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The therapy of neurodegenerative diseases such as Parkinson’s disease (PD) is
still limited to the treatment of symptoms and primarily aimed at compensating for
dopaminergic hypofunction. Numerous disease-modifying therapies currently in the
pipeline attempt to modify the underlying pathomechanisms. In recent decades, the
results of molecular genetics and biomarker research have raised hopes of earlier
diagnosis and new neuroprotective therapeutic approaches. As the disease-causing
processes in monogenetic forms of PD are better understood than in sporadic PD,
these disease subsets are likely to benefit first from disease-modifying therapies. Recent
studies have suggested that disease-relevant changes found in genetically linked forms
of PD (i.e., PARK-LRRK2, PARK-GBA) can also be reproduced in patients in whom
no genetic cause can be found, i.e., those with sporadic PD. It can, therefore, be
assumed that as soon as the first causal therapy for genetic forms of PD is approved,
more patients with PD will undergo genetic testing and counseling. Regarding future
neuroprotective trials in neurodegenerative diseases and objective parameters such
as biomarkers with high sensitivity and specificity for the diagnosis and course of the
disease are needed. These biomarkers will also serve to monitor treatment success
in clinical trials. Promising examples in PD, such as alpha-synuclein species, lysosomal
enzymes, markers of amyloid and tau pathology, and neurofilament light chain, are under
investigation in blood and CSF. This paper provides an overview of the opportunities
and current limitations of monogenetic diagnostic and biomarker research in PD and
aims to build a bridge between current knowledge and association with PD genetics
and biomarkers.

Keywords: genetic, biomarkers, Parkinson’s disease, alpha-synuclein, LRRK2

INTRODUCTION

Parkinson’s disease (PD) [sporadic (sPD) and (mono)genetic forms of PD (gPD)] represents a
heterogeneous group of disorders with the pathophysiological shared end of a dopaminergic deficit.
Therapy of PD is still limited to the treatment of symptoms and is primarily aimed at compensating
for dopaminergic hypofunction. Accurate diagnosis of PD according to the underlying
pathophysiology is important because of current and future treatment options. In recent years,
many efforts have been made to identify specific and sensitive biomarkers (Parnetti et al., 2019;

Frontiers in Aging Neuroscience | www.frontiersin.org 1 March 2022 | Volume 14 | Article 822949

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.822949
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2022.822949
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.822949&domain=pdf&date_stamp=2022-03-03
https://www.frontiersin.org/articles/10.3389/fnagi.2022.822949/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-822949 February 26, 2022 Time: 15:49 # 2

Tönges et al. Biomarkers in Monogenetic Parkinson’s Disease

Lawton et al., 2020). Because of its proximity to neuronal
structures, cerebrospinal fluid (CSF) is, of course, the most
promising liquid biomarker for neurodegenerative diseases.
Nevertheless, blood, saliva, skin biopsies, and urine also appear
to be good candidates as they are easily accessible and less
invasive. Biomarkers from body fluids, skin biopsies, or imaging
studies have the advantage of identifying the risk for future PD,
diagnosing PD early, and monitoring disease progression, and
can serve to monitor possible treatment success in clinical trials.
Hence, biomarkers should also be able to distinguish between
different entities of neurodegenerative diseases [e.g., sPD vs.
gPD vs. atypical Parkinson’s syndromes (aPD)] to decrease the
number of false-positive diagnosed patients. An unmet need
for future neuroprotective trials in neurodegenerative diseases is
an objective parameter such as biomarkers with high specificity
and sensibility for the diagnosis and course of the disease.
Promising examples in PD, such as alpha-synuclein species,
lysosomal enzymes, markers of amyloid and tau pathology,
and neurofilament light chain, are under investigation in the
blood and CSF (Parnetti et al., 2019). Unfortunately, it has
not been possible to date to implement a robust biomarker
in the early diagnosis or follow-up of PD. One reason is that
biomarker profiles vary from patient to patient due to the great
heterogeneity of the disease.

In contrast to sPD, in which the etiology remains elusive for
most cases, gPD offer the possibility of better understanding the
cause of the disease. Many autosomal dominant and recessive
genes have been found since the first description of SNCA
as a genetic cause of PD in 1997 (Polymeropoulos et al.,
1997). The clinical symptoms between sPD and a monogenetic
form are similar in most cases. However, since the course
of PD can differ greatly from individual to individual, the
question arises whether the etiological heterogeneity might have
different causes. Examples include the tremor-dominant or
akinetic rigid subtypes of sPD or the early cognitive involvement
in some patients with PD. The results of molecular genetics
and biomarker research have raised hopes of resolving these
unanswered questions in PD and finding new neuroprotective
therapeutic approaches. As the disease-causing processes in
gPD are better understood than in sPD, patients with these
subsets of the disease are likely to benefit first from disease-
modifying therapies. A synergistic effect between research on
monogenetic forms of the disease and sPD is also likely. Recent
studies have suggested that disease-relevant changes found in
genetically linked forms of PD (i.e., PARK-LRRK2, PARK-GBA)
can also be reproduced in patients in whom no genetic cause
can be found (Di Maio et al., 2018). Even if these patients
with gPD currently represent only a small group (approximately
10%) (Cook et al., 2021), it is expected that availability of
a causal therapy for genetic forms of PD will substantially
increase demand for genetic testing and counseling. Therefore,
we aim to provide an overview of the most common genetically
linked forms of PD and the associated biomarker studies.
Table 1 summarizes the genetic causes of PD with regard to the
corresponding biomarker.

TABLE 1 | An overview of the genetic causes of Parkinson’s disease (PD), the
corresponding biomarker, and the diagnostic and/or prognostic value.

Genetics Source Biomarker Findings
(diagnostic/
prognostic*)

Study

SNCA Blood Oligomeric
aSyn

↑sPD vs. HC
(sensitivity 75%;
specificity 100%)

Williams et al.,
2016

CSF Total aSyn ↓sPD vs. HC Mollenhauer
et al., 2008

↑PARK-LRRK2/HC
vs. sPD

Vilas et al.,
2016

Oligomeric
aSyn

↑sPD vs. HC
(sensitivity 71%;
specificity 64%)

Eusebi et al.,
2017

↑sPD vs. HC
(RT-QuIC)
(sensitivity 95%;
specificity 100%)

Fairfoul et al.,
2016; Sano
et al., 2018;
Shahnawaz
et al., 2020

Phosphorylated
aSyn

↑sPD vs. HC vs.
PSP

Eusebi et al.,
2017

GBA CSF GCase activity ↓sPD vs. HC Parnetti et al.,
2014a; Lerche
et al., 2021

↓PARK-GBA vs. HC Xicoy et al.,
2019

↓PARK-LRRK2 vs.
HC

↓PARK-PRKN vs.
HC

Blood Positive correlation
with disease
duration*

Kim et al.,
2016

LRRK2 Blood Total LRRK2 ↑sPD vs. HC Atashrazm
et al., 2019

sPD = PARK-
LRRK2/HC

Padmanabhan
et al., 2020

pS935-LRRK2 ↓PARK-LRRK2 vs.
sPD/HC

Padmanabhan
et al., 2020

↑sPD vs. HC Melachroinou
et al., 2020

pRab10 PARK-
LRRK2 = sPD/HC

Atashrazm
et al., 2019

CSF Total LRRK2 ↑PARK-LRRK2 vs.
sPD/HC

Mabrouk et al.,
2020

pS1292-
LRRK2

PARK-
LRRK2 = sPD/HC

Wang et al.,
2017

Aβ1-42, total-,
phospho-Tau

PARK-
LRRK2 = sPD/HC

Vilas et al.,
2016

Urine pS1292/total
LRRK2

↑PARK-LRRK2 vs.
sPD/HC

Fraser et al.,
2016

Neuro-
imaging

PET multitracer ↓LRRK2 vs.
controls

Nandhagopal
et al., 2008

I-123 FP-CIT
SPECT

LRRK2 PD
conversion
rate = 16%*

Sánchez-
Rodríguez
et al., 2021

(Continued)
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TABLE 1 | (Continued)

Genetics Source Biomarker Findings
(diagnostic/
prognostic*)

Study

PRKN/
PINK1

Blood pS65-Ub ↓PARK-PINK1 vs.
HC

Watzlawik
et al., 2020

Ccf-mtDNA ↑PARK-
PRKN/PINK1 vs.
sPD/HC

Borsche et al.,
2020

IL6 ↑sPD vs. HC Qin et al.,
2016

Positive correlation
with disease
severity*

Green et al.,
2019

↑PARK-
PRKN/PINK1 vs.
sPD vs. HC

Borsche et al.,
2020

CSF Ccf-mtDNA ↓sPD vs. HC Pyle et al.,
2015

Neuro-
imaging

PET
18F-BCPP-EF
tracer

sPD = HC Wilson et al.,
2020

31P-MR-
spectroscopy

↑PARK-PINK1 vs.
HC

Hilker et al.,
2012

DJ-1 CSF DJ1 Conflicting results in
sPD

Saliva Conflicting results in
sPD

Urine Oxidized DJ1 ↑sPD vs. controls Jang et al.,
2018

aSyn, alpha-synuclein; CSF, cerebrospinal fluid; GCase, activity of the lysosomal
hydrolase ß-glucocerebrosidase; HC, healthy controls; IL6, interleukin 6; PET,
Positron emission tomography; RT-QuIC, real-time quaking-induced conversion;
sPD, sporadic Parkinson’s disease; SPECT, single photon emission computed
tomography; ↑, increased levels; ↓, decreased levels; *, prognostic.

ALPHA-SYNUCLEIN

Alpha-synuclein (aSyn) is a rather small protein (14 kDa)
that is widely expressed in the brain (Braak et al., 2003). It
seems to play a role in the stability of neuronal membranes,
influencing presynaptic signaling and membrane trafficking
through vesicular transport (Henderson et al., 2019). Several
papers show that aSyn can be released from neurons and taken
up by surrounding neurons or other cell types (Henderson
et al., 2019). Therefore, it is not surprising that aSyn,
despite constituting an intracellular protein, can be found
in CSF, blood, and plasma (Atik et al., 2016; Maass et al.,
2019). aSyn aggregates represent the main component of
Lewy bodies (LB) (Spillantini et al., 1997). Therefore, PD,
together with dementia with Lewy bodies (DLB) and multiple
system atrophy (MSA), is referred to as a-synucleinopathy.
LB are found in various regions of the CNS, depending on
the disease stage (for example, substantia nigra, the dorsal
motor nucleus of the vagus, nucleus basalis of Meynert,
the locus coeruleus, and diffusely in late stages of the
disease) (Forno, 1996). However, LB are also found in the
peripheral nervous system in early or prodromal stages of the
disease (e.g., sympathetic ganglia, sympathetic cardiac nerves,

cholinergic nerve endings of salivary glands, autonomic nerve
fibers of the skin).

First described with point mutations, the gene for
aSyn (SNCA) was the first gene to be associated with the
development of PD with an autosomal-dominant transmission
(Polymeropoulos et al., 1997). Over time, duplications and
triplications of SNCA have also been shown to play a causal role
in hereditary forms of PD. Regarding symptoms, SNCA point
mutations are associated with an earlier age at the onset (Ibáñez
et al., 2009). SNCA gene duplications are associated with a mean
age of the onset and clinical phenotype that overlaps with sPD
(Ibáñez et al., 2009). SNCA triplications are associated with the
early age of the onset, more rapid progression, and memory
impairment (Ibáñez et al., 2009). Nonetheless, mutations in
SNCA as a disease cause in PD remain rare.

Total aSyn and isoforms of aSyn appear to play a major
role in PD pathogenicity and, accordingly, are also available
as a candidate biomarker. The concentration of total aSyn in
CSF may discriminate between patients with PD and healthy
controls (Wang et al., 2012), and has been found at a lower
concentration in patients with PD (Mollenhauer et al., 2008).
This was confirmed in early-diagnosed, treatment-naïve patients
(Stewart et al., 2014).

However, no uniform picture emerges regarding total aSyn.
In patients with LRRK2 mutations, total aSyn CSF levels were
increased in LRRK2-associated PD, non-manifesting carriers, and
healthy controls compared to sPD (Vilas et al., 2016). In another
study, lower but not statistically significant total aSyn CSF
levels were recognized in LRRK2-associated PD, non-manifesting
carriers, and sPD compared to healthy controls (Aasly et al.,
2014). Follow-up data in patients with PD from the DATATOP
study revealed an increase of total aSyn after 2 years (Majbour
et al., 2016). An increase in total aSyn has also been reported over
2 years in another study with 63 patients with PD and 21 controls
(Hall et al., 2016). In the latter study, higher total aSyn values were
associated with longer disease duration (Hall et al., 2016). The
authors hypothesized that total aSyn levels were bimodal, with
a decrease in early disease stages followed by an increase with
advanced neurodegeneration.

Unfortunately, unlike MSA or progressive supranuclear palsy
(PSP), it is not possible to distinguish between sPD and aPD
based on the aSyn concentration. Therefore, total aSyn is
unable to distinguish between alpha-synucleinopathies (sPD,
MSA) or between alpha-synucleinopathies and aPD such as
PSP or corticobasal degeneration. Because of the cognitive
impairment in SNCA triplication carriers, an association
between total aSyn and patients with PD with dementia
(PDD) could be considered. However, similar levels of total
aSyn have been reported for patients with PD and PDD
(Farotti et al., 2017).

The reason for the large heterogeneity of the results with
respect to total aSyn is likely due to clinical heterogeneity, the
number of included patients, and methodological differences
that could compromise diagnostic accuracy. Another important
confounding variable is hemolysis during the specimen
collection, where contamination of blood or CSF leads to
increased total aSyn levels (Barkovits et al., 2020).
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Before aSyn aggregates into mature amyloid fibrils in LB,
aSyn undergoes oligomerization. There is strong evidence
that oligomeric aSyn is a key player in PD pathophysiology
(Conway et al., 2000). It has been found at higher concentration
in patients with PD compared to controls, but with poor
diagnostic sensitivity and specificity (Parnetti et al., 2014b;
Eusebi et al., 2017). However, there are conflicting results
with respect to oligomeric aSyn reported over recent years.
One example is the results in asymptomatic and symptomatic
PARK-LRRK2 mutation carriers. Asymptomatic PARK-LRRK2
mutation carriers showed elevated oligomeric aSyn levels
compared to healthy controls (Aasly et al., 2014); that oligomeric
aSyn reflects a presymptomatic precursor of the disease cannot
be concluded with certainty because symptomatic PARK-LRRK2
mutation carriers in the same study showed no difference to
healthy controls (Aasly et al., 2014). Again, there is no evidence
that oligomeric aSyn in the CSF might distinguish between sPD,
gPD, and/or aPD. Among the isoforms of aSyn, phosphorylated
129 aSyn has been reported to enhance synuclein toxicity both
in vivo and in vitro due to increasing formation of aSyn
aggregates (Fujiwara et al., 2002; Smith et al., 2005), whereas
a protective effect of phosphorylated 129 aSyn has also been
described (Gorbatyuk et al., 2008; Da Azeredo Silveira et al.,
2009). Another biomarker could be the 129 aSyn/total aSyn ratio,
which seems to be elevated in PD (Wang et al., 2012). Regarding
aSyn aggregates, in vitro conversion methods such as real-time
quaking-induced conversion (RT-QuIC) have been developed as
promising new methods for measuring aggregated aSyn in the
CSF of patients with PD. RT-QuIC was originally developed for
the detection of the abnormal form of prion protein, e.g., in
Creutzfeldt-Jakob disease. In alpha-synucleinopathies, RT-QuIC
has been reported with a high sensitivity and specificity of 95-
100% for alpha-synucleinopathies (Fairfoul et al., 2016; Sano
et al., 2018; Shahnawaz et al., 2020) and a positive predictive value
of > 90% (van Rumund et al., 2019), but only 75% sensitivity
in patients with an unclear diagnosis of parkinsonism (van
Rumund et al., 2019). In addition, RT-QuIC does not appear to
be suitable for monitoring the disease course (Nakagaki et al.,
2021). The method has also been used to distinguish between
alpha-synucleinopathies and other neurodegenerative diseases
(Groveman et al., 2018). Due to an improved aSyn RT-QuIC
test, a diagnostic sensitivity of 93% and 100% specificity has been
achieved when comparing nine patients with synucleinopathy (12
PD; 17 DLB) and 31 non-synucleinopathy controls (including 16
patients with Alzheimer’s diseases). A recent study has presumed
that RT-QuIC of aSyn in the CSF could be a promising candidate
for prodromal stages for PD and DLB. In patients with isolated
REM sleep behavior disorder (RBD), a known risk factor in the
development of PD and DLB, a sensitivity and specificity of 90%
have been shown (Iranzo et al., 2021). In addition, these patients
had a subsequent higher risk of developing PD or DLB. Nearly
two-thirds of the patients with RBD were diagnosed with PD or
DLB, a mean 3.4 years after the aSyn measurement, of whom
97% were aSyn positive at the baseline (Iranzo et al., 2021).
This finding of aSyn in the CSF by RT-QuIC and its value in
presymptomatic patients is important, but must be confirmed by
further studies.

The different forms of aSyn (total aSyn, oligomeric aSyn,
phosphorylated aSyn) also reveal different results in blood serum
and plasma. For total aSyn, conflicting results of increased,
decreased, or unchanged total aSyn levels have been reported
(Parnetti et al., 2019). Oligomeric aSyn in blood serum or red
blood cells seems valuable candidates, with a sensitivity of 75%
and specificity of up to 100% (Williams et al., 2016). However,
these results must be confirmed in larger studies.

ß-GLUCOCEREBROSIDASE

Lysosomes are one of the key players for protein degradation in
human cells, including a-Syn (Webb et al., 2003). It is obvious that
lysosome malfunction leads to an accumulation of dysfunctional
proteins and cell organelles. This pathway is shared by several
monogenetic forms of PD, including SNCA, ATP13A2, VPS35,
DNAJC6, SYNJ1, LRRK2, RAB39B9) (Abeliovich and Gitler,
2016). An association between aSyn and lysosomes has long been
hypothesized. It is assumed that a disturbed autophagy-lysosomal
pathway is directly related to aSyn aggregates (Sardi et al., 2011;
Bae et al., 2015; Suzuki et al., 2015).

Mutations in the corresponding gene for ß-glucocerebrosidase
(GBA) are considered the most common genetic risk factor in
PD, meaning that not every carrier of a GBA mutation will
develop PD. Historically, the observation of an increased risk
of PD in type I Gaucher disease (GD) and its families was first
surmised from clinical findings (Neudorfer et al., 1996). GD
type I represents an autosomal-recessive systemic disorder that
can present with various degrees of systemic and neurological
manifestations, usually manifesting in childhood. Since the first
description, more than 300 different genetic alterations, such
as point mutations, insertion, deletion, missense mutations,
and splice junctions, have been described in the literature
(Beutler et al., 2005; Hruska et al., 2008; Smith et al., 2017).
Among GBA mutation carriers, an increasing penetrance of
PD (PARK-GBA) with age has been reported (Anheim et al.,
2012). Penetrance ranges from 7.6% at age 50 years to 30% at
age 80 (Anheim et al., 2012). If patients have two homozygous
mutations and thus affected with GD, the risk of PD is higher
and the age at the onset (AAO) is earlier (Thaler et al., 2017).
Depending on the origin of the patients, the frequency of GBA
mutations varies. For example, GBA mutations can be found
in 10–31% of patients with Ashkenazi background but only in
2.3% of Norwegian patients (Neumann et al., 2009). For the
European non-Ashkenazi patients, the range is between 3 and
12% (Neumann et al., 2009).

Clinical differentiation between sPD and gPD caused by
a heterozygous GBA mutation (PARK-GBA) is not possible.
However, the AAO of PARK-GBA is 3–6 years earlier than in sPD
(Riboldi and Di Fonzo, 2019). The progression of PARK-GBA
is more often characterized by prominent cognitive impairment,
hallucination, and RBD. Due to the phenotypic description, it
is not surprising that GBA mutations have also been found in
cases of DLB (Nalls et al., 2013). The frequency of patients with
DLB with GBA mutations was up to 13% in pathologically proven
patients with DLB (Gámez-Valero et al., 2016).
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A few studies have focused on the activity of the
lysosomal hydrolase ß-glucocerebrosidase (GCase) in alpha-
synucleinopathies, with a significant decrease of GCase activity in
the CSF of patients with PD compared to controls (Parnetti et al.,
2014a; Lerche et al., 2021). As a biomarker decreased, GCase
activity was consistently found in PARK-GBA (see below) but
also in other gPD (PARK-LRRK2, PARK-SNCA, PARK-RKN)
(Xicoy et al., 2019). The overall utility of GBA as biomarkers in
peripheral biosamples of sPD is highly controversial because,
as with the results in CSF, dried blood spots are conflicting
(Balducci et al., 2007; Parnetti et al., 2017; Pchelina et al.,
2017). In a very recently published work, the authors have
hypothesized that low GCase activity was not responsible for
the phenotype because low GCase activity has been found in
patients with PARK-GBA and non-manifesting GBA carriers
(Omer et al., 2022). However, patients with PARK-GBA were
nearly 10 years older than non-manifesting GBA carriers (64.9
vs. 53.4 years, respectively). An additional role could be the
respective GBA mutation, as there are indications that this causes
different changes in GCase activity (Lerche et al., 2021). GCase
activity could also be promising as a progression parameter in
leukocytes, as a positive correlation between GCase levels in
leukocytes and disease duration has been reported in sPD (Kim
et al., 2016). Unfortunately, the treatments currently available for
patients with GD do not reach the CNS. Hence, these treatment
options do not play a role in PARK-GBA. However, there are
several approaches to therapy development. One example is the
capacity to increase GCase levels, currently being tested using the
chaperone ambroxol in patients with PARK-GBA in an ongoing
study (NCT02914366) (Mullin et al., 2020). The rationale behind
this is that mutant GBA is unable to fold the endoplasmic
reticulum correctly and thus promotes protein aggregation.
Chaperone proteins able to facilitate the refolding of their
substrates were tested. Another approach is gene replacement
therapy via adeno-associated virus 9 to deliver a functional copy
of the GBA gene to the CNS (Du et al., 2019; Abeliovich et al.,
2021). In several animal models of PD or GBA-associated PD,
direct application to the CNS was successful (Rocha et al., 2015;
Jackson et al., 2019). Accordingly, a phase 1/2a study using these
techniques has been recently started (NCT04127578).

LEUCINE-RICH REPEAT KINASE

Mutations in the leucine-rich repeat kinase (LRRK2) gene are
the most common genetic cause of autosomal-dominant late-
onset PD (Paisán-Ruíz et al., 2004; Zimprich et al., 2004).
LRRK2 variants are also considered significant risk factors in
sPD cases (Kluss et al., 2019). G2019S is the most frequent
variant, accounting for 4% of gPD and 1% of sPD, with
variable distribution among different ethnic populations and
incomplete, age-related penetrance (26–84%) (Healy et al.,
2008; Lee et al., 2017). LRRK2 encodes a multifunctional
protein with a catalytic core of kinase and GTPase activity.
Physiologically, LRRK2 is involved in various cellular processes,
encompassing cytoskeletal maintenance, vesicular trafficking,
mitochondrial function, autophagy, lysosomal degradation, and

the inflammatory response (Jeong and Lee, 2020; Mancini
et al., 2020). Most LRRK2 mutations cause a toxic gain of
function with increased kinase activity. In viral and transgenic
rodent models, overexpression of LRRK2 G2019S induced striatal
neurodegeneration in a kinase-dependent manner (Lee et al.,
2010; Tsika et al., 2015). There is also evidence that LRRK2
interacts with aSyn, mediating its aggregation and propagation
(O’Hara et al., 2020).

The phenotype of PARK-LRRK2 resembles that of sPD in
terms of cardinal motor features and good response to levodopa
(Healy et al., 2008; Marras et al., 2011). PD symptoms manifest at
a slightly younger age (57 years). Several studies have observed
a more benign disease course in G2019S mutation carriers
with a slower decline in motor scores, albeit a similar risk for
motor complications (Healy et al., 2008; Marras et al., 2016;
Ben Romdhan et al., 2018; Saunders-Pullman et al., 2018) that
could not be confirmed by other studies that report no difference
(Nabli et al., 2015) or even worse motor symptoms and a higher
rate of dyskinesia (Nishioka et al., 2010; Shu et al., 2018). Various
studies have indicated that PARK-LRRK2 is associated with less
non-motor involvement. Hyposmia and RBD are less prevalent
compared to sPD (Saunders-Pullman et al., 2015; Marras et al.,
2016), and cognitive function seems to be more mildly impaired,
even after many years of disease duration (Aasly et al., 2005;
Alcalay et al., 2015).

Given the therapeutic advances of small molecule kinase
inhibitors and antisense oligonucleotides to diminish LRRK2
activity, reliable and feasible biomarkers that reflect LRRK2-
related pathways are mandatory. LRRK2 is highly expressed in
peripheral tissues, such as lung, kidney, and blood cells (Fuji
et al., 2015), and the latter serves as an easily accessible source
[i.e., peripheral blood mononuclear cells (PBMCs)]. Indeed, by
using flow cytometry, significantly elevated LRRK2 levels have
been detected in B cells, T cells, CD16 + monocytes (Cook
et al., 2017), and neutrophils of subjects with sPD compared
to controls (Atashrazm et al., 2019), supporting the link to
immune regulation. However, no difference in total LRRK2 levels
could be detected in PBMCs among various sample groups,
irrespective of PD or LRRK2 mutation status (Melachroinou
et al., 2020; Padmanabhan et al., 2020). Alterations of total LRRK2
levels in PBMCs could be obscured by cellular heterogeneity.
Considering cell-specific expression patterns of LRRK2, it
seems important to purify and analyze different subcellular
types separately in future investigations. A prominent site for
heterologous LRRK2 phosphorylation is at serine 935 (pS935)
that has been shown to be significantly reduced in PBMCs
of affected G2019S carriers, distinguishing them from sPD,
healthy G2019S carriers, and controls (Padmanabhan et al.,
2020). Another study reported significantly elevated in vitro
kinase activity of LRRK2 in PBMCs from LRRK2 G2019S
mutation carriers in comparison to non-carriers, while the
pS935-LRRK2 level was increased in sPD compared to controls
(Melachroinou et al., 2020). The molecular mechanisms that alter
the regulation of S935 phosphorylation are not fully understood
and need further clarification. Moreover, LRRK2 is sensitized
to dephosphorylation by LRRK2 kinase inhibitors, with reduced
pS935-LRRK2 that could be used as a marker of pharmacological
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LRRK2 inhibition (Dzamko et al., 2010). Whether the GTPase
Rab10, the key substrate of LRRK2 that can be pharmacologically
modified, could serve as a marker for target engagement is still
inconclusive and needs further assessment (Steger et al., 2016;
Thirstrup et al., 2017). At least, for discriminative purposes,
Rab10 cannot be suggested since no difference could be found
in blood cells between patients with PD and controls (Fan et al.,
2018; Atashrazm et al., 2019). Although it has been challenging
to directly measure LRRK2 in CSF, LRRK2 quantification in
CSF could be obtained by an improved monoclonal antibody
technique that has revealed significantly higher CSF LRRK2
levels in G2019S-PD compared to sPD, healthy controls, and
non-manifesting G2019 carriers (Mabrouk et al., 2020). Auto-
phosphorylation of LRRK2 at serine 1292 (pS1292) reflects
kinase activity that is measurable in CSF, but possibly masked
by saturation effects no changes in pS1292 levels could be
detected in the CSF of G2019S carriers (Wang et al., 2017).
As mentioned in the previous section, CSF protein analysis
revealed the differential pha-synuclein profiles of individuals with
LRRK2 mutation (Aasly et al., 2014; Vilas et al., 2016) that could
result from the variable presence of LB pathology in PARK-
LRRK2. No differences were found in terms of the AD-related
proteins amyloid-β1-42, total-tau, or phospho-tau (Vilas et al.,
2016). Fraser et al. (2013) demonstrated the presence of LRRK2
in urinary exosomes, small endosomal-derived vesicles released
from cells to the periphery. Intriguingly, G2019S carriers with
PD displayed higher pS1292 to the total LRRK2 ratio in urinary
exosomes compared to non-carriers and even asymptomatic
G2019S carriers, indicating the potential for risk prediction
(Fraser et al., 2016). Further studies on LRRK2 exosomes will
explore their biomarker potential in PD.

Regarding imaging biomarkers, positron emission
tomography (PET) detected reduced tracer binding in
presymptomatic LRRK2 mutation carriers compared to
controls, with greater progression of dopaminergic dysfunction
(Nandhagopal et al., 2008). In this PET study, multiple
tracers were applied, including multitracer PET using
18F-6-fluoro-l-dopa, 11C-(±)-α-dihydrotetrabenazine and
11C-d-threo-methylphenidate. Dopamine transporter imaging
with I-123 FP-CIT showed potential to monitor progression,
although a certain degree of intraindividual variability limited
its ability to predict phenoconversion (Sánchez-Rodríguez
et al., 2021). Studies that investigate markers to discriminate
LRRK2-PD from aPD are lacking.

PRKN/PINK1

Given the common biological pathways affecting mitochondrial
function and biomarker studies, including both PRKN and
PINK1 mutations, these genes are discussed together.

The majority of early-onset parkinsonism with autosomal-
recessive inheritance is linked to mutations of the PRKN/PARK2
gene (Kitada et al., 1998; Lücking et al., 2000). More than
130 disease-causing mutations have been identified throughout
all 12 exons, including point mutations, exon rearrangements,
and small deletions (Kasten et al., 2018). Whereas biallelic

PRKN mutation results in overt disease, the question whether
heterozygous mutations predispose to disease risk still remains
an issue of debate (Huttenlocher et al., 2015; Lubbe et al., 2021;
Yu et al., 2021). The encoded Parkin protein is an E3-ubiquitin
ligase that transfers ubiquitin to protein substrates, thus targeting
them to proteasomal degradation (Shimura et al., 2000; Moore,
2006). Moreover, Parkin regulates mitochondrial quality control
and clearance of damaged mitochondria through mitophagy
in concert with the other PD-linked gene PINK1 (Narendra
et al., 2012). In the Drosophila model, mutant PRKN caused a
degenerative phenotype with flight muscle defects, mitochondrial
alterations, and abnormalities of dopaminergic neurons (Greene
et al., 2003; Pickrell and Youle, 2015).

PARK-PRKN is characterized by a slowly progressive disease
course at an early age of the onset (mean, 31 years) (Khan
et al., 2003; Kasten et al., 2018). Beyond the typical clinical
triad, hyperreflexia can be present, and dystonia, often affecting
the lower limb, can be an initial sign (Khan et al., 2003;
Grünewald et al., 2013). The marked and sustained response
to levodopa is complicated by frequently associated levodopa-
induced motor fluctuations and dyskinesias (Clarimon et al.,
2005). With regard to non-motor aspects, olfactory function and
cognition are mostly well preserved (Khan et al., 2004; Alcalay
et al., 2015; Abeliovich and Gitler, 2016). However, a multicenter,
case-control study reported an earlier occurrence and a higher
frequency and severity of impulsive-compulsive behaviors in
PARK-PRKN (Morgante et al., 2016).

Mutations in the phosphatase and tensin homolog (PTEN)-
induced putative kinase 1 (PINK1) gene represent the second
most frequent cause of autosomal-recessive inherited early-onset
parkinsonism (Valente et al., 2004). The frequency of PINK1
mutations ranges between 1 and 9%, with variations across
different ethnic populations (Schulte and Gasser, 2011; Klein
and Westenberger, 2012). Mutations are highly diverse and
include missense, non-sense, frameshift mutations, and deletions.
As with PRKN, the role of heterozygous PINK1 mutation as
a risk factor in PD has not yet been clarified (Krohn et al.,
2020). PINK1 encodes a serine/threonine kinase involved in the
regulation of the mitophagy pathway by activating ubiquitin and
Parkin through phosphorylation (Valente et al., 2004; Narendra
et al., 2010; Kane et al., 2014). Drosophila-lacking PINK1
exhibited mitochondrial abnormalities and muscle and neuronal
degeneration that could be rescued by PRKN overexpression but
not vice versa, suggesting that PINK1 acts upstream of Parkin in
the shared pathway (Clark et al., 2006; Park et al., 2006; Yang et al.,
2006).

In general, PARK-PINK1 shares similar features as PARK-
PRKN regarding early AAO (mean, 32 years), slow disease
progression, and excellent levodopa response, although
associated with motor fluctuations and dyskinesias (Bonifati
et al., 2005; Ibáñez et al., 2006; Kasten et al., 2018). Dystonia
at the onset and hyperreflexia are also described in patients
with PINK1 mutation. However, non-motor symptoms are
more pronounced. Hyposmia is commonly reported (Ferraris
et al., 2009). Neuropsychiatric features are multifaceted,
including mostly depression and anxiety but also traits of the
schizophrenic spectrum and obsessive-compulsive personality
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disorder (Ephraty et al., 2007; Steinlechner et al., 2007;
Ricciardi et al., 2014). Although cognitive function was thought
to be less affected (Bonifati et al., 2005; Kasten et al., 2018), a
recent study has observed a higher rate of cognitive dysfunction
in PINK1 mutations (Piredda et al., 2020).

Biomarkers for mitochondrial integrity are not only required
to prove target engagement and drug-induced effects but also to
identify patients who will most likely benefit from mitophagy-
targeted treatments. PINK1 phosphorylates ubiquitin at a serine
residue (pS65-Ub), which could reflect PINK1 activity. Autopsy
studies have revealed elevated pS65-Ub levels in brain tissues of
patients with sPD, DLB, and normal elderly controls, suggesting
that pS65-Ub accumulates upon mitochondrial stress during
disease or aging (Fiesel et al., 2015; Hou et al., 2018). In contrast,
PINK1/PRKN mutants lacked pS65-Ub signals, consistent with
their loss of function to label damaged mitochondria. More
intriguingly, pS65-Ub signals detected by sensitive enzyme-
linked immunosorbent assay were significantly reduced in blood
plasma of patients with homozygous PINK1-mutation carriers
compared to controls with heterozygous mutation and non-
carriers (Watzlawik et al., 2020). Whether pS65-Ub levels can
be used as a diagnostic or prognostic disease marker in blood
needs to be confirmed in further investigations. Mitochondrial
DNA (mtDNA) is closely related to mitochondrial function.
Whereas reduced mtDNA copy numbers were reported in the
substantia nigra of PD postmortem brains (Pyle et al., 2016), the
findings in peripheral blood are inconclusive (Gui et al., 2015;
Pyle et al., 2016; Davis et al., 2020). Circulating cell-free mtDNA
(ccf-mtDNA) is a fragment of mtDNA released from cells in
response to stress. Reduced ccf-mtDNA levels were reported
in the CSF of patients with sPD (Pyle et al., 2015), showing
an inverse correlation with treatment (Lowes et al., 2020).
Notably, a recent study has observed higher ccf-mtDNA levels
in the sera of PRKN and PINK1 biallelic mutation carriers and
affected heterozygotes compared to patients with sPD, possibly
resulting from impaired mitophagy in PRKN/PINK1-associated
PD (Borsche et al., 2020). As inflammation evidently contributes
to PD pathogenesis and progression, peripheral inflammatory
cytokines have been attributed biomarker potential. Among
these, interleukin-6 (IL6) levels were elevated in blood samples
from patients with PD (Qin et al., 2016), correlating with motor
severity. A recent study has reported higher serum IL6 levels
in patients with biallelic PRKN/PINK1 mutations compared to
healthy controls, whereas heterozygous PRKN/PINK1 mutation
carriers and sPD showed only a trend toward elevated IL6 levels,
indicating a gene dosage effect (Borsche et al., 2020). Moreover,
IL6 levels correlated only in affected PRKN/PINK1 mutation
carriers with disease duration. Mitochondrial dysfunction is
also implied in the pathophysiology of a PD such as MSA
and PSP (Nicoletti et al., 2021). Comparative studies exploring
discriminative biomarkers of PRKN/PINK1-associated PD vs.
aPD have not yet been conducted.

Imaging methods can be useful to monitor mitochondrial
energy metabolism. Mitochondrial complex I activity can
be assessed in vivo by the PET radiotracer 18F-BCPP-
EF, which is reduced in a non-human primate model for
PD (Tsukada et al., 2016) but could not be translated

to patients with PD (Wilson et al., 2020). Alternatively,
phosphorus magnetic resonance spectroscopy (31P-MRS) can
visualize cerebral mitochondrial metabolism by measuring
phosphorous-containing energy metabolites (Henchcliffe et al.,
2008). Increased putaminal levels of high-energy phosphates
distinguished homozygous PINK1 mutation carriers from
heterozygous mutation carriers and controls (Hilker et al., 2012).
This finding was interpreted as compensatory mechanisms with
respect to the impaired cellular stress resistance.

Two current trials testing vitamin K2 (Prasuhn et al., 2020)
and coenzyme Q10 (Prasuhn et al., 2019) include Parkin/PINK1
mutation carriers and use 31P-MRS for patient stratification and
as a secondary end point.

DJ1

DJ-1 is a widely expressed protein that participates in
antioxidative stress mechanisms and mitochondrial regulation
(Dolgacheva et al., 2019). Mutations in the corresponding
gene DJ-1 are responsible for an autosomal-recessive form of
gPD (PARK-DJ-1). The phenotype of patients with PARK-
DJ-1 consists of an early onset and slow progression of the
disease and is, therefore, comparable with other autosomal-
recessive forms like PARK-PRKN or PARK-PINK1. However,
mutations in DJ-1 are less frequent than PARK-PRKN or PARK-
PINK1.

There are conflicting results regarding DJ-1 as a biomarker
in the CSF and peripheral tissues, with increased and decreased
DJ-1 levels in patients with sPD (Saito, 2014; Farotti et al.,
2017). The same conflicting results were obtained when DJ-
1 in the CSF was examined in the differential diagnosis of
sPD vs. aPD (Farotti et al., 2017). A few studies with a low
number of patients have investigated the concentration of DJ-
1 in saliva in sPD with conflicting results. Therefore, DJ-1 in
saliva does not play a role in daily routine (Farah et al., 2018).
Another option is to determine the concentration of oxidized
DJ-1 in blood or urine. Oxidized DJ-1 is induced by oxidative
stress, which plays a major role in the pathophysiology of
neurodegenerative diseases. Increased levels of oxidized DJ-1
have been described in patients with sPD compared to controls
(Jang et al., 2018).

CONCLUSION

A biomarker with a high sensitivity and specificity that could
be introduced into clinical routine is currently not available.
Biomarker research for PD has made great progress in recent
years. Nevertheless, there is still a lack of robust biomarkers
with high sensitivity and specificity that would satisfy diagnostic
requirements. This is also true for monitoring disease progression
and differential diagnosis of sPD, gPD, and aPD. Even for
the most common monogenetic forms described here, this has
not yet been achieved. This is true for the different forms of
PD, including sPD, gPD, and aPD. Further research activity
will be necessary to improve or find new techniques (e.g., RT-
QuIC) and find the most suitable liquid biomaterial. The key
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to the diagnosis of PD, especially for future disease-modifying
therapies, is likely to be a combination of different biomarkers
with different modalities. In addition to peripheric biomarkers
and CSF, imaging techniques (nuclear medicine, MRI, etc.) will
play a crucial role.
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