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Serdaş und Max Reichel für Zerstreuung Abseits der Mechanik.
Bedanken möchte ich mich auch bei meinen ehemaligen und derzeitigen Kollegen am
Institut für Mechanik, Solveigh Averweg, Daniel Balzani, Dominik Brands, Simon
Fausten, Markus von Hoegen, Simon Kugai, Matthias Labusch, Veronica Lemke, Petra
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Abstract

The development of mixed and hybrid finite element formulations with the aim of ensur-
ing reliable, robust and accurate formulations has been an ongoing area of research over
the past decades. The present work is intended to contribute to this and deals with the
application and analysis of mixed and hybrid formulations for nonlinear material rela-
tions. The focus here is on the consideration of mixed stress-displacement formulations
and the application for hyperelasticity and plasticity. In particular, the least-squares
finite element method (LSFEM) is considered. Among other advantages, the LSFEM
results in a minimization problem compared to other mixed methods and thus offers
the possibility of direct application of the method in the field of hyperelasticity and
finite plasticity without any constraint by stability conditions. For a preliminary in-
vestigation of mixed formulations and their fulfillment of plastic material constraints,
a Hellinger-Reissner formulation for small deformations is first analyzed. The LSFEM
and its challenges are investigated for the small and finite deformation theory and the
findings are then considered in the area of finite plasticity. Furthermore, a mixed hybrid
finite element formulation based on a hyperelastic least-squares approach is derived and
analyzed. For this purpose, continuity requirements are relaxed and enforced by the
method of Lagrange multipliers on the inter-element boundaries.

Zusammenfassung

Die Entwicklung von gemischten und hybriden Finite Elemente Formulierungen mit
dem Ziel zuverlässige, robuste und genaue Formulierungen zu gewährleisten, stellt in
den vergangenen Jahrzehnten einen aktiven Forschungsbereich dar. Die vorliegende Ar-
beit soll einen Beitrag hierzu liefern und befasst sich mit der Anwendung und Analyse
von gemischten und hybriden Formulierungen für nichtlineare Materialzusammenhänge.
Der Fokus liegt hierbei auf der Betrachtung von gemischten Spannungs-Verschiebungs
Formulierungen und der Anwendung für Hyperelastizität und Plastizität. Insbesondere
die Least-Squares Finite Elemente Methode (LSFEM) wird betrachtet. Neben weit-
eren Vorteilen, resultiert die LSFEM im Vergleich zu anderen gemischten Methoden in
einem Minimierungsproblem und bietet somit die Möglichkeit der direkten Überführung
der Methode in den Bereich der Hyperelastizität und finiten Plastizität ohne die Ein-
schränkung durch Stabilitätsbedingungen. Für eine Voruntersuchung gemischter For-
mulierungen und deren Erfüllung der plastischen Materialgleichungen wird zunächst
eine Hellinger-Reissner Formulierung für kleine Deformationen analysiert. Die LSFEM
und deren Herausforderungen werden sowohl für die Theorie kleiner als auch finiter De-
formationen untersucht und die Erkenntnisse anschließend im Bereich der finiten Plas-
tizität berücksichtigt. Des Weiteren erfolgt die Herleitung und Analyse einer gemischten
hybriden Finite Elemente Formulierung auf Basis eines hyperelastischen Least-Squares
Ansatzes. Hierzu werden Kontinuitätsbedingungen relaxiert und durch die Methode der
Lagrangemultiplikatoren auf den Elementkanten eingefordert.
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Introduction and outline 1

1 Introduction and outline

Approaches for solving partial differential equations (PDEs) on arbitrary structures are
indispensable in today’s development and research, e.g., in automotive, aerospace, and
industrial products industries, since the equations in these areas are usually no longer an-
alytically solvable. Over the last decades, the finite element method (FEM), among other
methods, has proven to be particularly effective and is nowadays included in a large num-
ber of simulation tools. First references are given by the pioneering work of Argyris [3],
the publication Clough [79] introduce the terminology finite element and the first
textbook on finite elements have to be attributed to Zienkiewicz and Cheung [245].
Furthermore, the linear triangular element is introduced in Courant [82] and the
six-noded triangle in Fraeijs De Veubeke [101]. The method is characterized by
the decomposition of an arbitrary domain into finite subdomains, the so-called finite
elements, and based on these simple geometries, the solution of the overall problem can
be simulated. In the past decades, great progress has been made in the development
of new methods based on the FEM. Nevertheless, the development of the method,
also due to the constantly improving computing power, is far from complete and new
approaches are constantly being introduced with the aim of developing finite element
formulations which provide reliable, robust and accurate solution for all application areas.

Galerkin and mixed Galerkin FEM
For this purpose finite element design is driven by the main goal of improvement of
element performance, which is determined by reliability, stability and solution quality as
well as accuracy. In Wriggers [236] and Wriggers [237], a general list of requirements
is set as criteria for the development of finite elements, which include, e.g., locking free
behavior, good solution accuracy for coarse meshes, insensitivity to mesh distortion and
simple implementation of nonlinear formulations.
An immense effort has been invested in the development of finite elements based on the
variational approach going back to Galerkin [102] over the past decades. In general
this approach consider the approximation of one unknown quantity, in solid mechanics
given by the displacement field. Such elements are referred as pure displacement elements
and are widely used due to their simple implementation. Nevertheless, it has been shown
in, e.g., Babuška and Suri [21], pure displacement elements are limited by certain
constraints, which can lead to locking behavior and unreliable results in displacement
and stress fields.
Due to the mentioned aims in finite element design, a wide range of approaches have been
developed to overcome the limitations of the pure displacement elements, considering,
e.g., mixed variational principles, reduced integration and stabilization methods, cf.
Wriggers [236; 237]. For the mixed variational principles mainly two formulations are
applied. The first one is a two-field formulation, with independent displacement and
stress approximation for problems in solid mechanics, denoted as the Hellinger-Reissner
principle, see Reissner [190] and the early contributions of Hellinger [107] and
Prange [183]. A second mixed Galerkin formulation is defined by the Hu-Washizu
principle, in terms of displacements, strains and stresses, see the independent contri-
butions of Hu [117] and Washizu [231]. This principle is defined previously in the
work of Fraeijs de Veubeke [100], who derived five variational principles based on a
four-field approach with respect to displacements, strains, stresses and surface tractions,
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cf. Felippa [98] and Braess [50]. An overview of these mixed formulations can be found
in Auricchio et al. [17], Wriggers [236] and Braess [50], among others.
The major challenge in the application of these mixed formulations is the choice of
appropriate finite element solution spaces and their proper balancing, since they result
into matrices with saddle point structures. As a consequence, in general the existence
and uniqueness of solutions cannot be guaranteed. In order to ensure these stability re-
quirements for mixed formulations, the so-called LBB-condition or inf-sup condition have
to be fulfilled, which is defined independently by Ladyzhenskaya [144], Babuška [20]
and Brezzi [55]. For a detailed discussion on the existence and uniqueness of solu-
tions, see, e.g., Boffi et al. [49], Auricchio et al. [17], Brezzi and Fortin [56],
Brenner and Scott [53] and Braess [50]. The Hellinger-Reissner formulation can be
subdivided in a primal (u ∈ H1,σ ∈ L2) and dual formulation (u ∈ L2,σ ∈ H(div)),
cf. Braess [50]. For the primal formulation stable combinations are presented in
Yu et al. [243], Li et al. [151], Braess [50] and for the dual formulation see
Arnold et al. [9; 11; 13] and Johnson and Mercier [127]. Further mathe-
matical aspects of the Hellinger-Reissner principle for elasticity can be found in
Arnold and Winther [6], Auricchio et al. [17], Lonsing and Verfürth [153],
Arnold et al. [9], Boffi et al. [48] and Cockburn et al. [80]. One nowa-
days well established stress approximation for the primal Hellinger-Reissner prin-
ciple is presented in Pian and Sumihara [178] and extended to d = 3 in
Pian and Tong [179]. This discontinuous stress approximation is known to be
remarkable insensitive to mesh distortion, locking free for plane strain quasi-
incompressible elasticity and yield superconvergent results for bending dominated
problems, see Pian and Sumihara [178], Simo et al. [218], Chun et al. [75],
Wriggers and Korelc [238] and Schröder et al. [200]. A dual Hellinger-Reissner
formulation is discussed in, e.g., Klaas et al. [132] and Schröder et al. [198]
using BDM elements for the stress approximation, see Brezzi et al. [57]. The
inf-sup stability of the Hu-Washizu formulation is presented in Braess [50]. Fur-
ther, finite element developments are based on the Hu-Washizu principle as, e.g., for
the framework of the enhanced assumed strain method, cf. Simo and Rifai [216],
Andelfinger and Ramm [2], Yeo and Lee [242] and Bischoff et al. [37].
The fulfillment of the stability conditions is often not easy to accomplish and not always
possible in an analytical manner, especially for formulations within the field of finite
deformations. In order to provide at least a numerical estimate for the conditions, a
numerical inf-sup test is presented in Chapelle and Bathe [73] and Bathe [24; 25].
Furthermore, numerical estimates for stability requirements are defined by the count
criterion in Zienkiewicz et al. [249; 250].

Least-squares finite element method
Another mixed finite element method is given by the least-squares finite element method
(LSFEM). A detailed introduction to the theoretical foundations and discussion on the
least-squares finite element method is given in the monographs Eason [92], Jiang [125],
Kayser-Herold and Matthies [129] and Bochev and Gunzburger [43].
The method is particularly popular in the field of fluid mechanics based on
the inherent advantageous properties of the method, see, e.g., Jiang [125] and
Bochev and Gunzburger [43]. These are, inter alia, given by a uniform mathematical
procedure applicable for basically all types of PDEs. Furthermore, the resulting system
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matrices are symmetric and positive definite and the constructed least-squares (LS) func-
tional can be used as an a posteriori error estimator, which can be applied for adaptive
refinement strategies, without additional computational costs, see Berndt et al. [31],
Cai and Starke [61] and Bochev and Gunzburger [43], among others. In contrast
to mixed Galerkin formulations, the LS formulation results in a minimization problem
and is thus not restricted by the LBB-condition and lead to a flexibility in the choice of
polynomial order of the finite element approximation. Furthermore, the LS formulation
can be applied to non-self-adjoint operators. This is a great advantage compared to the
standard Galerkin formulation, especially in fluid mechanics or in transport problems in
general, since convection operators are non-self-adjoint operators and result in asymmet-
ric matrices, which in consequence can lead to oscillations and instabilities of the solution
for the Galerkin method, cf. Jiang [125], Kayser-Herold and Matthies [129] and
Quarteroni and Valli [186]. On the other hand, there are also disadvantages as
the weak performance for low order elements and the crucial influence of the solution
accuracy on the associated weighting parameters within the formulation, see, e.g.,
Deang and Gunzburger [89], Pontaza [182] and Schwarz et al. [205]. There
are several approaches for weightings, e.g., weighting to obtain norm equivalence
proposed by Bochev and Gunzburger [43], Bochev [38], local error weighting
by Jiang [124; 125], physical motivated weighting, see Bell and Surana [26; 27],
Heys et al. [109] and matrix weighting as proposed in Salonen and Freund [195]
and Kayser-Herold [128].
First appearance of the least-squares method (LSM) in correlation with finite element
applications and their mathematical analysis are given by Lynn and Arya [155; 156],
Zienkiewicz et al. [248], Jespersen [123], Fix et al. [99] and an overview on early
developments of LS is given by Eason [92]. A general theory for the LSM for elliptic
systems is proposed by Aziz et al. [19] in order to obtain a priori estimates for elliptic
systems and to prove optimal convergence rates. Over the past decades, the LSFEM has
become a frequently used method, see, e.g., Kayser-Herold and Matthies [129] for
an extensive literature review on the development of the method.
The method was first applied for fluid mechanic problems for the Stokes equations in
the interrelated works of Jiang and Chang [126] and Chang and Jiang [71]. In the
following years, a wide range of work was done using the LSFEM for the Stokes and
Navier-Stokes equations with different approaches for the first-order systems. The LSM in
terms of a velocity-vorticity-pressure formulation is discussed for the Stokes equations in,
e.g., Jiang and Chang [126], Bochev and Gunzburger [40; 41], Bochev [39] and
Cai et al. [63], among others. Furthermore, the Navier-Stokes equations are analyzed
in a system of first-order which depends on a velocity-pressure-vorticity-temperature-
heat-flux system in Tang and Tsang [226] and a velocity-pressure-stress system is
presented for Stokes equations in Bochev and Gunzburger [42]. Furthermore, a
p-version least-squares approach is investigated in Bell and Surana [26; 27] and
Winterscheidt and Surana [234], e.g., for incompressible, non-Newtonian isother-
mal and non-isothermal fluid flow. The working group led by Prof. Cai, Prof. Manteuffel
and Prof. McCormick defined the term first-order system least-squares (FOSLS)
in their contributions, see, e.g., Cai et al. [63; 64; 65; 66; 67], Kim et al. [130],
Manteuffel et al. [158]. In Cai et al. [64] linear elasticity is considered for a
displacement gradient and pressure formulation and further analyzed in Cai et al. [65]
with respect to two-stage algorithms, which solve the displacement gradients in a first step
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and in a second step the displacements. This approach is further extended and investi-
gated for various boundary value problems in the related publications Cai et al. [66; 67]
for multigrid solution methods. The considered field quantities in the latter mentioned
publications are mainly approximated in H1. Furthermore, the LSFEM is applied for
linear and nonlinear first-order hyperbolic PDEs in Bochev and Choi [46; 47] and
De Sterck et al. [87; 88].
First applications of stress-displacement based LS formulations are introduced for
linear elasticity in Cai and Starke [60; 61] and Cai et al. [69]. Therein, the stress
approximation is performed with H(div)-conforming Raviart-Thomas functions, see
Raviart and Thomas [189]. In Schwarz et al. [205] and Starke et al. [221]
a modified LS formulation, characterized by introducing the antisymmetric dis-
placement gradient in the test space, is shown to improve especially the low order
element performance. The extended LS formulation, in terms of a mathematically
redundant additional stress symmetry conditions, in Cai and Starke [60; 61] is
further investigated in Schwarz et al. [207] for static and dynamic problems and
in Igelbüscher et al. [120] with an explicit consideration of the balance of angular
momentum for the recalculation of reaction forces. Furthermore, the LSFEM for geo-
metrically nonlinear solid mechanics is presented in, e.g., Manteuffel et al. [158]
for a St. Venant-Kirchhoff material law and for a Neo-Hookean material law from
a more engineering perspective in the publications of Schwarz et al. [206; 208]
and Schröder et al. [199] and in Starke et al. [222], Müller et al. [167],
Müller [165], Müller and Starke [166] from a mathematical point of view. The
work of Schröder et al. [199] gives an overview of small and finite elastic deformations
for isotropic and anisotropic material behavior.
The proposed H1 × H(div) least-squares formulation in Cai and Starke [60; 61] is
further investigated by Starke [219; 220] for small strain elasto-plasticity with adaptive
mesh refinement in terms of the LS functional as an a posteriori error estimator, where
a generalized Gauss-Newton method is applied. In Kwon et al. [143] a meshfree LS
approach for elasto-plasticity is discussed and Schwarz et al. [204] proposed a rate-
dependent viscoplastic LS formulation. The straightforward utilization of the LSFEM for
rate-independent plasticity is shown to lead to drawbacks within the application of the
standard Newton-Raphson method, see Kubitz [142] and Schwarz [203] for the case
of small strain plasticity and Igelbüscher et al. [119; 121] for finite J2-plasticity. A
possibility to overcome this is introduced in Kubitz [142] by a damped Newton method
and in Schwarz [203] and Igelbüscher et al. [119; 121] a modified first variation
is applied in order to guarantee a continuous first variation, which is related to the
approach in Schwarz et al. [205] and Starke et al. [221].
There is a wide range of further ideas in order to improve the LSFEM for particular cases
as, e.g., a formulation introducing a basis of singular functions with local support around
singular points is suggested in Berndt et al. [32; 33] for elliptic problems with discon-
tinuous coefficients. Furthermore, weighted norms LSFEM for problems with singularities
in order to guarantee optimal converge are proposed in Manteuffel et al. [157],
Lee et al. [146; 147], Cai and Westphal [62], which requires knowledge of the
arising singularity in the problem, whereas in Hayburst et al. [106] the norms are
weighted based on a coarse-scale approximation.
In Bensow and Larson [28; 29] LS formulations are proposed with discontinuous
approximation of unknown fields, in which the boundary conditions as well as tangential
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and normal continuity is weakly enforced within the LS functional. This is similar to the
relaxation of regularity requirements, by replacing the standard L2 norms by dual space
norms as suggested in Bramble et al. [51], Cai et al. [68]. Furthermore, it can be
seen to be related to the approaches in discontinuous Galerkin (DG) and discontinu-
ous Petrov-Galerkin (DPG) methods, see Demkowicz and Gopalakrishnan [90].
Therein, jump conditions on the element boundaries, in terms of additional degrees of
freedom, enforce the relaxed continuity requirements in the trial and test spaces, see
Arnold et al. [12].

Hybrid mixed finite elements
The latter idea represent a further approach in the field of mixed FEM which can be
denoted by hybrid FEM. First references for hybrid methods in the engineering commu-
nity are going back to Pian [176] and Fraeijs De Veubeke [101]. In solid mechanics
conforming finite element formulations have to fulfill certain continuity requirements at
inter-element boundaries, i.e., normal continuity of the stress field and continuity of the
displacements. Throughout this thesis, hybrid FEM is characterized by the simultaneous
approximation of at least one field defined on element level and a Lagrange multiplier
defined on the union of the boundaries of the elements, cf. Roberts and Thomas [192]
and Carey and Oden [70]. This means that the relaxed continuity requirements are
enforcement on the inter-element boundaries through Lagrange multipliers, since no conti-
nuity is given related to a discontinuous approximation of unknown fields on element level,
see Atluri et al. [15; 16], Carey and Oden [70], Roberts and Thomas [192] and
Brezzi and Fortin [56]. The idea of mixed hybrid FEM is further discussed for
hybrid stress elements in Pian and Chen [177], Punch and Atluri [185] and
Xue and Atluri [239] and the existence and stability of general mixed hybrid elements
is analyzed in Xue and Atluri [240]. As previously mentioned, a similar approach
can be obtained by directly adding the constraint condition to a LS formulation with
respect to appropriate norms and rewrite these into equivalent norms in order to achieve
a formulation based on the classical L2 norm, see Bochev and Gunzburger [43]. An
approach with an enriched discrete space by discontinuous elements in the vicinity of
singularities is studied for the first-order Poisson problem by Bensow and Larson [28]
and in Bensow and Larson [29] a discontinuous LS formulation is investigated
for the div-curl problem on non-convex domains. In Ye and Zhang [241] a dis-
continuous LS formulation for general polytopal meshes is introduced and rigorous
error analysis is provided. Furthermore, in Igelbüscher and Schröder [118] and
Schröder and Igelbüscher [197] a hybrid mixed formulation is derived for linear
elasticity based on a least-squares finite element approach. This approach yields physically
correct stress distributions for problems with material interfaces by applying a stress
approximation with σ ∈ L2 on each element.
Note that, the term hybrid is widely used for different approaches in the theory of
finite elements, e.g., Liu et al. [152] introduce a hybrid LS formulation, where the
term hybrid emphasize the fact that two first-order system least-squares formulation
are combined by an additional intermediate term, retaining the properties of both
formulations.



6 Introduction and outline

Outline
The main objective of this work is the application and analyses of mixed and hybrid finite
element formulations for material nonlinearities. For this aim mainly the least-squares
finite element method is considered as a discretization approach, inter alia, for nonlinear
elasticity and finite J2-plasticity. Therefore, a previous discussion on the enforcement of
plastic constraints with respect to mixed formulations is presented in terms of the mixed
Hellinger-Reissner principle. Beside this, a hybrid mixed formulation is derived based on
a least-squares approach at finite elasticity.
In summary, the present work is structured as follows.

In Chapter 2 the essential fields of continuum mechanics as the motion and deformation
of bodies is presented in terms of the kinematics, the stress concept in a continuum and
the fundamental balance principles. Furthermore, the concept of material modeling and
the different material descriptions, as finite elasticity and the derivation of plastic material
constraints are considered.

As an introduction to the finite element method, the underlying ideas and fundamentals
are briefly introduced in Chapter 3. In addition, the basic mathematical relations used
in this work are defined. In order to classify the methods used, they are briefly explained
and their relationship is shown by means of the principle of weighted residuals. The finite
element approaches used are presented and a brief explanation of implementation aspects
is given.

In order to clarify basic properties of mixed methods, Chapter 4 first introduces the
methods using the theory of small deformations. For this purpose, challenges of LSFEM
are discussed and first conclusions for the further analyses are drawn. The enforcement of
plastic constraints is presented using a primal mixed Hellinger-Reissner method for small
strain J2-plasticity.

The obtained findings serve as a basis for the extension to finite deformations in
Chapter 5. For this purpose, the LSFEM is first presented for hyperelastic materials
in the two-dimensional case, considering different approaches to improve the accuracy of
the solutions and convergence properties by extended functionals and modified first vari-
ations. Based on this, a mixed LS formulation for finite plasticity is derived, where the
modification of the weak form is essential for the solvability of the method.

In Chapter 6 the derivation of a hybrid mixed finite element method in terms of a
LS approach is presented. For this, discontinuous stress and displacement approaches are
introduced, where the essential continuity conditions are enforced via Lagrange multipliers
on the element boundaries. The resulting elements allow the application of non-conformal
stress approximations at element level for the consideration of problems with material
interfaces.

Chapter 7 concludes the present work with a summary of the achieved findings. Fur-
thermore, an outlook is given for future work with respect to the considered fields.
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2 Foundations of continuum mechanics

The method of continuum mechanics states the foundation for the description of physical
phenomena in solids and fluids. This approach is based on the assumption of a contin-
uum characterized by corresponding physical quantities such as density and temperature.
The real molecular structure is replaced and the occurring quantities are only assumed
as averaged values, which does not reflect every detail of the structure, but is useful
for calculation and application in the engineering field. The essential fields of contin-
uum mechanics are the motion and deformation of bodies, i.e., kinematics, the concept
of stresses in the continuum and the mathematical description of the fundamental phys-
ical laws denoted as balance principles. The continuum mechanical relations are only
given in a short summary for the discussed topic of this work, more detailed descrip-
tions can be found in, e.g., Truesdell and Noll [229], Eringen [93], Noll [173],
Marsden and Hughes [159], Ogden [174] and Holzapfel [116].

2.1 Kinematics

A physical body B with the related surface ∂B is described as an accumulation of material
points or particles in the three-dimensional Euclidean space R3. For the interpretation
of deformations, at least two different states of the body are considered. A reference
(undeformed) configuration B0 ⊂ R3 at time t0 is stated as material configuration and
parameterized in X and a current (deformed) configuration Bt ⊂ R3 at time t > t0
describes the spatial configuration, parameterized in x, see Figure 2.1.

Bt
B0

dX

ϕ(X, t)

dA dV

dx

da

dv

dx = F dX

da = cof F dA

dv = detF dV

E1 e1

E2

E3 e3

e2

Figure 2.1: Motion of a body in Euclidean space with right-handed orthogonal, cartesian
basis system EA and ea

The transformation of the body from B0 at t0 to Bt at t > t0 is described by a continuous,
nonlinear and unique (one-to-one) mapping ϕ(X, t), i.e.,

ϕ(X, t) : B0 → Bt . (2.1)

This mapping describes a bijective transformation, i.e., every material point X = XAEA

for A = 1, 2, 3 on the body B0 is transferred into exactly one point x = xa ea with
a = 1, 2, 3 on the body Bt at fixed time t, i.e., ϕ : X 7→ x. Since ϕ is assumed to be
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uniquely invertible, the description of x and X in terms of ϕ is given by

x = ϕ(X, t) and X = ϕ−1(x, t) . (2.2)

The difference between the reference X and the actual position vector x is denoted by
the displacement vector u and defined as

u = x−X , thus x = X + u . (2.3)

A fundamental kinematic quantity is the deformation gradient given as the gradient of
the deformation map ϕ(X, t) and defined by

F =
∂ϕ(X, t)

∂X
=

∂x

∂X
= Gradx = ∇Xx and F =

∂xa

∂XA
ea ⊗EA = F a

A ea ⊗EA ,

(2.4)
where Grad Υ = ∇XΥ is introduced as the gradient operator with respect to the reference
coordinates X for a second order tensor Υ ∈ Rn×n. Obviously, the deformation gradient
is a two-field tensor with one basis in each configuration, cf. (2.4), and in general not
symmetric. Considering Equation (2.3)2 gives a relation for the displacement gradient
with respect to the reference placement and the displacement field as

F = ∇Xx = ∇X(X + u) = 1 +∇Xu , (2.5)

in terms of the second order identity tensor 1. The deformation gradient is a linear trans-
formation map of infinitesimal line elements dX in the reference configuration to dx in
the current configuration, i.e.,

dx = F · dX and dX = F−1 · dx . (2.6)

For a unique (one-to-one) transformation map, the existence of ϕ−1 has to be ensured.
Therefore, the existence of F−1 has to be guaranteed, which is done by the necessary and
sufficient condition that a non-zero determinant of the deformation gradient F exists,
denoted as the Jacobian determinant J = detF 6= 0. The Jacobian determinant describes
the volume ratio, which is shown later on. Assuming that volume elements cannot have
negative volumes and thus self penetration during motion is omitted leads to J > 0.
Furthermore, the inverse deformation gradient is defined by

F−1 =
∂X

∂x
= ∇xX =

∂x

∂x
− ∂u

∂x
= 1− gradu = 1−∇xu , (2.7)

where grad(•) = ∇x(•) denotes the gradient operator with respect to the current place-
ment x. The mappings of area and volume elements from the reference into the current
configuration are defined by

da = cof F · dA = JF−T · dA and dv = J dV , (2.8)

with cof F = det[F ]F−T as the definition of the cofactor of F and dA = N dA and
da = n da as the area elements in reference and current placement ( dA = dX1× dX2).
N and n are the corresponding outward unit normal vectors on the cutting plane of
reference and current configuration. Furthermore, the volume elements are defined by
a scalar triple product of the line elements dX with dV = ( dX1 × dX2) · dX3 and
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analogously for the current configuration.
The deformation gradient F describes the total deformation of a body consisting of rigid
body translations and rotations. Thus, it is not a suitable quantity for the measurement
of strains. F can be multiplicative decomposed into

F = R ·U = V ·R , (2.9)

where rigid body rotations are described by the orthogonal rotation tensor R, U and V
are the right (material) and left (spatial) stretch tensor, which are symmetric and positive
definite, i.e., detU > 0, detV > 0 and consequently detR > 0. A spectral decomposition
exemplified the physical meaning of the relations as

U =
3∑
i=1

λiNi ⊗Ni , V =
3∑
i=1

λini ⊗ ni and R =
3∑
i=1

ni ⊗Ni , (2.10)

where λi, i = 1, 2, 3 denote the principal stretches or eigenvalues of the left and right
stretch tensor and the eigenvectors in the reference and actual configurations are given
by Ni and ni. The decomposition of F reveals that it is inadmissible as a strain measure,
since it includes rotations which, in the case of an applied rigid body motion, would lead
to unreasonable strain measures in the body. Suitable strain measures are given by the
right (material) and left (spatial) Cauchy-Green deformation tensor, i.e.,

C = F T · F = UT ·RT ·R ·U = UT ·U and C = F a
A δab F

b
BE

A ⊗EB ,

B = F · F T = V ·R ·RT · V T = V · V T and B = F a
A δ

AB F b
B ea ⊗ eb .

(2.11)

Both, C and B, are rotationally independent and only depend on the stretch of the
body. Based on (2.10) and (2.11), C is defined in the reference and B in the current
configuration. For completeness, the Green-Lagrange strain tensor E is defined by

E =
1

2
(C − 1) =

1

2
(F T · F − 1) and E =

1

2
(F a

A δab F
b
B − δAB)EA ⊗EB , (2.12)

as a symmetric tensor in the reference configuration and describes the difference of squared
distances, i.e., ds2 − dS2 with ds = |dx| and dS = |dX|.
As a fundamental of time-dependent deformation processes, material time derivatives are
introduced. For this, the material time derivative of the deformation gradient is considered
as a basic kinematic quantity, which is defined as the material velocity gradient, i.e.,

Ḟ =
D

Dt

( ∂x
∂X

)
=

∂ẋ

∂X
= ∇Xẋ =

∂ẋ

∂x

∂x

∂X
= L ·F with the velocity ẋ =

Dx

Dt
, (2.13)

where L denotes the spatial velocity gradient given as

L := ∇xẋ =
∂ẋ

∂x
=

∂ẋ

∂X
· ∂X
∂x

= Ḟ · F−1 . (2.14)

An additive decomposition of L = D+W into the symmetric rate of deformation tensor
D and a skew-symmetric spin tensor W yields

D = Lsym =
1

2
(L+LT ) = DT and W = Lskew =

1

2
(L−LT ) = −W T . (2.15)
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Furthermore, the material time derivative of the Jacobi determinant is obtain by

J̇ =
∂

∂t
detF =

∂ detF

∂F
:
∂F

∂t
= JF−T : Ḟ = J trL = J div ẋ , (2.16)

with the divergence operator div Υ = ∇ · Υ defined with respect to x and the trace
operator tr(Υ) = (Υ) : 1 for a second order tensor Υ ∈ Rn×n.

2.2 Concept of stresses

Deformation processes of a body Bt caused by internal and external influences, such
as, e.g., body forces or external mechanical loads, lead to inner forces and stresses. A
visualization of these stresses can be presented by an imaginary cutting plane, separating
the body Bt into two parts. The force acting on a surface element on the cutting plane is
denoted by df and is calculated by

df = t da = t0 dA . (2.17)

Here, the Cauchy traction vector t(x, t,n) defined by force measured per unit surface
area da defined in the current configuration is a function of position x, time t and the
outward unit normal vector n acting on the cutting plane. Analogously, the traction vector
t0(X, t0,N ) depends on the reference position X, time t0 and the outward unit normal
on the reference configuration N . The Cauchy stress theorem postulates the existence of
a stress tensor with the linear relation

t(x, t,n) = σ(x, t) · n and equivalently t0(X, t0,N ) = P (X, t0) ·N , (2.18)

with σ as the Cauchy stress tensor and P as the first Piola-Kirchhoff stress tensor. The
relation between σ and P is obtained by applying Nanson’s formula, i.e., (2.8)1 to (2.17),
with σ · n da = P ·N dA by

P = Jσ · F−T and the inverse relation σ = J−1P · F T = σT , (2.19)

with P the first Piola-Kirchhoff stress tensor given as a two field tensor and therefore
P 6= P T , PF T = FP T . For convenience, further stress measures are introduced. The
symmetric Kirchhoff stress tensor τ denotes a transformation of the Cauchy stresses to
the reference volume in terms of the Jacobian J , and is defined by

τ = Jσ . (2.20)

Furthermore, a symmetric stress tensor in the material configuration S, the second Piola-
Kirchhoff stress tensor, is defined by a pull-back operation of the Kirchhoff stresses, thus

S = JF−1 · τ · F−T . (2.21)

In the literature, further definitions of stress measures can be found, cf., e.g.,
Holzapfel [116]. An overview of the relation between the different stress quantities
is listed in Table 2.1.
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Table 2.1: Relation between different stress quantities

σ τ P S

Cauchy stress σ σ J−1τ J−1P · F T J−1F · S · F T

Kirchhoff stress τ Jσ τ P · F T F · S · F T

first P.-K. stress P Jσ · F−T τ · F−T P F · S

second P.-K. stress S JF−1 · σ · F−T F−1 · τ · F−T F−1 · P S

2.3 Balance principles

Hereafter, the mathematical description of the fundamental physical principles and foun-
dations of thermodynamics, i.e., conservation of mass, balance laws of linear and angular
momentum, balance of energy and entropy inequality are discussed. The presented prin-
ciples are axioms, i.e., fundamental laws which cannot be derived from other laws, but
which are directly comprehensible and correspond to observations in nature without any
restriction.

2.3.1 Balance of mass

The balance of mass implies that the change of the mass M of a body Bt at time t is zero
and the mass M over time is constant for a closed system, i.e.,

Ṁ = 0 with M =

∫
Bt
ρ dv =

∫
B0
ρ J dV =

∫
B0
ρ0 dV = const. , (2.22)

with ρ as the density of the body in the actual configuration and the reference density
denoted by ρ0, connected by means of the Jacobian ρ0 = ρ J . The material time derivative
of (2.22)2 is obtained with use of the transport theorem (2.8) and (2.16) in the actual
configuration as

Ṁ =
d

dt

∫
Bt

ρ dv =

∫
Bt

(ρ̇+ ρ div ẋ) dv = 0 , (2.23)

and the local statement is given by

ρ̇+ ρ div ẋ = 0 . (2.24)

2.3.2 Balance of linear momentum

The balance of linear momentum postulates that the material time derivative (time rate
of change) of linear momentum is equal to the sum of all volume and surface forces acting
on the body. A physical representation of this law is

İ = k , (2.25)

where the linear momentum is denoted by I and k denotes the sum of volume and surface
forces on the body, which are defined by

I =

∫
Bt
ρ ẋ dv and k =

∫
Bt
ρ b dv +

∫
∂Bt
t da . (2.26)
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Regarding (2.8), (2.16), the local statement of the balance of mass (2.24) and a reformu-
lation of the expression for the external force k by means of the Cauchy theorem leads
to

İ =

∫
Bt
ρ ẍ dv and k =

∫
Bt

(ρ b+ divσ) dv . (2.27)

The evaluation of (2.25) with (2.26) yields the global and local statement in the actual
configuration as∫

Bt
(divσ + ρ (b− ẍ)) dv = 0 ⇒ divσ + ρ (b− ẍ) = 0 , (2.28)

which can be transferred into the reference configuration with t da = t0 dA and t0 = P ·N
in (2.26)2 and introducing the body force in terms of the reference density ρ0, with (2.8),
ρ = J−1 ρ0, yielding

DivP + ρ0 (b− ẍ) = 0 , (2.29)

where Div(•) = ∇X(•) : 1 is the divergence operator with respect to X.

2.3.3 Balance of angular of momentum

The balance of angular momentum implies that the material time derivative of the moment
of momentum, with respect to a fixed reference point 0̄, is equal to the resulting external
moment of all volume and surface forces acting on the body, with respect to the same
fixed reference point 0̄, i.e.,

ḣ0̄ = m0̄ . (2.30)

The moment of momentum h0̄ and the external moment m0̄ with respect to the fixed
reference point 0̄ are given by

h0̄ =

∫
Bt
x× ρ ẋ dv and m0̄ =

∫
Bt
x× ρ b dv +

∫
∂Bt
x× t da . (2.31)

Considering (2.24), results for the material time derivative of h0̄ in

ḣ0̄ =
d

dt

∫
Bt
x× ρ ẋ dv =

∫
Bt
x× ρ ẍ dv . (2.32)

The reformulation of the external moment (2.31)2 by applying the Cauchy theorem and
divergence theorem gives

m0̄ =

∫
Bt
x× ρ b dv +

∫
Bt

(x× divσ +∇,xx× σ) dv . (2.33)

Inserting (2.33) and the local statement of the balance of linear momentum (2.28)2 into
(2.32) yields the reformulation of (2.30) as∫

Bt
∇,xx× σ dv =

∫
Bt

1× σ dv = 0 ⇒ 1× σ = 0 , (2.34)

which is fulfilled by the symmetry of the Cauchy stress tensor with

σ = σT . (2.35)

From (2.35), the symmetry of Kirchhoff stress tensor τ and the second Piola-Kirchhoff
stress tensor S can be derived.
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2.3.4 Balance of energy - first law of thermodynamics

The balance equation of energy, also known as the first law of thermodynamics, postulates
that the material time derivative of the sum of kinetic energy and internal energy is equal
to the sum of mechanical work of all inner and outer forces on the body and all other
energies acting in or on the body. For the consideration of only mechanical and thermal
energies, the balance of energy is given by

K̇ + Ė = W +Q . (2.36)

The kinetic energy K and internal energy E of a body are defined as

K =
1

2

∫
Bt
ρ ẋ · ẋ dv and E =

∫
Bt
ρ e dv , (2.37)

where e denotes the specific internal energy per unit reference mass. Furthermore, the
material time derivatives of the kinetic and internal energy is received by applying the
transport theorem (2.8), (2.16) and the local statement of the balance of mass (2.24),
with

K̇ =

∫
Bt
ρ ẋ · ẍ dv and Ė =

∫
Bt
ρ ė dv . (2.38)

Additionally, the mechanical power W and thermal power Q are defined by

W =

∫
Bt
ẋ · ρ b dv +

∫
∂Bt
ẋ · t da =

∫
Bt
ẋ · ρ b dv +

∫
Bt

(divσ · ẋ+ σ : L) dv , (2.39)

and

Q =

∫
Bt
ρ r dv −

∫
∂Bt
q · n da , (2.40)

with r as the internal energy source and the heat flow vector q. Inserting (2.38), (2.39)
and (2.40) into (2.36) and regarding (2.28)2 leads to the balance of energy given as the
local statement by

ρ ė = σ : D + ρ r + div q . (2.41)

Furthermore, the introduction of a free Helmholtz energy function ψ̃ = e−Θ η, where Θ
is defined as absolute temperature and η as the specific entropy, leads

ρ ( ˙̃ψ + Θ̇ η + Θ η̇)− σ : D − ρ r − div q = 0 , (2.42)

with the material time derivative ˙̃ψ = ė − Θ̇ η − Θ η̇ and for isothermal processes (2.42)
reduces to

ρ ˙̃ψ − σ : D = 0 . (2.43)

An alternative representation of the balance of energy for the framework of pure mechan-
ical energy is defined by

K̇ +Wint = Wext with Wint = Ė ⇒ K̇ + Ė = Wext , (2.44)

where the rate of external and internal mechanical power are defined by

Wint =

∫
Bt
σ : D dv and Wext =

∫
∂Bt
ẋ · t da+

∫
Bt
ρ b · ẋ dv . (2.45)
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Wint describes the power in Bt due to the stress field and Wext denotes the power applied
on Bt by the outer forces. This rate of internal mechanical power or so-called stress power
is the fundamental equation for detection of work conjugated pairs, i.e., the stress and
strain counterpart, which can be identified with

Wint =

∫
Bt
σ : D dv =

∫
B0
τ : D dV =

∫
B0
P : Ḟ dV =

∫
B0
S : Ė dV . (2.46)

The rate of the Green-Lagrange strain tensor Ė is a pull-back of the rate of deformation
tensor D defined by Ė = F T ·Lsym · F = F T ·D · F .

2.3.5 Entropy inequality - second law of thermodynamics

The entropy inequality or second law of thermodynamics postulates that the change of
the total entropy (ρ η over Bt) is equal to or greater than the sum of the entropy input
by heat production inside Bt (ρ r/Θ over Bt) and by the heat flow vector over the surface
∂Bt (Θ−1q · n on ∂Bt). This relation is given in the inequality

d

dt

∫
Bt
ρ η dv ≥

∫
Bt
ρ
r

Θ
dv −

∫
∂Bt

1

Θ
q · n da , (2.47)

which can be reformulated using the divergence theorem leading to∫
Bt
ρ η̇ dv ≥

∫
Bt

(
ρ
r

Θ
− div

( q
Θ

))
dv . (2.48)

The local statement of the entropy inequality, the so-called Clausius-Duhem inequality,
reads

ρ η̇ − 1

Θ
ρ r + div

( q
Θ

)
≥ 0 . (2.49)

The reformulation of (2.49) taking into account div(qΘ−1) = Θ−1 div q−Θ−2 q ·∇,xΘ and
the local statement of the balance of energy (2.41) yields the Clausius-Duhem inequality
in the form

ρ (Θ η̇ − ė) + σ : D −Θ−1 q · ∇,xΘ ≥ 0 . (2.50)

Inserting the Helmholtz free energy ψ̃ = e−Θη yields

− ρ ( ˙̃ψ − Θ̇ η) + σ : D −Θ−1 q · ∇,xΘ ≥ 0 . (2.51)

For simplicity, a restriction to isothermal, adiabatic processes, i.e., Θ = const., Θ̇ = 0,
r = 0 and q = 0 reduces the Clausius-Duhem inequality, further denoted by D as the
dissipation inequality, to

D := σ : D − ρ ˙̃ψ ≥ 0 . (2.52)

A representation of the dissipation inequality in the reference configuration is obtained
by multiplying (2.52) by J . Further representations can be obtained by consideration of
the work conjugated pairings (2.46) yielding

τ : D − ρ0
˙̃ψ ≥ 0 or alternatively P : Ḟ − ρ0

˙̃ψ ≥ 0 . (2.53)
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2.4 Principles of material modeling

The formulation of material models is restricted by basic principles, which ensure the
construction of physically sound material models. These principles, cf., e.g., Noll [173],
Truesdell and Toupin [230], Truesdell and Noll [229], Holzapfel [116] and
Marsden and Hughes [159], are briefly described in the following. The principle of
causality is based on the fact that the quantities of motion and temperature of the body
are regarded as measurable quantities in any thermomechanical process and are there-
fore so-called independent process variables. Further quantities, included in the entropy
inequality and which cannot be derived from motion and temperature, are considered as
dependent constitutive variables, i.e., stresses σ, heat flow q, specific energy e and spe-
cific entropy η (σ, q, e, η), cf. (2.50). Based on this separation of variables, the principle
of determinism states that these dependent variables in a material point of the body are
determined by the history of motion and temperature of all material points in the body.
The principle of equipresence demands that the maximum number of constitutive vari-
ables have to be included in all setup of equations in order to consider their influence on
the material behavior as long as the number is not reduced by any restrictive assump-
tions. Furthermore, a reduction of the number of independent variables is performed by
the evaluation of all principles. The principle of material objectivity or material frame
indifference demands for an observer invariant formulation of the constitutive equations,
i.e., that the material properties are independent on the change of observer. Therefore, if
a rigid body motion Q, as a proper orthogonal transformation, is superimposed on the
deformed configuration Bt, yielding the superimposed configuration Bt+, the formulation
has to fulfill the condition that no alterations occur within constitutive relations, that
means e.g., no changes in the stress field.
The superimposed configuration Bt+ contains the actual position vector defined by
x+ = Q·x, where the proper orthogonal tensorQ has the properties detQ = 1,QT = Q−1

andQ·QT = 1, cf. Truesdell and Noll [229] and Holzapfel [116]. The requirement
of objective quantities in the reference configuration B0 and the current configuration Bt
is summarized by

{φ+,v+,Υ+} = {φ,v,Υ} ∀ {φ,v,Υ} ∈ B0 ,

{φ+,v+,Υ+} = {φ,Q · v,Q ·Υ ·QT} ∀ {φ,v,Υ} ∈ Bt ,
(2.54)

which represents a sufficient condition for a scalar, vector and single field tensor
φ, v and Υ. Furthermore, the transformed deformation gradient F+ is given by
F+ = Gradx+ = Q · F , which fulfills the objectivity condition for a two-field tensor.
Consequently, F transforms like a vector based on the condition that none, one or two
configurations have to be transformed, due to the fact that the reference configuration is
intrinsically independent of the observer. For guaranteeing an objective formulation, it is
necessary to choose a stored energy function ψ in terms of frame indifferent values, e.g., the
right or left Cauchy-Green deformation tensorC+ = (F T · F )+ = F T ·QT ·Q · F = C or
B+ = (F · F T )+ = Q · F · F T ·QT = Q ·B ·QT . These relations lead to

ψ(C+) = ψ(C) and ψ(B+) = ψ(QBQT ) ∀ Q ∈ SO(3) , (2.55)

where SO(3) denotes the special orthogonal group, which represents the group of all arbi-
trary rigid body motions with the previously defined relations for Q. A further discussion
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on objective quantities and stress rates within the framework of elasto-plastic material
deformation is given in Chapter 5.7
Since the motion of a body is described by a reference configuration, the formulation of
the constitutive equations has to be unaffected by an applied rotation on the reference
configuration withQ ∈ Gk, which is demanded by the principle of material symmetry. The
symmetry group Gk characterizes the symmetry properties of the material with Gk ∈ O(3).
The rotated reference configuration B?0 is parameterized by X? = QT ·X ∀Q ∈ Gk. For
an isotropic material, F ? = F · Q holds without influence on the material behavior.
Furthermore, the isotropy of space demands that the stresses on B0 and B?0 have to be
equal. This leads, e.g., for the first and second Piola-Kirchhoff stress tensor as a two- and
single-field tensor the relations

P (F ?) = P (F ) ·Q and S(F ?) = QT · S(F ) ·Q ∀Q ∈ Gk . (2.56)

Furthermore, the principle of local agency states that material points further away than
a certain distance to a material point have no significant influence on the independent
constitutive variables at that point, in the literature denoted as so-called simple bodies, cf.
Noll [173]. In a similar way, the principle of fading memory states that the constitutive
quantities are not significantly affected by quantities of large temporary distance. The
principle of consistency demands that all formulated constitutive equations must be in
accordance with the basic statements of the balance laws of continuum mechanics and
further a model is called thermodynamic consistent if it fulfills the entropy inequality.

2.5 Nonlinear material behavior

The discussed problems in the course of this work are mainly characterized by nonlinear
material behavior. These are described by hyperelasticity and elasto-plastic deformations
for small and finite strain settings. Material nonlinearities result in a nonlinear stress-strain
relation. For elastic materials all deformations are reversible after unloading. In contrast
to that, deformations in elasto-plastic materials are partly irreversible, i.e., elastic defor-
mations are reversible and plastic deformations remains in the system after unloading.
Here, a short overview on hyperelastic material descriptions is given and an elasto-plastic
material model at small and finite strains is briefly discussed, considering a von Mises
yield criterion. Moreover, the analysis is restricted to isotropic hardening, which is char-
acterized by an expansion of the yield surface, i.e., an increase of the yield strength, and,
in contrast to kinematic hardening effects, independent of the previously applied load
direction.

2.5.1 Hyperelastic material description

In the scope of this work, the hyperelastic material description is based on a Neo-Hookean
type isotropic free energy function, cf., e.g., Ogden [174] and Ciarlet [78]. It is defined
by

ψiso
NH :=

λ

4
(I3(C)− 1) +

µ

2
(I1(C)− 3)−

(
λ

2
+ µ

)
ln
√
I3(C) , (2.57)

with respect to the Lamé constants λ and µ and in terms of the first and third principal
invariant of the right Cauchy-Green deformation tensor C defined by I1(C) = trC and
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I3(C) = detC or the left Cauchy-Green deformation tensor B with, I1(B) = trB,
I3(B) = detB, where ψ(C) = ψ(I1(C), I2(C), I3(C)) = ψ(I1(B), I2(B), I3(B)) = ψ(B),
cf. Wriggers [236]. Furthermore, the principal invariants can be expressed with respect
to principal stretches, see, e.g., (2.10), which are

I1(C) = λ2
1 + λ2

2 + λ2
3 , I2(C) = λ2

1 λ
2
2 + λ2

2 λ
2
3 + λ2

3 λ
2
1 , and I3(C) = λ2

1 λ
2
2 λ

2
3 , (2.58)

cf. Truesdell and Noll [229]. The representation of the material law based on princi-
pal invariants fulfills the requirement of material objectivity for the free energy function,
since the principal invariants are independent of a change of the reference system. Fur-
ther nonlinear elastic material laws are discussed in Ogden [174], which are, e.g., the
Mooney-Rivlin model, see Mooney [164] and Rivlin [191] and the Ogden model, see
Ogden [175].

2.5.2 Rate-independent elasto-plastic material description at small strains

The brief representation of the basic requirements for elasto-plasticity at small strains are
given in detail, e.g., in the contributions by Simo [213], Simo and Hughes [214] and
Miehe [162] among others. Elasto-plastic material behavior at small strains is character-
ized by an additive split of the total strains ε = ∇su = εe + εp with an elastic part εe,
a plastic part εp and the symmetric displacement gradient ∇su = 1

2
(∇u + (∇u)T ). In

order to guarantee a thermodynamic consistent model, the second law of thermodynamics
(2.50) has to be considered. For isothermal processes, the dissipation inequality is given
by (2.52). This can be transferred to the reference configuration with respect to the work
conjugated pairs, cf. (2.46), providing D = S : Ė − ρ0 ψ̇ and thus for the small strain
theory (2.52) is reformulated, with the free energy per reference volume ψ = ρ0 ψ̄, into

D = σ : ε̇− ψ̇ ≥ 0 . (2.59)

Here, the additive split of a free energy function with respect to elastic strains εe and
internal strain-like variable α yields ψ(εe, α) = ψe(εe) +ψp(α). Therefore, the dissipation
inequality (2.59) reads

D = σ : ε̇− ∂εeψ : ε̇e − ∂αψ α̇

= (σ − ∂εeψ) : ε̇e + σ : ε̇p + β α̇

= σ : ε̇p + β α̇ .

(2.60)

Furthermore, an abbreviation for the thermodynamic force related to the internal variable
is introduced as the conjugated variable β := −∂αψ. The fulfillment of D ≥ 0 yields the
Cauchy stress relation σ = ∂εeψ, i.e., the stresses are a function of the elastic strains. The
resulting equation in (2.60) is referred as reduced dissipation inequality Dred. For reasons
of simplicity, the consideration is here restricted to linear isotropic hardening. Thus, the
hardening potential ψp(α) is given by ψp(α) = 1

2
hα2, cf. Miehe and Stein [163], with

the hardening modulus h.
For the derivation of the evolution equation of εp and α, which fulfill the Clausius-Duhem
inequality, the existence of a convex yield surface in the stress space is postulated. This
yield surface Φ characterizes the boundary of the elastic domain of the material deforma-
tion and simultaneously the space of admissible stress states. The area in which elastic
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and plastic deformations occur is dependent on the choice of the yield criterion. In this
work, a von Mises yield criterion is chosen, in which the area of elastic deformations is
described in the form of a cylinder in the principle stress space.
One important aspect for the fulfillment of the Clausius-Duhem inequality with respect
to the evolution equations is the so-called principle of maximum plastic dissipation, which
states that the dissipation becomes maximal for the actual stress state in comparison with
all other stress states, cf., e.g., Simo [213]. This approach implies an associated flow rule,
the loading/unloading conditions in Kuhn-Tucker form (see (2.63)) and convexity of the
elastic domain, cf., e.g., Simo [210; 211] and Simo and Hughes [214]. From a mathe-
matical point of view the principle yields to an optimization problem (−Dred ≤ 0) with
constraint condition (Φ = 0), which is determined by a Lagrange functional L of the form

L(σ, β, γ) = −Dred + γ Φ(σ, β) , (2.61)

where γ ≥ 0 denotes a plastic multiplier and Φ the yield criterion. For the fulfillment of the
principle of maximum plastic dissipation, an extreme value for the Lagrange functional
L(σ, β, γ)→ stat., i.e., ∂τ ,β,γL = 0, is determined by

ε̇p = γ ∂σΦ , α̇ = γ ∂βΦ , Φ = 0 , (2.62)

in combination with the fulfillment of the Kuhn-Tucker or so-called loading/unloading
conditions and the consistency condition defined by

γ ≥ 0 , Φ ≤ 0 , Φ γ = 0 and Φ̇ γ = 0 . (2.63)

Consequently, (2.62)1 denotes the associated flow rule, which determines the plastic flow,
and the evolution of internal variable for the related state Φ = 0. The different states
are divided into an elastic unloading (Φ̇ < 0; γ = 0), plastic loading (Φ̇ = 0; γ > 0) and
a neutral state (Φ̇ = 0; γ = 0), cf. Simo [213] and Simo and Hughes [214]. Here, the
consideration is limited to a von Mises yield criterion

Φ(σ, β) = ‖ devσ‖ −
√

2
3
(y0 + β) , (2.64)

where y0 denotes the initial yield stress and devσ = σ− 1
3

trσ 1. Therefore, the evolution
equations of the plastic strains and the internal variable in (2.62) are obtained by

ε̇p = γ
devσ

‖ devσ‖
= γ n and α̇ =

√
2
3
γ . (2.65)

In order to obtain a complete representation of rate-independent elasto-plasticity the
algorithmic treatment is discussed below. Therefore, trial states are introduced, which
assumes that the material response is purely elastic. The algorithmic treatment is based
on the idea of a return mapping algorithm, in which an elastic predictor step (purely
elastic trial step) is followed by a plastic corrector step (return mapping), introduced by
Wilkins [233], cf. Simo and Taylor [217]. Here, mainly mixed methods are discussed,
where the stresses are an unknown field and thus no trial state of the stresses exist
as, e.g., for the case of pure displacement methods, which are extensively described in
Simo and Hughes [214].
For the algorithmic implementation a backward Euler integration scheme on the time
interval [tn, tn+1] is applied for the rate equations (2.65), providing

εpn+1 = εpn + ∆tγ nn+1 and αn+1 = αn +
√

2
3

∆tγ , (2.66)
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where nn+1 = devσn+1/‖ devσn+1‖ and the abbreviation ∆tγ := γ∆t is introduced with
∆t = tn+1 − tn. Furthermore, if the elastic domain is exceeded (Φtrial > 0), ∆tγ as the

increment of the plastic multiplier has to be determined based on the relation Φn+1
!

= 0,

here given by Φn+1 = ‖ devσn+1‖ −
√

2
3
(y0 + hαn+1). This is done by regarding a trial

state of the yield criterion as

Φtrial = ‖ devσn+1‖ −
√

2
3
(y0 + hαn) , (2.67)

with the directly approximated stresses σn+1 and αtrial = αn. The stresses σn+1 have
to be determined with respect to a trial state for pure displacement formulations. As
mentioned before, for mixed stress-displacement formulations, with a direct approximation
of the stresses, no trial stresses exist. The relation for ∆tγ is obtained, by inserting the

hardening law (2.66)2 into Φn+1
!

= 0, by

∆tγ =
3 Φtrial

2h
=

3
(
‖ devσn+1‖+

√
2
3
(y0 + hαn)

)
2h

. (2.68)

This relation for ∆tγ holds for mixed stress-displacement formulations. A summary of the
basic requirements for elasto-plasticity at small strains are listed in Table 2.2.

Table 2.2: Von Mises J2-plasticity model at small strains

Kinematics ε = ∇su = εe + εp

Stress relation σ = ∂εeψ

Free energy ψ(εe, α) = ψe(εe) + ψp(α)

Von Mises yield function Φ(σ, β) = ‖ devσ‖+
√

2
3
(y0 + β)

Reduced dissipation inequality Dred = σ : ε̇p + β α̇ ≥ 0

Lagrange functional L(σ, β, γ) = −Dred + γ Φ(σ, β)

Associative flow rule ε̇p = γ ∂σΦ(σ, β)

Hardening law α̇ = γ ∂βΦ(σ, β)

Optimality conditions γ ≥ 0, Φ ≤ 0 and γ Φ = 0

2.5.3 Rate-independent elasto-plastic material description at finite strains

The fundamental assumption for the framework of elasto-plasticity at finite strains is the
multiplicative decomposition of the deformation gradient into an elastic and a plastic
part:

F = F e · F p , with F e = F e a
ā ea ⊗Z ā and F p = F p ā

AZā ⊗EA . (2.69)

This approach considers an intermediate configuration theory, see Simo and Miehe [215]
and Miehe and Stein [163], which introduce a third intermediate configuration of the
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Figure 2.2: Idea of multiplicative elasto-plasticity using an intermediate configuration

body with the corresponding right-handed orthogonal basis system Zā for ā = 1, 2, 3, see
Figure 2.2.

The intermediate configuration must not be seen as a physically real state of a body and
is motivated by the micromechanical behavior, e.g., of metals and the movement of its
crystal lattice occurring under deformations. In general, the intermediate configuration
is characterized as a stress-free unloaded configuration, in which the plastic deformations
are stored. In the intermediate configuration, the elastic strains are given by the elastic
right Cauchy-Green tensor

Ce = F e T · F e ; Ce = F e a
ā δab F

e b
b̄Z

ā ⊗Z b̄ , (2.70)

and the plastic strains are determined by

Bp = F p · F p T ; Bp = F p ā
A δ

AB F p b̄
B Zā ⊗Zb̄ , (2.71)

see Simo and Miehe [215] and Miehe and Stein [163]. This assumption was first
introduced by Lee and Liu [145] and Lee [148] and is motivated through the mi-
cromechanics of crystal plasticity, cf., e.g., Hill [114] and Asaro [14]. A detailed de-
scription of the continuum mechanical and kinematical foundations of multiplicative
elasto-plasticity as well as a discussion on the micromechanical origins are given, e.g.,
in Kröner [141], Lee [148], Asaro [14], Lubliner [154], Simo and Hughes [214],
Simo [213] and Armero [5].
Furthermore, the application of the multiplicative decomposition of F yields an elastic
left and a plastic right Cauchy-Green tensor, i.e.,

Be = F e · F e T = F ·Cp−1 · F T ; Be = F e a
ā δ

āb̄ F e b
b̄ ea ⊗ eb , (2.72)

and

Cp = F p T · F p = F T ·Be−1 · F ; Cp = F p ā
A δāb̄ F

p b̄
BE

A ⊗EB , (2.73)

with Be in the actual and Cp in the reference configuration. Following the concept of
thermodynamic a consistent finite elasto-plasticity model is derived based on the fulfill-
ment of the first and second law of thermodynamics, cf. (2.50). In order to guarantee this
for the dissipative effects of elasto-plastic deformations, process and internal variables
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have to be introduced, which are, for the here considered isothermal and isotropic model,
given by the elastic left Cauchy-Green tensor Be, the plastic right Cauchy-Green tensor
Cp and the internal plastic variable α.
The Clausius-Duhem inequality, cf. (2.52), for finite isothermal, isotropic deformation
processes with respect to the Kirchhoff stresses τ is given by

D = τ : D − ψ̇ ≥ 0 . (2.74)

The considered free energy function ψ(Be, α) can be additively decomposed into an elastic
part ψe(Be) (2.57) and a plastic pseudo potential ψp(α). Furthermore, the material time
derivative of ψ(Be, α) reads

ψ̇(Be, α) = ψ̇e(Be) + ψ̇p(α) =
∂ψe

∂Be
: Ḃe +

∂ψp

∂α
α̇ , (2.75)

where

Ḃe = (F ·Cp−1 · F T )· = L ·Be + £(Be) +Be ·LT , (2.76)

denotes the material time derivative of the elastic left Cauchy-Green tensor in dependence
of the spatial velocity gradient, cf. (2.14). Furthermore, Ḃe is denoted in terms of the Lie
derivative of Be defined by

£(Be) = F · ∂
∂t

(Cp−1) · F T = F · Ċp−1 · F T , (2.77)

see, e.g., the works of Simo [213], Truesdell and Toupin [230] and
Marsden and Hughes [159]. The Lie derivative represents a time derivative of
coefficients of spatial tensors in a moving base. Therefore, a spatial quantity is trans-
ferred into the reference configuration by a pull-back operation, then linearized in this
configuration and finally transferred into the current configuration by a push-forward
operation. The Lie derivative only describes the coefficient derivative and thus represents
only a part of the total time derivative of the quantity. The complete derivative is given
by the coefficient derivative (F · Ċp−1 · F T ) as well as the derivative of the basis vector
(here in terms of L = Ḟ · F−1).
The Clausius-Duhem inequality is reformulated using (2.75) and (2.76) and the relation
for the symmetric part of the spatial velocity gradient (2.15) to

D = τ : D − ψ̇ ≥ 0

= τ : D − ∂ψe

∂Be
: Ḃe − ∂ψp

∂α
α̇ ≥ 0

= τ : D − ∂ψe

∂Be
: (L ·Be)− ∂ψe

∂Be
: (Be ·LT )− ∂ψe

∂Be
: £(Be)− ∂ψp

∂α
α̇ ≥ 0

=
(
τ − 2

∂ψe

∂Be
·Be

)
: D −

(
2
∂ψe

∂Be
·Be

)
:
(1

2
£(Be) ·Be−1

)
− ∂ψp

∂α
α̇ ≥ 0 .

(2.78)
Here, the fulfillment of (2.78) directly leads the constitutive relation for the Kirchhoff
stress tensor τ with

τ = 2
∂ψe

∂Be
·Be , (2.79)
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cf., e.g., Miehe [162], which results in the reduced dissipation inequality

Dred = −τ :
(1

2
£(Be) ·Be−1

)
+ β α̇ ≥ 0 . (2.80)

Analogously to the small strain framework, β = −∂αψp denotes the thermodynamic force
associated to the internal variable and Φ(τ , β) is the yield criterion. The evolution equa-
tions for Cp−1 and α, fulfilling the Clausius-Duhem inequality, are determined by a La-
grange functional

L(τ , β, γ) = τ :
(1

2
£(Be) ·Be−1

)
− β α̇ + γ Φ(τ , β)→ stat. with γ ≥ 0 , (2.81)

as an optimization problem with constraint condition. Enforcing stationarity conditions
for the Lagrangian functional, ∂τ ,β,γL = 0, yields

1

2
£(Be) ·Be−1 = −γ ∂τΦ , α̇ = γ ∂βΦ and Φ = 0 , (2.82)

which are the flow rule (2.82)1, the evolution equation of the internal variable α (2.82)2 and
the consistency condition (2.82)3. For a fulfillment of (2.81), the well-known Kuhn-Tucker
conditions must hold. These conditions in combination with the consistency condition are
given in (2.63). A reformulation of the flow rule in (2.82)1 and the evolution equation of
the internal variable in (2.82)2 with respect to Cp and α yields

Ċp−1 = −2 γ (F−1 · ∂τΦ(τ , β) · F ) ·Cp−1 and α̇ =
√

2
3
γ . (2.83)

As already mentioned in the small strain framework, the region of elastic deformation is
dependent on the chosen yield criterion. In the proposed contribution, a von Mises yield
criterion for finite deformation, based on the Kirchhoff stresses τ , is defined by

Φ(τ , β) = ‖ dev τ‖ −
√

2
3
(y0 + β) . (2.84)

For simplicity, an isotropic linear hardening where the conjugated internal variable
β = hα is chosen, thus ψp = 1

2
hα2, if not declared differently. The evolution equa-

tions for the internal variable α̇ and for the plastic flow, given through the inverse
plastic right Cauchy-Green tensor Ċp−1, are determined by applying the following
time integration schemes. Analogously to the small strain framework, a backward Eu-
ler scheme is considered for the time integration of the evolution equation of the in-
ternal variable see (2.66). In contrast to that, the applied time integration for Ċp−1

is an exponential map algorithm within an implicit time integration scheme, first in-
troduced by Weber and Anand [232] and Eterovic and Bathe [96] and further
regarded, e.g., in Simo [212], Cuitino and Ortiz [84], Simo and Miehe [215] and
Miehe and Stein [163]. This exponential map algorithm exactly fulfills plastic incom-
pressibility for the J2-theory (detCp = 1), see, e.g., Simo [212]. Furthermore, the im-
plementation is based on a closest-point-projection algorithm and further a radial return
method for the associated plasticity model is utilized. The resulting flow rule reads

Cp−1
n+1 = exp

[
− 2 ∆tγ

(
F−1
n+1 ·

∂Φn+1

∂τn+1

· Fn+1

)]
·Cp−1

n . (2.85)
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A simplification of the expression for the exponential function is obtained by

Cp−1
n+1 = F−1

n+1 · exp
[
− 2 ∆tγ nn+1

]
· Fn+1 ·Cp−1

n , (2.86)

regarding the relation for commutating matrices A and D, i.e., A ·D = D ·A, by

exp[A ·D ·A−1] = A · exp[D] ·A−1 . (2.87)

Here, ∆tγ := γ∆t with ∆t = tn+1 − tn and nn+1 = dev τn+1/‖ dev τn+1‖. For the sake of
completeness, the requirement of plastic incompressibility given with detCp = 1 holds, if
detCp

n+1 = detCp
n. This is achieved by computing the determinant of equation (2.86):

detCp−1
n+1 = detF−1

n+1 exp[tr(−2∆tγ ∂τΦn+1)]︸ ︷︷ ︸
=1

detFn+1 detCp−1
n = detCp−1

n , (2.88)

with det(exp[A]) = exp[tr(A)] and tr[−2 ∆tγ ∂τΦn+1] = 0, based on the chosen von Mises
yield criterion in terms of the deviatoric stresses with tr(dev τ ) = 0, see ,e.g., Simo [212]
and Miehe and Stein [163].
The basic equations for elasto-plasticity at finite strains are summarized in Table 2.3. For
further derivations, the index n + 1 is omitted for notational simplicity for quantities at
the actual time step tn+1. Quantities at the previous time step tn are still denoted with
the index n.

Table 2.3: Von Mises J2-plasticity model at finite strains

Kinematics F = 1 +∇Xu = F e · F p

Be = F e · F e T = F ·Cp−1 · F T

Stress relation τ = 2 ∂Beψ
e(Be) ·Be

Free energy ψ(Be, α) = ψe(Be) + ψp(α)

Von Mises yield function Φ(τ , β) = ‖ dev τ‖+
√

2
3
β ≤ 0

Reduced dissipation inequality Dred = −τ :
(

1
2
£(Be) ·Be−1

)
+ β α̇ ≥ 0

Lagrange functional L(τ , β, γ) = −Dred + γ Φ(τ , β)

Associative flow rule 1
2
£(Be) ·Be−1 = −γ ∂τΦ

Ċp−1 = −2 γ (F−1 · ∂τΦ(τ , β) · F ) ·Cp−1
n

Hardening law α̇ = γ ∂βΦ(τ , β)

Optimality conditions γ ≥ 0, Φ ≤ 0 and γ Φ = 0
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3 Finite element formulations

As already introduced in Chapter 1, the topic of FEM and mixed FEM is extremely
comprehensive and the methods have been consolidated and well established over the
years. The terminology of the word mixed, in the underlying work, indicates the fact, that
the system is depending on more than one unknown quantity. However, this definition
does not give any restrictions on the resulting system of equations. This means, mixed
formulations include here, e.g., formulations leading to saddle point problems, defined
by zero diagonal terms, based on the characterization of constraint variables within the
system and minimization problem, in which the main diagonal is unequal to zero.
For convenience, the basic mathematical principles for the underlying work are given
at first, as a brief definition of function spaces, their relations and properties. The
following representation of different mixed finite element formulations starts with a
simple single field problem given as a pure displacement formulation. By means of this,
mixed variational or mixed Galerkin formulations as well as mixed least-squares finite
element formulations are presented. For simplicity, the formulations are considered for
the example of linear elasticity and shall illustrate the classification of LSFEM in the
context of other well-known finite element formulations. The main focus in this thesis
will be on the LSFEM for several problems in elasticity and physical nonlinearities as
hyperelastic and elasto-plastic material behavior.
Furthermore, the basic concept of the finite element method is introduced in terms
of discretization of the system with finite elements and some implementation as-
pects are given for the discussed formulations. The basic aspects of the FEM
are given in a variety of textbooks, see, e.g., Zienkiewicz and Taylor [246],
Bathe [24], Wriggers [236] and Chen [74], besides others. In addition to
that, ideas of standard and mixed finite elements are presented, e.g., in
Brezzi and Fortin [56], Bathe [24], Auricchio et al. [17], Braess [50],
Wriggers [236], Bochev and Gunzburger [43] and Boffi et al. [49], among
others.
In the following, a main focus will be addressed to the established mixed meth-
ods of Hellinger-Reissner and Hu-Washizu, see Hellinger [107], Prange [183],
Reissner [190], Fraeijs de Veubeke [100], Hu [117] and Washizu [231]. The main
objective of this subsequent analysis of different variational methods, which are all based
on the weighted residual method, is to place the LSFEM in the context of existing
and well established methods. For this purpose, the considered variational formulations
and the LSFEM are introduced and discussed using the example of linear elasticity.
In addition, basic properties of the methods are listed and a short overview of further
formulations and improvements of the presented formulations are given.
In summary, the chapter below includes the following topics:

• The mathematical principles which are applied are briefly presented.

• An overview of basic established methods based on the method of weighted residuals
and their context is provided with a special consideration of the primarily discussed
LSFEM.

• The idea of a discretization with finite elements is introduced and followed for com-
pleteness by a representation of finite element approximation functions in W1,p(B)
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andWq(div,B). Approaches for a construction of the functions in the reference and
current configuration, based on straight edged elements, are explained.

• Furthermore, general aspects of the finite element implementation and convergence
assumptions are discussed.

3.1 Basic mathematical principles

In the procedure of finding the solution of a problem within the finite element method,
the unknown field variables have to be given in suitable function spaces. Therefore, some
common and well known function spaces are introduced in the following, based on the
works, e.g., of Brenner and Scott [53] and Brezzi and Fortin [56]. The here dis-
cussed function spaces are restricted to the Sobolev space Wm,p(B) and the related sub-
spaces, all defined by the Lebesque space Lp(B), which is characterized by p-integrable
functions on B. A function υ is embedded in the Lebesque space Lp(B), if the integral
of the p-th power of the function is bounded, cf., e.g., Zienkiewicz et al. [250] and
Brenner and Scott [53], which is

Lp(B) := {υ : ‖υ‖Lp(B) < +∞} for 0 < p <∞ , (3.1)

and the corresponding norm is denoted by

‖υ‖Lp(B) :=

(∫
B
|υ|p dV

)1/p

. (3.2)

The Sobolev space Wm,p(B) with m ≥ 0 is defined by

Wm,p(B) := {υ +
m∑
α=1

Dαυ ∈ Lp(B)} for 1 ≤ p <∞ , (3.3)

with the relation W0,p(B) = Lp(B) for m = 0 and Dαυ as the α-th weak differential
operator, defining the weak derivative of υ up to order m, where

Dαυ =
∂|α|υ

∂xα1
1 ∂x

α2
2 ∂x

αn
n

with

{
α = (α1, α2, α3)
|α| = α1 + α2 + α3

, (3.4)

cf., e.g., Brezzi and Fortin [56] chapter 3.1. In the framework of finite elements suitable
function spaces for the unknown field variables are often given as the Sobolev spaces
W1,p(B) and Wq(div,B) with

W1,p(B) := {υ ∈ Lp(B) : D1υ ∈ Lp(B)} for 1 ≤ p <∞ , (3.5)

and
Wq(div,B) := {υ ∈ Lq(B) : div υ ∈ Lq(B)} for 1 ≤ q <∞ . (3.6)

The associated norms of the Sobolev spaces contain also constraints for the derivatives of
the functions denoted by

‖υ‖Wm,p(B) :=

(
‖υ‖pLp(B) +

m∑
α=1

‖Dαυ‖pLp(B)

)1/p

, (3.7)



26 Finite element formulations

and

‖υ‖Wq(div,B) :=

(
‖υ‖qLq(B) + ‖ div υ‖qLq(B)

)1/q

. (3.8)

Here, the Lp(B)-norm for vector functions υ ∈ [Lp(B)]n and tensor functions
Υ ∈ [Lp(B)]n×m is defined analogously to scalar quantities as

‖υ‖Lp(B) :=

(
n∑
i=1

‖υi‖pLp(B)

)1/p

and ‖Υ‖Lp(B) :=

(
n∑
i=1

m∑
j=1

‖Υij‖pLp(B)

)1/p

, (3.9)

where all components of υi,Υij ∈ Lp(B), see, e.g., Brezzi and Fortin [56] and
Arnold et al. [10]. The measure p denotes the value of the exponent of the associ-
ated function that arises within the considered problem. A suitable measure for p and q
in the framework of linear elasticity is p = q = 2, which is equivalent to the Hilbert space
Hm, as a subspace of the Sobolev space Wp, with the relation

Wm,2(B) = Hm(B) and further W2(div,B) = H(div,B) . (3.10)

Therefore, all Hilbert spaces are related to the L2(B) space and contain functions, which
are at least square-integrable functions. The order of Hilbert spaces can be characterized
by means of the continuity requirement of the considered functions, where the space Hm

includes all Cm−1 continuous square-integrable functions. In the following sections, the
mainly considered function spaces, beside W1,p(B) and Wq(div,B), are

H1(B) = {υ | υ ∈ L2(B) : D1υ ∈ L2(B)} , (3.11)

and
H(div,B) = {υ | υ ∈ L2(B) : div υ ∈ L2(B)} , (3.12)

cf. Brenner and Scott [53], Brezzi and Fortin [56] and Boffi et al. [49]. An
overview of the relations of the mentioned spaces are illustrated, for 3 ≤ m <∞, by

Lp =̂ W0,p ⊃ W1,p ⊃ W2,p ⊃ Wm,p

∪ ∪ ∪ ∪ ∪
W0,2 =̂ L2 =̂ H0 ⊃ H1 ⊃ H2 ⊃ Hm

(3.13)

In addition to the function spacesW1,p(B) for 0 ≥ p ≥ ∞ with p as a integer greater than
or equal to 0, there are further function spaces which also apply to p ∈ R. These function
spaces can be expressed by interpolations between two spaces, e.g., Lp(B) and W1,p(B)
and are generally denoted as Besov spaces, i.e.,

Bm,p(B) = (Lp(B),W1,p(B))m,p for 0 < m < 1, 1 ≤ p ≤ ∞ . (3.14)

A more detailed account of these spaces can be found in Bergh and Löfström [30]
and Brenner and Scott [54]. The Besov spaces Bm,p are more general than Sobolev
spaces Wm,p and for simplicity are often denoted as Sobolev spaces Wm,p for 0 < m < 1.
Nevertheless, these spaces do not entirely correspond for the limiting case m→ 1.

Note that, in general the corresponding fields on a domain B and the associated finite ele-
ment space can be projected with respect to so-called trace operators onto the boundaries
∂B, i.e.,

tr :Wm,p(B)→Wm−1/2,p(∂B) (3.15)



Finite element formulations 27

see, e.g., Brenner and Scott [53], Bergh and Löfström [30], which defines a sur-
jective but not injective mapping. The trace operators are often considered in the frame-
work of hybrid finite element approaches and thus, define the spaces for the Lagrange
multipliers on the boundaries.

3.2 Aspects of displacement and mixed finite element formulations

The basic idea for finding the solution of PDEs is to introduce an approximation, e.g.,
of the exact solution of the displacement field u as uh, which leads to an error in the
fulfillment of the underlying setup of equations, since the approximation is in general not
equal to the exact solution. The Galerkin method approximates the solution of operator
equations, such as PDEs and represents the most common variant of the so-called weighted
residual method, in which the resulting residual equations of an approximate solution is
minimized. In the following, the Galerkin method is applied to derive the so-called weak
formulation of the PDE, which describes the underlying problem. The method of weighted
residuals is defined in terms of residual equations Ri and arbitrary test functions ηi, with
i denoting the number of residual equations, which have to be solved within the related
formulation. Furthermore, the application of the method with∑

i

∫
B
〈Ri,ηi〉 dV = 0 , (3.16)

is characterized by a scalar multiplication of Ri with ηi and integration over the whole
domain B of the problem. This reduces the differential equations in a weak sense to zero.
Here, the scalar product of two quantities is denoted by 〈•, •〉. The residual equation R
represents the error in solving the differential equation using the approximation uh. The
integration over the domain is in general performed by a numerical integration, which
is given throughout this thesis by the well-known Gauss integration scheme, see, e.g.,
Zienkiewicz and Taylor [246], Wriggers [236].

As a basis for the discussion of different finite element formulations the framework of
linear elasticity is considered. The example of linear elasticity is characterized by a set of
equations, which is based on the previously presented continuum mechanical fundamentals
and is given by

divσ = −f on B ,

σ = C : ε on B ,

ε = ∇su on B ,

σ = σT on B ,

σ · n = t̄ on ∂BN ,

u = ū on ∂BD ,

(3.17)

with the Cauchy stresses defined by Hooke’s law and the strain tensor for the in-
finitesimal theory denoted by ε and defined by the symmetric displacement gradient
ε = ∇su = 1

2
(∇u+ (∇u)T ), which is the linearized Green-Lagrange strain tensor (2.12).

The problem of linear elasticity is characterized by the balance of linear momentum, the
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material law, for linear elasticity described by Hooke’s law, the compatibility condition of
the strains, the balance of angular momentum and corresponding boundary conditions,
with the boundary traction and displacement t̄ and ū. It should be noted that different
types of boundary conditions exist. The boundary ∂B of the considered body B is divided
into a Neumann boundary ∂BN and a Dirichlet boundary ∂BD with

∂B = ∂BD
⋃

∂BN and ∂BD
⋂

∂BN = ∅ . (3.18)

In general, the Dirichlet boundary is often referred as essential boundary conditions
which are directly incorporated into the functional space and the Neumann boundary
or natural boundary conditions are conditions for derivatives on the boundary of the
domain, cf. Braess [50]. In the following, depending on the formulation under con-
sideration, different setups of boundary conditions occur, each of which is briefly discussed.

3.2.1 Displacement formulation

As a basis for the following presentation of mixed FEM, a single field formulation is con-
sidered first. Here, a standard displacement method using the weighted residual method
(3.16) is introduced. Therefore, the underlying problem can be characterized by a PDE
system given by the balance of linear momentum and corresponding boundary conditions.
For this purpose, the system of equations (3.17), which is given as a three-field formula-
tion in displacements, strains and stresses (u, ε,σ), have to be converted into a purely
displacement dependent setup. For this purpose, the system (3.17) is rewritten, taking
into account the material law and the compatibility condition in the balance of linear
momentum, leading

divσ(u) + f = 0 on B ,

σ(u) · n = t̄ on ∂BN ,

u = ū on ∂BD ,

(3.19)

with a restriction to homogenous Dirichlet boundary conditions. The balance of angular
momentum is directly fulfilled with the symmetry relation for the strains and the related
material tensor. Following (3.16) with i = 1 and the residual equation R given by (3.19)1

with σ = C : ∇su, yields∫
B
(divσ(u) + f) · η dV =

∫
B
(div(C : ∇su) + f) · η dV = 0 . (3.20)

For convenience, a restriction to equations of first-order, i.e., only derivatives of first-
order are part of the treated equations, is considered in the course of this work. Nev-
ertheless, (3.19)1 respectively (3.20) could be solved as a second-order system, utiliz-
ing C1-continuous functions, see Bank and Scott [23] and Ern and Guermond [94],
which will not be discussed here. The application of integration by parts, introducing the
divergence theorem and Cauchy’s theorem (2.18) yields the weak form∫

B
∇su : C : ∇η dV =

∫
B

f · η dV +

∫
∂BN

t · η dA . (3.21)
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The gradient of the test function ∇η, with η often called virtual displacements and stated
as δu, can be interpreted as the directional derivative of the virtual displacement, which
is ∇sδu. Thus, the weak form is denoted by

Gu :=

∫
B
∇su : C : ∇sδu dV −

∫
B

f · δu dV −
∫
∂BN

t̄ · δu dA = 0 . (3.22)

For the given problem (3.22) the solution is sought for u ∈ V such that Gu = 0 ∀ δu ∈ V
with V := [H1(B)]3. Taking into account C0-continuous functions for the displacement
field u, the derivatives of u given by ε and σ, since σ is a function of the strains, are not
continuous over the complete domain. This remark of the standard displacement formu-
lation will be considered again later on.
For completeness, if the underlying problem is given by (3.20) it yields, finding a solution
u ∈ V such that Gu = 0 ∀ δu ∈ V with V := [H2(B)]3.
However, following the principle of the minimum of the total elastic potential, an alterna-
tive approach for the derivation of the weak forms depending on the free energy function
and the applied loads can be formulated. Here, the energy potential is

Π(u) =

∫
B

1

2
∇su : C : ∇su dV −

∫
B
f · u dV −

∫
∂BN

t̄ · u dA , (3.23)

with the free energy function for linear elasticity ψ(u) = 1
2
∇su : C : ∇su. The solution

for u with u ∈ [H1(B)]d, which minimizes the potential, or leads to a stationary potential
for the framework of finite deformations, fulfills the differential equations and thus the
equilibrium.

3.2.2 Hellinger-Reissner principle

For the analysis of mixed variational principles, the well-known Hellinger-Reissner prin-
ciple as a two-field problem is presented, based on the works of Reissner [190] and the
early contributions of Hellinger [107] and Prange [183], which is therefore also known
as the Hellinger-Prange-Reissner principle, cf., e.g., Braess [50]. It should be noted, that
there are two different forms of the Hellinger-Reissner formulation referred as the primal
and dual or modified Hellinger-Reissner formulation, which are presented below. The dif-
ference in the formulations is that they lead to different natural boundary conditions, cf.
Braess [50]. Both are defined as mixed problems in terms of displacement and stress field
(u,σ) ∈ V×S and result into system matrices with a saddle point structure and therefore,
the considered solution spaces and their combination V and S have to be chosen carefully,
in order to guarantee existence and uniqueness of the solution. For a mathematical dis-
cussion on the existence and uniqueness of solutions, see, e.g., Brezzi and Fortin [56],
Brenner and Scott [53], Auricchio et al. [17] and Braess [50].
The setup of equations characterizing linear elasticity (3.17) is reformulated for the two-
field problem ((u,σ) ∈ V × S) with (3.17)3 inserted in (3.17)2 providing

divσ + f = 0 onB ,
C−1 : σ = ∇su onB ,
σ = σT onB ,
σ · n = t̄ on ∂BN ,
u = ū on ∂BD .

(3.24)
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Since the Cauchy stress tensor is now an independent field quantity, the symmetry con-
dition is not fulfilled a priori by the symmetry of the strains and have to be considered
separately within the chosen approximation space. The primal Hellinger-Reissner princi-
ple, hereinafter referred to as pHR, is constructed by means of (3.16). The two residual
equations are given by the balance of linear momentum (3.24)1 and the material law
(3.24)2. These are multiplied by the test functions ηi, given as virtual displacements δu
and virtual stresses δσ, leading to the weak forms Gu and Gσ by

Gu :=

∫
B
σ : ∇sδu dV −

∫
B
f · δu dV −

∫
∂BN

t̄ · δu dA = 0 ,

Gσ :=

∫
B
(∇su− C−1 : σ) : δσ dV = 0 ,

(3.25)

with integration by parts and introduction of the divergence and Cauchy’s theorem. The
terms relating to the applied forces on B are the same for pHR formulation as for the
displacement formulation (3.22), since the natural boundary conditions are derived by
reformulation of the balance of linear momentum. Based on the properties of the given
weak form (3.25) the solution of the problem is sought by finding (u,σ) ∈ V × S such
that Gu = 0 ∀ δu ∈ V and Gσ = 0 ∀ δσ ∈ S with V := [H1(B)]3 and S := [L2(B)]3×3

sym.
These types of elements are also referred as assumed stress elements, based on the work
of Pian [176].
The weak forms Gu and Gσ of the dual Hellinger-Reissner (dHR) principle, formulated in
a similar way as the pHR, lead

Gu :=

∫
B

divσ · δu dV −
∫
B
f · δu dV = 0 ,

Gσ :=

∫
B
(σ : C−1 : δσ + u · div δσ) dV −

∫
∂BD

ū · (δσ · n) dA = 0 ,

(3.26)

where the natural boundary conditions result from the transformation of the material law.
The function spaces for the dHR formulation are chosen such that Gu = 0 ∀ δu ∈ V and
Gσ = 0 ∀ δσ ∈ S with V := [L2(B)]3 and S := [H(div,B)]3×3

sym.
The related representation of the pHR energy potential yields

ΠpHR(u,σ) =

∫
B

(
−1

2
σ : C−1 : σ + σ : ∇su

)
dV −

∫
B
f ·u dV −

∫
∂BN

t̄ ·u dA , (3.27)

and furthermore, the dHR energy potential leads to

ΠdHR(u,σ) =

∫
B

(
1

2
σ : C−1 : σ + (divσ + f) · u

)
dV −

∫
∂BD

ū · (σ · n) dA . (3.28)

As mentioned before, the difference between the primal and dual HR formulation given
by the natural boundary conditions becomes obvious in the weak forms and the energy
potential. The stress boundary conditions are naturally imposed within the primal
formulation. For the dual formulation these stress boundary conditions have to be
imposed within the function space with σ · n = t̄ on ∂BN , cf. Braess [50], since the
displacement boundary conditions are directly incorporated within the formulation.
In the following, primal and dual mixed formulations are classified according to their
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continuity properties and the type of natural boundary conditions. The primal mixed for-
mulations are closely related to the pure displacement formulations, in which u ∈ H1(B)
such that a C0-continuous displacement field is obtained and the stress boundary
conditions have no continuity requirements. For the dual mixed formulations, the stresses
are in H(div,B) and thus C0-continuity is required in normal direction for the stresses
and the displacement boundary conditions are applied as natural boundary conditions,
cf. Atluri et al. [16] and Bertóti [34] among others as well as (3.25), (3.26).

Especially, the symmetry of the stress tensor σ has to be considered, in the construction of
Hellinger-Reissner based finite elements for elasticity. Therefore, a range of approximations
are introduced, see, e.g., Stenberg [224], Arnold et al. [10], Arnold et al. [9]
and Kober and Starke [135], in which the stress symmetry condition is additionally
controlled in terms of a Lagrange multiplier. In Kober and Starke [135] an exact
symmetry is enforced by application of Lagrange multipliers based on a non-symmetric
version of the nonconforming stress space in Gopalakrishnan and Guzmán [104].
Therefore, the Raviart-Thomas space is enhanced by bubble functions, referred as
bubble-curls, which are not globally continuous on the edges in d = 2. For the stress
approximation in Gopalakrishnan and Guzmán [104] symmetric basis functions are
introduced, yielding a nonconforming formulation with respect to H(div,B) but exact
symmetric stresses. Application of the Raviart-Thomas space for the stress approximation
lead in general only to weakly symmetric stresses, cf. Boffi et al. [48]. Furthermore,
a weak enforcement of stress symmetry, which leads to approximation functions of
lower polynomial order, is considered in Arnold et al. [10], Arnold et al. [9],
Boffi et al. [48] and Klaas et al. [132]. For the dual Hellinger-Reissner formu-
lation, stable finite elements with strong symmetry enforcement are presented, e.g.,
in Arnold et al. [11], Johnson and Mercier [127], Kober and Starke [135]
for d = 2 and for d = 3 in Arnold et al. [9], Arnold et al. [13]. For the pHR
formulation, an often used stress approximation is given by the discontinuous 5-
parameter stress approach by Pian and Sumihara [178] for d = 2 and extended to
d = 3 by Pian and Tong [179]. In Yu et al. [243] and Li et al. [151] stability
and an a posteriori error estimator is discussed for the primal formulation. For com-
pleteness and since the mathematical proof of stability is avoided in this work, a proof
of the inf-sup stability of a primal and dual HR formulations can be found in Braess [50].

3.2.3 Hu-Washizu principle

The second presented mixed Galerkin formulation is referred as the Hu-Washizu (HW)
principle, based on the works of Hu [117] and Washizu [231]. However, the formula-
tion can already be found in Fraeijs de Veubeke [100], cf. Felippa [98], and thus, is
sometimes denoted as the de Veubeke-Hu-Washizu principle, see Braess [50]. It is de-
fined as a three-field formulation in terms of displacements, strains and stresses for the
considered framework of linear elasticity. As in the Hellinger-Reissner formulation, the
application of the Hu-Washizu principle leads to a saddle point problem, which requires a
careful choice and balancing of applied solution spaces to ensure uniqueness and existence
of the solution. For completeness, a proof of the inf-sup stability as well as coercivity
is given in Braess [50]. A discussion on the limitation of the Hu-Washizu formulation



32 Finite element formulations

in relation with the Hellinger-Reissner and pure displacement formulations are given in
Stolarski and Belytschko [225].
The three-field formulation can be directly applied to the setup of equations for the prob-
lem of linear elasticity given in (3.17). The residual equations in (3.16) are given by the
balance of linear momentum, material law and compatibility condition. Application of
integration by parts and introduction of the divergence and Cauchy’s theorem, yield the
weak forms Gu,Gσ and Gε by

Gu :=

∫
B
σ : ∇sδu dV −

∫
B
f · δu dV −

∫
∂BN

t̄ · δu dA = 0 ,

Gσ :=

∫
B
(∇su− ε) : δσ dV = 0 ,

Gε :=

∫
B

(C : ε− σ) : δε dV = 0 .

(3.29)

The Hu-Washizu principle can be defined by find (u,σ, ε) ∈ V × S × X , such that
G = 0 ∀ (δu, δσ, δε) ∈ V ×S ×X with G = Gu +Gσ +Gε, V := [H1(B)]3, S := [L2(B)]3×3

sym

and X := [L2(B)]3×3
sym. The symmetry of the strains and stresses have to be incorporated

in the function spaces, since both are unconstrained by the formulation. Furthermore, the
energy potential for the Hu-Washizu principle is denoted by

ΠHW(u,σ, ε) =

∫
B

(
1

2
ε : C : ε+ σ : (∇su− ε)

)
dV −

∫
B
f ·u dV −

∫
∂BN

t̄·u dA . (3.30)

Analogously to (3.22) and (3.25) the stress boundary conditions are naturally imposed
within the principle. Thus, the Hu-Washizu principle is a primal formulation, based on
the previously given classification.
The Hu-Washizu principle is an often used basis for the development of finite el-
ement formulations as, e.g., for the framework of the enhanced assumed strain
method, cf. Simo and Rifai [216], Andelfinger and Ramm [2], Yeo and Lee [242]
and Bischoff et al. [37].

3.2.4 Least-squares finite element method

The mixed LSFEM in general is not dependent on a fixed number of field variables and
like the just presented Galerkin and mixed Galerkin methods, is defined as a formulation
based on the method of weighted residuals. However, referring to (3.16) the test functions
ηi are chosen to be the first variations of the residual equations δRi, which yields

G =
∑
i

∫
B
〈Ri, δRi〉 dV = 0 . (3.31)

The first variations δRi are defined as the derivatives of the residual equations with respect
to all unknown field variables considered in the underlying problem and multiplied by the
variational expression of the unknown quantity. For the considered problem (3.17), the
application of (3.31), by restriction to a two-field problem find (u,σ) ∈ V × S, such that
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G = 0 ∀ (δu, δσ) ∈ V × S with R1,2 as (3.24)1,2, yields

Gu = −
∫
B
(σ − C : ∇su) : (C : ∇sδu) dV = 0 ,

Gσ =

∫
B
(divσ + f) · div δσ dV +

∫
B
(σ − C : ∇sδu) : δσ dV = 0 ,

(3.32)

where V := [H1(B)]3 and S := [H(div,B)]3×3
sym. The comparison of the weak forms (3.25),

(3.26) and (3.29) with (3.32) directly depicts the difference in the resulting system ma-
trices. Since all independent variables are given as quadratic terms in (3.32), the stiffness
matrix will not have zero diagonal terms as it is the case for the mixed Galerkin formula-
tions. Therefore, the resulting system is not characterized as a saddle point problem, but
is considered as a minimization problem.
As the main aspect of the presented work, a more detailed description of the LSFEM is
given below and overviews of the method are given in Bochev and Gunzburger [43],
Jiang [125], Kayser-Herold and Matthies [129] and Eason [92]. The construc-
tion of a LS functional can be performed with respect to different norms applied to
the underlying system of equations and based on the requirements of the PDEs, cf.
Bochev and Gunzburger [43]. Following the key points for the construction of a prac-
tical LSFEM, defined by Bochev and Gunzburger [43], the basis is given by the ap-
plication of the squared L2(B)- and L2(∂B)-norm, with the squared L2(B)-norm defined
by

‖ • ‖2
L2(B) = ‖ • ‖2

0,B =

∫
B
| • |2 dV . (3.33)

The LSFEM is characterized by finding the minimizer ULS of a quadratic functional F(U)
in terms of the unknowns U , with respect to the minimization space V̄ , given by

ULS = argmin
U∈V̄

F(U) . (3.34)

For further steps, 〈•, •〉L2(B) defines the inner product on L2(B), which is the integral
over the body B of the inner product 〈•, •〉L2(B) =

∫
B〈•, •〉 dV . Therefore, the L2(B)-

and squared L2(B)-norm (3.2) and (3.33) are written as ‖ • ‖L2(B) = (
∫
B〈•, •〉 dV )1/2 and

‖ • ‖2
L2(B) =

∫
B〈•, •〉 dV . The construction of a LS functional F(U), based on a first-order

system of PDEs given as residual equations Ri, is defined, according to the method of
weighted residuals (3.16), by

F(U) =
∑
i

‖ωiRi‖2
L2(B) =

∑
i

1

2

∫
B

ω2
i 〈Ri,Ri〉 dV → min. (3.35)

Here, ωi denote the weighting parameters, applied separately for each residual equation
Ri, which is skipped for notational simplicity but will be discussed later on. The solution
of the unknown field U , which minimizes the LS functional, is determined by utilization
of the variational calculus and calculated by the condition that the first variation of the
functional δUF , is equal to zero and is represented in accordance with (3.31) by

δUF =
∂F
∂U

δU =
∑
i

∫
B
δU〈Ri,Ri〉 dV = 0 . (3.36)
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The construction procedures for the functional itself (3.35) and the weak form (3.36) can
be applied for all types of problems and without any limitation of the unknown field
quantities. Application of (3.35) on problem (3.17), as a two-field problem with (3.17)3

inserted in (3.17)2, leads to

F(u,σ) =
1

2

∫
B

(
〈divσ + f , divσ + f〉+ 〈σ − C : ∇su,σ − C : ∇su〉

)
dV , (3.37)

with u ∈ H1(B) and σ ∈ H(div,B). Analogously to the case of the standard displacement
formulation, a direct solution of the second-order problem (3.19) is also achievable by the
LS formulation as a single field problem, i.e.,

F(u) =
1

2

∫
B

(
〈div(C : ∇su) + f , div(C : ∇su) + f〉

)
dV , (3.38)

with u ∈ [H2(B)]3. As previously noted, only first-order problems will be considered
further on, due to the simpler utilization of the H1(B) function space, according the
lower continuity requirements within the space. Furthermore, a requirement for practical
LS formulations is the restriction to a first-order system of equations, given by i PDEs
in residual form Ri. The problem here relates to the construction of the first-order
system, by the recast of the given system of PDEs into a first-order system of equations,
which is unfortunately not unique, since a norm-equivalent formulation can be achieved
with respect to different norms, cf. Bochev and Gunzburger [43] for an illustration
on the Poisson problem. As discussed in Bochev and Gunzburger [43], the chosen
norms could lead to a not straightforward assembling of the system matrices, e.g., by
consideration of a negative Sobolev norm ‖ • ‖−1. For a circumvention of using different
norms a proper mesh-dependent scaling factor can be introduced to obtain a quasi
norm-equivalent formulation, e.g., with ‖ • ‖2

1/2,∂B = h−1‖ • ‖2
0,∂B.

It has to be noted, that for an explicit consideration of boundary conditions in the
LS functional, the related trace norms or fractional norms with H1/2 and H−1/2, have
to be transferred into norm-equivalent formulations by a mesh-dependent weighted
L2(∂B)-norm, to ensure a straightforward assembling operation. Consequently, in order
to circumvent these difficulties as far as possible, only first-order systems formulated in
the squared L2(B)-norm are considered in the following.

3.2.5 Advantages and disadvantages of the LSFEM

As briefly presented in the introduction, LSFEM, like any other method, offers advantages
and disadvantages, which are discussed below. Despite the freedom in the construction of
LS functionals, several aspects must be considered, in order to understand the behavior
of the method. These include the choice of the polynomial order of the applied approx-
imation functions, the construction of the functional itself and the physical meaning of
the underlying equations as well as the weighting factors as part of the functional.
The construction of least-squares functionals is given by an uniform mathematical
procedure for basically all types of PDEs. In contrast to other well established mixed
finite element formulations, the LSFEM yields an unconstrained minimization problem.
Therefore, a restriction or proper balancing of function spaces is unnecessary, at least
from the point of stability, and a proof of stability of the method in terms of the
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inf-sup condition is not necessary. Thus, the combination of polynomial orders of the
single fields must not be carefully balanced. The possibility of unlimited combinations
of functions of different orders can lead to combinations, in which the approximation
quality of a individual quantity limits the global order of convergence and the chosen
approximation approaches must be questioned. Nevertheless, when considering individual
quantities, such as the displacement convergence of a particular point, the choice of
polynomial orders does not lead to any limitation, but can additionally improve the
result, cf. Schwarz et al. [207; 208], among others. Furthermore, the unconstrained
minimization problem yields the flexibility to design suited functionals, which directly
approximate the unknown field variables of interest, e.g., stresses and displacements. The
quantities of interest can be chosen freely and the first-order system is constructed with
respect to these assumptions. Based on the construction of the method, the resulting
system matrices are symmetric and positive (semi-) definite, which is of interest for
the applicability of different iterative solution strategies. The occurrence of the term
positive semi-definite can be observed, e.g., in the analysis of stability problems for
hyperelastic formulations. Therein, eigenvalues occur, which are in the vicinity of zero. A
further advantage is an a posteriori error estimator provided by the LS functional itself
and without additional computational costs, cf., e.g., Bochev and Gunzburger [43]
and Cai and Starke [61]. Based on this, adaptive mesh refinement can be ap-
plied. Furthermore, the applicability of this error estimator to nonlinearities is shown
in, e.g., Starke [219], Münzenmaier and Starke [169], Müller et al. [167],
Münzenmaier [168] and Müller [165]. For the LSFEM, in comparison with Galerkin
and mixed Galerkin formulations, the finite element solution space for the fulfillment of
boundary conditions does not have to be limited, since the boundary conditions can be
directly included in the functional as residual equations.

It is in the nature of the formulation that each selected functional minimizes the sum of
the squared norms of the PDEs and leads to the best possible solution. Since the solution
of a LS functional can be seen as the best possible balance between the solutions of the
individual parts. Therefore, also overdetermined systems can be solved. However, the solu-
tion depends on the choice of residual equations and scalar weighting factors, which can be
chosen independently and freely for each of the differential equations under consideration.
Therefore, weighting factors have a crucial impact on the solution, which can influence
or emphasize different properties of the formulation. Thus, they can be seen as both, an
advantage and a disadvantage of the method. In the past, several different approaches
for weighting factors appeared in the literature. Bochev and Gunzburger [43] and
Bochev [38] introduce weightings based on the approach of equivalent norms. A reduc-
tion of the local error by weighting is discussed in Jiang [124; 125] and physical moti-
vated weights are considered, e.g., by Bell and Surana [26; 27], Heys et al. [109]
and Winterscheidt and Surana [234]. In Deang and Gunzburger [89], mesh-
dependent weights for an improved accuracy are analyzed and the idea of a
matrix weighting parameter is introduced in Salonen and Freund [195] and
Kayser-Herold [128]. This matrix weighting is, e.g., considered for a diffusion prob-
lem, where the matrix entries are calculated with respect to the analytical solution of
the problem, leading to a significant increase of solution accuracy. However, this type
of weighting requires the knowledge about the sought solution, which generally cannot
be calculated analytically. Furthermore, a weighted norm LSFEM is investigated, e.g., in
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Bidwell et al. [36] and Jeong and Lee [122]. Lee and Chen [149] present a non-
linear weighting for a velocity-pressure-stress formulation for Stokes equations.
Furthermore, the choice of weightings is also related to the differential equation under
consideration. In the following chapters, the weighting factors of the investigated LS func-
tionals are chosen by physically motivated scaling of the units of the residual equations
and based on parameter studies. An example is given by investigating weighting factors,
which consider unit-dependent factors that scale the respective PDE to be independent of
units, see, e.g., Bell and Surana [26] and Igelbüscher et al. [120]. The influence
of the weighting parameters in the field of solid and fluid mechanics can be reduced by a
higher order polynomial approach.
Another disadvantage of the LSFEM is the poor approximation quality of low or-
der elements, see, e.g., Chang and Nelson [72], Deang and Gunzburger [89],
Pontaza [182], Pontaza and Reddy [181], Schwarz et al. [205]. Besides the pos-
sibility of an improvement in terms of individual weighting parameters, there are various
approaches to overcome this disadvantage, such as a modification of the functional, as for
fluid mechanics, e.g., proposed in Chang and Nelson [72], Nelson and Chang [172]
and for solid mechanics investigated by Schwarz et al. [206; 208]. The modification
often includes an extension of the functional by additional terms, which are mathe-
matically redundant but lead to an improvement in the finite element performance as,
e.g., improved mass conservation in fluid applications, see Bochev et al. [44; 45] and
Heys et al. [110; 111; 112]. The LSFEM leads, compared with pure displacement for-
mulations, to a rapidly increasing system size. However, all mixed finite element formu-
lations result in large system matrices due to the additionally introduced variables. For
a reduction of the system size, static condensation of system matrices on element level
can be applied for discontinuous approximated variables. Therefore, this approach is not
applicable for standard LSFEM with continuous approximations of the unknown fields.
Nevertheless, discontinuous LSFEM are introduced, e.g., in Bensow and Larson [28],
Bensow and Larson [29] and Ye and Zhang [241], which could provide the possibil-
ity of reduced systems by static condensation.
The LSFEM often leads to a high condition number compared to Galerkin formulations,
see Bochev and Gunzburger [43], which can result in a poor convergence behavior in
the iterative solution procedure.

3.2.6 Linearization of the variational formulations

The derived weak forms for the pure displacement (3.22), primal and dual Hellinger-
Reissner (3.25), (3.26) and Hu-Washizu formulation (3.29) as well as the first variation
of the LS functional (3.32) are leading to linear systems of algebraic equations for the
here depicted example of linear elasticity. Since mainly nonlinear problems are considered
in the following, the derivation of a linearized weak form is necessary, in order to solve
the nonlinear system of equations. Therefore, the variational problems for the Galerkin,
mixed Galerkin and LSFEM are solved iteratively to find the approximate solution by
means of, e.g., the Newton-Raphson method. For convenience, only the linearized form of
(3.32) is presented below. For the linearization of the LS functional a general procedure
is given by

∆UδUF =
∂(δUF)

∂U
∆U =

∑
i

∫
B
〈∆UδURi,Ri〉+ 〈δURi,∆URi〉 dV , (3.39)
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which yields, applied for the depicted linear elastic example (3.32), with respect to the
unknown fields u and σ, the equations

∆uδuF =

∫
B
∇sδu : ∇s∆u dV ,

∆uδσF = −
∫
B
δσ : (C : ∇s∆u) dV ,

∆σδuF = −
∫
B
(C : ∇sδu) : ∆σ dV ,

∆σδσF =

∫
B

div δσ · div ∆σ dV +

∫
B
δσ : ∆σ dV .

(3.40)

The representation of weak forms and linearization of the considered formulations will be
given separately for the formulation under investigation.

3.2.7 Discretization

The determination of an analytical solution of each of the presented weak forms on
arbitrary domains is in general not possible. Therefore, the FEM is applied for solv-
ing the PDEs, see, e.g., Zienkiewicz and Taylor [247], Braess [50], Bathe [24] and
Wriggers [236]. The fundamental idea of the FEM is to replace the given physical
domain under consideration by a finite number of polygonal elements. The considered
continuum body of interest B is replaced by an approximation Bh, which consists of nelem

finite elements Be. This approach can be represented by

B ≈ Bh =

nelem⋃
e=1

Be . (3.41)

Furthermore, each of these finite elements approximates the unknown variables on its
domain by the consideration of approximation or so-called shape functions in combination
with nodal values at certain points on the element domain. These points are denoted as
interpolation sites, which can represent nodes, edges, surfaces or even the volume of the
element, depending on the selected approximation space and the choice of functions,
which are usually given by piecewise polynomial interpolation functions. Therefore, the
unknowns at each point of the real body are reduced to a certain number on the applied
finite element mesh. For the assumption of a refinement of the finite element mesh with
he → 0, where he is a characteristic element length (e.g., diameter), it is assumed that
the approximation quality of the physical fields increases.
A suitable finite element can be characterized, following Ciarlet [77], by the triplet
(Be,Ne,Ue) with the following properties:

• The element domain Be is a polyhedron in Rd

• Ne are the local approximation or shape functions on Be

• Ue defines the local degrees of freedom on Be

Furthermore, Bh is also referred as the triangulation of B such that:
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• If Bh = ∪nelem
e=1 Be, B1 ∩ B2 = ∅, where a vertex of B1 and B2 is given, if B1 ∩ B2

consists of exactly one point and for B1 ∩ B2 consisting of more than one point, it
defines an edge in d = 2 or face in d = 3 shared by both elements.

• Be has straight edges, if Be ⊂ B,

• Be can include curved edges, if it is located at the boundary ∂B,

• The vertex angles are greater than 0,

cf., e.g., Brezzi et al. [57] and Braess [50]. Consequently, the finite element space in
which the solution is sought is a discrete counterpart of the continuous approximation
space V , which is selected with respect to the partial differential equation on the continu-
ous body, denoted, e.g., by Vh ⊂ V with uh ∈ Vh and uh is the discrete counterpart of u.
For convenience, an often used approach within the finite element method is the isopara-
metric concept, which consists of the idea of introducing an isoparametric subspace or
so-called parameter space. In this subspace each finite element is defined and is mapped
into the reference or actual configuration with respect to the transformation maps, given
by the Jacobian matrices J = ∂X/∂ξ and j = ∂x/∂ξ. Here, X,x and ξ denote the
coordinate vectors in the reference, actual and parameter space. The approximations of
the geometry Xh and xh are defined by

Xh =

nu,elem∑
j=1

Nj(ξ) X̂j and xh =

nu,elem∑
j=1

Nj(ξ) x̂j , (3.42)

where N(ξ) denotes a matrix consisting of Lagrange type approximation functions defined
in the parameter space ξ = {ξ, η, ζ}T , cf. Appendix 8.1. The number of displacement
related nodes per element is defined by nu,elem and the nodal coordinate vectors in

reference and actual configuration X̂ and x̂.
The advantages of the isoparametric concept are the known geometry of the considered
finite element in the isoparametric subspace and consequently the approximation
functions as well as the numerical integration points and weights, by considering,
e.g., Gauss quadrature for integration, are known a priori. Furthermore, the geometry
and the displacements can be approximated by the same shape functions, see, e.g.,
Zienkiewicz and Taylor [247] and Wriggers [236].

The discrete form of the mixed LS formulation (3.37) with the related first variation (3.32)
and linearization (3.40) is exemplarily presented below, which holds, in a similar manner,
for all following finite element approaches. The considered approximation functions are
discussed in Chapter 3.3.
For the discretized problem, approximation matrices are introduced. They are depending
on the underlying element type, regarding the number of nodes and the dimension asso-
ciated to the related degree of freedom. Here, the tensorial quantities are restored into a
vector structure performed in the following. Since a discussion on two and three dimen-
sional problems will be presented afterwards, an introduction of the approximated field
quantities and interpolation matrices are given for completeness for the three dimensional
framework, which can be reduced straightforward to two dimensions. For the LSFEM the
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necessary vector representation of displacements uh, strains εh = ∇suh, stresses σh and
divergence of stresses divσh are given by

uh := {u1, u2, u3}T ,

εh := ∇suh = {ε11, ε12, ε13, ε21, ε22, ε23, ε31, ε32, ε33, }T ,

σh := {σ11, σ12, σ13, σ21, σ22, σ23, σ31, σ32, σ33}T ,

divσh := {div σ1, div σ2, div σ3}T . ,

(3.43)

The vectors of degrees of freedom dju and dj,iσ , related to the unknown discrete field
quantities, here uh and σh, are

dju :=
{
dju1, d

j
u2, d

j
u3

}T
, for j = 1, .., nu,elem ,

dj,iσ :=
{
dj,iσ1, d

j,i
σ2, d

j,i
σ3

}T
, for j = 1, .., nedge and i = 1, .., nσ,edge ,

(3.44)

where j in dji denotes the number of displacement nodes nu,elem within one finite element
and j and i in dj,iσ are given by the number of edges nedge and number of stress nodes on
each edge as well as on the interior face nσ,edge. The approximation of uh,∇suh,σh and
divσh, for the linear elastic mixed finite element formulation, with σ ∈ [H(div,B)]3×3

and u ∈ [H1(B)]3 are

uh =

nu,elem∑
j

Nj(ξ)dju = N(ξ)du , σh =

nedge∑
j

nσ,edge∑
i

Sj,i(ξ)dj,iσ = S(ξ)dσ ,

εh =

nu,elem∑
j

Bj(ξ)dju = B(ξ)du , divσh =

nedge∑
j

nσ,edge∑
i

S′j,i(ξ)dj,iσ = S′(ξ)dσ ,

(3.45)

and analogously the virtual and incremental variables, omitting the summation over the
related nodes, are defined by

δuh = N δdu , ∆uh = N∆du , δεh = B δdu , ∆εh = B∆du ,

δσh = S δdσ , ∆σh = S∆dσ , div δσh = S′ δdσ , div ∆σh = S′∆dσ .
(3.46)

Herein, the matrix N consists of conforming continuous piecewise polynomial functions,
Lagrange type functions (P , Q) and B includes the derivative of the functions with respect
to ξ = {ξ, η, ζ}T , in the literature often referred as B-matrix. Furthermore, S consists of
suitable H(div,B)-conforming functions, e.g., Raviart-Thomas (RT ) or Brezzi-Douglas-
Marini (BDM) functions, while S′ includes directional derivatives of these functions. For
completeness, these matrices are defined in Appendix 8.1.1.
For simplicity the summations over nedge, nσ,edge and nu,elem are omitted in the following
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representations. Thus, the element vectors and matrices are constructed by

du :=
{
d1
u
T
, d2

u
T
, ... dju

T
}T

for j = 1, ..., nu,elem ,

N := {N1, N2, ... Nj}T for j = 1, ..., nu,elem ,

B := {B1, B2, ... Bj}T for j = 1, ..., nu,elem ,

dσ :=
{
d1,1
σ

T
, d1,2

σ
T
, ... dj,iσ

T
}T

for j = 1, ..., nedge and i = 1, ..., nσ,edge ,

S := {S1,1, S1,2, ... Sj,i}T for j = 1, ..., nedge and i = 1, ..., nσ,edge ,

S′ := {S′1,1, S′1,2, ... S′j,i}T for j = 1, ..., nedge and i = 1, ..., nσ,edge .

(3.47)

Analogously, the virtual and incremental vectors δdu,σ and ∆du,σ are defined. For the
calculation of the displacement gradient the derivative of the approximation function,
with respect to the reference configuration Xh, is necessary, which is

∇uh =
∂uh
∂Xh

=
∂uh
∂ξ
J−1 , with

∂N
∂Xh

=
∂N
∂ξ

∂ξ

∂Xh

=
∂N
∂ξ
J−1 , (3.48)

by application of the chain rule.
Consequently, the discrete form of the LS formulation (3.37) on element level, denoted by
δuF e, δσF e, with δuF = Gu and δσF = Gσ, cf. (3.32), (3.36), reads

δuF e = δdTu r
e
u ⇒ re

u = −
∫
B
NT CT (Sdσ − CBdu) dV ,

δσF e = δdTσ r
e
σ ⇒ re

σ =

∫
B
S′T (S′ dσ + f) dV +

∫
B
ST (Sdσ − CBdu) dV ,

(3.49)

with the fourth order elasticity tensor in matrix notation denoted by C. For convenience
the corresponding weighting parameters ωi are omitted here. Based on this, the discretiza-
tion of the linearization leads to

∆uδuF e = δdTu k
e
uu ∆du ⇒ ke

uu =

∫
B
BT B dV ,

∆σδuF e = δdTu k
e
uσ ∆dσ ⇒ ke

uσ = −
∫
B
BT CT S dV ,

∆uδσF e = δdTσ k
e
σu ∆du ⇒ ke

σu = −
∫
B
ST CB dV ,

∆σδσF e = δdTσ k
e
σσ ∆dσ ⇒ ke

σσ =

∫
B
S′T S′ dV +

∫
B
ST S dV ,

(3.50)

and the resulting local system of equations for a typical LS element reads ke
uu ke

uσ

ke
σu ke

σσ


︸ ︷︷ ︸

ke

 ∆du

∆dσ


︸ ︷︷ ︸

∆de

= −

 re
u

re
σ


︸ ︷︷ ︸
re

. (3.51)

This system is constructed on element level, based on the first variation δUF and linearized
first variation ∆UδUF of the problem, and solved applying the standard Newton-Raphson
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method. The global stiffness matrix K and global residual vector R, determined by as-
sembling over all elements in Bh, are

K =
nele

A
e = 1

ke and R =
nele

A
e = 1

re , (3.52)

and thus the system of equations can be given by

δDT (K∆D +R) = 0 ⇒ ∆D = −K−1R , (3.53)

with δD and ∆D as virtual and incremental vector of unknowns. For the determination
of the nodal degrees of freedom Dn+1 = Dn + ∆D the system ∆D = −K−1R is solved
and an update of D is performed until R ≤ tol, i.e., the global residual vector is smaller
or equal to a predefined tolerance, and global convergence is reached. Furthermore, de-
pending on the chosen continuity of the related unknown field quantities an elimination
of local unknowns can be performed on the element level, cf., e.g., Arnold et al. [8]
and Stenberg [224]. The element stiffness matrix ke and the associated element right
hand side vector re are presented for the discussed formulations if necessary.

3.3 Conforming finite element approximation

For the choice of the function spaces, various approaches have been introduced over the
years, which can be roughly divided into conforming and non-conforming discretization.
Here, the terms conforming and non-conforming refer to the relation between the discrete
and the real problem. If Vh 6⊂ V , i.e., the finite element space Vh is not a subspace of
the required solution space V , in which the continuous problem is defined, one speaks of
non-conforming approximations. In addition, this definition results in the fact, that for a
problem defined in H1(B), a non-conforming function space is not located in the Sobolev
space H1(B) and, e.g., only in L2(B). For conforming elements it holds that Vh ⊂ V . A
general introduction of properties and relations of function spaces is given in Chapter
3.1. Subsequently, the different approximation functions and related finite elements are
introduced and further their construction is briefly presented. The consideration is lim-
ited to conforming approximations in the Sobolev spaces W1,p(B) and Wq(div,B), which
however contain a large range of the standard approximation functions.
One of the best known conforming elements is the P1 element, which is a trian-
gular element with linear approximation functions of Lagrange type and goes back
to Courant [82]. Additionally, the quadratic triangular element is first introduced
by Fraeijs De Veubeke [101], cf. Zienkiewicz [244]. A general overview of a wide
range of finite elements is given by Kirby et al. [131] and, e.g., the monographs
Boffi et al. [49], Brezzi and Fortin [56]. Furthermore, conforming elements in
W1,p(B) are presented in Zienkiewicz et al. [250], Chen [74] and Boffi et al. [49],
beside others.
For the conforming approximation of unknown field variables in Wq(div,B),
various suitable choices of approximation functions are available. In general,
these are vector-valued approaches such as Raviart-Thomas (RT ), Brezzi-Douglas-
Marini (BDM), Brezzi-Douglas-Fortin-Marini (BDFM) and Arnold-Boffi-Falk (ABF)
functions, among others, see Raviart and Thomas [188], Brezzi et al. [57],
Brezzi et al. [59] and Arnold et al. [8]. The RT function space was first intro-
duced by Raviart and Thomas [189] for two dimensional elements and extended
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by Nédélec [170] into the three dimensional framework. A variation of these ele-
ments is given by the BDM elements, proposed by Brezzi et al. [57] for d = 2
and Brezzi et al. [58] for d = 3. These spaces include the Raviart-Thomas and
Nédélec spaces within their definition, see Nédélec [170; 171]. A modification of the
BDM elements is introduced by Brezzi et al. [59] yielding the BDFM element ap-
proach. Additionally, Arnold et al. [8] propose a finite element space which pro-
vides optimal order approximation in H(div,B) for quadrilaterals, denoted as ABF
elements. Further discussions on these spaces and approaches in Wq(div,B) are given
in, e.g., Brezzi and Fortin [56]. Furthermore, overviews of conforming and non-
conforming finite element approximations are presented in, e.g., Kirby et al. [131],
Rognes et al. [193] and Boffi et al. [49]. A short overview of non-conforming
approaches is given below, for more details see, e.g., Brenner and Scott [53],
Kirby et al. [131], Chen [74], Boffi et al. [49] and Brezzi and Fortin [56]. In
the next section the RT and BDM elements are introduced on triangular and quadrilat-
eral domains and additionally the RT space is discussed on tetrahedral elements.
Some well-known non-conforming finite elements are the Crouzeix-Raviart ele-
ment, referred as the non-conforming P1 element, and the Rannacher-Turek
element on quadrilaterals, cf. Brenner [52], Crouzeix and Raviart [83] and
Rannacher and Turek [187]. For the Crouzeix-Raviart element the interpolation
sites are not located at the vertices of the triangle like in the conforming P1 ele-
ment, but at the centers of the three edges. Therefore, the continuity is solely con-
trolled at one point of the edge and is discontinuous in the vertices of the related
edge. The application of non-conforming approximations on quadrilaterals is, e.g.,
performed by Rannacher and Turek [187], Hennart et al. [108], Matthies [160]
and Köster et al. [140]. Therein, Rannacher and Turek [187] have presented four
variants of non-conforming ansatz spaces, one of these corresponds to the first-order el-
ement of Hennart et al. [108]. Furthermore, inf-sup stability of non-conforming el-
ements is investigated by Matthies [160]. In Köster et al. [140] also higher order
variants, which allow optimal error estimations and are based on area moments assigned
to (n−1)-dimensional surfaces, and bubble functions assigned to single cells, are presented.
For completeness, the utilization of non-conforming finite element approaches simultane-
ously leads to a violation of the Céa-Lemma, respectively forces a generalization of the
requirements.
It has to be mentioned, that based on the given definition of non-conforming finite ele-
ments, discontinuous approaches can be also seen as non-conforming. Since, e.g., in the
case of a discontinuous displacement element, the degrees of freedom only lie within the el-
ement and no global continuity is required by these elements, which can be overcome by hy-
brid FEM formulations, see, e.g., Roberts and Thomas [192], Carey and Oden [70],
Atluri et al. [16], Atluri et al. [15] and Brezzi and Fortin [56]. The idea of hy-
brid elements is presented in the course of this work, see Chapter 6.

3.3.1 The W1,p(B)-conforming Pk and Qk elements

The conforming approximation functions are introduced based on the approach of ref-
erence elements in the parameter space (ξ, η)T and (ξ, η, ζ)T , exemplarily depicted for a
triangular and quadrilateral element domain in Figure 3.1. These approximation functions
are transferred into the physical space (x, y)T and (x, y, z)T by means of a transformation
depending on the structure of the approximated field variable. However, this approach
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can be avoided by a direct construction of shape functions in the physical space, which is
discussed for straight-edged element shapes hereafter.

η

ξ

n̂1

n̂3

n̂2

ê1ê2

ê3

B̂e
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n̂3

n̂2
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ê2

ê3

ê1

Figure 3.1: Reference elements given by the unit triangle and the unit quadrilateral.

The Lagrange type approximation functions are piecewise defined polynomials of order
k, e.g., a polynomial of order k ∈ R2 on a triangular element domain has exactly (k +
1)(k + 2)/2 sampling points and in general the same number of degrees of freedom in
each dimension d. Here, only complete polynomial functions in Pk and Qk are considered
for the approximation, where P denotes triangular and Q quadrilateral based domains in
d = 2, 3. The spaces of polynomials are defined for triangles and tetrahedrals by

[Pk]2 =
∑
i,j≥0
i+j≤k

aij ξ
i ηj and [Pk]3 =

∑
i,j,p≥0
i+j+p≤k

aijp ξ
i ηj ζp , (3.54)

and for quadrilaterals and hexahedrals by

[Qk]2 =
∑

0≤i,j≤k

aij ξ
i ηj and [Qk]3 =

∑
0≤i,j,p≤k

aijp ξ
i ηj ζp . (3.55)

The underlying polynomial for the [Pk]d and [Qk]d can be also given with respect to
Pascal’s triangle, describing the monomials for functions in d = 2 and by a straightfor-
ward extension for d = 3, see, e.g., Zienkiewicz et al. [250]. However, beside the here
considered standard Lagrange functions with complete polynomials, there are functions
based on a reduced polynomial space as, e.g., the so-called Serendipity elements on quadri-
laterals, cf., e.g., Zienkiewicz et al. [250]. The choice of complete polynomials up to
order k is based on reasons of convergence, see, e.g., Zienkiewicz and Taylor [246]
and Wriggers [236]. For simplicity only two dimensional [Pk]2 and [Qk]2 are depicted
in Figure 3.2 and 3.3, which can be easily extended to the three dimensional setup, see
Zienkiewicz et al. [250], Kirby et al. [131], Wriggers [236].

The sampling points P̂ j are numbered counterclockwise. Furthermore, the dimensions of
[Pk]d and [Qk]d space, cf. Brezzi and Fortin [56] and Kirby et al. [131], are given
by

dim([Pk]d) =

{
1
2
(k + 1)(k + 2) , for d = 2

1
6
(k + 1)(k + 2)(k + 3) , for d = 3

, (3.56)

dim([Qk]d) =

{
(k + 1)(k + 1) , for d = 2

(k + 1)(k + 1)(k + 1) , for d = 3
, (3.57)
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Figure 3.2: [Pk]2 elements with k = 1, 2, 3
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Figure 3.3: [Qk]2 elements with k = 1, 2, 3

and listed in Table 3.1 for d = 2, 3 and k = 1, 2, 3.

Table 3.1: Dimensions of [Pk]d and [Qk]d spaces for d = 2, 3

dim([Pk]2) dim([Qk]2) dim([Pk]3) dim([Qk]3)

k = 1 3 4 4 8

k = 2 6 9 10 27

k = 3 10 16 20 64

Evaluation of approximation functions within the space Pk
The evaluation of approximation functions N̂ j at each node j, either for [Pk]d or [Qk]d
elements, can be performed by solving a system of equations. This system of equations
is determined based on the corresponding complete polynomials (3.54), (3.55) and the
coordinates of the sampling points and solved with respect to the condition

N j(ξi, ηi) =

{
1 , for j = i
0 , for j 6= i

. (3.58)

The lowest order functions on a triangular element, cf., e.g., Zienkiewicz et al. [250]
chapter 6, are determined by

La(x, y) =
1

2∆
(aa + ba x+ ca y) =

∆a

∆
, with 2∆a = aa + ba x+ ca y (3.59)
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with the coefficients aa, ba, ca for a = 1, 2, 3 based on the coordinates xa, ya of the vertices
of a three-noded triangular element, i.e.,

aa = xa+1 ya+2 − xa+2 ya+1 , ba = ya+1 − ya+2 and ca = xa+2 − xa+1 , (3.60)

defined by cyclic interchange of the subscripts 1, 2, 3. The area of the triangular domain
is ∆ = 1/2

∑
a xa ba. As a geometrical interpretation ∆a is twice the area of a triangle de-

fined through two points of the considered triangle and a point (x, y) inside the triangular
domain. The shape functions for the three-noded triangle are N j = La. For further in-
sides and a detailed description of the construction, cf., e.g., Zienkiewicz et al. [250],
Zienkiewicz and Taylor [246]. The resulting functions for [P1]2, in parameter space ξ
by interchanging x with ξ in (3.59), (3.60), are given by N1 = L1 = 1−ξ−η, N2 = L2 = ξ
and N3 = L3 = η and for [P2]2, below.

N j =


(2Lj − 1)Lj , for j = 1, 2, 3

4L1L2 , for j = 4

4L2L3 , for j = 5

4L3L1 , for j = 6

(3.61)

For applications in d = 3, the lowest order functions on a tetrahedral element in volume
coordinates are

La(x, y, z) =
1

6V
(aaj + ba x+ ca y + da z) , for a = 1, 2, 3, 4 . (3.62)

The volume V and the coefficients aa, ba, ca, da of the tetrahedral element are determined
by

6V = det


1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

 , (3.63)

and

(a, b, c, d)a = det

 x2 y2 z2

x3 y3 z3

x4 y4 z4

 ,
 y2 z2 1
y3 z3 1
y4 z4 1

 ,
 z2 1 x2

z3 1 x3

z4 1 x4

 ,
 1 x2 y2

1 x3 y3

1 x4 y4

 ,

(3.64)
with the constants (a, b, c, d)a with a = 1, 2, 3, 4 defined by cyclic interchange of the
subscripts in the order 1, 2, 3, 4, cf. Zienkiewicz et al. [250]. The functions for [P1]3,
in parameter space ξ, by replacing x with ξ, are N1 = L1 = 1− ξ − η − ζ, N2 = L2 = ξ,
N3 = L3 = η and N4 = L4 = ζ and for [P2]3 given below.

N j =


(2Lj − 1)Lj , for j = 1, 2, 3, 4

4L2L1 , for j = 5 4L3L1 , for j = 6

4L4L1 , for j = 7 4L2L3 , for j = 8

4L3L4 , for j = 9 4L4L2 , for j = 10

(3.65)

For the evaluation of higher order functions a combinations of the lowest order func-
tions are used. The later approach can be used for a construction of approximation
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functions on arbitrary domains directly in the physical space x without any transfor-
mation or mapping from the parameter space ξ, if the elements in physical space are
straight-edged, which holds for higher order functions as well. For a detailed explana-
tion of the derivative of Lagrange functions see Zienkiewicz et al. [250] chapter 6
and Zienkiewicz and Taylor [246] chapter 8. A further approach is given, e.g., in
Argyris et al. [4], Taylor [228] and Silvester [209], cf. Zienkiewicz et al. [250].

Evaluation of approximation functions within the space Qk
The determination of approximation functions in Qk can be performed either with respect
to a system of equations and (3.58) or based on a combination of one dimensional shape
functions with

N j = N il = N i(ξ) N l(η) , (3.66)

with i and l denoting the column and row number of the considered sampling point j of
the domain, which is, e.g., N1 = N11 with j = 1, i = 1 and l = 1 related to P 1 in Figure
3.3, in terms of an equal number of subdivisions in each direction. The one dimensional
polynomial functions N j(ξ), of degree k − 1, with N j(ξj) = 1 and N j(ξi) = 0, are
determined by

N j(ξ) =
k∏
i=1
i 6=j

ξi − ξ
ξi − ξj

. (3.67)

The evaluation of (3.66) with (3.67) for [Q1]2 yields

N j =
1

4
(1 + ξj ξ)(1 + ηj η) for corner nodes j = 1, 2, 3, 4 (3.68)

with ξj and ηj denoting the coordinates at the j-th node, see, e.g., Wriggers [236],
Zienkiewicz et al. [250]. For a higher order approach of [Q2]2 the functions are given
by

N j =



1
4
ξη(1 + ξj)(1 + ηj) , for corner nodes , j = 1, .., 4 ,

1
2
η(1− ξ2)(η + ηj) , for mid nodes with ξj = 0 , j = 5, 7 ,

1
2
ξ(ξ + ξj)(1 + η2) , for mid nodes with ηj = 0 , j = 6, 8 ,

(1− ξ2)(1− η2) , for center nodes , j = 9 .

(3.69)

Analogously to the extension of function evaluation on triangular domains with
k ≥ 2, higher order functions on quadrilaterals can be constructed, cf.
Zienkiewicz et al. [250], among others. For the framework of hexahedral domains the
basic relation (3.66) is extended by a third one-dimensional Lagrange function leading to

N j = N ilm = N i(ξ) N l(η) Nm(ζ) . (3.70)

The alternative approach for the evaluation of approximation functions on quadrilateral
and hexahedral domains is defined by the construction of a system of equations by means
of the function N j(ξ), based on a complete polynomial in the space Qk of order k, which
is defined by the relations (3.55), and solved regarding the condition (3.58).
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3.3.2 The Wq(div,B)-conforming Raviart-Thomas (RT m) element

The Wq(div,B)-conforming Raviart-Thomas space, see Boffi et al. [49],
Brezzi and Fortin [56], can be considered for quantities, which are from a physical
point of view normal continuous. Therein, the normal components of the quantities are
approximated continuously, whereas the tangential components are unrestricted, cf.,
e.g., Brezzi and Fortin [56] and Ervin [95]. These quantities are, e.g., the Cauchy
stresses σ or the magnetic induction B. The approximation space is given byWq(div,B),
where q denotes the corresponding Lq(B)-norm, which has to be satisfied (i.e., for σ:
‖σ‖Lq(B) < ∞ and ‖ divσ‖Lq(B) < ∞). Since the formulations considered are restricted
to quantities occurring in quadratic form inWq(div,B), a restriction to the Hilbert space
H(div,B) is applied and therefore only square integrable functions are considered with
L2(B)-norm in (3.2). The RT m space for d = 2 triangular and for d = 3 tetrahedral
elements, denoted with the upper character 4, is defined by

[RT 4m]d = [Pm]d ⊕ ξPm , (m ≥ 0) , (3.71)

based on the definition of the space Pm (3.54). For the application of RT m functions on
bilinear and trilinear elements, denoted with the upper character �, the RT m space is
introduced by

[RT �
m]d = [Qm]d ⊕ ξQm , (m ≥ 0) , (3.72)

with Qk defined by (3.55), which can be reformulated into

[RT �
m]2 = Pm+1,m × Pm,m+1 , (m ≥ 0) (3.73)

for quadrilateral elements with d = 2 and the RT space for hexahedral elements with
d = 3 is

[RT �
m]3 = Pm+1,m,m × Pm,m+1,m × Pm,m,m+1 , (m ≥ 0) , (3.74)

where Pn,o and analogously Pn,o,p define the space of polynomial functions on B̂ of degree
at most n in ξ, o in η and p in ζ with some constants aij, aijk ∈ R, which is

Pn,o =
∑

0≤i,j≤n,o

aij ξ
i ηj and Pn,o,p =

∑
0≤i,j,k≤n,o,p

aijk ξ
i ηj ζk . (3.75)

Therefore, the [RT �
m]2 basis is denoted by the vector fields (ξiηj, 0) and (0, ξjηi) with

0 ≤ i ≤ m+ 1 and 0 ≤ j ≤ m, cf. Arnold et al. [8]. The dimensions of theRT m space,
cf., e.g., Brezzi and Fortin [56] and Kirby et al. [131], are given for triangular (d =
2) and tetrahedral (d = 3) elements with

dim([RT 4m]d) =

{
(m+ 1)(m+ 3) , for d = 2 ,
1
2
(m+ 1)(m+ 2)(m+ 4) , for d = 3 ,

, (3.76)

and for quadrilateral (d = 2) and hexahedral (d = 3) element domains by

dim([RT �
m]d) =

{
2(m+ 1)(m+ 2) , for d = 2 ,

3(m+ 1)2(m+ 2) , for d = 3 .
(3.77)
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Both can be divided into the dimensions of inner and outer sampling points with

dim([RT 4m]d) =


d = 2 :

{
3(m+ 1) , out. dim ,

m(m+ 1) , in. dim ,

d = 3 :

{
2(m+ 1)(m+ 2) , out. dim ,
1
2
m(m+ 1)(m+ 2) , in. dim ,

(3.78)

and further

dim([RT �
m]d) =


d = 2 :

{
4(m+ 1) , out. dim ,

2m(m+ 1) , in. dim ,

d = 3 :

{
6(m+ 1)2 , out. dim ,

3m(m+ 1)2 , in. dim .

(3.79)

The resulting number of sampling points and consequently the number of degrees of
freedom in each dimension are exemplarily listed in Table 3.2. In addition, the resulting
element topologies for RT m with m = 0, 1, 2 are illustrated in Figure 3.4 and 3.5, for
d = 2 on triangle and quadrilateral domains.

Table 3.2: Dimensions of RT m spaces for d = 2, 3

dim([RT 4m]2) dim([RT 4m]3) dim([RT �
m]2) dim([RT �

m]3)

m = 0 3 4 4 6

m = 1 8 (6 + 2) 15 (12 + 3) 12 (8 + 4) 36 (24 + 12)

m = 2 15 (9 + 6) 36 (24 + 12) 24 (12 + 12) 108 (54 + 54)
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Figure 3.4: [RT 4
m]2 elements with m = 0, 1, 2

The vector-valued Raviart-Thomas functions Ψj,i
m , with j denoting the associated edge ej

or face f j, i the node number on that edge or face with i = 1, ..,m+ 1 and m the approx-
imation order, are determined by solving a system of equations, which is constructed by
evaluation of the inner and outer moments. These outer moments, evaluated for the edge
degrees of freedom, are defined by∫

ej
(v̂m · n̂j) p̂m ds , ∀ p̂m ∈ Pm(ej) , for each edge ej , (3.80)
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Figure 3.5: [RT �
m]2 elements with m = 0, 1, 2

and the inner moments for the internal degrees of freedom are∫
K

v̂m · p̂m−1 da , ∀ p̂m−1 ∈ [Pm−1]2 , for m ≥ 1 . (3.81)

Analogously, the degrees of freedom on the faces (d = 3) are obtained by∫
fj

(v̂m · n̂j) p̂m da , ∀ p̂m ∈ Pm(f j) , for each face f j , (3.82)

and for the internal degrees of freedom with∫
T

v̂m · p̂m−1 dv , ∀ p̂m−1 ∈ [Pm−1]3 , for m ≥ 1 , (3.83)

cf., e.g., Brezzi and Fortin [56], Boffi et al. [49]. Here, n̂j is the outward normal
vector on the associated edge or face on the unit reference element, p̂m and p̂m−1 are
scalar and vectorial functions of order m and m−1 at the corresponding interpolation site
depending on the related edge and sampling point, see Appendix 8.1.2. These functions
have to be chosen linear independent. For the functions p̂m and p̂m−1 on [RT m]2 one
dimensional Lagrange functions on the associated edge, related to the [RT m]2 nodes
on that edge, are used here. Analogously, two dimensional Lagrange functions on the
associated faces are considered for p̂m and p̂m−1 on [RT m]3. A requirement, which has
to be fulfilled by the Raviart-Thomas basis functions, is that the sum of RT m functions
Ψj,i
m related to one edge or face j, multiplied with the corresponding outward normal and

considering the associated edge relation (see Appendix 8.1.2), has to be equal to one on
that edge and 0 on all other edges, which is

nl ·
∑
i

Ψj,i
m =

{
1 , for l = j
0 , for l 6= j

. (3.84)

The solution of the system of equations yields the linear independent vectorial basis func-
tions for the inner and outer degrees of freedom at the j-th edge of the reference element,
denoted by Ψj,i

m (ξ), cf. Ciarlet and Lions [76]. These vectorial basis functions have to
be transformed from the parameter space (ξ, η)T to the physical space (x, y)T . This is
performed for vector-valued functions by using a contra- or covariant Piola transforma-
tion, which is discussed later on. The basic assumptions for the evaluation of H(div,B)-
conforming functions as outer and inner moments are briefly presented in Appendix 8.1.2.
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There are different possibilities for the construction ofRT m functions. An alternative pro-
cedure, avoiding the application of the Piola transformation for vector-valued quantities,
is the construction of H(div,B)-conforming RT functions directly in the physical space
x = (x, y)T and x = (x, y, z)T , respectively. This procedure is performed, here exemplarily
for triangular and tetrahedral elements, based on the construction of lowest order functions
with m = 0, cf., e.g., Bahriawati and Carstensen [22]. The extension to higher order
RT m elements with m ≥ 1 is done by means of the lowest order approximation functions
and additional Pm Lagrange functions. Following Bahriawati and Carstensen [22],
the RT 0 functions are determined by

Ψj,1
0 (x) =

|ej|
2|T |

(x− P j) for j = 1, 2, 3 and x ∈ T , (3.85)

with the length of the j-th edge |ej|, T as the area of the triangle and P j is the ver-
tex opposite to the edge ej. The extension to the three dimensional framework is given
straightforward by

Ψj,1
0 (x) =

|f j|
3|V |

(x− P j) for j = 1, 2, 3, 4 and x ∈ V , (3.86)

with f j the area of the j-th face, V as the volume of tetrahedron and Pj as the vertex
opposite to the face f j. For the determination of the shape functions within the parameter
space ξ = (ξ, η)T or respectively ξ = (ξ, η, ζ)T on unit triangular and tetrahedral elements,
with known area and volume, the equations can be simplified to

Ψj,1
0 (x) = |ej|(x− P j) for j = 1, 2, 3 and x ∈ T , (3.87)

and
Ψj,1

0 (x) = 2|f j|(x− P j) for j = 1, 2, 3, 4 and x ∈ V . (3.88)
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Figure 3.6: RT 0 shape functions on unit triangle and tetrahedral elements in physical
space

The fundamental basis for the construction of higher order H(div)-conforming vector-
valued Raviart-Thomas ansatz functions is given by the RT 0 functions in (3.85) and
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(3.86) and shown in Figure 3.6 for [RT 40 ]d. For a higher order approximation, additional
nodes have to be introduced on the edges and faces as well as at the interior of the
element domain, which produces new edge and internal degrees of freedom, cf. Table 3.2.
As a basis for the construction of [RT 41 ]2 functions, the [RT 40 ]2 basis functions are used.
Additionally, linear Lagrange shape functions P1 are considered, with respect to the two
nodes on the related edge P̄ j,i and the inner node P̄ I . For [RT 41 ]2, P̄ I is located at the
centroid. Therefore, three separate triangles are constructed, see top right in Figure 3.7,
for which the condition of Lagrange shape functions, with the value 1 at the specific node
and 0 at the other two nodes, is fulfilled. This procedure can be extended straightforward
for d = 3. An illustration of this idea for a [RT 4m]d approach is exemplarily depicted in
Figure 3.7 for triangular elements up to order m = 3 and for tetrahedral elements up
to order m = 1 in Figure 3.8. The evaluation of edge or face related outer functions is
denoted by

Ψj,i
m (x) = Ψj,1

0 (x)N j,P̄ j,i

m (x) for x ∈ R2 and x ∈ R3 , (3.89)

where j is defined by the considered edge or face number ej or f j, i is the number of
sampling points on each edge or face with i = 1, ..,m+ 1 for d = 2 and i = 1, .., 1/2(m+
1)(m + 2) for d = 3 and m corresponds to the polynomial degree of the function to be
constructed.
Furthermore, for the polynomial order of m ≥ 1 the inner functions have to be evaluated
additionally. Therefore, the Lagrange functions at the corresponding inner nodes P̄ I,j−3 for
d = 2 and P̄ I,j−4 for d = 3 are considered, which yields the following relations applicable
for the inner functions for d = 2

Ψj,i
m (x) = Ψi+1,1

0 (x)N i+1,P̄ I,j−3

m (x) for x ∈ R2 , (3.90)

and d = 3

Ψj,i
m (x) = Ψi+1,1

0 (x)N i+1,P̄ I,j−4

m (x) for x ∈ R3 . (3.91)

Here, j is the node number of the inner nodes, which is defined for triangular and tetra-
hedral elements by

j =

{
j = 4, .., 3 +m(m+ 1)/2 , for in. functions d = 2
j = 5, .., 4 +m(m+ 1)(m+ 2)/6 , for in. functions d = 3

. (3.92)

The construction of the necessary Lagrange shape functions is straightforward, as dis-
cussed previously, where the only needed quantities are the nodal coordinates within the
element. An example for the evaluation of [RT 41 ]2 based on [RT 40 ]2 functions is performed
in Appendix 8.1.2. The choice of Lagrange functions for the evaluation at the inner RT
sampling points is not restricted to the here proposed formulation. Due to the topology
of the unit triangle and tetrahedral element lowest order RT functions of the inclined
edge or face are not considered. The presented approach for a direct evaluation of RT m
approximation functions on arbitrary straight-edged triangular and tetrahedral elements,
also holds for the framework of quadrilateral and hexahedral element domains, which will
not be presented in detail. This approach is possible, since the properties and direction of
the RT m function is always determined by the lowest order RT approach (3.85), (3.86).
For higher order functions, only the polynomial degree has to be increased, which is done
by the Lagrange functions.
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Figure 3.7: Evaluation of [RT 4
m]2, m = 1, 2, 3, functions on arbitrary configurations for

straight-edged elements, based on [RT 4
0 ]2 and [Pm]2 (plots without internal functions).

3.3.3 The Wq(div,B)-conforming Brezzi-Douglas-Marini (BDMm) element

The H(div,B)-conforming Brezzi-Douglas-Marini element is considered for quantities,
which are normal continuous, from a physical point of view. Thus the properties cor-
respond to those of the Raviart-Thomas element. Furthermore, both the BDMm and
RT m spaces strictly contain the space Pm but not the space Pm+1. For triangular and
tetrahedral elements, with the same approximation order m the space RT m contains the
space BDMm with BDMm ⊂ RT m, cf. Brezzi and Fortin [56]. The BDM space
is proposed for d = 2 elements by Brezzi et al. [57] and extended to d = 3 by
Brezzi et al. [58]. The BDMm space on triangular and tetrahedral elements is defined
by

[BDM4
m]d = [Pm]d , for m ≥ 1 . (3.93)

This does not hold for quadrilateral elements, see Arnold et al. [8], where the BDMm

space is the span of Pm×Pm and the two vector fields curl(ξm+1η) and curl(ξηm+1) defined
by

[BDM�
m]2 = [Pm]2 ⊕ curl(ξm+1η)⊕ curl(ξηm+1) , for m ≥ 1 , (3.94)
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Figure 3.8: Evaluation of [RT 4
1 ]3 functions on an arbitrary configuration for straight-edged

elements, based on [RT 4
0 ]3 and [P1]3 (plots without internal functions).
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with curl(v(ξ, η)) =
(
− ∂v

∂η
, ∂v
∂ξ

)T
. For completeness, the BDMm space for m ≥ 1 is defined

on hexahedral elements by

[BDM�
m]3 = [Pm]3

m
⊕
i=0

ri curlχri
m
⊕
i=0

si curlχsi
m
⊕
i=0

ti curlχti , (3.95)

with (ri, si, ti) ∈ R3(m+1) and the curl operator curl(v) =
(
∂vz
∂η
− ∂vy

∂ζ
, ∂vx
∂ζ
− ∂vz

∂ξ
, ∂vy
∂ξ
− ∂vx

∂η

)T
applied on the vector functions χri = (0, 0, ξi+1ηζm−i), χsi = (ξm−iηi+1ζ, 0, 0) and
χti = (0, ξηm−iζ i+1, 0), cf. Brezzi and Fortin [56].
The dimension of the BDMm space, cf., e.g., Boffi et al. [49],
Brezzi and Fortin [56] and Kirby et al. [131], are given for triangular (d = 2) and
tetrahedral (d = 3) elements, denoted by the upper character 4, with

dim([BDM4
m]d) =

{
(m+ 1)(m+ 2) = m2 + 3m+ 2 , for d = 2 ,
1
2
(m+ 1)(m+ 2)(m+ 3) , for d = 3 ,

(3.96)

and furthermore for quadrilateral (d = 2) and hexahedral (d = 3) element domains,
denoted by the upper character �, by

dim([BDM�
m]d) =

{
(m+ 1)(m+ 2) + 2 = m2 + 3m+ 4 , for d = 2 ,
1
2
(m+ 1)(m+ 2)(m+ 3) + 3(m+ 1) , for d = 3 .

(3.97)

The number of degrees of freedom for d = 2, 3 are listed in Table 3.3.

Table 3.3: Dimensions of BDMm spaces for d = 2, 3

dim([BDM4
m]2) dim([BDM4

m]3) dim([BDM�
m]2) dim([BDM�

m]3)

m = 1 6 12 8 18

m = 2 12 30 14 39

m = 3 20 60 22 72
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Figure 3.9: [BDM4
m]2 elements with m = 1, 2

However in the proposed work the considered BDMm elements are restricted to the two di-
mensional framework, where the evaluation of the approximation functions are performed
with respect to inner and outer moments as in the construction of RT m functions. Thus,
the evaluation is based on the determination of∫

ej
(v̂m · n̂j) p̂m ds = 0 , ∀ p̂m ∈ Pm(ej) for each edge ej , (3.98)
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Figure 3.10: [BDM�
m]2 elements with m = 1, 2

for the outer moments and for the inner moments∫
K

v̂m · p̂m−1 da = 0 , ∀ p̂m−1 ∈ [Pm−1]2 , form ≥ 1 . (3.99)

The quantities included n̂j, p̂m and p̂m−1, result from the derivation of RT m functions
in analogy to the relations (3.80) and (3.81). Furthermore, taking into account the
derived outer and inner moments (3.98) and (3.99), a linear system of equations is
created for the determination of the coefficients of BDMm functions Ψj,i

m , which is
solved by the relation to be 1 at the associated node and 0 at all other sampling points.
The resulting functions have to fulfill the relation (3.84). The BDMm functions are
listed for triangular and quadrilateral elements up to order m = 1, 2 in the Appendix 8.1.3.

As already mentioned, the here presented spaces RT m, BDMm strictly contain Pm but
do not contain Pm+1. This is important for the finite element convergence, which depends
on the complete polynomial degree. For triangular elements the relation between theRT m
and BDMm spaces is defined by:

RT 0 ⊂ BDM1 ⊂ RT 1 ⊂ BDM2 ⊂ RT 2 . (3.100)

The reduction of the RT m space compared to the BDMm space of same order m can be
seen at the inner degrees of freedom of the related elements. However, for certain problems,
especially in elasticity, the space RT m is more suited, cf. Brezzi and Fortin [56] for a
detailed explanation of the introduced function spaces and their relations.

3.4 Piola transformation and implementation aspects

For the mapping of vector-valued approximation functions between the different con-
figurations, another transformation must be taken into account. Since, the previously
introduced mapping ϕ, is an isomorphic mapping of functions in the finite element spaces
Hm(B) toHm(B̂), for some configuration B̂, which does not necessarily guarantee continu-
ity in the normal or tangential direction after the transformation, cf. Boffi et al. [49],
Rognes et al. [193] and Ciarlet [78]. However, this continuities are essential for func-
tions in H(div,B) and H(curl,B). Therefore, so-called Piola transformations have to be
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applied. These transformations are denoted by ϕdiv(υ) and ϕcurl(υ) as contravariant and
covariant transformations of υ, defined by

ϕdiv(υ) =
1

detJ
J · υ and ϕcurl(υ) = J−T · υ , (3.101)

and preserve tangential and normal continuity. The contra- and covariant mappings are
isomorphisms of H(div,B) onto H(div, B̂) and H(curl,B) onto H(curl, B̂), respectively, cf.
Rognes et al. [193]. The transformations can be derived, considering the restrictions,
which have to be preserved by the transformation. These are normal continuity with

[[υ · n]] = 0 ⇒ (υ · n) da = (υ̂ · n̂) dâ (3.102)

and for the covariant transformation tangential continuity

[[υ · s]] = 0 ⇒ (υ · s) dx = (υ̂ · ŝ) dx̂ . (3.103)

Here, s denotes the tangent of an edge and J = ∇,ξx, with ξ as the parameter space
and x as the physical space. For the contravariant transformation, the mapping of area
elements da = cof J · dâ with cof J = det(J)J−T and the relation da = n da are inserted
in (3.102), which yields

υ · da = υ̂ · dâ ⇒ υ =
1

detJ
J · υ̂ . (3.104)

Similar to this the covariant transformation is derived, using the mapping of line elements
dx = J · dx̂ and relation dx = s dx, i.e.,

υ · dx = υ̂ · dx̂ ⇒ υ = J−T · υ̂ . (3.105)

This transformations hold for all element geometries, see Boffi et al. [49],
Brezzi and Fortin [56] as well as, e.g., Rognes et al. [193] for triangle and tetra-
hedral elements and, e.g., Arnold et al. [8] for quadrilaterals. As previously presented
for RT functions, this transformations can be avoided by a direct evaluation of functions
on the given element domain B̂e.
For a visualization of the properties of the contra- and covariant Piola transformation an
example is depicted in Figure 3.11. Therein, two vectors, υn in normal and υt in tangen-
tial direction, defined on the edge P1 − P3 on the triangular element Be are mapped onto
some elements B̂′e and B̂′′e using the Piola transformations. Here, it can be seen, that the
contravariant transformation ϕdiv(υ) preserves the tangential properties and thus maps
tangential vectors to tangential vectors. This results for vector-valued fields in H(div,B)
to zero normal components on two edges for d = 2 and on three faces for d = 3, which
in consequence yield vector fields only normal to one edge or face. The covariant Piola
transformation ϕcurl(υ), applied for tangential continuous vector functions in H(curl,B),
preserves the normal components of vectors, i.e., it maps normal vectors to normal vectors.
Based on this property, only tangential components on one edge for d = 2 and one surface
on d = 3 are obtained, since on all other edges or surfaces solely normal components are
preserved, cf. Rognes et al. [193].

Furthermore, the mapping of the divergence of a vector field is given by

divυ = div

(
1

detJ
J · υ̂

)
=

1

detJ
divξ υ̂ , (3.106)
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Figure 3.11: Contra- and covariant Piola transformation ϕdiv(υ) and ϕcurl(υ) of two vectors
υn and υt, defined normal and tangential to edge P1 − P3, onto some triangles B̂′e and B̂′′e

with

J · div υ̂ = divξ υ̂ and div

(
1

detJ
J

)
= 0 , (3.107)

where divξ(Υ) = ∇,ξΥ : 1 for a second order tensor Υ. The relation for the curl of a vector
field can be achieved in a similar manner. In the further course, only the contravariant
Piola transformation is applied, since only functions in H(div,B) are considered. For the
illustration of the contravariant Piola transformation, a [RT 40 ]2 approximation function,
see Figure 3.12, with the same node notation as in Figure 3.11, is shown.

ϕdiv(Ψ̂)

η

ξ x

y

P̂1
P̂2

P̂3

P1
P2

P3

Figure 3.12: Contravariant Piola transformation of a basis function Ψ̂ from parameter
space to physical space

As mentioned before, the RT and BDM functions have to fulfill the condition, that the
sum over all nodes i on every edge j, multiplied with the associated outward normal
vector, has to be equal to one. For the fulfillment of this relation a normalization by
means of the length of the edge might have to be introduced for the functions as well as
the divergence of the function. In order to avoid this normalization, the condition can
be directly incorporated within the construction of the basis functions, see Steeger [223].
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For the implementation of such H(div,B) conforming functions, based on the normal
direction of the corresponding edge, a consistent positive normal direction has to be
defined. The normal directions of two neighboring elements are opposed and a positive
direction has to be determined, since only one normal direction can exist at each edge. For
the consistent ‘positive’ normal direction, here defined by positive coordinate direction,
the opposite ‘negative’ normal component is multiplied by a value of −1. This procedure
is exemplarily depicted in Figure 3.13.
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Figure 3.13: Definition of positive flux direction depicted for two elements B1 and B2

For the implementation of the presented formulations the representation in terms
of the potential energy is considered for simplicity. Based on the used software
packages AceGen and AceFEM (version 6.813 and 7.006), cf., e.g., Korelc [136],
Korelc [137], Korelc and Wriggers [138], of Mathematica (version 10.2 and 12.0),
see Wolfram Research [235] an automatic differentiation approach is considered,
which is provided therein. Furthermore, FEAP the Finite Element Analysis Program (ver-
sion 8.2), see Taylor [227] is used for some of the FE simulations. The visualizations are
performed in Mathematica, AceFEM, ParaView (version 5.8.0), cf. Ahrens et al. [1],
and Tecplot 360 (version 14).

3.5 Convergence of finite element formulations

The representation of convergence assumptions and optimal convergence rates of finite
element solutions will be considered in the following and is therefore briefly introduced
for the applied quantities.
A detailed description of the determination of optimal convergence rates is discussed, e.g.,
in Brenner and Scott [53], Boffi et al. [49] and Bathe [24]. The determination of
the optimal rate of convergence in the theory of elastic problems, can be defined by

‖u− uh‖Hs(B) ≤ c hm−s |u|Hm(B) (3.108)

with the constant c independent of h and m = k+1 depending on k as the degree to which
the polynomial is complete, cf. chapter 4.3.5 in Bathe [24]. In general h is chosen as the
length of a side of an element or as the diameter of a circle circumscribing the element.
Following Brenner and Scott [53], defining 0 ≤ s ≤ min{m, r+1} with the continuity
of the finite element solution Cr for r ≥ 0. For considering complete polynomials in x and
y in d = 2 for triangular elements, all possible terms of the form xαyβ are present, with
α + β = k. The degree of a complete polynomial for the displacement approximation is
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based on P2 given with k = 2. Here, s = 1 due to u ∈ H1(B), i.e.,

‖u− uh‖H1(B) ≤ c h2 |u|H3(B) → O(h2) . (3.109)

For the stress approximation, e.g., based on quadratic Raviart-Thomas functions RT 1

the optimal rate is determined, with k = 1 and σ ∈ Hm(B) and divσ ∈ Hn(B), by

‖σ − σh‖H0(B) ≤ c hm |σ|Hm(B) ,

‖ div(σ − σh)‖H0(B) ≤ c hn | divσ|Hn(B) ,
(3.110)

with n ≤ k + 1, which yields

‖σ − σh‖H0(B) ≤ c h2 |σ|H2(B) → O(h2) ,

‖ div(σ − σh)‖H0(B) ≤ c h2 | divσ|H2(B) → O(h2) .
(3.111)

The combination of these estimates, under the assumption of a RT 1P2 finite element
type, an optimal rate of convergence for the theory of elastic problems of two is expected.
The obtained order of convergence for a boundary value problem is crucially influenced
by the regularity of the solution of the boundary value problem, i.e., regularity can be
reduced by the applied boundary conditions, e.g., by a change from clamped u = 0
to stress-free conditions σ · n = 0 at a corner point, cf. Rössle [194]. Furthermore,
the optimality of the mesh regularity and the used refinement strategy, i.e., regular or
adaptive refinement strategies have an influence on the convergence order. It must be
noted, that the simple application of the L2(B)-norm to residual equations, stemming
from different continuum equations, does not a priori lead to norm-equivalence. But in
the framework of this work, norm-equivalence is not part of the investigated issues, see,
e.g., Bochev and Gunzburger [43].
In general, the rate of convergence can be increased by an increasing polynomial order of
complete polynomials k, if the solution of the problem is very regular. These assumptions
do not hold, if the solution of the problem is irregular, see Carey and Oden [70] and
Rössle [194] for a determination of regularity properties of boundary value problems.
For such problems, the convergence behavior is unaffected by the polynomial order of
the considered functions and only an asymptotic rate of convergence is reached. The
theoretical optimal convergence rates only hold for he → 0.
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4 Mixed finite element methods at small strains

For the discussion on mixed FEM, a least-squares formulation for linear elasticity and
a primal Hellinger-Reissner formulation, dealing with nonlinear material behavior in
terms of small strain elasto-plasticity, are introduced in the following. Here, only stress-
displacement LS formulations are discussed.
The presentation of the LSFEM for linear elasticity discusses the challenges of the method,
such as the weak performance of low order elements, the influence of weighting factors
and the calculation of support reactions. Therefore, two LS formulations are considered,
one in analogy to (3.37) and a formulation extended in terms of the balance of angular
momentum. The idea is related to an additional control of the stress symmetry within
the LSFEM, based on the ideas in Cai and Starke [60] and further developments in
Schwarz et al. [207; 208]. The formulations are evaluated and compared for a simple
boundary value problem of a cantilever beam.
For a preliminary discussion on plastic constraints and their evaluation by a point- or
elementwise enforcement, an elasto-plastic Hellinger-Reissner formulation is discussed for
small strains. The publication by Simo et al. [218] provides a basis for this considera-
tion. Furthermore, the study of plasticity for small deformations allows a more detailed
consideration of the individual variables.
The main aspects of this section are:

• Presentation of LSFEM for linear elasticity in terms of arising challenges,

• Possible solutions to these challenges through an extended formulation with addi-
tional consideration of the stress symmetry, cf. Igelbüscher et al. [120],

• Introduction to elasto-plasticity at small strain utilizing a primal Hellinger-Reissner
formulation, cf. Schröder et al. [200],

• Discussion on pointwise enforcement of the plastic constraints: flow rule, hardening
law and consistency condition, based on Simo et al. [218].

The results presented below have already been published in Igelbüscher et al. [120]
and Schröder et al. [200], therein, further numerical examples are given.

4.1 Mixed least-squares finite element method for linear elasticity

In order to present challenges in the LSFEM, two formulations are investigated which dif-
fer in the requirement of the stress symmetry condition, cf. Igelbüscher et al. [120].
Therefore, an extension of the LS functional by an additional control of the stress
symmetry condition is performed, see Cai and Starke [60], which is still consid-
ered as a weak enforcement of stress symmetry. Furthermore, an exact enforcement of
the stress symmetry can be performed, cf. Gopalakrishnan and Guzmán [104] and
Kober and Starke [135], among others. Additionally, the weighting of the functional
terms is discussed and possible weighting approaches are presented, e.g., a scale in-
dependent formulation similar to Bell and Surana [26]. The topic of weighting pa-
rameters is presented in several numerical studies, e.g., for the Stokes equation in
Deang and Gunzburger [89], Proot and Gerritsma [184] and for solid mechanics
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in Schwarz et al. [207; 208] and Schröder et al. [199], among others. Nevertheless,
it is still an open topic within the LSFEM.
The element formulations used here are based on the approximations u ∈ H1(B) and
a conforming stress approximation with σ ∈ H(div,B). For this, different element or-
ders and ansatz functions are chosen, i.e., Lagrange type functions, Raviart-Thomas and
Brezzi-Douglas-Marini functions, see Chapter 3.3 and, e.g., Raviart and Thomas [189],
Brezzi et al. [57] and Brezzi and Fortin [56].

4.2 Classical stress-displacement least-squares formulation

A mixed stress-displacement LS formulation for linear elasticity is already introduced in
Chapter 3.2.4, see, e.g., Cai and Starke [60] and Cai and Starke [61]. This linear
elastic LS formulation (3.37) consists of the balance of linear momentum and the consti-
tutive equation and is given by

F(σ,u) =
1

2

(∥∥∥ω1(divσ + f)
∥∥∥2

L2(B)
+
∥∥∥ω2(σ − C : ∇su)

∥∥∥2

L2(B)

)
. (4.1)

A general construction approach of the formulation and some general properties of the
method are previously discussed. Furthermore, the corresponding weak forms and lin-
earizations are presented in (3.32) and (3.40).
The solution of the problem is sought with respect to appropriate solution spaces. Here,
(σ,u) ∈ Sm × Vk are chosen as continuous function spaces with

Sm = {σ ∈ [H(div,Be)]
d×d : σ|Be ∈ [RT m(Be)]

d×d , ∀Be ∈ B} ,

Vk = {u ∈ [H1(Be)]
d : u|Be ∈ [Pk(Be)]

d ,∀Be ∈ B} ,
(4.2)

i.e., Lagrange type functions, Pk of order k ≥ 1, are chosen for the function space Vk and
Raviart-Thomas functions, RT m of degree m ≥ 0, are introduced for the space Sm. That
means, u ∈ H1(B) and σ ∈ H(div,B), based on the assumption for the more general
Sobolev spaces W1,p(B) and Wq(div,B) with p = q = 2 for linear elasticity.
The presented LS formulation leads, using the defined function spaces, only to a weak
enforcement of the stress symmetry condition σ = σT , since the balance of angular
momentum is only enforced in a weak sense, i.e.,

‖σ − σT‖2
L2(B) ≤ c‖σ − ∂εψ(ε)‖2

L2(B) = c‖σ − C : ε‖2
L2(B) , (4.3)

in terms of the constitutive relation with the free energy function ψ(ε) = 1
2
ε : C : ε

and c as a positive constant, cf. Cai and Starke [61]. Furthermore, the applied RT
functions lead to a not a priori fulfillment of the stress symmetry condition, which is
described in, e.g., Boffi et al. [48] and Cockburn et al. [80].
A fulfillment of the stress symmetry in a strong sense can be obtained if it is incorpo-
rated within the solution space. Therefore, a possible solution for a strong fulfillment
of σ = σT is to choose a different approximation for the stresses, which directly
provides a symmetric stress tensor. The exact enforcement of the stress symme-
try condition is performed, e.g., in Gopalakrishnan and Guzmán [104] for a family
of mixed methods and in Kober and Starke [135] for a Hellinger-Reissner formulation.
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In this section, an additional control of the stress symmetry condition, as, e.g., suggested
by Schwarz et al. [207], is performed by an extension of (4.1) with respect to the
symmetry condition σ = σT , see Chapter 4.3. This extension is discussed in several
publications, as, e.g., in Cai and Starke [60] for linear elasticity and for finite strain
elasticity in Schwarz et al. [208], and is applied here, in terms of the complete balance
of angular momentum, to improve formulation (4.1). However, an explicit consideration
of σ − σT = 0 in the system of equations, still fulfills the constraint in a weak sense,
cf. Cai and Starke [61]. Nevertheless, it is fulfilled in the limit case he → 0, where
he denotes the characteristic finite element size (diameter). It has to be mentioned that
from the continuum mechanical point of view the balance of angular momentum is
ensured by the symmetry of the Cauchy stress tensor, if additionally the balance of linear
momentum is exactly fulfilled, i.e., divσ = −f .

Furthermore, another challenge in the LSFEM is the recalculation of support reactions,
i.e., forces and moments, which is of crucial interest from an engineering point of view. For
an illustration of this, the simple example of a clamped cantilever beam with dimensions
5× 1 mm is investigated, see Figure 4.1 and cf. Igelbüscher et al. [120].
Here, the left edge of the boundary value problem is clamped and a traction boundary
condition of σ · n = (0, 0.1)T kN/mm2 is applied on the right side. The example is inves-
tigated by the LS formulation (4.1) and the results for the support reactions (AH , AV ,
MA) are compared to a linear displacement element (P1) and the analytical solution with
AH = 0 kN, AV = 0.1 kN, MA = 0.5 kNmm. The weights ωi for the LS formulation are
chosen with ωi = αi/µ for i = 1, 2, where αi denote dimensionless weighting factors (i.e.,
unit 1).
The calculation rules for the reaction forces of the pure displacement formulation are
given by

AH =
∑
I∈∂Bu

F I
x , AV =

∑
I∈∂Bu

F I
y and MA =

∑
I∈∂Bu

F I
x · yI , (4.4)

where I ∈ ∂Bu denotes all nodes at the clamped edge and F I are nodal forces taken from
the right hand side vector for the displacement element. Furthermore, MA is determined
by F I on ∂Bu in horizontal direction multiplied by the nodal distance in y-direction to
the origin (0,0) of each point I. The support reactions for the LSFEM are determined in
terms of resulting tractions evaluated at the left face (∂Bu) and the associated moment
by means of the resulting horizontal force AH at the boundary ∂Bu, i.e.,

AH =

∫
∂Bu

σ11 dy , AV =

∫
∂Bu

σ21 dy and MA =

∫
∂Bu

σ11 · y dy . (4.5)

For the applied weighting parameters, a numerical study is performed, choosing a decreas-
ing value for α2. Obviously, the convergence of AH is completely satisfying. However, the
LS formulation (4.1) is unable to reproduce the correct solution of the moment MA, with
respect to x = (0, 0). Furthermore, only a weighting with α2 ≤ 0.1 leads to the expected
solution for AV , where for α2 ≥ 0.5 only insufficient results are obtained. The pure dis-
placement formulation yields an explicit fulfillment of all support reactions, cf. Figure 4.1.
Nevertheless, an improved convergence behavior of the LS formulation for reaction forces
and moments related to the chosen α2 can be observed up to a certain level. Especially
in the convergence of the resulting moment, a limit for the underlying setup is visualized,
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Figure 4.1: Clamped cantilever: setup with exemplary mesh and convergence of AH , AV ,
and MA vs. the number of equations (neq) for the LS functional F using RT 1P2 elements
(E = 70 kN/mm2, µ = 26.12 kN/mm2), taken from Igelbüscher et al. [120]

where a decreasing α2 does not lead to any improvement of the resulting moment. The
presented calculations are performed using a RT 1P2 element type.
From an engineering point of view, the insufficient solution quality, especially for the
moment MA, is crucial, since these quantities are considered as the foundation for the
design of structural components. As a consequence, the fulfillment of the balance of linear
momentum (vanishing resultant forces) and the balance of angular momentum (vanishing
resultant moment) have to be improved for applications in structural analysis. Therefore,
the focus in the following chapter lies on an improvement of the convergence properties of
the formulation for support reactions, extending the functional by a stress symmetry con-
dition. Further, a weighting parameter setup is applied, in order to obtain a formulation
which is independent of units. These investigations are discussed in the next subsection.

4.3 LSFEM with explicit inclusion of the balance of angular momentum

For an improvement of the results in Figure 4.1, the LS formulation (4.1) is extended. In
order to explicitly include σ = σT in the given functional (4.1), the balance of angular
momentum is considered as a symmetric stress control, see Chapter 2.3.3. It has to be
mentioned again that the fulfillment of the balance of angular momentum is already
included in the formulation, from a continuum mechanical point of view, since the balance
of linear momentum is enforced and the constitutive equation weakly enforce the stress
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symmetry condition. The balance of angular momentum reads∫
B
(x− x0)× f dV +

∫
∂B

(x− x0)× (σ · n) dA = 0 , (4.6)

by neglecting accelerations and applying Cauchy’s theorem (t = σ · n). Furthermore,
considering ∇(x− x0) = 1 and the Gauss theorem, (4.6) is reformulated to

0 =

∫
B
((x− x0)× (divσ + f) + axl(σ)) dV with axl(σ) :=

 σ32 − σ23

σ13 − σ31

σ21 − σ12

 . (4.7)

Therefore, it is composed of σ = σT and the cross product of the balance of linear mo-
mentum (divσ+f) with the related distance to a fixed reference point x0. Consequently,
adding (4.7)1 to the functional (4.1), yields the extended functional F?(σ,u), i.e.,

F?(σ,u) =
1

2

(∥∥∥ω?1(divσ + f)
∥∥∥2

L2(B)
+
∥∥∥ω?2(σ − C : ∇su)

∥∥∥2

L2(B)

+
∥∥∥ω?3((x− x0)× (divσ + f) + axl(σ))

∥∥∥2

L2(B)

)
.

(4.8)

In order to solve the minimization problem, with δσ,uF?(σ,u, δσ, δu) = 0, the first
variations of (4.8), considering (3.36), are determined by

δuF? = −
∫
B
(C : ∇sδu) : (σ − C : ∇su) dV ,

δσF? =

∫
B

div δσ · (divσ + f) dV +

∫
B
δσ : (C : ∇su) dV

+

∫
B
((x− x0)× div δσ + axl(δσ)) · ((x− x0)× divσ + axl(σ)) dV .

(4.9)

For notational simplicity, the weighting parameters ω?i are omitted. In order to apply the
Newton-Raphson method, the linearization is necessary, utilizing (3.39), yields

∆δuF? =

∫
B
(C : ∇sδu) : (C : ∇s∆u) dV −

∫
B
C : ∇sδu : ∆σ dV ,

∆δσF? =

∫
B

div δσ · div ∆σ dV +

∫
B
δσ : ∆σ dV

+

∫
B
((x− x0)× div δσ + axl(δσ)) · ((x− x0)× div ∆σ + axl(∆σ)) dV

−
∫
B
δσ : C : ∇s∆u dV .

(4.10)
In addition to the extension of the LS formulation, an approach for a scale independent
formulation, similar to Bell and Surana [26], which uses dimensionless variables, is
performed. Therefore, a weighting of the residuals is introduced by means of the Lamé
constant µ and a characteristic length l̃. The weighting factors ω?i for (4.8) are chosen to
be of the form

ω?1 =
α?1
µ
l̃ , ω?2 =

α?2
µ

and ω?3 =
α?3
µ
. (4.11)
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Here, α?i denote dimensionless weighting factors (i.e., unit 1). The weights ω?i lead to
a scale independent functional, multiplying each functional term with the inverse unit,
i.e., a dimensionless formulation is obtained. In order to achieve this, the parameter l̃ is
necessary due to the unit of the balance of linear momentum given by, e.g., kN/mm3,
where the unit of µ is kN/mm2. However, a reasonable choice for l̃ is obligatory and
possible measures are, e.g., length, height or the square root of the area of the boundary
value problem.

4.4 Clamped cantilever beam example for small strain elasticity

The proposed formulation (4.8) is analyzed for the clamped cantilever beam example, see
Chapter 4.1, to illustrated the improvement, especially for the result of MA, compared
to the results for F in (4.1), see Figure 4.1. Analogously, the left face is clamped, a load
of σ · n = (0, 0.1)T kN/mm2 is applied on the right face and a RT 1P2 element type is
considered. The parameter setup α?i are chosen in accordance with the previous analysis
with a decreasing α?2 from 1 to 0.01 and further the characteristic length l̃ is chosen as
the square root of the area of the boundary value problem.
The results for the extended LS functional (4.8) are depicted in Figure 4.2. Therein, it is
shown that a sufficient solution is reached for all support reactions AH , AV and MA. Here,
especially the strong improvement for the determination of the support reaction of the
moment MA for all weighting setups as well as an improvement for the vertical support
reaction AV compared to the results obtained based on formulation (4.1) is clearly visible.
The convergence of the horizontal support reaction AH illustrate a deviation in compar-
ison with the results in Figure 4.1, but for α?2 ≤ 0.1 the expected solution is obtained.
For weights α?2 ≤ 0.1 all support reactions lead to satisfying solutions for moderate mesh
densities. Thus, for further applications of the LSFEM, especially if the representation
of reaction forces is included, an extended formulation with an additional control of the
stress symmetry has to be chosen. Furthermore, a balanced weighting parameter setup
must be regarded, since the influence of weights on the solution accuracy is crucial. Al-
though the stress symmetry is indirectly included in formulation (4.1), it is shown that
an additional consideration as presented in the extended LS formulation in (4.8) provides
an improvement in the element performance. This approach is therefore considered in the
following LS formulations, especially because no additional degrees of freedom need to be
introduced for an improved solution.

In order to show that the presented behavior is similar for elements with higher poly-
nomial degrees and not restricted to triangular elements, further element combinations
are considered. Figure 4.3 illustrates a direct comparison of the convergence of the equi-
librium of moments for the LS functionals (4.1) and (4.8) with respect to different finite
elements, applying BDM1Q2, RT 1Q2 and RT 2P3 elements. The analyzed elements show
the improvement within the convergence of the moment MA for F?. For the formulation
F no improvement for the choice of different polynomial types can be observed. The ex-
tended functional (4.8) illustrates conformity with the analytical solution for a weighting
α?2 ≤ 0.1, which also holds for the fulfillment of AH and AV . For completeness, the con-
vergence of the reaction forces AH and AV are depicted in Appendix 8.2 in Figure 8.1 and
8.2.
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Figure 4.2: Clamped cantilever: setup with exemplary mesh and convergence of AH , AV ,
and MA vs. number of equations (neq) for the LS functional F? using RT 1P2 elements
(E = 70 kN/mm2, µ = 26.12 kN/mm2), taken from Igelbüscher et al. [120]

Furthermore, the introduction of the balance of angular momentum leads, beside a
stronger fulfillment of the equilibrium of moments, simultaneously to a fulfillment of stress
symmetry. This is illustrated with the development of stress symmetry by

∫
B σ12−σ21 dV

in Figure 4.4. Here, the improvement for F? is clearly visible. Nevertheless, all formula-
tions provide a symmetric stress tensor for he → 0. This is due to the weak enforcement
of stress symmetry in the constitutive equation, cf. (4.3) and the not a priori fulfillment
of σ = σT by the stress approximation with RT and BDM functions. It has to be noted
that the weightings α2 ≤ 0.1 in F lead to a slightly increase of the unsymmetry in σ, which
is in contrast to the influence of weightings for F?, cf. Figure 4.4. This is reasonable, since
the stress symmetry in F is controlled by the constitutive law and thus a weighting α2 < 1
lead to a weaker enforcement. Consequently, at least an extended approach for the LSFEM
combined with an appropriate weighting strategy yields to a sufficient representation of
support reactions and is in line with the demanded stress symmetry condition. The crucial
influence of weights, as a disadvantage within the LSFEM, must be carefully considered in
further applications. Therefore, all applied weightings are explicitly mentioned and their
choice is based on numerical studies, see, e.g., Schwarz et al. [207; 208]. An investiga-
tion of the formulation with explicit consideration of balance of angular momentum (4.8)
for further boundary value problems is proposed in Igelbüscher et al. [120].
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Figure 4.3: Clamped cantilever: Results for the fulfillment of moment MA for F (left) and
F? (right), considering a) BDM1Q2, b) RT 1Q2 and c) RT 2P3 elements
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Figure 4.4: Clamped cantilever: Results for the stress symmetry condition for F (left) and
F? (right), considering a) BDM1Q2, b) RT 1Q2, c) RT 1P2 and d) RT 2P3 elements
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4.5 Mixed Hellinger-Reissner principle for elasto-plasticity at small strains

For the application of elasto-plasticity within mixed finite element formulations, a small
strain model is considered in the following. The continuum mechanical foundations and
the algorithmic treatment of the presented formulation is presented in Chapter 2.5.2. The
focus lies on the variational formulation with a pointwise enforcement of the flow rule,
the hardening law and the consistency condition, cf. Schröder et al. [200]. This is in
contrast to the approach by Simo et al. [218], where the authors postulate that the flow
rule can no longer be evaluated independently at each Gauss point. The presented formu-
lation is closely related to Simo et al. [218]. The results presented below are published
in Schröder et al. [200], in which further numerical examples are discussed.

4.6 Formulation of elasto-plastic Hellinger-Reissner principle

The following set up is based on a primal Hellinger-Reissner formulation (3.27). The for-
mulation with u ∈ H1(B) and σ ∈ L2(B) lead directly to an application of discontinuous
stress approximation, applied with the 5-parameter ansatz of Pian and Sumihara [178].
This stress approximation is also investigated for nonlinear problems by Piltner [180]
and an extension to the three dimensional case is given in Pian and Tong [179]. For
the framework of elasto-plasticity at small strains, the additive split of the total strains
ε is introduced. Furthermore, in Chapter 2.5.2 it is shown that the stress is a function of
the elastic strains. Based on this relation, the free energy function is reformulated into an
elastic part ψe(εe) = ψe(ε− εp) = 1

2
(ε− εp) : C : (ε− εp) and a plastic part with respect

to the internal variable α, i.e., ψp(α) = 1
2
hα2, which holds for the simple case of isotropic

linear hardening. The introduction of σ as an additional independent variable, applying a
Legendre transformation for ψe, yields ψe(ε− εp) = σ : (ε− εp)− χ(σ) with the comple-
mentary stored energy function χ(σ) = 1

2
σ : C−1 : σ. By substitution of these functions

in (3.27), the elasto-plastic primal Hellinger-Reissner potential ΠepHR is obtained, i.e.,

ΠepHR(σ,u) =

∫
B
(σ : (ε− εp)− χ(σ) +ψp(α)) dV −

∫
B
f ·u dV −

∫
∂BN

t ·u dA . (4.12)

In order to solve for the stationary point of the potential, the weak forms Gu and Gσ, with
respect to the virtual displacements δu and virtual stresses δσ, are determined by

Gu := δuΠepHR =

∫
B
∇sδu : σ dV −

∫
B
δu · f dV −

∫
∂BN

δu · t dA ,

Gσ := δσΠepHR =

∫
B
(δσ : (ε− εp)− δσ : ∂σχ(σ)) dV .

(4.13)

The solution is sought by finding (u,σ) ∈ V × S̄ such that Gu = 0 ∀ δu ∈ V and
Gσ = 0 ∀ δσ ∈ S̄ with the approximation spaces V := H1(B) and S̄ := L2(B), defined
by

Vk := {u ∈ [H1(B)]d : u|Be ∈ [Qk(Be)]d, ∀ Be ∈ B} ⊂ V ,

S̄ := {σ ∈ [L2(B)]d×dsym : σ|Be ∈ [PS(Be)]d×d, ∀ Be ∈ B} .
(4.14)

Here, an element combination Q1PS with k = 1 is considered, where Qk denote Lagrange
shape functions on quadrilaterals and PS is the 5-parameter stress approximation by
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Pian and Sumihara [178]. The advantages of this approach are characterized by a
remarkable insensitivity to mesh distortion, locking free behavior for plane strain quasi-
incompressible elasticity and superconvergent results for bending dominated problems,
see, e.g., Pian and Sumihara [178], Simo et al. [218] and Chun et al. [75]. The
stability of the chosen finite element combination with respect to the LBB conditions is
investigated, e.g., in Yu et al. [243] and Li et al. [151].

The associated Euler-Lagrange equations, extracted from Gu = 0 and Gσ = 0, follow
directly from a straight-forward reformulation of the weak forms, i.e.,

Gu = −
∫
B
δu · (divσ + f) dV = 0 → divσ + f = 0 ,

Gσ =

∫
B
δσ : (ε− εp − ∂σχ(σ)) dV = 0 → ε− εp = ∂σχ(σ) .

(4.15)

The thermodynamic consistent formulation based on the dissipation inequality (2.59) has
to be reformulated, cf. (2.60), based on the introduced free energy function ψe(ε− εp),
such that

D = σ : ε̇− {σ̇ : (ε− εp) + σ : (ε̇− ε̇p)− ∂σχ(σ) : σ̇ + ∂αψ
p α̇}

= σ : ε̇p + σ̇ : (∂σχ(σ)− (ε− εp)) + β α̇

= σ : ε̇p + σ̇ : (∂σχ(σ)− εe) + β α̇ .

(4.16)

By substituting of the Euler-Lagrange equation (4.15)2 in (4.16), the reduced dissipation
inequality is obtained by Dred = σ : ε̇p + β α̇ ≥ 0, cf. (2.60). Obviously, the term ∂σχ(σ)
characterizes the elastic strains εe with εe = C−1 : σ, see (4.15)2. The linearization of Gu
and Gσ yields

∆Gu =

∫
B
∇sδu : ∆σ dV ,

∆Gσ =

∫
B
δσ : (∆ε−∆εp − ∂2

σσχ(σ) : ∆σ) dV ,

(4.17)

with ∂2
σσχ(σ) : ∆σ = C−1 : ∆σ = ∆εe(σ). The term ∆εp denotes the linearization of εp

with respect to the stresses, cf. (2.66), i.e.,

∆εp = ∆(εpn + ∆tγ n) = ∆(∆tγ)n+ ∆tγ∆n . (4.18)

For notational simplicity, only the index n is explicitly denoted, where the index n+ 1 is
omitted here for the obvious terms, cf. Schröder et al. [200]. The linear increment of
the time integrated plastic multiplier ∆tγ is obtained by

∆(∆tγ) =
3∆Φtrial

2h
=

3

2h
n : ∆σ , (4.19)

which holds for linear isotropic hardening. Furthermore, the linearization of the outward
normal on the deviatoric stress plane n yields

∆n = − 1

‖ devσ‖
(n⊗ n− IP) : ∆σ , (4.20)
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where IP = II − 1
3
1 ⊗ 1, with II = 1

2
(δik δjl + δil δjk), is the fourth-order deviatoric pro-

jection tensor. Thereby, IP extracts the deviatoric part of a second-order tensor, e.g.,
devσ = IP : σ. The linearization of the plastic strains is given by

∆εp =

((
3

2h
− ∆tγ

‖ devσ‖

)
n⊗ n+

∆tγ

‖ devσ‖
IP

)
︸ ︷︷ ︸

:= Ξ

: ∆σ , (4.21)

see, e.g., Schröder et al. [198]. Thus, the expression for the linearization of (4.17)2

gives

∆Gσ =

∫
B
δσ : (∆ε− Dep : ∆σ) dV with Dep := Ξ + ∂2

σσχ(σ) = Ξ + C−1 , (4.22)

where Dep is the algorithmic consistent fourth-order inverse elasto-plastic material tangent.

4.7 Discretization and static condensation of Hellinger-Reissner formulation

The discretization of the elasto-plastic Hellinger-Reissner formulation, with respect to the
stresses, displacements and related fields, is considered, cf. Chapter 3.2.7, with

σ = S̄dσ , u = Ndu and ε = Bdu . (4.23)

The approximation matrix considering the stress approach by Pian and Sumihara [178]
for two dimensions regarding plane stress conditions S̄ is declared in the Appendix 8.1.1.
In the discretization, the index e denotes values for a single element and not an elastic
material state. The discrete weak forms Ghu =

∑
e Ge

u and Ghσ =
∑

e Ge
σ for a typical element

with domain Be appear as

Ge
u = δdTu r

e
u = δdTu

(∫
Be
BT S̄dσ dV −

∫
Be
NT f dV −

∫
∂Be,t

NT t dA
)
,

Ge
σ = δdTσ r

e
σ = δdTσ

∫
Be
S̄T (Bdu − εp − C−1 S̄dσ) dV .

(4.24)

The discretized linearizations are

∆Ge
u = δdTu k

e
uσ ∆dσ = δdTu

∫
Be
BT S̄ dV∆dσ ,

∆Ge
σ = δdTσ (ke

σu ∆du − ke
σσ ∆dσ) = δdTσ

(∫
Be
S̄T B dV∆du −

∫
Be
S̄T Dep S̄ dV∆dσ

)
,

(4.25)
with C and Dep as the matrix notation of the associated tensor. Consequently, the resulting
system of equations reads

numele

A
e = 1

[
δdσ
δdu

]T ([ −ke
σσ ke

σu

ke
uσ 0

] [
∆dσ
∆du

]
+

[
re
σ

re
u

])
= 0 . (4.26)

Obviously, zero entries on the main diagonal, reveals the underlying saddle point struc-
ture of the system. In the presented case, the system can be reduced due to the stress
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approximation σ ∈ L2(B), i.e., no global continuity is required for the stresses and dσ
can be solved on each element separately with respect to the displacements. Therefore,
the system of equations (4.26) is solved for the stresses ∆dσ in the first equation and
introduced in the second equation, cf. Schröder et al. [200]. The degrees of freedom
for the increment of the stresses in terms of the displacements are

∆dσ = ke−1
σσ re

σ︸ ︷︷ ︸
r̄σ

+ke−1
σσ ke

σu︸ ︷︷ ︸
k̄σ

∆du = r̄σ + k̄σ ∆du , (4.27)

and the reduced form of (4.26) is given by

δdTu (re
u + ke

uσ k
e−1
σσ re

σ︸ ︷︷ ︸
re

red

+ke
uσ k

e−1
σσ ke

σu︸ ︷︷ ︸
ke

red

∆du) = 0 . (4.28)

The static condensation reduces the system to a pure displacement based formulation.
However, the discontinuous stress approximation allows for a static condensation, only if
the inverse of ke

σσ exists. Assembling over the number of finite elements numele leads to
the global system of equations

numele

A
e = 1

δdTu (re
red + ke

red ∆du) = δDT (Rred +Kred ∆D) = 0 , (4.29)

cf. Chapter 3.2.7 and therefore the nodal displacements can be computed by
∆D = −K−1

redRred. The algorithmic treatment for the implementation of the derived for-
mulation for small strain elasto-plasticity using plane stress condition is summarized in
Table 4.1.

4.8 Extension of a perforated plate - plane stress formulation

The following example presents the possibility and comparability to enforce the flow rule
pointwise instead of an elementwise enforcement as postulated in Simo et al. [218].
In order to show this, the proposed formulation, denoted further by HRep, is com-
pared to the element formulation presented in Simo et al. [218], denoted by HR

ep
, see

Schröder et al. [200]. The validation is completed by an additional comparison to a
linear displacement formulation (Q1). All element formulations are considered with plane
stress condition, which follows directly for the mixed formulation by application of the
Pian-Sumihara stress approximation, see Pian and Sumihara [178].
For completeness, the results for the proposed formulation are compared with the one
presented in Simo et al. [218] on the same boundary value problem due to performance
and accuracy. The considered academic example is a perforated plate problem, where the
units are defined in {force} and {length}, see Simo et al. [218]. As mentioned before,
the following Figures and Tables were originally published in Schröder et al. [200].
The perforated plate problem is reduced to one quarter of the plate with corresponding
boundary conditions based on the symmetry of the problem. The boundary value problem
is loaded by a displacement controlled boundary condition on the upper edge of the plate,
depicted in Figure 4.5 together with the material setup.

For the comparison of the three finite element formulations (HRep, HR
ep

, Q1) a load-
displacement curve is shown in Figure 4.6. The load is determined by the nodal reactions
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Table 4.1: Algorithmic treatment for the presented elasto-plastic Hellinger-Reissner formu-
lation (Variables without indices are given at iteration k + 1 and time tn+1)

(1) Update of the displacements (Newton iteration k+1)

Read from history: εpn, αn, σ33, n,d
(k)
σ, n, r̄

(k)
σ and k̄

(k)
σ

du = d
(k)
u, n + ∆du and dσ = d

(k)
σ, n + ∆dσ with ∆dσ = r̄

(k)
σ + k̄

(k)
σ ∆du

GAUSS LOOP (2) - (4)

(2) Compute stresses at each Gauss point with σ = S̄dσ
(3) If plane stress condition then

Φtrial = ‖ devσn+1‖ −
√

2
3
(y0 + hαn)

If Φtrial ≤ 0 : εp = εpn and α = αn

Else if Φtrial > 0 : ∆tγ = 3Φtrial

2h
, εp = εpn + ∆tγ n and α = αn +

√
2
3

∆tγ

Else if plane strain condition then go to Table 4.6

(4) Determine element matrices and vectors ke
σσ, ke

σu and re
σ

(5) Calculate vector and matrix for local stress computation r̄σ and k̄σ

(6) Determine right hand side vector and element stiffness matrix re
red and ke

red

(7) Write to history: εp, α, σ33,dσ, r̄σ and k̄σ

(8) Assembling, see equation (4.29), and solving the system of equations

Setup of BVP

Left edge ux = 0 {length}
Lower edge uy = 0 {length}
Upper edge u = (0, 6.15)T {length}
Young’s modulus E = 70 {force}/{length}2

Poisson’s ratio ν = 0.2

Yield stress y0 = 0.243 {force}/{length}2

Hardening modulus h = 0.2 {force}/{length}2

18

5 5

x

y

{length}

u

Figure 4.5: Geometrical and material setup of the perforated plate problem

at the upper edge y = 18. The results are obtained on finite element meshes with 72 and
722 elements depicted within the numerical results.
For both Hellinger-Reissner formulations, the results in Figure 4.6 are in accordance. In
contrast to that, the displacement formulation lead for both mesh densities to deviations
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in the load-displacement curve. The results for HRep and HR
ep

illustrates that the point-
and elementwise enforcement of the return mapping algorithm lead to similar results for
the underlying Hellinger-Reissner formulations and therefore to the assumption that both
approaches are applicable for mixed formulations. Additionally, the distribution of the
equivalent plastic strains represented by α are depicted in Figure 4.7, which give almost
identical results for the investigated elements. Here, the proposed HRep formulation is
compared to a linear displacement element Q1 and a mixed displacement-pressure element
Q1P0 with linear displacement and constant pressure approximation.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1 2 3 4 5 6

L
oa

d

Displacement uy

Q1 72 elem

Q1 722 elem

HRep 72 elem

HRep 722 elem

HR
ep

72 elem

HR
ep

722 elem

Figure 4.6: Load-displacement curves, cf. Simo et al. [218] and Schröder et al. [200]

(a) (b) (c)

α

Figure 4.7: Distribution of α for (a) the Q1, (b) the Q1P0 and (c) the HRep element on the
undeformed 722 element mesh for a uy displacement of 6.15, cf. Schröder et al. [200]

For a complete comparison with the results in Simo et al. [218], the evolution of the
plastic zone within the plate and the convergence of the energy norm for the global
Newton iteration are presented. The plastic zone for linear isotropic hardening, following
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Simo et al. [218], is defined by

φ̃ := ‖ devσ‖/
√

2
3
y0 . (4.30)

This leads to a definition of three areas, i.e., a purely elastic region (φ̃ < 0.9), an elasto-
plastic transition zone (0.9 ≤ φ̃ < 1.0), in which plastic deformations will occur under
continuous loading, and a plastic region (φ̃ ≥ 1.0). The evolution of the plastic zone, as
an indicator for plastic strains, is depicted in Figure 4.8 and 4.9 for HRep on a 72 and
722 element mesh. Based on the problem, the initial and maximum plastic strains occur
at the stress concentration of the perforated plate, which is located at the right corner of
the circular arc (at x = (5, 0)T ), cf. Figure 4.7. The distribution of the plastic zone yields
satisfying results, which are in accordance with the results for the HR

ep
element given in

Simo et al. [218].
Furthermore, the convergence of the Newton-Raphson scheme for the proposed HRep

formulation, in Table 4.2 and 4.3, is compared to the one of the HR
ep

element of
Simo et al. [218], given in Table 4.4 and 4.5, using the same load steps.

(a) (b) (c)

(d) (e)

φ̃ < 0.9

0.9 ≤ φ̃ < 1.0

1.0 ≤ φ̃

Figure 4.8: Distribution of φ̃ for the HRep on the undeformed 72 element mesh for a uy
displacement of (a) 0.15, (b) 1.65, (c) 3.15, (d) 4.65 and (e) 6.15, cf. Schröder et al. [200]

The given results in Table 4.2 to 4.5 show a satisfying performance due to the fact that
quadratic convergence is attained only for energy norms below 10−6 caused by the radius
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Table 4.2: Convergence of relative residual norm in the Newton-Raphson iteration for HRep

with 72 element mesh, cf. Schröder et al. [200]

Load step
1 5 10 17

Iteration (uy = 0.03) (uy = 0.15) (uy = 2.65) (uy = 6.15)
1 1.0000 E+00 1.0000 E+00 1.0000 E+00 1.0000 E+00
2 4.3560 E-03 6.7304 E-03 1.2833 E-03 6.0352 E-04
3 2.1955 E-02 1.4551 E-02 5.8301 E-03 1.2810 E-03
4 2.6966 E-02 2.0175 E-03 4.4649 E-04 6.9739 E-04
5 1.2170 E-03 5.1973 E-06 8.5537 E-04 2.0760 E-05
6 1.2706 E-03 8.4837 E-10 6.4444 E-06 5.0264 E-08
7 9.5159 E-06 3.2705 E-15 1.8075 E-09 9.6836 E-13
8 8.7670 E-09 - 2.1193 E-15 -
9 1.2305 E-15 - - -

(a) (b) (c)

(d) (e)

φ̃ < 0.9

0.9 ≤ φ̃ < 1.0

1.0 ≤ φ̃

Figure 4.9: Distribution of φ̃ for the HRep on the undeformed 722 element mesh for a uy
displacement of (a) 0.15, (b) 1.65, (c) 3.15, (d) 4.65 and (e) 6.15, cf. Schröder et al. [200]

of convergence. A further aspect is the slight degradation of the rate of convergence for
more refined meshes. This degradation is shown for the mixed formulation in Table 4.3,
where, e.g., for load step 10, the Newton method needs 11 iterations. The same effect is
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Table 4.3: Convergence of relative residual norm in the Newton-Raphson iteration for HRep

with 722 element mesh, cf. Schröder et al. [200]

Load step
1 5 10 17

Iteration (uy = 0.03) (uy = 0.15) (uy = 2.65) (uy = 6.15)
1 1.0000 E+00 1.0000 E+00 1.0000 E+00 1.0000 E+00
2 1.1914 E-03 2.4627 E-03 1.0090 E-03 2.3216 E-04
3 4.5942 E-02 1.1869 E-02 4.0853 E-03 9.3445 E-04
4 1.6117 E-03 6.8015 E-04 1.2712 E-03 6.9568 E-04
5 3.1768 E-04 1.0278 E-03 9.0929 E-04 1.8675 E-04
6 2.5042 E-06 1.6548 E-05 1.3427 E-04 3.9894 E-05
7 2.4724 E-08 9.5113 E-08 9.4389 E-05 6.9197 E-06
8 1.8996 E-14 9.7087 E-14 5.6719 E-06 1.1346 E-05
9 - - 6.7623 E-06 7.6111 E-09
10 - - 3.3072 E-09 2.4700 E-13
11 - - 8.0553 E-15 -

shown in Table 4.5 for the formulation of Simo et al. [218], where load step 10 needs
10 Newton iterations.
It has to be noted that the global effort for all depicted element formulations is similar.
In the proposed HRep formulation, a small increase in the effort on a local level has to be
mentioned due to the computation of the inverse matrix, which is however insignificant.

Table 4.4: Convergence of relative residual norm in the Newton-Raphson iteration for HR
ep

with 72 element mesh, taken from Simo et al. [218]

Load step
1 5 10 17

Iteration (uy = 0.03) (uy = 0.15) (uy = 2.65) (uy = 6.15)
1 0.264 E+00 0.288 E+00 0.800 E+02 0.779 E+02
2 0.222 E-04 0.164 E-04 0.970 E-03 0.196 E-03
3 0.260 E-04 0.165 E-06 0.797 E-04 0.139 E-05
4 0.332 E-08 0.645 E-11 0.755 E-06 0.278 E-09
5 0.228 E-14 0.956 E-20 0.222 E-09 0.210 E-16
6 0.172 E-26 0.116 E-29 0.320 E-16 0.564 E-27

Based on the investigated HR formulation, Remark 2.1(2) in Simo et al. [218] cannot
be confirmed. It claims that a pointwise enforcement of the flow rule, hardening law and
consistency condition recovers the displacement model. In the work of Simo et al. [218],
the hardening law and consistency condition are enforced pointwise whereas the flow rule
is fulfilled in a weak sense over the element domain. The results, e.g., shown in Figure
4.6, illustrate that HRep does not coincide with the displacement model.

4.9 Hellinger-Reissner formulation with plane strain condition

In addition to the plane stress formulation described in the previous subsection, the per-
formance of a plane strain algorithm is analyzed on the example of a plate with a circular
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Table 4.5: Convergence of relative residual norm in the Newton-Raphson iteration for HR
ep

with 722 element mesh, taken from Simo et al. [218]

Load step
1 5 10 17

Iteration (uy = 0.03) (uy = 0.15) (uy = 2.65) (uy = 6.15)
1 0.897 E+00 0.921 E+00 0.256 E+03 0.245 E+03
2 0.220 E-04 0.217 E-04 0.831 E-03 0.185 E-03
3 0.175 E-05 0.196 E-05 0.683 E-02 0.156 E-04
4 0.449 E-07 0.883 E-07 0.753 E-04 0.189 E-05
5 0.320 E-13 0.719 E-10 0.871 E-05 0.951 E-07
6 0.559 E-23 0.125 E-15 0.275 E-06 0.375 E-11
7 - 0.483 E-27 0.176 E-07 0.210 E-18
8 - - 0.192 E-11 0.164 E-25
9 - - 0.578 E-19 -
10 - - 0.255 E-26 -

elastic inclusion. The plane strain condition is enforced by an incremental algorithmic
treatment, see, e.g., De Borst [85] and Klinkel and Govindjee [134]. For a plane
strain setup, the requirements are ε13 = ε23 = ε33 = 0, which results in general in a
non-zero value for σ33. In order to derive the associated algorithmic treatment, a vector
representation of the incremental elasto-plastic constitutive equation is considered by

∆ε = Dep∆σ ⇒

 ∆εm

∆εz

 =

 Dep
mm Dep

mz

Dep
zm Dep

zz

 ∆σm

∆σz

 , (4.31)

with the matrices Dep
mm ∈ R3×3 , Dep

mz ∈ R3×1, Dep
zm ∈ R1×3 and Dep

zz as a scalar value.
Furthermore, the strains εm, εz and the stresses σm, σz are defined by

εm = (ε11, ε22, 2ε12)T , εz = (ε33) = 0 , σm = (σ11, σ22, σ12)T and σz = (σ33) . (4.32)

For the development of a local plane strain algorithm, it has to be ensured that εz = 0
enforced by the corresponding stress σz. Based on the vector representation (4.31), the

strain ε
(i+1)
z = ε

(i)
z + ∆εz is expressed by

ε(i+1)
z = ε(i)

z + Dep
zz ∆σz

!
= 0 ⇒ ∆σz = −Dep

zz
−1 ε(i)

z , (4.33)

with the incremental stress update scheme by σ
(i+1)
z = σ

(i)
z + ∆σz. For quadratic conver-

gence of the Newton-Raphson scheme, a modification of the elasto-plastic tangent modulus
is necessary. The material tangent is still depending on the full stress state σ, since only
a reduction of the strain and stress tensor to εm and σm is performed. Thus, a condensed
material tangent has to be determined with respect to the plane strain condition. The
relation (4.31)2 (∆εz = Dep

zm ∆σm + Dep
zz ∆σz) is solved, with ∆εz = 0, which yields

∆σz = −Dep
zz
−1 Dep

zm ∆σm . (4.34)

Substituting the latter expression into (4.31)1, the term ∆εm = Dep
mm∆σm + Dep

mz∆σz
provides the elasto-plastic material tangent for the plane strain setup Dep

mod:

∆εm = Dep
mod ∆σm with Dep

mod = [Dep
mm − Dep

mz Dep
zz
−1 Dep

zm] . (4.35)

The algorithmic treatment of the local plane strain algorithm is illustrated in Table 4.6
and can be directly included in the mixed HRep formulation presented in Table 4.1.
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Table 4.6: Algorithmic treatment for local enforcement of plane strain condition

(1) Read from history σ33 = σ33, n

Initialize tol = 10−8

(2) Compute elastic and plastic strains

σ =

 σ11 σ12 0
σ21 σ22 0
0 0 σ33

 with σ21 = σ12

εe = C−1σ

If Φtrial ≤ 0 then

εp = εpn and α = αn

Else if Φtrial > 0 then

∆tγ = 3Φtrial

2h
, εp = εpn + ∆tγ n and α = αn +

√
2
3
∆tγ

End if

ε33 = εe33 + εp33

(3) Algorithmic consistent tangent

Dep = C−1 + ∂σε
p = C−1 +

(
3

2h
− ∆tγ
‖devσ‖

)
n⊗ n+ ∆tγ

‖ devσ‖IP

(4) Check for plane strain condition:

If |ε33| < tol then go to (5)

Else if σ33 = σ33 + ∆σ33 with ∆σ33 = ε33/D
ep
3333 then go to (2)

(5) Plane strain modification for material tangent Dep

Dep
mod = Dep

mm − Dep
mz Dep

zz
−1 Dep

zm

Write in history σ33 and continue with Table 4.1

4.10 Elongation of a plate with circular inclusion - plane strain formulation

For the validation of the presented plane strain algorithm, the example of a rectangular
domain with an elastic circular inclusion is considered, loaded by a displacement controlled
boundary condition to a maximum of uy = 0.1 mm. The boundary value problem and the
material setup are presented in Figure 4.10. The considered finite element meshes are
depicted within the numerical results.

The performance of the plane strain setup of the HRep element is compared to a Q1

and a mixed Q1P0 formulation utilizing plane strain condition. In Figure 4.11, a load-
displacement curve is shown, determined with the nodal reactions at the upper edge
y = 10 mm for a mesh with 252 elements. The results for the evaluated elements yield
almost the same behavior, where an insignificant increase of the load above a displacement
of uy = 0.07 mm is visible for the Q1 element.
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Setup of BVP

Left edge ux = 0

Lower edge uy = 0

Upper edge u = (0, 0.1)T mm

Young’s modulus E1 = 206 GPa

E2 = 412 GPa

Poisson’s ratio ν = 0.3

Yield stress y01 = 1.0 GPa

y02 →∞
Hardening modulus h = 0.01 GPa

10

5 5

x

y

mm

E2, y02

E1, y01

u

Figure 4.10: Geometrical and material setup for the plate with elastic circular inclusion
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Figure 4.11: Load-displacement curves for a discretization with 252 elements for the Q1,
Q1P0 and the proposed HRep element formulations, cf. Schröder et al. [200]

Additionally, equivalent plastic strains for a displacement of uy = 0.05 mm are displayed
in Figure 4.12. The material response of the circular inclusion is purely elastic and the
plastic strains are concentrated above the purely elastic inclusion. The maximum amount
of plastic strains occur above the top of the circular inclusion, x = (0, 5)T , which is given
as the intersection of the elastic and elasto-plastic material. All element formulations yield
a similar distribution for α. For completeness, the stress σ33 and the plastic strains εp33 are
depicted in Figure 4.13 and 4.14. The illustration of the plastic strain εp33 represent that
the plane strain enforcement still yield a plastic strain εp33 6= 0. As a consequence of this
and since the stress is a function of εe, an elastic strain value εe33 6= 0 must occur, which
arises in opposite direction and results in a plane strain setup for the total strains. The
distribution of the field quantities for the displacement and mixed displacement-pressure
formulation are in accordance with the Hellinger-Reissner approach.
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(a) (b) (c)

(d) (e) (f)

α

Figure 4.12: Distribution of α for Q1 (a), (d), Q1P0 (b), (e) and HRep (c), (f) at uy =
0.05 mm for a mesh with 252 (top) and 1008 elements (bottom), cf. Schröder et al. [200]

(a) (b) (c)
σ33

Figure 4.13: Distribution of σ33 for Q1 (a), Q1P0 (b) and HRep (c) formulation on the
1008 element mesh at uy = 0.05 mm, cf. Schröder et al. [200]

(a) (b) (c)
εp33

Figure 4.14: Distribution of εp33 for Q1 (a), Q1P0 (b) and HRep (c) formulation on the
1008 element mesh at uy = 0.05 mm, cf. Schröder et al. [200]
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5 Mixed finite element formulations at finite strains

The description of materials can often only be inadequately represented with the help of
the theory of small deformations, since materials often undergo large deformations. This
behavior usually cannot be represented by linear elasticity. For a generally valid represen-
tation of material properties, finite elastic deformations are considered in the following,
which are in general characterized by a nonlinear stress-strain relation. It should be noted,
that the St. Venant Kirchhoff material represent a special case which is based on a linear
stress-strain relation and can therefore only be used for certain applications. The theory of
large deformations is also denoted as hyperelasticity and is valid for rubber, steel and alu-
minum, among others. For finite elasticity, there are a number of different material laws.
A detailed description on finite elasticity is given in Ogden [174] and Ciarlet [78]. For
investigating finite deformations, the laws for material modeling, listed in Chapter 2.4,
have to be considered.
A first inside of least-squares finite element formulations for hyperelastic material behavior
is analyzed, cf., e.g., Manteuffel et al. [158], Schwarz [203], Müller et al. [167],
Steeger [223] and Schwarz et al. [208]. Therefore, a Neo-Hookean free energy func-
tion (2.57) is considered, see Ogden [174] and Wriggers [236], given in terms of the left
Cauchy-Green deformation tensor B = F ·F T . The resulting LS formulation is analyzed,
with respect to finite element performance and the weighting of functional parts, based
on the insights in Chapter 4.1, for plane strain and plane stress conditions. Beside the
extended formulation, with additional control of the stress symmetry condition, a further
modification of the classical LS approach is presented, replacing the first variation by a
modified weak form, which is characterized by the antisymmetric displacement gradient
in the test space, cf. Schwarz et al. [205], Starke et al. [221] for linear elasticity,
Schwarz et al. [208] for hyperelasticity and Igelbüscher et al. [119] for finite J2-
plasticity. The same Neo-Hookean energy function (2.57) is further used as a foundation
for finite J2-plasticity. Therefore, the hyperelastic LS formulation is extended in terms of
the multiplicative decomposition of the deformation gradient F = F e · F p, introduced
by Lee and Liu [145] and Lee [148] and motivated by micromechanic effects in crys-
tal plasticity, see, e.g., Hill [114], Asaro [14] and the reference given in Chapter 2.5.3.
Furthermore, the drawbacks of LSFEM for the application to rate-independent plasticity
formulations are addressed separately. Here, the main aspects of the investigation are:

• Analysis of the hyperelastic LS formulation in terms of finite element performance
and weighting parameters,

• Development and validation of a plane stress formulation in the framework of an
automated differentiation procedure,

• Discussion on remarks on the LSFEM for hyperelastic material setups,

• Extension of the LS formulation to finite J2-plasticity,

• Discussion on shortcomings and limitations of LSFEM for elasto-plasticity.

The following results and analyses have already been published in Schwarz et al. [208]
and Igelbüscher et al. [119; 121].
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5.1 Least-squares formulation at finite elastic deformations

As in the case of linear elasticity, finite elastic deformations can be characterized by a set
of equations defined by

DivP = −f on B ,

τ = 2 ∂Bψ(B) ·B on B ,

F = 1 +∇u on B ,

τ = τ T on B ,

P ·N = T̄ on ∂BN ,

u = ū on ∂BD .

(5.1)

Analogously to (3.17), this system is given by the balance of linear momentum, constitu-
tive equation with

ψ(B) = ψiso
NH(B) =

λ

4
(I3(B)− 1) +

µ

2
(I1(B)− 3)−

(
λ

2
+ µ

)
ln
√
I3(B) , (5.2)

see (2.57), compatibility condition of the strains, balance of angular momentum and cor-
responding boundary conditions with the boundary traction and displacement (T̄ , ū)
defined on the reference configuration. Here, the system is formulated in terms of the
Piola-Kirchhoff stresses τ = P · F T , with the material relation defined in terms of B,
see (2.79). Since the LSFEM is here only applied to first-order systems, the balance of
linear momentum is considered with respect to the first Piola Kirchhoff stresses P . Nev-
ertheless, a representation with Div(τ · F−T ) = −f on B is possible as well and denotes
a second-order system that can be solved using C1-continuous functions.
The constitutive equation can also be formulated in the first Piola-Kirchhoff stresses P
with P = ∂Fψ(F ), with the free energy function per reference volume. Here, a formula-
tion in Kirchhoff stresses τ , cf. (2.79), as a symmetric stress measure is considered, which
can directly be reformulated in terms of any symmetric stress measure, e.g., the second
Piola-Kirchhoff stresses S = F−1 · P with S = ST .
The LS functional, as a first-order system of differential equations, is constructed with re-
spect to the squared L2(B)-norm and (3.35), in terms of the balance of linear momentum,
the constitutive relation and stress symmetry condition, i.e.,

Fhyp(P ,u) =
1

2

(∥∥∥ω1

(
DivP + f

)
︸ ︷︷ ︸
Rhyp

1

∥∥∥2

L2(B)
+
∥∥∥ω2

(
P · F T − 2

∂ψ(B)

∂B
·B
)

︸ ︷︷ ︸
Rhyp

2

∥∥∥2

L2(B)

+
∥∥∥ω3

(
P · F T − F · P T

)
︸ ︷︷ ︸

Rhyp
3

∥∥∥2

L2(B)

)
,

(5.3)
which is discussed in Schwarz et al. [208] based on logarithmic deformation measures
for a free energy function in principal stretches, cf. Simo [212]. For convenience, the single
residual equations are denoted as Rhyp

i .
For the solution of the nonlinear problem, the condition δP ,uFhyp(P ,u, δP , δu) = 0 is
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considered. In order to solve this, the first variations of Fhyp, with respect to P and u
and for notational simplicity without the associated weightings ωi, are determined by

δPFhyp =

∫
B

Div δP · (DivP + f) dV

+

∫
B

(
δP · F T

)
:
(
P · F T − 2

∂ψ(B)

∂B
·B
)

dV

+

∫
B

(
δP · F T − F · δP T

)
:
(
P · F T − F · P T

)
dV ,

δuFhyp =

∫
B

(
P · δF T − 2

[
δu

(∂ψ(B)

∂B
·B
)])

:
(
P · F T − 2

∂ψ(B)

∂B
·B
)

dV

+

∫
B

(
P · δF T − δF · P T

)
:
(
P · F T − F · P T

)
dV .

(5.4)
For the given problem (5.4) the solution is sought by find (u,P ) ∈ V × S such that
δuFhyp = 0 ∀ δu ∈ V and δPFhyp = 0 ∀ δP ∈ S with V :=W1,p(B) and S :=Wq(div,B),
see (3.5) and (3.6).
For the case of linear elasticity the approximation variables u and σ occur up to quadratic
order. Therefore, the Sobolev spaceW1,p is chosen with p = 2, which represents the Hilbert
space H1(B). However, in hyperelastic formulations the arising order of the displacement
gradient is not directly obvious, but has to be considered at least by p ≥ 2. In consequence
the Hilbert space H1(B) is not the natural choice. For a correct representation the Sobolev
space W1,p is denoted as the function space for the displacement at finite strains. The
conforming approximation functions are still chosen to be piecewise continuous polynomial
functions of Lagrange type. These functions are given inW1,p and hold for p ≥ 2, even for
p =∞ and are therefore L∞ integrable. The same holds for the stress variable, which occur
in general only up to quadratic order and thus can be represented by the Sobolev space
H(div,B). For a consistent presentation the function space for the stress approximation
is denoted further by Wq(div,B), which is represented by Raviart-Thomas functions.
In order to apply the Newton-Raphson method to solve the nonlinear problem at hand,
the linearization of (5.4) has to be computed, which reads

∆δPFhyp =

∫
B

Div δP ·Div ∆P dV

+

∫
B

(
δP ·∆F T

)
:
(
P · F T − 2

∂ψ(B)

∂B
·B
)

dV

+

∫
B

(
δP · F T

)
:
(
P ·∆F T − 2

[
∆u

(∂ψ(B)

∂B
·B
)])

dV

+

∫
B

(
δP · F T

)
:
(

∆P · F T
)

dV

+

∫
B

(
δP ·∆F T −∆F · δP T

)
:
(
P · F T − F · P T

)
dV

+

∫
B

(
δP · F T − F · δP T

)
:
(
P ·∆F T −∆F · P T

)
dV

+

∫
B

(
δP · F T − F · δP T

)
:
(

∆P · F T − F ·∆P T
)

dV ,

(5.5)



Mixed finite element formulations at finite strains 85

and

∆δuFhyp =

∫
B

(
∆P · δF T

)
:
(
P · F T − 2

∂ψ(B)

∂B
·B
)

dV

+

∫
B

(
P · δF T

)
: (∆P · F T ) dV

−
∫
B

2
[
∆u

(
δu

(∂ψ(B)

∂B
·B
))]

:
(
P · F T − 2

∂ψ(B)

∂B
·B
)

dV

+

∫
B

(
P · δF T − 2

[
δu

(∂ψ(B)

∂B
·B
)])

:
(
P ·∆F T − 2

[
∆u

(∂ψ(B)

∂B
·B
)])

dV

+

∫
B

(
P · δF T − δF · P T

)
:
(
P ·∆F T −∆F · P T

)
dV

. +

∫
B

(
∆P · δF T − δF ·∆P T

)
:
(
P · F T − F · P T

)
dV

+

∫
B

(
P · δF T − δF · P T

)
:
(
P · F T − F · P T

)
dV ,

(5.6)
where the applied abbreviations, are given by

δu

(∂ψ(B)

∂B
·B
)

=
(∂2ψ(B)

∂B∂B
· δB

)
·B +

∂ψ(B)

∂B
· δB ,

∆u

(∂ψ(B)

∂B
·B
)

=
(∂2ψ(B)

∂B∂B
·∆B

)
·B +

∂ψ(B)

∂B
·∆B ,

∆u

(
δu

(∂ψ(B)

∂B
·B
))

=
(( ∂3ψ(B)

∂B∂B∂B
·∆B

)
· δB +

∂2ψ(B)

∂B∂B
·∆δB

)
·B

+
(∂2ψ(B)

∂B∂B
· δB

)
·∆B

+
((∂ψ(B)

∂B∂B
·∆B

)
· δB +

∂ψ(B)

∂B
·∆δB

)
.

(5.7)

For completeness, the variations and linearizations ofB, with δB, ∆B and ∆δB, are given
by δB = δF ·F T +F ·δF T , ∆B = ∆F ·F T +F ·∆F T and ∆δB = δF ·∆F T +∆F ·δF T .
The analytically derived linearized equations can also be established numerically by an au-
tomated differentiation approach, cf. Korelc [136] and Korelc and Wriggers [138].
For the implementation of the given hyperelastic least-squares formulation an automated
differentiation scheme is applied in Mathematica utilizing the packages AceGen and
AceFEM.

Note that an important point for the determination of stability points is the different
approaches by the mixed LS formulation and mixed formulations leading to saddle point
problems, e.g., HR and HW formulations. In mixed HR and HW formulations, the sta-
bility point is determined by a sign change of the smallest positive eigenvalue, cf., e.g.,
Schröder et al. [201]. This is not possible with classical LSFEM, because the sys-
tem is positive (semi-) definite and thus no sign change can be analyzed in the range of
eigenvalues. Therefore, stability points in LS formulations have to be determined by a
minimum eigenvalue. The problem here is that an occurring stability point in mixed for-
mulations with saddle point structure is always recognizable by the existing sign change.
For LS formulations this is only recognizable for sufficiently small loading steps, since
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the eigenvalue spectrum appears unchanged again after reaching the critical loading. This
problem has already been discussed in, e.g., Müller et al. [167], Müller [165] and
Steeger [223].

5.2 Cantilever beam example at finite elasticity

The numerical analysis of the presented LSFEM for hyperelasticity (5.3) is performed on
the example of a clamped cantilever beam with dimensions 10 × 1 mm, see Figure 5.1.
The Lamé parameters λ and µ in ψiso

NH(B) are determined based on E and ν by
λ = Eν/((1 + ν)(1− 2ν)) and µ = E/(2 + 2ν). The boundary value problem is clamped
on the left side, loaded on the right edge with P ·N = (0, 0.1)T kN/mm2 and all other
edges are stress-free (P ·N = (0, 0)T kN/mm2).

Setup of BVP

Left edge: u = (0, 0)T mm Young’s mod.: E = 200 kN/mm2

Right edge: P ·N = (0, 0.1)T kN/mm2 Poisson’s ratio: ν = 0.35

x10

1

P ·N
y

Figure 5.1: Cantilever beam example for hyperelasticity

For the given problem the solution quality, based on the polynomial order and the setup
of weighting parameters is discussed as a basic for the extension to finite plasticity. The
influence of functional weighting and polynomial order on the solution quality is already
shown for small deformations in Chapter 4.1 and further, e.g., in Schwarz et al. [204]
and Schröder et al. [199] for compressible and quasi-incompressible elasticity, in
Schwarz et al. [207] for static and dynamic problems for quasi-incompressible behav-
ior as well as for hyperelasticity in Schwarz et al. [208]. Here, the method is analyzed
based on different weighting parameter setups, by varying choices for ω3, and for different
polynomial orders RT mPk with m ≥ 0 and k = m+ 1. The balancing of the polynomial
orders for displacement and stress approximation are chosen to give an optimal conver-
gence order for the LS functional, at least from a theoretical point of view, cf. Chapter
3.5. As mentioned before, optimal convergence order can only be achieved for regular
problems, cf. Rössle [194].
The chosen approximations are given by linear to cubic functions for u and P . Here,
both fields are approximated by the same order of complete polynomials with RT mPk
elements of order m = 0, 1, 2 and k = 1, 2, 3. In Figure 5.2 the results for a displacement
convergence of the top corner node (10, 1) in y-direction and the convergence of the pre-
sented LS functional F (5.3) are displayed. The displacement convergence of the LSFEM
is compared to a quadratic displacement element P2.
For all considered LS elements RT mPk a satisfying solution is achievable, at least for
weighting factors ω3 ≥ 5/µ. The special weighting of the stress symmetry condition lead
to an improvement, especially for the lowest order element RT 0P1. The poor performance
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of lowest order elements is already mentioned as a disadvantages of LSFEM. This is es-
pecially illustrated for the RT 0P1 using ω3 = 0 in Figure 5.2, which gives a formulation
only with respect to the balance of momentum and constitutive equation. This behavior
can also be seen in the convergence of the functional. Here only for mesh levels with
neq > 80000 a decrease of the error can be observed. At least for an increasing factor
ω3 the convergences for displacements and LS functional are improved. Furthermore, the
RT 0P1 element leads for the extended LS formulation, i.e., ω3 > 1/µ, a sufficient error
convergence at least for refined mesh levels. This shows that even for a simple problem,
the consideration of weightings is essential for solution quality and convergence behavior.
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Figure 5.2: Convergence of uy-displacement (left) and LS functional F for varying weights
ω3 and different RT mPk elements (m = 0, 1, 2; k = 1, 2, 3) under plane strain condition
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However, the crucial impact of the weights for the stress symmetry condition is reduced
by elements with higher polynomial orders, i.e., m ≥ 1 and k ≥ 2. Nevertheless, these ele-
ments also show a poorer functional convergence for ω3 = 0, which also holds for ω3 = 1/µ
at coarse mesh densities. For the weights ω3 > 10/µ no improvement for the displacement
and functional convergence is reached. Nevertheless, also for higher polynomial orders a
weighting is unavoidable. This impression is further verified by the functional convergence
on the right side of Figure 5.2. Therein, the convergence of F with ω3 = 0 is clearly re-
duced, especially for the low order element. An increasing convergence is reached with
respect to the mesh level and the choice of ω3 ≥ 1/µ up to a limitation, which is based
on the underlying boundary value problem and regular mesh refinement.
Furthermore, the fulfillment of symmetric stress measures is demonstrated for
the Kirchhoff stresses. Therefore, the non-symmetric stresses are determined by
τasym =

∫
B τ12 − τ21 dV . The results are given in Figure 5.3 for ω3 = 0 and ω3 = 10/µ. It

can be seen directly that the balance of angular momentum is not sufficiently fulfilled for
any element combination applying ω3 = 0, even for mesh levels with neq ≥ 50000. For
ω3 = 10/µ all elements show a satisfying solution already for mesh levels neq < 20000.
The performance of the presented formulation yield to similar behavior for all analyzed
values. Based on these results, an extended formulation with additional weighting on the
stress symmetry condition is preferable, especially for low order elements. Furthermore,
elements with higher polynomial order are recommended, i.e., m ≥ 1 and k ≥ 2.
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Figure 5.3: Evolution of τasym for ω3 = 0, 10/µ for RT mPk (m = 0, 1, 2; k = 1, 2, 3)

A similar approach as in the small strain case for the parameter ω2 ≤ 1, cf. Chapter 4.1, is
applied to the unsatisfying solutions of the RT 0P1 andRT 1P2 elements with ω3 = 0, 1/µ,
see Figure 5.4 and 5.5. Here, the choice of ω2 < 1 directly yield an improvement for the
results, if the extended formulation is used. For ω3 = 0 an additional weighting of the
constitutive equation leads to no improvement in the convergence of the functional or
the displacement convergence. From a continuum mechanical point of view, the stronger
fulfillment of the balance of angular momentum (e.g. τ = τ T ) in consequence yields to a
stronger fulfillment of the balance of linear momentum. Furthermore, the improved stress
symmetry enforcement is depicted for the analyzed weighting setup in Figure 5.6. Therein,
the fulfillment of τ = τ T is unaffected and only by considering the extended LS formu-
lation the results are strongly improved. The weighting of the constitutive equation with
a parameter ω2 < 1 yield to a stronger enforcement of the balance of linear momentum
under consideration of an extended LS formulation. Further ideas on this are presented in
Müller et al. [167], by a weighting of the balance of linear momentum or a scaling of
the boundary value problem to a smaller length scale, in order to improve the fulfillment
of the momentum balance by regarding the dimension of the boundary value problem.
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Figure 5.4: Convergence of uy-displacement (left) and F (right) with ω3 = 0 (top) and
ω3 = 1/µ (bottom) for ω2 ≤ 1 for a RT 0P1 element
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Figure 5.6: Convergence of τasym for RT mPk with ω3 = 0 (top) and ω3 = 1/µ (bottom)

5.3 Hyperelastic least-squares formulation under plane stress condition

Furthermore, an incremental algorithmic treatment for the plane stress condition is ana-
lyzed, following the approach in De Borst [85] and Klinkel and Govindjee [134].
For the work conjugate pair (P ,F ), see (2.46), the relation P = ∂ψ/∂F holds and follows
with respect to the Clausius-Duhem inequality. Since an incremental algorithmic treat-
ment is applied for the nonlinear process, the stress-strain relation has to be linearized.
This yields

∆P = D̄ : ∆F with D̄ =
∂2ψ

∂F ∂F
, (5.8)

with the material tangent modulus D̄. The modification of the stress quantity, by en-
forcing P33 = 0, implies a simultaneous modification of the stress-strain relation and the
material tangent moduli for the plane stress case, see Klinkel and Govindjee [134]
for a detailed description and Chapter 4.9 for a similar approach. The iteration procedure

is being applied on Fz = F33 to guarantee Pz = P33
!

= 0 with a vector representation of
the incremental constitutive equation. A Taylor series expansion for the enforced stress
quantity Pz, neglecting higher order terms, leads

P (i+1)
z = P (i)

z +
∂P

(i)
z

∂F
(i)
z

∆Fz
!

= 0 ⇒ ∆Fz = −

(
∂P

(i)
z

∂F
(i)
z

)−1

P (i)
z = −D̄(i)−1

zz P (i)
z , (5.9)

with i as the number of local iterations. The necessary modification of the tangent modulus
can be determined following the approach of an incremental vector representation as pro-
posed in Klinkel and Govindjee [134] and applied for small strain elasto-plasticity
in Chapter 4.9. Since the formulation is implemented in Mathematica using the Ace-
Gen and AceFEM package, an automated differentiation approach is applied, cf., e.g.,
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Korelc [136; 137] and Korelc and Wriggers [138]. For the modification of the ma-
terial tangent, the dependence of the variables to be deduced must be stored, which
are here given with respect to the deformation gradient F . This dependence results in
the associated tangent modulus and gives the related first variation and linearization
by automated differentiation. The algorithmic procedure is shown schematically in Ta-
ble 5.1. Here, the stresses P are determined based on the smmetric stress tensor τ with
P = 2 ∂Bψ(B) ·B · F−T .

Table 5.1: Algorithmic treatment for a hyperelastic, plane stress LS element

ELEMENT LOOP

(1) Update displacements and stresses (Newton iteration k+1)

du = d
(k)
u, n + ∆du, dσ = d

(k)
σ, n + ∆dσ

INTEGRATION LOOP

(2) Compute stresses P and displacements u at each Gauss Point:

P = Sdσ and u = Nu du and read from history: ∇u33

CONSTITUTIVE LOOP

SUBITERATION (i as local iteration number)

(.1) Compute F = I +∇u and B = F · F T

P = 2 ∂Bψ(B) ·B · F−T

(.2) If |P (i)
z | ≤ tol Exit SUBITERATION

(.3) If niter > nmax Then stop iteration

(.4) Update: F
(i+1)
z = F

(i)
z − D̄(i)−1

zz P
(i)
z with D̄(i)

zz = ∂P
(i)
z /∂F

(i)
z

(3) Save to history: ∇u33 = Fz − 1

(4) Compute single functional parts and exit CONSTITUTIVE LOOP

(5) Determine and export right hand side and element stiffness matrix

5.4 Numerical validation of the plane stress subiteration

For the validation of the plane stress algorithm at finite elasticity the well-known Cook’s
membrane problem is analyzed, see Cook [81]. The problem is characterized by a clamped
left side and a constant shear load P ·N = (0, 20)T N/mm2 on the right side, see Figure
5.7. The material setup and boundary conditions are taken from the benchmark collection
of Schröder et al. [202].

The results for the displacement convergence uy at the node (48, 60) for the hyperelastic
LS elements RT mPk for varying polynomial degrees m and k under plane stress con-
ditions are compared to a quadratic displacement element P2, see Figure 5.8. Here, the
weighting setups are given with ωi = {1, 1/µ, 0} and ωi = {1, 1/µ, 10/µ} to illustrate the
dependence of the solution accuracy on the weights. Both weighting setups converge to
the reference solution, but only the extended formulation (i.e., ω3 6= 0) yield satisfying
results, at least for higher order elements, and the weak performance of the lowest order
elements is clearly visible. Additionally RT 0P2 and RT 1P3 elements are chosen, which do
not provide an optimal convergence rate. For both elements the chosen order of the stress
approximation limits the theoretically possible convergence rate. Nevertheless, since the
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System setup:

Left edge: u = (0, 0)T mm

Right edge: P ·N = (0, 20)T N/mm2

Young’s modulus: E = 500 N/mm2

Poisson’s ratio: ν = 0.35

Lamé’s parameter: λ = 432.099 N/mm2

µ = 185.185 N/mm2

Figure 5.7: Material parameters, boundary conditions and geometry of Cook’s membrane

optimal convergence rate can only be obtained for regular problems and the Cook’s mem-
brane is known to be a non-regular problem, the choice of RT 0P2 and RT 1P3 does not
affect the achievable rates for this problem. However, in general, this must be taken into
account when choosing the polynomial degree of the elements. The application of these
two elements is motivated only by an improvement of the convergence in the displacement
quantities, which is shown in Figure 5.8.
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Figure 5.8: Displacement convergence uy at (48,60) with ω3 = 0, 10/µ

Furthermore, the convergence of the LS functional (5.3) is depicted in Figure 5.9. Therein,
all element formulations yield to quite similar convergence rates of approximately 0.7−0.8
independent of the polynomial order, see Table 5.2, 5.3 and 5.4. These results do not corre-
spond to the theoretically possible convergence order, see Chapter 3.5, which can be esti-
mated by the chosen polynomial degree and in dependence of the solution regularity. The
limitation of the convergence order is given by the considered boundary value problem,
where the solution of the continuous problem is less regular based on the geometry and
the applied boundary conditions, cf. Rössle [194]. For a more regular problem, related to
the Cook’s membrane, the load application and the angle between Dirichlet and Neumann
boundaries have to be changed, which is investigated by, e.g., Kober and Starke [135]
and Bertrand et al. [35]. The application of adaptive mesh refinement, which avoid
unnecessary refinements in terms of the functional error, would also yield a limitation in
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the rates, since the problem description itself limit the rates.
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Figure 5.9: Fhyp convergence for RT mPk with m = 0, 1, 2, k = 1, 2, 3 and ω3 = 0, 10/µ

Furthermore, the resulting values for the uy displacement at (48, 60), the functional F , the
balance of linear momentum and the stress symmetry (|τas| =

∫
B |τ12 − τ21| dV ) are listed

in Table 5.2, 5.3 and 5.4 for some of the applied elements. The values show that solely the
convergence of the complete functional is unaffected by the raising polynomial degree, as
denoted previously. For the other terms, higher accuracies are achieved with increasing
element order. Here, the reference solution uy,ref is taken from Schröder et al. [202]
with uy,ref = 11.381135 mm.

Table 5.2: Results for Cook’s membrane with classical LS formulation using a RT 0P1

RT 0P1 neq |uy − uy,ref | F (order) ‖DivP ‖L2(B) |τas|
ω3 = 0 32 9.4848 E-0 4.6649 E-3 (-) 2.1489 E-5 1.9766 E+1

128 8.7602 E-0 3.5652 E-3 (0.1939) 1.4050 E-5 1.7594 E+1
512 6.8585 E-0 2.6865 E-3 (0.2041) 8.0209 E-6 1.3868 E+1
2048 3.7435 E-0 1.5458 E-3 (0.3987) 2.6995 E-6 8.1529 E-0
8192 1.3991 E-0 6.2996 E-4 (0.6475) 1.0519 E-6 3.4036 E-0

ω3 = 10/µ 32 3.9281 E-0 2.6583 E-1 (-) 2.2688 E-2 4.2602 E-0
128 1.9284 E-0 7.9375 E-2 (0.8719) 1.9983 E-3 1.1303 E-0
512 7.9850 E-1 2.1868 E-2 (0.9299) 1.7132 E-4 2.9969 E-1
2048 3.1519 E-1 6.1433 E-3 (0.9159) 1.7608 E-5 8.3419 E-2
8192 1.2359 E-1 1.7954 E-3 (0.8874) 5.1561 E-6 2.4719 E-2

It might not be practical to apply higher order elements to all kind of problems, if only the
convergence of the functional is analyzed, because the rate is by far not optimal for most
of the cases, since often non-regular problems are discussed. Furthermore, higher order
elements are more time consuming in the computation due to the increasing number of
equations. Nevertheless, from an engineering point of view, also values at particular points
are of special interest, e.g., for the dimensioning of structural components. The results
for higher order elements are often more accurate for coarse meshes and the influence of
weights is reduced, see Figure 5.2 and 5.10.
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Table 5.3: Results for Cook’s membrane with classical LS formulation using a RT 1P2

RT 1P2 neq |uy − uy,ref | F (order) ‖DivP ‖L2(B) |τas|
ω3 = 0 112 5.8407 E-0 2.2112 E-3 (-) 7.6084 E-6 1.2906 E+1

448 2.3588 E-0 9.9732 E-4 (0.5743) 2.4649 E-6 6.5023 E-0
1792 7.2274 E-1 3.4936 E-4 (0.7567) 4.3532 E-7 2.4397 E-0
7168 2.3201 E-1 1.2566 E-4 (0.7376) 6.8761 E-8 9.0464 E-1
28672 7.6368 E-2 4.6753 E-5 (0.7132) 2.3103 E-8 3.4099 E-1

ω3 = 10/µ 112 5.0048 E-1 2.6312 E-2 (-) 4.2386 E-4 4.2342 E-1
448 2.1477 E-1 6.2176 E-3 (1.0406) 2.9828 E-5 9.5475 E-2
1792 1.0520 E-1 1.7117 E-3 (0.9305) 3.0381 E-6 2.6394 E-2
7168 5.1841 E-2 5.1009 E-4 (0.8733) 4.1417 E-7 8.2169 E-3
28672 2.3695 E-2 1.6398 E-4 (0.8186) 1.4246 E-7 2.8280 E-3

Table 5.4: Results for Cook’s membrane with classical LS formulation using a RT 2P3

RT 2P3 neq |uy − uy,ref | F (order) ‖DivP ‖L2(B) |τas|
ω3 = 0 240 2.2692 E-0 9.9405 E-4 (-) 2.6839 E-6 6.5322 E-0

960 7.1623 E-1 3.6277 E-4 (0.7271) 4.8462 E-7 2.5085 E-0
3840 2.3544 E-1 1.3279 E-4 (0.7249) 7.7649 E-8 9.4239 E-1
15360 7.8967 E-2 4.9879 E-5 (0.7063) 1.1883 E-8 3.5524 E-1
61440 2.4256 E-2 1.8906 E-5 (0.6998) 3.8898 E-9 1.3251 E-1

ω3 = 10/µ 240 1.9914 E-1 6.7589 E-3 (-) 4.3167 E-5 9.6731 E-2
960 1.0544 E-1 1.8976 E-3 (0.9163) 4.4147 E-6 2.8197 E-2
3840 5.5051 E-2 5.6736 E-4 (0.8709) 5.8971 E-7 9.0387 E-3
15360 2.5693 E-2 1.8539 E-4 (0.8068) 9.3682 E-8 3.1300 E-3
61440 9.7979 E-3 6.4289 E-5 (0.7639) 3.2202 E-8 1.1163 E-3

For completeness and further investigations, the cantilever beam example in Figure 5.1 is
also considered under plane stress condition exemplarily for the RT 0P1 element, see Fig-
ure 5.10. The depicted results for the convergence of the functional and the displacement
uy at the particular point (10, 1) are in accordance with the plane strain case and confirm
these results. In contrast to the additional weighting with ω2 < 1 for the plane strain case,
see Figure 5.4 and 5.5, a further approach is presented to improve the solution accuracy
and functional convergence, especially for the lowest order elements.
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5.5 Asymmetric least-squares formulation for finite elasticity

As already discussed for the small strain framework, the classical least-squares formu-
lation with a stress approximation using Raviart-Thomas functions can be improved
with respect to the fulfillment of the balance of angular momentum. This formula-
tions are denoted by extended formulations and are characterized by the extension of
the functional by an additional mathematically redundant residual equation, see (4.3),
while maintaining the classical LS approach. In addition to an extended functional
in (4.8) and (5.3), an approach based on the idea of a so-called modified first vari-
ation is applied, cf. Schwarz et al. [205], Starke et al. [221] for linear elasticity,
Schwarz et al. [208] for hyperelasticity and Igelbüscher et al. [119] for finite plas-
ticity.
The resulting modified first variation is denoted by δP ,uG(P ,u) and motivated by a scalar
multiplication of a symmetric stress measure Σsym and an asymmetric defined tensor
function Has(δu) in terms of the displacement test function. Therefore, the modification,
denoted by δuG̃, is only introduced in the first variation with respect to the displacement
field (5.4)1 and yield the modified first variations

δuG := δuFhyp + δuG̃(Has(δu),Σsym) and δPG := δPFhyp . (5.10)

A suitable approach for Σsym is any symmetric stress measure, here, e.g., the Kirchhoff
stress τ = P · F T is considered. The tensor function Has(δu) is chosen as the antisym-
metric gradient of the displacement test functions with respect to the actual configuration
with

∇as
,x(δu) =

1

2

(
∇,x(δu)− (∇,x(δu))T

)
. (5.11)

The resulting modified first variation δuG of formulation (5.3), introducing δuG̃, yields

δuG = δuFhyp−
∫
B
∇as
,x(δu) :

1

µ

(
P · F T − 2

∂ψ

∂B
·B
)

dV︸ ︷︷ ︸
δuG̃

and δPG := δPFhyp .

(5.12)
Here, the factor 1/µ is considered as a physical weighting parameter. It has to be men-
tioned that this approach not result in a classical LSFEM, since the resulting system of
equation is unsymmetric based on the introduced modified first variation only for the dis-
placement field. However, for a decreasing characteristic element length he → 0 it holds
P · F T = F · P T and thus the modification results to zero, which gives the classical
LSFEM approach with δuG = δuF . This approach additionally controls the fulfillment
of the balance of angular momentum, similar to the extended LS approach, which lead
simultaneously to an improved convergence of the balance of linear momentum, as shown
in Schwarz et al. [205] and Starke et al. [221].
Obviously, the modified formulation lead to a non-symmetric system, because the modi-
fication is only applied to the first variation with respect to the displacement field, which
yields for the system matrices kuP 6= kTPu. Thus preconditioner have to be used in order to
apply iterative solvers to the system, see, e.g., Faber et al. [97], Arnold et al. [7]
and Hiptmair and Xu [115]. The resulting unsymmetric system does not necessarily
lead to a deviation from positive definiteness, since a real square matrix A, which is not
necessarily symmetric, is positive definite if its symmetric part As = 1/2(A+AT ) is posi-
tive definite. Applying this assumption, the positive definiteness can be still fulfilled for the
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symmetric part of the resulting system matrix and thus also the asymmetric formulation
can be positive definite. Furthermore, the system leads to a fully occupied matrix sys-
tem and therefore the stability requirements of saddle point problems must not be taken
into account. The well-posedness of the approach is discussed in Starke et al. [221] for
linear elasticity.

5.6 Numerical validation of the asymmetric least-squares formulation

In the following, the modified LS formulation is investigated for the previous boundary
value problems to obtain a direct comparability. The results for the modified approach
applied to the Cook’s membrane problem, with the setup given in Figure 5.7, are shown
in Figure 5.11. Here, satisfying solution depending on the number of equations is reached
for all RT mPk elements. The modified formulation yields, especially for the lowest order
element with ω3 = 0 a significant improvement. However, the comparison of the classical
and modified LS approach for a RT 0P1 with ω = 10/µ show no further improvement
within the displacement convergence. This behavior is obviously given for all comparisons
of classical and modified formulations, where for ω3 = 0 an improvement is obtained and
for ω3 = 10/µ the results are quite unaffected by the additional modification, see Figure
5.8. Therefore, it seem to be sufficient to apply either the extended formulation with
proper weights for ω3 or the modified formulation in order to achieve reliable and efficient
formulations.
The convergences of the modified LS functionals in Figure 5.12 show no improvement
and thus confirm the previous statement regarding the limitation of the convergence
order based on the boundary value problem. Each functional converge with the order of
≈ 0.7− 0.8 as it is presented in Table 5.5, 5.6 and 5.7 and the same holds for the RT 0P2

and RT 1P3 elements. Based on the non-regular problem description, cf. Rössle [194].
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Table 5.5: Results for Cook’s membrane with modified LS formulation using a RT 0P1

RT 0P1 neq |uy − uy,ref | F (order) ‖DivP ‖L2(B) |τas|
ω3 = 0 32 7.8987 E-0 7.2522 E-3 (-) 1.6628 E-5 1.6662 E+1

128 5.2813 E-0 7.6660 E-3 (0.0401) 6.7330 E-6 1.1667 E+1
512 2.3612 E-0 5.2789 E-3 (0.2691) 1.5964 E-6 5.8396 E-0
2048 7.9181 E-1 2.1664 E-3 (0.6425) 2.7301 E-7 2.3031 E-0
8192 2.4131 E-1 7.1116 E-4 (0.8035) 4.4526 E-8 8.4577 E-1

ω3 = 10/µ 32 3.6093 E-0 2.6867 E-1 (-) 2.2612 E-2 4.2258 E-0
128 1.8195 E-0 8.0042 E-2 (0.8735) 1.9471 E-3 1.1122 E-0
512 7.6817 E-1 2.1967 E-2 (0.9327) 1.6491 E-4 2.9391 E-1
2048 3.0951 E-1 6.1593 E-3 (0.9173) 1.7002 E-5 8.1819 E-2
8192 1.2355 E-1 1.7983 E-3 (0.8881) 2.1836 E-6 2.4288 E-2

Table 5.6: Results for Cook’s membrane with modified LS formulation using a RT 1P2

RT 1P2 neq |uy − uy,ref | F (order) ‖DivP ‖L2(B) |τas|
ω3 = 0 112 1.9455 E-0 3.4633 E-3 (-) 1.7854 E-6 5.3965 E-0

448 5.7299 E-1 1.1462 E-3 (0.7976) 4.7030 E-7 2.2379 E-0
1792 1.7424 E-1 3.6701 E-4 (0.8215) 8.2703 E-8 8.7115 E-1
7168 5.5736 E-2 1.3051 E-4 (0.7458) 1.3647 E-8 3.4369 E-1
28672 1.6799 E-2 4.8994 E-5 (0.7068) 2.2661 E-9 1.3757 E-1

ω3 = 10/µ 112 4.5642 E-1 2.6517 E-2 (-) 4.1512 E-4 4.1499 E-1
448 2.0977 E-1 6.2509 E-3 (1.0424) 2.9331 E-5 9.3479 E-2
1792 1.0612 E-1 1.7180 E-3 (0.9317) 2.9942 E-6 2.5890 E-2
7168 5.3220 E-2 5.1147 E-4 (0.8740) 4.0896 E-7 8.0842 E-3
28672 2.4624 E-2 1.6427 E-4 (0.8193) 6.7851 E-8 2.7911 E-3

For completeness, the example of the cantilever beam, Figure 5.1, is analyzed for the
plane stress case under consideration of the modified LS formulation. The results show
for all investigated elements that the influence of weighting factors ω3 is significantly



98 Mixed finite element formulations at finite strains

Table 5.7: Results for Cook’s membrane with modified LS formulation using a RT 2P3

RT 2P3 neq |uy − uy,ref | F (order) ‖DivP ‖L2(B) |τas|
ω3 = 0 240 6.0086 E-1 1.1404 E-3 (-) 6.0329 E-7 2.4356 E-0

960 1.8635 E-1 3.8241 E-4 (0.7882) 1.0284 E-7 9.5589 E-1
3840 6.1647 E-2 1.3885 E-4 (0.7308 ) 1.6865 E-8 3.7852 E-1
15360 1.9468 E-2 5.2823 E-5 (0.6972) 2.8006 E-9 1.5167 E-1
61440 4.2097 E-3 2.0428 E-5 (0.6853) 4.6948 E-10 6.1170 E-2

ω3 = 10/µ 240 1.9295 E-1 6.7983 E-3 (-) 4.2523 E-5 9.4615 E-2
960 1.0557 E-1 1.9046 E-3 (0.9178) 4.3591 E-6 2.7672 E-2
3840 5.6125 E-2 5.6887 E-4 (0.8717) 5.8292 E-7 8.8999 E-3
15360 2.6510 E-2 1.8572 E-4 (0.8075) 9.2849 E-8 3.0925 E-3
61440 1.0288 E-2 6.4361 E-5 (0.7645) 1.4786 E-8 1.1060 E-3

reduced or non-existent, see Figure 5.13. This is in clear contrast to the results under
plane strain and plane stress conditions for the classical LS approach in Figure 5.2 and
5.10. The functional convergences of the classical and modified LS approach are depicted
in Figure 5.13 (right). Here, both formulations show the same convergence properties
for finer meshes (he → 0) with different weights. A clear difference is perceptible for the
RT 0P1 element. It can be seen already for coarse meshes that for the plane stress case the
modified formulations with ω3 = 0 directly yield the same behavior as the formulations
with ω3 > 1/µ, see Figure 5.13 (top). This behavior occurs for a RT 0P1 element for the
classical formulations only for weights with ω3 ≥ 10/µ, cf. Figure 5.2 and 5.10. Therefore,
an additional weighting with ω2 ≤ 1, as shown in Figure 5.4 and 5.5 is unnecessary for
the modified formulation. These findings are taken into account for the extension of the
formulation to finite plasticity.
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5.7 Least-squares formulation for rate-independent finite J2-plasticity

The previous findings for the LSFEM at finite elasticity are extended to the field
of rate-independent finite J2-plasticity. Here, the continuum mechanical relations pre-
sented in Chapter 2.5.3 are taken into account as a foundation for the discussion.
The theory of plasticity has been analyzed in detail over the past decades and is pre-
sented in several monographs, see, e.g., the textbooks of Hill [113], Lubliner [154],
Maugin [161] and Han and Reddy [105]. Furthermore, the following presentations are
mainly based on the literature of Simo [210; 211; 212; 213], Simo and Miehe [215],
Weber and Anand [232], Eterovic and Bathe [96], Simo and Hughes [214] and
de Souza Neto et al. [86], to which a great impact must be attributed.
For the framework of elasto-plasticity, the approximation of the stress values are an
important aspect, since the stresses determine the evolution of plastic material re-
sponse. Therefore, a direct approximation of the stresses as an unknown variable, by
applying mixed methods, seems to be promising for modeling plastic material be-
havior. The results presented below for finite J2-plasticity are originally published
in Igelbüscher et al. [119; 121]. Furthermore, an analyses for LSFEM at small
strain plasticity is given in Kwon et al. [143], Starke [219; 220], Kubitz [142] and
Schwarz [203]. Some of these publications illustrate a drawback for the application of
the LSFEM at rate-independent plasticity. The problem becomes visible in the solution
of the system of equations, e.g., through oscillations in the application of the standard
Newton-Raphson method and thus none or only inaccurate solutions are obtained. This
effect is due to the non-smooth material law in elasto-plasticity, occurring at the transition
from purely elastic to elasto-plastic material behavior. Therefore, the resulting functional
includes kink-like points, which lead in consequence to discontinuities within the first
variation. For visualizations of the oscillatory effects, see the works of Kubitz [142] and
Schwarz [203]. In Kubitz [142] a smoothing algorithm is presented and in Starke [220]
a generalized Newton approach is used for the efficient solution of the elasto-plastic prob-
lem as a nonlinear and non-smooth algebraic problem. Furthermore, adaptive refinement
strategies are applied in Starke [219; 220] and Kwon et al. [143] introduce elasto-
plasticity for a meshfree least-squares method.
For the mixed Hellinger-Reissner formulation the described drawback does not occur,
since the weak form remains unchanged for elasticity and plasticity, and a straightfor-
ward approach lead a consistent system, see Chapter 4.5. Furthermore, a LS formulation
for rate-dependent plasticity solve the issue by the nature of the formulation which allows
overstresses and therefore, the transition of elastic and plastic material results not in such
kink-like points, cf. Schwarz et al. [204].
The described disadvantage is here solved by the construction of a continuous first varia-
tion in terms of a modification. Therefore, the formulation (5.3) is taken into account as a
basis. For the elastic material description a hyperelastic isotropic Neo-Hookean material,
cf. (2.57), is considered with the elastic free energy ψe,isoNH (Be) as

ψe,isoNH (Be) :=
λ

4
(I3(Be)− 1) +

µ

2
(I1(Be)− 3)−

(
λ

2
+ µ

)
ln
√
I3(Be) , (5.13)

in dependence of the elastic left Cauchy-Green deformation tensor Be. Note that it
is defined by means of the multiplicative decomposition of the deformation gradient
F = F e · F p and given through the relation of Be = F e · F e T = F · Cp−1 · F T with
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Cp−1 = F p−1 · F p−T , see Chapter 2.5.3. The difference to (5.3) is given by the deforma-
tion tensor Be, which is no longer a pure displacement related variable as in B = F ·F T ,
since it is dependent on the plastic deformation tensor Cp−1 and therefore, also on the
stress tensor P . The investigated material law is determined by the symmetric Kirch-
hoff stresses τ with τ = 2 ∂Beψ

e,iso
NH (Be) ·Be, see (2.79). Consequently, the elasto-plastic

mixed LS functional F ep(P ,u), with ψ = ψe,isoNH (Be), cf. Igelbüscher et al. [119; 121],
is defined by

F ep(P ,u) =
1

2

(∥∥∥ω1 (DivP + f)︸ ︷︷ ︸
Rep

1

∥∥∥2

L2(B)
+
∥∥∥ω2

(
P · F T − 2

∂ψ

∂Be
·Be

)
︸ ︷︷ ︸

Rep
2

∥∥∥2

L2(B)

+
∥∥∥ω3 (P · F T − F · P T )︸ ︷︷ ︸

Rep
3

∥∥∥2

L2(B)

)
.

(5.14)

For reasons of simplicity, the weighting factors of the respective residual equations
are omitted in the following, but are still relevant for the performance and ac-
curacy of the formulation. The nonlinear minimization problem is solved utilizing
δP ,uF ep(P ,u, δP , δu) = 0. Therefore, the associated first variations of F ep with respect
to P and u read

δPF ep =

∫
B

Div δP · (DivP + f) dV

+

∫
B

(
δP · F T − 2

[
δP

( ∂ψ

∂Be
·Be

)])
:
(
P · F T − 2

∂ψ

∂Be
·Be

)
dV

+

∫
B
(δP · F T − F · δP T ) : (P · F T − F · P T ) dV ,

δuF ep =

∫
B

(
P · δF T − 2

[
δu

( ∂ψ

∂Be
·Be

)])
:
(
P · F T − 2

∂ψ

∂Be
·Be

)
dV

+

∫
B
(P · δF T − δF · P T ) : (P · F T − F · P T ) dV .

(5.15)

Based on the properties of the given formulation (5.15) the solution is sought by find
(u,P ) ∈ V × S such that δuF ep = 0 ∀ δu ∈ V and δPF ep = 0 ∀ δP ∈ S, where the
function spaces are given by V :=W1,p(B) and S :=Wq(div,B), see (3.5) and (3.6).
The before mentioned drawback arising by the straightforward application of a mixed
LS formulation for rate-independent elasto-plasticity becomes visible in (5.15) compared
to (5.4). It is based on the non-smoothness of the constitutive relation, occurring at the
transition from purely elastic to elasto-plastic material behavior, which can lead to prob-
lems within the minimization scheme, e.g., with the standard Newton-Raphson method,
cf. Schwarz [203] and Igelbüscher et al. [119]. The non-smooth relation could lead
to kink-like points in the functional and furthermore to a discontinuous first variation.
For guaranteeing a continuous first variation and overcome the resulting discontinuity, an
unsymmetric formulation is constructed, which leaves the underlying system of differential
equations unchanged. In order to ensure continuity, either if pure elasticity or plasticity
occurs in the formulation, a modification of the plastic deformation tensor Cp−1 within
the stress and displacement test space is introduced. This is done based on the considera-
tion at the transition from elastic to elasto-plastic material reactions. For convenience the
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plastic right Cauchy-Green deformation tensor with respect to the implicit exponential
time integration, cf. Weber and Anand [232] and Eterovic and Bathe [96], is here
presented again with

Cp−1 = F−1 · exp
[
− 2 ∆tγ n

]
· F ·Cp−1

n ,

as given in (2.86) and derived in Chapter 2.5.3. Thus, Be can be defined as

Be = F ·Cp−1 · F T = F ·
(
F−1 · exp

[
− 2 ∆tγ n

]
· F ·Cp−1

n

)
· F T , (5.16)

where ∆tγ and n = ∂τΦ(τ , α) are stress dependent variables. The discontinuity within the
first variation originates in the constitutive relation, in the variation of the plastic strains
depending on the Kirchhoff stresses τ defined in (2.79). Thus the critical point is defined
byBe as a pure displacement function B̃e(u) and a function of displacements and stresses
Be(P ,u). For an obvious illustration of this statement, a case distinction is performed,
where lim

Φ→ 0−
describes an elastic material state with Φ < 0 and lim

Φ→ 0+
an elasto-plastic

material state in which the yield surface is exceeded. The elastic left Cauchy-Green tensor
for the purely elastic case is further denoted by B̃e, i.e.,

Be = F ·Cp−1
n · F T := B̃e(u) for lim

Φ→ 0−
, (5.17)

which is solely a function of the displacement field u, since Cp−1
n consists of previously

calculated (history) values and thus, is considered as a constant parameter within the
derivatives of Be with respect to P . For arising plasticity Be is defined by

Be = F ·Cp−1
n+1 · F T for lim

Φ→ 0+
. (5.18)

Here, the index n + 1 is explicitly given for Cp−1 in order to emphasize the difference
to (5.17) and the dependence on u and P . Nevertheless, all variables without index are
defined at the current time step n+1. The resulting case distinction for the first variation
of the constitutive relation δRep

2 , cf. (5.14), at the elasto-plastic transition based on (5.17)
and (5.18) yields(

δP ,uτ − 2
[
δu

( ∂ψ

∂B̃e
· B̃e

)])
︸ ︷︷ ︸

elastic step; lim
Φ→ 0−

6=
(
δP ,uτ − 2

[
δP ,u

( ∂ψ

∂Be
·Be

)])
︸ ︷︷ ︸

elasto-plastic step; lim
Φ→ 0+

, (5.19)

with the abbreviation δP ,uτ = δP ·F T +P · δF T . Obviously, δP ,uτ is the same for both
cases. The modification of the test spaces is performed based on the approach for the small
strain theory, see Schwarz [203] and Igelbüscher et al. [119]. The extension of this
approach to finite strain formulations results in a neglection of the variation of the plastic
right Cauchy-Green tensor δuC

p−1 and δPC
p−1. The idea leaves the underlying system of

equations unchanged, as the modification is applied exclusively to the first variation. This
yields a so-called modified first variation (δuĜep and δP Ĝep) of the least-squares functional
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(5.14), i.e.,

δuĜep =

∫
B

(
P · δF T − 2

[
δu

( ∂ψ

∂B̃e
· B̃e

)])
:
(
P · F T − 2

∂ψ

∂Be
·Be

)
dV

+

∫
B
(P · δF T − δF · P T ) : (P · F T − F · P T ) dV ,

δP Ĝep =

∫
B

Div δP · (DivP + f) dV +

∫
B

(
δP · F T

)
:
(
P · F T − 2

∂ψ

∂Be
·Be

)
dV

+

∫
B
(δP · F T − F · δP T ) : (P · F T − F · P T ) dV ,

(5.20)
which are continuous for elastic ( lim

Φ→ 0−
) and plastic ( lim

Φ→ 0+
) loading.

Note that the advantage of symmetric system matrices is no longer valid due to the
modification in the weak form in (5.20). This is analogously to the modified LS formula-
tion presented in (5.12), which is shown to lead improved solution accuracy, see Chapter
5.6. Furthermore, the modified LS approach is shown to be well posed for the small strain
framework in Schwarz et al. [205] and Starke et al. [221]. Since the underlying for-
mulations already yields an unsymmetric system, the modified LS formulation (5.12) is
additionally applied to (5.20), i.e.,

δuGep = δuĜep−
∫
B
∇as
,x (δu) :

1

µ

(
P ·F T−2

∂ψ

∂Be
·Be

)
dV and δPGep := δP Ĝep . (5.21)

The modified first variation in terms of the asymmetric defined tensor function (5.12) and
the applied modification for ensuring continuous first variations (5.20) lead the linearized
forms ∆δuGep and ∆δPGep with

∆δuGep =

∫
B

(
P · δF T − 2

[
δu

( ∂ψ

∂B̃e
· B̃e

)])
:
(
P ·∆F T − 2

[
∆u

( ∂ψ

∂Be
·Be

)])
dV

+

∫
B

(
P ·∆δF T − 2

[
∆u

[
δu

( ∂ψ

∂B̃e
· B̃e

)]])
:
(
P · δF T − 2

[
δu

( ∂ψ

∂Be
·Be

)])
dV

+

∫
B
(P · δF T − δF · P T ) : (P ·∆F T −∆F · P T ) dV

−
∫
B
∇as
,x (δu) :

1

µ

(
P ·∆F T − 2

[
∆u

( ∂ψ

∂Be
·Be

)])
dV

+

∫
B

(
P · δF T − 2

[
δu

( ∂ψ

∂B̃e
· B̃e

)])
:
(

∆P · F T − 2
[
∆P

( ∂ψ

∂Be
·Be

)])
dV

+

∫
B

(
∆P · δF T

)
:
(
P · F T − 2

∂ψ

∂Be
·Be

)
dV

+

∫
B
(P · δF T − δF · P T ) : (∆P · F T − F ·∆P T ) dV

+

∫
B
(∆P · δF T − δF ·∆P T ) : (P · F T − F · P T ) dV

−
∫
B
∇as
,x (δu) :

1

µ

(
∆P · F T − 2

[
∆P

( ∂ψ

∂Be
·Be

)])
dV

(5.22)
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and

∆δPGep =

∫
B

Div δP ·Div ∆P dV

+

∫
B

(
δP · F T

)
:
(
P ·∆F T − 2

[
∆u

( ∂ψ

∂Be
·Be

])
dV

+

∫
B

(
δP ·∆F T

)
:
(
P · F T − 2

∂ψ

∂Be
·Be

)
dV

+

∫
B
(δP · F T − F · δP T ) : (P ·∆F T −∆F · P T ) dV

+

∫
B
(δP ·∆F T −∆F · δP T ) : (P · F T − F · P T ) dV

+

∫
B

(
δP · F T

)
:
(

∆P · F T − 2
[
∆P

( ∂ψ

∂Be
·Be

)])
dV

+

∫
B
(δP · F T − F · δP T ) : (∆P · F T − F ·∆P T ) dV

(5.23)

The modified variations are only part of the linearization ∆δuGep. Thus, the unsymmetric
system is caused by ke

uP 6= keT
Pu. For a decreasing characteristic element length he → 0,

the constitutive relation is fulfilled and expression δG̃(Has(δu),Σsym) vanishes and yield

δuGep = δuĜep. However, since the modification with respect to the arising plasticity is
unaffected by decreasing mesh levels, the formulation is still unsymmetric and ke

uP 6= keT
Pu.

Therefore, the proposed modified elasto-plastic LS formulation is no longer a classical
LSFEM in terms of the inherent symmetry properties of the resulting matrices.
The algorithmic treatment of the presented LS formulation at finite J2-plasticity is listed
in Table 5.8.

For a reduction of the dimension of the proposed LS formulation from d = 3 to d = 2
plane stress condition is considered, cf. Chapter 5.3. The assumption of plane stress is
preferable due to the analyzed plastic material behavior, in which the complete stress
tensor, as the norm of the deviatoric part, has to be considered in order to determine
plastic deformations. The plane stress constraint simplify the application, since the
stresses in x − y plane are approximated and in z-direction equal to 0. Nevertheless,
this requires a subiteration procedure for the strains in z-direction. These are computed
analogously to the hyperelastic framework, summarized in 5.1. Therefore, the algorithmic
treatment listed in Table 5.8 is modified by introducing the iteration in Table 5.1
previously to the determination of the plastic state, i.e., before step (4) in Table 5.8.
The representation of the finite plastic deformations by means of problems in d = 2,
reduces the required degrees of freedom by a large margin. However, in the following the
applications are first validated in d = 3.
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Table 5.8: Algorithmic treatment for a 3D finite elasto-plastic LS element

ELEMENT LOOP

(1) Update displacements and stresses (Newton iteration k+1)

d = d
(k)
u, n + ∆du, dσ = d

(k)
σ, n + ∆dσ

INTEGRATION LOOP

(2) Compute stresses P and displacements u at each Gauss Point:

P = Sdσ and u = Nu du

Read from History: Cp−1
n , αn and staten

CONSTITUTIVE LOOP

(3) Check plastic state of previous step:

If staten = 0 ⇒ Cp−1
i = I ; Else staten > 0 ⇒ Cp−1

i = Cp−1
n

(4) Check for plastic state in the actual step:

Call SUBITERATION in Table 5.9

If Φ > tol , compute n = ∂τΦ and M := exp
[
− 2 γn+1n

]
Update history Cp−1

n+1 = F−1 ·M · F ·Cp−1
i and αn+1 = αn +

√
2
3 γn+1

Else Φ ≤ tol , update history Cp−1
n+1 = Cp−1

n and αn+1 = αn

(5) Compute stresses τ (Be):

τ (Be) = 2 ∂Beψ(Be) ·Be with Be := F ·Cp−1
n+1 · F T

(6) Compute single functional parts and exit CONSTITUTIVE LOOP

(7) Determine and export right hand side and element stiffness matrix

In Chapter 2.5.2 and 2.5.3 a yield criterion in terms of isotropic linear hardening is consid-
ered. For the application of exponential hardening the von Mises yield criterion is defined
by

Φ(τ , α) = ‖ dev τ‖ −
√

2
3

(
y0 + hα + (y∞ − y0)(1− exp[−η α])

)
, (5.24)

where y∞ denotes the saturation yield stress and η is the exponential hardening modulus.
Therefore, a straightforward calculation of the plastic parameter γ, as shown in Chapter
2.5.2, is not valid anymore, since the yield criterion is here an implicit function of αn+1

and thus γn+1. In order to fulfill the exceeded yield criterion (Φ
!

= 0) the evaluation of
the plastic multiplier γ is performed by means of a subiteration with the iteration index
j, analogously to the enforcement of plane stress condition in Chapter 5.3. The basis for
this is a Taylor series expansion of the yield criterion Φn+1, in which higher order terms
are neglected, cf., e.g., Klinkel [133]. This results in

Φj+1
n+1 = Φj

n+1 +
∂Φj

n+1

∂γjn+1

∆γj+1
n+1

!
= 0 ⇒ ∆γj+1

n+1 = −

(
∂Φj

n+1

∂γjn+1

)−1

Φj
n+1 , (5.25)
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and is further determined by

∆γj+1
n+1 = −

(
∂Φj

n+1

∂αjn+1

∂αjn+1

∂γjn+1

)−1

Φj
n+1 =

3 Φj
n+1

2 (h+ (y∞ − y0)(η exp[−η αjn+1]))
(5.26)

with the exponential yield criterion Φ(τ , α) in (5.24) and the incremental update of the

hardening law (2.66), i.e., αjn+1 = αjn +
√

2
3
γjn+1. This follows from the evaluation of

the minimization problem with constraint condition in form of a Lagrange functional
with respect to the reduced dissipation inequality, see Chapter 2.5.3. The resulting al-
gorithmic treatment within the finite element implementation is listed in Table 5.9. A
consistent material tangent is obtained by utilization of automated differentiation and
the definitions of the associated dependencies, see, e.g., Korelc [136], Korelc [137]
and Korelc and Wriggers [138].

Table 5.9: Algorithmic treatment for the subiteration of the plastic multiplier γ

SUBITERATION (j as local iteration index)

(1) Compute αjn+1 = αn +
√

2
3 γ

j
n+1 and

Φj
n+1 = ‖ dev τn+1‖ −

√
2
3(y0 + hαjn+1 + (y∞ − y0)(1− exp[−η αjn+1]))

(2) If Φj
n+1 ≤ tol ,

Determine
∂γjn+1

∂τn+1
=

(
∂Φj

n+1

∂γjn+1

)−1
∂Φj

n+1

∂τn+1
and Exit SUBITERATION

(3) If niter > nmax Then stop iteration

(4) Update: γj+1
n+1 = γjn+1 + 3 Φj

n+1

(
2 (h+ (y∞ − y0)(η exp[−η αjn+1]))

)−1

j = j + 1 and Go To (1)

5.8 Numerical objectivity test for LSFEM at finite J2-plasticity

In order to confirm the correct description of superimposed rigid body movements,
a numerical objectivity test is performed based on Glaser and Armero [103] and
Korelc et al. [139]. Therein, the considered boundary value problem is given by a
straight beam (l = 10 mm, b = 1 mm, t = 1 mm) clamped on both ends and on the right
end (z = 0) a displacement controlled boundary condition u = (0, 2t, 0)T mm is applied,
see Figure 5.14. The remaining faces are stress-free (P ·N = (0, 0, 0)T kN/mm2). In addi-
tion, the prescribed beam is subjected to a superimposed rigid body rotation with an angle
of ϑ = π/10. The proof of objectivity is validated by constant results for the norm of reac-
tion force in axial and y-shear direction at the clamped end in terms of the superimposed
rigid body rotation ϑ, cf. Glaser and Armero [103]. In Glaser and Armero [103]
also a non-objective formulation is presented, where the results are crucially depending
on the superimposed rotation.
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The objectivity test is performed for the proposed modified LS formulations at finite elas-
ticity (5.3) and plasticity (5.14) and the results are given with respect to the rotation
angle ϑ = π/10, see Figure 5.15(a). Additionally, the geometrical proof is shown in Figure
5.15(b). For both formulations the results fulfill the requirements of objectivity. Here, the
weights are ωi = {1, 1/µ, 1/µ}. Note that in the case of plasticity it is necessary that
the path following procedure follows exactly the prescribed rotation due to the fact that
the objectivity of the formulation can be compromised by spurious plastic deformations.

Setup of BVP

Left face u = (0, 0, 0)T mm

Right face u = (0, 2t, 0)T mm

Young’s mod. E = 200 kN/mm2

Poisson’s ratio ν = 0.35

Yield stress y0 = 6 kN/mm2

Hardening mod. h = 10 kN/mm2

l

t

b

x

y

z

Figure 5.14: Numerical objectivity test for finite elasticity and elasto-plastic LS formulation
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Figure 5.15: Objectivity proof by (a) norm of reaction forces in axial and y-shear direction
and (b) geometrical results with respect to ϑ = π/10, cf. Igelbüscher et al. [119]

5.9 Cook’s membrane for finite J2-plasticity

The Cook’s membrane example is analyzed at first. In Figure 5.16 the example and
the material setup are depicted for two load cases in d = 3 with u = (0, 0, 0)T dm on
the left face, the associated load case applied on the right face and all other faces are
stress-free. For the first load case a vertical load is considered on the right face with
P · N = (0, 2.5, 0)T MN/dm2. Additionally, the second setup is loaded in horizontal
direction where the stresses are given on the right face by P ·N = (4.5, 0, 0)T MN/dm2.
The crucial dependence of the LSFEM on weighting parameters has already been discussed
and is not investigated for the elasto-plastic formulation. The weights are chosen with
ωi = {1, 1/µ, 10/µ} for the following examples and thus in line with the insights of Chapter
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4.1 and 5.1, see, e.g., Schwarz et al. [207; 208], Schröder et al. [199]. Here, the
numerical results are compared to a quadratic displacement element P2.

Setup of BVP

Left face u = (0, 0, 0)T dm

(a) Right face P ·N = (4.5, 0, 0)T MN/dm2

(b) Right face P ·N = (0, 2.5, 0)T MN/dm2

Young’s mod. E = 2069 MN/dm2

Poisson’s ratio ν = 0.29

Yield stress y0 = 4.5 MN/dm2

Hardening mod. h = 15 MN/dm2

(a) (b)

x

y

z

16

44

48

1

P ·N

dm

Figure 5.16: Cook’s membrane example for finite elasto-plasticity

The modified formulation based on 5.14 is analyzed due to the displacement convergence
of the top right corner node (48, 60, 0) for the horizontal and vertical load case, see Figure
5.17. Therein, the number of elements per side is increased in x- and y-direction whereas
it is constant in z-direction with 2 elements. The displacement convergence for the here
chosen RT 0P2 element lead to satisfying solutions compared to the P2 element, at least
for fine mesh densities. The slightly poorer convergence of the LS element is based on
the low order interpolation of the stresses by a polynomial order of m = 0, which leads
to less accurate results in comparison to higher order approaches as shown in Chapter
5.5 and in, e.g., Schwarz et al. [205; 207; 208]. Furthermore, the distribution of the
von Mises stress σvM and the equivalent plastic strain α are compared for the LS and
the pure displacement formulation on the deformed domain, see Figures 5.18, 5.19 for
the horizontal load case and Figures 5.20, 5.21 for the vertical load case. Here, the von
Mises stress is considered as an indicator for plastic material response and the equivalent
plastic strains are chosen as a measure of the plastic deformations which occur. Both
formulations yield according results for the considered fields σvM and α.
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Figure 5.17: Convergence study for Cook’s membrane problem with (a) horizontal load
case and (b) vertical load case, cf. Igelbüscher et al. [119]

For completeness, the convergence of the norm of the right hand side vector is listed
in Table 5.10 for the P2 and RT 0P2 elements exemplarily for two mesh levels. Note
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(a) (b)

σvM

Figure 5.18: Cook’s membrane, horizontal load case: Distribution of σvM on the deformed
body for (a) a P2 and (b) a RT 0P2 element, cf. Igelbüscher et al. [119]

(a) (b)

α

Figure 5.19: Cook’s membrane, horizontal load case: Distribution of α on the deformed
body for (a) a P2 and (b) a RT 0P2 element, cf. Igelbüscher et al. [119]

(a) (b)

σvM

Figure 5.20: Cook’s membrane, vertical load case: Distribution of σvM on the deformed
body for (a) a P2 and (b) a RT 0P2 element, cf. Igelbüscher et al. [119]

(a) (b)

α

Figure 5.21: Cook’s membrane, vertical load case: Distribution of α on the deformed body
for (a) a P2 and (b) a RT 0P2 element, cf. Igelbüscher et al. [119]

that the modified LS formulation at finite J2-plasticity does not yield to any oscillatory
effects in the convergence behavior with the standard Newton-Raphson scheme, which
is visualized in Kubitz [142] and Schwarz [203]. The convergence of the norm of the
right hand side vector for the P2 and the RT 0P2 elements are quite similar, especially
for the finer mesh level. The listed values show quadratic convergence behavior for the
last iteration steps, which is satisfying, since quadratic convergence is only attained for
energy norms close to the solution caused by the radius of convergence, cf. Braess [50],
and only superlinear convergence is to be expected for rate-independent elasto-plasticity,
see Sauter and Wieners [196].
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Table 5.10: Convergence of the norm of the right hand side vector for the Cook’s membrane
(Figure 5.16(b)) at final load for different element numbers (nel) with a load step ∆t = 0.01

P2 RT 0P2

Iteration nel = 160 nel = 2560 nel = 160 nel = 2560
1 4.5193 E-3 6.2552 E-2 1.2766 E-1 1.3709 E-2
2 3.6627 E-2 1.0561 E+1 7.4056 E-1 3.4898 E-2
3 1.4541 E-6 9.5596 E-2 3.4349 E-1 1.1761 E-2
4 3.5656 E-10 8.3256 E-3 2.2415 E-2 1.2522 E-3
5 - 4.8756 E-6 2.7728 E-5 1.7059 E-7
6 - 1.4522 E-10 3.1099 E-10 2.3540 E-10

5.10 Cook’s membrane for finite J2-plasticity with plane stress iteration

Furthermore, the Cook’s membrane is analyzed for d = 2, in order to reduced the number
of degrees of freedom and illustrate the convergence behavior for elements with higher
polynomial orders. Therefore, the local plane stress iteration in Chapter 5.3 is applied to
the finite plasticity formulation in Table 5.8. The material parameters and the applied
load are listed in Table 5.11 with the weighting setup ωi = {1, 1/µ, 10/µ} for i = 1, 2, 3
utilizing the proposed modified LS formulation.

Table 5.11: Material parameters and load for Cook’s membrane at d = 2

E µ y0 h y∞ η P ·N
206900 MPa 0.29 450 MPa 1292.4 MPa 715 MPa 16.93 (0, 350)T MPa

In order to achieve convergent solutions in all fields, the convergence is first of all analyzed
in relation to different numbers of load steps. Therefore, in Figure 5.22 the convergence
of the displacements uy at (48, 60) and the von Mises stress σvM at (35.2, 44) are depicted
with respect to the number of load steps. Therein, convergence in terms of the load
step is reached for a number of load steps ≥ 1000 and thus a load step of ∆t = 0.001.
Furthermore, since the formulation under investigation includes a modified first variation,
in Figure 5.23(a) the evolution of the smallest eigenvalue of the global stiffness matrix
is depicted, in order to show the positive definiteness of the LS formulation. Here, the
system matrix is positive (semi-) definite. The property of positive (semi-) definiteness
of the system matrix has already been shown in Müller [165] and Steeger [223] for
the calculation of stability points with the LSFEM. As a consequence of the decreasing
smallest eigenvalue, the condition number of the solved system increases, see Figure
5.23(b), which has to be taken into account for the evaluation of the results, since a
high condition number might lead to reduced convergence and accuracy of an iterative
solution process. Nevertheless, high condition numbers can be avoided by application of
preconditioners for the system matrix leading to comparable condition numbers as in
Galerkin formulations, cf. Bochev and Gunzburger [43].
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Figure 5.22: Convergence study for applied load steps using RT 1P2 for (a) displacement
uy at (48, 60) and (b) von Mises stress σvM at (35.2, 44)
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Figure 5.23: Evolution of the smallest eigenvalue (a) and the condition number (b) for the
modified LS formulation for an increasing number of elements

Additionally, Figure 5.24(a) shows the convergence of uy at the particular point
(48, 60) and Figure 5.24(b) depicts the convergence of σvM at the point (35.2, 44), cf.
Schröder et al. [202]. The displacement convergence illustrates the expected behav-
ior, compared to the results in Chapter 5.4 and 5.6. Hence, satisfying solutions are ob-
tained for all element orders, depending on the number of equations and the polynomial
degree. The comparison of the resulting von Mises stress between the LS formulations
and the pure displacement element show that the formulations converge towards slightly
different values. For the P2 element the solution is 642.7013 MPa and for the RT 2P3 ele-
ment at 646.3853 MPa. However, the difference is given by 0.57 % and thus in the range
of engineering accuracy.

As a last point the convergence of the modified LS functional is shown in Figure 5.25.
Therein, the reduced optimal convergence rates for the Cook’s membrane example are
shown. In addition to the functional itself, also the single functional parts F ep

i , in terms
of the single residual equations Rep

i in (5.14), are illustrated. The restriction of the
convergence of the LS functional is clearly given by the constitutive relation in F ep

2 . This
results confirm the findings of functional convergence in Figure 5.4, 5.5, wherein the
convergence rate are greatly improved by weighting of the constitutive relation with a
value of < 1, which yield in consequence to a reduced functional value. Furthermore, the
balance of linear momentum is satisfied most effectively for all element types and has
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Figure 5.24: Convergence of uy at (48,60) (a) and σvM at (35.2, 44) (b) for the Cook’s
membrane with ωi = {1, 1/µ, 10/µ} for i = 1, 2, 3

the least influence on the functional convergence. For a LS functional which is elliptic
with respect to some norm on the underlying function spaces, adaptive refinement can
be applied. Since the local evaluation of the LS functional provides an a posteriori error
estimator, see, e.g., Berndt et al. [31] and Starke [219] for discussions on adaptive
refinement in LS formulations for elasticity and elasto-plasticity.
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5.11 Plate with circular hole for finite J2-plasticity

For the analysis of a displacement driven process the perforated plate problem is consid-
ered, with the geometry given in Figure 4.5. The material parameters are listed in Table
5.12 and a prescribed displacement boundary condition on the upper edge at y = 18 dm
of u = (0, 1.8)T dm is applied. The example is loaded by a load curve which is character-
ized by uy(t). For this, the perforated plate is loaded linearly up to a maximum load of
uy(t = 1.8) = 1.8 dm and afterwards the applied displacement is reduced linearly back to
uy(t = 3.6) = 0 dm. The considered load step is chosen with ∆t = 0.001. The analyzed
structured meshes consist of a number of elements nel with nel = {256, 1024, 4096}, where
only one mesh with nel = 4096 is considered for the P2 element.

Table 5.12: Material parameters for perforated plate example

E µ y0 h y∞ η
2069 MN/dm2 0.29 4.5 MN/dm2 12.924 MN/dm2 7.15 MN/dm2 16.93

In Figure 5.26 a load-displacement curve is shown. The load at the bottom edge is deter-
mined from the nodal reactions. Here, the vertical reaction force Fy for the P2 element is
determined by the nodal forces taken from the right hand side vector. For the LS formu-
lation the tractions at the lower edge are evaluated, cf. (4.5). The results in Figure 5.26
illustrate the accordance of the investigated elements, using different mesh levels. Therein,
the convergence of the RT 0P1 element towards the other formulations is visible.
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Figure 5.26: Course of vertical reaction force Fy at the bottom edge vs. uy at (10,18) for
RT mPk for different mesh levels

A similar situation arises from the analysis of the σyy stress at the particular point
x = (5, 0) on the circular section, see Figure 5.27. At this corner point a stress con-
centration is located due to the load application and hence the highest stress values are
to be expected here, which is further illustrated in Figure 5.29. The stress value is plotted
against the applied displacement load for the same mesh levels as before. Here, the differ-
ences in the performance of the individual LS elements become more obvious. Especially,
at the low mesh level with nel = 256 the RT mPk elements are not able to represent at
least the correct stress evolution. For higher mesh levels all elements are able to cover a
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satisfying solution for the σyy stress. Since the value of the saturation yield stress is close
to the yield stress, the resulting exponential curves are only slightly visible.
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Figure 5.27: Evolution of σyy stress vs. uy at (10,18) for RT mPk for different mesh levels

The plane stress subiteration yields in general to a Fzz component of the deformation

gradient which differs from 1, since the Pzz stress is iteratively solved (Pzz
!

= 0). For
completeness the resulting Fzz values are depicted in Figure 5.28.

Fzz

(a) (b) (c)

Figure 5.28: Plots of the Fzz component for the plane stress subiteration for (a) P2, (b)
RT 0P1 and (c) RT 1P2 element

Furthermore, occurring plastic material behavior is shown in terms of the distribution of
the equivalent plastic strains represented by α and the von Mises stress σvM in Figure
5.29. Here, the stress and strain courses are illustrated at the maximum displacement load
uy = 1.8 dm at t = 1.8 and at the end of the loading at t = 3.6 with uy = 0 dm on the
deformed body using nel = 4096. The distribution of σvM at t = 3.6 shows a stress band
at the lower right corner of the plate. This is due to the reversal of the loading situation
and would continue to grow with sustained loading in the direction. The depicted results
show accordance in the distributed fields.
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(a)
uy = 1.8 dm uy = 0 dm uy = 1.8 dm uy = 0 dm

α σvM

(b)
uy = 1.8 dm uy = 0 dm uy = 1.8 dm uy = 0 dm

α σvM

(c)
uy = 1.8 dm uy = 0 dm uy = 1.8 dm uy = 0 dm

α σvM

Figure 5.29: Plots of equivalent plastic strains represented by α and von Mises stress σvM
at load level at t = 1.8 and t = 3.6 for the (a) P2, (b) RT 0P1 and (c) RT 1P2 element
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6 Hybrid mixed finite element formulations

An additional approach within mixed finite element methods is given by hybrid finite ele-
ment methods. In conforming finite element formulations, certain continuity requirements
at inter-element boundaries have to be fulfilled, which are, e.g., the normal continuity
of the traction vector or the continuity of the displacement field. Hybrid finite element
formulations are based on the relaxation of these continuity requirements. Therefore, the
continuities are introduced by means of constraints on the inter-element boundaries and
enforced through the method of Lagrange multipliers, cf. Carey and Oden [70] and
Boffi et al. [49]. The basic characteristic of hybrid methods is given by the simultane-
ous approximation of at least one field defined on the element and a Lagrange multiplier
defined on the union of the boundaries of the elements, cf. Roberts and Thomas [192]
and Carey and Oden [70]. For a detailed description of the general idea and theoretical
assumptions, see, e.g., the publications of Carey and Oden [70], Atluri et al. [15],
Roberts and Thomas [192], Brezzi and Fortin [56] and Atluri et al. [16],
among others. Further discussions concerning mixed hybrid FEM can be found, e.g., in
Pian and Chen [177], Punch and Atluri [185] for hybrid stress elements and an
investigation on the existence and stability of general mixed hybrid elements is presented
in Xue and Atluri [239; 240].

Generally, the continuity requirements are defined in a variational framework. For
the LSFEM, a direct introduction of the relaxed constraint conditions on the inter-
element boundaries, in equivalent norms, can be applied, cf. Bensow and Larson [28],
Bensow and Larson [29], Ye and Zhang [241]. However, this approach is not con-
sidered in the following. Here, an application of a hybrid mixed finite element formulation
is discussed, which follows the idea of adding the relaxed continuities in a variational
formulation to the classical LS formulation. Therefore, the main aspects are:

• Presentation of preliminaries of hybrid FEM based on a LS formulation with con-
tinuous conforming approximation of P and u,

• Relaxation of the continuity requirements and their enforcement through Lagrange
multipliers on the inter-element and outer boundaries,

• Consideration of the limitation of the formulation and solvability based on the dis-
cretization of the resulting formulation,

• Numerical analysis of the discussed formulation for different hybrid stress and dis-
placement approaches as well as comparison to continuous LS formulations.

For convenience, only a formulation with discontinuous stress and displacement approx-
imation is presented in detail. However, the numerical analysis also shows results for
formulations where only the stress field is approximated discontinuously. The applied
discontinuous approximation of primary variables, as stresses and displacements in the
LSFEM, on element level lead to more flexibility, since continuity can be reduced and
enforced in a weaker sense. Moreover, it gives the opportunity of a static condensation of
these variables and thus a reduction of the overall system size. Thus, the solution time
can be reduced, since the effort for solving the system increases unproportional to the
number of unknowns, see Braess [50].
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6.1 Preliminaries of hybrid finite element formulations

Continuity, in general, is imposed on the interfaces of elements and on the outer bound-
aries by the chosen approximation spaces. For the previously discussed formulations,
only conforming function spaces have been considered, which demand continuity of
the displacement field and normal continuity of the stresses. Therefore, displacements
u are approximated in W1,p(B) and stresses P in Wq(div,B) for 2 ≤ p, q ≤ ∞. The
hybrid FEM utilizes discontinuous functions, without any continuity constraints over the
element interfaces. The following suggestions are thus based on the idea of a relaxation of
these continuity conditions and their weak enforcement. Therefore, Lagrange multipliers
are introduced on inter-element and outer boundaries.

For the analysis of hybrid mixed finite element formulations, the body of interest B and
the boundary ∂B are further subdivided. The triangulation of the placement B with finite
elements is denoted by T and E defines the set of all sides in 2D (faces in 3D), including
interior sides of the triangulation. In the following, ∂T := ∂TN ∪ ∂TD denotes the trian-
gulation of the outer boundary ∂B, where ∂TN and ∂TD denote the triangulation of the
Neumann and Dirichlet boundary. The interior boundaries are defined by ∂Ti = E\∂T ,
where for completeness E\∂T ∩ ∂TN = ∅ as well as E\∂T ∩ ∂TD = ∅. Furthermore, two
sides of an arbitrary inter-element boundary are denoted by the characters (+) and (-).
A first application of a hybrid mixed finite element formulation in terms of a LSFEM is pre-
sented in Igelbüscher and Schröder [118] and Schröder and Igelbüscher [197]
in the framework of small strain.

6.2 Hybrid finite elements based on a least-squares approach

The basis for the hybrid mixed formulation states the continuous mixed least-squares
formulation, i.e.,

Fhyp(P ,u) =
∑
K∈T

1

2

(
‖DivP + f‖2

L2(K) + ‖P · F T − 2
∂ψ(B)

∂B
·B‖2

L2(K)

+ ‖P · F T − F · P T‖2
L2(K)

)
,

(6.1)

omitting the weighting parameters ωi for convenience, cf. (5.3). The conforming function
spaces are given by u ∈ W1,p(T ) and P ∈ Wq(div, T ) with continuous functions. For
the hybrid mixed approach, the continuity of the function spaces for (6.1) is relaxed and
the formulation is extended by means of the corresponding continuity conditions enforced
by Lagrange multipliers. For this, both primary variables P and u are approximated
discontinuously with u ∈ L2(T ) and P ∈ L2(T ). Thus, the balance of momentum, the
material law and the stress symmetry condition in (6.1) are fulfilled on each local element
K, but the traction continuity

[[P ·N ]] = (P ·N )+ + (P ·N )− = 0 on E , (6.2)

and the displacement compatibility

[[u]] = u+ − u− = 0 on E , (6.3)
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are not fulfilled directly. Therefore, (6.2) and (6.3) have to be enforced over the boundaries
of the local elements in order to achieve the continuity conditions in a weak sense. The
consideration and fulfillment of these continuity conditions is discussed in detail, e.g.,
in Xue and Atluri [239]. The Lagrange multiplier λ is applied for the jump of the
traction vector [[P ·N ]] on the inner skeleton ∂Ti and for the boundary tractions on the
outer stress boundary ∂TN , which is defined by

[[P ·N ]] · λ = 0 on ∂Ti and (P ·N − T̄ ) · λ = 0 on ∂TN . (6.4)

In a similar manner, the displacement compatibility is introduced with respect to the
Lagrange multiplier µ, applied for the jump of the displacement vector u on ∂Ti and for
the boundary displacements on ∂TD

[[u]] · µ = 0 on ∂Ti and (u− ū) · µ = 0 on ∂TD . (6.5)

Here, the stress and displacement boundary conditions are denoted by T̄ and ū. The
setup of equations characterizing the hybrid hyperelastic problem is given by

DivP = −f on K ,

P · F T = 2 ∂Bψ(B) ·B on K ,

P · F T = F · P T on K ,

[[P ·N ]] · λ = 0 on ∂Ti ,

(P ·N − T̄ ) · λ = 0 on ∂TN ,

[[u]] · µ = 0 on ∂Ti ,

(u− ū) · µ = 0 on ∂TD .

(6.6)

The resulting hybrid mixed formulation Fhyb based on a mixed LS approach is given,
with respect to (6.1), by

Fhyb(P ,u,λ,µ) = Fhyp(P ,u) + Ft(P ,λ) + Fu(u,µ) , (6.7)

where Ft and Fu are the variational formulations enforcing the traction continuity (6.2)
and displacement compatibility (6.3) on the inter-element boundaries as well as for the
boundary conditions on the outer boundary ∂TD ∪ ∂TN . Here, Ft and Fu are defined by

Ft(P ,λ) =
∑
E∈∂Ti

∫
E

[[P ·N ]] · λ dA+
∑

E∈∂TN

∫
E

(P ·N − T̄ ) · λ dA ,

Fu(u,µ) =
∑
E∈∂Ti

∫
E

[[u]] · µ dA+
∑

E∈∂TD

∫
E

(u− ū) · µ dA .

(6.8)

Here, the hybrid mixed formulation with regard to discontinuous stresses and displace-
ments is considered below. Nevertheless, a discontinuous approximation of only one of the
fields can be achieved in a similar manner.
The approximation (P ,u,λ,µ) ∈ Sm × Vk × X n × Yo, demands continuity of the
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Lagrange multipliers and allows jumps for the stresses and displacements at inter-
element boundaries (edges in 2D and faces in 3D). For convenience, the function λ on
the skeleton is introduced with respect to continuous functions denoted by C0(∂T ) on
the triangulation of the inter-element boundaries ∂T , cf. , e.g., Boffi et al. [49] and
Devloo et al. [91], with

X n,con := {λ ∈ [C0(∂T )]d : λ|E ∈ [Pn(E)]d ,∀E ∈ ∂T } . (6.9)

The upper character dis and con clarify the discontinuous and continuous approximation
of the function space X n of degree n ≥ 0. The same holds for the approximation of
µ ∈ Yo,con, i.e.,

Yo,con := {µ ∈ [C0(∂T )]d : µ|E ∈ [Po(E)]d ,∀E ∈ ∂T } . (6.10)

In this work, only X n,con and Yo,con are considered for λ and µ, i.e., the spaces of piecewise
continuous polynomial functions of order n, o ≥ 0, chosen as Lagrange ansatz functions
denoted by Pn and Po. Furthermore, the discontinuous function spaces Sm,dis and Vk,dis
are specified by

Sm,dis := {P ∈ [L2(T )]d×d : P |K ∈ [RT m(K)]d×d, ∀K ∈ T } ⊆ [Pm+1(K)]d×d ,

Vk,dis := {u ∈ [L2(T )]d : u|K ∈ [Pk(K)]d, ∀K ∈ T } ,
(6.11)

where RT m denotes Raviart-Thomas functions of m-th order, in the following dRT m
emphasizes that the approximation of P ∈ [L2(T )]d×d with P |K ∈ RT m(K) is discon-
tinuous. For Vk,dis, a discontinuous approximation of u is applied, denoted further by
dPk, i.e., u ∈ [L2(T )]d with u|K ∈ Pk(K), where Lagrange ansatz functions of degree k
are considered, which are not restricted by any continuity condition between inter-element
boundaries. Finally, these choices lead to a finite element type of the form dRT mdPkPnPo.
One corresponding element type is exemplarily depicted in Figure 6.1.

λ nodes

P nodes

µ nodes

u nodes

Figure 6.1: Hybrid mixed finite element dRT 1dP2P0P1 with edge based degrees of freedom
for the Lagrange multipliers λ and µ

As previously demonstrated, the construction of RT functions is more sophisticated
than for polynomial functions of Lagrange type. RT functions are often constructed
with respect to inner and outer moments, which is from an engineering point not
straightforward. Furthermore, the same holds for the construction of BDM and
BDFM functions and similar approximation approaches, see Brezzi et al. [57; 59]
and Brezzi and Fortin [56]. Therefore, an alternative to the approximation with
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Wq(div,B) conforming functions is given by a scalar approximation of each component of
the stress tensor, where each interpolation site has nine degrees of freedom determining
the complete stress tensor. The corresponding finite element spaces, with P ∈ W1,p(K)
and u ∈ W1,p(B) denoted by Sm,disP and Vk,con are defined as

Sm,disP := {P ∈ [L2(T )]d×d : P |K ∈ [Pm(K)]d×d, ∀K ∈ T } ,

Vk,con := {u ∈ [C0(T )]d : u|K ∈ [Pk(K)]d, ∀K ∈ T } .
(6.12)

For the sake of completeness the continuous function spaces Sm,con are defined by

Sm,con := {P ∈ [C0(T )]d×d : P |K ∈ [RT m(K)]d×d, ∀K ∈ T } ,

Sm,conP := {P ∈ [C0(T )]d×d : P |K ∈ [Pm(K)]d×d, ∀K ∈ T } .
(6.13)

The approximation approach P ∈ Sm,conP with Sm,conP ⊆ [W1,p(B)]d×d lead to a drawback,
based on the demanded continuity requirements of the stress field and continuity of the
function space. The physical constraint is that the stresses are restricted to be normal
continuous between two adjacent element edges (d = 2) or faces (d = 3). However, the
stress approximation inW1,p(B) yields a continuous stress field in all entries, which result
into unphysically stress responses at material interfaces. This shortcoming can be solved by
introducing a discontinuous stress approximation on element level and enforce only normal
continuity of the stresses across the element boundaries. Thus, the restrictions ofW1,p(B)
are reduced to Wq(div,B). The advantage of utilizing P ∈ Sm,disP is the straightforward
application of approximation functions of any polynomial order and dimension. Therefore,
finite elements such as PmPk and dPmPkPn are also considered in the numerical analysis.

It has to be mentioned that the choice of (P ,λ) ∈ Sm,dis × Yn,con with n = m for a
dRT mPkPn formulation yields a similar solution as the continuous LS finite element for-
mulation of same order, which is due to the limitation of the finite element solution spaces.
A similar restriction is defined by the limitation principle for mixed formulations, which
states that: “if the mixed formulation is capable of producing the same approximation of
that produced by direct displacement form then it will in fact reproduce that form exactly
and give identical and therefore not improved results”, cf. Fraeijs De Veubeke [101].
The choice of Y0,con and S0,dis, covers the properties of the continuous space Wq(div,B).
Since a constant approximation of the inter-element continuity with a constant stress
approximation on the edge is directly obtained by the continuous stress approximation
itself. This assumption holds for m ≥ 0 and n = m. The application of this states that
a hybrid mixed LS formulation gives identical results as the standard LS formulation if
the hybrid mixed form is capable to produce the same approximation as the standard LS
formulation with continuous approximation.

The transformation of the mesh structure from a continuous for-
mulation (P ,u) ∈ Sm,con × Vk,con to a hybrid mixed formulation
(P ,u,λ,µ) ∈ Sm,dis × Vk,dis ×X n,con × Yo,con is depicted in Figure 6.2. Therein,
the skeleton, ∂T =

∑
iEi with i = 1, .., 9, and the local elements Kj are divided, with the

continuity conditions related to the skeleton and the primary variables on local element
basis. Note that the interface elements Ei are not connected at their outer points and
all P and u degrees of freedom are not assembled for the considered dRT mdPkPnPo
element type. For the dRT mPkPn and dPmPkPn elements, only the displacement degrees
of freedom are assembled.
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P ∈ Sm,con
u ∈ Vk,con

P ∈ Sm,dis
u ∈ Vk,dis
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Figure 6.2: Continuous elements RT 1P2 (top) and hybrid mixed elements dRT 1dP2P0P1,
resulting after relaxation of traction and displacement continuity and introduction of La-
grange multipliers on the inter-element boundaries (bottom)

6.3 Weak form and linearization of the hybrid mixed formulation

The derived first variation and linearization is given for a completely discontinuous ap-
proximation of the primary variables. Therefore, the first variations of the hybrid mixed
formulation Fhyb(P ,u,λ,µ) are determined with respect to P ,u,λ and µ by

δPFhyb = δPFhyp +
∑

E∈∂Ti
⋃
∂TN

∫
E

[[δP ·N ]] · λ dA ,

δuFhyb = δuFhyp +
∑

E∈∂Ti
⋃
∂TD

∫
E

[[δu]] · µ dA ,

δλFhyb =
∑
E∈∂Ti

∫
E

δλ · [[P ·N ]] dA+
∑

E∈∂TN

∫
E

δλ · (P ·N − T̄ ) dA ,

δµFhyb =
∑
E∈∂Ti

∫
E

δµ · [[u]] dA+
∑

E∈∂TD

∫
E

δµ · (u− ū) dA ,

(6.14)

where the first variations of Fhyp are abbreviated by δPFhyp and δuFhyp, see (5.4).
Here, the variation of the jump of the traction vector at the skeleton ∂T and the outer
stress boundary is summarized with ∂Ti ∪ ∂TN and the jump of the displacement vector
at ∂Ti and the outer displacement boundary by ∂Ti ∪ ∂TD. The first variation (6.14)
is solved by finding (P ,u,λ,µ) ∈ Sm,dis × Vk,dis × X n,con × Yo,con, see (6.9), (6.10),
(6.11) such that δP ,u,λ,µFhyb = 0 ∀ (δP , δu, δλ, δµ) ∈ Sm,dis × Vk,dis × X n,con × Yo,con.
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For completeness, the linearization of the mixed hybrid formulation (6.7) reads

∆δPFhyb = ∆δPFhyp +
∑

E∈∂Ti
⋃
∂TN

∫
E

δλ · [[∆P ·N ]] dA ,

∆δuFhyb = ∆δuFhyp +
∑

E∈∂Ti
⋃
∂TD

∫
E

δµ · [[∆u]] dA ,

∆δλFhyb =
∑

E∈∂Ti
⋃
∂TN

∫
E

[[δP ·N ]] ·∆λ dA ,

∆δµFhyb =
∑

E∈∂Ti
⋃
∂TD

∫
E

[[δu]] ·∆µ dA ,

(6.15)

where, e.g., the sum of all increments with respect to the first variation of the stresses is
denoted by

∆δPFhyb =
∑

i=P ,u,λ,µ

∆iδPFhyb . (6.16)

The abbreviations ∆δPFhyp and ∆δuFhyp for the linearized hyperelastic
LS functional are given in (5.5) and (5.6). The resulting zero matrices are
∆uδλFhyb = ∆λδuFhyb = ∆λδλFhyb = 0, ∆µδPFhyb = ∆P δµFhyb = ∆µδµFhyb = 0
and ∆λδµFhyb = ∆µδλFhyb = 0, cf. Igelbüscher and Schröder [118] and
Schröder and Igelbüscher [197] for a formulation at small strains.

6.4 Discretization and implementation aspects

For the representation of the discretized unknown fields and their variational counter-
parts in matrix notation denoted by subscript h, the following relations are introduced,
λh = Nλ dλ, δλh = Nλ δdλ, ∆λh = Nλ ∆dλ, µh = Nµ dµ, δµh = Nµ δdµ, ∆µh = Nµ ∆dµ.
Nodal degrees of freedom for the Lagrange multipliers are denoted by dλ and dµ, re-
spectively. Furthermore, the matrices Nλ and Nµ consist of Lagrange shape functions.
The discretization of stresses and displacements is similar to previous cases. The non-
vanishing parts of the discrete formulations, for convenience without the corresponding
weighting parameters ωi, are given by

δPFhyb
h = δdTP r

e
P , δuF

hyb
h = δdTu r

e
u , δλF

hyb
h = δdTλ r

e
λ and δµFhyb

h = δdTµ r
e
µ , (6.17)

and further

∆δPFhyb
h = δdTP k

e
PP ∆dP︸ ︷︷ ︸

∆P δPFhyb
h

+ δdTP k
e
Pu ∆du︸ ︷︷ ︸

∆uδPFhyb
h

+ δdTP k
e
Pλ ∆dλ︸ ︷︷ ︸

∆λδPFhyb
h

,

∆δuFhyb
h = δdTu k

e
uP ∆dP︸ ︷︷ ︸

∆P δuFhyb
h

+ δdTu k
e
uu ∆du︸ ︷︷ ︸

∆uδuFhyb
h

+ δdTu k
e
uµ ∆dµ︸ ︷︷ ︸

∆µδuFhyb
h

,

∆δλFhyb
h = δdTλ k

e
λP ∆dP︸ ︷︷ ︸

∆P δλFhyb
h

and ∆δµFhyb
h = δdTµ k

e
µu ∆du︸ ︷︷ ︸

∆uδµFhyb
h

.

(6.18)
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For convenience, a detailed representation of the discretized form is omitted. The final
system of equations for the considered hybrid approach reads

ke
PP ke

Pu ke
Pλ 0

ke
uP ke

uu 0 ke
uµ

ke
λP 0 0 0

0 ke
µu 0 0




dP

du

dλ

dµ

 = −


re
P

re
u

re
λ

re
µ

 (6.19)

and can be written in a reduced form as A DT

D 0

  dP,u
dλ,µ

 = −

 rP,u
rλ,µ

 . (6.20)

The resulting system matrix illustrates the typical saddle point structure with

A =

 ke
PP ke

Pu

ke
uP ke

uu

 , D =

 ke
λP 0

0 ke
µu

 ,
dP,u = [dP ,du]

T , re
P,u = [re

P , r
e
u]
T ,

dλ,µ = [dλ,dµ]T , re
λ,µ = [re

λ, r
e
µ]T ,

(6.21)
where A can be seen as the classical matrix representation of a LS formulation and D
contains the continuity constraints. Obviously, the hybridization of the classical LSFEM
leads to a saddle point problem. This is one of the properties of hybrid formulations,
cf., e.g., Carey and Oden [70] and Boffi et al. [49]. Consequently, the stability in
terms of the chosen finite element approximation must at least be estimated, which is
discussed later on.

Due to the discontinuous approximation of at least one field in the hybrid formulation, a
static condensation of this quantity can be performed on element level in order to reduce
the system size. For a static condensation, e.g., with respect to P , it has to be ensured
that the corresponding matrix ke

PP , see (6.19), is invertible. This is a priori given since
the matrices for u and P are constructed based on a squared L2(B)-norm and therefore
inherently fulfill the properties of positive definite and symmetric matrices with respect
to corresponding boundary conditions, which guarantee that the inverse of the matrix
exists. The condensed system yields the same solution as the complete system, but since
the effort for solving the system increases unproportionally to the number of unknowns,
it is preferable to solve the reduced system only, cf. Braess [50]. Therefore, an example
for a reduced element formulation is given within the numerical analysis in Chapter 6.6.1.

6.5 Remarks on hybrid mixed FEM based on a LS formulation

In the following, some remarks concerning the presented hybrid mixed formulation are
discussed. As a first point, the extension of the LS functional (6.1), in terms of the conti-
nuity conditions in a variational setup, leads to a loss of at least some of the a priori given
advantages of the least-squares method. These are, e.g., the loss of a positive (semi-)
definite system matrix and the fact that the formulation itself cannot be applied as a
posteriori error estimator. As noted previously, the resulting system matrices reveal the
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classical saddle point structure. This observation is crucial, especially for the restriction
due to stability conditions. Therefore, the choice of the polynomial order for the Lagrange
multipliers in combination with the considered approximation order of displacements and
stresses is limited and have to be balanced carefully, see, e.g., Brezzi and Fortin [56],
Boffi et al. [49] and Auricchio et al. [17]. It has to be noted that the LSFEM as a
classical approach does not require balanced function spaces.
However, in the course of this work, only basic assumptions on the properties of the
system are considered, which are necessary but unfortunately not sufficient conditions.
The count condition or count criterion, cf. Zienkiewicz et al. [249; 250], yield a first
estimate on the stability of the approach. The basic idea is given by restricting the num-
ber of constraint variables (in general Lagrange multipliers) in a system by the number
of primary variables. Hereby, the non-singularity of the matrices can be ensured in a
purely algebraic manner, which can be seen as a first algebraic requirement for stability.
In the following, the condition is derived with respect to the system of equations for one
typical element and based on the consideration of the rank of the single matrices. For
a two and a three field formulation with one and two constraint variables, the condi-
tions are discussed in Zienkiewicz et al. [249; 250]. In analogy to the proposed idea
in Zienkiewicz et al. [250], for mixed formulations, the reduced system matrix (6.20)
is considered. This results in the estimates:

ndof,P ≥ ndof,λ , ndof,u ≥ ndof,µ and thus ndof,P + ndof,u ≥ ndof,λ + ndof,µ . (6.22)

This states that the number of unknowns of the constraint variables ndof,λ +ndofµ in dλ,µ,
i.e., the number of degrees of freedoms of the Lagrange multipliers, have to be smaller
than or equal to the number of unknowns ndof,P +ndof,u in dP,u to ensure the necessary but
not sufficient criterion for stability. Furthermore, there are similar conditions for primal
and dual mixed hybrid methods described in Carey and Oden [70] and Lee [150]. The
primal and dual hybrid mixed formulations are defined based on the underlying continuous
formulations, cf. Chapter 3.2.2 for the primal and dual Hellinger-Reissner formulations.
From this, requirements related to the polynomial degree can be derived, based on the
discussion in Carey and Oden [70], chapter 3.4. The transfer of these assumptions, for
the here discussed hybrid mixed approach, in a numerical manner, provides

k +m > n+ 1 or k +m > n+ o , (6.23)

depending on the considered hybrid formulation with relaxed stress continu-
ity (dRT mPkPn, dPkPkPn) and relaxed stress and displacement continuities
(dRT mdPkPnPo).
For µ ∈ Yo,con, a further restriction is defined with o ≥ 1, i.e, at least two interpolation
sites have to be given on an edge. This condition has to be applied to the constraint on
the inter-element boundaries, in order to circumvent rigid body rotations of the elements.
Similar to that, the numerical analysis reveals a limitation on the minimum assumptions
of the multiplier λ. This can be explained by the underlying properties of the LSFEM.
If the system of equations of a typical element is considered, without taking into account
boundary conditions, zero eigenvalues result in the system. Such values are often declared
as rigid body rotations. In order to guarantee a unique solvability of the equation system,
the rigid body rotations must be removed, which is generally done by applying correspond-
ing displacement boundary conditions. For the LSFEM, in addition to these rigid body
modes, equivalent terms occur related to the stresses, which are referred to as spurious
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stress modes in the following. They are removed from the system, analogously to the rigid
body rotations, by prescribing corresponding stress boundaries essentially. For the hybrid
formulation, based on the LS functional, this results in a minimum requirement for the
constraint conditions on the boundary, which restricts the choice of the polynomial order
of the multiplier λ to n ≥ m− 1. In the numerical analysis of the presented formulations,
the assumptions made are taken into account in order to ensure stability, at least through
algebraic estimates.

6.6 Numerical analysis for hybrid mixed finite element formulations

For the numerical examples, different finite element types are considered. These are given
by continuous LS formulationsRT mPk and PmPk in order to compare the hybrid and clas-
sical LS formulations. Furthermore, discontinuous stress approximations, i.e., P ∈ L2(T ),
are performed on element level with respect to Raviart-Thomas as well as Lagrange type
functions in Sm,dis and Sm,disP , denoted by dRT mPkPn and dPmPkPn elements. Addition-
ally, the discontinuous approach with (P ,u) ∈ Sm,dis×Vk,dis and (λ,µ) ∈ X n,con×Yo,con
is given by dRT mdPkPnPo. An overview of the continuous and hybrid finite elements,
with their related function spaces, is listed in Table 6.1.

Table 6.1: Overview on LS and hybrid mixed elements with associated function spaces

Element type Related function spaces

RT mPk (P ,u) ∈ Sm,con × Vk,con; (6.13), (6.12)

PmPk (P ,u) ∈ Sm,conP × Vk,con; (6.13), (6.12)

dRT mPkPn (P ,u,λ) ∈ Sm,dis × Vk,con ×X n,con; (6.11), (6.12), (6.9)

dPmPkPn (P ,u,λ) ∈ Sm,disP × Vk,con ×X n,con; (6.12), (6.9)

dRT mdPkPnPo (P ,u,λ,µ) ∈ Sm,dis × Vk,dis ×X n,con × Yn,con; (6.11), (6.9), (6.10)

In the first investigated example, a fully constrained block is subjected to a prescribed
body force. The element performance is validated with respect to the convergence rates
of the displacements and stresses in associated norms based on an analytical solution of
the problem. The second example illustrates the applicability of a stress approximation
with Lagrange shape functions. For a continuous LS formulation, this approximation is
non-conforming and provides non-physical stress distributions at material interfaces.

6.6.1 Fully constrained block

In order to validate the proposed hybrid mixed formulations, a fully constrained block with
a square domain B = (−1, 1)× (−1, 1) mm, subjected by a body force, is analyzed. Here,
two material setups are considered, given in Figure 6.3 with the corresponding boundary
conditions. Furthermore, for a discontinuous displacement approach the multiplier µ has
to be fixed at one point on the inter-element boundary of the four elements in the corners,
see the mesh structure in Figure 6.3, to avoid rigid body rotations.
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System setup:

u = (0, 0)T mm on ∂TD
λ = 2 and 100 kN/mm2

µ = 1 kN/mm2

E = 8
3

and 2.9901 kN/mm2

ν = 1
3

and 0.49505

P ∈ Sm,d: λ = (0, 0)T kN/mm2 on ∂TD
P ∈ Sm,dP : λ = (0, 0)T kN/mm2 on ∂TD

Figure 6.3: Material setup, boundary conditions and geometry of fully constrained block

An analytical solution is considered, i.e.,

ux =
1

4

(
(x2 − 1)2(y2 − 1)y

)
and uy =

1

4

(
(y2 − 1)2(1− x2)x

)
, (6.24)

which is zero on the boundary ∂TD and in the center, cf. Auricchio et al. [18]. The
corresponding body force is determined by an inverse calculation procedure. Therefore,
the balance of momentum is evaluated, in which the stresses P are determined by

P = ρ0
∂ψ

∂F
= 2 ρ0 F

∂ψ(C)

∂C
= F ·S with S = µ(1−C−1)+

λ

2
(I1(C)−1)C−1 , (6.25)

following from S = 2 ρ0 ∂C ψ(C) with (2.57). The deformation gradient F is determined
with respect to the gradient of the analytical displacement solution (6.24). For complete-
ness, the resulting body force f and stresses P are given in Appendix 8.3.
The convergence of the displacements and stresses is analyzed in the L2(B)-norm. Here,
the natural choice for the displacement convergence would be the Wm,p(B)-norm, cf.
(3.7), which is for m = 0 equivalent to the Lp(B)-norm, see (3.2). This is permis-
sible, since all p-norms are equivalent to each other, i.e., each norm pairing differs
by a constant factor, which can be calculated based on the norms themselves, see
Bochev and Gunzburger [43]. Consequently, the considered L2(B)-norms are given
by

‖u− uh‖L2(B) =

(∫
B
(u− uh) · (u− uh) dV

)1/2

,

‖P − Ph‖L2(B) =

(∫
B
(P − Ph) : (P − Ph) dV

)1/2

.

(6.26)

Here, the analytical solutions are denoted by u, P and uh, Ph are the approximated
solutions. The order of convergence depends on the polynomial order of the finite element
k, the dimension of the problem d, the regularity of the solution and the corresponding
norm, cf. Braess [50] §7. This can be concluded by

‖P − Ph‖L2(B) ≤ c n
− k+1

d
dof and ‖u− uh‖L2(B) ≤ c n

− k+1
d

dof , (6.27)

with some positive constant c. This holds for all complete polynomials up to order k + 1,
where the order of convergence is often denoted by O(h

k+1
d ). The results for the continuous
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and discontinuous finite element combinations are illustrated for ‖u−uh‖L2(B) in Figure
6.4 and 6.5 as well as in Figure 6.6 and 6.7 for the stress convergence ‖P −Ph‖L2(B). For
the choice of a W1,p(B)-norm, the resulting convergence order can be reduced, compared
to the results within the L2(B)-norm, since also restrictions to the derivatives of the as-
sociated fields are considered.
For the continuous formulations RT mPk and PmPk, the optimal convergence order, based
on (6.27), is achieved for the compressible and the slightly incompressible material setup,
see Figure 6.3. Only the displacement convergence in the L2(B)-norm for the P1P2 element
is not able to give the optimal response with O(h3/2), which is the case for the underlying
boundary value problem and not a general assumption. A comparison of the RT mPk
and the Pm+1Pk approach show a reduction of the convergence order of the stresses us-
ing the RT function space. This can be explained by the incomplete polynomial order
m+1 with RT m = (Pm)d + Pm · x. The RT m functions consists of complete polynomials
only up to order m. Furthermore, the same holds for the divergence of these elements,
since div[RT m] = Pm, see Boffi et al. [49]. Thus, the nonconforming approaches with
P ∈ Sm,conP yield to higher convergence rates for the stresses compared to P ∈ Sm,con.
For the discontinuous stress element approaches, the convergence rates are constrained by
the chosen stress approximation on element level. The hybrid stress formulations show the
same reduced displacement convergence in the L2(B)-norm for dP1P2Pn with n = 0, 1, as
the continuous counterpart P1P2. This might lead to the conclusion that a subordinate
influence of the order of Lagrange multiplier λ on the convergence rate is given. However,
for the element dP2P2Pn, the different polynomial orders of λ with n = 0, 1 indicate such
an influence of the order n on the convergence. Furthermore, the stress convergence for
some of the dPkPmPn elements is slightly lower than the theoretically expected one, see
Figure 6.6 and 6.7. This could be due to the boundary value problem, since it is not a
regular problem based on the applied boundary conditions, see Rössle [194]. Neverthe-
less, the order of convergence is only reduced by ≈ 0.5 in all cases.
For the hybrid stress approach with P ∈ Sm,dis the resulting convergence rates show a
similar reduction with ≈ 0.5 in some of the rates with respect to the displacement, cf.
Figure 6.4 and 6.5. Here, a comparison between dRT 1P2Pn with n = 0, 1 results in a re-
duced convergence order for n = 0 and in the expected one for n = 1. This illustrates that
the order of convergence of variables on local element level depend on the chosen degree of
λ and thus, on the enforcement of constraint condition on the skeleton. Furthermore, the
dRT mdPkPnPo yield the expected behavior, also with some small reductions. However,
for the nearly incompressible setup the dRT 0dP2P0P1 and dRT 1dP2P1P1 elements yield
no reliable solutions and diverge in the solution process.
One can conclude that the formulations provide optimal results for the majority of the
analyzed elements. The deviations with a maximum of ≈ 0.5 can be explained by the
choice of approximation approaches and by the not fully regular boundary value problem,
which can be analyzed by the ideas in Rössle [194]. The dependence of the results on
the enforcement of the constraint conditions have to be regarded in further applications.
Nevertheless, an explanation of the reduced convergence rates with respect to the chosen
order of the Lagrange multipliers cannot be explicitly deduced for the considered exam-
ple. Furthermore, the comparison of the hybrid and LS formulation show the reduced
robustness of some hybrid formulations for the imcompressilbe case at ν ≈ 0.495.
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Figure 6.4: Convergence of displacements ‖u−uh‖L2(B) for a continuous and discontinuous
stress and displacement approaches using λ = 2 kN/mm2 (E = 8/3 kN/mm2, ν = 1/3)
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Figure 6.6: Convergence of stresses ‖P − Ph‖L2(B) for a continuous and discontinuous
stress and displacement approaches using λ = 2 kN/mm2 (E = 8/3 kN/mm2, ν = 1/3)
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Figure 6.7: Convergence of stresses ‖P−Ph‖L2(B) for a continuous and discontinuous stress
and displacement approaches using λ = 100 kN/mm2 (E = 2.9901 kN/mm2, ν = 0.49505)
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For completeness, a static condensation of the stress field is performed for the dRT mPkPn
element type. As noted before, the obtained solution of the problem, see Figure 6.8, is very
similar and the slightly changed convergence rates are based on the changed number of
unknowns used for the calculation. In Table 6.2, the reduction of the number of equations
is listed. The decreasing reduction of neq for finer mesh densities is natural, since for this
case the degrees of freedom for u and λ are identical for the condensed and the original
system. Thus, only the influence of the stress degrees of freedom on the total system is
reduced. However, the number of equations for a continuous LS formulation of the same
polynomial order m and k is even lower than the one of reduced system. Furthermore, the
absolut time, dividing the calculation time of the condensed system by the time of the
unreduced system, show that the reduced system is not always solved more efficiently.
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Figure 6.8: Convergence of ‖u − uh‖L2(B) for a discontinuous stress approach with and
without static condensation of stresses using λ = 2 kN/mm2 (E = 8/3 kN/mm2, ν = 1/3)

Table 6.2: Reduction of number of equations neq for dRT mPmPn elements

mesh level 1 2 3 4 5 6
neq dRT 0P2P0 82 370 1570 6466 14690 26242
neq cond. dRT 0P2P0 34 178 802 3394 7778 13954
Reduction in % 58.54 51.89 48.92 47.51 47.05 46.83
Absolut time % 115.69 95.15 101.72 85.89 63.77 83.82
neq dRT 1P2P0 162 690 2850 11586 26210 46722
neq cond.dRT 1P2P0 34 178 802 3394 7778 13954
Reduction in % 79.01 74.20 71.86 70.71 70.32 70.13
Absolut time % 94.35 93.59 83.91 73.52 57.27 71.78
neq dRT 1P2P1 178 770 3202 13058 29570 52738
neq cond.dRT 1P2P1 50 258 1154 4866 11138 19970
Reduction in % 71.91 66.49 63.96 62.74 62.33 62.13
Absolut time % 97.57 101.39 86.47 53.77 76.19 74.310
neq dRT 2P3P1 322 1362 5602 22722 51362 91522
neq cond. dRT 2P3P1 82 402 1762 7362 16802 30082
Reduction in % 74.53 70.49 68.55 67.59 67.29 67.13
Absolut time % 105.09 82.21 70.49 48.59 66.18 62.82
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6.6.2 Block with material interfaces

The example of a square block with material interfaces is used to illustrate that the
choice of Lagrange type functions for the approximation of stresses provides the physically
correct stress continuities, if a hybrid approach is applied. The approximation of stresses
are naturally given in Wq(div,B), since physically only normal continuity of the stresses
is enforced. For a continuous LS formulation, the stress approximation P ∈ W1,p(B)
within PmPk element types lead to a continuity of all stress components. Accordingly, the
requirements of the finite element space W1,p(B) do not correspond to the properties of
the physical quantity. Therefore, boundary value problems with material interfaces cannot
represent the jumps of stress quantities correctly and are smoothed over the material
interface, which is shown below.
The considered square block (B = (−1, 1) × (−1, 1)) consists of four material interfaces,
which are defined by four different Young’s moduli, each valid on a quarter of the block, cf.
Figure 6.9 and Steeger [223]. The plate is subjected to a uniform elongation, where the
displacements in normal direction of the outer edges are set to 1 and the shear stresses on
the edges are set to 0. Based on the assumption that the Lagrange multiplier corresponds
to the displacement on the element edge, λ in normal direction of the outer edges is set
to 0, cf. Klaas et al. [132] and Schröder et al. [198]. For the numerical analysis,
elements of type RT mPk, PmPk for the continuous and dRT mPkPn, dPmPkPn for the
hybrid mixed approach are considered, see Table 6.1.

ux

ux

uy

uy

y

x

E4 E1

E2E3

A B

System setup:

Top side: uy = 1 mm Young’s moduli: E1 = 100 kN/mm2

Right side: ux = 1 mm E2 = 200 kN/mm2

Bottom side: uy = −1 mm E3 = 300 kN/mm2

Left side: ux = −1 mm E4 = 400 kN/mm2

Poisson’s ratio: ν = 0.35

Figure 6.9: Material parameters, boundary conditions and geometry of the square block
(top, bottom left) and deformed configuration with exemplarily depicted mesh consisting
of 20 elements per side (bottom right)
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The resulting deformation of the square block is illustrated in Figure 6.9 with an exem-
plarily depicted finite element mesh using 20 elements per side. Therein, the influence
of the different material reactions can be clearly seen, e.g., in the comparison of the de-
formation of the materials with E1 and E4, where the softer material undergoes larger
deformations.
In Figure 6.10 and 6.11 the stress distribution of Pyy is shown on the undeformed config-
uration. Obviously, the continuous stress approximation with P ∈ Sm,conP for the PmPk
element does not yield the physically correct results, which is due to the continuity prop-
erties of the finite element space W1,p(B). From a physical point of view, the Pyy stresses
have to be continuous for material interfaces in y-direction and discontinuous across the
vertical material interface, i.e., only normal continuity of the traction is required, cf.
Steeger [223]. This have to be fulfilled, since physically the normal components of the
stress tensor are continuous and the tangential component could be discontinuous across
material interfaces. This condition is included in the finite element space Wq(div,B) and
for the discontinuous elements with P ∈ Sm,dis and P ∈ Sm,disP enforced by the traction
continuity on the inter-element boundaries. The course of the Pyy stresses at an inter-
section line A-B (A=(-1,0.5), B=(1,0.5)) is presented for each setup, which additionally
illustrates the correct jump of the stresses and the unphysical smoothed stresses for the
PmPk element. The stress distribution is almost identical for the RT mPk, dRT mPk and
dPmPk in Figure 6.10 and 6.11. Differences are only visible at the center of the block.

Pyy

x

Pyy

x

Pyy
Figure 6.10: Distribution of Pyy stress in x-Pyy-plane on the intersection line A-B (top)
and over the undeformed domain in x-y-plane (bottom) for element type P2P3 (left) and
dP2P3P1 (right) for a mesh with 20 elements per side

Furthermore, Figure 6.12 and 6.13 depict the stress results in an “out-of-plane” value
plot, which show exactly the course of the stresses on the vertical material interface. The
enforced continuity of all stress components withinW1,p(B) can be clearly seen, where the
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Pyy

x

Pyy

x

Pyy
Figure 6.11: Distribution of Pyy stress in x-Pyy-plane on the intersection line A-B (top)
and over the undeformed domain in x-y-plane (bottom) for element type RT 2P3 (left)
and dRT 2P3P1 (right) for a mesh with 20 elements per side

sharp interface yields a smoothed transition of Pyy stresses with averaged values between
the two materials. Therefore, the utilization of these element formulation has to be consid-
ered carefully, especially for stress dependent processes, e.g., elasto-plastic applications.
Nevertheless, an application for homogeneous material distributions is possible. Here, the
“out-of-plane” visualization illustrates the difference between the RT mPk, dRT mPk and
dPmPk elements at the center of the block, where the hybrid elements show higher stress
values at the stress singularity, which is also smoothed in the PmPk approach.
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x
Pyy

y x
Pyy

y

Pyy
Figure 6.12: “Out-of-plane” value plot of Pyy stress for element type P2P3 (left) and
dP2P3P1 (right) for a mesh with 20 elements per side

x
Pyy

y x
Pyy

y

Pyy
Figure 6.13: “Out-of-plane” value plot of Pyy stress for element type RT 2P3 (left) and
dRT 2P3P1 (right) for a mesh with 20 elements per side



Conclusion and outlook 137

7 Conclusion and outlook

The present contribution serves for the understanding of mixed finite element formulations
for applications in the field of nonlinearities, such as hyperelasticity and elasto-plasticty at
small and finite strains. The introduction to the state of the art initially places the work
in the field of research. In order to create the basic mechanical background for the work,
kinematic relationships and stress quantities are first defined. Furthermore, the essential
balance equations of continuum mechanics and the laws of material modeling are intro-
duced. Finally, the considered nonlinear material models are presented and the derivation
of the plastic constraints are carried out. Afterwards, an overview and short discussion
of Galerkin and mixed Galerkin methods are given and the correlation to the mixed
least-squares finite element method are introduced. In addition, mathematical terms were
introduced and the basic idea of the finite element method was presented. The utilized
W1,p(B) and Wq(div,B) conforming finite element spaces are presented using classical
approaches such as scalar-valued Lagrange functions, vector-valued Raviart-Thomas and
Brezzi-Douglas-Marini functions. Examples for the construction of these functions are
given and the possibility of a formulation of Raviart-Thomas approximation functions
without the use of reference elements is shown. Furthermore, the co- and contravariant
transformations required for vector-valued approaches are discussed and aspects on the
implementation are presented for completeness. The mixed least-squares finite element
method is introduced as a classical and an extended formulation for the small strain
theory by means of an introductory example, where the recalculation of support reactions
is considered, and examined for challenges of the method. For a preliminary consideration
of elasto-plastic material behavior at small strains, the mixed primal Hellinger-Reissner
principle is considered and analyzed with respect to the fulfillment of plastic constraints
within the framework of mixed methods. The results are in accordance with the element-
wise fulfillment of plastic constraints in Simo et al. [218] and thus no restrictions occur
by a pointwise enforcement of these conditions. Taking into account the gained insights, a
mixed least-squares formulation based on a hyperelastic Neo-Hookean energy function is
derived. In addition to the extended least-squares formulation, which is analyzed for the
consideration of the method at small deformations, a modified least-squares formulation
is presented. The computational examples used are investigated based on the physical
weighting factors and validated with results of the pure displacement method. This
analysis and the obtained results serves as a basis for the extension of the formulation
to finite J2-plasticity, which is subsequently carried out. The non-smooth material law
for rate-independent plasticity lead, within the least-squares formulation, to problems in
the application of the standard Newton-Raphson method. This drawback is overcome by
introducing a modified first variation, which guarantee a continuous first variation. The
accordance of the obtained results with established formulations is shown for applications
in d = 2 and d = 3. For exponential hardening, a subiteration for the plastic multiplier
is derived. Furthermore, it is shown that the subiteration for enforcing a plane stress
state provides a consistent solution for the corresponding strains in z-direction. Finally,
the derivation and analysis of a mixed hybrid finite element formulation based on a
least-squares approach is discussed. For this purpose, the idea of the hybrid FEM is
introduced and the relaxation of continuity requirements as well as their enforcement
on the inter-element boundaries is carried out with respect to stress and displacement
quantities. The necessary considerations of stability properties for the resulting saddle
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point problem is estimated numerically. The hybrid element formulation is analyzed for
a pure discontinuous stress approach and for an approach with discontinuous stress and
displacement fields. For this purpose, a problem with analytical displacement and stress
solution is investigated. In addition to that, the stress approximation with Lagrange
ansatz functions for problems with material interfaces is discussed and demonstrated to
lead physically correct stress representations.

It is shown that the least-squares finite element method is an alternative to pure dis-
placement and mixed formulations for nonlinear applications. However, they are only
competitive with an appropriate choice of weighting factors and especially for formula-
tions which consider extended functionals or modified first variations. The results shown
can be improved further by using adaptive refinement algorithms such as Dörfler-marking
or error-marking strategies, since the error estimator is provided by the least-squares func-
tional. However, in general the corresponding proof of ellipticity of the functional has to
be derived.
The great advantage of the least-squares method is given by the unrestrictedness with
respect to LBB stability. It is shown that the extension to finite deformations is directly
applicable and is only restricted by the non-smooth material formulation. However, this
limitation can be circumvented by constructing a continuous first variation. The direct
extension is not possible in this manner for the presented Hellinger-Reissner formulation.
The application of mixed stress-displacement formulations in the framework of finite plas-
ticity has not been considered so far, to the best of the author’s knowledge. In general,
the idea of an independent approximation of the stresses is promising in these applica-
tions, since plastic material deformations are stress driven processes. In order to show the
benefit of the mixed least-squares formulation compared to Galerkin formulations, the
presented idea should be used for alternative yield conditions such as Mohr-Coulomb or
Drucker-Prager conditions, i.e., a yield criterion in which not only the deviatoric stress
components are considered. This is due to the fact that the constraint of plastic incom-
pressibility is already fulfilled within the applied implicit exponential time integration in
combination with a J2 yield criterion. Furthermore, since the least-squares formulation is
sensitive to material and weighting parameters the consideration of a stabilization of the
method, especially at finite plasticity, should be taken into account.
For the derived mixed hybrid formulation, a discussion on stability with respect to the
LBB conditions must be carried out before it is applied for further problems. The direct
application of Lagrange shape functions for the stress approximation avoids the need to
use more sophisticated H(div,B) approaches and can be applied analogously to the d = 3
case. Furthermore, a similar hybrid approach can be utilized with Lagrange ansatz func-
tions for tangentially continuous quantities, instead of introducing the more sophisticated
approximations in H(curl,B).
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8 Appendix

8.1 Appendix mixed finite element method

8.1.1 Approximation matrices

The approximation matrices are defined by

Nj =

 N j 0 0

0 N j 0

0 0 N j

 and S′j,i =

 ∂1(1Ψj,i) ∂2(2Ψj,i) ∂3(3Ψj,i)

∂1(1Ψj,i) ∂2(2Ψj,i) ∂3(3Ψj,i)

∂1(1Ψj,i) ∂2(2Ψj,i) ∂3(3Ψj,i)

 , (8.1)

Bj =



∂1N
j 0 0

1
2
∂2N

j 1
2
∂1N

j 0
1
2
∂3N

j 0 1
2
∂1N

j

1
2
∂2N

j 1
2
∂1N

j 0

∂2N
j 0

0 1
2
∂3N

j 1
2
∂2N

j

1
2
∂3N

j 0 1
2
∂1N

j

0 1
2
∂3N

j 1
2
∂2N

j

0 0 ∂3N
j


, and Sj,i =



1Ψj,i 0 0

2Ψj,i 0 0

3Ψj,i 0 0

0 1Ψj,i 0

0 2Ψj,i 0

0 3Ψj,i 0

0 0 1Ψj,i

0 0 2Ψj,i

0 0 3Ψj,i


. (8.2)

The approximation matrix considering the stress approach by Pian and Sumihara [178]
for two dimensions regarding plane stress conditions S̄ is denoted by

S̄j =


1 0 0 η 0

0 1 0 0 ξ

0 0 1 0 0

 . (8.3)

8.1.2 Construction of H(div,B)-conforming RT functions

The necessary quantities for the evaluation of RT m and BDMm functions are given by
the outward normal vector n̂ in parameter space ξ, the scalar and vectorial functions p̂m
and p̂m−1 and the basis vector v̂m of order m. The outward normal vectors for the unit
triangle, unit tetrahedral and unit quadrilateral are:

n̂j =

{
1√
2

(
1
1

)
,

(
−1
0

) (
0
−1

)}
, (8.4)

n̂j =

{
1√
3

 1
1
1

 ,

 −1
0
0

 ,

 0
−1
0

 ,

 0
0
−1

} , (8.5)
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n̂j =

{(
0
−1

)
,

(
1
0

)
,

(
0
1

)
,

(
−1
0

)}
. (8.6)

The normalized outward normal vector is nj = 1

‖njg‖
njg, where ng is a normal vector on

the j-th edge or face. For the evaluation of RT m functions v̂m, p̂m and p̂m−1 are given.
The functions are constructed based on the properties of the associated edge ej, which
are ξ = 1− η on e1, ξ = 0 on e2 and η = 0 on e3 for the unit triangle, η = −1 on e1, ξ = 1
on e2, η = 1 on e3 and ξ = −1 on e4 for the unit quadrilateral and ξ = 1− η − ζ on f 1,
ξ = 0 on f 2, η = 0 on f 3 and ζ = 0 on f 4 for the unit tetrahedral.

Construction of [RT 40 ]2 approximation functions:
The basic quantities for evaluation of [RT 40 ]2 functions are

[v̂40 ]2 =

(
a1 + c ξ
b1 + c η

)
, (8.7)

and the scalar function p̂m, chosen to be p̂1,1
0 = p̂2,1

0 = p̂3,1
0 = 1, in combination with

the associated edge relations on the unit triangle. Evaluation of (3.80) and solving the
resulting system of equations yields the [RT 40 ]2 functions in ξ, i.e.,

Ψ̂j,1
0 =

{(
ξ
η

)
,

(
ξ − 1
η

) (
ξ

η − 1

)}
. (8.8)

Construction of [RT 41 ]2 approximation functions:
The basic quantities for evaluation of [RT 41 ]2 functions are

[v̂41 ]2 =

(
a1 + a2 ξ + a3 η + c1 ξ

2 + c2 ξη
b1 + b2 ξ + b3 η + c1 ξη + c2 η

2

)
, (8.9)

p̂j,11 = {ξ, η, 1− ξ}, p̂j,21 = {η, 1− η, ξ} for j = 1, 2, 3 and the vector function p̂0 are chosen
with p̂I,10 = (1, 0)T and p̂I,20 = (0, 1)T in combination with the associated edge relations
on the unit triangle. Application of the given terms in equation (3.80) and (3.81), leads,
after solving the resulting system of equations to, the [RT 41 ]2 functions in ξ, i.e.,

Ψ̂1,1
1 =

(
−2 ξ + 4 ξ2

−η + 4 ξη

)
, Ψ̂1,2

1 =

(
−ξ + 4 ξη
−2 η + 4 η2

)
,

Ψ̂2,1
1 =

(
1− 3 η − ξ + 4 ξη
−2 η + 4 η2

)
, Ψ̂2,2

1 =

(
−2 + 3 η + 6 ξ − 4 ξη − 4 ξ2

3 η − 4 η2 − 4 ξη

)
,

Ψ̂3,1
1 =

(
3 ξ − 4 ξη − 4 ξ2

−2 + 6 η − 4 η2 + 3 ξ − 4 ξη

)
, Ψ̂3,2

1 =

(
−2 ξ + 4 ξ2

1− η − 3 ξ + 4 ξη

)
,

Ψ̂4,1
1 =

(
16 ξ − 8 ξη − 16 ξ2

8 η − 8 η2 − 16 ξη

)
, Ψ̂4,2

1 =

(
8 ξ − 16 ξη − 8 ξ2

16 η − 16 η2 − 8 ξη

)
.

(8.10)

Construction of [RT 40 ]3 approximation functions:
The basic quantities for evaluation of [RT 40 ]3 functions are

[v̂40 ]3 =

 a1 + d ξ
b1 + d η
c1 + d ζ

 (8.11)
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and the scalar functions p̂0 with p̂i,10 = 1 for i = 1, 2, 3, 4 in combination with the associated
edge relations on the unit tetrahedral. Application of the given terms in (3.82), yields,
after solving the resulting system of equations, the [RT 40 ]3 functions in ξ.

Ψ̂j,1
0 =

2
√

3

 ξ
η
ζ

 , 2

 ξ − 1
η
ζ

 , 2

 ξ
η − 1
ζ

 , 2

 ξ
η

ζ − 1

 (8.12)

Construction of [RT �
0 ]2 approximation functions:

The basic quantities for evaluation of [RT �
0 ]2 functions are

[v̂�0 ]2 =

(
a1 + a2 ξ
b1 + b2 η

)
(8.13)

and the scalar functions p̂0 are chosen to be p̂j,10 = 1 for j = 1, 2, 3, 4 in combination with
the associated edge relations on the unit quadrilateral. Evaluation of (3.80) and (3.81),
leads, after solving the resulting system of equations, to the [RT �

0 ]2 functions in ξ, i.e.,

Ψ̂j,1
0 =

{(
0

−1
4

+ 1
4
η

)
,

(
1
4

+ 1
4
ξ

0

)
,

(
0

1
4

+ 1
4
η

)
,

(
−1

4
+ 1

4
ξ

0

)}
. (8.14)

Construction of [RT �
1 ]2 approximation functions:

The basic quantities for evaluation of [RT �
1 ]2 functions are

[v̂�1 ]2 =

(
a1 + a2 ξ + a3 η + a4 ξη + a5 ξ

2 + a6 ξ
2η

b1 + b2 ξ + b3 η + b4 ξη + b5 η
2 + b6 ξη

2

)
, (8.15)

p̂j,11 = 1
2

(
(1 − ξ), (1 − η), (1 + ξ), (1 + η)

)
, p̂j,21 = 1

2

(
(1 + ξ), (1 + η), (1 − ξ), (1 − η)

)
, for

j = 1, 2, 3, 4 and the vector functions p̂j,10 for j = 5, 6, 7, 8 are

p̂j,10 =

{(
1
2
(1− ξ)

0

)
,

(
0

1
2
(1 + ξ)

)
,

(
1
2
(1 + η)

0

)
,

(
0

1
2
(1− η)

)}
(8.16)

with the associated edge relations on the unit quadrilateral. Application of the given terms
in (3.80) and (3.81), leads, after solving the resulting system of equations, to the [RT �

1 ]2
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functions in ξ.

Ψ̂1,1
1 = 1

8
(0, 1 + 2 η − 3 η2 − 3 ξ − 6 ξη + 9 ξη2)

T

Ψ̂1,2
1 = 1

8
(0, 1 + 2 η − 3 η2 + 3 ξ + 6 ξη − 9 ξη2)

T

Ψ̂2,1
1 = 1

8
(−1 + 3 η + 2 ξ − 6 ξη + 3 ξ2 − 9 ξ2η, 0)

T

Ψ̂2,2
1 = 1

8
(−1− 3 η + 2 ξ + 6 ξη + 3 ξ2 + 9 ξ2η, 0)

T

Ψ̂3,1
1 = 1

8
(0, −1 + 2 η + 3 η2 + 3 ξ − 6 ξη − 9 ξη2)

T

Ψ̂3,2
1 = 1

8
(0, −1 + 2 η + 3 η2 − 3 ξ + 6 ξη + 9 ξη2)

T

Ψ̂4,1
1 = 1

8
(1− 3 η + 2 ξ − 6 ξη − 3 ξ2 + 9 ξ2η, 0)

T

Ψ̂4,2
1 = 1

8
(1 + 3 η + 2 ξ + 6 ξη − 3 ξ2 − 9 ξ2η, 0)

T

Ψ̂5,1
1 = 1

8
(3− 9 η − 3 ξ2 + 9 ξ2η, 0)

T

Ψ̂5,2
1 = 1

8
(0, 3− 3 η2 + 9 ξ − 9 ξη2)

T

Ψ̂5,3
1 = 1

8
(3 + 9 η − 3 ξ2 − 9 ξ2η, 0)

T

Ψ̂5,4
1 = 1

8
(0, 3− 3 η2 − 9 ξ + 9 ξη2)

T

(8.17)

Construction of [RT 41 ]2 based on [RT 40 ]2 and [P1]2:
Here, the construction of [RT 41 ]2 functions are performed, based on [RT 40 ]2 and [P1]2.
The [RT 40 ]2 functions are determined by equation (3.85) and given by

Ψj,1
0 =

{√
2

(
x
y

)
,

(
x− 1
y

) (
x

y − 1

)}
. (8.18)

Considering the explanation for the evaluation of RT m approximation functions on arbi-
trary straight-edged triangles and tetrahedral domains in Chapter 3.3.2 with the graphical
representation in Figure 3.6 and 3.7 an approach for the construction is exemplarily pre-
sented in the following. Therefore, 3.89 and 3.90 are regarded with the evaluated P1

functions on the triangular domains T 1
1 , T 2

1 and T 3
1 with:

T 1
1 :

N1,P̄ I,1

1 = 3− 3x− 3 y ,

N1,P̄ 1,1

1 = −1 + 3 x ,

N1,P̄ 1,2

1 = −1 + 3 y ,

T 2
1 :

N2,P̄ I,1

1 = 3x ,

N2,P̄ 2,1

1 = −1 + 3 y ,

N2,P̄ 2,2

1 = 2− 3x− 3 y ,

T 3
1 :

N3,P̄ I,1

1 = 3 y ,

N3,P̄ 3,1

1 = 2− 3x− 3 y ,

N3,P̄ 3,2

1 = −1 + 3 x .

(8.19)
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The resulting functions are given by

Ψ1,1
1 = Ψ1,1

0 N1,P̄ 1,1

1 =
√

2

(
−x+ 3x2

−y + 3xy

)
,

Ψ1,2
1 = Ψ1,1

0 N1,P̄ 1,2

1 =
√

2

(
−x+ 3xy
−y + 3 y2

)
,

Ψ2,1
1 = Ψ2,1

0 N2,P̄ 2,1

1 =

(
1− x− 3 y − 3xy
−y + 3xy

)
,

Ψ2,2
1 = Ψ2,1

0 N2,P̄ 2,2

1 =

(
−2 + 5 x+ 3 y − 3xy − 3x2

2 y − 3xy − 3 y2

)
,

Ψ3,1
1 = Ψ3,1

0 N3,P̄ 3,1

1 =

(
2x− 3xy − 3x2

−2− 3x+ 5 y − 3xy − 3 y2

)
,

Ψ3,2
1 = Ψ3,1

0 N3,P̄ 3,2

1 =

(
−x+ 3x2

1− 3x− y + 3xy

)
,

Ψ4,1
1 = Ψ2,1

0 N2,P̄ I,1

1 =

(
−3x+ 3x2

3xy

)
,

Ψ4,2
1 = Ψ3,1

0 N3,P̄ I,1

1 =

(
3xy

−3 y + 3 y2

)
.

(8.20)

8.1.3 Construction of H(div,B)-conforming BDM functions

Construction of [BDM4
1 ]2 approximation functions:

The basic quantities for evaluation of [BDM4
1 ]2 functions are

[v̂41 ]2 =

(
a1 + a2 ξ + a3 η
b1 + b2 ξ + b3 η

)
, (8.21)

with p̂m are chosen as the lowest order Nédélec functions on a unit triangle with

p̂j,11 = {1− ξ, ξ, η} and p̂j,21 = {ξ, η, 1− η} (8.22)

in combination with the associated edge relations on the unit triangle. Application of the
given terms in (3.98), leads, by solving the resulting system of equations, to the [BDM4

1 ]2

functions in ξ for j = 1, 2, 3.

Ψ̂j,1
1 =

{(
2ξ
−η

)
,

(
1− ξ − 3η

2η

)
,

(
−ξ

−2 + 3ξ + 2η

)}

Ψ̂j,2
1 =

{(
−ξ
2η

)
,

(
−2 + 2ξ + 3η

−η

)
,

(
2ξ

1− 3ξ − η

)} (8.23)

Construction of [BDM4
2 ]2 approximation functions:

The basic quantities for evaluation of [BDM4
2 ]2 functions are

[v̂42 ]2 =

(
a1 + a2 ξ + a3 η + a4 ξη + a5 ξ

2 + a6 η
2

b1 + b2 ξ + b3 η + b4 ξη + b5 ξ
2 + b6 η

2

)
, (8.24)

for p̂m−1 the lowest order Nédélec functions with

p̂4,i
1 =

{(
−η
ξ

)
,

(
−η
ξ − 1

)
,

(
1− η
ξ

)}
, (8.25)
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and p̂1,i
2 = {−ξ + 2ξ2 , ξ − ξ2 , 1− 3 ξ + 2 ξ2}, p̂2,i

2 = {2 η − η2 , η − η2 , 1− 3 η + 2 η2}
p̂3,i

2 = {1− 3 ξ + 2 ξ2 , ξ − ξ2 ,−ξ + 2 ξ2} with i = 1, 2, 3, in combination with the asso-
ciated edge relations on the unit triangle. Evaluation of the given terms in (3.98) and
(3.99), yields, by solving the resulting system of equations, the [BDM4

2 ]2 functions in ξ,
i.e.,

Ψ̂1,1
2 = (−1.5ξ + 3ξ2 , 0.5η − 2ξη)

T
,

Ψ̂1,2
2 = (−2ξ + 6ξη + ξ2, −2η + η2 + 6ξη)

T
,

Ψ̂1,3
2 = (0.5ξ − 2ξη, −1.5η + 3η2)

T
,

Ψ̂2,1
2 = (−0.5 + 4η − 5η2 + 0.5ξ − 2ξη, −1.5η + 3η2)

T
,

Ψ̂2,2
2 = (1− 10η + 10η2 + 10ξη − ξ2, 4η − 5η2 − 6ξη)

T
,

Ψ̂2,3
2 = (−1.5 + 6η − 5η2 + 4.5ξ − 8ξη − 3ξ2, −1.5η + 2η2 + 2ξη)

T
,

Ψ̂3,1
2 = (−1.5ξ + 2ξη + 2ξ2, −1.5 + 6ξ + 4.5η − 8ξη − 5ξ2 − 3η2)

T
,

Ψ̂3,2
2 = (4ξ − 6ξη − 5ξ2, 1− 10ξ + 10ξη + 10ξ2 − η2)

T

Ψ̂3,3
2 = (−1.5ξ + 3ξ2, −0.5 + 4ξ + 0.5η − 2ξη − 5ξ2)

T
,

Ψ̂4,1
2 = (12ξ − 48ξη − 12ξ2, −12η + 12η2 + 48ξη)

T
,

Ψ̂4,2
2 = (12ξ − 24ξη − 12ξ2, −36η + 36η2 + 48ξη)

T
,

Ψ̂4,3
2 = (36ξ − 48ξη − 36ξ2, −12η + 12η2 + 24ξη)

T
.

(8.26)

Construction of [BDM�
1 ]2 approximation functions:

For [BDM�
1 ]2 functions, the basic quantities needed are

[v̂�1 ]2 =

(
a1 + a2 ξ + a3 η + r ξ2 − 2 s ξη
b1 + b2 ξ + b3 η + 2 r ξη + s η2

)
, (8.27)

with pk as the Lagrange shape functions in d = 1 on the corresponding edge
p̂j,12 = 1

2
{(1− ξ), (1− η), (1 + ξ), (1 + η)} and p̂j,22 = 1

2
{(1 + ξ), (1 + η), (1− ξ), (1− η)}

for j = 1, 2, 3, 4 in combination with the associated edge relations on the unit quadri-
lateral. Evaluation of (3.98), yields, by solving the resulting system of equations, the
[BDM�

1 ]2 functions in ξ with i = 1, 2:

Ψ̂1,i
1 = 1

8

{
(−3 + 3 ξ2, −2 + 2 η + 6 ξ − 6 ξη)

T
, (3− 3 ξ2, −2 + 2 η − 6 ξ + 6 ξη)

T
}
,

Ψ̂2,i
1 = 1

8

{
(2− 6 η + 2 ξ − 6 ξη, −3 + 3 η2)

T
, (2 + 6 η + 2 ξ + 6 ξη, 3− 3 η2)

T
}
,

Ψ̂3,i
1 = 1

8

{
(3− 3 ξ2, 2 + 2 η + 6 ξ + 6 ξη)

T
, (−3 + 3 ξ2, 2 + 2 η − 6 ξ − 6 ξη)

T
}
,

Ψ̂4,i
1 = 1

8

{
(−2− 6 η + 2 ξ + 6 ξη, 3− 3 η2)

T
, (−2 + 6 η + 2 ξ − 6 ξη, −3 + 3 η2)

T
}
.

(8.28)

Construction of [BDM�
2 ]2 approximation functions:

The basic quantities for [BDM�
2 ]2 functions are

[v̂�2 ]2 =

(
a1 + a2 ξ + a3 η + a4 ξη + a5 ξ

2 + a6 η
2 + r ξ3 − 3 s ξη2

b1 + b2 ξ + b3 η + b1 ξη + b2 ξ
2 + b3 η

2 + 3 r ξ2η + s η3

)
, (8.29)
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p̂5,1
1 =

(
1
4
(1− η)

0

)
and p̂5,2

1 =

(
0

1
4
(1− ξ)

)
, (8.30)

and p̂1,i
2 =

{
1
2
(−ξ + ξ2) , 1− ξ2 , 1

2
(ξ + ξ2)

}
, p̂2,i

2 =
{

1
2
(−η + η2) , 1− η2 , 1

2
(η + η2)

}
,

p̂3,i
2 =

{
1
2
(ξ + ξ2) , 1− ξ2 , 1

2
(−ξ + ξ2)

}
, p̂4,i

2 =
{

1
2
(η + η2) , 1− η2 , 1

2
(−η + η2)

}
for

i = 1, 2, 3 in combination with the associated edge relations on the unit quadrilat-
eral. Application of the given terms in (3.98) and (3.99), leads, by solving the resulting
system of equations, to the [BDM�

2 ]2 functions in ξ.

Ψ̂1,1
2 = 1

8
(5 ξ − 5 ξ3, 9− 3 η − 6 η2 + 6 ξ − 6 ξη − 15 ξ2 + 15 ξ2η)

T

Ψ̂1,2
2 = 1

16
(−5 ξ + 5 ξ3, −3 + 9 η − 6 η2 + 15 ξ2 − 15 ξ2η)

T

Ψ̂1,3
2 = 1

8
(5 ξ − 5 ξ3, 3− 3 η − 6 ξ + 6 ξη − 15 ξ2 + 15 ξ2η)

T

Ψ̂2,1
2 = 1

8
(−9− 6 η + 15 η2 − 3 ξ − 6 ξη + 15 η2ξ + 6 ξ2, 5 η − 5 η3)

T

Ψ̂2,2
2 = 1

16
(3− 15 η2 + 9 ξ − 15 η2ξ + 6 ξ2, −5 η + 5 η3)

T

Ψ̂2,3
2 = 1

8
(−3 + 6 η + 15 η2 − 3 ξ + 6 ξη + 15 η2ξ, 5 η − 5 η3)

T

Ψ̂3,1
2 = 1

8
(5 ξ − 5 ξ3, −3− 3 η + 6 ξ + 6 ξη + 15 ξ2 + 15 ξ2η)

T

Ψ̂3,2
2 = 1

16
(−5 ξ + 5 ξ3, 3 + 9 η + 6 η2 − 15 ξ2 − 15 ξ2η)

T

Ψ̂3,3
2 = 1

8
(5 ξ − 5 ξ3, −9− 3 η + 6 η2 − 6 ξ − 6 ξη + 15 ξ2 + 15 ξ2η)

T

Ψ̂4,1
2 = 1

8
(3 − 6 η − 15 η2 − 3 ξ + 6 ξη + 15 η2ξ, 5 η − 5 η3)

T

Ψ̂4,2
2 = 1

16
(−3 + 15 η2 + 9 ξ − 15 η2ξ − 6 ξ2, −5 η + 5 η3)

T

Ψ̂4,3
2 = 1

8
(9 + 6 η − 15 η2 − 3 ξ − 6 ξη + 15 η2ξ − 6 ξ2, 5 η − 5 η3)

T

Ψ̂5,1
2 = (1.5− 1.5ξ2, 0)

T

Ψ̂5,2
2 = (0, 1.5− 1.5η2)

T

(8.31)



146 Appendix

8.2 Appendix mixed finite element method at small strains
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Figure 8.1: Clamped cantilever: Results for the fulfillment of equilibrium horizontal force
(AH) for F (left) and F? (right), considering BDM1Q2, RT 1Q2 and RT 2P3 element
types
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Figure 8.2: Clamped cantilever: Results for the fulfillment of equilibrium vertical force
(AV ) for F (left) and F? (right), considering BDM1Q2, RT 1Q2 and RT 2P3 element
types
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Figure 8.3: Clamped cantilever: Results for the fulfillment of equilibrium of moment AH for
LSFEM considering various finite element spaces on triangular and quadrilateral elements
(E = 70 kN/mm2, µ = 26.12 kN/mm2)
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Figure 8.4: Clamped cantilever: Results for the fulfillment of equilibrium of moment AV for
LSFEM considering various finite element spaces on triangular and quadrilateral elements
(E = 70 kN/mm2, µ = 26.12 kN/mm2)
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Figure 8.5: Clamped cantilever: Results for the fulfillment of equilibrium of moment AM for
LSFEM considering various finite element spaces on triangular and quadrilateral elements
(E = 70 kN/mm2, µ = 26.12 kN/mm2)



Appendix 151

8.3 Appendix hybrid mixed finite element formulations

Representation of the applied body force for the fully constraint block example and the
analytical stress components with the abbreviations c1 = (−1 + x2), c2 = (−1 + y2),
c3 = (−1 + x)(1 + x)(−1 + y)(1 + y).

fx = −((−12x17c6
2(3 + 7y2)3 + 3x20yc7

2(3 + 7y2)2(13 + 7y2)
+ 32x15c6

2(3 + 7y2)2(7 + 11y2)− 1792x13c6
2(3 + 16y2 + 27y4 + 14y6)

− 2x18yc7
2(1197 + 5637y2 + 7875y4 + 2891y6)

+ 40x9c4
2(−517− 1481y2 − 598y4 + 130y6 − 581y8 + 167y10)

+ 64x11c4
2(179 + 533y2 − 4y4 − 578y6 + 301y8 + 169y10)

− 32x7c4
2(−759− 1755y2 − 650y4 − 410y6 − 175y8 + 197y10)

− 4xc2
2(5 + y2)(21025− 170y2 + 263y4 − 172y6 + 79y8 − 42y10 + 9y12)

+ 32x5c2
2(−1075− 953y2 + 873y4 − 1165y6 + 775y8 − 507y10 + 131y12 + y14

− 7680(3 + 7y2)) + 128x3c2
2(265 + 250y2 + 28y4 + 90y6 − 75y8 + 38y10 − 26y12 + 6y14

+ 1280(7 + 11y2))− 24x14yc4
2(−635− 498y2 + 2023y4 + 256y6 − 1561y8 − 238y10

+ 653y12 + 320(39 + 157y2 + 133y4 − 49y6))
+ 2x12yc4

2(−14063− 10422y2 + 26867y4 + 2012y6 − 7113y8 − 1830y10 + 4549y12

− 1280(−393− 1299y2 − 715y4 + 511y6))
+ 3x16yc4

2(1280(3 + 7y2)2 + c3
2(2341 + 9657y2 + 11971y4 + 4431y6))

− 2x8yc2
2(23275− 27568y2 − 4344y4 + 1112y6 + 23230y8 − 22752y10 + 12288y12

− 6600y14 + 1359y16 + 1280(−1312− 1277y2 + 2208y4 − 1838y6 + 320y8 + 75y10))
+ 8x6yc2

2(6461− 4348y2 − 1880y4 − 1608y6 + 3310y8 − 3276y10 + 2248y12 − 1136y14

+ 229y16 − 320(1591 + 1335y2 − 974y4 + 1298y6 − 969y8 + 215y10))
− 4x10yc2

2(c3
2(9027 + 14533y2 + 5186y4 + 342y6 + 891y8 + 165y10)
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Igelbüscher et al. [120] . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Clamped cantilever: setup with exemplary mesh and convergence of AH ,
AV , and MA vs. number of equations (neq) for the LS functional F? us-
ing RT 1P2 elements (E = 70 kN/mm2, µ = 26.12 kN/mm2), taken from
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[20] I. Babuška. The finite element method with Lagrangian multipliers. Numerische
Mathematik, 20(3):179–192, 1973.
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