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1 Introduction

Multiplicative intermittent faults observed in industrial processes and systems imply serious

threats to system reliability and decrease production safety. Therefore, this thesis aims at

the investigation of intermittent fault detection methods in stochastic and deterministic

systems. A detection scheme is developed for systems with multiplicative intermittent

faults. These points of view will be presented successively in this thesis.

1.1 Background and motivation

A fault, which is defined as an unexpected change occurring in a process, is a special state

that the process cannot properly perform its specified function under normal conditions.

According to the occurrence characters, faults can be classified into the following categories:

• permanent faults (PFs) take effect on the process permanently until repairing. They

are very common faults that occurring in industrial processes;

• transient faults (TFs) that appear and disappear instantaneously and their occurrence

is almost completely random in nature. For instance, in electronic systems, they are

usually caused by electromagnetic radiation, overheating and input power variations

[11];

• intermittent faults (IFs) that often reoccur and last for a limited time interval, then

disappear without any external correction. The cause of the IFs can be hardware

failures in mechanic systems, digital circuits, the power industry, software problems,

cyber-attacks, etc.

There have already been many research efforts made on the detection of PFs since the

1970s, while TFs have less impact on the system, and in some cases they are regarded

as a part of noises. Compared with TFs, IFs may repeatedly occur at the same location,

the influence of IFs, especially amplitude and duration, could increase because of the

cumulative effect. It may lead to further deterioration of the entire system and cause

severe accidents, for example:

1



1 Introduction

• in digital circuits, IFs are the most frequent failures. According to statistics, the

probability of the occurrence of an IF has reached nearly 90%, which is 30 times

that of PFs [44, 65]. Most IFs are caused by hardware failures such as vibration,

electro-migration, manufacturing defect, etc., and IFs caused by the software are

memory leak, disk error, etc. [2], the cyber-attacks is a typical kind of IFs, which

attracts a lot of attention;

• in the electric power transmission industry, arcing faults, which are typical IFs, may

cause devastation damages such as electric fires and explosions [47, 89]. Moreover,

due to the complex operating environment, there exists a large amount of undetected

IFs in electric power distributed systems, which may lead to more severe hazards

and decrease the reliability of power delivery [20];

• in the transport industry, the most important parts, such as bears, motors and

gears, show repetitively characters and may fail intermittently. These problems will

result in connection loosing, solder joint crack, corrosion, etc. [71] Such faults will

significantly increase the maintenance costs and introduce addition financial burdens.

According to American Trans Air members statistics, IFs lead to thousands of flight

delays and cancellations, the total economic loss is annually 100 million dollars [78].

Figure 1.1: Evolution process of systems with IFs [10].

In the application domains, the “severity” of IFs will increase when the system is

constantly running. As mentioned in [10], the frequency, amplitude and duration of IFs

may increase over time, and the corresponding evolution process is shown in Fig. 1.1.
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1.1 Background and motivation

Faults in systems can also be classified into additive faults and multiplicative faults.

Their characteristics and corresponding research results are summarized as follows:

• an additive fault is always modeled by additive term in state space representation

(e.g. Eff), notice that the occurrence of an additive fault cannot affect the system

stability. There are also numerous investigations on dealing with additive faults.

A recent useful method is developed by using the Plug-and-Play concept, which

is interpreted as a reconfiguration of the controller after adding new sensors or

subsystems of the process [6, 73], the additive faults could be compensated and the

system could have optimal performance;

• the multiplicative fault may lead to the variation of the system structure, and cause

changes in system eigen-dynamics. They widely exist in engineering systems, such

as high-speed trains [14] and wind turbine systems [76].

In the past decades, investigations on fault detection (FD) for IFs have attracted

considerable attention [1, 11, 66]. [96] gives a review on diagnosis techniques for IFs and

discusses their strengths, limitations and future directions.

According to the above background knowledge, a multiplicative IF processes the following

characteristics: occurring intermittently, changing the overall structure of the system, and

even affecting the stability of the system. For the research on multiplicative IFs detection,

we need to pay attention to three aspects: (1) modeling the system with IFs in a suitable

way, (2) developing a proper FD scheme, and (3) studying the influence of multiple IFs’

frequency and duration on system stability.

Since the IFs can be viewed as (frequent) switchings between two modes: inactive (fault-

free) mode and active (faulty) mode, the overall system dynamics can be considered as a

switched system. Roughly speaking, a switched system consists of a series of subsystems

described by differential or difference equations and a logic rule that regulates the switchings

between them. In this context, dynamic systems with multiplicative IFs are switched

systems, and we could analyze their stability conditions by the well-developed switched

system theory. Strongly motivated by these observations, the next subsections attempt to

review some of the major developments in FD and switched systems.

1.1.1 Fault detection and fault classification schemes

With the increasing complexity of industrial processes and systems, early detection,

classification and diagnosis of faults become more and more important. Due to this,

related issues attract considerable attention both in academic and industrial fields.

3



1 Introduction

According to the previous introduction, it can be seen that the faults could cause

harmful results to the systems. Therefore, detecting the faults as early as possible is

important. To this end, numerous FD approaches have been developed since the 1970s,

including hardware redeundancy schemes, model-based FD, signal-based FD, data-driven

FD methods, etc.

The development of model-based FD scheme begins by replacing hardware redundancy

with analytical redundancy [4]. In this approach, the observer-based residual generator is

developed, which is the fundamental of this thesis, and the schematic of the model-based

FD scheme is shown in Fig. 1.2. In [34], an observer-based residual generator is established

for FD schemes, based on this observer-based framework, many achievements have been

made in different research domains, more details can be found in [7, 19, 25, 64].

Figure 1.2: Schematic of the model-based FD schemes.

With the development of computer science and data network technologies, it is possible

to propose process monitoring and FD schemes by analysing a large amount of data in an

acceptable time interval. Motivated by this, the FD systems in data-driven framework

have made great progress, many statistical methods have been developed, such as principal

analysis [68], partial least squares [18], canonical correlation analysis [16], independent

component analysis [88], etc. In [26], the data-driven FD approaches are systematically

introduced.

For stochastic systems and deterministic systems, there have been considerable research

results on FD issues. For the system with white Gaussian noise, an FD scheme consists of

residual generation, evaluation (statistic test) and threshold setting. The FD methods

have been addressed in different approaches, for instance, the residuals are generated by

Kalman filter in [60], an FD strategy is achieved using generalized likelihood ratio test

method in [83], etc. Parallel to the stochastic systems, FD problems for systems with

4



1.1 Background and motivation

norm-bounded disturbances and uncertainties are also discussed. Several methods are

proposed, such as the decoupling approach [15], the linear matrix inequality technique-aid

approach [25], L∞ and L∞/L2 observer-based method [86], and in this case, an adaptive

threshold is adopted for robust FD systems. In conclusion, a standard procedure for

model-based FD is investigated, including residual generation, residual evaluation and

decision making.

1.1.2 Switched systems

In complex industrial processes, the continuous and discrete dynamics may co-exist and

influence each other, and the parameters may vary with the changes of time or state. Hence,

the hybrid system is proposed to describe the dynamic behaviours of such systems. As an

important branch of hybrid systems, a switched system consists of a class of subsystems

and a logical switching rule that governs the dynamics of the particular subsystems, and

Fig. 1.3 shows the structure of a typical switched system. Investigations on switched

systems have attracted considerable attention, and some scholars focus on some issues of

switched system such as: stability conditions [58], control issues [94], FD schemes [67, 74],

etc. In practice, there are numerous applications of switched systems, e.g., direct current

power converters [23], wind turbine control [48], network control [77], etc.

Figure 1.3: Schematic of switched systems.

One of the special characters of a switched system is its stability condition. For example,

even though all the subsystems are exponentially stable, the switched systems could have

5



1 Introduction

divergent trajectories under a certain switching signal [24]. On the other hand, a switched

system consisting of unstable sub-systems may be exponentially stable when choosing a

proper switching rule. That means the stability of switched systems depends not only on

the dynamics of each subsystem, but also on the switching rule. Therefore, it is necessary

to analyze stability conditions in all studies related to switched systems.

Until now, many efforts have been dedicated to the stability analysis, and there exist

some widely utilized methods: (1) find quadratic Lyapunov function for all its subsystems

and ensure the stability in arbitrary case [21, 53]; (2) design a certain switching rule (see

[80] and the references therein); (3) analyze the stability conditions under a time-constrain

switching case, which is well-known as average dwell time (ADT) method [39, 62, 90, 91, 95].

In all the above attempts, the ADT method is mostly used in recent years. In this method,

the switching frequency and the time interval between switchings play important roles in

the stability analysis.

1.2 Objectives of the thesis

Inspired by the aforementioned motivations, the main objectives of this thesis are to

investigate the approaches for detecting multiplicative IFs, to develop the FD schemes for

stochastic and uncertain systems. More specifically, the tasks of this thesis are stated as

follows:

1. Model linear time-invariant dynamic systems with multiplicative intermittent faults

as switched systems.

2. Propose an FD approach with a mode estimation unit for switched systems subject

to norm-bounded disturbance and uncertainties.

3. Develop a likelihood ratio (LR) test-based detection scheme for detecting IFs in

stochastic systems.

4. Propose a detection scheme with an embedded mode estimation unit for multiplicative

IFs and analyze the stability condition of the FD system.

1.3 Outline of the thesis

As shown in Fig. 1.4, this thesis consists of 7 chapters, and the structure as well as the

contribution of each chapter are summarized as follows.

Chapter 1: Introduction

This chapter introduces the motivation, objectives, outline and contributions of this thesis.

6



1.3 Outline of the thesis

Chapter 2: Basics of Fault Detection Systems

In Chapter 2, review the state-of-the-art of FD schemes for both stochastic and determin-

istic systems. To this end, knowledge of modeling systems and faults, the basics of FD

systems and specific techniques are given. They provide fundamentals for developing FD

approaches.

Chapter 3: Fundamentals of Switched Systems

In this chapter, the basics of switched systems and IFs are presented. A brief introduction

of switched systems is given, including background, stability analysis under arbitrary and

strict switching. Then the framework of using switched systems to describe the systems

with intermittent faults is established.

Chapter 4: Design of observer-based Fault Detection schemes for uncertain

switched systems

This chapter is dedicated to the design issues of observer-based FD for switched systems

with norm-bounded uncertainties and disturbances. To this end, a so-called L∞/L2 type

of residual generator is investigated with the aid of the mode-dependent ADT method. To

estimate the switching instant and improve the conservative threshold setting due to the

asynchronized residual generation, a mode estimation unit is developed in the FD decision

logic.

Chapter 5: A Fault Detection Approach for Stochastic Systems with Multi-

plicative Intermittent Faults

This chapter discusses a switched system theory-based framework for detecting multiplica-

tive IFs in stochastic systems. Since the IFs can be viewed as switchings between inactive

(fault-free) mode and active (faulty) mode, the overall system dynamics are governed by a

switched system. The residual signals in both modes can be generated by the Kalman

filter algorithm and the detection decision is proposed by LR test-based residual evaluation

and threshold setting. The mode estimation unit is developed and in the last subsection,

and the stability condition is analyzed based on the ADT method.

Chapter 6: Application to benchmark processes

In this chapter, the effectiveness and feasibility of the proposed FD schemes are verified

by two examples.

Chapter 7: Conclusions and Future Work

This chapter provides a summary of the contributions in this thesis and gives the conclusion

of this work. Then some future scopes are discussed in the end of this chapter.

7



1 Introduction

Figure 1.4: Organization of the thesis.
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2 Basics of Fault Detection Systems

In this chapter, an overview of the basic knowledge of FD and the state-of-the-art of FD

schemes is given. First present the mathematical description of systems and then review

the basics of FD problems of stochastic and deterministic systems, which includes the basic

concepts, residual generation and evaluation techniques, threshold setting and decision

making.

2.1 Mathematical description of dynamic systems

This section introduces mathematical descriptions of dynamical systems. Lots of attention

are paid on the systems in both faulty and fault-free cases, including two standard

mathematical model forms, transfer function matrix and state space representation. The

objective of this section is to build mathematical models for: (1) fault-free and disturbance-

free systems, (2) systems with disturbances and uncertainties, and (3) systems with

faults.

2.1.1 Description of nominal system behaviour

Linear time-invariant (LTI) systems are widely investigated in research and application

domains due to their simple form. In order to describe an LTI system, two typical standard

mathematical forms are introduced. One of them is the transfer function matrix, which

shows the input-output dynamic behaviour in the frequency domain. A discrete-time

system in nominal (fault-free and disturbance-free) as

y(z) = Gyu(z)u(z), (2.1)

where u ∈ Rnu and y ∈ Rny refer to the input and output signal, respectively; Gyu(z) ∈
LHny×nu

∞ is the transfer function matrix of the LTI system which describes the transfer

dynamics between the input and output signals. We use z to denote the variable of

z-transform for discrete-time signals.

In addition, the system (2.1) can be mathematically modeled by the following state

9



2 Basics of Fault Detection Systems

space form: {
x(k + 1) = Ax(k) +Bu(k), x(0) = x0,

y(k) = Cx(k) +Du(k),
(2.2)

where x(k) ∈ Rnx represents the state variable of the system, x0 ∈ Rnx is the initial state.

A,B,C and D are system matrices with appropriate dimensions. When nu = 1, ny = 1,

the system is a Single-Input Single-Output (SISO) system; otherwise, the system is a

Multiple-Input Multiple-Output (MIMO) system. We use k to denote the discrete-time

samples.

The relationship of these two representations can be written as

Gyu(z) = C(zI − A)−1B +D. (2.3)

It is noteworthy that in this thesis the (A,B,C,D) is assumed to be the minimal realization

of the transfer function Gyu(z). Moreover, for simplicity of notation, state space minimal

realization is denoted as follows:[
A B

C D

]
:= C(zI − A)−1B +D. (2.4)

2.1.2 Coprime factorization technique

For LTI systems, a coprime factorization provides an alternative representation of the

system transfer function matrix. Generally speaking, a coprime factorization over RH∞ is

the factorization of a transfer matrix by two stable and coprime transfer function matrices.

Definition 2.1. [25] Two matrices M̂(z) and N̂(z) in RH∞ are called left coprime over

RH∞ if there exist another two matrices X̂(z) and Ŷ (z) in RH∞ that satisfy[
M̂(z) N̂(z)

] [ X̂(z)

Ŷ (z)

]
= I. (2.5)

Similarly, two transfer matrices M(z) and N(z) in RH∞ are called right coprime over

RH∞ when there exist two transfer matrices X(z) and Y (z) in RH∞ satisfying[
X(z) Y (z)

] [ M(z)

N(z)

]
= I. (2.6)

Definition 2.2. Let Gyu be a transfer function matrix of an LTI system, then the left

coprime factorization (LCF) of Gyu(z) is defined by Gyu(z) = M̂(z)−1N̂(z), where M̂(z)

and N̂(z) are LCF pair over RH∞. The right coprime factorization (RCF) of Gyu(z) is

given by Gyu(z) = N(z)M(z)−1, where M(z) and N(z) are the RCF pair over RH∞.

10



2.1 Mathematical description of dynamic systems

The lemma given in [45] describes the relationship between coprime and the system

state representation.

Lemma 1. [45] Suppose that Gyu(z) is a proper transfer function matrix of an LTI system

with a minimal state space realization

Gyu(z) =

[
A B

C D

]
.

Choose matrices F and L, such that (A + BF ) and (A − LC) both are Schur matrices,

define [
M(z) −Ŷ (z)

N(z) X̂(z)

]
=

 A+BF B L

F I 0

C +DF D I

 ,
[

X(z) Y (z)

−N̂(z) M̂(z)

]
=

 A− LC −(B − LD) −L
F I 0

C −D I

 .
(2.7)

Then

Gyu(z) = M̂−1(z)N̂(z) = N(z)M−1(z), (2.8)

are the LCF and RCF of Gyu(z). Moreover, the so-called Bezout identity holds[
X(z) Y (z)

−N̂(z) M̂(z)

][
M(z) −Ŷ (z)

N(z) X̂(z)

]
=

[
I 0

0 I

]
. (2.9)

2.1.3 Description of systems with uncertainties

In real applications, there always exist some unknown inputs, for example, norm-bounded

disturbances, measurement/process noises, structure uncertainties, and so on. In order to

model the systems with different types of disturbances, it is needed to extend the nominal

system model form that is previously introduced.

A. Noises

Considering a simple model with white Gaussian noises, the system model (2.2) is

extended to: {
x(k + 1) = Ax(k) +Bu(k) + ω(k), x(0) = x0,

y(k) = Cx(k) +Du(k) + υ(k).
(2.10)

Here noise signals ω(k), υ(k) are statistically independent of u(k) and x(0), and they follow

the next assumption.

11
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Assumption 2.1. The white Gaussian noises in (2.10) are zero mean Gaussian noises

with covariance matrices Σω and Συ, respectively, i.e., the characters of the noise can be

described as follows:

E[ω(k)] = 0, E[υ(k)] = 0,

E[ω(k)ωT (k)] = Σω, E[υ(k)υT (k)] = Συ,

∀i 6= j, E[ω(i)ωT (j)] = 0, E[υ(i)υT (j)] = 0.

B. Disturbances

Considering the system is disturbed by norm-bounded disturbances, the system model

(2.2) can be extended to:

y(z) = Gyu(z)u(z) +Gyd(z)d(z), (2.11){
x(k + 1) = Ax(k) +Bu(k) + Edd(k), x(0) = x0,

y(k) = Cx(k) +Du(k) + Fdd(k),
(2.12)

where Gyd(z) is a proper real-ration matrix, Ed, Fd are matrices with proper dimensions,

d is a norm-bounded unknown input. A precise description of norms is given in Section

2.3.1.

C. Model uncertainties

Consider an extended form of the transfer matrix model (2.1)

y(z) = G∆,yu(z)u(z), (2.13)

where ∆ indicates structure model uncertainty. It can be represented by the following

additive form (2.14) and multiplicative form (2.15), respectively,

G∆,yu(z) = Gyu(z) + ∆, (2.14)

G∆,yu(z) = (I + ∆)Gyu(z), (2.15)

where the structure model uncertainty ∆ is a norm-bounded matrix defined by σ̄(∆) ≤
δ∆, σ̄ = max(eig(

√
∆T∆)).

For state space representation, the extended form is given by{
x(k + 1) = (A+ ∆A)x(k) + (B + ∆B)u(k), x(0) = x0,

y(k) = (C + ∆C)x(k) + (D + ∆D)u(k),
(2.16)

whose uncertainties are norm-bounded.
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2.1.4 Description of systems with faults

Faults are intolerable input signals occurring in systems. In this section, three fault

classification definitions are introduced according to the fault occurrence places in the

operation, time characters and the effect on system dynamics.

First, the system (2.1) with faults can be modeled by:

y(z) = Gyu(z)u(z) +Gyf (z)f(z), (2.17)

where f ∈ Rnf is an unknown vector and Gyf is proper real-time matrix. Suppose the

minimal state space realization of (2.17) is:{
x(k + 1) = Ax(k) +Bu(k) + Eff(k), x(0) = x0,

y(k) = Cx(k) +Du(k) + Fff(k),
(2.18)

where Ef , Ff are known matrices with proper dimensions. Obviously,

Gyf (z) = Ff + C(zI − A)−1Ef .

As illustrated in Fig. 2.1, we can divide faults into three categories according to their

places in the operation of the system:

1. actuator faults fA: faults cause changes in actuators,

2. process faults fP : faults exist in the process,

3. sensor faults fS: faults act in measuring components.

Figure 2.1: Faults in processes [25].

In addition, faults can also be classified into three types according to their occurrence

characters (see Fig. 2.2): PFs, IFs, and TFs.
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2 Basics of Fault Detection Systems

Figure 2.2: Faults categories via time characters.

These three types of faults may appear in systems of real applications. Notably, in some

situations they can also transform from one to another, see Fig. 2.3.

Faults described by (2.17) are called additive faults due to the way of affecting the

system dynamics linearly. There exists another type of faults called multiplicative faults.

Different from the additive faults which do not influence the system stability, multiplicative

faults can affect system stability by changing the eigen-dynamics of systems. Suppose that

a system with multiplicative faults is expressed as follows:{
x(k + 1) = (A+ ∆AF )x(k) + (B + ∆BF )u(k),

y(k) = (C + ∆CF )x(k) + (D + ∆DF )u(k),
(2.19)

where ∆AF ,∆BF ,∆CF ,∆DF represent multiplicative faults. Because of the variation of

the system structure, the system stability can also be changed. The stability conditions of

systems with multiplicative faults are determined by eigenvalues of the matrix (A+ ∆AF ).
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Figure 2.3: Transformation between TFs, IFs and PFs.

2.2 Basic FD problems

This section focuses on preliminaries of FD issues for systems in the statistical framework,

including basic ideas, residual generation, residual evaluation and threshold setting. Some

useful algorithms for FD system design are also summarized here.

2.2.1 The basics of FD systems in the statistical framework

Based on the measurement model, some essential FD concepts are introduced in this

subsection. Measurement models of static and dynamic processes with faults can be

expressed as

y(z) = f(z) + ε(z) (2.20)

y(z) = Gyu(z)u(z) +Gyf (z)f(z) +Gyε(z)ε(z), (2.21)

where y ∈ Rm, and ε is subject to normal distribution.

An FD problem can be addressed by the hypothesis testing that consists of two cases:

the null hypothesis H0 and the alternative hypothesis H1. Then, the FD problem can be

re-formulated as follows:

H0, null hypothesis : f = 0, fault-free case,

H1, alternative hypothesis : f 6= 0, faulty case.
(2.22)
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By applying hypothesis testing, a process of detecting faults is to determine whether

the statistic supports the alternative hypothesis and rejects the null hypothesis at the

same time.

In the system model (2.20), y can be chosen as a test statistic. Then, test statistic

conditions can be described by two hypotheses: (1) null hypothesis H0 : y = 0 and (2)

alternative hypothesis H1 : y 6= 0.

However, in real world, there always exist different types of disturbances. In practice, a

so-called limit monitoring analysis is widely utilized for FD purpose. For a given output

signal y, test statistic conditions can be described as

H0, null hypothesis : ymin ≤ y ≤ ymax,

H1, alternative hypothesis : y < ymin or y > ymax.
(2.23)

Here ymin and ymax are thresholds that denote the minimum and maximum values of y,

respectively.

For an FD scheme, two important probabilities are defined: false alarm rate (FAR) and

fault detection rate (FDR). FAR indicates the probability that an FD system announcing

a false faulty alert in fault-free case. FDR means the probability that a fault is detected

in faulty case. These are defined as follows.

Definition 2.3. The following probabilities are called FAR and FDR, respectively,

FAR = prob {y < ymin or y > ymax | f = 0},
FDR = prob {y < ymin or y > ymax | f 6= 0}.

(2.24)

We tend to find an FD scheme that for a given FAR, the corresponding FDR is at

largest; or for a given FDR, to find an FD approach that the corresponding FAR is at

smallest.

In previous discussion, basic concepts about FD systems are given based on the simplest

model. In real applications, dynamic systems are more complex than this. In order to

increase the robustness to the model uncertainties, disturbances, we can set a proper

observer running parallel to the process. In fact, the observer applied for FD purpose is an

output observer whose existence conditions are less strict than a state observer, which is

often used for control purposes. And an output observer can deliver an (optimal) estimate

of the process output. This method was proposed in the 1970s. More details can be seen

in [25, 34].

In an FD system, a comparison of the output signals with their estimates delivered by

an observer is made. The difference between measured output signals and their estimates

is called a residual, whose function can be used as a test statistic for the FD purpose.

An observer-based FD system is schematically shown in Fig. 2.4.
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Figure 2.4: Diagram of fault diagnosis systems [25].

2.2.2 Residual generation

In this subsection, lots of attentions are paid on observer-based residual generation. First,

an observer interpretation of the LCF is given. Then, a brief introduction of several

residual generation methods is given, including fault detection filter, diagnostic observer

and parity space-based residual generation approaches.

A. Fault detection filter

Fault detection filter (FDF) is a type of observer-based residual generator, which was

first proposed in [4] in early 1970s. Suppose the system (2.2) has a full-order observer{
x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− ŷ(k)),

ŷ(k) = Cx̂(k) +Du(k),
(2.25)

where x̂(k) is the observer state vector and it represents the estimate of x(k), ŷ(k) is the

estimate of y(k), and L denotes the observer gain matrix.

Define the residual signal as:

r(k) = y(k)− ŷ(k) = y(k)− Cx̂(k)−Du(k), (2.26)

and suppose the input signals of the observer are u(k) and y(k), then we can rewrite the
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observer as: {
x̂(k + 1) = (A− LC)x̂(k) + (B − LD)u(k) + Ly(k),

r(k) = −Cx̂(k)−Du(k) + y(k).
(2.27)

Introducing the error signal e(k) = x(k)− x̂(k), it yields

e(k + 1) = (A− LC)e(k), r = Ce(k), (2.28)

where eig(A− LC) < 1. In this case, x̂(k) provides an estimate for x(k), and there exists

lim
k→∞

e(k) = lim
k→∞

(x(k)− x̂(k)) = 0.

In order to (1) increase design freedoms, (2) enhance the sensitivity to faults, and

(3) strengthen the robustness to disturbances, the residual generator is extended to the

following form

r(k) = V ∗(y(k)− ŷ(k)) (2.29)

by introducing a post-filter V ∗.

Figure 2.5: The diagnosis observer.

An observer is working online, and thus a full-order observer will cost more computation

resources than a reduced observer. In this context, a reduced-order observer-based residual

generator is more practical in the same performance. It motivates us to develop Luenberger

type observer-based residual generators which is discussed in the sequel.

B. Diagnostic observer

Because of its similarity to the Luenberger type observer and flexible structure, the

diagnostic observer (DO) becomes one of the most widely investigated model-based residual

generator forms, related details can refer to [7, 15, 25]. A DO can be described by{
xo(k + 1) = Gxo(k) +Hu(k) + Ly(k),

yo(k) = Wxo(k) + V y(k) +Qu(k),
(2.30)
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where xo(k) ∈ Rns represents observer state, ns denotes orders of this DO. Suppose that

Gyu(z) = C(zI −A)−1B+D, then matrices G,H,L,W, V,Q, together with matrix T have

to satisfy the following Luenberger conditions:

I. G is stable,

II. TA−GT = LC,H = TB − LD,
III. C = WT + V C,Q = D − V D.

(2.31)

With the matrices in (2.31), the DO can generate unbiased estimation signal yo of the

output signal y(k), which satisfies

lim
k→∞

(y(k)− yo(k)) = 0.

To show its capacity in residual generation, we can check the error dynamic system with

e = Tx− xo. Considering an LTI system with noise signal and additive faults, the error

dynamics becomes{
e(k + 1) = Ge(k) + (TEf − LFf )f(k) + Tω(k)− Lυ(k), e(0) = e0,

r(k) = We(k) + (Ff − V Ff )f(k) + (I − V )υ(k).
(2.32)

Inspired by (2.29), we can set a post-filter V ∗ (see Fig. 2.5), then the observer dynamics

turns to be {
xo(k + 1) = Gx0(k) +Hu(k) + Ly(k), xo(0) = x0,

r(k) = V̄ y(k)− W̄xo(k)− Q̄u(k),
(2.33)

where

V̄ = V ∗(I − V ), W̄ = V ∗W, Q̄ = V ∗Q.

With the novelly introduced post-filter V ∗, Luenberger condition (III) turns to

III. V̄ C = W̄T = 0, Q̄ = V̄ D.

C. Kalman filter

It is well-known that the Kalman filter is the optimal linear filter when the noises in

the process is white, and subject to Gaussian distribution, so it is widely applied in many

researches and real applications. In this part, Kalman filter is applied to the residual

generation.

Given a system with white Gaussian noises (2.10), the Kalman filter-based residual

generator is given as follows:
x̂(k + 1) = Ax̂(k) +Bu(k) +K(k)(y(k)− ŷ(k)),

ŷ(k) = Cx̂(k) +Du(k),

r(k) = y(k)− ŷ(k),

(2.34)
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where x̂(k) and ŷ(k) represent estimates of state and output, r(k) denotes the residual

signal, K(k) is called the time-varying Kalman filter gain matrix. The Kalman filter is a

time-varying system given by following recursive functions:

(i) initial values:

x̂(0) = E[x(0)] = x̄, P (0) = E[(x(0)− x̄)(x(0)− x̄)T ]; (2.35)

(ii) optimal state estimation:

x̂(k + 1) = Ax̂(k) +Bu(k) +K(k)(y(k)− Cx̂(k)−Du(k)); (2.36)

(iii) Kalman filter gain matrix:

P (k + 1) = AP (k)AT −K(k)Σr(k)KT (k) + Σω (2.37)

Σr(k) = Συ + CP (k)CT (2.38)

K(k) = (AP (k)CT + STωυ)Σ
−1
e (k); (2.39)

where P (k) denotes the error covariance and Σr(k) is the covariance of residual signal

r(k), expressed as

P (k) = E[(x(k)− x̂(k))(x(k)− x̂(k))T ], (2.40)

Σr(k) = E[r(k)rT (k)]. (2.41)

The residual signal delivered by Kalman filter-based residual generator is of minimal

covariance P (k), which is an important character of Kalman filter. And the Kalman filter

can be achieved by online implementation (2.36)-(2.39).

Suppose the process is stationary, and k →∞, the Kalman filter gain K(k) is a constant

matrix and expressed as

K = (APCT + STωυ)Σ
−1
r , (2.42)

P = APAT −KΣrK
T + Σω, (2.43)

Σr = Συ + CPCT . (2.44)

Equation (2.43) is the so-called Riccati equation, the steady-state Kalman filter gain K

can be calculated by solving Riccati equation.

D. Parity space

Inspired by the work of Chow and Willsky in [19], the parity space method has been

intensively investigated over the past several decades. In [25], it is proved that parity

space residual generators is equal to certain types of observer structure. Therefore, we

introduce it here as an observer-based method.
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Consider an LTI system described by the state space model. First define some vectors

that are used in party space approaches, such as state, input, output vectors, etc.,

Λs(k) =


λ(k)

λ(k + 1)
...

λ(k + s)

 ∈ R(s+1)kλ , λ ∈ Rkλ . (2.45)

To construct a residual generator, for a given order s of parity space, the system can be

expressed as:

ys(k) = Γs(k)x(k − s) +Hu,sus(k) +Hω,sωs(k) + υ(k) +Hf,sfs(k), (2.46)

where ys, us, xs, ωs, υs, fs are constructed as Λs(k) in (2.45), and

Γs =


C

CA
...

CAs

 , Hu,s =


D 0 · · · 0

CB D · · · 0
...

...
. . .

...

CAs−1B · · · CB D

 ,

Hd,s =


Fd 0 · · · 0

CEd Fd · · · 0
...

...
. . .

...

CAs−1Ed · · · CEd Fd

 , Hω,s =


0 0 · · · 0

C 0 · · · 0
...

...
. . .

...

CAs−1 · · · C 0

 ,

Hf,s =


Ff 0 · · · 0

CEf Ff · · · 0
...

...
. . .

...

CAs−1Ef · · · CEf Ff

 .
The basic idea of residual generation based on parity relationship is to take the advantage

of the fact that for s ≥ n, the following condition holds:

rank(Γs) ≤ n < the row number of matrix Γs = (s+ 1)m.

This condition ensures that there exists at least one non-null row vector vs ∈ R1×m(s+1)

satisfying vsΓs = 0. The set of such kind of row vectors is called parity space vectors, noted

as Ps{vs|vsΓs = 0}. With parity vectors, the residual generator can be constructed by

r(k) = vs(ys(k)−Hu,sus(k)). (2.47)

The schematic description of the parity space scheme is shown in Fig. 2.6.
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Figure 2.6: Schematic description of parity space scheme.

Therefore, the residual signal generated by (2.47) is constructed by a residual signal

composed of the faults and a white Gaussian noise, which can be expressed as

r(k) = vs(Hf,sfs(k) +Hω,sωs(k)), (2.48)

in which we can see the design parameters of the parity relation-based residual generator

is the parity vector, and the selection of it has a significant influence on the performance of

the residual generator. One of the important advantages of the parity space-based residual

generation method is that it can be designed in a straightforward manner.

E. SKR identification method

For complex industrial systems, high-precision mathematical models are difficult to build.

With the development of the data processing technique, the data-driven residual generator

design method becomes an alternative approach. In this regard, a novel data-driven design

is proposed in [26]. The stable kernel representation (SKR) of systems is identified from

the input/output data model with which the residual generator can be constructed directly.

A brief introduction of this scheme is given in this subsection.

Recall (2.45) and introduce

Λk,s = [Λs(k) Λs(k + 1) · · · Λs(k +N − 1)], (2.49)

where N is a sufficiently large integer.

Consider an I/O data model in (2.46) in the disturbance-free and fault-free case. It

follows that Yk,s = ΓsXk +Hu,sUk,s +Hω,sΞk,s + Vk,s and can be written as[
Uk,s

Yk,s

]
=

[
I 0

Hu,s Γs

][
Uk,s

Xk

]
+

[
0

Hω,sΞk,s + Vk,s

]
. (2.50)

Denote

Zf =

[
Uk,s

Yk,s

]
, Zp =

[
Uk−sp−1,sp

Yk−sp−1,sp

]
. (2.51)

With the I/O model, the process to calculate SKR can be summarized as the Algorithm

2.1.
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Algorithm 2.1 Identification of SKR based on data-driven method

1. Form the I/O data model and construct Zp, Uk,s, Yk,s.

2. Do QR-decomposition Zp

Uk,s

Yk,s

 =

 R11 0 0

R21 R22 0

R31 R32 R33


 Q1

Q2

Q3

 .
3. Do singular value decomposition (SVD)[
R21 R22

R31 R32

]
= [U1 U2]

[
Σ1 0

0 Σ2

][
V T

1

V T
2

]
.

4. The kernel representation is

Ks = [Ks,u Ks,y] = UT
2 ∈ R((s+1)m−n)×(s+1)(nu+ny).

5. The covariance matrix is

Σres =
Ks,yR33(Ks,yR33)T

N − 1
.

Based on Algorithm 2.1, a data-driven design residual generator can be realized as

Algorithm 2.2.

Algorithm 2.2 Data-driven design of observer-based residual generator

1. Run the Algorithm 2.1 and get Ks.
2. Let φ⊥s be a row of Ks and it has the formulation φ⊥s = [φ⊥s,u φ⊥s,y].

3. Construct observer-based residual generator:{
xo(k + 1) = Aoxo(k) +Bou(k) + Loy(k),

r(k) = gy(k)− coxo(k)− dou(k),

where

Ao =


0 0 · · · 0

1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0

 ∈ Rs×s, co = [0 · · · 0 1] ∈ Rs,

L0 = −


φ⊥s,y(1 : ny)

...

φ⊥s,y((s− 1)ny + 1 : sny)

 , g = φ⊥s,y((sny + 1) : (s+ 1)ny),

Bo = −


φ⊥s,u(1 : nu)

...

φ⊥s,u((s− 1)nu + 1 : snu)

 , do = φ⊥s,u((snu + 1) : (s+ 1)nu).
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2 Basics of Fault Detection Systems

2.2.3 Residual evaluation and decision logic

As shown in Fig. 2.4, after residual generation, the generated residual signals should be

evaluated. To this end, χ2 test and GLR test are introduced in this subsection. And based

on it, a threshold is established. The last step is to set a decision logic. In the subsequent

sections, all these issues are studied.

A. Likelihood ratio test

The LR test method is very popular to detect changes in the binary case, and it is

widely applied in the FD framework. The meaning of the LR method is to determine

which hypothesis is more “likely” to happen and reject the other hypothesis. Because

LR test statistic provides an optimal solution for detecting issues, it is widely applied in

(optimal) detection problems.

Given the system model (2.20), the log-likelihood ratio for data yi can be defined as

s(yi) = ln
pf (yi)

p0(yi)
, (2.52)

with

p0(yi) =
1√

(2π)mdet(Σε)
e−

1
2
yTΣ−1y, pf (yi) =

1√
(2π)mdet(Σε)

e−
1
2

(y−f)TΣ−1(y−f).

Since the noises in function (2.20) is white Gaussian noise, the likelihood function is chosen

to be the PDF of yi.

The test statistic s(yi) represents likelihood ratio of pf(yi) and p0(yi). The situation

s(yi) > 0⇔ pf(yi) > p0(yi) means probability of the system in faulty case is larger than

that in faulty-free case, and vice versa.

If there exist a series of data yi, i = 1, 2, · · · , n, available for detecting purpose, the

log-LR test statistic can also be chosen as

Sn(y1) =
n∑
i=1

s(yi). (2.53)

LR-based statistic testing is the optimal scheme when fault case f is known. In general,

faults are unknown in industrial applications. In this case f can be substituted by its

estimate. The statistic test with an LR tool and estimate of fault is called the GLR

method, which is introduced in next part.

B. Generalized likelihood ratio test

For the purpose of detecting the unknown changes, a so-called GLR test method is

developed. First, to estimate the fault,

maxf Sn(y1) = maxf
∑n

i=1 ln
pf (yi)

p0(yi)
⇒ f̂ = arg maxf Sn(y1). (2.54)
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2.2 Basic FD problems

Then with the estimate of f , the residual signal r can be used to construct the likelihood

ratio s(ri), Sn(ri), which can be used for GLR test-based FD schemes.

Notice that, the well-known χ2 test statistic is the result of the GLR applied to the

case with change in mean, and a χ2 test is a statistical hypothesis test that is applied

to perform when the test statistic is χ2 distributed under the null hypothesis. It is very

useful in dealing with the FD issues in the process with white Gaussian noises.

In the systems with white Gaussian noises, the residual signal r can be generated by

a Kalman filter algorithm-based residual generator. In this case, r is subject to normal

distribution r ∼ N (0,Σr), nr denotes the dimension of r.

Consider this residual signal r, the evaluation function can be set as

Jχ2 = rTΣ−1
r r, (2.55)

because Σ
− 1

2
r r ∼ N (0, I), there has Jχ2 ∼ χ2

nr ,where the χ2(nr) is χ2 distribution with nr

degrees of freedom. For applying the χ2 test statistic, the threshold computation can be

done by:

1. choosing an FAR α, then determining χα with the χ2 distribution table;

2. setting threshold as Jth = χα.

Figure 2.7: χ2 distribution under different degrees of freedom.

According to Fig. 2.7, it is obvious that for a chosen FAR α, the corresponding threshold

Jth can be found in χ2 format with a certain degrees of freedom.

When a Kalman filter is used, notice that there exist the following conditions:
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2 Basics of Fault Detection Systems

1. the maximum likelihood estimate of the fault f is arg maxf Sn(y1);

2. the maximum LR is the χ2 test statistic;

3. this χ2 distribution form can be applied to determining the threshold Jth.

With the threshold Jth, the basic idea of LR-based fault detection scheme can be

presented as {
s(yi) < Jth ⇒ H0

s(yi) ≥ Jth ⇒ H1.
(2.56)

Besides the FD scheme for the case with a changing mean, known as χ2 method, the

FD scheme for the case with changing covariance is also discussed in [25]. However, when

both mean and covariance are changed, the probability computation based on the test

statistic is challenging. To deal with this problem, a randomized algorithm can be applied

to determine the threshold for a given FAR in subsequent chapters.

2.3 FD Preliminaries on systems with norm-bounded

disturbances

In this section, the systems with norm-bounded disturbances and structure uncertainties

are considered. To this end, a proper observer to generate residual signal is proposed, and

the corresponding techniques are given here.

2.3.1 Basic concepts of FD for deterministic systems

In the FD framework for systems with norm-bounded disturbances, the norm is a powerful

tool to measure vectors. In deterministic systems, for FD purposes, an evaluation function

is denoted by J , and J can be computed by the norm of residual signals. To be precise,

L2, L∞ and root-mean-square (RMS) norms are widely used for residual evaluation and

threshold computation. Here we introduce the definition of different types of norms and

corresponding thresholds.

1. L2-norm: The physical meaning of L2 is the energy level of the considered signal.

The L2-norm of a vector-valued signal u(k) and evaluation function J2 are defined by

‖u‖2 = (
∑∞

k=0 u
T (k)u(k))

1
2 , (2.57)

J2 = ‖r(k)‖2 = (
∑∞

k=0 r
T (k)r(k))

1
2 , (2.58)

Jth,2 = supf=0 J2. (2.59)
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2.3 FD Preliminaries on systems with norm-bounded disturbances

In (2.57), uT (k)u(k) represents the instantaneous power, and ‖u‖2 stands for the total

energy of the signal. In practice, it is impossible to measure the total energy in the time

interval [0,∞), therefore, one of the solutions is to choose a time interval [k1, k2]. The

L2−norm in time interval [k1, k2] is denoted by J2,[k1,k2] and defined by

J2,[k1,k2] = ‖r(k)‖2 = (
∑k2

k=k1
rT (k)r(k))

1
2 , (2.60)

Jth,2,[k1,k2] = supf=0 J2,[k1,k2]. (2.61)

2. RMS-norm:

To calculate the RMS value instead of L2−norm is another useful method. The RMS

value stands for the average energy of a signal over a certain time interval. The norm and

corresponding evaluation function are correspondingly defined by

‖u‖RMS = (
1

N

∑N−1
k=0 u

T (k)u(k))
1
2 , (2.62)

JRMS = ‖r(k)‖RMS = (
1

N

∑N
j=1 ‖r(k + j)‖2)

1
2 , (2.63)

Jth,RMS = supf=0 JRMS. (2.64)

2.3.2 Residual dynamics for systems with norm-bounded

disturbances

As the FDF mentioned in Section 2.2.2, a standard observer can be proposed as (2.25),

the dynamics of estimation error e(k) = x(k)− x̂(k) can be described by{
e(k + 1) = (A− LC)e(k) + (Ef − LFf )f(k) + (Ed − LFd)d(k),

r(k) = Ce(k) + Fff(k) + Fdd(k),
(2.65)

which delivers a residual signal described by

r(z) = N̂d(z)d(z) + N̂f (z)f(z), (2.66)

N̂d(z) = C(zI − A+ LC)−1(Ed − LFd) + Fd, (2.67)

N̂f (z) = C(zI − A+ LC)−1(Ef − LFf ) + Ff . (2.68)

In this case, the main task turns into determining an observer gain L, which makes the

influence of disturbances under a given bound, and make the influence of faults as large as

possible. To this end, the linear matrix inequality (LMI) technique can be applied as a

mathematical tool to achieve solutions, more results can be seen in [25, 46, 59].

Notice that, in disturbance-free case, the occurrence of a fault results in limk→∞ r(k) 6= 0.

In real applications there always exist some tolerable disturbances, such that it is not
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2 Basics of Fault Detection Systems

proper to set the decision rule as limk→∞ r(k) = 0 directly. To deal with this problem, an

FD scheme for a deterministic system is investigated by

(1) decoupling the residual signal from disturbances;

(2) evaluating residual signal by a proper norm;

(3) determining the corresponding threshold and setting decision logic.

2.3.3 Residual evaluation and decision logic

For systems with norm-bounded disturbances, strategies of residual evaluation are applied

by using the well-established robust control theory. In real applications, methods of

residual evaluation should be chosen according to the actual requirement.

Generally, in systems with deterministic disturbances, a threshold is said to be the

tolerant limit of disturbances and uncertainties in fault-free case. For a chosen residual

evaluation function, the standard threshold can be computed by:

Jth,e = sup
f=0

Je = sup
f=0
‖r‖e, (2.69)

where Je represents the evaluation function of residual signal, which can be L2-norm, RMS-

norm of residual signals. With (1) test statistic J in statistical framework or evaluation

function Je generated by observer-based residual generator, and (2) the corresponding

threshold Jth,e, then decision rule is set as (see Fig. 2.8):{
Je < Jth, H0, null hypothesis, fault-free,

Je ≥ Jth, H1, alternative hypothesis, faulty.
(2.70)

Figure 2.8: An intuitive explanation of decision logic.
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2.4 Concluding remarks

2.4 Concluding remarks

This chapter presents a brief introduction to FD systems, including the preliminaries for

both stochastic and deterministic systems.

The first part focuses on modeling nominal systems, disturbances and faults. A widely

applied mathematical tool, the coprime factorization technique is also introduced here.

FD systems for both stochastic and deterministic systems are given. In stochastic systems,

basic concepts are given first, it is followed by residual generation methods, including fault

detection filter, Kalman filter, diagnosis observer, parity space approach and data-driven

methods. Then, LR test and GLR test are introduced, and corresponding thresholds

computation is addressed. As the result of the GLR test which is applied to the case

with only change in mean, χ2 test statistic is also given in this section. Based on them,

the decision logic is given. Parallel to stochastic systems, systems with norm-bounded

disturbances is discussed.
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3 Fundamentals of Switched Systems

Parallel to preliminaries given in Chapter 2, this chapter introduces basic knowledge

about switched systems and IFs. Firstly, we focus on the background and recent research

processes of switched systems, then it is followed by a further introduction to IFs, and a

system with multiplicative IFs modeled by switched systems is given.

3.1 Motivations and problem formulation

From the practical application of view, many industrial systems show different system

dynamics under different working conditions, and some of them possess a switching feature

among different dynamics, such as chemical processes, mechanical systems, etc. In order

to study these complex systems better, researchers have proposed the concepts of hybrid

systems and switched systems to model and analyze such systems. The main feature of

hybrid systems and switched systems is that they can model different system dynamics by

means of different subsystems, which meets the demands of the description of complex

systems.

It is apparent that systems with IFs present strong switching characteristics. As

mentioned in Chapter 2, IFs widely exist in industrial systems, especially in systems that

contain periodic and repetitive components and actions, for instance, a plant equipped

with gears, motors, and so on. The main feature of an IF is that it disappears after period

of time. Because of these characteristics, a system with IFs can be regarded as a switched

system that switches between a normal subsystem and a faulty subsystem, and treat the

fault occurrence and disappearance as the switching rule. In this context, faults can be

described as a switching from a normal subsystem to a faulty subsystem.

Moreover, in switched systems, the frequency of switchings and the duration of each

subsystem are two important that influence factors the stability conditions. Hence, the

stability analysis methods for switched systems can be used to study the stability conditions

of systems with multiplicative IFs. To this end, switched systems are introduced to model

the systems with IFs and utilize the well-developed theory on stability analysis of switched

systems to analyze the stability conditions.

Motivated by the above discussion, related knowledge on switched systems and IFs is
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3.2 Background of switched systems

given in this chapter, which also serves as essential parts of subsequent FD studies. To be

specific, the background of switched systems, stability analysis methods, and systems with

multiplicative IFs modeled by switched systems are successively presented in detail.

3.2 Background of switched systems

With the increasing complexity of modern industrial control systems, simple LTI systems

are insufficient to comprehensively describe complicated industrial systems and processes.

To model complex systems, hybrid systems were proposed in the early 1990s [36]. In

recent decades, different branches of hybrid systems, especially the so-called switched

systems, have attracted considerable attention. In this section, mathematical preliminaries

on hybrid and switched systems are given.

A classic switched system consists of a class of subsystems and a switching rule governing

the dynamics of particular subsystems. Here, subsystems are utilized to describe different

system dynamics, and a switching law gives the rule for switchings between different

subsystems. As an important branch of hybrid systems, switched systems drew the

attention of researchers in both theoretical and application domains. For systems with

complex trajectories of processes and time-varying systems, the switched system is an

efficient tool to model them.

Figure 3.1: Schematic of switching rules.

Subsystems are used to describe different system dynamics, and the switching law gives

the rules for switching between different subsystems. Switching rules are roughly divided

into four types: autonomous, controlled, time-dependent, and state-dependent rules, which

are shown in Fig. 3.1.
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3 Fundamentals of Switched Systems

In the research field of switched systems, recent efforts focus on many issues, such

as stability analysis, filter design, robust control and fault detection. Among these

studies, stability analysis is the basis of all investigations. [58] has summarized many

well-known stability analysis methods, such as the methods base on common Lyapunov

function, multiple Lyapunov function and piecewise Lyapunov function. Moreover, stability

conditions under arbitrary switching were also provided. As a typical time-constraint (or

restrict switching) method, a so-called ADT method has been intensively studied in recent

decades [84, 95]. In [95], a mode-dependent average dwell time (MDADT) method was

proposed, and extended the application of the ADT method.

Based on stability researches of switched systems, filtering or state estimation [75]

and FD [37] have emerged as significant research areas. Considerable achievements on

observer-based FD for switched systems have been made, and FD issues for discrete-time

and continuous-time switched systems have been discussed in [52] and [81], respectively.

However, most studies were proposed for the case of models and observers operating in

a synchronous manner. In some specific applications, because of the time lag between

sub-models and observers, there is a phenomenon that subsystems and corresponding

observers would switch asynchronously. In [82], an asynchronous switching FD problem

has been investigated, and a maximum dwell-time approach was applied to deal with

asynchronous switching control problems.

Sub-models in switched systems are usually described by different equations. For

continuous-time subsystems, differential equations are utilized, while discrete-time subsys-

tems are generally described by difference equations. The state space representation of a

discrete-time switched system is expressed as follows:

x(k + 1) = fσ(k)(x(k), u(k)), (3.1)

where x(k) ∈ Rnx denotes the system state, u(k) ∈ Rnu represents the input signal, σ

denotes the switching rule that governs the switchings between sub-systems in a finite set

S = {1, 2, · · · , N}, with σ ∈ S and N is the number of subsystems.

In this thesis, only time-dependent switching and autonomous switching are studied. A

linear discrete-time switched system in state space formulation is given by:{
x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k),

y(k) = Cσ(k)x(k) +Dσ(k)u(k),
(3.2)

where Aσ(k), Bσ(k), Cσ(k), Dσ(k) are matrices with appropriate dimensions, y(k) ∈ Rny

denotes the output signal. Switched system (3.2) can also be described by subsystems in

the following form with i ∈ S:{
x(k + 1) = Aix(k) +Biu(k),

y(k) = Cix(k) +Diu(k).
(3.3)
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3.3 Stability analysis

Fig. 3.2 gives the structure of switched systems in form of (3.3).

Figure 3.2: Structure of switched systems.

Due to the effects of modeling uncertainties on complex systems, switched systems with

uncertainties have also attracted more and more attentions. There exist many related

studies, such as stability analysis [12], H∞ state-feedback control [13, 17], H∞ filtering

design [22], etc. Moreover, studies on the FD and fault tolerant control of the switched

systems have become hot topics in recent years. Numerous achievements have been

obtained on robust FD scheme [24], LMI-based FD scheme [9], FD for switched systems

with time-delay [29, 31, 33], and fault tolerant control issues for switched systems [32].

3.3 Stability analysis

There exist several interesting phenomena concerning switched system stability. For

instance, when all subsystems are stable, the whole system trajectories may diverge after

several switchings. There exists a situation that even some subsystems are unstable, a

system can still have convergent trajectories by selecting a proper switching rule. Therefore,

over the past decades many scholars paid attention to the stability problems, and stability

analysis for switched systems is a prerequisite in the study of many problems. Furthermore,
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3 Fundamentals of Switched Systems

due to these characteristics, some restricted switching rules are designed to ensure the

stability of the whole system, and constraint conditions of switching rules should be given

in some integrated designs.

Therefore, research results on stability analysis of switched systems have two important

branches:

(1) for a given switched system with a certain switching rule, analyze stability conditions;

(2) for a switched system with known subsystems, design a stabilizing switching rule.

Methods based on Lyapunov functions are most commonly applied in switched systems

with no restricted switchings. In the case under restricted switching, the ADT method is

usually applied to analyze the stability conditions.

In the following subsections, the stability analysis of both switched systems with or

without restricted switching rules is introduced.

3.3.1 Stability analysis under arbitrary switching

This section is dedicated to the case that when there is no restriction on switching rules of

the switched systems. This operating mode is also called switched systems under arbitrary

switchings. Here we investigate the stability conditions of the whole system. Stability

issues are commonly studied using Lyapunov methods, and two most useful tools are

introduced here: (1) common quadratic Lyapunov function (CQLF) and (2) switched

quadratic Lyapunov function (SQLF).

CQLF Method

The existence of a CQLF for all subsystems accesses the quadratic stability of switched

systems. Quadratic stability is a special case of exponential stability that ensures the

asymptotic stability of the whole system. It is defined in Definition 3.1.

Definition 3.1. A discrete-time system x(k+ 1) = Ax(k) is said to be quadratically stable

if there exists a positive definite symmetric matrix P = P T > 0, P ∈ Rnx×nx, such that:

ATPA− P < 0. (3.4)

According to the Definition 3.1, it is easy to see that if there exists a symmetric positive

definite matrix P for each subsystem satisfying:

ATi PAi − P < 0, ∀i ∈ S, (3.5)

then the global stability of the system under arbitrary switching is guaranteed by CQLF.

The CQLF method has a simple form and it is suitable for arbitrary switching between

each subsystem. If there exists a matrix P satisfying (3.5), switched systems are ensured
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3.3 Stability analysis

to be stable. It is worth noticing that the conservativeness of CQLF becomes higher as

the number of subsystems increases, at the same time, LMIs in (3.5) are more difficult

to be solved. In the case that an analytical solution is difficult to achieve, a numerical

method is an effective alternative. For example, in [57], a gradient descent algorithm was

proposed to solve solutions to a finite number of steps. However, the CQLF method leads

to higher conservativeness and it is difficult to find a CQLF for a switched system. To

this end, many methods aiming at reducing the conservativeness have been proposed.

SQLF Method

To reduce the conservativeness, many researchers have focused on a less conservative

class of Lyapunov functions, known as SQLF [30, 58]. Consider a series of matrices

Pi,∀i ∈ S, a global Lyapunov function is constructed as

V (k, x(k)) = xT (k)Pσ(k)x(k). (3.6)

Stability conditions of switched systems with arbitrary switching rules can be guaranteed

by solving certain LMIs as given in the following lemma [21, 58].

Lemma 2. If there exist positive definite symmetric matrices Pi ∈ Rnx×nx and matrices

Fi, Gi ∈ Rnx×nx satisfying[
AiF

T
i + FiA

T
i − Pi AiGi − Fi

∗ Pj −Gi −GT
i

]
< 0, (3.7)

for all i, j ∈ S, the system (3.3) is asymptotically stable.

It is obvious that when Pi = Pj,∀i, j ∈ S, SQLF becomes CQLF, which means CQLF

is a special case of SQLF. Although the conservativeness of SQLF is lower than that

of CQLF, the conditions are still too strict. Equation (3.7) should be satisfied between

every two i-th and j-th subsystems. In real applications, it is very difficult to find feasible

solutions as the number of subsystems increases. In other words, with the increasing

number of subsystems, the conservativeness of the SQLF method is getting larger.

In order to reduce the difficulty of finding a feasible solution to (3.7), or, to reduce the

conservativeness of the stability analysis method, much attention has been paid to analysing

stability conditions under restrict switching, which is introduced in next subsection.

3.3.2 Stability analysis under restrict switching

According to the examples given in [24, 55], divergent trajectories have occurred after

switchings between two stable subsystems. This phenomenon indicates that divergence can

be introduced by switchings, or switchings may lead to system unstable behaviors. In some
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3 Fundamentals of Switched Systems

cases, switched systems can not preserve their stability under arbitrary switching, but can

be stable under restricted switching rules. In real applications, some physical constraints

in systems and processes may cause adverse limitations in switchings. Therefore, analyzing

and designing restricted switching rules has become one of the main tasks in switched

system studies.

In this subsection, the stability conditions of switched systems under restricted switching

rules are introduced. Restrictions can be time-domain restrictions (dwell time of each

subsystem, frequency of switching) and state space restrictions (Lyapunov function’s

value, which is also called generalized energy). These two kinds of restrictions have been

studied through the piecewise quadratic Lyapunov function method and ADT method,

respectively.

Piecewise Quadric Lyapunov Function Method

For stability analysis under restricted switching, a basic idea is that multiple Lyapunov

functions for subsystems are concatenated to produce a non-traditional Lyapunov function.

This non-traditional Lyapunov function may not monotonically decrease along trajectories,

which means the generalized energy of systems may not decrease during the working time.

In general, there exist two different conditions: (1) all subsystems are stable, conditions

of Lyapunov function’s values after switching instants can be larger than before; (2) some

subsystems are unstable, in other words, part of trajectories are divergent, in which case,

switched systems also can be stable by restricting conditions of Lyapunov function’s values

at switching instants.

Figure 3.3: Piecewise Lyapunov function results.

There exist several piecewise Lyapunov function results, a simple result is that each

Lyapunov-like function is decreasing, and at each switching instant the value of Lyapunov-

like function does not increase [24]. To obtain less conservative results, another situation
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3.3 Stability analysis

is illustrated in Fig. 3.3 (a) [8]. The value of the Lyapunov-like function before a switching

is not larger than the value after the switching, such that Vi(x(ki)) ≥ Vi+1(x(ki+1)), i ∈ S,

then the switched system is asymptotically stable.

Furthermore, the switched system even can ensure its stability when the Lyapunov-like

function value increases during a time interval if the increment is bounded by a certain kind

of function. The situation is illustrated in Fig. 3.3 (b), detailed introduce and examples

can refer to [5].

As introduced in [58], a piecewise quadric Lyapunov function method has been proposed

based on a non-traditional Lyapunov function. Denote Ωi ⊂ Rn as a partition of the state

space Rn. The piecewise Lyapunov functions Vi(x(k)) = xT (k)Pix(k) satisfy:

1. for x(k) ∈ Ωi, ∃Pi, such that ATi PiAi − Pi < 0;

2. there exist constants βi ≥ αi > 0 such that αi‖x(k)‖2 ≤ Vi(x(k)) ≤ βi‖x(k)‖2 holds

for all x ∈ Ωi;

3. at switching instants, Lyapunov function’s values at switching instant are non-

increasing, and can be expressed as xT (k)Pjx(k) ≤ xT (k)Pix(k), where the system

is switching from the i-th subsystem to the j-th subsystem.

Average Dwell-time Method

Under some working conditions, the frequency of switchings between different subsystems

may cause diverged trajectories even if all subsystems are stable. And sometimes there

also exist unstable subsystems caused by abnormal working conditions, e.g. components

failures. If a system stays in unstable subsystems too long or switchings are too frequent,

the switched system may be unstable. It indicates that if setting an appropriate constraint

condition for switching frequency or dwell time of unstable subsystems, the stability of

the whole system can be ensured. Based on this fact, a widely used method, the so-called

ADT method has been investigated to analyse stability conditions of switched systems.

Examples and more related studies can be found in [38, 39, 41].

According to references [39, 61, 95], we introduce several useful definitions and lemma.

Definition 3.2. [95] For a switching signal σ(k) and k ≥ k0 ≥ 0, let Nσ(k, k0) denote the

number of σ(k) in the time interval (k0, k). A positive constant τa is called the average

dwell time for the switching signal σ(k), if

Nσ(k, k0) ≤ N0 +
k − k0

τa
(3.8)

holds for all k ≥ τ ≥ 0, and there exists positive number N0 (called the chatter bound).
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Definition 3.3. [53] Given model (3.1), the equilibrium x = 0 is globally uniform ex-

ponentially stable (GUES) under certain switching signal σ, if for u(k) = 0 and initial

condition xk0, there exist constants K > 0, λ > 0 such that the solution of systems satisfies

‖xk‖ ≤ Ke−λ(k−k0)‖xk0‖.

It has been reported in [56, 58] that the following lemma holds.

Lemma 3. [95] Consider a switched system x(k + 1) = fσ(k)(x(k)), σ ∈ Γ and there exist

positive constants 0 < α < 1, µ > 1. Suppose that there exist C1 functions Vσ : Rn → R

and two class K∞ functions β1, β2 such that ∀σ,

β1(‖x(k)‖) ≤ Vσ(x(k)) ≤ β2(‖x(k)‖), (3.9)

Vσ(x(k + 1))− Vσ(x(k)) ≤ −αVσ(x(k)), (3.10)

and ∀(σ, σ′) ∈ Γ× Γ, σ 6= σ′,

Vσ(x(kl)) ≤ µVσ′(x(kl)). (3.11)

Then, a system is GUES for any switching signal with ADT

τa > τ ∗a = − lnµ/ ln(1− α). (3.12)

It is clear that the average value of the “dwell time” between any two switchings should

be no smaller than τa. If all subsystems are GUES, the switched system can remain stable

with a sufficiently large τa. The specific proof process can be found in [56].

Figure 3.4: Conservativeness and methods.
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3.4 Intermittent faults

According to the above discussions of stability analysis methods, we can see that the

CQLF method has the simplest form and highest conservativeness. SQLF method has

a more complex mathematical form, but it is easier to get a feasible solution. Obvi-

ously, conditions of arbitrary switching are less strict than restricted switching and the

conservativeness is higher than that under restricted switching.

Fig. 3.4 expresses the relationship between conservativeness and the possibility to get a

solution to stability conditions.

3.4 Intermittent faults

According to Chapter 2, IFs widely exist in industrial processes and some PFs can be

transformed from IFs. Therefore, accurate and early detecting of IFs can help to prevent

serious failures and increase the reliability of the whole system. Several methods have been

developed to describe and detect IFs. One of the most popular techniques is to model

systems with IFs by means of the Markov jump system theory, more details can be found

in [87, 93]. However, a known Markov chain is needed for modeling the system with IFs,

and the Markov chain represents the probability of switching in each subsystem. Because

the probability of switching is difficult to measure and estimate, methods based on the

Markov jump system have limitations in applications. Besides, there are other studies on

detection of IFs, such as standard detection scheme [11], FD for hybrid systems [85], FD

for time-delay systems [35], FD for embedded systems [43], etc.

Figure 3.5: Three characters of IFs.

In real applications, there exist both additive IFs and multiplicative IFs. Multiplicative

39



3 Fundamentals of Switched Systems

IFs are more common in industrial systems and processes, however, they can change the

system eigen-dynamics and even make the system unstable. However, a Markov jump

system is always utilized for additive IFs. In order to facilitate the study of multiplicative

IFs, in this thesis we choose the switched system as a new mathematical tool to fit the

whole complex system composed of different subsystems and switching signals. Then, we

further propose a framework for switched systems on detection and isolation issues with

multiplicative IFs.

In practice, some types of IFs show periodicity character, and there also exist some

IFs that occur irregularly. One can use three key parameters to describe one type of IFs,

burst length, active time, and inactive time [63]. As shown in Fig. 3.5, the burst length

is the time-interval of IFs occurring, the active time is the positive pulse width of one

IF activation, while inactive time is the time interval of no IFs occurring. These three

parameters determine the time characteristics of one type of IF. It is obvious that for IFs

with periodic occurrence properties, the length of inactive and active time is a constant.

For the purpose to study the systems with multiplicative IFs, the switched system is

applied to describe them. According to this, a noise-free system with multiplicative IFs is

expressed as follows: {
x(k + 1) = Aσx(k) +Bσu(k),

y(k) = Cσx(k) +Dσu(k),
(3.13)

where Aσ, Bσ, Cσ, Dσ are matrices with appropriate dimensions. The case σ = 0 represents

the fault-free case, and σ = 1, 2, · · · , represents the system trajectory being in faulty cases.

Remark 3.1. Systems with additive IFs can also be described by switched systems. How-

ever, parameter matrices A,B,C,D are the same as fault-free subsystems, which means

the eigen-dynamics and stability conditions are invariant. The systems with additive faults

can be expressed as follows{
x(k + 1) = Ax(k) +Bu(k) + Effσ(k),

y(k) = Cx(k) +Du(k) + Fffσ(k),

where fσ(k) represents the different additive faults.

3.5 Concluding remarks

In this chapter, related knowledge of switched systems and IFs has been presented, which

provides the theoretical basis of this thesis.

First, a brief introduction of switched systems has been provided. Due to the charac-

teristics of the switched systems that subsystems and switching rules can well represent
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3.5 Concluding remarks

complex systems in real applications, it is important to study switched systems. Switched

systems with norm-bounded disturbance and uncertainties will be studied in Chapter 4.

The systems with IFs can also be described by switched systems with normal subsystems

and faulty subsystems. Hence, multiplicative IFs based on switched system model will be

discussed in Chapter 5.

Then, stability conditions of switched systems under arbitrary switching and restrict

switching have been introduced, respectively. CQLF, SQLF, piecewise Lyapunov functions

and ADT methods are given. It is worth mentioning that we will mainly focus on the

ADT method to address the studies on stability analysis of switched systems in Chapter 4

and Chapter 5.

Considering that the early detection of IFs is important and there have been few results

on multiplicative IFs detection schemes, the characters and modeling of multiplicative

IFs have been discussed in the end. Motivated by this, the investigation on IF detection

schemes based on switched systems will be addressed in detail.
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4 Design of observer-based Fault

Detection schemes for uncertain

switched systems

To meet demand for early FD in switched systems with norm-bounded uncertainties, a

so-called L∞/L2 observer-based FD scheme is investigated in this chapter.

Although there have already been numerous studies on FD schemes for switched systems

under the condition that the systems and observers are in synchronized manner, the case

in asynchronized manner is still not sufficiently studied, which attracts our interest to

study this topic in this chapter. To this end, the existence conditions of L2 and L∞/L2

observer-based FD systems are studied first. It is followed by an L∞/L2 FD scheme based

on ADT stability situations with a mode estimation unit. Finally, the LMI-aided technique

is applied to threshold computation.

4.1 Problem Formulation

For uncertain systems and systems with norm-bounded disturbance, some FD schemes

have been investigated for the analysis and integrated design in many different types of

systems, such as Markov jump systems [70], T-S fuzzy systems [51], and linear parameter

varying systems [72]. Based on L2 stability theory [86], a dynamic threshold is proposed

by considering the influence of the input variables on residual signals. The so-called L2

and L∞/L2 FD schemes are proposed [86, 50]. To optimize the parameters related to

dynamical thresholds, LMI tools can be applied to obtain sufficient conditions for the

dynamical thresholds computing [49, 51].

It has been mentioned in Chapter 2 that white Gaussian noise and norm-bounded

uncertainties can be used to model unknown disturbances in processes. In addition, for

systems with norm-bounded unknown input and uncertainties, the L2 and L∞/L2 FD

schemes can also be investigated for the analysis and design of observers. Moreover, the

asynchronous phenomena between systems and observers widely exist in real applications

and since there are few studies on switched systems with asynchronous manners, an FD
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4.2 L2 and L∞/L2 types of observer-based FD systems

approach for such kinds of systems is proposed here. In this chapter, switched systems

with asynchronous manners between sub-models and observers are considered. A detection

scheme is proposed and dynamical thresholds are calculated by means of LMI tools.

The main objective of this chapter is to address the analysis and integrated design

issues of the L∞/L2 observer-based FD for switched systems with uncertainties. Existence

conditions of L∞/L2 observer-based FD systems for switched systems are studied. For

the real-time FD scheme, an L∞/L2 observer-based residual generator is developed. By

means of the LMI technique, dynamical thresholds are computed. In addition, an L∞/L2

observer-based FD scheme and a procedure for estimating switching modes are developed

in this chapter.

4.2 L2 and L∞/L2 types of observer-based FD systems

In this section,we mainly focus on the existence conditions of L2 and L∞/L2 observer-based

FD systems for uncertain switched systems. Consider a discrete-time switched system{
x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k) + ∆Ax(k) + ∆Bu(k) +Mdd(k) + Ef,σ(k)f(k),

y(k) = Cσ(k)x(k) + ∆Cx(k) +Ndd(k) + Ff,σ(k)f(k),
(4.1)

where x(k) ∈ Rnx is the system state with initial condition x(0) = x0, and y(k) ∈ Rny is a

measurable output. u(k) ∈ Rnu is the input signal, d(k) is an unknown input vector with

bounded norm. Aσ(k), Bσ(k), Cσ(k),Md, Nd, Ef,σ(k) and Ff,σ(k) are known system matrices

with appropriate dimensions. σ(k) ∈ S is a switching signal with S = {1, 2, 3, . . . ,M}.
Uncertainties are norm-bounded, that is, for given εa,σ, εb,σ, εc,σ > 0 it holds that ‖∆A‖ ≤
εa,σ, ‖∆B‖ ≤ εb,σ, ‖∆C‖ ≤ εc,σ.

The observer-based residual generator dynamics can be formulated as follows:
x̂(k + 1) = Aσ̂(k)x̂(k) +Bσ̂(k)u(k) + Lσ̂(k)(y(k)− ŷ(k)),

ŷ(k) = Cσ̂(k)x̂(k),

r(k) = y(k)− ŷ(k),

(4.2)

where x̂(k) ∈ Rnx denotes the estimate of state x(k), ŷ(k) ∈ Rny is the estimate of output,

r(k) ∈ Rny represents the residual signal, for the purpose that avoiding loss of information

about the faults, the residual vector has the same dimension as the output vector. σ̂(k) is

the switching rule of the observer.

In the following subsections, the existence conditions of L2 and L∞/L2 observer-based

FD systems are discussed, which are the basis of the FD schemes discussed in this chapter.
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4 Design of observer-based Fault Detection schemes for uncertain switched systems

4.2.1 An L2 observer-based FD system

According to [27, 51, 86], the input-output stability theory and weakly output re-

constructibility can be applied to investigate an L2 observer-based FD scheme for nonlinear

systems. Then the L2 observer-based FD approach can be studied for switched systems.

To this end, a useful definition is introduced first, then a theorem revealing the existence

conditions of FD systems for system (4.1) is presented.

Definition 4.1. System (4.1) is said to be L2 re-constructible if there exist (i) an observer-

based residual generator (4.2), (ii) functions ϕ1(·) ∈ K, ϕ2(·) ∈ K∞, and γ0(·) ≥ 0, such

that ∀x, x̂ ∈ Bq, Bq := {x ∈ Rkx : ‖x‖ ≤ q, q > 0}.∑k
m=0 ϕ1(‖r(m)‖) ≤

∑k
m=0 ϕ2(‖ũ(m)‖) + γ0(x(0), x̂(0)), (4.3)

where ũ(k) = [uT (k) dT (k)]T , Bq := {x ∈ Rn : ‖x‖ ≤ q for some q > 0}.

In this section, we focus on the case that the system is L2 re-constructible. To this end,

a sufficient condition for it is given in the following theorem.

Theorem 4.1. For the given switched system (4.1), if there exist (i) an observer-based

residual generator (4.2), (ii) a Lyapunov function V (k, x(k), x̂(k)) ≥ 0, functions ϕ1(·) ∈ K,

and ϕ2(·) ∈ K∞, such that ∀x, x̂ ∈ Bq

V (k + 1, x(k + 1), x̂(k + 1))− V (k, x(k), x̂(k + 1)) ≤ −ϕ1(‖r(k)‖) + ϕ2(‖ũ(k)‖), (4.4)

then the switched system (4.1) is L2 re-constructible.

Proof. It is evident from (4.4) that

V (k + 1, x(k + 1), x̂(k + 1))− V (k, x(k), x̂(k)) ≤ −ϕ1(‖r(k)‖) + ϕ2(‖ũ(k)‖),
V (k, x(k), x̂(k))− V (k − 1, x(k − 1), x̂(k − 1)) ≤ −ϕ1(‖r(k − 1)‖) + ϕ2(‖ũ(k − 1)‖),

...

V (1, x(1), x̂(1))− V (0, x(0), x̂(0)) ≤ −ϕ1(‖r(0)‖) + ϕ2(‖ũ(0)‖).

(4.5)

It is obvious that

V (k + 1, x(k + 1), x̂(k + 1)) ≥ 0,

the sum of the both sides of the above inequalities yields

V (k + 1, x(k + 1), x̂(k + 1))− V (0, x(0), x̂(0)) ≤
−
∑k

m=0 ϕ1(‖r(m)‖) +
∑k

m=0 ϕ2(‖ũ(m)‖).
(4.6)
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4.2 L2 and L∞/L2 types of observer-based FD systems

Setting γ0(x(0), x̂(0)) = V (0, x(0), x̂(0)), the inequality∑k
m=0 ϕ1(‖r(m)‖) ≤ −V (k + 1, x(k + 1), x̂(k + 1))

+
∑k

m=0 ϕ2(‖ũ(m)‖) + γ0(x(0), x̂(0)),
(4.7)

holds, which leads to (4.3). The proof is completed. �

By adopting

ϕ1(‖r(k)‖) = rT (k)r(k), (4.8)

ϕ2(‖ũ(k)‖) = γ2ũT (k)ũ(k), (4.9)

equation (4.4) can be formulated as:

V (k + 1, x(k + 1), x̂(k + 1))− γ0(x(0), x̂(0)) ≤ −
k∑

m=0

rT (m)r(m) + γ2

k∑
m=0

ũT (m)ũ(m).

For an L2 observer-based FD system, the evaluation function can be defined as

J(k) =
k∑

m=0

rT (m)r(m), (4.10)

correspondingly, the threshold can be set as

Jth(k) =
∑k

m=0 ũ
T (m)ũ(m)) + γ̄0, (4.11)

γ̄0 = supx(0),x̂(0) V (x(0), x̂(0)). (4.12)

The occurrence of a fault can be detected by using the decision logic{
J(k) ≤ Jth(k)⇒ fault-free,

J(k) > Jth(k)⇒ faulty.
(4.13)

In this L2 observer-based FD scheme, the threshold is related to the input signal, distur-

bance and the initial value. The threshold is dynamic and shows lower conservativeness

than a fixed threshold.

As the evaluation function (4.10) shows, after running the L2 observer-based FD scheme

for a time interval [0, k], we can determine whether a fault occurs or not. It indicates

that the real-time performance of L2 observer-based FD scheme is poor. To this end, an

L∞/L2 observer-based FD scheme is investigated to meet the requirement of real-time FD.

Remark 4.1. In the theorem of [86], the evaluation window L2 observer-based FD system

are assumed to be infinitively large. In practice, a large evaluation window will cause a

considerably time-delay in FD schemes. And in complex systems, a large evaluation window

also means a high threshold, which will increase the conservativeness of the FD scheme.

As a result, a reasonable time interval should be chosen in practice. In this section, k is

the length of the evaluation window.
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4 Design of observer-based Fault Detection schemes for uncertain switched systems

4.2.2 An L∞/L2 observer-based FD system

To attain a real-time detection scheme for potential faults, an L∞/L2 type of observer

has been investigated [27, 49, 50]. In this subsection, the existence conditions of L∞/L2

observer-based FD approach is studied for switched system (4.1). For this purpose, the

following definition is introduced.

Definition 4.2. Switched system (4.1) is said to be L∞/L2 re-constructible if there exist (i)

an observer-based residual generator (4.2), and (ii) functions ϕ1(·) ∈ K, ϕ2(·), ϕ3(·) ∈ K∞,

and γ0(·) ≥ 0, such that ∀x, x̂ ∈ Bq

ϕ1(‖r(k)‖) ≤
k∑

m=0

ϕ2(‖ũ(m)‖) + γ0(x(0), x̂(0)). (4.14)

Based on Definition 4.2, we can get the following theorem.

Theorem 4.2. Given switched system (4.1), if there exist (i) an observer-based residual

generator (4.2), (ii) a Lyapunov function V (k, x(k), x̂(k)) ≥ 0 and functions ϕ1(·) ∈
K, ϕ2(·) ∈ K∞, such that ∀x, x̂ ∈ Bq

ϕ1(‖r(k)‖) ≤ V (k, x(k), x̂(k)), (4.15)

V (k + 1, x(k + 1), x̂(k + 1))− V (k, x(k), x̂(k)) ≤ ϕ2(‖ũ(k)‖)), (4.16)

then the switched system (4.1) is L∞/L2 re-constructible.

Proof: It is evident from (4.16) that

V (k + 1, x(k + 1), x̂(k + 1))− V (k, x(k), x̂(k)) ≤ ϕ2(‖ũ(k)‖)
V (k, x(k), x̂(k))− V (k − 1, x(k − 1), x̂(k − 1)) ≤ ϕ2(‖ũ(k − 1)‖)

...

V (1, x(1), x̂(1))− V (x(0), x̂(0)) ≤ ϕ2(‖ũ(0)‖)
V (k + 1, x(k + 1), x̂(k + 1)) ≤

∑k
m=0 ϕ2(‖ũ(m)‖) + V (x(0), x̂(0)).

(4.17)

Together with (4.15), we have

ϕ1(‖r(k)‖) ≤
k∑

m=0

ϕ2(‖ũ(m)‖) + V (x(0), x̂(0)). (4.18)

Since γ0(x(0), x̂(0)) = supx(0),x̂(0) V (x(0), x̂(0)), it is obvious that (4.14) holds. The proof

is completed. �
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4.3 An L∞/L2 observer-based FD scheme for switched systems in asynchronized manner

As a result, if the switched system (4.1) is L∞/L2 re-constructible, an observer-based

FD system can be realized by defining the evaluation function and threshold as follows:

J(k) = ϕ1(‖r(k)‖), (4.19)

Jth(k) =
∑k

m=0 ϕ2(‖ũ(m)‖) + supx(0),x̂(0) γ0(x(0), x̂(0)). (4.20)

Then FD can be achieved by using the decision logic

{
J(k) ≤ Jth(k)⇒ fault-free,

J(k) > Jth(k)⇒ faulty.
(4.21)

In this subsection, unknown input signals and uncertainties are considered to be norm

bounded, and it is noteworthy that the FD approach given promises zero FAR. Both L2

and L∞/L2 observer-based FD schemes can be applied to switched systems with known

switching signals. However, when the switching rule is not known in prior, situations may

become more complex.

To settle these situations, switched systems in synchronized and asynchronized manners

are established in the next section, and an L∞/L2 observer-based FD approach under

ADT stability condition is proposed.

4.3 An L∞/L2 observer-based FD scheme for switched

systems in asynchronized manner

In this section, an L∞/L2 observer-based FD design by means of ADT theory is investigated

for switched systems in both synchronized and asynchronized manners. A mode estimation

unit is embedded which can determine whether a fault or a switching occurs.

In the L∞/L2 observer-based FD design, the residuals are generated by L∞/L2 observer

first, then the evaluation function is L-norm, which indicates the residual is measured

at each time instant. The threshold is L2-norm of the extended input signal, including

disturbances and modal uncertainties. On this basis, the L∞/L2 observer-based FD system

is proposed.

It should be emphasized that the target of mode estimation embedded in the detection

logic is to (i) reduce the conservativeness of the threshold setting, and (ii) increase the

fault detection rate.
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4.3.1 Model description

The i-th subsystem of the switched system and the j-th residual generator can be expressed

as {
x(k + 1) = (Ai + ∆A)x(k) + (Bi + ∆B)u(k) +Mdd(k) + Ef,if(k),

y(k) = (Ci + ∆C)x(k) +Ndd(k) + Ff,if(k),
(4.22)

and 
x̂(k + 1) = Ajx̂(k) +Bju(k) + Lj(y(k)− ŷ(k)),

ŷ(k) = Cjx̂(k),

r(k) = y(k)− ŷ(k),

(4.23)

respectively, where i, j ∈ S.

Figure 4.1: Switched systems and asynchronously switching observers.
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4.3 An L∞/L2 observer-based FD scheme for switched systems in asynchronized manner

The switchings between different observers depend on the switching signal, and each

subsystem has a corresponding sub-observer, see Fig. 4.1. Here, the switching rule of

subsystem and sub-observer are expressed by σ and σ̂, respectively.

In this section, the switching rule of given switched system (4.1) is unknown, and it is

obvious that there exist two switching modes:

1. σ(k) = σ̂(k), both the system under consideration and the observer are running with

the “dynamics” corresponding to the same sub-model before the switching.

2. σ(k) 6= σ̂(k), the subsystem and the observer are running with different dynamics

corresponding to different sub-models before the switching.

The asynchronous manners between subsystems and observers is illustrated in Fig. 4.2.

Here, the switched system and switched observers are running in a time interval [k0, kN ],

and it is obvious that there exists a time-delay between the switching of the subsystem

and the switching observer. The system switches from the i-th subsystem to the (i+ 1)-th

subsystem at ki, while the corresponding observer switches at ki + ∆i. The time-delay ∆i

can be different at different switchings. The system and the corresponding observer are

synchronous in matched periods, while the asynchronous manner appears in unmatched

periods.

Figure 4.2: Asynchronous switchings between subsystems and observers.

In the following part, the ADT stability theory discussed in Chapter 3 is applied to

ensure the stability of FD schemes for switched systems. For the switched systems with
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4 Design of observer-based Fault Detection schemes for uncertain switched systems

both synchronized and asynchronized observers, an MDADT [95] approach is proposed as

follows.

Definition 4.3. (MDADT) For any T > t ≥ 0, over the time interval (t, T ), let Nσ,i be

the switching times that the i-th subsystem is activated and Ti(t, T ) be the total operating

time for the i-th subsystem. For any Ti > 0 and positive number N∗0,i, there exists:

Nσ,i ≤
Ti(t, T )

τσ,i
+N∗0,i, i ∈ S, (4.24)

then we can say that σ has an MDADT τσ,i.

Remark 4.2. The ADT switching property is that the average time intervals between

any two consecutive subsystems are at least τ , which is independent to all the subsystems.

Therefore, the ADT calculated by all subsystems may increase the Lyapunov function value

at the switching instants, it may lead to a certain rise of the conservativeness. To this end,

MDADT method is investigated to reduce the conservativeness.

Existence conditions of L2 observer-based FD systems for switched systems cannot

be proved under ADT stability theory. So that an L∞/L2 observer-based FD system is

investigated in the next subsection.

4.3.2 An L∞/L2 FD scheme with mode estimation

In this section, an LMI-aided integrated design of FD approach for switched systems with

asynchronized switching manners is investigated. To this end, an L∞/L2 observer-based

residual generator is studied, and thresholds in synchronized and asynchronized manners

are calculated. A decision rule with a mode estimation unit is set to distinguish different

faulty modes and estimate switching instants.

In our study, the switching rule of the switched system is unknown a prior, and thereby

a detection scheme for distinguishing mode switching is necessary. Obviously, there exists

a time-delay for the switching of the residual generator, which delivers asynchronized

switching between the system and the residual generator. That indicates the residual

signal contains the information for both the fault and switching, which motivates us to

propose an FD scheme with mode estimation.
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4.3 An L∞/L2 observer-based FD scheme for switched systems in asynchronized manner

Figure 4.3: Schematic description of the FD scheme in asynchronous manner.

As a result, the main tasks of the FD scheme design are: (1) investigate an L∞/L2 type

of observer-based residual generator; (2) propose a detection rule with an embedded mode

estimation unit, see Fig. 4.3.

Define

e(k) = x(k)− x̂(k), θ(k) =

[
e(k)

x(k)

]
, ũ(k) =

[
u(k)

d(k)

]
. (4.25)

The overall dynamics of the residual generator can be formulated as follows:

1. in synchronous periods k ∈ [kl+κl, kl+1], l = 0, 1, . . ., κl denotes the switching instant

in [kl, kl+1] as shown in Fig. 4.4,{
θ(k + 1) = (Āi + ∆̄Ai)θ(k) + (B̄i + ∆̄Bi)ũ(k),

r(k) = (C̄i + ∆̄Ci)θ(k),
(4.26)

where

Āi =

[
Ai − LiCi 0

0 Ai

]
, B̄i =

[
0 Md

Bi 0

]
, C̄i =

[
−Ci 0

]
, (4.27)

∆̄Ai =

[
0 −Li∆C + ∆A

0 ∆A

]
, ∆̄Bi =

[
∆B 0

∆B 0

]
, ∆̄Ci =

[
0 ∆C

]
.

2. in asynchronous periods k ∈ [kl, kl + κl], l = 0, 1, . . . , where σ(k) = i, σ̂(k) = j,{
θ(k + 1) = (Āij + ∆̄Aij)θ(k) + (B̄ij + ∆̄Bij)ũ(k),

r(k) = (C̄ij + ∆̄Cij)θ(k).
(4.28)

51



4 Design of observer-based Fault Detection schemes for uncertain switched systems

where

Āij =

[
Aj − LjCj (Ai − Aj)− Lj(Cij − Cj)

0 Ai

]
,

B̄ij =

[
Bi −Bj Md

Bi 0

]
, C̄ij =

[
−Cj Ci − Cj

]
,

(4.29)

∆̄Aij =

[
0 −Lj∆C + ∆A

0 ∆A

]
, ∆̄Bij =

[
∆B 0

∆B 0

]
, ∆̄Cij =

[
0 ∆C

]
. (4.30)

Figure 4.4: Timing diagram.

For our purpose, we first study existence conditions for L∞/L2 re-constructability.

Theorem 4.3. Consider system (4.28), if there exist positive constants αi, ηi, β̄i, µ1,i,

µ2,i, i ∈ S, ∃0 < λ < 1, 0 < γ < 1 and piecewise Lyapunov function

V̄ (θ(k)) =

{
V̄σ(k)(θ(k)), k ∈ [kl + κl, kl+1],

V̄σ(k)σ̂(k)(θ(k)), k ∈ [kl, kl + κl],
(4.31)

such that the following inequalities hold

V̄ij(θ(k + 1)) ≤ (1 + ηj)V̄ij(θ(k)) + β̄jũ
T ũ, (4.32)

V̄i(θ(k + 1)) ≤ (1− αi)V̄i(θ(k)) + β̄iũ
T ũ, (4.33)

θT (k)(C̄i + δC)T (C̄i + δC)θ(k) ≤ V̄ij(θ(k)), (4.34)

θT (k)(C̄ij + δC)T (C̄ij + δC)θ(k) ≤ V̄i(θ(k)), (4.35)

V̄j(θ(k)) ≤ µ1,jV̄ij(θ(k)), V̄ij(θ(k)) ≤ µ2,iV̄i(θ(k)),∀i, j ∈ S, (4.36)

and the MDADT for any switching signal satisfies

τσi > τ ?σi :=
lnµ1,iµ2,i

ξ
,
Tη(k0, k)

Tα(k0, k)
< − ln(1− αi) + ξ

ln(1 + ηi) + ξ
, (4.37)
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where l = 0, 1, · · · , the system (4.28) is L∞/L2 reconstructible and it holds

rT (k)r(k) ≤
∏l

i=0(µ1,iµ2,i)
N0,i
∑k

m=k0
β̄σ(m)ũ

T (m)ũ(m)

+ λk−k0
∏l

i=0(µ1,iµ2,i)
N0,iV̄σk0 (θ(k0)),

(4.38)

where Nσ(k0, k), Nσ̂(k0, k) are counters of the switching number of a residual generator

in a time interval [k0, k], Tα(k0, k), Tη(k0, k) represent the running time interval of both

synchronous and asynchronous periods, respectively.

Proof. Suppose that kl ≤ k ≤ kl + κl and k̄l = kl + κl. It follows from (4.32)-(4.36) that

V̄ (θ(k)) ≤ ᾱk−k̄lσl
V̄σl(θ(k̄l)) +

∑k
m=k̄l

β̄σlᾱ
k−m
σl

ũT (m)ũ(m)

≤ µ1,σlᾱ
k−k̄l
σl

V̄σl−1σ̂l(θ(k̄l)) +
∑k

m=k̄l
β̄σlᾱ

k−m
σl

ũT (m)ũ(m)

≤ η̄k̄l−klσl
µ1,σlᾱ

k−k̄l
σl

V̄σl−1σ̂l(θ(kl))

+
∑k̄l

m=kl
µ1,σlᾱ

k−k̄l
σl

β̄σ̂l η̄
k̄l−m
σl

ũT (m)ũ(m)

+
∑k

m=k̄l
β̄σlᾱ

k−m
σl

ũT (m)ũ(m)

≤ µ1,σlµ2,σl−1
η̄k̄l−klσl

µ1,σlᾱ
k−k̄l
σl

V̄σl−1
(θ(kl))

+
∑k̄l

m=kl
µ1,σlᾱ

k−k̄l
σl

β̄σ̂l η̄
k̄l−m
σl

ũT (m)ũ(m)

+
∑k

m=k̄l
β̄σlᾱ

k−m
σl

ũT (m)ũ(m)

≤
∏l

i=0 µ
Nσ̂i (k0,k)

2,i µ
Nσi (k0,k)

1,i η̄
Tηi
i ᾱ

Tαi
i V̄σk0 (θ(0))

+
∑k

m=k0

∏l
i=0 µ

Nσi (m,k)

1,i µ
Nσ̂i (m,k)

2,i β̄σ(i)η̄
Tηi (m,k)

i ᾱ
Tαi (k0,k)

i ũT (m)ũ(m),

(4.39)

where Tηi(t, T ), Tαi(t, T ) denote the running time of asynchronous and synchronous period

in [t, T ] in the i-th subsystem. We also suppose that

ᾱi = 1− αi, η̄i = 1 + ηi.

As introduced in Theorem 3.3, the process is GUES over time interval [k0, k], if ∃0 <
λ < 1, 0 < γ < 1 and ũ = 0, there exists

V̄ (θ(k)) ≤ λk−k0V̄ (θ(0)), (4.40)

such that (4.39) implies

l∏
i=0

µ
Nσ̂i (k0,k)

2,i µ
Nσi (k0,k)

1,i (1 + ηi)
Tηi (k0,k)(1− αi)Tαi (k0,k) ≤ λk−k0 . (4.41)

Taking the log of both sides of (4.41), it gives

l∑
i=0

(Nσ̂,i lnµ2,i +Nσi lnµ1,i) + Tη1(k0, k) ln(1 + ηi) + Tα1(k0, k) ln(1− αi) ≤ (k − k0) lnλ.
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Combining with (4.37) and
∑l

i=0(Tηi(k0, k) + Tαi(k0, k)) = k − k0, we have

Tηi(k0, k) ln(1 + ηi) + Tαi(k0, k) ln(1− αi) ≤ (lnλ+ ξ)(k − k0), (4.42)

then the following inequality

rT (k)r(k) ≤ ρ̄
k∑

m=k0

β̄σ(m)ũ
T (m)ũ(m) + λk−k0 ρ̄V̄σk0 (θ(k0)) (4.43)

holds and there exists

ρ̄ =
l∏

i=0

(µ1,iµ2,i)
N0,i . (4.44)

Together with rT (k)r(k) ≤ V̄σk(θ(k)), it is obvious that (4.38) holds. The proof is thus

completed. �

If the conditions given in Theorem 4.3 are satisfied, the Lyapunov functions can be

expressed by

V̄ (θ(k)) =

{
θT (k)Pσ(k)θ(k), k ∈ [kl + κl, kl+1],

θT (k)Pσ(k)σ̂(k)θ(k), k ∈ [kl, kl + κl],
(4.45)

where l = 0, 1, . . . , the design scheme of the L∞/L2 observer-based residual generation

can be realized in form of LMIs, as expressed in the following theorem.

Theorem 4.4. Consider system (4.22) and observer-based residual generator (4.28), if

there exist matrices Li, P̄i > 0, P̄ij > 0 and positive constants αi, ηi, β̄i, εa, εb, εc, i, j ∈ S
such that 

−(1− αi)P̄i 0 ĀTi P̄i 0 εa

∗ −β̄i B̄T
i P̄i 0 εb

∗ ∗ −P̄i P̄i 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −1/∆2

 ≤ 0, (4.46)


−(1 + ηj)P̄ij 0 ĀTijP̄ij 0 εa

∗ −β̄j B̄T
ijP̄ij 0 εb

∗ ∗ −P̄ij P̄ij 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −1/∆2

 ≤ 0, (4.47)

[
−P̄i C̄T

i + εc

∗ −I

]
≤ 0, (4.48)
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[
−P̄ij C̄T

ij + εc

∗ −I

]
≤ 0, (4.49)

then (4.37) holds for any switching signal with MDADT.

Proof. It is evident from (4.32) and (4.33) that

θT (k + 1)P̄iθ(k + 1) ≤ (1− αi)θT (k)P̄iθ(k) + β̄iũ
T (k)ũ(k), (4.50)

θT (k + 1)P̄ijθ(k + 1) ≤ (1 + ηj)θ
T (k)P̄ijθ(k) + β̄jũ

T (k)ũ(k). (4.51)

Applying Schur complement lemma [21], it can be easily proven that (4.46) and (4.47)

yield for any switching signal with MDADT, such that (4.48) and (4.49) holds. The proof

is done. �

Same as conditions of L2 observer-based FD scheme, L∞/L2 re-constructibility serves

as a sufficient condition for the existence of an L∞/L2 observer-based FD system and

threshold setting.

With the minimized β̄i, i ∈ S subject to (4.46)-(4.49) and

ρ̄ =
l∏

i=0

(µ1,iµ2,i)
N0,i , (4.52)

the inequality

rT (k)r(k) ≤ ρ̄
k∑

m=k0

β̄σ(m)ũ
T (m)ũ(m) + λk−k0 ρ̄V̄σk0 (θ(k0)) (4.53)

holds. An L∞/L2 observer-based FD system can be realized by adopting the residual

generator (4.28) and setting the evaluation function in asynchronized manner as

Jσ̂(k) = rT (k)r(k), (4.54)

with the threshold

J̄σ̂,th(k) = ρ̄
k∑

m=k0

β̄σ(m)(u
T (m)u(m) + δ2

d) + λk−k0 ρ̄V̄σk0 (θ(k0)). (4.55)

The evaluation function and threshold in asynchronized manner can also be presented

as recursive formulation. With initial condition J̄th,i(k0) = λρ̄V̄σk0 (θ(k0)), we can set that

Jσ̂(k) = rT (k)r(k), (4.56)

J̄σ̂,th(k + 1) = λJ̄σ̂,th(k) + ρ̄β̄σ̂(uT (k)u(k) + δ2
d). (4.57)
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It can be seen that (4.57) is a dynamic threshold with a mode-dependent parameter β̄σ̂,

which is generally less conservative than a constant threshold. However, such a threshold

is still conservative because it should satisfy both the synchronized and asynchronized

situations between the system and residual generator modes. If a small fault occurs in

synchronous periods, the threshold (4.57) may not be appropriate which leads to the

reduction of fault detectability. Furthermore, it is impossible to distinguish the switchings

between different faulty modes. To this end, a less conservative FD approach is proposed

for synchronous periods as follows.

When in synchronous periods, σ(k) = σ̂(k), with observer-based residual generator

(4.26), the existence conditions of L∞/L2 re-constructability for synchronized periods can

be realized by Theorem 4.5.

Theorem 4.5. Consider system (4.22) and observer-based residual generator (4.26) in

synchronized manner, if there exist positive constants αi, βi, γ and piecewise Lyapunov

function V̄i, i ∈ S, such that following inequalities

V̄i(θ(k + 1)) ≤ (1− αi − γ)V̄i(θ(k)) + βiũ
T ũ, (4.58)

θT (k)(C̄i + δC)T (C̄i + δC)θ(k) ≤ V̄i(θ(k)), (4.59)

V̄j(θ(k)) ≤ µiV̄i(θ(k)),∀i, j ∈ S (4.60)

hold and if any switching signal with MDADT satisfies

τσi > τ ?σi :=
lnµi
ξ

=
lnµ1,iµ2,i

ξ
, (4.61)

then the system (4.22) is L∞/L2 reconstructible and there exist

rT (k)r(k) ≤ ρ
∑k

m=k0
βiũ

T (m)ũ(m) + ρλk−k0V̄σk0 (θ(0)),

ρ =
∏l

i=0 µ
N0,i

i .
(4.62)

Proof. It follows from (4.58)-(4.60) that

V̄ (θ(k)) ≤
∏l

i=0 µ
Nσi (k0,k)

i (1− αi − γ)Ti (k0, k)V̄σk0 (θ(k0))

+
∑k

m=k0

∏l
i=0 µ

Nσi (m,k)

i βi(1− αi − γ)Tαi (m,k)ũT (m)ũ(m),
(4.63)

where Tαi(k0, k) denotes the total duration time in time interval [k0, k] for mode i, i ∈ S.

Recalling that MDADT conditions (4.61), we can get

ln(1− αi − γ)Tαi(k0, k) +Nσi(k0, k) lnµi < λ(k − k0). (4.64)

The proof is done. �

In synchronous periods, the design scheme of L∞/L2 residual generator can be realized

in a form of LMIs as presented in the following corollary.
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Corollary 4.1. Consider system (4.22) and residual generator (4.26), if there exist matri-

ces Li, Pi > 0 obtained from (4.46) and (4.47), and positive constants αi, βi, εa, εbεc, i, j ∈ S
such that 

−(1− αi − γ)Pi 0 ĀTi Pi 0 εa

∗ −βi B̄T
i Pi 0 εb

∗ ∗ −Pi Pi 0

∗ ∗ ∗ −1 0

∗ ∗ ∗ ∗ −1/∆2

 ≤ 0, (4.65)

[
−Pi C̄T

i + εc

∗ −I

]
≤ 0, (4.66)

then (4.61) holds for for any switching signal with MDADT.

With the minimized βi, i ∈ S, it is evident that the inequality

rT (k)r(k) < ρ
k∑

m=k0

βiλ
k−m(uT (m)u(m) + δ2

d) + λk−k0ρV̄σk0 (θ(k0)) (4.67)

holds. An L∞/L2 type of FD approach for switched systems in synchronized manner can

be realized by setting the evaluation function as

Jσ̂ = rT (k)r(k), (4.68)

and the thresholds is set as

Jth,i(k) = ρ
k∑

m=k0

βiλ
k−m(uT (m)u(m) + δ2

d) + λk−k0ρV̄σk0 (θ(k0)). (4.69)

As shown in (4.56) and (4.57), the evaluation function and threshold in synchronized

manner can also be presented as recursive formulation, with initial situation Jth,i(0) =

λρV̄σk0 (θ(0)), there exist:

Jσ̂(k) = rT (k)r(k), (4.70)

Jth,σ̂(k + 1) = λJth,σ̂(k) + ρβiλ(uT (k)u(k) + δ2
d). (4.71)

It is evident that ∀i ∈ S, βi ≤ β̄i, and a threshold in synchronized manner (4.71) is

generally lower than that in asynchronized manner (4.57), which indicates the increase of

the fault detectability.

As a result, a threshold in the synchronized manner is used to detect faults in normal

working conditions, and the threshold in asynchronized manner is utilized to distinguish

whether there occur faults or switchings between different subsystems. The precise decision

logic is given in the following subsection.
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4.3.3 The decision rule for mode estimation embedded FD scheme

In this subsection, we discuss the decision rule on an FD approach with a mode estimation

unit.

In the previous subsection, two thresholds in (4.71) and (4.57) for synchronized and

asynchronized manners are investigated, and both thresholds are running in parallel. For

an FD system, there exist three different cases:

1. Jσ̂(k)(k) < Jth,σ̂(k), fault-free case.

2. Jσ̂(k)(k) ≥ J̄th,σ̂(k)(k), faulty case.

3. Jth,σ̂(k)(k) ≤ Jσ̂(k)(k) < J̄th,σ̂(k)(k), it is necessary to distinguish whether a fault

occurs or a switching between different subsystems occurs.

For the case Jth,σ̂(k)(k) ≤ Jσ̂(k)(k) < J̄th,σ̂(k)(k), it is necessary to propose a mode

estimation unit to determine whether a fault occurs or a switching is performed. To this

end, after Jσ̂(k)(k) ≥ Jth,σ̂(k) is detected, all residual generators for different subsystems

are activated in parallel in a restrict time interval [k, k + τ ], τ = min τσi , i ∈ S. Two types

of thresholds are presented in Fig. 4.5.

Figure 4.5: Thresholds for proposed FD systems.

The initial value of each residual generator is set as the current value of the adopted

residual generator. Based on the evaluation function ∀j ∈ S, Jj given in (4.56) and

thresholds Jth,j, J̄th,j given in (4.71) and (4.57), the process mode should be estimated

in an FD system. All sub-observers of all subsystems should be activated in parallel in
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a time interval [k1, k2]. A time interval [k1, k2] is so-called asynchronous periods Tη,i for

each subsystem i. Consider MDADT stability, time intervals should satisfy conditions

given in (4.37). After activating all observers, the initial value of each residual generator

is set as the value of current state in the current residual generator. Then, we can get

residual signals from all residual generators and the corresponding evaluation function

Jj(k), j 6= i, i, j ∈ S. Thresholds in the synchronized manner for each observer Jth,j can

also be calculated. From all these available data, a detection logic for FD scheme with

mode estimation is:

1. ∃j, Jj(k) ≥ J̄th,j, faulty case, the evaluation function is above the threshold in

asynchronous manner.

2. ∀j, Jj(k) ≥ Jth,j, faulty case, no residual generator matching the system.

3. ∃j, Jj(k) < Jth,j , switching case, there exist several residual generators matching the

system, while a mode estimation expression can be expressed as

σ̂(k) = argmin
j∈Θ

Jj(k)

Jth,j(k)
,Θ = {j | Jj < Jth,j}. (4.72)

In conclusion, an FD scheme with mode estimation can be summarized as Algorithm 4.1.

It is noteworthy that τ is chosen such that the ratio of the match periods Tα(k0, k) and

asynchronous periods Tη(k0, k) satisfy (4.37). The mode estimation unit in the detection

rule is to reduce the conservative threshold setting and increase the fault detectability.

Figure 4.6: Calculation steps of evaluation function and thresholds.

The specific calculation of parameters βi and β̄i can be seen in Fig. 4.6, the decision

rule including mode estimation is shown in Fig. 4.7.
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Algorithm 4.1 An FD scheme with mode estimation for switched systems

1. Run the L∞/L2 observer-based residual generator (4.26) and (4.28), and optimize

parameters β̄i in function (4.46)-(4.49) by using LMI tools.

2. With matrices Li calculated in (4.46)-(4.49), optimize parameters βi in (4.65)-(4.66)

by means of LMI.

3. Set the evaluation function and thresholds with (4.56) and (4.71), the decision rule is

set as
Ji(k) < Jth,i(k), fault-free case, go to step 3,

Ji(k) ≥ J̄th,i(k), faulty case, alarm,

Jth,i(k) ≤ Ji(k) < J̄th,i(k), go to step 4.

4. Active all residual generators j, j 6= i, j ∈ S, set evaluation functions and thresholds

with (4.56)-(4.57), and run decision logic as
∃j, Jj(k) ≥ J̄th,j, faulty case, alarm,

∀j, Jj(k) ≥ Jth,j, faulty case, alarm,

∃j, Jj(k) < Jth,j, switching case, go to step 5.

5. Set the mode estimation logic as

σ̂(k) = argminj∈Θ
Jj(k)

Jth,j(k)
,Θ = {j | Jj < Jth,j}.

It is mentioned that in most of the work about asynchrnoized FD schemes for hybrid

systems, a constant threshold is applied which is chosen as the maximum of the evaluation

function after considering all cases. In this chapter, we improve the threshold in two

aspects: 1) a mode-dependent L2 gain is calculated for each sub-mode; 2) dynamical

thresholds are introduced, which reduces the conservativeness of the thresholds.

Remark 4.3. For the switched system in asynchronized manner whose stability is ensured

by ADT stability conditions, only the L∞/L2 type of observer-based FD systems exist,

therefore, we apply such type of FD scheme in this case. For the systems satisfying the

existing conditions of both types of observer-based FD systems, the FD scheme with L2

observer-based FD scheme is always utilized for detecting persistent faults, while the FD

scheme based on L∞/L2 type of observer copes with instant faults.

Remark 4.4. In this chapter, an FD scheme for discrete-time switched systems in asyn-

chronous manners is introduced, the FD system for continuous-time switched systems is

studied in [49].

Remark 4.5. In industrial applications, the time-delay generally exists in dynamic systems,

which may deteriorate the FD performance significantly. In this thesis, we use asynchronized
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period to describe the time delay between the system and the observer and settle the problem.

This method also can be extend to switched time-delay systems, which motivated us to study

further in the future.

Figure 4.7: Decision rule.

4.4 Concluding remarks

This chapter mainly focuses on an integrated design of L∞/L2 observer-based FD schemes

for switched systems, while an embedded mode estimation unit is addressed to distinguish

faulty modes and switchings.

To this end, existence conditions of L2 observer-based FD schemes for switched systems

are studied at first. Furthermore, to improve the real-time performance of the FD scheme,

an L∞/L2 observer-based FD system is proposed. Then, matched and unmatched periods

are introduced to describe asynchronized manners in switched systems, which is the main
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contribution of this thesis for FD schemes on switched systems. Furthermore, an integrated

design of L∞/L2 type of residual generator is proposed for switched systems under ADT

stability conditions. Parameters corresponding to dynamical thresholds are optimized

by means of LMIs. With two thresholds for synchronized and asynchronized periods, a

decision rule is set with mode estimation unit.
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5 A Fault Detection Scheme for

Stochastic Systems with

Multiplicative Intermittent Faults

In Chapter 4, the FD scheme for switched systems with deterministic disturbance has been

investigated. In this chapter, we focus on the FD schemes for stochastic switched systems.

As introduced in Chapter 2, IFs appear for a period of time and then disappear, so the

dynamic systems with multiplicative IFs can be treated as switched systems, and the

detection of switchings can be regarded as an FD scheme. Motivated by this observation,

we propose an FD approach for stochastic dynamic systems with multiplicative IFs. To

this end, linear time-varying (LTV) systems and time-varying Kalman filter-based residual

generation are firstly introduced as preliminaries. After that, we model stochastic dynamic

systems with multiplicative IFs by means of switched systems, which is the core idea of

this chapter. Then, an LR test-based FD scheme is presented, in which a randomized

algorithm-aided (RA-aided) technique is used for threshold computation. Finally, the

stability margin for the FD scheme is studied.

5.1 Problem Formulation

Based on the knowledge that the dynamical behaviors of a system with IFs can be described

by IF active modes (faulty subsystems) and IF inactive mode (fault-free subsystem), the

system dynamics with multiplicative IFs can be modeled as different subsystems. Therefore,

one idea to model systems with multiplicative IFs is to regard them as switched systems,

and the detection of faults is reformulated into the detection of switchings between different

subsystems.

For systems with white Gaussian noises, the well-developed Kalman filter algorithm

is widely used for generating residual signals, more detailed information can be found

in [40, 42]. Considering the switched system which is a special type of LTV system, the

time-varying Kalman filter is applied in our work for residual generation.

It is well known that the LR test is widely used to detect potential faults, and for some
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types of complex systems, e.g., the switched systems, the LR technique [69] can be used to

distinguish different subsystems. It indicates that the LR test can be applied to detect and

isolate IF active modes (faulty subsystems) in the context of detecting multiplicative IFs.

Considering that the distribution of the likelihood function cannot be described in an

analytic form, we further apply the so-called RA-technique [28] for threshold setting that

optimally satisfies the required FD performance.

Moreover, since the overall system dynamics is governed by a switched system, it may

consequently become unstable. In order to ensure the stability of the whole system,

stability conditions with dwell time in each faulty subsystem are discussed by means of

MDADT stability theory. Because the MDADT method has a strict minimal average

dwell time limit in each subsystem, estimating the switching instant is necessary for the

FD scheme to be developed.

To this end, an LR test-based detection scheme for stochastic switched systems is

investigated in this chapter with a mode estimation unit. The main tasks of this chapter

are summarized as follows:

1. introducing the time-varying Kalman filter algorithm-based residual generator for

LTV systems;

2. modeling stochastic dynamic systems with multiplicative IFs by switched systems;

3. investigating FD issues for stochastic dynamic systems with multiplicative IFs,

including the Kalman filter-based residual generation, the LR test-based residual

evaluation and RA-aided threshold setting;

4. analyzing the system stability conditions in terms of switching frequency and the

time between switchings.

5.2 Kalman filter-based residual generator for LTV

systems

In this section, issues of modeling of the linear time-varying (LTV) systems and the

time-varying Kalman filter-based residual generator for LTV systems are addressed, which

provides preliminaries for this chapter.
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5.2 Kalman filter-based residual generator for LTV systems

5.2.1 The LTV system

Consider an LTV system with white Gaussian noises as follows:{
x(k + 1) = A(k)x(k) +B(k)u(k) + ω(k),

y(k) = C(k)x(k) +D(k)u(k) + υ(k),
(5.1)

where x(k) ∈ Rnx , u(k) ∈ Rnu , y(k) ∈ Rny are state, input and output vector, respectively,

A(k), B(k), C(k), D(k) are time-varying system matrices with appropriate dimensions.

It is assumed that (C(k), A(k)) is uniformly detectable. ω(k) and υ(k) correspondingly

represent process and measurement noise vectors, which are the white Gaussian noise

subject to Assumption 2.1, i.e.,

ω(k) ∼ N (0,Σω(k)), υ(k) ∼ N (0,Συ(k)), (5.2)

and they are uncorrelated with the state, input vector and initial values

E


 ω(i)

υ(i)

x(0)


 ω(j)

υ(j)

x(0)


T
 =


[

Σω(i) Sωυ(i)

Sυω(i) Συ(i)

]
δi,0 0

0 Π0

 ,
δi,0 =

{
1, i = j

0, i 6= j
.

(5.3)

5.2.2 A time-varying Kalman filter-based residual generator

As described in [4], the time-varying Kalman filter-based residual generator for LTV

systems (5.1) and (5.2) are given as follows:
x̂(k + 1) = A(k)x̂(k) +B(k)u(k) +K(k)(y(k)− ŷ(k)),

ŷ(k) = C(k)x̂(k) +D(k)u(k),

r(k) = y(k)− ŷ(k),

(5.4)

where x̂(k) and ŷ(k) represent the estimates of state and output, r(k) denotes the residual

signal, K(k) is the Kalman filter gain matrix.

Let P (k) be the co-variance matrix of estimation error, i.e., P (k) = E[(x(k) −
x̂(k))(x(k)− x̂(k))T ]. The Kalman filter-based algorithm is given in a recursive form, see

Algorithm 5.1.

Since ω(k) and υ(k) are white Gaussian noises, it is well known that the residual signal

r(k) delivered by Kalman filter is white and is of minimum covariance matrix. With the

covariance matrix Σr(k) calculated in Algorithm 5.1, the residual signal r(k) is denoted by

r(k) = f(k) + ε(k), ε(k) ∼ N (0,Σr(k)), (5.5)
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where f(k) represents any possible faults.

Algorithm 5.1 Recursive computation of time-varying Kalman filter

Initial value:

x̂(0) = 0, P (0) = P0.

Predicted state estimate:

x̂(k + 1 | k) = A(k)x̂(k | k − 1) +B(k)u(k) +K(k)r(k).

Residual signal:

r(k) = y(k)− ŷ(k | k − 1).

Predicted output estimate:

ŷ(k | k − 1) = C(k)x̂(k | k − 1) +D(k)u(k).

Innovation of co-variance and Kalman filter gain:

1 : K(k) = (A(k)P (k | k − 1)C(k)T + Sωυ)Σ
−1
r (k),

2 : Σr(k) = C(k)P (k | k − 1)CT (k) + Συ = E(r(k)rT (k)),

3 : P (k + 1 | k) = A(k)P (k | k − 1)AT (k) + Σω −K(k)Σr(k)KT (k).

Remark 5.1. It is mentioned that the LTV system is of a general form of linear dynamic

systems, there are many well-known systems that can be modeled as LTV systems, such as

linear parameter varying systems and networked systems. The main objective studied in

this thesis, i.e., the switched system, is a typical LTV system.

5.3 Residual generation for stochastic dynamic systems

with multiplicative IFs

Modeling LTI stochastic systems with multiplicative IFs by switched systems is the core

idea of the FD framework, in which the detection of switchings from the fault-free subsystem

to faulty subsystems implies a successful detection of the IFs. To build this framework,

switched systems and the modeling of stochastic dynamic systems with multiplicative IFs

are introduced, which is followed by the residual generator design.

5.3.1 Modelling of stochastic dynamic systems with IFs

Consider a switched system

Gσ :

{
x(k + 1) = Aσx(k) +Bσu(k) + ωσ(k),

y(k) = Cσx(k) +Dσu(k) + υσ(k),
(5.6)
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5.3 Residual generation for stochastic dynamic systems with multiplicative IFs

where x(k) ∈ Rnx , u(k) ∈ Rnu , y(k) ∈ Rny are state, input and output vector, respectively.

Aσ, Bσ, Cσ, Dσ are system matrices with appropriate dimensions, where σ ∈ S,S =

{0, 1, 2, · · · ,m} represents the switching rule.

For σ = i, the system (5.6) is an LTI system and is called the i-th subsystem. ωσ(k)

and υσ(k) represent the process and measurement noise vectors in the σ-th subsystems,

respectively. The white Gaussian noises are subject to ωσ ∼ N (0,Σω,σ), υσ ∼ N (0,Συ,σ).

Figure 5.1: (a) Switched system and (b) a stochastic system with multiplicative IFs.

Modeling stochastic systems with multiplicative IFs by means of switched systems is

the core idea of our work, different subsystems are utilized to describe both inactive mode

(fault-free subsystem) and active modes (faulty subsystems). The stochastic system with

multiplicative IFs can be modeled by switched system (5.6), σ = 0 represents the inactive

mode (fault-free subsystem) and σ = 1, 2, · · · ,m ∈ S, represent the modes of different

types of multiplicative IFs.

Different from the switched system described in Chapter 4 (see Fig. 5.1(a)), the system

with multiplicative IFs we considered in this chapter, for instance, as shown in Fig. 5.1(b),

is firstly running in fault-free subsystem, then the 1-st, m-th and 2-nd IFs are successively

performed. From the figure we also can see that different types of IFs have different lasting
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time, so the detection scheme for IFs should include the detection of both IFs’ appearance

and disappearance.

5.3.2 Kalman filter-based residual generator

Because the stochastic system with multiplicative IFs is viewed as a special LTV system,

a bank of time-varying Kalman filters are applied as residual generators for stochastic

dynamic systems with multiplicative IFs.

In this subsection, we adopt the following Kalman filter-based residual generators
x̂σ̂(k + 1) = Aσ̂x̂σ̂(k) +Bσ̂u(k) +Kσ̂(k)(y(k)− ŷσ̂(k)),

ŷσ̂(k) = Cσ̂x̂σ̂(k) +Dσ̂u(k),

rσ̂(k) = y(k)− ŷσ̂(k),

(5.7)

where σ̂ ∈ S represents the switching rule of the Kalman filter-based residual generator,

and x̂σ̂(k) ∈ Rnx denotes the estimation of state x(k) for the σ̂-th residual generator.

ŷσ̂(k) ∈ Rny is the estimation of output y(k), rσ̂(k) ∈ Rny represents the residual signal.

Kσ̂ is the Kalman gain.

In the switched system (5.6) and Kalman filter (5.7), when σ = σ̂, the system and

Kalman filter are in synchronous mode, while σ 6= σ̂ represents the asynchronous mode.

To calculate the Kalman filter gain matrices Kσ̂, we can apply Algorithm 5.1 with

A(k) = Aσ̂, B(k) = Bσ̂, C(k) = Cσ̂, D(k) = Dσ̂, K(k) = Kσ̂. For each subsystem, Kalman

filter-based residual generator delivers a residual signal rσ̂, which is of minimum covariance

matrix Σσ̂. The whiteness of the residual signals allows them to be applicable for FD

purpose, which will be discussed in the following section.

5.4 LR test-based FD approach for stochastic dynamic

systems with multiplicative IFs

LR methods are very popular methods in dealing with the change detection problems, and

they are also widely applied in FD schemes. From the Neyman-Pearson Lemma, we know

that, if the likelihood function of the fault f is known, the use of LR gives an optimal

FD solution at the significant level α for a given threshold, which has with the best fault

detectability. Motivated by this observation, in this section, we will study LR test-based

FD schemes for stochastic dynamic systems with multiplicative IFs.
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5.4.1 Problem formulation

It is known that if the process and measurement noises are white Gaussian noises, likelihood

functions can be chosen as probability density functions (PDFs) of concerned residuals.

Figure 5.2: FD scheme for stochastic dynamic systems with multiplicative IFs.

Therefore, for stochastic dynamic systems with multiplicative IFs (5.6), with the residuals

generated by a bank of time-varying Kalman filters (5.7), LRs for the null hypothesis

(fault-free subsystem) and alternative hypothesis (faulty subsystems) are defined.

In order to express the FD scheme more clearly, a binary case in which there exist only

two subsystems is studied first, and it is followed by RA-aided thresholds computation.

Then, the FD scheme for systems with multiple multiplicative IFs is addressed.

Since the system dynamics are governed by a switched system, whose stability can

be affected by frequent switchings, stability analysis for the FD system is necessary.

Considering the fact that the MDADT method indicates that switching frequency and

dwell time in each subsystem can influence the stability of the switched system, a counter

for each subsystem is set for recording switching instants.

As a result, the FD scheme includes three parts:

1. residual generation: by means of a bank of Kalman filter-based residual generators;

2. detection and isolation scheme: by investigating an FD approach for switched systems
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embedded with a mode estimation unit;

3. stability condition monitoring unit: by recording switchings.

The FD scheme is illustrated in Fig. 5.2.

5.4.2 LR test-based FD scheme in binary case

In this subsection, an LR test-based FD scheme is investigated. To present the LR

test-based FD scheme clearly, we first simplify the discussion and consider the situation

that there exist two known subsystems with σ ∈ {0, 1}. This detection of the binary case

is viewed as the basis of the FD scheme for switched systems with multiple subsystems.

In the binary case, we suppose that the system is running in one subsystem, and our task

is to propose an LR test-based FD approach for a system consisting of the 0-th mode

(fault-free subsystem) and the 1-st mode (IF subsystem).

Likelihood functions

In the time interval [k0, kN ], suppose that the switched system is running in the 0-th

mode, and switches to the 1-st mode at ks ∈ [k0, kN ]. Define the binary hypothesis as

H0 : G = G0, k ∈ [k0, kN ],

H1 : G =

{
G0, k ∈ [k0, ks − 1),

G1, k ∈ [ks, kN ].

(5.8)

The null hypothesis means there is no switching in the time interval [k0, kN ], while the

alternative hypothesis represents the case that the system switches from the 0-th subsystem

to the 1-st at ks.

Based on the switched system (5.6) and Kalman filter-based residual generator (5.7),

the residual signal rσ is generated. In binary case σ = 0, 1, the white Gaussian noises are

ωσ ∼ N (0,Σω,σ), υσ ∼ N (0,Συ,σ). When the process under consideration is stationary,

the Kalman filter gain Kσ and covariance Σσ of residual signal rσ are given by solving the

following Riccati equation

Kσ = AσPσC
T
σ (Συ,σ + CσPσC

T
σ )−1, (5.9)

Pσ = AσPσA
T
σ − L(Συ,σ + CσPσC

T
σ )KT

σ + Σω,σ, (5.10)

Σσ = Συ,σ + CσPσC
T
σ . (5.11)

With residuals rσ delivered by Kalman filter-based residual generators and their covari-

ance matrices Σσ, the hypotheses H0 and H1 are expressed as

H0 : r = r0, k ∈ [k0, kN ],

H1 : r =

{
r0, k ∈ [k0, ks − 1),

r1, k ∈ [ks, kN).

(5.12)
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It is clear from (5.12) that under the H1 hypothesis, both of the mean and covariance

matrices of the residual signal have changed after ks. Therefore, our tasks is to design a

detection scheme which can: (1) detect the switching instant; (2) detect changes both in

mean and covariance matrix. Based on the preliminaries given in Chapter 2, the LR-based

method is applied.

For switched systems with white Gaussian noises, the PDF of the residual signal pθi(ri(k))

is given by

pθi(ri(k)) =
1√

(2π)nr det(Σi)
e−

1
2
rTi (k)Σ−1

i ri(k). (5.13)

According to the log-LR calculated by PDF (5.13), in the time interval [k0, kN ], we can

define LR as test statistic J0,1(k) by

J0,1(k) := ln

∏ks−1
k=k0

pθ0(r0(k))
∏kN

k=ks
pθ1(r1(k))∏kN

k=k0
pθ0(r0(k))

= ln

∏kN
k=ks

pθ1(r1(k))∏kN
k=ks

pθ0(r0(k))

= ln

∏kN
k=ks

1√
det (Σ1)

e−
1
2
rT1 (k)Σ−1

1 r1(k)

∏kN
k=ks

1√
det (Σ0)

e−
1
2
rT0 (k)Σ−1

0 r0(k)

.

(5.14)

An RA-based threshold computing

From (5.14) we see that the switching instant k̂s should be estimated first, and it can be

estimated by the maximum value of the product of likelihood functions in both subsystems

as follows:

k̂s = arg maxks ln
∏ks−1

k=k0
pθ0(r0(k))

∏kN
k=ks

pθ1(r1(k)). (5.15)

In addition to computing the LR for FD design, we need to determine the corresponding

threshold afterwards. With the k̂s solved from (5.15), LR J0,1 in binary case is expressed

as

J0,1(k) =
1

2

kN∑
k=k̂s

[
ln

det(Σ0)

det(Σ1)
+ rT0 (k)Σ−1

0 r0(k)− rT1 (k)Σ−1
1 r1(k)

]
. (5.16)

It is observed from (5.16) that the evaluation J0,1 consists of two parts which follow

different probability distribution:

1. ln
det(Σ0)

det(Σ1)
, which is a constant that can be calculated;
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2. rT0 (k)Σ−1
0 r0(k) − rT1 (k)Σ−1

1 r1(k), in which r0, r1 are subject to two different norm

distribution.

In general, there exists no analytical form to compute FAR for the probability distribution

of J0,1. To solve this problem, the RA technique is applied to evaluate J0,1 in this thesis.

In [28], the so-called RA technique has been proposed for threshold setting with FAR

requirement being satisfied. And here we propose to apply the RA method for threshold

setting, which can be briefly summarized as: (1) generating N̄ independent identically

distributed samples x(1), x(2), ...x(N̄) for s(x) with θ = θ0, (2) determining smax and the

threshold Jth according to

smax = max
{
s(x(1)), · · · , s(x(N̄))

}
, Jth = smax. (5.17)

As introduced in [79], it is known that for any given δ ∈ (0, 1), ε ∈ (0, 1), if there exists

N̄ ≥
log

1

δ

log
1

1− ε

, (5.18)

then with a probability greater than 1− δ, it holds

Prob{s(x) ≤ Jth = smax | θ = θ0} ≥ 1− ε, (5.19)

⇐⇒ Prob{s(x) > Jth | θ = θ0} ≤ ε, (5.20)

the probability 1− δ is the so-called confident level.

Therefore, given the estimate of switching instant k̂s, the RA-aided threshold is cal-

culated by generating N̄ independent data {r0}i = {r0(k̂s), · · · , r0(kN)}i and {r1}i =

{r1(k̂s), · · · , r1(kN )}i, i = 1, · · · , N̄ , when G = G0. Notice that the data used for computa-

tion is in the time interval [k̂s, kN ]. The threshold can be chosen as the maximum of the

J0,1|i, which can be expressed as

Jth,0,1|k̂s = max
i=1,··· ,N̄

J0,1|i,k̂s (5.21)

For defined hypothesis (5.12), the detection scheme can be achieved with the LR by a

moving k = k0 +1, k0 +2, ..., kN . Furthermore, corresponding thresholds can be determined

with a bank of thresholds corresponding to every possible switching instants k̂s ∈ [k0+1, kN ].

In this regard, each threshold value is computed by applying the RA-aided technique.

For each possible k̂s, the RA-aided threshold of (5.16) are determined by generating

N̄ independent data sets, and with these N̄ sets of data {r0}i, {r1}i, the LR J0,1|i,k̂s
is computed by (5.16). Here, the data used for computing thresholds Jth,0,1|n, n =

k0+1, k0+2, . . . , k̂s are in the time intervals [k0+1, kN ], [k0+2, kN ], . . . , [k̂s, kN ], respectively.
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As a result, the threshold Jth,0,1(k) is set dynamical form, which is expressed as

Jth,0,1(k) = max
i=1,··· ,N̄

J0,1|i,k. (5.22)

With a probability (confident level) larger than 1− δ, there is

Prob{J0,1(k) > Jth,0,1(k) | H0} ≤ ε. (5.23)

In conclusion, the RA-aided threshold values for every possible k̂s is set offline, and it is

described as the following Algorithm.

Algorithm 5.2 RA-aided threshold compution

Give probabilities ε ∈ (0, 1), δ ∈ (0, 1).

1. Compute N̄ by (5.18).

2. Do loop statement:

for n = k0 + 1 : 1 : kN
(1) generate N̄ sets of data {r0(n), · · · , r0(kN)}i, {r1(n), · · · , r1(kN)}i,
i = 1, · · · , N̄ , by (5.7) with G = G0;

(2) calculate LRs J0,1|i,n by (5.16);

(3) calculate threshold values at every possible k ∈ [k0, kN ] Jth,0,1|k by (5.21)
end.

3. Set the threshold as Jth,0,1(k) = maxi=1,··· ,N̄ J0,1|i,k.

Based on the threshold values determined by Algorithm 5.2, LR test-based FD scheme

with a mode estimation unit for stochastic switched systems is given in Algorithm 5.3.

Algorithm 5.3 An LR test-based FD scheme for binary case

1. Generate residuals r0(k), r1(k) by Kalman filter-based residual generator (5.7).

2. Compute LR J0,1(k) (5.14) with residuals r0(k), r1(k).

3. Estimate switching instant k̂s by (5.15).

4. With the threshold Jth,0,1(k) obtained by Algorithm 5.2, set the decision rule as{
J0,1(k) < Jth,0,1(k)⇒ fault-free case,

J0,1(k) ≥ Jth,0,1(k)⇒ faulty case.

Remark 5.2. The FD scheme for the case from the 1-st mode (IF subsystem) to the 0-th

mode (fault-free subsystem) has the similar process as that given in Algorithm 5.2. In this

case, to compute the RA-aided threshold values, the residuals r0, r1 should be generated

when G = G1. Then, the corresponding Jth,1,0(k) is obtained with LR J1,0.
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5.4.3 LR test-based FD scheme in multiple case

Based on the FD scheme in the binary case, in this subsection, the LR test-based FD

scheme for stochastic dynamic systems with multiple multiplicative IFs (faulty subsystems)

is studied. To this end, by means of Kalman filter-based residual generators, the residual

signals of each subsystem are generated, and likelihood functions for each subsystem are

computed. Then, the LR test is utilized and the mode estimation and the switchings

instant estimation processes are given in the end.

Notice that, in this thesis, we only consider the case that the switchings are between the

fault-free mode (the 0-th subsystem) and an IF mode (the i-th subsystem), i ∈ S. The

situation that the system switches from an IF mode to another type of IF is not discussed.

Kalman filter-based likelihood functions

For the switched system with multiple subsystems, suppose that the system is running

over the time interval [k0, kN ], and it is in the 0-th subsystem (fault-free mode) at k = k0.

All Kalman filter-based residual generators for each subsystem is running in parallel, and

all Kalman filter-based residual generators are activated.

In the IF active mode, changes happen in both expectation and covariance of the initial

values, so the common FD scheme based on the χ2 test cannot be applied in this situation.

Considering the switched system (5.6), for σ(k) ∈ S, the Kalman filter gain matrices are

calculated by Algorithm 5.1.

Then, with the residual signal calculated for each subsystems rσ(k)(k) and the covariance

matrix Σrσ , the PDF of the residual signal for each subsystem is represented as

L(θ|rσ(k)) = pθ(rσ(k)) =
1√

(2π)nrσdet(Σσ)
e−

1
2
rσ(k)TΣ−1

σ rσ(k). (5.24)

An LR test-based FD scheme for stochastic dynamic systems with multiplica-

tive IFs

With the likelihood functions for each subsystem (5.24), an LR test-based FD scheme is

investigated. First, we introduce the multiple hypothesis put forward by Basseville and

Nikiforov [3] to describe different subsystems in a stochastic switched system.

Suppose that the switching is from the 0-th to the i-th subsystem at k = ks, i ∈ S, the

switching instant is presented as

σ(ks − 1) = 0, σ(ks) = i 6= 0. (5.25)

Similar to the hypothesis condition in binary case (5.8), for given system G, the multiple
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hypothesis is defined as

H0 : G = Gi, k = k0, · · · , kN ,

Hi :

{
G = G0, k = k0, · · · , ks − 1,

G = Gi, k = ks, · · · , kN .
(5.26)

Here the null hypothesis suggests that no switchings occur in time interval [k0, kN ], while

the alternative hypothesis is that the system switches from the 0-th subsystem to the i-th

subsystem at k = ks.

According to the hypothesis (5.26), the evaluation functions J0,i, i ∈ S for each subsystem

can be defined as

J0,i(k) := ln

∏ks−1
k=k0
L(θ0 | r0)

∏kN
k=ks
L(θi | ri)∏kN

k=k0
L(θ0 | r0)

= ln

∏kN
k=ks
L(θi | ri)∏kN

k=ks
L(θ0 | r0)

.

(5.27)

We consider the case that the system switches from the 0-th subsystem into the i-th

subsystem, and residual signals r0(k), ri(k) generated by Kalman filter based-residual

generators (5.7). With log-LRs, evaluation functions are described as:

J0,i(k) = ln

∏ks−1
k=k0

1√
det (Σ0)

e−
1
2
r0(k)Σ−1

0 r0(k)
∏kN

k=ks

1√
det (Σi)

e−
1
2
ri(k)Σ−1

i ri(k)

∏kN
k=k0

1√
det (Σ0)

e−
1
2
r0(k)Σ−1

0 r0(k)

= ln

∏kN
k=ks

1√
det (Σi)

e−
1
2
ri(k)Σ−1

i ri(k)

∏kN
k=ks

1√
det (Σ0)

e−
1
2
r0(k)Σ−1

0 r0(k)

, i ∈ S.

(5.28)

For FD purposes, all Kalman filter-based residual generators are running and evaluation

functions J0,i are calculated in parallel. We should determine which mode the system

switches into, and whether an unknown fault occurs or not.

Motivated by this, we need to estimate switching instants ks,m,m ∈ S for all subsystems

satisfying Ji,m ≥ Jth,i,m, and decide the switching mode σ̂es with ks,m. Then, set the

estimate of switching instant as k̂s = ks,σ̂es . With ks,m and the switching mode σ̂es, the

evaluation function Ji,σ̂es is calculated. By applying RA-aided threshold Jth,i,σ̂es , we can

determine that whether it is a switching case or not.

Firstly, we should estimate the switching instant ks,m for all possible modes, here we

use the m-th subsystem to present this process. With the evaluation function (5.27), the

estimation of switching instant ks,m can be calculated as

k̂s,m = arg maxks ln
∏ks−1

k=k0
L(θ0 | r0)

∏kN
k=ks
L(θm | rm). (5.29)
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Based on the residual signals generated by Kalman filters, the estimate of k̂s,m is given by

k̂s,m = arg maxks ln
∏ks−1

k=k0

1√
det(Σ0)

e−
1
2
rT0 (k)Σ−1

0 r0(k)
∏kN

k=ks

1√
det(Σm)

e−
1
2
rTm(k)Σ−1

m rm(k)

= arg maxks J0,m(k)

= arg maxks
∑kN

k=ks

(
ln

det(Σ0)

det(Σm)
+ rT0 (k)Σ−1

0 r0(k)− rTm(k)Σ−1
m rm(k)

)
.

(5.30)

If there exist more than one subsystems satisfying J0,m < Jth,0,m and suppose that two

of them are p, q ∈ S, the inequality

J0,p(k) > J0,q(k)⇒ ln

∏kN
k=k̂s,q

1√
det (Σq)

e−
1
2
rq(k)Σ−1

q rq(k)

∏kN
k=k̂s,p

1√
det (Σp)

e−
1
2
rp(k)Σ−1

p rp(k)

> 0, (5.31)

indicates that if J0,p(k) > J0,q(k), the probability of the system running in the p-th

subsystem is higher than that in the q-th subsystem. To calculate the estimate of mode

σ̂es, we need to find the mode m ∈ S with largest probability, which means to find the

mode with largest J0,m(k). The process to compute σ̂es can be expressed by

σ̂es = arg maxm J0,m

= arg maxm
∑kN

k=k̂s,m

[
ln

det(Σ0)

det(Σm)
+ r0(k)TΣ−1

0 r0(k)− rm(k)TΣ−1
m rm(k)

]
,

(5.32)

with which we can determine the system is in the σ̂es-th subsystem and set k̂s = k̂s,σ̂es .

The evaluation function J0,σ̂es is

J0,σ̂es = max
k̂s

kN∑
k=k̂s

(
ln

det(Σ0)

det(Σσ̂es)
+ rT0 (k)Σ−1

0 r0(k)− rTσ̂es(k)Σ−1
σ̂es
rσ̂es(k)

)
. (5.33)

As given in (5.22), for a given accuracy ε and confident level 1− δ, thresholds Jth,i,σ̂es
for stochastic dynamic systems are calculated by RA technique, see Algorithm 5.2 and

Algorithm 5.3.

The FD scheme for stochastic switched systems with a mode estimation unit is summa-

rized in Algorithm 5.4.
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Algorithm 5.4 FD scheme for stochastic switched systems with multiple subsystems

Kalman filter-based residual generation.

1: For σ = 0, run Kalman filter (5.7) and generate residual r0(k).

2: For σ = i, i ∈ S, active all Kalman filters (5.7) with initial values x(0), x̂(0), then

generate ri(k).

The LR test-based FD scheme.

3: Construct likelihood functions L(θσ|rσ) for all σ ∈ S.

4: Set evaluation functions J0,i and compute all switching instants k̂s,m,m 6= i,m ∈ S
as (5.30).

5: Estimate the mode estimation as (5.32).

6: With k̂s = k̂s,σ̂es , set evaluation function J0,σ̂es(k) as (5.33)

7: Run Algorithm 5.2 and obtain thresholds Jth,0,σ̂es(k).

8: Set the decision rule{
J0,σ̂es(k) < Jth,0,σ̂es(k)⇒ fault-free case,

J0,σ̂es(k) ≥ Jth,0,σ̂es(k)⇒ switching to the σ̂es-th subsystem.

Under the circumstance, the evaluation function J0,i provides the maximal faulty

detectability for a threshold Jth,0,i, and with a probability (confident level) greater than

1− δ, there is

p = Prob{J0,i > Jth,0,i | G = G0} = ε.

Remark 5.3. In this thesis, we only consider the situation that the switchings happen

between fault-free mode (the 0-th subsystem) and one IF mode (the i-th subsystem). There-

fore, when the system is running in the i-th subsystem, the task of the FD scheme is

to detect the switching happening to a certain mode (0-th subsystem) and estimate the

switching instant. The detection scheme is simplified, and can be regarded as the binary

case, so it has a similar process as that shown in Algorithm 5.2.

In this case, to compute the RA-aided threshold values, the residuals r0, ri should be

generated when G = Gi. Then, the corresponding Jth,i,0(k) is obtained by calculating LR

Ji,0.

5.5 Stability analysis of the LR test-based FD system

As mentioned in Chapter 3, the time interval of the detection scheme may influence the

stability condition of the switched system. Therefore, it is necessary to analyze the stability

condition of the FD approach proposed in Section 5.4, and the time limit conditions for the
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FD scheme should be discussed. To this end, the stability conditions of the FD approach

for stochastic switched systems in multiple case are studied by means of the MDADT

method. The MDADT-based stability condition can be determined by

1. counting switchings and recording the dwell time for each subsystem;

2. comparing the dwell time in the i-th subsystem with the i-th minimum MDADT.

5.5.1 Error dynamic system

With ks ∈ [k0, kN ], synchronized mode and asynchronized mode are defined as

σ =

{
σ(k) = σ(k0), k0 ≤ k ≤ ks, synchronized mode,

σ(ks − 1) = σ(k0) 6= σ(k), ks ≤ k ≤ kN , asynchronized mode.
(5.34)

The error signal is

e(k) := x(k)− x̂σ̂(k)(k), k ∈ [k0, kN ]. (5.35)

With (5.6) and (5.7), in asynchronized mode the estimation error is governed by[
e(k + 1)

x̂(k + 1)

]
= Aσ(k),σ̂(k)(k)

[
e(k)

x̂(k)

]
+ Bσ(k),σ̂(k)(k)u(k) + ω̄σ(k),σ̂(k)(k),

(5.36)

where

Aσ(k),σ̂(k)(k) =

[
Aσ(k) −Kσ̂(k)Cσ(k) (Aσ(k) − Aσ̂(k))−Kσ̂(k)(Cσ(k) − Cσ̂(k))

0 Aσ̂(k)

]
,

Bσ(k),σ̂(k)(k) =

[
Bσ(k) −Bσ̂(k)

Bσ̂(k)

]
, ω̄σ(k),σ(k0)(k) =

[
ωσ(k) −Kσ̂(k)υσ(k)

ωσ̂(k)

]
.

Note that the extended form of switched system (5.36) and error e(k) in (5.35), the

switched system may be in asynchronized operations. Therefore, our target is to analyze

stability conditions for a system with (1) time-varying characters, (2) both synchronized

and asynchronized manners.

To study the stability conditions of LTV systems, we assess a condition for GUES

(defined in Chapter 4) of a switched system, then the switched system is exponentially

stable for any switching signal. More information about stability analysis for switched

systems can be found in [54].

The following lemma given in [92] ensures the stability of the Kalman filter applied to

LTV systems, which is particular useful for switched systems.

78



5.5 Stability analysis of the LR test-based FD system

Lemma 4. [92] Let

e(k + 1) = (A(k)−K(k)C(k))e(k), (5.37)

be the estimation error dynamics and assume that A(k) is invertible, (A(k), C(k)) is

observable. Then, the Kalman filter algorithm results in

V (e(k + 1))− V (e(k)) ≤ −γ(k)‖e(k)‖2, γ(k) > 0, (5.38)

V (e(k)) = eT (k)Σ(k)e(k),Σ(k) = P−1(k | k − 1) > 0, (5.39)

where P (k | k − 1) is the covariance matrix calculated by Kalman algorithm, see

Algorithm 5.1.

In Lemma 4, there always exists a positive parameter γ(k) to ensure the difference of

Lyapunov functions are bounded, as in (5.38). According to this, we can extend the result

to the error system in asynchronized mode (5.36), which is summarized in the following

theorem.

Theorem 5.1. For the given system (5.36), if the Kalman filter is asymptotically stable,

then there exist a set of functions

Vσ(k)(e(k)) = eT (k)Σσ(k)(k)e(k), (5.40)

where

Σσ(k) = P−1
σ(k)(k),

λσ(k),min = maxk λmin(Pσ(k)(k)) = mink λ
−1
max(Σσ(k)(k)),

the matrix Pσ(k) represents the covariance matrix for the σ-th subsystem which is calculated

by Algorithm 5.1, such that

Vσ(k)(e(k + 1))− Vσ(k)(e(k)) ≤ −γσ(k)‖e(k)‖2, ∀σ(k) ∈ S, (5.41)

where γσ(k) is the parameter for the σ-th subsystem calculated by (5.38), and γσ(k) :=

mink γσ(k)(k) > 0.

Proof: Consider the function (5.37) with

A(k) = Aσ(k), C(k) = Cσ(k), (5.42)

and suppose the Lyapunov function (5.40), then we have

Vσ(k)(e(k + 1))− Vσ(k)(e(k)) ≤ −γσ(k)(k)‖e(k)‖2,∀σ(k) ∈ S. (5.43)
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For all possible k, choose the minimum of γσ(k)(k) as γσ(k) := mink, it holds for (5.41).

The proof is completed. �

Since additive disturbances have no influence on the system stability, only the stability

conditions of the eigen-dynamics are analyzed, while influences of input variables are not

considered in this situation.

Therefore, for stability analysis, the stochastic switched system in asynchronized manners

is described by [
x(k + 1)

e(k + 1)

]
= Aσ(k),σ̂(k)

[
x(k)

e(k)

]
, (5.44)

where Aσ(k),σ̂(k) is expressed in (5.36).

Furthermore, to study the stability conditions for (5.44), we define the Lypapunov

function

Vσ(k),σ̂(k) = [xT (k) eT (k)]

[
Pσ(k) 0

0 Σσ̂(k)

][
x(k)

e(k)

]
= Vσ(k)(x(k)) + Vσ̂(k)(e(k)),

(5.45)

where

Vσ(k)(x(k)) = xT (k)Pσ(k)x(k),

Vσ̂(k)(e(k)) = eTΣσ̂(k)e(k),

Pσ(k) > 0,Σσ̂(k) = P−1
σ(k)(k).

(5.46)

5.5.2 MDADT method based stability analysis

Suppose that Ts,σ, Tt,σ are the total time that the system runs in the σ-th synchro-

nized and asynchronized mode over [km, km+1]. For q ∈ [k0, k] the Lyapunov function

Vσ(q),σ̂(q)(x(q), e(q)) is expressed as

Vσ(q),σ̂(q)(x(q), e(q)) = Vσ(q)(x(q)) + Vσ̂(q)(e(q)),

Vσ(q)(x(q)) = xT (q)Pσ(q)x(q),

Vσ̂(q)(e(q)) = eT (q)Σσ̂(q)e(q),Σσ̂(q) = P−1
σ̂(q)(k|k − 1).

(5.47)

With the Lyapunov functions (5.46) and (5.47), the stability conditions are addressed

for statistic switched systems in asynchronized manners as follows.

Theorem 5.2. Considering the switched system (5.44), if there exist (1) positive constants

0 < αi < 1, κi > 0, µi,1 > 1, µi,2 > 1, λ > 0, i ∈ S, (2) piece-wise Lyapunov function

V (k) =

{
Vσ(k)(x(k), e(k)), k ∈ [km, ks,m],

Vσ(k),σ̂(k)(x(k), e(k)), k ∈ (ks,m, km+1],
(5.48)
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and (3) βi satisfying Pi 0

0

(
1− κi
1− αi

)ks,m−km
Σi(km)

 ≤ βi

[
Pi 0

0 Σi(km)

]
, (5.49)

such that ∀i ∈ S

Vi(x(k + 1)) ≤ (1− αi)Vi(x(k)), Vi(e(k + 1)) ≤ (1− κi)Vi(e(k)),

V0 ≤ µi,1Vi,0((x(k), e(k)), Vi,0 ≤ µi,2Vi((x(k), e(k)),
(5.50)

then for any switching signal with MDADT satisfying

T ∗s,i ≥ Ts,i =
ln βiµi,1µi,2 + λTt,i

ln(1− αi) + λ
, (5.51)

the stochastic switched system (5.44) is GUES over time interval [k0, k].

Proof: If the stochastic switched system (5.44) is subject to alternative hypothesis in

(5.26), and it can be regarded as in synchronized mode in the time interval [km, ks,m]. For

σ(l) = σ̂(l) = i, i ∈ S, it follows from (5.50) that

Vi(x(ks,m), e(ks,m)) = Vi(x(ks,m)) + Vi(ks,m)(e(ks,m))

≤ (1− αi)ks,m−kmVi(x(km)) + (1− κi)ks,m−kmVi(e(km)),
(5.52)

with κi = 1− λi,minγi < 1, where λi,minγi is calculated in Theorem 5.1.

While in time interval [ks,m, km+1], which is also called asynchronized mode, with µi,2 > 1

and (5.50), we have

Vi,0(x(ks,m), e(ks,m)) ≤ µi,2Vi(x(ks,m), e(ks,m)). (5.53)

Then, in asynchronized mode, with µi,2 > 1, the Lyapunov function for asynchronized

manners is expressed as

Vi,0(x(ks,m), e(ks,m)) ≤ µi,2[(1− αi)ks,m−kmVi(x(km)) + (1− κi)ks,m−kmVi(e(km))].

For switched system (5.44), for σ(l) = i, σ̂(l) = 0, i 6= j, i ∈ S, l ∈ [ks,m, km+1], suppose

that

Vi,0(x(l), e(l)) = [xT (l) eT (l)]P̄i,0(l)

[
x(l)

e(l)

]
, (5.54)

Vi,0(x(l + 1), e(l + 1)) = [xT (l) eT (l)]ĀTi,0P̄i,0(l + 1)Āi,0

[
x(l)

e(l)

]
, (5.55)
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with βi in (5.49) satisfying Pi 0

0

(
1− κi
1− αi

)ks,m−km
Σi(km)

 ≤ βi

[
Pi 0

0 Σi(km)

]
, (5.56)

there is

Vi,0(x(km+1), e(km+1)) ≤ βiµi,2(1− αi)ks,m−kmVi(x(km, e(km)). (5.57)

Since µi,1 > 1, it implies that

Vi(x(km+1), e(km+1)) ≤ µi,1Vi,0(x(km+1), e(km+1)),

then the above inequality yields

Vi(x(km+1), e(km+1)) ≤ βiµi,1µi,2(1− αi)ks,m−kmVi(x(km, e(km)).

Consider that over the time interval [k0, k], if the system is GUES, the following inequality

holds ∏l
i=0 βiµ

Nσ̂(k0,k)
i,1 µ

Nσ(k0,k)
i,2 (1− αi)Tt,mVσk0(x(k0), e(k0))

≤ e−λ(k−k0)Vσ(k0)(x(k0), e(k0)),
(5.58)

where Nσ(k0,k) represents the switchings from synchronized modes to asynchronized modes

in the time interval (k0, k), and Nσ̂(k0,k) denotes the switching from asynchronized modes

to synchronized modes. Taking log of both sides of (5.58), it gives

l∑
i=0

ln βi +Nσ̂(k0,k) lnµi,1 +Nσ(k0,k) lnµi,2 + Ts,i ln(1− αi) ≤ −λ(k − k0). (5.59)

For the whole time interval [k0, k] that (5.59) holds and k − k0 =
∑l

i=0 Ts,i + Tt,i, in

each time period [km, km+1] with ln(1− αi) < 0, time interval dwelling in each mode Ts,i

is represented as

T ∗s,i ≥ Ts,i =
ln βiµi,1µi,2 + λTt,i

ln(1− αi) + λ
. (5.60)

The proof is completed. �

5.6 Concluding Remarks

In this chapter, the main focus is to propose an FD scheme for stochastic dynamic systems

with multiplicative IFs, in which a mode estimation unit is embedded to determine faulty
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modes. To this end, modeling the stochastic dynamic systems by switched systems is given

first, and in this chapter, only the case of switching between fault-free mode and one faulty

mode is considered, the case that switching between two different multiplicative IFs is not

discussed. Then, Kalman filter-based residual generator is introduced, with the generated

residuals the likelihood functions are formulated directly. It is followed by an LR test-based

FD scheme for stochastic switched systems, with which the threshold is determined by the

RA-aided technique. To distinguish faulty subsystems, a mode estimation unit is designed.

In the end, with the aid of ADT stability theory, stability conditions for the proposed FD

scheme are provided.
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In this chapter, we will show the effectiveness of the FD schemes proposed in the previous

chapters by applications in the two-mass-spring system and a numerical example. To

be specific, a two-mass-spring system is firstly used to present the effectiveness of L2

and L∞/L2 observer-based FD approaches proposed in Chapter 4 for uncertain switched

systems.

6.1 Case studies on a two-mass-spring system

In this section, the two-mass-spring system is introduced. Then, the schemes discussed

in Chapter 4, namely L2 and L∞/L2 observer-based FD schemes with embedded mode

estimation unit are applied in such uncertain switched systems.

6.1.1 Process description

Figure 6.1: The schematic diagram of two-mass-spring system.

The two-mass-spring system (see Fig. 6.1) is a typical nonlinear system concerning a

dynamical spring constant θ. To describe the real situation of the spring, the dynamical

spring constant is given within θ ∈ [7.5, 15], which can be estimated by three spring

constants in different lengths: θ1 = 7.5, θ2 = 12, θ3 = 15. If the spring elasticity coefficient

changes drastically, the system output may have a large deviation. Therefore, it is necessary

to identify the spring coefficient timely, then switch the observer to a certain sub-observer

according to the chosen switching indicator θ̂.
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Suppose the system state is x = [ẋT1 ẋT2 xT1 xT2 ]T , where x1, x2 represent the positions

of object 1 and 2, and ẋ1, ẋ2 refer to the velocity of the two objects. The output signal is

the situations of two objectives which can be measured by situation sensors, denoted by

y = [xT1 xT2 ]T . The input signal u is the external force added on objective 1.

Based on the physical relation we have

ẋ(t) =


0 0

θi
m1

− θi
m1

0 0 − θi
m2

θi
m2

1 0 0 0

0 1 0 0

x(t) +


1

m1

0

0

0

u(t),

y(t) =

[
0 0 1 0

0 0 0 1

]
x(t),

(6.1)

where i = 1, 2, 3, and we set m1 = m2 = 10 in this example.

In this study, the output feedback controller (see Fig. 6.2) is implemented to stabilize

the whole system. The signals are transformed into discrete-time signals through zero-

order-holder (ZOH).

Figure 6.2: The closed-loop two-mass-spring system.

In order to monitor the two-mass-spring system, we need to connect the input and output

data to a computer with typical hardware and software working platform for hardware-

in-the-loop simulation. The data can be transformed into discrete-time signal. Based on

the continuous-to-discrete transformation, we can get the discrete-time system matrices

of the closed-loop system (see Fig. 6.2). With the spring constants θi (i = 1, 2, 3) as the

switching indicator, the two-mass-spring system can be approximated by the switched
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system {
x(k + 1) = Aix(k) +Biu(k),

y(k) = Cix(k),
(6.2)

with the following system matrices

A1 =


−10 96.4 −37.2 86.89

0 0 −0.75 −0.75

1 0 0 0

0 1 0 0

 , A2 =


−5.9 16.4 −14 17.8

0 0 −1.2 −1.2

1 0 0 0

0 1 0 0

 ,

A3 =


−8.3 33.3 −27.14 39.00

0 0 −1.5 −1.5

1 0 0 0

0 1 0 0

 , B = [0.1 0 0 0]T ,

C =

[
0 0 1 0

0 0 0 1

]
.

To stabilize the switched system, the feedback controller gain for each subsystem can

be chosen as

K1 = [−100 96.44 − 379.5 876.4],

K2 = [−59 166.4 − 153.0 190.0],

K3 = [−83 333.0 − 286.4 404.9].

With the feedback controllers Ki (i = 1, 2, 3), we can calculate the system matrices for

closed-loop subsystems as

A1 =


0.0464 −4.7418 0.7705 −4.2207

0.0003 −0.4552 0.0393 −1.0337

−0.0402 0.9677 −0.3559 −0.8643

−0.0086 0.3765 −0.0862 0.3783



A2 =


−0.1743 −0.9882 −0.4920 −2.2976

−0.0377 −0.3289 −0.1092 −1.3039

−0.0568 1.0724 −0.5093 −0.0570

−0.0376 0.5293 −0.2594 0.2872

 ,

A3 =


0.0145 −2.6530 0.6764 −3.0640

0.0007 −0.6539 0.1243 −1.3697

−0.0566 0.5723 −0.4549 −0.7698

−0.0226 0.3258 −0.1868 0.0983

 ,
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B1 = [−0.004 0 0 0]T ,

B2 = [−0.0057 − 0.0038 0.0046 − 0.0014]T ,

B3 = [−0.0057 − 0.0023 0.001 − 0.0011]T ,

C =

[
0 0 1 0

0 0 0 1

]
.

Notice that the spring constant is not measurable in practice. The spring deformation is

assumed to be system uncertainties, and the unknown friction between objects is described

by norm-bounded disturbance d(k), denoted by ‖d‖ ≤ δd, δd > 0. The switched system

can be expressed as{
x(k + 1) = (A1 + ∆A,1)x(k) + (B1 + ∆B,1)u(k) +Mdd(k) + Eff(k),

y(k) = (C1 + ∆C,1)x(k) +Ndd(k) + Fff(k),
(6.3)

where

Md = [0.1 0.1 0.1 0.1]T , Nd = 0.1,

and the uncertainties of each subsystems satisfy

‖∆A,i‖ ≤ ε1,i, ‖∆B,i‖ ≤ ε2,i, ‖∆C,i‖ ≤ ε3,i.

6.1.2 L∞/L2 observer-based FD scheme with mode estimation unit

In this subsection, the L∞/L2 observer-based FD scheme for uncertain switched systems

is demonstrated by the two-mass-spring system. Consider the switched system (6.3) with

ε1,i = 10−7, ε2,i = ε3,i = 10−6, i = 1, 2, 3. Set that

α1 = 0.3, α2 = 0.25, α3 = 0.35, η1 = 1, η2 = 1.1, η3 = 0.9;

µ1,1 = 1.5, µ1,2 = 1.4, µ1,3 = 1.6, µ2,1 = 2, µ2,2 = 2.1, µ2,3 = 1.9,

and γ = γ∗ = 0.1, ξ = 0.1, N0 = 1. Applying the Algorithm 4.1, we obtain

 β1

β2

β3

 =

 8.69× 10−6

5.36× 10−6

4.74× 10−6

 ,
 β̄1

β̄2

β̄3

 =

 5.13× 10−5

5.76× 10−5

5.95× 10−5

 ,
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L1 =


2561.0216 −1077.4628

81.1023 −26.9376

148.7674 71.2702

82.5884 209.4318

 , L2 =


2323.5804 911.4842

92.4100 −36.5026

140.0953 70.5025

94.2363 231.4496

 ,

L3 =


2987.5007 1019.1604

109.6171 −30.5160

144.9732 69.6407

88.8201 218.5472

 .
The working process of the proposed FD scheme with mode estimation unit is shown in

the Fig. 6.3 and Fig. 6.4.

Figure 6.3: The FD scheme embedded with mode estimation unit: switching case.

For demonstration purposes, suppose the process is operating in mode 3 during k ∈ [0, 40)

sec, and the whole system switches from mode 3 into mode 2 at 40 sec. As shown in

the Fig. 6.3 (b) and (c), the switching can be detected. Applying the mode estimation

approach given in Chapter 4 with δ = 3, it is obvious to see from the Fig. 6.3 (b) and (c),

that the system is running in mode 2 after the switching. The mode estimation interval is

chosen as 4 sec according to ADT theory.
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Moreover, it can be seen in the time interval k ∈ (40, 50) sec the FD scheme is verified

to be effective after switching and both the whole system and the observer-based residual

generator are running in a safe situation.

Furthermore, the same detection process is applied in the time interval [68, 73) sec, the

corresponding FD performance is shown in Fig. 6.4 (b) and (c). While activating the

other two sub-observers, it is evident a fault is detected (see Fig. 6.4).

Figure 6.4: The FD scheme embedded with mode estimation unit: faulty case.

6.2 A numerical example for LR test-based FD scheme

In this subsection, a numerical example is given to demonstrate the log LR test-based

detection scheme for multiplicative IFs proposed in Chapter 5.

Consider a discrete-time switched system with white Gaussian noises as follows{
x(k + 1) = Aix(k) +Biu(k) + ωi(k),

y(k) = Cix(k) +Diu(k) + υi(k),
(6.4)

where x(k), u(k), y(k) are state, input and output vector, respectively. Notation i, i =

0, 1, 2, 3 is the mode of the system, the switching rule is unknown as a prior. In this example,
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the 0-th mode represents the fault-free subsystem, and other i-th modes (i = 1, 2, 3) denote

three different multiplicative IFs. The detecting window is 5 samples.

The ωi(k) and υi(k) are white Gaussian noises subject to ωi ∼ N (0,Σω,i), υi ∼ N (0,Συ,i),

respectively. The mode i = 0 denotes the fault-free subsystem, while i = 1, 2, 3 represents

the i-th multiplicative IF mode, respectively. The system (6.4) is with following matrices

A0 =


−0.201 0.356 −0.675 0.357

−0.073 −0.532 0.380 0.205

0.085 1.651 0.621 −1.784

−0.039 0.756 0.220 1.153

 ,

A1 =


−0.170 0.173 0.453 0.293

0.054 −0.411 0.214 0.111

−0.081 1.377 −0.381 −1.475

−0.042 0.629 −0.128 1.016

 ,

A2 =


0.272 1.313 −1.468 1.397

0.079 −0.660 0.506 0.380

−0.067 1.860 0.853 2.014

0.053 1.125 −0.555 1.522

 ,

A3 =


0.241 −0.528 −0.984 −0.676

−0.078 −0.578 0.454 0.299

0.072 1.568 −0.617 1.773

0.040 −0.695 0.237 −1.149

 ,

B0 = B1 = B2 = B3 =


0.1 0

0 0.3

0 −0.1

1 0

 , C0 = C1 = C2 = C3 =

[
0 0 1 0

0 0 0 1

]
,

and the covariance of white Gaussian noises are

ω0 = 1× 10−4I4, ω1 = 1.5× 10−4I4, ω2 = 2× 10−4I4, ω3 = 4× 10−4I4,

υ0 = 2× 10−4I4, υ1 = 1.5× 10−4I4, υ2 = 1× 10−4I4, υ3 = 4× 10−4I4.

The Kalman filter gain matrices are

K0 =


0.0093 −0.0165

0.3801 0.2255

0.7722 −0.0899

0.0482 0.7523

 , K1 =


0.1407 0.0740

0.3954 0.2157

0.6707 −0.0734

0.0143 0.7334

 ,
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K2 =


0.5181 3.9590

0.4096 0.3648

0.8290 0.2438

0.0540 0.8474

 , K3 =


−0.7045 4.5529

0.4149 −0.4309

0.6592 0.0703

−0.0150 0.6026

 .
In the binary case.

In this study, the system is working in the 0-th mode during [0, 500) samples, and in the

500 samples, the process switches into the 1-st mode. In the time interval [500, 600), the

system is running in the 1-st mode then switches back to the 0-th mode at 600 samples.

The change is detected with the log LR test-based FD scheme at k̂0,1 = 500 samples,

as shown in subfigure 1 in Fig. 6.5. while the disappearance of 1-st multiplicative IF is

detected at k̂1,0 = 600 samples, see subfigure 2 in Fig. 6.5.

Figure 6.5: Detection of the 1-st multiplicative IF mode and the disappearance of the IF.

For calculating the threshold, choosing the accuracy ε = 5% and the confidence level

1− δ, δ = 10−6, according to the Algorithm 5.3, the training samples should be N1 ≥ 270.
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6 Application to benchmark processes

Two thresholds are calculated by N1 = 271 training data are dynamic (varying in a small

range). Here a typical value is given Jth,0,1 = 0.15, Jth,1,0 = 0.56.

The ADT parameters are with α0 = 0.10, α1 = 0.15, κ0 = 0.50, κ1 = 0.55, µ0,1 =

1.1, µ0,2 = 1.9 and µ1,1 = 1.05, µ1,2 = 1.95. By related calculation, the acceptable ratio of

running time intervals in both modes is 0.11 < T0/Ti < 4.9, i = 1, 2, 3.

In the multiple case.

In this study, the system is working in normal mode during [0, 700) samples, and in the

700 samples switches into the 3-rd mode. The tasks of the detection scheme are estimating

the switching instant and distinguishing the multiplicative IF mode.

The ADT parameter are chosen as α0 = 0.10, α1 = α2 = α3 = 0.15, κ0 = 0.50, κ1 = κ2 =

κ3 = 0.55, µ0,1 = 1.1, µ0,2 = 1.9 and µ1,1 = µ2,1 = µ3,1 = 1.05, µ1,2 = µ2,2 = µ3,2 = 1.95.

After ADT theoretical calculation, the acceptable ratio of running time intervals in both

modes is 0.11 < T0/T1 < 4.9. The threshold Jth,0,3 is also a dynamic series, a typical value

is given here Jth,0,3 = 2.39.

The estimation of switching instants in every modes are k̂0,1 = 701, k̂0,2 = 700, k̂0,3 = 700.

Because J0,3 = max(J0,1, J0,2, J0,3), which means the system is most “likely” switching in

the 3-rd mode. The performance of LR test-based FD scheme is demonstrated in Fig 6.6.

Figure 6.6: Detection of the 3-rd multiplicative IF mode.

6.3 Concluding remarks

In this chapter, two benchmark processes have been utilized to demonstrate the effectiveness

of the proposed FD approaches. A two-mass-spring system is used for L2 and L∞/L2

observer-based FD schemes of uncertain switched systems in Chapter 4. A numerical
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example is demonstrated the proposed FD scheme in the binary case, which is discussed

in Chapter 5. Furthermore, it has also been applied to show the feasibility of the log LR

test-based FD scheme in multiple cases. The results in this chapter meet the requirement

for reliable detection of potential faults.
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The main contribution of this thesis is to study the FD scheme with the IFs system

modeled by the switched system. Based on this framework, FD schemes with a mode

estimation unit are proposed for both stochastic and deterministic dynamic systems. This

chapter first summarizes the main points of this thesis, and then points out several related

topics that can be further investigated.

7.1 Conclusions

This thesis is dedicated to applying switched systems technique to the detection of systems

with multiplicative IFs, and the specific content is arranged as follows.

In Chapter 1, a brief introduction to the developments and basic concepts of FD schemes,

and switched systems are given at first. In order to model and detect the potential faults

that occur and last for a limited time interval then disappear without any external

correction, a new FD framework based on switched system is developed, in which a fault

mode estimation unit is embedded and a proper decision rule is set up.

Mathematical and control theoretical preliminaries of this thesis are presented in

Chapters 2 and 3.

In Chapter 2, a brief introduction of FD schemes designed for systems both in deter-

ministic and statistical frameworks is presented. Including basic ideas, hypothesis testing,

modeling of dynamic processes, the model-based and data-driven methods of FD systems

design are addressed in this chapter.

In Chapter 3, the basic knowledge of switched systems is addressed. Switched systems

received considerable attention in recent years and numerous research results have been

reported, such as filtering, control and stability analysis. Among them, we focus on the

stability analysis issues in this chapter. To be precise, situations under both arbitrary

switching and restrict switching are discussed. For restricted switching conditions, a

so-called ADT method has been applied, and it is further utilized in the following chapters

to analyze stability conditions in both deterministic and stochastic systems. The further

introduction of multiplicative IFs provides the objective of this thesis.

Considering the FD approach for switched systems with norm-bounded uncertainties
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and unknown input signals, an FD scheme is investigated with L2 and L∞/L2 observer-

based residual generators in Chapter 4. Moreover, the system and observer running in

asynchronized manner attract our interest to study such a topic in this chapter. To this

end, the L∞/L2 FD scheme for uncertain switched systems is addressed with a mode

estimation unit. An LMI aided technique is applied to calculate dynamical thresholds.

In Chapter 5, our purpose is to build a switched system-based framework to detect

IFs in stochastic dynamic systems. In this framework, the detection of such faults can

be equivalently treated as the detection of the switchings between IFs inactive (fault-

free) mode and active (faulty) mode. Based on this framework, an FD scheme with

mode and switching instant estimation is investigated. To this end, LTV systems and

Kalman filter-based residual generation are firstly introduced. After that, we construct the

framework of applying switched systems to model systems with IFs properly. Then, with

an RA-aided threshold, an LR test-based FD scheme for stochastic dynamic systems with

IFs is presented. In the end, the stability margin for the FD scheme is studied according

to ADT stability theory.

In Chapter 6, a two-spring-mass system is firstly considered and used to show the

effectiveness of FD schemes proposed in Chapter 4, in which L2 and L∞/L2 types of FD

schemes are investigated for switched systems with norm-bounded uncertainties, since the

elasticity coefficient of the spring may vary in practice. Then, a numerical example is

utilized to demonstrate the feasibility of the LR test-based FD scheme in Chapter 5 in

the binary case, and in multiple working cases, it is also put forward to demonstrate the

feasibility of the LR test-based FD approaches.

In conclusion, in this thesis, the main contributions are:

1. construct a framework that applies switched systems to model systems with IFs;

2. propose an L∞/L2 type of FD system for switched systems in asynchronous manners;

3. investigate LR test-based FD scheme for a dynamic systems with multiplicative IFs

in the stochastic case and apply RA-aided technique to set corresponding thresholds;

4. propose an FD schemes for dynamic systems with multiplicative IFs with mode and

switching instant estimation unit.

7.2 Future work

Besides this thesis made contribution to FD schemes for systems with multiplicative IFs,

there are some topics worth being considered and explored.
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FD design for systems with unknown IFs. For some dynamic processes and systems,

there always exist some unknown IFs, so it is necessary to construct residual generators

and propose corresponding FD schemes for these unknown IFs (subsystems). To this end,

the construction of residual generators for systems with unknown IFs (subsystems) can

employ data-driven methods.

FD design for systems with time-delay. In real industrial applications, the time-delay

always exists, and a time-delay between dynamic system and observer is considered in

Chapter 4. Furthermore, there exist other types of time-delay situations which motivates

us to study further on FD topics.

FD design for other kinds of hybrid systems. The FD system for switched systems

is proposed in this thesis, and there are other types of hybrid systems to be investigated,

such as impulsive systems and Markov Jumping systems.

RA-aided FD design for systems with non-Gaussian noise. For systems with

non-Gaussian noise and unknown disturbance, it is difficult to set a proper threshold for

a certain evaluation function. In this case, the RA-aided technique can be applied to

determine the corresponding threshold under a given accuracy and confident level.

The ideas, preliminaries, methods and techniques discussed in this thesis can also be

the fundamental of fault-tolerant control systems design. Therefore, there exist several

relevant topics to be studied in future. Some of the future work are outlined as follows:

1. Fault tolerant control systems for switched systems will be investigated, in which the

Plug-and-Play (PnP) control strategies can be applied and ADT stability condition

will be given;

2. The FD and fault tolerant control design for distributed systems will be considered

in the framework of switched systems.
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