
sensors

Article

Hyperparameter Optimization Techniques for Designing
Software Sensors Based on Artificial Neural Networks

Sebastian Blume , Tim Benedens and Dieter Schramm *

����������
�������

Citation: Blume, S.; Benedens, T.;

Schramm, D. Hyperparameter

Optimization Techniques for

Designing Software Sensors Based on

Artificial Neural Networks. Sensors

2021, 21, 8435. https://doi.org/

10.3390/s21248435

Academic Editor: Soufiene Djahel

Received: 10 November 2021

Accepted: 14 December 2021

Published: 17 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mechanical and Process Engineering, Institute for Mechatronics and System Dynamics,
University of Duisburg-Essen, 47057 Duisburg, Germany; Sebastian.Blume@uni-due.de (S.B.);
Tim.Benedens@uni-due.de (T.B.)
* Correspondence: Dieter.Schramm@uni-due.de

Abstract: Software sensors are playing an increasingly important role in current vehicle development.
Such soft sensors can be based on both physical modeling and data-based modeling. Data-driven
modeling is based on building a model purely on captured data which means that no system
knowledge is required for the application. At the same time, hyperparameters have a particularly
large influence on the quality of the model. These parameters influence the architecture and the
training process of the machine learning algorithm. This paper deals with the comparison of different
hyperparameter optimization methods for the design of a roll angle estimator based on an artificial
neural network. The comparison is drawn based on a pre-generated simulation data set created with
ISO standard driving maneuvers. Four different optimization methods are used for the comparison.
Random Search and Hyperband are two similar methods based purely on randomness, whereas
Bayesian Optimization and the genetic algorithm are knowledge-based methods, i.e., they process
information from previous iterations. The objective function for all optimization methods consists of
the root mean square error of the training process and the reference data generated in the simulation.
To guarantee a meaningful result, k-fold cross-validation is integrated for the training process. Finally,
all methods are applied to the predefined parameter space. It is shown that the knowledge-based
methods lead to better results. In particular, the Genetic Algorithm leads to promising solutions in
this application.

Keywords: artificial neural networks; hyperparameter optimization; software sensors; intelligent
transportation

1. Introduction

The range of vehicle dynamics control systems and advanced driver assistance systems
(ADAS) in current vehicles has already reached a significant level and will continue to
grow rapidly [1]. These systems can both support the driver by providing safety, comfort,
and efficiency while driving and also allow OEMs to add individual DNA to their vehicles
in this way. These functions demand information that the vehicle perceives from the
environment. This is mostly done by sensors installed in the vehicle; however, sometimes
it is not possible to measure the required signal, or the measurement is very expensive.
Instead of physical hardware, mathematical models can be used to observe the required
signals. In earlier years, these models were based on physical relationships using the given
information to calculate the required value [2–4].

Novel approaches use data-driven models, such as Machine Learning (ML) algorithms,
to estimate quantities that are difficult to measure, for instance, the sideslip angle or the roll
angle. These methods offer the advantage that no system knowledge is required to set up a
suitable model; however, the steps to create a model are not trivial. Many engineers proceed
without a clearly recognizable strategy leaving much potential unused. This includes the
adjustment of external model parameters, such as the architecture of the model or the
settings of the optimizer during model training, e.g., the learning rate or the number of

Sensors 2021, 21, 8435. https://doi.org/10.3390/s21248435 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6504-0343
https://orcid.org/0000-0002-5048-8150
https://orcid.org/0000-0002-7945-1853
https://doi.org/10.3390/s21248435
https://doi.org/10.3390/s21248435
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248435
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248435?type=check_update&version=2

Sensors 2021, 21, 8435 2 of 19

neurons. These parameters are called hyperparameters and are not known a priori, so it is
the task of the data engineer to find suitable values [5]. A variety of optimization methods
can be used for this purpose. This can be a simple grid search or a complex optimization
method such as Bayesian Optimization and often a simple optimization is used without
considering the advantages of alternatives. Other approaches often promise better results.
Comparing state estimators in automotive applications, trial and error, Grid Search or
Random Search approaches seem to be commonly used. These approaches promise a
simple implementation and first insight into the feasibility [6–9].

In this paper, optimization methods of different complexity are compared. A basic
structure for all the hyperparameter optimizations is created which enables the comparison
of four methods. As an application example of a software sensor, this paper discusses a
roll angle estimator based on an artificial neural network.

2. State of the Art
2.1. State Estimation

State estimation in vehicle dynamics is a methodology used when there is no sensor
available to directly measure the required state. Mostly, these quantities are needed to
detect dangerous driving situations and then to restore a safe driving state with the help
of active assistance systems. Direct control of these states can also increase comfort and
represent the vehicle manufacturer’s DNA in the vehicle’s dynamic behavior. These
measured quantities can be, for example, the roll angle, the float angle, or the self-steering
gradient. In this publication, the roll angle is considered in more detail.

To track the driving states of a vehicle, its spatial motion must be specified. Figure 1
shows the spatial motion of a car, using the body-fixed coordinate system KV . The Center
of Mass of the body is the origin of the coordinate System KV .

Sensors 2021, 21, x FOR PEER REVIEW 2 of 20

model or the settings of the optimizer during model training, e.g., the learning rate or the
number of neurons. These parameters are called hyperparameters and are not known a
priori, so it is the task of the data engineer to find suitable values. [5] A variety of optimi-
zation methods can be used for this purpose. This can be a simple grid search or a complex
optimization method such as Bayesian Optimization and often a simple optimization is
used without considering the advantages of alternatives. Other approaches often promise
better results. Comparing state estimators in automotive applications, trial and error, Grid
Search or Random Search approaches seem to be commonly used. These approaches
promise a simple implementation and first insight into the feasibility [6-9].

In this paper, optimization methods of different complexity are compared. A basic
structure for all the hyperparameter optimizations is created which enables the compari-
son of four methods. As an application example of a software sensor, this paper discusses
a roll angle estimator based on an artificial neural network.

2. State of the Art
2.1. State Estimation

State estimation in vehicle dynamics is a methodology used when there is no sensor
available to directly measure the required state. Mostly, these quantities are needed to
detect dangerous driving situations and then to restore a safe driving state with the help
of active assistance systems. Direct control of these states can also increase comfort and
represent the vehicle manufacturer’s DNA in the vehicle’s dynamic behavior. These meas-
ured quantities can be, for example, the roll angle, the float angle, or the self-steering gra-
dient. In this publication, the roll angle is considered in more detail.

To track the driving states of a vehicle, its spatial motion must be specified. Figure 1
shows the spatial motion of a car, using the body-fixed coordinate system 𝐾. The Center
of Mass of the body is the origin of the coordinate System 𝐾.

Figure 1. The six rigid body degrees of freedom of a vehicle.

A vehicle structure modeled as a rigid body has six degrees of freedom that specify
its position in space. The roll angle describes the rotation around the longitudinal axis of
the vehicle. To estimate this angle a non-linear vehicle model based on the model de-
scribed in [10] is used, which is:

ቀ(ℎௌ − ℎ௪)𝑚𝑎௬ − 2𝐴𝜑ሶ ቁ cos 𝜑 + ൫(ℎௌ − ℎ௪)𝑚𝑔 − 2𝐵൯ 𝑠𝑖𝑛 𝜑 − 2𝐶 𝑠𝑖𝑛ିଵ(𝐷 𝑠𝑖𝑛 𝜑) — 2𝐸 𝑠𝑖𝑛ିଵ(𝐹 𝑠𝑖𝑛 𝜑) = 𝐽௫௫𝜑ሷ , (1)

with 𝐴 = ൫𝑙,௩ଶ 𝑑,௩ + 𝑠,ଶ 𝑑,൯, (2)𝐵 = ൫𝑙ி,௩ଶ 𝑐ி,௩ + 𝑠ி,ଶ 𝑐ி,൯, (3)

𝑧

Heave
Yaw

𝑦
Push Pitch Roll

Jerk 𝑥

𝜓

𝜃 𝜓

Figure 1. The six rigid body degrees of freedom of a vehicle.

A vehicle structure modeled as a rigid body has six degrees of freedom that specify its
position in space. The roll angle describes the rotation around the longitudinal axis of the
vehicle. To estimate this angle a non-linear vehicle model based on the model described
in [10] is used, which is:(

(hS − hw)maay − 2A
.
ϕ
)

cos ϕ + ((hS − hw)mag− 2B) sin ϕ− 2C sin−1(D sin ϕ)2E sin−1(F sin ϕ) = Jxx
..
ϕ, (1)

with
A =

(
l2
D,vdD,v + s2

D,hdD,h

)
, (2)

B =
(

l2
F,vcF,v + s2

F,hcF,h

)
, (3)

C =
cSt,vsSt,v

bSt,v
, (4)

D =
lSt,v

2bSt,v
, (5)

Sensors 2021, 21, 8435 3 of 19

E =
cSt,hsSt,h

bSt,h
and (6)

F =
lSt,h

2bSt,h
(7)

Here, ϕ denotes the roll angle, Jxx the moment of inertia around the x-axis, ma the
mass of the chassis, ay the lateral acceleration, cS,i is the spring stiffness, di the attenuation
factor and cSt,i the stiffness of the stabilizer. The variables lSt,i, and bSt,i represent the
stabilizer length and the lever arm length of the stabilizer. The values of sS,i, sD,i, and sSt,i
describe the distances between the acting forces and the symmetrical plane of the vehicle
body. Figure 2 shows schematically the derivation of the roll dynamics.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 20

𝐶 = 𝑐ௌ௧,௩𝑠ௌ௧,௩𝑏ௌ௧,௩ , (4)

𝐷 = 𝑙ௌ௧,௩2𝑏ௌ௧,௩, (5)

𝐸 = 𝑐ௌ௧,𝑠ௌ௧,𝑏ௌ௧, and (6)

𝐹 = 𝑙ௌ௧,2𝑏ௌ௧, (7)

Here, 𝜑 denotes the roll angle, 𝐽௫௫ the moment of inertia around the x-axis, 𝑚 the
mass of the chassis, 𝑎௬ the lateral acceleration, 𝑐ௌ, is the spring stiffness, 𝑑 the attenu-
ation factor and 𝑐ௌ௧, the stiffness of the stabilizer. The variables 𝑙ௌ௧,, and 𝑏ௌ௧, represent
the stabilizer length and the lever arm length of the stabilizer. The values of 𝑠ௌ,, 𝑠,, and 𝑠ௌ௧, describe the distances between the acting forces and the symmetrical plane of the
vehicle body. Figure 2 shows schematically the derivation of the roll dynamics.

Figure 2. Description of the construction of the rolling dynamics.

Previous works have dealt with the prediction of the roll angle, using physical mod-
els for estimation. Thus, Ryu et al. [11] used a physical vehicle dynamic model in combi-
nation with an observer to estimate the roll and the bank angle. Based on GPS and inertial
navigation system sensors, the roll angle is estimated using a disturbance observer.

Rajamani et al. [12] present algorithms for estimating the roll angle and the height of
the center of gravity. The algorithms studied include a sensor fusion algorithm that uses
a low-frequency tilt angle sensor and a gyroscope, and a dynamic observer that uses only
a lateral accelerometer and a gyroscope. All estimation models are based on physical re-
lationships that are represented in dynamic models.

2.2. Machine Learning in Dynamic State Estimation
In addition to model-based methods, machine learning is also finding its way into

dynamic state estimation. These methods do not rely on knowledge about the physics of
the system. The methods rely on models being trained with empirical data. To do this, a
test vehicle must be equipped with a sensor unit to measure the value to be estimated.
After training a model with this data, the hardware sensor can be replaced with the so-
called software sensor. Different types of machine learning models have been used in the
past and this paper presents the use of artificial neural networks.

Sasaki and Nishimaki trained a feedforward net that was used to estimate the side-
slip angle. The neural network consisted of three fully connected layers, which were

𝑆

𝜑ሶ
𝑚𝑔

𝑠ி 𝑠ௌ௧ 𝑠

𝑊

𝑚𝑎௬

𝐹ி, 𝐹ௌ௧, 𝐹,

𝐹ி, 𝐹ௌ௧, 𝐹, ℎௌ − ℎௐ

Figure 2. Description of the construction of the rolling dynamics.

Previous works have dealt with the prediction of the roll angle, using physical models
for estimation. Thus, Ryu et al. [11] used a physical vehicle dynamic model in combination
with an observer to estimate the roll and the bank angle. Based on GPS and inertial
navigation system sensors, the roll angle is estimated using a disturbance observer.

Rajamani et al. [12] present algorithms for estimating the roll angle and the height
of the center of gravity. The algorithms studied include a sensor fusion algorithm that
uses a low-frequency tilt angle sensor and a gyroscope, and a dynamic observer that uses
only a lateral accelerometer and a gyroscope. All estimation models are based on physical
relationships that are represented in dynamic models.

2.2. Machine Learning in Dynamic State Estimation

In addition to model-based methods, machine learning is also finding its way into
dynamic state estimation. These methods do not rely on knowledge about the physics of
the system. The methods rely on models being trained with empirical data. To do this, a
test vehicle must be equipped with a sensor unit to measure the value to be estimated. After
training a model with this data, the hardware sensor can be replaced with the so-called
software sensor. Different types of machine learning models have been used in the past
and this paper presents the use of artificial neural networks.

Sasaki and Nishimaki trained a feedforward net that was used to estimate the side-slip
angle. The neural network consisted of three fully connected layers, which were trained
using the back-propagation algorithm. The architecture of the model was created by
empirical values, which means that no hyperparameter optimization was performed. The
selection of hyperparameters was based on previous experience and estimations. Whether
the selection of the hyperparameters was optimal cannot be guaranteed [13].

In the paper by Graeber et al. a recurrent neural network was used to estimate the side-
slip angle. This was a network that consisted mainly of gated recurrent units. Furthermore,
a physical model was connected beforehand, which worked in the style of predictor–

Sensors 2021, 21, 8435 4 of 19

corrector models. This publication did not further define how the final architecture was
found, i.e., it does not mention if hyperparameter optimization was performed [8].

In the work of Blume et al. and Sieberg et al. recurrent neural networks were used
as the basis for estimating the roll angle. The models used in these works were gated
recurrent units and long short-term memory cells, which were adapted by hyperparameter
optimization [14,15].

Hyperparameters are values that influence the training process and the quality of a
prediction. Finding the right network architecture and defining the correct training param-
eters is a non-trivial task. Therefore, the use of a mathematical optimization technique is
mandatory, although so far it is not clear which method yields good results or what the
trade-off between the effort and result is for each method.

2.3. Hyperparameter Optimization

Two different optimization processes exist when building data-based models. On
the one hand, there is the optimization of the model’s internal parameters, which is also
referred to as the training process. On the other hand, the so-called hyperparameter
optimization, in which external parameters are adjusted that have an influence on the
model training or the model architecture. Finding the optimal hyperparameter set can
significantly affect the performance of the ML model, which is not a trivial problem and it
especially cannot be solved a priori. Often this task is handled using trial and error, which
is astonishing since the use of mathematical optimization methods is much more effective.

These methods differ in their complexity and thus in their approach. For example,
there are exhaustion methods such as the grid search, which systematically lists all the
possible candidate solutions and checks which of the possible candidates best solves the
problem. Since testing of all the possible combinations is not practically feasible, the search
space is often discretized, and only selected combinations are tested. As this procedure
can lead to neglecting part of the search space, it is often modified to randomly generate
candidates in the entire search space that are tested for optimality. This procedure is called
the Random Search (see Section 3.1). Other methods use the information gained from
previous evaluations to select new candidates in a meaningful way, such as Bayesian
Optimization (see Section 3.3) or genetic algorithms (see Section 3.4). Yu and Zhu give a
general overview of a variety of methods for hyperparameter optimization [16]; however,
it is not clear from this comparison which methods are particularly well suited for the
development of software sensors.

3. Optimization Methods
3.1. Random Search

The Random Search (RS) was first introduced by Rastagan in 1963 [17]. RS is an exten-
sion of the Grid Search (GS) where a predefined number of parameter sets are randomly
selected on the entire search space. The advantage compared to the GS is that the parameter
space is much better covered since the individual parameters are less often evaluated on the
same values. This is especially the case when one or more parameters are more important
than others, as shown in Figure 3. The left axis is the graph of the cost function for the
different values of a non-sensitive hyperparameter. As can be seen, the cost function is
approximately constant for all values, and a variation of this hyperparameter, therefore,
leads to no or only a minimal improvement of the network.

Above, the cost function for a sensitive hyperparameter is shown. Obviously, the
value of this hyperparameter has a large influence on the cost function and thus also on the
subsequent performance of the network. While only three different values of the important
hyperparameter are tested in the grid search, significantly more values are tested in the
random search (with the same total number of nine hyperparameter configurations). The
probability of finding a local minimum or a better configuration than with the grid search
is therefore significantly higher with the random search, but not guaranteed.

Sensors 2021, 21, 8435 5 of 19

Comparing the number of evaluations of GS and RS, we see that with a budget of
B function evaluations, a GS only considers B/n parameter settings for each parameter,
whereas RS can evaluate up to B different settings for each parameter.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 20

Above, the cost function for a sensitive hyperparameter is shown. Obviously, the
value of this hyperparameter has a large influence on the cost function and thus also on
the subsequent performance of the network. While only three different values of the im-
portant hyperparameter are tested in the grid search, significantly more values are tested
in the random search (with the same total number of nine hyperparameter configura-
tions). The probability of finding a local minimum or a better configuration than with the
grid search is therefore significantly higher with the random search, but not guaranteed.

(a) (b)

Figure 3. Comparison of Grid Search (a) and Random Search (b) for minimizing a function with two
parameters.

Comparing the number of evaluations of GS and RS, we see that with a budget of B
function evaluations, a GS only considers B/n parameter settings for each parameter,
whereas RS can evaluate up to B different settings for each parameter.

3.2. Hyperband
The Hyperband algorithm of Li et al. is a version of the Random Search accelerated

by adaptive resource allocation and early-stopping [18]. Here, hyperparameter optimiza-
tion is formulated as a purely exploratory, non-stochastic, infinite-arm bandit problem.
Before starting the optimization, resources are reserved and allocated to randomly se-
lected configurations. Unlike with Random Search, Hyperband does not train all config-
urations to the last epoch, but only those configurations that show promise.

Hyperband is an extension of the Successive Halving algorithm introduced by Ja-
mieson and Talwalker in 2015 for hyperparameter optimization [19]. For the Successive
Halving algorithm, the optimization problem is defined as a non-stochastic best-arm iden-
tification problem where each arm corresponds to a fixed hyperparameter setting. Pulling
an arm corresponds to a fixed number of training iterations, and the loss corresponds to
an intermedia loss on a holdout set. The approach assumes that not all hyperparameter
settings need to be trained to convergence, but only the promising ones. An initially de-
fined budget B is uniformly divided among n different hyperparameter configurations,
the performances of all configurations are evaluated, and the worst half is removed. This
is repeated until only one configuration remains.

In advance, it is unclear whether it be best to choose many configurations (large n)
and thus a short training time or few configurations (small n) but a longer training time.
The Hyperband algorithm tries to circumvent the problem “n vs. B/n” by testing several
possible values for the number of configurations n given a fixed max. number of overall
runs B. This approach consists of two loops. The inner loop, called the bracket, involves
the Successive Halving algorithm with fixed values for n and r, where r is the minimum
resource number allocated to all configurations before discarding some of them. The outer

sensitive parameter
N

on
-s

en
si

tiv
e

pa
ra

m
et

er

Grid Search

𝑓(𝜆ଵ,⋅)
𝑓(⋅,𝜆 ଶ)

 𝜆ଵ
𝜆 ଶ

sensitive parameter

N
on

-s
en

si
tiv

e

pa
ra

m
et

er

Random Search

𝑓(𝜆ଵ,⋅)

𝑓(⋅,𝜆 ଶ)

𝜆ଵ

𝜆 ଶ

Figure 3. Comparison of Grid Search (a) and Random Search (b) for minimizing a function with
two parameters.

3.2. Hyperband

The Hyperband algorithm of Li et al. is a version of the Random Search accelerated by
adaptive resource allocation and early-stopping [18]. Here, hyperparameter optimization
is formulated as a purely exploratory, non-stochastic, infinite-arm bandit problem. Before
starting the optimization, resources are reserved and allocated to randomly selected config-
urations. Unlike with Random Search, Hyperband does not train all configurations to the
last epoch, but only those configurations that show promise.

Hyperband is an extension of the Successive Halving algorithm introduced by Jamieson
and Talwalker in 2015 for hyperparameter optimization [19]. For the Successive Halving
algorithm, the optimization problem is defined as a non-stochastic best-arm identification
problem where each arm corresponds to a fixed hyperparameter setting. Pulling an arm
corresponds to a fixed number of training iterations, and the loss corresponds to an interme-
dia loss on a holdout set. The approach assumes that not all hyperparameter settings need
to be trained to convergence, but only the promising ones. An initially defined budget B is
uniformly divided among n different hyperparameter configurations, the performances of
all configurations are evaluated, and the worst half is removed. This is repeated until only
one configuration remains.

In advance, it is unclear whether it be best to choose many configurations (large n)
and thus a short training time or few configurations (small n) but a longer training time.
The Hyperband algorithm tries to circumvent the problem “n vs. B/n” by testing several
possible values for the number of configurations n given a fixed max. number of overall
runs B. This approach consists of two loops. The inner loop, called the bracket, involves
the Successive Halving algorithm with fixed values for n and r, where r is the minimum
resource number allocated to all configurations before discarding some of them. The outer
loop iterates over different values for n and r. Each loop iteration results in a different “n
vs. B/n” ratio.

Hyperband requires two input values R and η. Here, R is the maximum resource that
can be provided to a configuration and η is the ratio of configurations removed at each
pass of the Successive Halving algorithm. These two values result in the number:

smax =
[
logη(R)

]
(8)

Sensors 2021, 21, 8435 6 of 19

of the outer loop passes. For each outer loop iteration, the value:

n̂ =

[
B
R
· ηs

s + 1

]
(9)

which represents the maximum number of hyperparameter configurations, and:

r̂ = R · η−s (10)

which is the maximum number of resources available to a configuration, are calculated.
Subsequently, n hyperparameter configurations are then randomly created, which are then
used in the subsequent successive halving loop. For the inner loop, which corresponds to
one iteration cycle of the successive halving, the values:

ni =
[
n̂ · η−i

]
, i ∈ {0, . . . , s} (11)

and
ri = r̂ · ηi, i ∈ {0, . . . , s} (12)

are calculated. The outer loop iterates s from 0 to smax, where the inner loop iterates from
0 to s.

Hyperband starts with the most aggressive allocation of resources s = smax, which
divides the number n of configurations to maximize exploration. Each loop pass then
reduces the number of configurations by the value η until the value s = 0, which corre-
sponds to a Random Search. In the last loop pass, R resources are then made available to
each configuration.

Table 1 shows an example of a Hyperband run with the resources R = 400 and the
configuration ratio η = 4. During the first loop with s = smax = 4, the maximum number
of configurations, i.e., 400, is trained for just one epoch before the best fourth is selected
and this is then trained for six epochs. This is repeated until only the best configuration
is left, and this is trained for the full number of resources. In contrast, in loop s = 0 only
an ordinary Random Search is performed, i.e., five randomly selected configurations are
trained for 400 epochs. Finally, this results in the configuration with the lowest loss.

Table 1. Hyperband algorithm with R = 400 and η = 4.

i
s = 4 s = 3 s = 2 s = 1 s = 0

ni ri ni ri ni ri ni ri ni ri

0 256 1 80 6 27 25 10 100 5 400
1 64 6 20 25 6 100 2 400
2 16 25 5 100 1 400
3 4 100 1 400
4 1 400

3.3. Bayesian Optimization

Bayesian Optimization is a state-of-the-art optimization method for global optimiza-
tion. This approach is widely used particularly for computationally intensive black-box
models, which includes hyperparameter optimization.

In the mid-1970s, Mockus conducted research in global optimization and concep-
tualized the optimization of a function as the realization of a stochastic function. These
optimization techniques were Bayesian methods, based on minimizing the expected devia-
tion from the extremum [20].

In contrast to Random Search and Hyperband, Bayesian Optimization uses the in-
formation obtained from previous evaluations. With the help of the evaluation results, a
so-called surrogate model is created, and an acquisition function is used to decide which
point should be evaluated next. Surrogate models are often used in optimization problems

Sensors 2021, 21, 8435 7 of 19

for which the evaluation of the objective function is either very computationally intensive
or impossible [21].

The surrogate is adjusted in each iteration with respect to all previous evaluations
of the objective function made so far. Then, the acquisition function, using the predictive
distribution of the probabilistic model, evaluates the utility of the different candidate points,
weighing exploration against exploitation. This procedure is repeated until a sufficiently
good hyperparameter configuration is found or a pre-determined budget is reached. The
budget can correspond, for example, to a maximum number of samples or a maximum
optimization duration. The advantage of using a surrogate model is that the evaluation of
this model is significantly less computationally intensive than the direct evaluation of the
objective function and can therefore be optimized more efficiently [22–24].

Bayesian Optimization belongs to the Sequential Model-based Optimization methods
(SMBO), since it does not optimize the objective function directly, but evaluates the obser-
vation history of a probabilistic surrogate model. SMBO algorithms differ mainly in the
acquisition function used and in the underlying probabilistic surrogate model.

The method used in this publication is based on Bergstra et al. [22]. There, the criterion,
known as expected improvement (EI), is used for optimization because it is intuitive and
has been proven in many previous works. Expected improvement is the expectation under
some object function f : χ→ RN that f will exceed (negatively) some threshold y∗ :

EIy∗(x) =
∫ ∞

−∞
max(y∗ − y, 0)pM(y|x)dy (13)

For the approximation of f , the Tree-structured Parzen Estimator (TPE) is used as
a surrogate model in this contribution. It models p(y|x) by transforming that generative
process, replacing the distributions of the configuration with non-parametric densities. To
simplify the optimization of EI, the parameterization of p(y|x) as p(y)p(x|y) in the TPE
algorithm was chosen, such that:

EIy∗(x) =
∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
p(x)

dy (14)

holds. During each iteration, the algorithm passes back the candidate x with the largest
EI [22].

3.4. Genetic Algorithm

The term “Genetic Algorithm” was introduced in the 1960s by John H. Holland at the
University of Michigan, USA. The method we know today was first described in his paper
‘Adaptation in Natural and Artificial Systems’. The principle of a Genetic Algorithm of John H.
Holland [25], presented in this chapter is taken from the book by Gerdes, Klawonn and
Kruse [26]. Structures and operators of simple canonical genetic algorithms are considered
in more detail.

The underlying set is called the search space S in the following and contains all pos-
sible solutions to the optimization problem under investigation. An objective function
(or evaluation function) f : S→ R is defined on S, which assigns a value f (ci) to each
individual or chromosome ci of the search space S as a measure of its quality. The opti-
mization problem is to find an individual copt from the search space S that has a minimum
(or maximum) score (optimum). The genetic information of an individual is stored in
the vector:

ci =
[

gi,1 gi,2 · · · gi,m
]T . (15)

The individuals have the length m, where m corresponds to the number of entries
within an individual. These entries are called genes. The value of these genes is called an

Sensors 2021, 21, 8435 8 of 19

allele. The chromosomes that evolved and changed during the search run are stored in a
population of:

P(G) =

c1
c2
...

cn

 =

[

g1,1 g1,2 · · · g1,m
][

g2,1 g2,2 · · · g2,m
]

...[
gn,1 gn,2 · · · gn,m

]
 (16)

at time G, where G is called generation. This population P(G) is a set of cardinalities n, i.e.,
each population of generation G contains n individuals, each of which in turn possesses m
genes. For each population P(G) and each individual ci; i = 1, . . . , n, the probabilities pC
and pM are specified, which indicate whether selected chromosomes cross at time g and
whether they mutate, respectively. Here, pC indicates the probability for recombination
(crossover) and pM the probability for mutation.

The start population P(0) is a set of cardinalities n and is usually randomly generated.
If desired, however, a subset PStart,Fixed of the start population P(0) can be specified, so that
only the set PStart,Random with:∣∣PStart,Random

∣∣ = n−
∣∣PStart,Fixed

∣∣ (17)

to be generated with random individuals.
However, usually n random chromosomes ci are loaded into the starting population

P(0) to minimize the probability of premature convergence (local optimum). For each gene,
an upper and a lower bound are defined to ensure the admissibility of these randomly
generated individuals. Then, a fitness value is assigned to each individual using the
fitness function:

F(ci) =
f (ci)

∑n
j=1 f (ci)

, (18)

where f (ci) is the objective function value of the individual ci.
If:

n

∑
j=1

f (ci) = 0 (19)

is valid, then:

F(ci) =
1
n

, ∀ i = 1, . . . , n (20)

Is set. In particular, for the fitness function F:

n

∑
j=1

F(ci) = 1 (21)

and
0 ≤ F(ci) ≤ 1, i = 1, . . . , n (22)

is true.
The fitness F(ci) stands for the survival probability of the individual ci. The higher

the function value F(ci), the higher the fitness of ci and thus the probability that its genes
will be transferred to the next generation. Three different operators select or create new
individuals for the new generation. On the one hand, so-called elite individuals are selected,
which are carried over unchanged into the new generation. These are mainly individuals
that have a high fitness value.

On the other hand, another possibility to generate new individuals for the following
generation is recombination (crossover). In this process, successful individuals are com-
bined so that new individuals are created that are based on the successful individuals. For
the combination of the individuals, different guidelines can be used, whereby not only the
strategy but also the data type of the genes is crucial.

Sensors 2021, 21, 8435 9 of 19

To prevent the optimization algorithm from converging locally, since elite and crossover
individuals do not generate new information, the so-called mutation operator is used. This
operator randomly changes selected genes in selected individuals. Depending on the data
type, these changes can be, for example, random values or a permutation of that of the
complete individual.

4. Data Set

The data used to analyze the different HPOs is based on a data set generated from
predefined standard driving maneuvers. The driving maneuvers are based on ISO stan-
dards, with characteristic values being adapted. Table 2 shows the different maneuvers, the
parameters, and the variations. The road slope is varied for all drives. Other parameters
vary depending on the maneuver. For example, the radius can be varied in addition to the
direction for the circular maneuvers. For deceleration maneuvers, the maximum decelera-
tion is adjusted, whereas, for acceleration maneuvers, the maximum speed is adjusted. In
addition to the maximum and minimum value ranges, the step size is also given so that a
complete catalog of relevant test drives can be created from the table.

Table 2. Driving maneuver catalog that is used to generate training, test, and validation data.

Maneuver Parameter Values Step Size

Braking from
Steady-state circle

Direction CW/CCW 1 -
Deceleration 2.5 to 12 m/s2 0.5 m/s2

Slope −8◦ to 8◦ 1◦

Braking test Velocity 30 to 120 km/h 10 km/h
Slope −8◦ to 8◦ 1◦

Double lane change
Direction CW/CCW -
Velocity 30 to 120 km/h 10 km/h

Slope −8◦ to 8◦ 1◦

Power-off reaction from
Steady-state circle

Direction CW/CCW -
Max. lat. Acc. 4 to 12 m/s2 0.5 m/s2

Slope −8◦ to 8◦ 1◦

Steering-pulse

Direction CW/CCW -
Velocity 30 to 120 km/h 10 km/h

Steer Angle −180◦ to 180◦ 60◦

Slope −8◦ to 8◦ 1◦

Sinus steering
Frequency 0.2 Hz to 2 Hz 0.45 Hz

Velocity 30 to 120 km/h 10 km/h
Slope −8◦ to 8◦ 1◦

Steady-state circular test

Direction CW/CCW -
Radius 40 m/100 m -
Velocity 30 to 120 km/h 20 km/h

Slope −8◦ to 8◦ 1◦

1 CW: clockwise; CCW: counterclockwise.

The maneuver catalog created in this way includes seven driving maneuvers and eight
parameters with multiple possible values which result in approx. 4400 different drives.
The data is generated with the use of a simulation model in IPG CarMaker.

Since most of the HPOs are computationally very intensive, only a small fraction,
2.5% of the database, meaning 110 driving maneuvers, were selected for hyperparameter
optimization. The selection was random, but it was ensured that each driving maneuver
was selected at least once.

Figure 4 shows exemplarily the data for a double lane change maneuver. The longitu-
dinal acceleration ax, the lateral acceleration ay, the yaw rate

.
ψ, the steering wheel angle δ,

the wheel speeds ω = [ωFL, ωFR, ωRL, ωRR] and the roll angle ϕ are depicted.

Sensors 2021, 21, 8435 10 of 19

Sensors 2021, 21, x FOR PEER REVIEW 10 of 20

Steady-state circular test

Direction CW/CCW -
Radius 40 m/100 m -

Velocity 30 to 120 km/h 20 km/h
Slope −8° to 8° 1°

1 CW: clockwise; CCW: counterclockwise.

The maneuver catalog created in this way includes seven driving maneuvers and
eight parameters with multiple possible values which result in approx. 4400 different
drives. The data is generated with the use of a simulation model in IPG CarMaker.

Since most of the HPOs are computationally very intensive, only a small fraction,
2.5% of the database, meaning 110 driving maneuvers, were selected for hyperparameter
optimization. The selection was random, but it was ensured that each driving maneuver
was selected at least once.

Figure 4 shows exemplarily the data for a double lane change maneuver. The longi-
tudinal acceleration 𝑎௫, the lateral acceleration 𝑎௬, the yaw rate 𝜓ሶ , the steering wheel an-
gle 𝛿, the wheel speeds 𝝎 = ሾ𝜔ி, 𝜔ிோ, 𝜔ோ, 𝜔ோோሿ and the roll angle 𝜑 are depicted.

Figure 4. Driving data for the double lane change maneuver.

5. Comparison of HPO
HPO algorithms are compared using the data presented in chapter 4. Thereby the

optimization methods described in chapter 3 are analyzed. In all methods, there were two
different types of hyperparameters, which were external model parameters. Both types
have influence on the architecture of the model or on the optimization process of the in-
ternal parameters, i.e., on the training process. On the one hand, there were fixed param-
eters that were identical for all HPOs, and on the other hand, there were variable param-
eters that could be adjusted during the optimization process. Table 3 shows the fixed hy-
perparameters. Besides the standard settings for machine learning algorithms like the di-
vision of the data set into the training data (57%), validation data (10%) and test data (33%)
as well as the use of the MSE loss, there were also parameters that had already been fixed
by empirical values like the use of the optimizer NAdam or the standardization of the
data. The limit of 25 epochs was set due to the time required for the training.

Longitudinal acceleration 𝑎௫ Lateral acceleration 𝑎௬

Yaw rate 𝜓ሶ

Roll angle 𝜑

Steering wheel angle 𝛿

Wheel speeds 𝝎

Figure 4. Driving data for the double lane change maneuver.

5. Comparison of HPO

HPO algorithms are compared using the data presented in chapter 4. Thereby the
optimization methods described in chapter 3 are analyzed. In all methods, there were
two different types of hyperparameters, which were external model parameters. Both
types have influence on the architecture of the model or on the optimization process of
the internal parameters, i.e., on the training process. On the one hand, there were fixed
parameters that were identical for all HPOs, and on the other hand, there were variable
parameters that could be adjusted during the optimization process. Table 3 shows the fixed
hyperparameters. Besides the standard settings for machine learning algorithms like the
division of the data set into the training data (57%), validation data (10%) and test data
(33%) as well as the use of the MSE loss, there were also parameters that had already been
fixed by empirical values like the use of the optimizer NAdam or the standardization of
the data. The limit of 25 epochs was set due to the time required for the training.

Table 3. Fixed hyperparameters.

Name of Hyperparameter Value

Optimizer Nadam
Loss MSE

Number of Epochs 25 1

Scaler Standardization
Validation Data Split 10%

Test Data Split 33%
1 All HPOs run 25 epochs per training run except for Hyperband. The algorithm does not train all configurations
over the complete number of epochs (see Section 3.2).

Furthermore, there were the hyperparameters that would be adjusted during optimiza-
tion. These variable hyperparameters are shown in Table 4. Depending on the optimization
method, the parameters were changed in different step sizes. Random Search, Hyperband,
and the first generation of the Genetic Algorithm created a random parameter set and
thus needed the step size. The Bayesian Optimization and the Genetic Algorithm created
their parameter combination by calculating new parameter sets from old ones. Thus, the
search space was identical to the parameter space, with the RS and Hyperband restricted
to discretization by the step size.

Sensors 2021, 21, 8435 11 of 19

Table 4. Variable hyperparameter and their parameter space.

Name of Hyperparameter Minimum Maximum Step Size

Sequence Lookback 1 10 1

Inputs {ax},
{

ay
}

,
{

ây
}

{δ}, {ψ}, {ω}
{

ax, ay, ây,
δ, ψ, ω

}
-

Number of Layers 1 6 1
Number of Cells 1 50 1

Recurrent Layer Type LSTM, GRU - -
L2-Regularization value 0 0.5 0.001

Recurrent L2- Regularization value 0 0.5 0.001
Dropout value 0 0.5 0.001

Recurrent Dropout value 0 0.5 0.001
Batch Size 100 1000 100

Learning Rate 0.001 0.3 0.001

The hyperparameters are of three different types, namely integers, real numbers, and
categories. The lookback, the number of layers, the number of cells, and the batch size
are integers, where the batch size has a step size of 100 and the other three are varied
with a step size of 1. The sequence lookback is the number of time steps used recursively
to predict the current state. The number of layers is the number of recurrent layers the
estimator would have. Since the output layer of the estimator is a fully connected layer,
the complete system had (number of layers +1) layer. Due to the architecture of the long
short-term memory (LSTM) cell and the gated recurrent unit (GRU), the number of cells
is the number of neurons that the gates would have [27,28]. The recurrent layer type is a
categorical hyperparameter and decides if the neural estimator will have LSTM cells or
GRUs. The number of inputs is also a categorical input, where you can choose from the
six different input signals. ây is a modified form of the lateral acceleration, which can be
calculated by:

ây = ay + v · ψ. (23)

The learning rate, the regularization and dropout values are real numbers in the range
between 0 and 0.5, where 0 means that there is no regularization or dropout. The recurrent
regularization/dropout is applied to the recurrent connections inside the recurrent layer
whereas the normal regularization is applied to the input connections. The batch size and
the learning rate are parameters that influence the optimization process. The batch size
defines the number of samples that would be propagated through the network before the
weights are updated. The learning rate is the step size of the optimization method that
updates the weights of the neural network.

Figure 5 shows the schematic flow of a general hyperparameter optimization. All
methods used here use this general principle and differ only in the determination of the
new hyperparameter set. The RS and HB only generate random parameters that are not
based on previous knowledge, whereas the GA and BO use additional information to
generate new parameter sets (see Section 3). The initial and the newly generated parameter
sets are evaluated by an object function, i.e., for each element in the parameter set an
artificial neural network is generated and subsequently used to determine a predefined
performance. The calculated performance for each element in the set is finally stored in
a database.

Sensors 2021, 21, 8435 12 of 19

Sensors 2021, 21, x FOR PEER REVIEW 12 of 20

𝑎ො௬ = 𝑎௬ + 𝑣 ⋅ 𝜓. (23)

The learning rate, the regularization and dropout values are real numbers in the
range between 0 and 0.5, where 0 means that there is no regularization or dropout. The
recurrent regularization/dropout is applied to the recurrent connections inside the recur-
rent layer whereas the normal regularization is applied to the input connections. The
batch size and the learning rate are parameters that influence the optimization process.
The batch size defines the number of samples that would be propagated through the net-
work before the weights are updated. The learning rate is the step size of the optimization
method that updates the weights of the neural network.

Figure 5 shows the schematic flow of a general hyperparameter optimization. All
methods used here use this general principle and differ only in the determination of the
new hyperparameter set. The RS and HB only generate random parameters that are not
based on previous knowledge, whereas the GA and BO use additional information to gen-
erate new parameter sets (see Section 3). The initial and the newly generated parameter
sets are evaluated by an object function, i.e., for each element in the parameter set an arti-
ficial neural network is generated and subsequently used to determine a predefined per-
formance. The calculated performance for each element in the set is finally stored in a
database.

Figure 5. Schematic flow of a general hyperparameter optimization process.

The hyperparameter optimization uses an objective function that performs a cross-
validation to calculate the accuracy of the neural network. This means that the data is
divided into k subsets and then each of these k subsets is used as a test data set. Thus, k
runs are performed where the kth subset is the test data set, and the other (k-1) subsets
are used as the training and validation data set. Figure 6 shows the 3-fold cross-validation
that is used for this contribution. Firstly, the shuffled data set is split into three parts. Sub-
sequently, three iterations are performed, where each subset is used once as a test data
set. The other two subsets are again subdivided into 85% training data and 15% validation
data. For each iteration, the root mean squared error (RMSE) is calculated as the objective
function:

Hyperparameter optimization

New parameter set
(depending on algorithm)

Objective function

Results

Initial parameter set

Iterations
>200?

End

Figure 5. Schematic flow of a general hyperparameter optimization process.

The hyperparameter optimization uses an objective function that performs a cross-
validation to calculate the accuracy of the neural network. This means that the data is
divided into k subsets and then each of these k subsets is used as a test data set. Thus, k
runs are performed where the kth subset is the test data set, and the other (k-1) subsets
are used as the training and validation data set. Figure 6 shows the 3-fold cross-validation
that is used for this contribution. Firstly, the shuffled data set is split into three parts.
Subsequently, three iterations are performed, where each subset is used once as a test
data set. The other two subsets are again subdivided into 85% training data and 15%
validation data. For each iteration, the root mean squared error (RMSE) is calculated as the
objective function:

Etest,i

(
ϕpred,ϕ̃

)
=

√√√√ 1
n

n

∑
j=1

(
ϕj,pred − ϕ̃j

)2
, (24)

where ϕpred =
[

ϕ1,pred, . . . , ϕn,pred

]
is the prediction of the neural network and

ϕ̃ = [ϕ̃1, . . . , ϕ̃n] is the reference of the test data set.
In general, the hyperparameter optimization attempts to solve the optimization problem:

min
W

Etest, (25)

such that the artificial neural network maps the reference data as accurately as possible,
where Etest is an arbitrary objective function and W is a matrix containing all weights of
the neural network. Both the search space and the objective function are identical for all
subsequent HPO methods, so the methods differ only in their criteria for selecting the
next hyperparameter configuration to be evaluated. To ensure a fair comparison, each
HPO method is also assigned approximately the same budget of 200 iterations. Here, one
iteration corresponds to the evaluation of a single hyperparameter configuration on the
objective function.

Sensors 2021, 21, 8435 13 of 19

Sensors 2021, 21, x FOR PEER REVIEW 13 of 20

𝐸௧௦௧,൫𝝋ௗ, 𝝋൯ = ඩ1𝑛 ൫𝜑,ௗ − 𝜑൯ଶ
ୀଵ , (24)

where 𝝋ௗ = ൣ𝜑ଵ,ௗ, … , 𝜑,ௗ൧ is the prediction of the neural network and 𝝋 =ሾ𝜑ଵ, … , 𝜑ሿ is the reference of the test data set.
In general, the hyperparameter optimization attempts to solve the optimization prob-

lem: min𝑾 𝐸௧௦௧, (25)

such that the artificial neural network maps the reference data as accurately as possible,
where 𝐸௧௦௧ is an arbitrary objective function and 𝑾 is a matrix containing all weights of
the neural network. Both the search space and the objective function are identical for all
subsequent HPO methods, so the methods differ only in their criteria for selecting the next
hyperparameter configuration to be evaluated. To ensure a fair comparison, each HPO
method is also assigned approximately the same budget of 200 iterations. Here, one iter-
ation corresponds to the evaluation of a single hyperparameter configuration on the ob-
jective function.

Figure 6. A k-fold cross-validation with 𝑘 = 3.

5.1. Random Search
For the RS, hyperparameter sets are generated randomly in the entire search space

and successively evaluated using the cost function. The parameters are uniformly distrib-
uted over the entire parameter space, which is discretized in terms of step sizes in Table
4. A total of 200 parameter sets were generated and evaluated. Figure 7 shows the progress
of the hyperparameter optimization by the Random Search. The RMSE of the hyperpa-
rameter configuration evaluated in the current iteration is drawn in dotted orange. The
best RMSE found up to the current iteration is represented by the solid black line. The y-
axis is on a logarithmic scale.

𝐸௧௦௧,ଵ 𝐸௧௦௧,ଶ 𝐸௧௦௧,ଷ

Iteration
1

𝐸୲ୣୱ୲ = 13 𝐸௧௦௧,ଷ
୧ୀଵ

Iteration
2

Iteration
3

Data split

: Training set : Test set

Figure 6. A k-fold cross-validation with k = 3.

5.1. Random Search

For the RS, hyperparameter sets are generated randomly in the entire search space and
successively evaluated using the cost function. The parameters are uniformly distributed
over the entire parameter space, which is discretized in terms of step sizes in Table 4. A
total of 200 parameter sets were generated and evaluated. Figure 7 shows the progress of
the hyperparameter optimization by the Random Search. The RMSE of the hyperparameter
configuration evaluated in the current iteration is drawn in dotted orange. The best RMSE
found up to the current iteration is represented by the solid black line. The y-axis is on a
logarithmic scale.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 20

Figure 7. Progress of hyperparameter optimization with Random Search over 200 iterations.

The figure clearly shows how small the overall improvements are over the entire 200
iterations and that the quality of hyperparameter configurations is subject to major varia-
tion. This is since the Random Search approach selects only random parameter sets with-
out taking previous results into account. Nevertheless, this method can coincidentally en-
counter a good configuration.

5.2. Hyperband
Due to the nature of the Hyperband algorithm, not all hyperparameter configura-

tions are trained over the full number of epochs, which in this case was 25 epochs. To
ensure a fair comparison of the different HPO methods, several runs were performed for
the HP.

 shows an HP run with 𝑅 = 25, the maximum possible number of epochs to train a

configuration, and 𝜂 = 3, the input that controls the fraction of configurations that are
discarded in each round of successive halving. From the table, it can now be calculated
that one HP run corresponded to approximately 560 training epochs. Since all other HPO
methods trained 200 sets for 25 epochs, this resulted in an absolute budget of 5000 epochs
for these methods. Nine HP runs must therefore be performed to compare the methods.
This corresponds to 5040 epochs.

Table 5. Hyperband configuration for R = 25 and η = 3. 𝒊 𝒔 = 𝟒 𝒔 = 𝟑 𝒔 = 𝟐 𝒔 = 𝟏 𝒔 = 𝟎
 𝒏𝒊 𝒓𝒊 𝒏𝒊 𝒓𝒊 𝒏𝒊 𝒓𝒊 𝒏𝒊 𝒓𝒊 𝒏𝒊 𝒓𝒊
0 16 1 10 3 7 6 5 12 5 25
1 8 3 5 6 3 12 2 25
2 4 6 2 12 1 25
3 2 12 1 25
4 1 25

Comparing the number of generated hyperparameter configurations of HP with the
number of the other HPOs shows that significantly more configurations can be consid-
ered. In the nine runs, 387 different sets were trained, whereas only 90 configurations were
trained over the complete 25 epochs. Thus, Figure 8 shows only 90 iterations.

10

10ିଵ

10ିଶ 0 40 80 200

RMSE i
n rad

Iterations
160 120

Figure 7. Progress of hyperparameter optimization with Random Search over 200 iterations.

The figure clearly shows how small the overall improvements are over the entire
200 iterations and that the quality of hyperparameter configurations is subject to major
variation. This is since the Random Search approach selects only random parameter sets

Sensors 2021, 21, 8435 14 of 19

without taking previous results into account. Nevertheless, this method can coincidentally
encounter a good configuration.

5.2. Hyperband

Due to the nature of the Hyperband algorithm, not all hyperparameter configurations
are trained over the full number of epochs, which in this case was 25 epochs. To ensure a
fair comparison of the different HPO methods, several runs were performed for the HP.

Table 5 shows an HP run with R = 25, the maximum possible number of epochs to
train a configuration, and η = 3, the input that controls the fraction of configurations that
are discarded in each round of successive halving. From the table, it can now be calculated
that one HP run corresponded to approximately 560 training epochs. Since all other HPO
methods trained 200 sets for 25 epochs, this resulted in an absolute budget of 5000 epochs
for these methods. Nine HP runs must therefore be performed to compare the methods.
This corresponds to 5040 epochs.

Table 5. Hyperband configuration for R = 25 and η = 3.

i s = 4 s = 3 s = 2 s = 1 s = 0
ni ri ni ri ni ri ni ri ni ri

0 16 1 10 3 7 6 5 12 5 25
1 8 3 5 6 3 12 2 25
2 4 6 2 12 1 25
3 2 12 1 25
4 1 25

Comparing the number of generated hyperparameter configurations of HP with the
number of the other HPOs shows that significantly more configurations can be considered.
In the nine runs, 387 different sets were trained, whereas only 90 configurations were
trained over the complete 25 epochs. Thus, Figure 8 shows only 90 iterations.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 20

Figure 8. Progress of hyperparameter optimization with Hyperband over 90 iterations, correspond-
ing to 9 HP evaluations.

Looking at the optimization process of the HP algorithm, it is noticeable that HP
found an exceptionally good parameter configuration in the first iteration. As mentioned
above, this can always happen by chance, although this becomes increasingly improbable
as the parameter space becomes larger; however, most of the evaluated parameter settings
are significantly inferior. No configuration comes into this quality range or even gets bet-
ter.

5.3. Bayesian Optimization
To minimize the HPO using Bayesian Optimization, an initial set must first be gen-

erated. For this purpose, 20 random parameter sets were created and evaluated. Then,
using the surrogate model and the acquisition function as described above, another 180
parameter configurations were evaluated. Each new selection of parameters is based on
the information generated in the previous results. That is, a surrogate model is created
and minimized using the acquisition function. The result obtained is the configuration
that is evaluated in the new iteration. Figure 9 depicts the development of the function
evaluations of the optimization process.

It can be seen that the RMSE tended to decrease with a continuous iteration number,
although upward swings could be seen again and again. This can be observed in particu-
lar between the iterations 120 and 140. In contrast to the Random Search and Hyperband
approaches, however, a clear trend can be seen.

Figure 9. Progress of hyperparameter optimization with Bayesian Optimization over 200 itera-
tions.

10

10ିଵ

10ିଶ 0 30 60

RMSE i
n rad

Iterations
90

Current Iteration Minimum

10

10ିଵ

10ିଶ 0 40 80 200

RMSE i
n rad

Iterations 160 120

Figure 8. Progress of hyperparameter optimization with Hyperband over 90 iterations, corresponding
to 9 HP evaluations.

Looking at the optimization process of the HP algorithm, it is noticeable that HP found
an exceptionally good parameter configuration in the first iteration. As mentioned above,
this can always happen by chance, although this becomes increasingly improbable as the
parameter space becomes larger; however, most of the evaluated parameter settings are
significantly inferior. No configuration comes into this quality range or even gets better.

Sensors 2021, 21, 8435 15 of 19

5.3. Bayesian Optimization

To minimize the HPO using Bayesian Optimization, an initial set must first be gener-
ated. For this purpose, 20 random parameter sets were created and evaluated. Then, using
the surrogate model and the acquisition function as described above, another 180 parameter
configurations were evaluated. Each new selection of parameters is based on the informa-
tion generated in the previous results. That is, a surrogate model is created and minimized
using the acquisition function. The result obtained is the configuration that is evaluated
in the new iteration. Figure 9 depicts the development of the function evaluations of the
optimization process.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 20

Figure 8. Progress of hyperparameter optimization with Hyperband over 90 iterations, correspond-
ing to 9 HP evaluations.

Looking at the optimization process of the HP algorithm, it is noticeable that HP
found an exceptionally good parameter configuration in the first iteration. As mentioned
above, this can always happen by chance, although this becomes increasingly improbable
as the parameter space becomes larger; however, most of the evaluated parameter settings
are significantly inferior. No configuration comes into this quality range or even gets bet-
ter.

5.3. Bayesian Optimization
To minimize the HPO using Bayesian Optimization, an initial set must first be gen-

erated. For this purpose, 20 random parameter sets were created and evaluated. Then,
using the surrogate model and the acquisition function as described above, another 180
parameter configurations were evaluated. Each new selection of parameters is based on
the information generated in the previous results. That is, a surrogate model is created
and minimized using the acquisition function. The result obtained is the configuration
that is evaluated in the new iteration. Figure 9 depicts the development of the function
evaluations of the optimization process.

It can be seen that the RMSE tended to decrease with a continuous iteration number,
although upward swings could be seen again and again. This can be observed in particu-
lar between the iterations 120 and 140. In contrast to the Random Search and Hyperband
approaches, however, a clear trend can be seen.

Figure 9. Progress of hyperparameter optimization with Bayesian Optimization over 200 itera-
tions.

10

10ିଵ

10ିଶ 0 30 60

RMSE i
n rad

Iterations
90

Current Iteration Minimum

10

10ିଵ

10ିଶ 0 40 80 200

RMSE i
n rad

Iterations 160 120

Figure 9. Progress of hyperparameter optimization with Bayesian Optimization over 200 iterations.

It can be seen that the RMSE tended to decrease with a continuous iteration number,
although upward swings could be seen again and again. This can be observed in particular
between the iterations 120 and 140. In contrast to the Random Search and Hyperband
approaches, however, a clear trend can be seen.

5.4. Genetic Algorithm

The initial population for the Genetic Algorithm was randomly generated. For this
purpose, 40 individuals were generated in the entire search space using the step sizes from
Table 4. After evaluating the initial population, 40 individuals were generated for each
additional generation using the genetic operators shown in Table 6.

Table 6. Genetic parameters.

Genetic Operators

Crossover Uniform crossover
Mutation Uniform mutation
Selection Tournament selection

From the previous population and the individuals generated by the genetic opera-
tors, 40 more individuals were selected for the new generation. Figure 10 shows that an
improvement of the configurations occurs in almost every generation. Just as with the
Bayesian Optimization, a decreasing trend can be seen; however, significant oscillations
can be seen in the evaluations, which can be explained by the mutations. In this way, local
convergence can be prevented, and new areas of the parameter space can be explored.

Sensors 2021, 21, 8435 16 of 19

Sensors 2021, 21, x FOR PEER REVIEW 16 of 20

5.4. Genetic Algorithm
The initial population for the Genetic Algorithm was randomly generated. For this

purpose, 40 individuals were generated in the entire search space using the step sizes from
Table 4. After evaluating the initial population, 40 individuals were generated for each
additional generation using the genetic operators shown in Table 6.

Table 6. Genetic parameters.

Genetic Operators
Crossover Uniform crossover
Mutation Uniform mutation
Selection Tournament selection

From the previous population and the individuals generated by the genetic opera-
tors, 40 more individuals were selected for the new generation. Figure 10 shows that an
improvement of the configurations occurs in almost every generation. Just as with the
Bayesian Optimization, a decreasing trend can be seen; however, significant oscillations
can be seen in the evaluations, which can be explained by the mutations. In this way, local
convergence can be prevented, and new areas of the parameter space can be explored.

Figure 10. Progress of hyperparameter optimization with the Genetic Algorithm over 5 generations
with 40 individuals each, corresponding to 200 training iterations.

6. Results
The results of all hyperparameter optimization methods are shown in Table 7. Com-

paring the RMSE of the four methods, it is noticeable that the Bayesian Optimization and
the Genetic Algorithm give results that differ only slightly in their structure. Whereas the
five best results of the Random Search and Hyperband are very widely scattered over the
parameter space. When dropout and regularization are considered, it is noticeable that
the best results are obtained when neither dropout nor regularization is used; however,
recurrent regularization and dropout are selected. Therefore, the weights within the layers
are influenced, but the weights between the layers are not. This is due to the “knowledge”
of the two algorithms, BO and GA, whereas the RS and HB just randomly select parameter
sets. Of course, this can also lead to randomly selecting the global optimum. This can be
seen in the best parameter setting of Hyperband, which found a good configuration in the
first iteration step but could not improve afterward. It was even the case that the other
configurations were significantly worse than this outlier. Similarly, it can be seen that the
LSTM cells often gave better results than the GRU. The learning rate should also be se-
lected as rather low. Only the size of the meshes differs significantly. There were relatively

10

10ିଵ

10ିଶ 0 40 80 200

RMSE i
n rad

Iterations
160 120

Figure 10. Progress of hyperparameter optimization with the Genetic Algorithm over 5 generations
with 40 individuals each, corresponding to 200 training iterations.

6. Results

The results of all hyperparameter optimization methods are shown in Table 7. Com-
paring the RMSE of the four methods, it is noticeable that the Bayesian Optimization and
the Genetic Algorithm give results that differ only slightly in their structure. Whereas the
five best results of the Random Search and Hyperband are very widely scattered over the
parameter space. When dropout and regularization are considered, it is noticeable that
the best results are obtained when neither dropout nor regularization is used; however,
recurrent regularization and dropout are selected. Therefore, the weights within the layers
are influenced, but the weights between the layers are not. This is due to the “knowledge”
of the two algorithms, BO and GA, whereas the RS and HB just randomly select parameter
sets. Of course, this can also lead to randomly selecting the global optimum. This can
be seen in the best parameter setting of Hyperband, which found a good configuration
in the first iteration step but could not improve afterward. It was even the case that the
other configurations were significantly worse than this outlier. Similarly, it can be seen
that the LSTM cells often gave better results than the GRU. The learning rate should also
be selected as rather low. Only the size of the meshes differs significantly. There were
relatively small networks (hyperband) with only 1 layer and 35 neurons as well as large
networks (GA) with 4 layers and 37 neurons each. At this point, it must be stated that due
to the increased number of weights in the large networks, an increase in the number of
epochs could lead to better results. Additionally, in the lookback, all results below 0.02 rad
had values between 2 and 10, and the lookback leads to a significantly larger net structure,
because the recurved nets are unrolled for training.

Figure 11 compares the optimization histories of the four HPO methods. Since Hy-
perband does not train all the selected configurations over the full number of epochs,
only 90 iterations are shown in the figure. HP found the best configuration directly in
the first iteration and did not improve in the further course. Whereas the other methods
improved successively. While the Bayesian Optimization and Random Search took a few
large steps to improve, the Genetic optimizer improved more frequently in small steps in
each generation, but it is clear from the BO and GA that there was a steady improvement. It
is reasonable to assume that increasing the number of iterations would have led to further
improvement in the results.

Sensors 2021, 21, 8435 17 of 19

Sensors 2021, 21, x FOR PEER REVIEW 17 of 20

small networks (hyperband) with only 1 layer and 35 neurons as well as large networks
(GA) with 4 layers and 37 neurons each. At this point, it must be stated that due to the
increased number of weights in the large networks, an increase in the number of epochs
could lead to better results. Additionally, in the lookback, all results below 0.02 𝑟𝑎𝑑 had
values between 2 and 10, and the lookback leads to a significantly larger net structure,
because the recurved nets are unrolled for training.

Figure 11 compares the optimization histories of the four HPO methods. Since Hy-
perband does not train all the selected configurations over the full number of epochs, only
90 iterations are shown in the figure. HP found the best configuration directly in the first
iteration and did not improve in the further course. Whereas the other methods improved
successively. While the Bayesian Optimization and Random Search took a few large steps
to improve, the Genetic optimizer improved more frequently in small steps in each gen-
eration, but it is clear from the BO and GA that there was a steady improvement. It is
reasonable to assume that increasing the number of iterations would have led to further
improvement in the results.

Figure 11. Comparison of best HPO results plotted over all iterations.

7. Conclusions
In this paper, four hyperparameter optimization methods were compared using an

artificial neural network-based roll angle estimator as an example. Two random-based
methods, namely, Random Search and Hyperband, and two knowledge-based methods,
namely, Bayesian Optimization and the Genetic Algorithm, were compared. All four al-
gorithms were given the same data and an identical budget of resources to optimize the
hyperparameter of the software sensor. The results showed that the Random Search and
the Hyperband Algorithms, which are both based exclusively on random selections, do
not have a continuous improvement during the optimization process. Instead, after find-
ing a good parameter configuration, it is likely that a parameter setting will be selected
that does not improve because it has no relation to the previous selection. Nevertheless,
these algorithms can lead to satisfactory results and if one has a small search space, these
methods can also converge quickly. On the other hand, if we compare the Bayesian Opti-
mization or the Genetic Algorithm with the two previously mentioned, it is clear that the
knowledge that goes into the generation of new parameter configurations leads to a con-
tinuous improvement of the parameter selection. In summary, knowledge-based methods
are preferable to random-based methods for the optimization of a large number of hy-
perparameters, and thus for a large search space and a strongly nonlinear problem. The
increased effort in implementing such methods often leads to better results and is, there-
fore, a worthwhile investment. Of course, purely random-based methods can also lead to
good results, but this is less likely due to the size of the search space. Among other reasons,

0.01 0 40 80 200

RMSE i
n rad

Iterations
160 120

0.02

0.04 0.03

0.05

0.06

Figure 11. Comparison of best HPO results plotted over all iterations.

Table 7. The 5 best parameter sets found by Random Search, Hyperband, Bayesian Optimization and Genetic Algorithm.

RMSE
in rad

Look-
back Inputs Layers Neurons Type L2-Reg Recurrent

L2 Dropout Recurrent
Dropout

Batch
Size

Learning
Rate

Random Search
0.022620 4

{
ax , ay,

.
ψ
}

3 25 LSTM 0 0.47 0.151 0.39 500 0.05

0.026779 7
{

ay, δ,
.
ψ
}

0 7 LSTM 0.058 0.345 0 0.052 400 0.054

0.027185 8
{

ay, δ,
.
ψ, ω

}
3 28 LSTM 0 0 0.404 0.193 900 0.013

0.028898 8
{

ax , ây, v,
.
ψ
}

0 35 GRU 0.392 0.196 0.24 0.087 900 0.015

0.030892 9
{

ax , ay, ây, δ
}

0 15 LSTM 0.062 0.103 0.405 0.006 900 0.073

Hyperband

0.01505 10
{

ax , ay, ây,
v, δ,

.
ψ

}
1 35 LSTM 0 0.439 0 0.443 600 0.009

0.02362 1
{

ax , ay, ây, ω
}

1 12 LSTM 0 0.02 0.352 0.383 300 0.001

0.02452 3
{

ây, v, δ,
.
ψ, ω

}
0 30 LSTM 0 0.174 0.05 0.277 700 0.02

0.02526 10
{

ax , ay, ây,
δ, ω

}
2 43 GRU 0.052 0.003 0.254 0.45 600 0.013

0.02605 3
{

ax , ay, v,
δ,

.
ψ

}
3 9 LSTM 0 0.08 0.354 0.245 700 0.005

Bayesian Optimization
0.016771 8

{
ay, ây, δ

}
4 18 LSTM 0 0.395 0 0.417 486 0.007

0.019957 9
{

ax , ây, v
}

3 12 LSTM 0 0.34 0 0.005 270 0.032
0.020468 10

{
ay, ây, δ

}
3 8 GRU 0 0 0 0 481 0.013

0.020470 9 {ax , v, δ} 5 7 LSTM 0 0.319 0 0.49 476 0.014
0.022709 10

{
ax , δ,

.
ψ
}

2 11 LSTM 0 0.358 0 0.401 686 0.04

Genetic Algorithm
0.015857 4

{
ax , ay,

.
ψ
}

4 37 LSTM 0 0.410 0 0 100 0.006

0.016851 7
{

ax , ây, v,
.
ψ
}

2 49 LSTM 0 0 0 0.317 800 0.012

0.017035 10
{

ax , ay, ây,
.
ψ
}

0 44 LSTM 0.489 0 0 0 100 0.047

0.017035 2
{

ax , δ,
.
ψ
}

1 10 LSTM 0.407 0.237 0 0.465 200 0.112

0.018027 8
{

ax , δ,
.
ψ
}

1 28 LSTM 0 0.408 0 0.465 700 0.247

7. Conclusions

In this paper, four hyperparameter optimization methods were compared using an
artificial neural network-based roll angle estimator as an example. Two random-based
methods, namely, Random Search and Hyperband, and two knowledge-based methods,
namely, Bayesian Optimization and the Genetic Algorithm, were compared. All four
algorithms were given the same data and an identical budget of resources to optimize
the hyperparameter of the software sensor. The results showed that the Random Search

Sensors 2021, 21, 8435 18 of 19

and the Hyperband Algorithms, which are both based exclusively on random selections,
do not have a continuous improvement during the optimization process. Instead, after
finding a good parameter configuration, it is likely that a parameter setting will be selected
that does not improve because it has no relation to the previous selection. Nevertheless,
these algorithms can lead to satisfactory results and if one has a small search space, these
methods can also converge quickly. On the other hand, if we compare the Bayesian
Optimization or the Genetic Algorithm with the two previously mentioned, it is clear that
the knowledge that goes into the generation of new parameter configurations leads to
a continuous improvement of the parameter selection. In summary, knowledge-based
methods are preferable to random-based methods for the optimization of a large number of
hyperparameters, and thus for a large search space and a strongly nonlinear problem. The
increased effort in implementing such methods often leads to better results and is, therefore,
a worthwhile investment. Of course, purely random-based methods can also lead to good
results, but this is less likely due to the size of the search space. Among other reasons, this
is because there are normally no hints on how to narrow down the hyperparameter spaces.

Author Contributions: Conceptualization, S.B.; data curation, S.B.; formal analysis, S.B.; investiga-
tion, S.B.; methodology, S.B. and T.B.; software, S.B.; validation, S.B.; visualization, S.B.; writing—
original draft, S.B.; writing—review and editing, S.B., T.B. and D.S. All authors have read and agreed
to the published version of the manuscript.

Funding: Open Access Publication Fund of the University of Duisburg-Essen.

Acknowledgments: We acknowledge support by the Open Access Publication Fund of the University
of Duisburg-Essen.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kukkala, V.K.; Tunnell, J.; Pasricha, S.; Bradley, T. Advanced Driver-Assistance Systems: A Path Toward Autonomous Vehicles.

IEEE Consum. Electron. Mag. 2018, 7, 18–25. [CrossRef]
2. Antonov, S.; Fehn, A.; Kugi, A. Unscented Kalman filter for vehicle state estimation. Veh. Syst. Dyn. 2011, 49, 1497–1520.

[CrossRef]
3. Hsu, L.; Chen, T. Vehicle Full-State Estimation and Prediction System Using State Observers. IEEE Trans. Veh. Technol. 2009, 58,

2651–2662. [CrossRef]
4. Rajamani, R.; Piyabongkarn, D.; Tsourapas, V.; Lew, J.Y. Parameter and State Estimation in Vehicle Roll Dynamics. IEEE Trans.

Intell. Transp. Syst. 2011, 12, 1558–1567. [CrossRef]
5. Claesen, M.; Moor, B. Hyperparameter Search in Machine Learning. arXiv 2015, arXiv:1502.02127.
6. González, L.P.; Sánchez, S.S.; Garcia-Guzman, J.; Boada, M.J.L.; Boada, B.L. Simultaneous Estimation of Vehicle Roll and Sideslip

Angles through a Deep Learning Approach. Sensors 2020, 20, 3679. [CrossRef] [PubMed]
7. Xu, N.; Askari, H.; Huang, Y.; Zhou, J.; Khajepour, A. Tire Force Estimation in Intelligent Tires Using Machine Learning. IEEE

Trans. Intell. Transp. Syst. 2020, 1–10. [CrossRef]
8. Graeber, T.; Lupberger, S.; Unterreiner, M.; Schramm, D. A Hybrid Approach to Side-Slip Angle Estimation with Recurrent

Neural Networks and Kinematic Vehicle Models. IEEE Trans. Intell. Veh. 2019, 4, 39–47. [CrossRef]
9. Hügle, M.; Kalweit, G.; Mirchevska, B.; Werling, M.; Boedecker, J. Dynamic Input for Deep Reinforcement Learning in Au-

tonomous Driving. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Macau, China, 3–8 November 2019; pp. 7566–7573.

10. Schramm, D.; Hiller, M.; Bardini, R. Vehicle Dynamics; Springer: Berlin/Heidelberg, Germany, 2018. [CrossRef]
11. Ryu, J.; Gerdes, J.C. Estimation of vehicle roll and road bank angle. In Proceedings of the 2004 American Control Conference,

Boston, MA, USA, 30 June–2 July 2004; Volume 2113, pp. 2110–2115.
12. Rajamani, R.; Piyabongkarn, D.; Tsourapas, V.; Lew, J.Y. Real-time estimation of roll angle and CG height for active rollover

prevention applications. In Proceedings of the 2009 American Control Conference, Louis, MO, USA, 10–12 June 2009; pp. 433–438.
13. Sasaki, H.; Nishimaki, T. A Side-Slip Angle Estimation Using Neural Network for a Wheeled Vehicle. SAE Trans. 2000, 109,

1026–1031.
14. Blume, S.; Sieberg, P.M.; Maas, N.; Schramm, D. Neural Roll Angle Estimation in a Model Predictive Control System. In

Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019;
pp. 1625–1630.

http://doi.org/10.1109/MCE.2018.2828440
http://doi.org/10.1080/00423114.2010.527994
http://doi.org/10.1109/TVT.2008.2008811
http://doi.org/10.1109/TITS.2011.2164246
http://doi.org/10.3390/s20133679
http://www.ncbi.nlm.nih.gov/pubmed/32630099
http://doi.org/10.1109/TITS.2020.3038155
http://doi.org/10.1109/TIV.2018.2886687
http://doi.org/10.1007/978-3-662-54483-9

Sensors 2021, 21, 8435 19 of 19

15. Sieberg, P.M.; Blume, S.; Harnack, N.; Maas, N.; Schramm, D. Hybrid State Estimation Combining Artificial Neural Network and
Physical Model. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand,
27–30 October 2019; pp. 894–899.

16. Yu, T.; Zhu, H. Hyper-Parameter Optimization: A Review of Algorithms and Applications. arXiv 2020, arXiv:2003.05689.
17. Rastrigin, L.A. he Convergence of the Random Search Method in the Extremal Control of Many-Parameter System. Autom. Remote

Control 1963, 24, 1337–1342.
18. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter

optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816.
19. Jamieson, K.; Talwalkar, A. Non-stochastic Best Arm Identification and Hyperparameter Optimization. In Proceedings of the

19th International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, Cadiz, Spain,
3–6 September 2019; pp. 240–248.

20. Mockus, J. On Bayesian Methods for Seeking the Extremum. In Proceedings of the IFIP Technical Conference, Novosibirsk,
1–7 July 1974; pp. 400–404.

21. Blume, S.; Reicherts, S.; Koegeler, H.; Didcock, N.; Henn, T. Geostatistical Meta-Modeling for a Model-Based Calibration of an
Adaptive Shock Absorber. In Proceedings of the 13th International Symposium on Advanced Vehicle Control (AVEC 2016),
Munich, Germany, 13–16 September 2016.

22. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 24th
International Conference on Neural Information Processing Systems, Granada, Spain, 12 December 2011; pp. 2546–2554.

23. Hutter, F.; Lücke, J.; Schmidt-Thieme, L. Beyond Manual Tuning of Hyperparameters. KI -Künstliche Intell. 2015, 29, 329–337.
[CrossRef]

24. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges. Autom. Mach. Learn. 2019.
25. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial

Intelligence; MIT Press: Cambridge, MA, USA, 1992.
26. Gerdes, I.; Klawonn, F.; Kruse, R. Evolutionäre Algorithmen-Genetische Algorithmen, Strategien und Optimierungsverfahren, Beispielan-

wendungen; Springer: Berlin/Heidelberg, Germany, 2004; pp. I–X, 1–252.
27. Hochreiter, J.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
28. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations

using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

http://doi.org/10.1007/s13218-015-0381-0
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

This text is made available via DuEPublico, the institutional repository of the University of
Duisburg-Essen. This version may eventually differ from another version distributed by a
commercial publisher.

DOI: 10.3390/s21248435
URN: urn:nbn:de:hbz:465-20220801-082551-4

This work may be used under a Creative Commons Attribution 4.0
License (CC BY 4.0).

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.3390/s21248435
https://nbn-resolving.org/urn:nbn:de:hbz:465-20220801-082551-4
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Introduction
	State of the Art
	State Estimation
	Machine Learning in Dynamic State Estimation
	Hyperparameter Optimization

	Optimization Methods
	Random Search
	Hyperband
	Bayesian Optimization
	Genetic Algorithm

	Data Set
	Comparison of HPO
	Random Search
	Hyperband
	Bayesian Optimization
	Genetic Algorithm

	Results
	Conclusions
	References

