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Abstract: Ferroelectric materials have gained high interest for photovoltaic applications due to their
open-circuit voltage not being limited to the band gap of the material. In the past, different lead-based
ferroelectric perovskite thin films such as Pb(Zr,Ti)O3 (Pb,La)(Zr,Ti)O3 and PbTiO3 were investigated
with respect to their photovoltaic efficiency. Nevertheless, due to their high band gaps they only
absorb photons in the UV spectral range. The well-known ferroelectric PbFe0.5Nb0.5O3 (PFN), which
is in a structure similar to the other three, has not been considered as a possible candidate until now.
We found that the band gap of PFN is around 2.75 eV and that the conductivity can be increased from
23 S/µm to 35 S/µm during illumination. The relatively low band gap value makes PFN a promising
candidate as an absorber material.

Keywords: lead iron niobate; thin films; pulsed laser deposition; band gap; optical properties;
photovoltaics

1. Introduction

The photovoltaic effect, which allows for the conversion of light to electricity, is consid-
ered one of the most promising directions of “green” energetics. The field of photovoltaic
materials is dominated by devices based on doped silicon (Si) involving a p-n junction.
The exciton binding energy in Si is smaller than the thermal activation energy, which
makes the charge carrier generation easy. Due to an electric field arising within a space
charge region formed around the p–n junction, the separation of photo-generated electrons
and holes occurs. However, the manufacturing of silicon solar cells is quite demanding,
making the production expensive. In order to overcome this problem, other highly efficient
materials, e.g., hybrid halide perovskites, which can potentially be deposited on large areas
using printing processes, are being researched [1,2]. Nevertheless, these materials are not
long-lasting due to their degradation through humidity, temperature, and UV light [3].
Other promising materials could be ferroelectric perovskites due to their bulk photovoltaic
effect [4]. The bulk photovoltaic effect has been known since 1966 [5]. It occurs in non-
centrosymmetric crystals and depends on the ferroelectric polarization. When a poled
ferroelectric is illuminated, the photons are absorbed and charge carriers are generated in
the material. Due to the polarization-induced depolarization electric field, the electrons
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and holes are driven to the opposite electrodes [6]. Moreover, the value of the open-circuit
voltage in ferroelectrics is not limited by the band gap of the material but can be several
times higher [6–8]. Nevertheless, the photocurrent in bulk materials is rather small due to
the scattering of photoinduced charge carriers on defect sites but can be increased with de-
creasing layer thickness. This makes ferroelectrics—especially in the form of thin films—an
interesting candidate for photovoltaic applications [6]. Many studies were conducted on
lead-based ferroelectric perovskites such as, e.g., Pb(Zr,Ti)O3 (PZT) [9–13], (Pb,La)(Zr,TiO)3
(PLZT) [6,7], and PbTiO3 (PTO) [14]. However, the absorbance of photons and thus also
the photovoltaic efficiency is strongly dependent on the band gap. For these materials it
is approximately 3.6 eV for PZT [11,12,15] and PTO [16–18] and larger than 3.35 eV for
PLZT [19,20]. These band gaps limit the absorption of these materials to the ultraviolet
spectrum, which makes up only around 8% of the solar spectrum [16]. Therefore, these
materials only reach an efficiency of 0.75% for PZT [13,21], ~0.28% for PLZT [6], and 0.05%
for PTO [14]. Based on their high absorption in the UV spectral range, these materials
could, however, still be used, e.g., in tandem solar cells. Recently, multiferroic BiFeO3
(BFO) has attracted significant attention due to a relatively narrow band gap of 2.2–2.7 eV,
promising a significant improvement in photovoltaic performance [22,23] compared to
the aforementioned materials. Interestingly, another well-known multiferroic, namely
lead iron niobate (PbFe0.5Nb0.5O3, PFN), has remained out of sight of the photovoltaic
community. Ferroelectric, magnetic, and magnetoelectric properties of PFN were studied
in detail [24–27]. The material has a ferroelectric–paraelectric phase transition in the range
of 370–390 K [28] and undergoes a transition into the antiferromagnetic state at 143 K [29].
However, little is known about its optical properties and only few publications adressed
the band gap on this material [30,31].

In this article, we report on a study of the optical properties of epitaxial PFN thin
films produced by pulsed laser deposition. Several experimental methods were applied to
evaluate the band gap of the highly homogeneous 100 nm thick PFN films. The data show
that PFN is a promising candidate to be used for photovoltaic devices.

2. Material and Methods

PFN films were grown on commercial (001)-oriented SrTiO3 or SrTiO3/SrRuO3 (the
thickness of the SrRuO3 layer was 50 nm) substrates (PLD Targets, London, UK) by pulsed
laser deposition (PLD) with a KrF excimer laser (λ = 248 nm; see Figure 1a,c). The deposition
parameters were as follows: a substrate temperature of 700 ◦C, an oxygen pressure of
0.2 mbar, a distance from the target to the substrate of 5.5 cm, and a laser fluence of around
2 J/cm2 (laser energy 60 mJ, laser spot area 3 mm2). The number of laser pulses was 5000 at
a frequency of 3 Hz. A ceramic target for deposition was synthesized using the solid-state
method: stoichiometric amounts of PbO (99.99%, Alfa Aesar, Kandel, Germany) with 10 wt.
% lead excess, pre-milled Fe2O3 (99.9%, Alfa Aesar, Kandel, Germany), and Nb2O5 (99.9%,
Alfa Aesar, Kandel, Germany) were mixed by a planetary ball mill for 4 h. The obtained
mixture was calcinated at 850 ◦C for 2 h in oxygen atmosphere. The calcinated powder was
ground, pressed in pellets, and also sintered at 1050 ◦C for 2 h in an oxygen atmosphere.
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Figure 1. Different sample structures for the different measurements: (a) for XRD, RHEED, and
UV-Vis; (b) for TLM; (c) for IPES/UPS.

An Empyrean diffractometer (Malvern PANalytical, Kassel, Germany) with a CuKα1
source was used for verifying the phase content of the films in the 2θ-range of 15–80◦

with a 0.013◦ step size. The epitaxial film growth was checked with the help of pole
figures measured in the same 2θ-range with a tilting angle ψ from 40 to 50◦ and a rotating
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angle from 0◦ to 360◦ in 1◦ increments, respectively. A high-resolution D8 Bruker (CuKα1
monochromator source λ = 1.54056 Å) four circles diffractometer was used for examining
the crystallinity of the films by the analysis of rocking curves and the layer thickness with
reflectivity measurements.

In situ, Reflection High Energy Electron Diffraction (RHEED) measurements were
performed to check the surface quality and in-plane epitaxial relationship.

In order to determine the band gap, two different techniques were used. On the one
hand, transmission spectra were recorded with a Shimadzu UV2550 (Shimadzu Deutsch-
land GmbH, Duisburg, Germany) double-beam spectrometer in the range from 300 nm to
850 nm using an integrating sphere in transmission geometry to reduce scattering. On the
other hand, direct and inverse photoelectron spectroscopy (UPS and IPES) were employed
to analyze the occupied and unoccupied density of states, respectively. The measurement
setup is described in detail in ref. [32].

Additionally, transmission line method (TLM) measurements were performed to
detect electrical responses upon illumination of the sample. Therefore, Au electrodes were
evaporated horizontally onto the film with a distance of 800 µm, as shown in Figure 1b. A
two-point contact method was used instead of a 4-point contact, as it is assumed that the
sheet resistance of the sample (GΩ range) is greater than the contact resistance between the
Au electrode and the PFN. The voltage was swept between -10 V and +10 V in the dark
and under illumination with a white light source.

3. Results and Discussion

In Figure 2, the θ-2θ XRD pattern for a PFN film deposited on an (001)-oriented STO
substrate is shown. The STO and PFN peaks are clearly visible, and no secondary phase
is observed, indicating the formation of a phase-pure perovskite layer. The detected PFN
peaks correspond to (001) planes of the perovskites structure, which indicates that the film
grows epitaxially on the STO (001) substrate. In order to check the crystallinity of the film, a
rocking curve was measured (Figure 3a). Here, sharper peaks of the rocking curve indicate
a higher degree of crystallinity of the film. The PFN peak is not particularly sharp; the full-
width at half maximum (FWHM) is FWHMPFN = 0.385◦. However, it should be considered
that the rocking curve of the crystalline substrate is also relatively broad, with FWHMSTO
= 0.253◦. As the PFN peak is only 1.5 times broader, we assume the crystallinity of the thin
film to be high. For confirmation, we performed additional pole figure measurements, with
the result being shown in Figure 3b. The sample only yields four peaks in the ψ range from
40◦ to 50◦, which means that it has the same in-plane orientation as the substrate and there
is no rotation of individual grains in the layer. Since four peaks are visible, the PFN film
must have a fourfold rotation symmetry, which is either tetragonal, or cubic. Bulk PFN
has a monoclinic structure [27]; however, mechanical misfit stress may stabilize another
structure in epitaxial thin films. Yan et al. [33] investigated the structure of PFN deposited
on cubic STO (001) and found that due to the lattice mismatch, the a and b parameter
of the unit cell are equally compressed, and the c parameter is expanded, resulting in a
tetragonal structure.
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Figure 2. θ-2θ XRD spectra of the PFN film deposited on an STO (001) substrate via PLD.
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Figure 3. Rocking curve (a) and pole figure (b) measured for the PFN film deposited on an STO
(001) substrate.

To further investigate the surface quality of the PFN thin film, RHEED measurements
were carried out in situ right after deposition (Figure 4). The indication of the Laue circle,
the appearance of Kikuchi lines, and an RHEED streaky pattern indicate a smooth surface
and an excellent crystalline quality.
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Figure 4. In situ RHEED measurements show the Laue circle and clear Kikuchi lines.

In order to estimate the layer thickness, reflectivity measurements were performed.
X-ray reflectivity is a technique sensitive to the electronic density (chemical composition),
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thickness, and roughness and is a reliable method to evaluate the thickness of thin films
and multilayers using the following relation:

θ2 − θ2
c = m2

(
λ

2d

)2
(1)

where d is the thickness, λ is the X-ray wavelength, θ is the satellite maximum, m is the
order of reflection, and θc is the critical angle of reflectivity. By plotting the maxima θ2

versus the reflection order m2 and performing a linear fit, a value of d can be extracted from
the slope of the linear fit. This simple method allows determining the thicknesses without
simulating the whole intensity profile [34].

Figure 5 shows the reflectivity of the film obtained after 5000 laser pulses, where
typical Kiessig oscillations are observed [35]. A large number of oscillations indicates a flat
and well-defined film/substrate and film/air interface, which supports the results of the
RHEED measurements. By fitting these oscillations using Equation (1), a layer thickness
of approximately 100 nm can be estimated. Increasing the layer thickness with a higher
deposition time resulted in a drastic increase in the surface roughness.
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Figure 5. Reflectivity measurement with Kiessig oscillations for a PFN layer deposited with
5000 laser pulses.

Current reports about the band gap of PFN in the literature are contradictory. Ac-
cording to the theoretical calculations of Bharti et al. [31], PFN has a direct band gap of
0.43 eV. However, from experimental UV-Vis spectroscopy measurements performed on
PFN powders [30], values of the band gap larger than 2.3 eV were obtained. In order to
evaluate the band gap of a material, epitaxial films are convenient objects of study. Since
the layers are grown epitaxially and are highly oriented, one can expect that the number of
defects and related trap states is low. The widely used method for the estimation of the
band gap is based on measuring the absorption spectra using UV-Vis spectroscopy. Several
absorption edges corresponding to optical transitions can be observed between ~2.3 eV
and 3.2 eV in Figure 6a. If the films are homogeneous and not strongly confined, Tauc plots
can be applied to the optical absorption curves to determine the optical bandgap of the
material [36,37]. The functional form of the Tauc plot depends on the direct or indirect
nature of the band gap. Because the character of the band gap for PFN is unknown, the
Tauc plots for both cases (Figure 6b,c) were evaluated and yielded similar results with
optical transitions at 2.32 eV (2.25 eV) and 2.78 eV (2.75 eV) for the direct (indirect) band gap
approximations. These values are similar and in rough agreement with the value of 2.55 eV
reported for PFN powders prepared by mechanical activation-assisted synthesis [30].
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Figure 6. Absorbance spectra for the PFN layer from UV-Vis absorption measurements (a). Tauc plots for direct (b) and
indirect (c) band gap.

To complement the results of the UV-Vis measurements (Figure 6), additional UPS/IPES
measurements (Figure 7) were performed on the PFN layer deposited on STO/SRO. It should
be noted that by using such techniques with high surface sensitivity (few nm), surface contam-
ination, e.g., due to the preparation in an oxygen-rich environment, can affect the results. Thus,
the calculated values for the work function (Wf), the ionization energy (IE), and the electron
affinity (EA) may deviate some 100 meV from the actual material values but should be precise
enough for the estimation. The obtained results yield a conduction band minimum ECB at
−0.8 eV relative to the Fermi level and the valence band maximum EVB at 1.95 eV, resulting in
the fundamental band gap EG, fund of 2.75 eV. The fundamental band gap is defined as [38]:

EG, f und = IE − EA = ECB − EVB (2)
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Figure 7. Combined IPES/UPS measurements of the PFN layer deposited on STO/SRO. The band
onset, the position of the high binding energy cut-off (HBEC), and extracted energy values are
indicated in the graph.

This value is in good agreement with the high-energy optical transition estimated
from the UV-Vis measurements discussed before. While the UPS/IPES measurements give
information about the fundamental band gap, UV-Vis absorption measurements detect all
kinds of optical transitions, which also includes defect states and band tails. We therefore
conclude, from the comparison of the UV-Vis spectroscopy with the UPS/IPES data, that
the absorption edge observed at ~2.3 eV (2.25 eV) likely originates from defect levels in
the band gap, while the absorption at ~2.78 eV (2.75 eV) corresponds to the fundamental
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band gap. It was reported in the literature that the band gap value in PZT or PLZT films
depends on the film thickness, while no clear trend has been found [39–41]. In our case, the
band gap for the 100 nm thin films is comparable with the data for the bulk PFN, where the
value of 2.67 eV was measured. Since no confinement effects are expected in the 100 nm
films, the agreement of the band gaps is another hint towards the great quality of the PFN
layer, despite the large surface to volume ratio.

As for the nature of the band gap in PFN, we have to note that most of the litera-
ture [12,22,42] considers a direct band gap for perovskite ferroelectrics such as PZT, PLZT,
and BFO. As PFN belongs to the same group of materials, the direct band gap is more
likely to be correct, although this question cannot be answered conclusively.

Notably, the band gap in PFN is much smaller compared to other lead-based per-
ovskite ferroelectrics, which extends the range of absorbed light from ultraviolet to the
blue range of the visible spectrum up to around 450 nm. The device efficiency can be
expected to be higher than for PZT or PLZT if a photovoltaic effect is also seen in PFN. To
make initial tests in this direction, we checked whether the PFN layers react to illumination
by generating a photocurrent. For this, a voltage was applied to the structure shown in
Figure 1b and swept from −10 V to +10 V. The current flowing through the PFN layer was
measured in the dark and under the illumination by a white light source and is displayed
in Figure 8. For better visualization, the symmetrical results for both voltage polarities
are shown in the positive voltage range. It can clearly be seen that when the sample is
illuminated, the current increases. The conductivity rises from 23 S/µm to 35 S/µm, which
means that charge carriers are generated by the light (Figure 8a). This increase needs to be
confirmed further: When the light was turned on during the voltage sweep at 4.5 V, the
sample showed a clear photoconductive response in the form of an instantly increasing
current, as seen in Figure 8b.
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Figure 8. (a) TLM response of a sample in dark (black lines) and illuminated (red lines) for a contact
distance of 800 µm. (b) The sample was illuminated while sweeping.

A relatively low current can be explained by the large distance (800 µm) between
the Au electrodes and the strong insulating character of the PFN thin film. However, this
might not be the expected photovoltaic effect since the polarization direction is out of plane
due to the tetragonal structure, and the electric field is applied in-plane, which makes the
electron–hole separation more difficult. Nevertheless, a photoresponse has been proven.

4. Conclusions

A pure PFN layer was successfully deposited on a (001)-oriented STO substrate using
PLD. It was grown epitaxially with high crystallinity and a tetragonal structure as indicated
by the XRD measurements. UV-Vis spectroscopy measurements revealed optical transitions
at ~2.32 eV (~2.25 eV) and ~2.78 eV (~2.75 eV) for the direct (indirect) band gap. These
results of the UV-Vis spectroscopy are in good agreement with the UPS/IPES measurements
indicating a fundamental band gap of ~2.75 eV. The optical transition at lower values is
assigned to defects states such as oxygen or lead vacancies. However, the question of direct
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or indirect band gap could not be answered yet. The band gap value is more promising
for photovoltaic applications compared to other lead-based ferroelectrics as PZT, PLZT, or
PTO, especially as initial tests under illumination proved the photogeneration of charge
carriers in the PFN film.
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