Case II :

It is now studied the behavior of σr if input u(t) = u∗
c1

(t) is applied on some time
interval t ∈ (t1, t2) but not at time instants t1 and t2. It follows that σc1

(t) > 0, σc1
(t1) = 0,

σc1
(t2) = 0, and σc1

(t⋆) ≥ 0 with t⋆ ∈ [t1, t2] hold. According to (5.39) it is

σr(t
⋆) = ẏr(t

⋆)− αer(t⋆)− β|er(t⋆)|γsgn(er(t
⋆)), (D.18)

for t⋆ ∈ [t1, t2]. As σc1
(t⋆) = −ηc1

(t⋆) + ẏr(t
⋆) ≥ 0 holds it follows from (5.35), (5.36), and

(5.37) that

ẏr(t
⋆) ≥ ηc1

(t⋆) > ηm > 0, ηm > 0, (D.19)

holds. Considering ẏr(t
⋆) > 0 and σr(t

⋆) < 0 it can be seen from (D.18) that er(t
⋆) > 0

holds which leads to

σr(t
⋆) = ẏr(t

⋆)− αer(t⋆)− β|er(t⋆)|γ . (D.20)

From (D.19), (D.20), and er = w − yr it follows that

σr(t
⋆) ≥ ηc1

(t⋆)− αw + αyr(t1)− β|er(t1)|γ

+

∫ t⋆

t1
αẏr(τ)dτ +

∫ t⋆

t1
γβẏr(τ)|er(τ)|γ−1dτ, (D.21)

holds for any time t⋆ ∈ [t1, t2]. Substituting

α =
η̇M
ηm

+ µα ≥ −
η̇c1

(t)

ẏr(t)
+ µα, µα > 0, (D.22)

in (D.21) and considering ẏr(t
⋆) ≥ ηm > 0 as well as β > 0, γ > 0 leads to

σr(t
⋆) ≥ −αw + αyr(t1)− β|er(t1)|γ + ηc1

(t1) + µαηm(t⋆ − t1). (D.23)

As σc1
(t1) = −ηc1

(t1) + ẏr(t1) = 0 holds it follows ηc1
(t1) = ẏr(t1). Replacing ηc1

(t1) =
ẏr(t1) in (D.23) and considering the definition of σr from (5.39) yields

σr(t
⋆) ≥ σr(t1) + µaηm(t⋆ − t1), µaηm > 0, (D.24)

for t⋆ ∈ [t1, t2].
Step 4: Occurrence of Case I and Case II of Step 3. It will be shown that Case I

of Step 3 can only occur if u = u∗
c1

is applied first, meaning that once input u = u∗
r or

u = u∗
c2

has been applied Case I of Step 3 can not occur anymore.
According to Algorithm 3 input u = u∗

r or u = u∗
c2

are only applied if σc1
= −ηc1

+ẏr ≤
0 holds. Consider u = u∗

r or u = u∗
c2

to be applied before the input switches to u = u∗
c1

.
That means that there exists a time instant t1 with σc1

(t1) = −ηc1
(t1) + ẏr(t1) = 0 just
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before σc1
switches to a positive number inducing the switch of the input to u = u∗

c1
. As

σc1
(t1) = 0 holds it follows ηc1

(t1) = ẏr(t1) (Case II) and not ηc1
(t1) < ẏr(t1) (Case I).

Step 5: Rate of decrease. Let µc2
≥ µr and σr(t) ≤ −ǫr hold for some interval

t ∈ [t1, t2]. From (D.1), (D.10), (D.17), (D.24), and Step 4 it follows that σr(t) increases
to −ǫr < 0 in finite time according to

σr(t) ≤ κ+ ̺(t− t1), (D.25)

κ = min
{

σr(t1), σr(t1)− ẏr(t1) + ηc1
(t1)

}

,

̺ = min

{

µr√
2
, µaηm

}

,

with t ∈ [t1, t2].
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