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Abstract
Recently,  the  standard  dynamic  programming  model  of  network  revenue  management  has  been  extended  for

integrated  upgrade  decision-making.  However,  opposed  to  the  original  model,  heuristically  breaking  the  ex-

tended  model  down  into  a  series  of  single-leg  problems  by  dynamic  programming  decomposition  in  order  to

allow  for  real-world  application  is  not  possible.  This  is  because  the  model’s  state  space  does  not  incorporate

resources but commitments reflecting already sold products and capacity consumption is only resolved at the end

of the booking horizon, thereby considering upgrade options.

In this paper, we consider arbitrary  airline networks with upgrades being performed separately on each flight leg.

We show that in this case, there are two reformulations  of the extended model. First, we prove that an ad hoc

formulation,  in  which  upgrades  are  technically  performed  immediately  after  a  sale,  is  completely  equivalent.

Second, we present another  reformulation whose idea is adapted from linear programing-based production plan-

ning with alternative machine types. We prove that the resulting dynamic program is also equivalent. The advan-

tage  of  both  reformulations  is  that  their  state  space  is  based  on  either  real  or  virtual  resources  instead  of  the

commitments used in the postponement formulation.  Thus, dynamic programming decomposition techniques can

again  be  applied.  Despite  the  formal  equivalence  of  both  reformulations,  applying  decomposition  techniques

leads to different approximations and thus to potentially different results when applied  in practice. Therefore, we

finally  numerically  examine  the  approaches  regarding  revenue  performance  and  discuss  airline  revenue  man-

agement settings in which they differ.
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On the Incorporation of Upgrades into Airline Network  
Revenue Management 

1 Introduction 

In the airline industry, an upgrade is defined as an airline’s offer to a passenger to fly in a 

higher class compartment than the one originally booked without any extra charge (see, e.g., 

McGill and van Ryzin 1999). Upgrades help to reduce temporary capacity and demand imbal-

ance and to improve capacity utilization (see, e.g., Biyalogorsky et al. 2005). This becomes 

necessary because airlines face stochastic and seasonal demand while their capacity decisions 

concerning the operating aircraft and the number of seats in each compartment are fixed for 

the long term, leading to an occasionally inappropriate supply mix. If there is excess demand 

for one type of supply (e.g., economy seats) and excess supply of another type (e.g., business 

class seats), the airline can spontaneously upgrade selected economy passengers to business 

class and then sell the “vacated” economy seats to other customers, thus compensating the 

effect of the inadequate supply mix (see, e.g., Kimes and Thompson 2004). In general, up-

grades are relevant for all capacity providers who offer several services that differ in their 

quality attributes, so these providers can replace a booked service with a more desirable sub-

stitute from a pre-specified set of alternatives (see, e.g., Gallego and Stefanescu 2012). Be-

sides passenger airlines, examples include freight transport providers, hotels, car rental firms, 

cruise lines, theaters, and opera houses.  

We focus on upgrading in the airline industry, where the upgrade decision is made individu-

ally for each leg of a passenger’s network connection. Specifically, airline passengers do not 

mind changing, for example, from economy to business class or vice versa when they change 

planes at a stopover airport. This situation, which we call legwise upgrading, differs from 

many other capacity providers in the service industry, such as hotels or car rental companies. 

For example, car rental customers would not like to be upgraded on the first day of a two-day 

rental and then to have to return to change to a smaller car. Therefore, in such settings, only 

productwise upgrading is possible, in other words, the same type of resource must be pro-

vided throughout service fulfillment. Note that upgrading is different to upselling. In the lat-

ter, passengers are urged to voluntarily buy a higher value (and more expensive) product for 

potentially a lower price than originally quoted for this product. 

An important issue for airlines in the context of upgrading is how to incorporate upgrade op-

tions in their revenue management systems. Airline revenue management’s task is capacity 

control, which seeks to maximize profits by controlling the availability of the different book-
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ing classes, each with its fare, throughout the booking horizon. Modern revenue management 

systems performing capacity control are usually based on a number of mathematical optimiza-

tion techniques and algorithms, which often implement heuristics such as dynamic program-

ming decomposition. These decompositions are based on an exact but computationally intrac-

table dynamic programming formulation that simultaneously considers the whole flight net-

work. This exact formulation is well known in theory (see, e.g., Talluri and van Ryzin 2004, 

Chapter 3.2) and is widely accepted as the standard model formulation of network capacity 

control in general. However, its main disadvantage is that it only incorporates one resource 

type; that is, in the airline setting, one single compartment. The resulting nonconsideration of 

upgrades is inherited by the heuristics that build on it. To overcome this drawback, practical 

airline revenue management implementations usually resort to a fairly simple heuristic of suc-

cessive planning, which means that upgrade contingents in higher compartments are deter-

mined first and that the resulting virtual capacity of each compartment is then considered 

fixed for standard capacity control, which is then performed separately for the different com-

partments, e.g., by applying decomposition heuristics. However, most airline revenue man-

agement system vendors have realized that a more versatile approach is needed – one that 

considers upgrade and capacity control decisions in an integrated way – and first suggestions 

have been made (see, e.g., Walczak 2010). 

Besides the considerations in practice, the problem has also been tackled from a theoretical 

point of view (see, e.g., Alstrup et al. 1986; Karaesman and van Ryzin 2004; Shumsky and 

Zhang 2009; Wu et al. 2011; Gönsch et al. 2013). Gallego and Stefanescu (2009) were the 

first to extend the standard dynamic programming model of network revenue management for 

integrated upgrade decision-making. In line with the real-world setup, the upgrading decision 

is postponed to the end of the booking horizon, which guarantees full flexibility regarding 

resource utilization (postponement upgrading). The state space of the resulting model in-

cludes a so-called vector of commitments to track the sales of upgradeable products. Similar 

to the standard model of network revenue management, the model suffers from the curse of 

dimensionality and can thus not be computed straight away for real-world problem sizes. In 

order to make it applicable, the most prominent approach in theory as well as in practice 

would again be applying dynamic programming decomposition. However, this is not possible 

as the decomposition relies on a resource-based state space while that of the upgrade model is 

based on commitments. As a result, even though the dynamic programming model with inte-

grated upgrade decision-making is of high practical interest, it has been unclear until now how 

to derive appropriate decomposition heuristics that would allow practical applications.  
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In this paper, we give answers to this open research question. In particular, we present two 

appropriate reformulations of the model that are valid for arbitrary airline networks and whose 

state spaces are defined on resources instead of commitments, such that dynamic program-

ming decomposition techniques can again be applied. The first reformulation is based on a 

simplified model taken from the literature (see Gallego and Stefanescu 2009) which decides 

upgrades ad hoc at the time of sale (ad hoc upgrading). We prove that in the context of airline 

revenue management, ad hoc upgrading is indeed completely equivalent to postponement 

upgrading. We also show why the result does not hold for scenarios other than the airline in-

dustry in which only productwise upgrading is allowed. The idea of the second reformulation 

is adapted from linear programing-based production planning with alternative machine types 

(see Leachman and Carmon 1992). It incorporates upgrades by appropriately modifying the 

resource network and the consumption parameters to include artificial surrogate resources that 

are jointly used by multiple products (surrogate upgrading). It turns out that the formulation 

technically corresponds to a standard dynamic programming formulation without upgrades 

but modified model parameters, such that standard dynamic programming decomposition 

techniques can be applied. As each reformulation implies a different decomposition scheme, 

we perform a detailed numerical comparison of the resulting heuristics using typical airline 

revenue management scenarios. Specifically, we show that the heuristics’ performance in 

terms of revenue achieved depends heavily on the demand structure. 

The remainder of the paper is structured as follows: In Section 2, we define the airline reve-

nue management setting, introduce the general notation and restate the basic dynamic pro-

gramming formulation based on postponement upgrading. In Sections 3 and 4, we present the 

two reformulations discussed above and provide the analytical results. In Section 5, we apply 

dynamic programming decomposition to the two reformulations, and then present and discuss 

the results of our numerical study. In Section 6, we conclude with a summary of our key re-

sults. 

2 Setting, notation, and basic model formulation  

2.1 Setting and notation 

 3

of 

 flight le

We consider an airline network consisting of s  flight legs s . On each flight leg, a total 

m  different compartments m  are offered, which are ordered according to some crite-

ria of quality, with higher numbers indicating higher quality. For a specific g 

  1, ,
1, ,

 1l ,,s , 0rlc   denotes the number of seats in compartment  1r , ,m .  rlcC  is the 
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m s  matrix containing these capacity values for the whole network. As is common in reve-

nue management, capacity is assumed to be fixed, and capacity that remains unused after the 

booking horizon is worthless. The airline offers n  different products, that is, tickets. A prod-

uct  1k , ,  n
 

includes transportation on a specific itinerary requiring the flight legs 

 1,...,sk   and a seat in a specific compartment  1kr , ,m  . The product price is de-

noted by kp  and fixed throughout the booking horizon. We assume that legwise upgrading to 

higher compartments  is possible. Furthermore, let denote the  leg consump-

tion matrix of product  when assigned to compartment r  on flight leg l  with 

 and  for r'

kr r

k

1( krl )
r' l'a 

( krl )A m s

( krl )A ( krl )
r' l'a    r , l ' l and l k  and 0 otherwise. The booking hori-

zon can be sufficiently discretized into T  time periods, so that no more than one request ar-

rives in each period  1t ,  ,T . Each request asks for one product, and the independent de-

mand assumption holds regarding demand. The probability of a request for product 

 1k , ,n  in period  1t , ,T   is given by  k t

k

 , and consequently, with probability 

1k

, there is no request in a time period t . To ease notation, we omit writing the in-

dex sets for the symbols  referring to products, r  and i  referring to compartments, l  refer-

ring to legs, and  to time periods. For example, the notation 

 k t1
n


k

t   means  1k , n , , and 

k

 means 
 1k , ,n 

. The symbol  refers to the zero vector, and   0 s1  to the all-ones vector 

with  components. The operator  s
  returns the maximum of zero and the value in brackets. 

 gives an overview of the notation used throughout Section 2. It already includes sym-

bols introduced in the following Subsection 2.2. 

Table 1

Table 1: Notation introduced in Section 2	
	

 1, ,l s


 k

rl

t : arrival probability of product  in period t  k: flight legs 

1, ,r m

0





rlc 

 4

: compartments rlx c : remaining number of seats in compart-
ment  on leg l   r

 rlx m sX
: number of seats in compartment  on leg l  r

rlc m s



C
:  matrix of resources’ remaining 

capacity :  matrix of capacity values for the 
whole network 

0rly : number of already accepted requests for 
products requiring at least compartment r  on 
flight leg l  (commitments) 

1, ,k n


 : products 

1, ...,k s : flight legs required by product  k

 1r , ,m

l )

r 
r

( )( )
' '
krll

r la    m

 1, ,t T 

k 

kp
( kr
r ' l 'a

krA

 rly m sY :  matrix of commitments : compartment required by product  k

 , ,V tX YPP : optimal expected revenue-to-go from 
state 

: price of product  k

s

 , , tX Y  onwards (Postponement formula-
tion) : capacity consumption of product  in com-

partment  on flight leg  when assigned to 
compartment  on flight leg l  

k
l

 , ,PPV tX Y
k

k : opportunity cost of selling one unit 
of product  in state  , ,t

,X Y

X Y  
:  consumption matrix 

: set of feasible pairs, i.e.  iif the 
commitments  can be fulfilled with capacity 

 
Y


: time periods  X
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2.2 Basic dynamic programming formulation 

We now restate the basic dynamic programming formulation with integrated postponement 

upgrading (see Gallego and Stefanescu 2009) in the context of airline revenue management. 

Each possible state within the capacity control process, that is, the process of accepting and 

rejecting incoming requests throughout the booking horizon, can be described by   , 

where t denotes the considered time period, the 

, ,tX Y

m s  matrix  rlxX  denotes the resources’ 

remaining capacity, with , and the mX C s  matrix  rlyY  denotes the commitments, 

that is,  is the number of already accepted requests for products requiring at least com-

partment  on flight leg l . Let 

0rly 

r  PPV X Y

PPV , X Y

, ,t


 

 denote the expected revenue-to-go from state 

 onwards. The opportunity cost of selling one unit of product  is then given by 

l 
, because accepting a request would 

simply lead to an additional commitment given by 
l

 , ,X Y
PP

k

t
 V ,X Y

k

 ,t k( kr l ) APP,t V , ,  X Y t
k( kr l )




A . At the end of the booking hori-

zon, all accepted upgradeable products  must be provided with the remaining capacity . 

Let  denote the set of feasible pairs of  and  (see, e.g., Gallego and Stefanescu 2009). 

 holds if and only if  and there exists a feasible allocation of upgrades, that 

is, if the following feasibility problem has a solution: 

Y

X 0

X



 ,X Y

X Y



   for all  and l    (1)  rr' l rl
r' r

z y



z x

r

r' 

1

   for all  and l    (2) r rl rl
r r




0rr' lz 

r

   for all r, and l   (3) r

with the assignment variables  denoting how many commitments for compartment r  on 

flight leg l  will be fulfilled by compartment . 

rr' lz

r '

The optimal expected revenue-to-go can then be computed recursively through the Bellman 

equation  

    (4)        1PP PP PP
k k k

k

V , ,t t p V , ,t V , ,t


   X Y X Y X Y

 0 0PPV , ,  , X Y   0,  X YPPX Ywith the boundary conditions  if  and V ,  other-

wise.  

The above opportunity cost-based formulation of the bellman equation has become standard 

in the revenue management literature as it allows for a straightforward interpretation. First, 

note that independently from incoming requests, the term  1PPV , ,t X Y  is always included 

in the revenue-to-go calculation (last term of (4)). It denotes the revenue-to-go obtainable if 

there is no request at all or if a current request was not accepted. Now, in case there is a re-

 5
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quest for a product k , which occurs with probability k , the revenue kp  coming along with 

acceptance is opposed to its opportunity cost  1PP
k ,tV , X Y  (see first term of (4)). Intui-

tively, this directly reflects the fact that a request should only be accepted if its revenue ex-

ceeds its (opportunity) cost. Technically, in case the difference was negative, 0 would be re-

turned by the operator , reflecting rejection and only    1tPPV , , X Y  remains. In case of a 

positive difference, that is, acceptance, kp  as well as  1,tPPV ,k X Y


k

t

 would be included, 

with the latter reducing the (greater) revenue-to-go under rejection V ,  accord-

ingly. By simple algebraic manipulations and rearrangement of terms, the equivalent but more 

extensive formulation 

 1,t X YPP

   , , max , , , 1PP PP
k k

k l

V t t p V


  X Y X YPPV

X

, , 1t X Y

,t

 

 


lq

1 , , 1PP
kt t V 

  
             

 X Y

 s

m

( )kkr lA

,t
T

sq

     

can be obtained.   

Finally, note that resource consumption is only resolved at the end of the booking horizon by 

solving the feasibility problem (1)-(3). This inhibits the application of resource-based dy-

namic programming decomposition techniques to this model in order to allow for practical 

applications.  

3 Reformulation 1: Ad hoc upgrading 

3.1 Model formulation 

We first consider a formulation originally proposed for a different setting in which upgrades 

have to be decided ad hoc at the time of sale (see Gallego and Stefanescu 2009, for a corre-

sponding general formulation, and Steinhardt and Gönsch 2012, for a formulation with pro-

ductwise upgrading). In this case, opposed to (4), there is a direct reduction of the remaining 

capacity immediately after acceptance; no commitments need to be stored throughout the 

booking horizon. Therefore, we can simply specify each possible state within the capacity 

control process by  . Let  denote the expected revenue-to-go when the current 

state is  . Furthermore, 
 
is a vector with  components corresponding to a 

possible legwise assignment with 0

AHV X

 1q ,...,,tX q

 



 for . Then, 

l   
is the opportunity cost of accepting a re-

quest for product  and fulfilling it with compartment assignment q. The expected revenue-

to-go can then be calculated by the Bellman equation 

1,...,sl

 6

 V ,   , lq lAH
k t tq

( k
X ) ,tAAH

k

AHV VX X

        1
s k

AH AH AH
k k k

r
k

V ,t t p min V ,t V ,t


 
     q

q
X X

1
1X   (5) 

Authors Accepted Manuscript



with the boundary conditions  0AHV , 0X  for , and X 0  0AHV ,  X  otherwise.  

The additional notation introduced in Section 3 is summarized in Table 2. 

Table 2: Additional notation introduced in Section 3 
 

 ,V X


AH t : optimal expected revenue-to-go from 
state ,X t  onwards (Ad hoc upgrading formula-
tion) 

( )sH : m s  matrix of remaining capacity after allo-
cation s XY  

 XY XY
( )s H | s  : set of all possible remaining 

capacity matrices.   1,..., sq qq T 1: s  legwise assignment vector 

 ,AH
k V q X t  , X Y : : opportunity cost of selling one unit 

of product  and assigning it to compartments q  
in state 

k
, tX

XY

 

m s  matrix of free capacity that remains 
after the allocation of the given commitments  
on the given capacity  

Y
X

: set of all feasible allocations of commitments 
 on capacity   Y X

 

3.2 Monotonicity of opportunity cost 

In the following, we show that in the context of airline revenue management,  is a reformu-

lation of (4), that is, both are formally equivalent. Therefore, in this subsection, we first state 

the following monotonicity result that holds in respect of ad hoc upgrading as defined in 

model (5), generalizing the result shown in Steinhardt and Gönsch (2012) for the single-leg 

case: 

(5)

Proposition 1.    AH AH
k kV ,t V ,  q q'X X t '

k k

 for all k, t ,  with and . X 0
l lq l q lx ,x  kl  q q

Proof. In the Online Appendix A.1, we prove this inequality by induction over t . While the 

base case is obvious, the inductive step is more complex and involves a second induction over 

the legs. In the latter, we first use the single-leg argumentation by Steinhardt and Gönsch 

(2012, Online Appendix A.1) to show the base case where the assignments differ in only one 

leg. We then prove that this also implies the original hypothesis for arbitrary assignments.  

From Proposition 1 it follows that a specific product request’s opportunity cost is always non-

decreasing with regard to the assignment to higher compartments on any of the required legs. 

This result does not depend on the order of price, for instance, it is not a precondition for two 

products  and k  with  and k 
k   kr r   that k kp p  , which means that Proposition 1 

also holds in case that, for example, business class tickets are cheaper than corresponding 

economy class tickets. This can happen in practice owing to different booking class restric-

tions. 

Proposition 1 has a straightforward implication for the ad hoc capacity control process. Owing 

to the opportunity cost monotonicity, it is no longer necessary to consider all the potential 

assignments for an incoming request to identify the minimum opportunity cost, but it suffices 
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to determine the lowest available assignment  0
ls k q l* min r | x l    q q 1 . Since, clearly, 

 0
ls k q lmin r | x l    q 1      0 0

ss k q s,...,min q r | x   
11 1k qmin q r | x , only the small-

est index available in the upgrade hierarchy to which the current request can be upgraded 

must be identified on each flight leg. If the opportunity cost of the resulting total assignment 

 is less than the revenue, the request is accepted and assigned according to this assignment, 

and if not, it can be rejected, since all larger indices leading to assignments will result 

in even higher opportunity costs, as implied by Proposition 1. Therefore, due to Proposition 1, 

the Bellman equation  can be reformulated as follows, making it easier to identify a spe-

cific request’s assignment:  

*q

*q q

(5)

   (6)        1AH AH AH
k k k , *

k

V ,t t p V ,t V ,t


    qX X

 
1X

 8

with 1 sq ,...,q  q   0
ll l k q l lq min q r | x q m l ,...,s 1       and  and the boundary 

conditions  0 0AHV , X  for , and X 0  0AHV ,  X  otherwise.  

Specifically, the minimization term from (5) right before the opportunity cost is not needed, 

since the most valuable assignment q  can be figured out without having to evaluate several 

future revenue-to-goes. Note that in the formulation, in case that there is no capacity left on 

one of the required flight legs , the assignment is simply set to . The opportunity 

cost calculation will lead to an infinite value in this case anyway, such that the request will 

not be accepted. 

kl lq m 

The monotonicity property stated by Proposition 1 is strongly related to the assumption that 

legwise upgrading is allowed (see Section 1). Specifically, the monotonicity of opportunity 

cost does not necessarily hold if only productwise upgrading is allowed, which technically 

implies that the assignment vector  in  and  is restricted to  1

T

sq ,...,qq 
1 2

(5) (6)

sq q ... q   . This can be shown by the following simple and intuitive counter-example:  

Counterexample for product-wise upgrading. We consider 3 flight legs and 2 compart-

ments with  for 1rlc   1 2 3l , ,  and  1 2r , . The booking horizon consists of  peri-

ods. With 100% probability, there will be a request for a ticket 

5T 

4k   – which is an economy 

class ticket (compartment 1) requiring all 3 legs – in period 4 (  44 1 ). In the following 

periods, there will be requests for the single-leg tickets 1 2k , 3,  guaranteeing business class 

transportation (compartment 2) on flight leg 1, 2, and 3 respectively, with probability 100% 

each ( ). The related prices are    3 23 2   1 1 1 1 2 p3 100p p   € and €. 

In case there were no other incoming requests, the resulting optimal solution would be to ac-

cept all requests for products , leading to an overall revenue of 500€ (see Figure 1, 

4p  200

1k ,2 3 4, ,
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left illustrations). We now consider that in period 5, there is a request for ticket , which 

is a compartment 1 (economy class) single-leg ticket for leg 2. Now we calculate this re-

quest’s opportunity cost depending on the assignment, given that only productwise upgrading 

is allowed (Figure 1, upper row): 

5k 

 If the request is accepted and assigned to compartment 1, this will cause the opportunity 

cost 0 €, because the future ticket 4 request requiring capacity on all 

three legs would no longer be accepted (see Figure 1, center illustration of upper row). In 

particular, upgrading the ticket 4 request would not make sense as this would lead to an 

opportunity cost of 300€ because all other future requests could no longer be accepted. 

   5 1 5 20AH
, , V ,  C

 If the current request for 5k  is assigned to compartment 2, this will only cause opportu-

nity cost of 100 €, owing to the fact that the future request for product 3 

could no longer be accepted (see Figure 1, right illustration of upper row).  
 5 2

AH
, , V ,  C 5

Figure 1: Productwise vs. legwise upgrading (Example 1) 

Leg 1

Business
class 

Economy
class

Leg 2 Leg 3

100€

200€

Leg 1 Leg 2 Leg 3

100€

Req
5

Leg 1 Leg 2 Leg 3

100€
Req

5

200€

Assignment of request 5 
to economy class

Assignment of request 5 
to business class

Leg 1

Business
class 

Economy
class

Leg 2 Leg 3

100€

200€

Leg 1 Leg 2 Leg 3

100€

Req
5

Leg 1 Leg 2 Leg 3

100€
Req

5

200€

Assignment of request 5 
to economy class

Assignment of request 5 
to business class

200€

Productwise upgrading

Legwise upgrading

Capacity occupation 
without request 5

Capacity occupation 
without request 5  

Since , monotonicity clearly does not hold in this example. 

By contrast, if legwise upgrading were allowed (Figure 1, lower row), assigning the ticket 5 

request to compartment 1 would only cause opportunity cost of 100€, such that monotonicity 

would hold again. In particular, the future ticket 4 request could be upgraded exclusively on 

leg 2, such that only the request for product 

      5 1 5 25AH AH
, , , ,V , V ,     C 5C

2k   with revenue 100€ would not be acceptable 

in the future. 
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3.3 Formal equivalence of ad hoc upgrading and postponement upgrading in 
airline revenue management 

Finally, to relate the values of models  and , similar to the single-leg case investigated 

by Steinhardt and Gönsch (2012), we use the following definition: 

(4) (5)

Definition 1. Given a vector of capacity X  and a vector of commitments  with 

, let  be the set containing all feasible allocations of commitments Y  on ca-

pacity . For each 

Y

 , X Y 

X

XY

s XY , let  be the ( s )H m s  matrix of remaining capacity after alloca-

tion and let   ( s ) | s H  XYXY  
be the set of all possible remaining capacity matrices. 

Then, we define the function  : 0
m s   as follows ( 0

m s  is the set of all  matrices of 

nonnegative integer values): 

m s

  
( s )

( s )
rl

r ,l

, arg max r h


 
 

 


XYH

X Y  



.     

The intuition of  , X Y  is as follows: The function returns a matrix of free capacity that 

remains after the allocation of the given commitments Y  on the given capacity . The ma-

trix is chosen such that, on each flight leg, compartments with a larger number in the upgrade 

hierarchy are preferably kept free whenever possible. Within the maximization, this is techni-

cally achieved by weighting each compartment’s remaining capacity with its index in the up-

grade hierarchy on each flight leg. Algorithmically, a feasible allocation leading to 

X

 , X Y , 

given , can be obtained by successively moving up the compartment hierarchy from 

 on each flight leg l  allocating capacity for the commitments rly  low in the hi-

erarchy as possible. Using Definition 1, the relationship between models ( and  can be 

stated as follows: 

 ,X Y

,m


as1r ,
 

4) (5)

Proposition 2.    PP AHV , ,t V , ,tX Y X Y    for all   t , , X Y 

Proof. The idea behind the proof is that if requests that would have led to commitments  in 

the postponement variant have been accepted, the free capacity is 

Y

 , X Y  – independent of 

the order in which the requests have arrived. First, we show that the postponement mechanism 

and the ad-hoc variant with free capacity  , X Y  have an identical set of feasible decisions 

(regarding both acceptance and upgrading). By induction over , we then show the equiva-

lence of the value functions as stated in Proposition 2. The complete proof is given in the 

Online Appendix A.2.  

t

From Proposition 2, it follows that    PP AHV , ,T V ,TC 0 C  because . Thus, 

Proposition 2 implies the equivalence of models  and  in the setting under consideration. 

This has the important implication that in airline revenue management, at least technically, 

 ,C C 0

(4) (5)

 10
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upgrades can be decided at the time of sale without any loss in flexibility and in overall reve-

nue. Note that this result generalizes results obtained for the single-leg case from our earlier 

work in Steinhardt and Gönsch (2012) to airline networks. The advantage of the ad hoc up-

grading formulation is that due to the resource-based state space, adequate dynamic pro-

gramming decomposition methods can straightforwardly be constructed (see Section 5.1.1).  

4 Reformulation 2: Surrogate upgrading 

4.1 Model formulation 

The idea of the second reformulation is adapted from linear programing-based production 

planning with alternative machine types (see Leachman and Carmon 1992). On each leg, we 

define an artificial “surrogate” resource for each physical compartment. This artificial re-

source sums up the available capacity of the corresponding compartment and all higher com-

partments. Thus, the artificial resource comprises the maximum total capacity that could be 

used to fulfill requests concerning the compartment, including upgrade options. A specific 

product now simultaneously consumes capacity on each artificial resource equal to or lower 

than the requested compartment.  illustrates this transformation by an example with 

three compartments on a single leg, comparing it with the ad hoc upgrading reformulation 

presented in Section 3. Within ad hoc upgrading, which is based on the original product and 

resource definitions, we consider the physical compartments’ capacity separately and, for 

each incoming request, an OR decision must be made; that is, for example, a business class 

request can either be fulfilled with the business class compartment OR with a first class com-

partment (Figure 2, top). Within surrogate upgrading, which is based on transformed product 

and resource definitions, this disjunction is technically replaced by a conjunction; that is, for 

example, a business class request needs one unit from overall capacity (the surrogate econ-

omy class resource) AND one unit of capacity in the surrogate business class resource (lower 

part of Figure 2). 

Figure 2
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Figure 2: Modeling upgrades with artificial surrogate resources 

Transformation

Business
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To formalize the idea, let  denote the X m s  matrix of the artificial compartments’ capacity. 

For a given matrix of remaining capacity , X X  is obtained by applying the following trans-

formation function :  X

Definition 2.  Given a vector of remaining capacity , we define the function X

 :  as follows: (  is the set of all 0
m s m s  0


0
m s m s  matrices of nonnegative integer val-

ues): 

   r lrl
r r

x 


 X .     

In the transformed problem,  is the initial artificial compartments’ capacity matrix. 

Furthermore, let  denote the 

  C C

m( k )A s  artificial consumption matrix of a product  with 

 and 

k

1( k )
rl ka l r       k  r ( k )

rla  0   otherwise. The expected revenue-to-go is denoted 

by  SurrV ,tX

   Surr
kV ',t V ',t 

 
with t remaining periods and remaining artificial capacity . The opportunity 

cost of accepting a request for product  can then be defined as 

. The expected revenue-to-go can be calculated 

by the Bellman equation 

X

k
  ,tASurrV ' 

1X

kXSurrX X

 
 

 (7)         1Surr Surr Surr
k k k

k

V ',t t p V ',t V ',t


   X X

 0 0SurrV ',  X ' X 0

 12

with the boundary conditions  for , and 0,V 'X    otherwise.  

Note that in surrogate upgrading, regarding the original meaning of the problem, compared to 

ad hoc upgrading, upgrade decisions are not made immediately after booking but, similar to 

postponement upgrading, at the end of the booking horizon. However, compared to post-

ponement upgrading, there is no explicit storage of commitments and no separate feasibility 
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problem must be solved, since feasibility is captured by the definition of the artificial re-

sources and product resource consumption.  

Analogously to Section 3, Table 3 contains an overview of the notation newly introduced in 

Section 4. 

Table 3: Additional notation introduced in Section 4 
 

 ,V  X X

X
( )k

:  matrix of artificial compart-
ments’ capacity corresponding to remaining ca-
pacity  

Surr tX : optimal expected revenue-to-go from 
state  , tX  onwards (Surrogate upgrading for-
mulation) 

m s

m s  ,kV Surr t X : opportunity cost of selling one unit 
of product k  in state  , tX  

A :  artificial consumption matrix of a prod-
uct  k

 

4.2 Equivalence of surrogate upgrading and postponement upgrading in air-
line revenue management 

Based on Definition 2, the following relationship between models  and  can be estab-

lished: 

(4) (7)

Proposition 3.     PP SurrV , ,t V , X Y X Y t   for all   t , , X Y 

Proof. The complete proof given in Online Appendix A.3 can be outlined as follows. Analo-

gous to the proof of Proposition 2, it is first necessary to show that the same decisions are 

possible in the postponement and in the surrogate formulation. Here, this means that the same 

product requests can be accepted in both formulations. Using the definition of the feasibility 

problem  and some algebra, it is quite easy to show that all requests that can be accepted in 

the postponement formulation can also be accepted in the surrogate formulation. Showing that 

the inverse also holds is more cumbersome. To this end, we explicitly state a solution for the 

feasibility problem for every request that can be accepted in the surrogate formulation. To 

show the feasibility of this solution, we first consider constraints (2) and (3). Then, beginning 

with the highest compartment , we show that (1) holds by induction over . Finally, we 

use this to show the equivalence of the value functions as stated in Proposition 3 by induction 

over t . 



r m r

From Proposition 3, it follows that     PP SurrV , ,T V ,TC 0 C

'X

 because . 

Thus, Proposition 3 proves the equivalence of models (4) and (7) in the setting under consid-

eration. Interestingly, given transformed remaining capacity  and consumption matrices 

, the resulting Bellman equation for the capacity control problem given by (7) has the 

same form as the Bellman equation for traditional standard network revenue management 

without upgrades (see, e.g., Talluri and van Ryzin 2004, Chapter 3.2). Thus, by means of the 

     C C 0

( k )A

 13
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surrogate approach, the revenue management problem incorporating upgrades can be trans-

formed into an equivalent standard network revenue management problem without upgrades. 

Consequently, standard dynamic programming decomposition can straightforwardly be ap-

plied (see Section 5.1.2). 

5 Application and numerical results 
In this section, we apply dynamic programming decomposition techniques to the two model 

reformulations stated in the previous Sections 3 and 4. The idea of dynamic programming 

decomposition is to substitute the original multi-leg dynamic program with a number of single 

resource dynamic programs.  Network effects are heuristically captured via adjusted revenues 

derived from a linear programming formulation (see, e.g., Talluri and van Ryzin 2004, Chap-

ter 3.4.4).  As we will demonstrate, even though both formulations were proven to be equiva-

lent to the original postponement upgrading dynamic program presented in Section 2, depend-

ing on the formulation chosen as a starting point, different approximations are obtained when 

applying dynamic programming decomposition, with a corresponding potentially different 

revenue performance when used for capacity control. 

In Section 5.1, we show how the dynamic programming decomposition technique is applied 

to the models presented in the previous sections. In Sections 5.2 to 5.4, we computationally 

compare the revenue performance of the resulting approaches, using simulations based on a 

network structure taken from the literature as illustration. Specifically, we present the setting 

under consideration in Section 5.2, we perform a detailed analysis providing an intuition of 

when and why differences in revenue performances may generally arise in Section 5.3, and 

we place them in context in a discussion in Section 5.4. 

5.1 Application of dynamic programming decomposition 

5.1.1. Ad hoc upgrading 

The ad hoc upgrading dynamic program (5) can be decomposed according to a straightfor-

ward modification of the approach proposed by Steinhardt and Gönsch (2012) for product-

wise upgrading in the context of car rental revenue management. The starting point is the de-

terministic linear programming (DLP) formulation corresponding to the ad hoc upgrading 

dynamic program (5) (DLP-Upgrade): 

 14

z      (8)  
s k

DLP AH
k k

k r

V ,t max p

 

   q
q

X
1
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subject to 

 15

r

t k

   for all  and l   (9) l

s k

( kq l )
rl k rl

k r

a z x
 

  q
q 1

z D   for all     (10) 
s k

k k
r 

q
q 1

0kz q   for all  and
 

k s kr q 1    (11) 

The decision variables in this model are  for all products  and upgrade assignments 

, denoting with respect to each product , the number of requests planned for ac-

ceptance and upgrading to . Similar to the traditional DLP without upgrades, constraints (9) 

and (10) reflect the limitations in capacity and demand respectively, with  denoting the 

expected aggregated demand-to-come over the remaining periods . From solving DLP-

Upgrade, we obtain the optimal values 

kz q k

t ,

krs
 q 1 k

q

ktD

1,

rl  of the dual variables associated with the capacity 

constraints (9). If , we define 0rlx  rl   . 

Following Steinhardt and Gönsch (2012), a number of dynamic programs that each considers 

capacity only in one compartment on one flight leg are constructed. Specifically, for every 

compartment  and leg , we obtain a dynamic program that considers only the capacity r l

r lx    as follows: 

       

 

1

1

l

l ls k
k

( kq l )AH AH
r l r l k k q l r l r l r l r lkqr

k l

AH
r l r l

V x ,t t p min a V x ,t

V x ,t

  




           
  

   

  
          
 

 
q 1    (12) 

with the boundary conditions  0AH
r l r lV x ,    0  for , and 0r lx     0AH

r l r lV x ,       otherwise. 

The opportunity cost is defined as 

      l

l

( kq l )AH AH AH
r l r l r l r l r l r l r lkq

V x ,t V x ,t V x a ,t




                 .    (13) 

Formula  can be seen as a variant of  that considers capacity only in compartment r(12) (5)   

on leg l  ( r lx   ). Accordingly, opportunity cost  1AH
k V ,t q X  must be calculated approxi-

mately without knowing capacity on other legs and compartments. If a product  with as-

signment 

k

q  needs capacity on other legs and/or compartments, this is now captured by in-

creasing the opportunity cost on the considered compartment  on leg lr   
( ) with an approximation of the opportunity cost on these other 

legs/compartments used. More specifically, the values 

 r lV x   1
lkq

,t


AH
r l 

rl  of all legs and compartments re-

quired (except compartment r  on leg l  ) are summed up to calculate this approximation 

(  l( kq l
r la 

lq l

k

)
r l

l

   




  ).   Thus,   compared   to   (5),   we   now   have    1tAHVk , q X   
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,t 

t

   1l

l l
k

( kq l ) AH
q l r l r l r l r lkq

l

a V x 


       


   


. 

Using (13), the total opportunity cost necessary to decide on the acceptance of requests is ap-

proximated as  

      (14)   


l l l
k

AH AH
k kq q l q l

l

V ,t V x ,


  q X

and a request for product  is accepted if and only if its revenue  exceeds the approxima-

tion of opportunity cost, that is,  

k kp

  1


l l l
k

AH
k kq q l q l

l

p V x ,t


   .     (15) 

Analogously to the previous sections,  gives an overview of the new notation. Table 4

Table 4: Additional notation introduced in Section 5 
 

 ,V ,V X DLP Surr t X : objective value of the DLP ad hoc 
model in state  ,tX   

kz

DLP AH t : objective value of the DLP ad hoc 
model in state  , tX   

kz q : contingent for product  with upgrade assign-
ments .  

k
q

: contingent for product   k

: optimal value of dual variable associated with 
leg  and compartment r  l



rl
ktD : expected aggregated demand-to-come over the 

remaining periods  , ,1t  ,rr
r l r l t   

l

SuV x : expected revenue-to-go from DP 
surrogate approximation considering capacity on-
ly on leg   in compartment  r 



: optimal value of the dual variable associated 
with leg l  and compartment  

rl
r





 ,r l r lV x   

l 

AHV x

kq
t

l

AH t : expected revenue-to-go from DP ad 
hoc approximation considering capacity only on 
leg  in compartment  r 

,
l

r l r l


    : opportunity cost from DP surro-
gate approximation considering capacity only on 
leg 

SurrV x

  in compartment  r 

 ,SurrV t,
kq

t

l



l
r l r l


    : opportunity cost from DP ad hoc 

approximation considering capacity only on leg 
 in compartment  r 

,AHV t X

k  Xq
k
: opportunity cost of selling one unit 

of product  in state  , tX  from DP surrogate 
approximation 

kq
k
: opportunity cost of selling one unit 

of product  in state  , tX  from DP ad hoc ap-
proximation 

 

5.1.2. Surrogate upgrading 

As discussed in Section 4, the surrogate upgrading dynamic program (7) corresponds to a 

standard network revenue management dynamic program and the standard dynamic pro-

gramming decomposition as described, e.g., in Talluri and van Ryzin 2004, Chapter 3.4.4, can 

be used. Again, the starting point for the decomposition is the deterministic linear program-

ming (DLP) formulation. We call this formulation DLP-Surrogate to indicate the derivation 

from (7), although it is a standard network revenue management DLP formulation with re-

maining capacity  and consumption matrices  for all products:   X X ( k )A
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p z

r

      (16)  DLP Surr
k k

k

V ,t max   X

subject to 

   for all  and l   (17) 

(17)

( k )
rl k rl

k

a z x
k ktz D   for all     (18) 

(18)

k

   for all     (19) 0kz  k

The decision variables in this model are  for all products , denoting for each product k  

the number of requests planned for acceptance. Constraints  and  reflect the limita-

tions in capacity and demand, respectively, with  denoting the expected aggregated de-

mand-to-come over the remaining periods . From solving DLP-Surrogate, we obtain 

the optimal values 

kz k

ktD

1t , ,

rl   of the dual variables associated with the capacity constraints (17). If 

, we define 0rlx  rl    . 

Next, the standard approach involves constructing independent dynamic programs for each 

resource considering only this resource’s capacity (see, e.g., Talluri and van Ryzin 2004 for a 

detailed explanation). Straightforwardly, this means constructing dynamic programs that each 

consider only one surrogate resource’s capacity in our context. For the surrogate resource 

corresponding to compartment  on leg lr   (that is, summing up capacity in all compartments 

 on leg ), we formulate a dynamic program that considers only the capacity r r l r lx    as 

follows: 

     (20) 
     

 

1

1

Surr ( k ) ( k ) Surr
r l r l k k rl rl r l r l k r l r l

k l ,r

Surr
r l r l

V x ,t t p a a V x ,t

V x ,t

  


           

   

 
      

 
 

   

with the boundary conditions  0r l r lV x ,    0  for 0r lx    , and  0r l r lV x ,     Surr Surr  otherwise. 

In , the term 
l ,r

 (20) ( k
k rp a ) ( k )

l rl r l r la       is the adjusted revenue of product  for the surro-

gate resource corresponding to compartment r

k

  on leg l , capturing the value of capacity con-

sumed on other surrogate resources by the shadow prices rl  . The opportunity cost is defined 

as 

      Surr Surr Surr ( k )
k r l r l r l r l r l r l r lV x ,t V x ,t V x a ,t                  .    (21) 

Using (21), the total opportunity cost necessary to decide on the acceptance of requests is ap-

proximated as  

    


l
k k

Surr Surr
k k r q l

r r l

V ,t V x 
 

  X l ,t      (22) 
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and, again, a request for product  is accepted if and only if its revenue  exceeds the ap-

proximation of opportunity cost, that is, 

k kp

 18

,t .     (23)  1


l
k k

Surr
k k r l q l

r r l

p V x 
 

  

5.2 Simulation experiment design 

The numerical experiments we conduct are based on a network structure taken from the litera-

ture that was originally proposed by Liu and van Ryzin (2008, Section 7.2) and that has been 

used as basis for a number of follow-up studies (see, e.g., Miranda Bront et al. 2009; Stein-

hardt and Gönsch, 2012).  

Figure 3: Airline network 

A H

Leg 1 (100 seats; morning)

Leg 2 (150 seats; morning)

Leg 3 (150 seats; afternoon)

C

B

 

There are four cities A, B, C, and H that are connected by seven flight legs with capacities of 

between 80 and 150 seats (see Figure 3). On each flight leg, three compartments are available. 

60% of the seats are economy class, 30% are business class, and 10% are first class. In addi-

tion to the seven single-leg flights, customers can also travel on four connecting itineraries: B 

can be reached from A via the hub H in the morning (legs 2 & 4) and in the afternoon (legs 3 

& 5). Likewise, C can be reached from A via the hub H in the morning (legs 2 & 6) and in the 

afternoon (legs 3 & 7). Leg 1 is a direct flight from A to B which we refer to as “direct” in 

what follows. Each of the compartments can be booked in an expensive (full fare) and a dis-

counted booking class. The prices depend on the itinerary type and are provided in Table 5. 

Thus, in our example, a total of 66 products are available. 
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Table 5: Booking classes with prices 

A (first) F (first) C (business) P (business) Y (eco) Q (eco)
single leg 800 600 500 300 400 200
connect 1,400 1,050 875 525 700 350
direct (leg 1) 2,000 1,500 1,250 750 1,000 500  

In case that total expected demand equals the capacity on all flights, expected demand is cal-

culated as follows: demand for each connecting itinerary equals 30% of its total capacity and 

demand for the single leg flights is set equal to the remaining capacity.  

To model different situations regarding demand for the compartments, we consider two realis-

tic demand patterns. In the pattern Balanced, demand is balanced in the sense that expected 

demand is proportional to the compartment sizes, that is, on each itinerary, 60% of demand is 

for economy class, 30% is for business class, and 10% is for first class. By contrast, in Stron-

gEco we have a very strong demand of 80% for economy and only 15% for business class and 

5% for first class. In both demand patterns, 70% of each compartment’s customers request the 

cheaper booking class (that is, F, P, or Q) and the remaining 30% buy the expensive one (A, 

C, or Y). 

In line with our model assumptions from Section 2.1, the booking process is discretized into 

 periods using a standard procedure (see, e.g., Subramanian et al. 1999, Section 3.2.1). We 

assume the booking process to be time-homogeneous and the time-independent arrival rate is 

calculated accordingly from the expected demand value: 

T

  kT
k

Dt T t  . Furthermore, the 

total number of time periods is calculated so that there is at most one incoming customer re-

quest in each period:   1k
k

t  . 

We fix the number of simulation runs, each representing a stream of product requests, for all 

considered scenarios to 40, and, depending on the matter of interest, report resulting aggre-

gated performance indicators along with the corresponding confidence levels. If different con-

trol methods are compared, we use the same set of 40 streams of product requests for all of 

them. Furthermore, we generate additional scenarios by varying the demand intensity in ad-

vance in order to simulate different load factors. Therefore, before splitting demand into sin-

gle leg and connecting itinerary demand as described above, we scale the expected demand 

using a parameter  0.9,1.0,...,1.5  , where 1   corresponds to the case that expected 

demand equals capacity on all flights. Thus, by combining the six load factors with the three 

demand patterns, we obtain 18 scenarios. 

The following alternative control mechanisms were implemented to decide on the acceptance 

of product requests in each scenario: 
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 DPD-Upgrade is the dynamic programming decomposition described in Section 5.1.1 that 

directly works with the problem formulation with upgrades and uses (15) to decide on the 

acceptance of requests based on approximated opportunity cost. 

 DPD-Surrogate is the dynamic programming decomposition (Section 5.1.2) where the 

revenue management problem with upgrades is first transformed to a network problem 

without upgrades before a standard dynamic programming decomposition is applied. 

Here, (23) is used for the acceptance decisions. 

 SUCC is based on successive planning and mimics an upgrade control that is currently 

widely used in commercial revenue management software systems. In the first step, vir-

tual capacities are determined for each of the three compartments by estimating in ad-

vance the number of upgrades that must be performed. For example, if 10 upgrades from 

economy class to business class are required on a certain leg, the capacity of business 

class is reduced by 10, and that of economy class is increased by the same number. To re-

alize this step, we use the primal solution of model (8)-(11) and adjust the different com-

partments’ capacities according to the optimal values of the decision variables. In the sec-

ond step, the resulting virtual capacity vector is fed into a traditional control method with-

out upgrade capabilities, which then performs capacity control over time. In our study, we 

use a traditional dynamic programming decomposition (the same approach as (16)-(23), 

but applied to the original problem and using virtual capacities instead of modeling up-

grades directly or via surrogate resources) to determine opportunity cost and decide on the 

acceptance of requests. Both steps are iterated three times during the control process, that 

is, the virtual capacities are twice recalculated according to the current demand informa-

tion and capacity load. 

 FCFS implements a very simple first-come-first-served control mechanism, which is 

widely used in the literature to judge the performance of control approaches. Requests are 

accepted as long as they can be fulfilled by the remaining capacity. Upgrades are under-

taken if necessary, moving up the upgrade hierarchy successively. 

 ExPost calculates the perfect hindsight optimal revenue that can be obtained if full infor-

mation on the incoming demand is used. For each simulation run, a model of type (8)-(11) 

is solved, optimally allocating capacity to the current demand stream’s requests, which are 

used as the RHS of constraints  instead of the forecasted demand. The obtained reve-

nue is an upper bound for all the other methods’ output. 

(10)
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5.3 Performance results 

Figure 4 shows the revenues obtained by the control mechanisms for the Balanced demand 

pattern relative to ExPost’s perfect hindsight revenue. Regarding load factors 1.1  , the 

results show what is intuitively expected: DPD-Surrogate’s and DPD-Upgrade’s revenues 

differ only slightly, with no clear advantage for any mechanism. Both significantly outper-

form SUCC, which in turn significantly outperforms FCFS in all scenarios with 1.2  . 

Please note that here and in the remainder of this paper, we always refer to the 99% confi-

dence level when using the term significant (see Table A.1 in Appendix A.4 for a detailed 

comparison with confidence intervals). Furthermore, by and large, all mechanisms’ revenues 

decline in   as capacity control is more difficult – and important – for scarcer capacities. 

However, for 1.0  , DPD-Surrogate clearly yields the lowest revenue of all mechanisms. A 

closer investigation of the demand streams shows that this is because, compared to the other 

approaches, DPD-Surrogate initially rejects more requests for the cheap first (F) and business 

(P) booking classes. For 0.9  , for example, this leads to a load of only 80.5% compared to 

83% for DPD-Upgrade, even though capacity is not scarce in expectation.  

Figure 4: Performance of the control methods relative to ExPost (Balanced demand) 

90%

92%

94%

96%

98%

100%

1.51,41,31,21,110,9

re
ve

nu
e

load factor a

DPD-Upgrade
DPD-Surrogate
SUCC
FCFS

 

DPD-Surrogate’s behavior can be explained as follows: The weak expected demand is re-

flected in low shadow prices obtained from the DLP-Surrogate, which are even 0 in this case 

because capacity is not scarce. Thus, according to equation  (20), the adjusted revenues used 

in the dynamic programs for the surrogate resources are equal to the products’ prices. This 
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can have the following two effects if expected demand is smaller than capacity, but not too 

weak:  

 First, on a surrogate resource that aggregates multiple compartments’ capacity, the oppor-

tunity cost can exceed the prices of the lowest compartment’s products even if no upgrade 

would be necessary to accept the request, because, since the dynamic program does not 

consider compartment restrictions, it also considers the possibility to accept more requests 

than capacity in higher compartments. When the control mechanism actually accepts re-

quests, downgrades are not performed and capacity might remain unused.  

 Second, regarding products belonging to higher compartments, the effect of high opportu-

nity cost is even more severe. Since every dynamic program uses the full price, opportu-

nity cost will be close to the cheapest product’s price if expected demand almost equals 

capacity, because the probability of selling the last unit of capacity is fairly high. How-

ever, in this case, from condition (23) it follows that a product from a higher compart-

ment, requiring capacity on several surrogate resources on each leg used would require a 

revenue exceeding the sum of these resources’ opportunity cost to be sold. However, this 

is often not the case for classes F and P, because the true opportunity costs are clearly 

overestimated, leading to the rejection of such requests.  

Note that the described effect is relatively more severe for 1.0  , because the shadow prices 

obtained from the DLP-Surrogate are still 0, while demand is even stronger than in the case 

of 0.9  , which explains the kink in the graph.  

Overall, DPD-Surrogate’s behavior is clearly suboptimal and leads to counter-intuitive con-

trol decisions, but technically follows from the general construction of the standard dynamic 

programming decomposition approach. However, in the Balanced demand pattern this is only 

the case for very low load factors which are unlikely to exist in revenue management settings 

in reality.  DPD-Upgrade does not suffer from comparable drawbacks in this case. While low 

shadow prices reflecting abundant capacity are also obtained from DLP-Upgrade, this – how-

ever – correctly signals lower compartments’ dynamic programs that there is sufficient capac-

ity for upgrading, decreasing opportunity cost and leading to the acceptance of requests, as 

can be seen from the definition of the lower compartments’ dynamic program given by (12). 

Note that independently of specific values of the given load factors, similar drawbacks of 

DPD-Surrogate arising from the DLP’s shadow prices also occur in unbalanced patterns with 

comparatively weak demand for economy class. However, such patterns are also quite unreal-

istic in practice, as they could conceivably only arise through gross mispricing of the different 

types of products, and thus are unlikely to persist. 
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Next, we consider the StrongEco demand pattern; the results are displayed in Figure 5. Again, 

the dynamic programming decomposition approaches significantly outperform the SUCC 

mechanism. However, regarding DPD-Surrogate and DPD-Upgrade, the picture is different 

to the Balanced demand pattern. Both mechanisms still yield similar revenues for 0.9   

where capacity control is not really necessary, and even FCFS obtains a similar revenue, but 

DPD-Upgrade’s revenue quickly declines in the load factor to approximately 92%, whereas 

DPD-Surrogate manages to stay more constant and yields approximately 96.5% of ExPost for 

1.5  . 

A closer look at this load factor shows that DPD-Upgrade accepts more requests (71%) and 

performs more upgrades (18%) than DPD-Surrogate, at 68% and 13% respectively. This is 

because the strong economy class demand comes along with a weak demand for business 

class and first class, leading to low shadow prices for these compartments, which are mostly 

even 0 here. Thus, in DPD-Upgrade, upgrading is considered cheap by the economy class 

dynamic programs, leading to the impression of an unlimited capacity, low opportunity cost 

(which can never exceed the price of upgrading), and the acceptance of all requests for econ-

omy class products. If, in a demand stream, economy class capacity becomes scarce, it might 

be better to upgrade a Y request than to reject it; but this only partially counteracts the accep-

tance of too many low value requests, since this upgrade might displace more expensive re-

quests for higher compartments that arrive later. 

By contrast, DPD-Surrogate contains a dynamic program modeling the capacity of a surro-

gate resource reflecting total capacity for every leg. These dynamic programs perfectly cap-

ture the tradeoff between requests for lower compartments and requests for higher ones, as 

long as compartment restrictions are not binding, which would be the case in patterns with 

weak economy demand. Thus, DPD-Surrogate does not suffer from the acceptance of too 

many economy products in the situation described above.  

Note that all mentioned effects are relevant in the sense that they are not restricted to the cor-

responding pathologic example used to illustrate them, but generally occur if the mentioned 

conditions regarding the demand situation prevail. 
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Figure 5: Performance of the control methods relative to ExPost (StrongEco demand) 
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5.4 Discussion 

DPD-Upgrade and DPD-Surrogate both decompose the computationally intractable multi-

class network revenue management problem, using a linear program to obtain easy-to-

calculate dynamic programs considering only a single resource’s capacity. However, compar-

ing them leads to ambiguous results. What can be stated with certainty is that there are situa-

tions where these mechanisms’ revenues differ significantly. But for each mechanism, there 

are situations of superiority and of near-equivalence. These fluctuations in revenue are unsur-

prising, since both decompositions are based on the DLP’s dual solution, which often strongly 

depends on the exact demand situation and the resulting capacity scarcity. Nonetheless, their 

behavior is rooted in the very different approaches to capture the possibility of upgrading. The 

single-resource dynamic programs (12) used in DPD-Upgrade integrate upgrading via the 

possibility of assigning a request to a resource with a capacity that is not modeled and is thus 

technically considered unrestricted, but is somehow captured via the corresponding dual price 

that decreases the product’s revenue in the case of upgrading. This approach suffers if the 

dual values do not adequately reflect the value of higher compartments’ capacity. By contrast, 

DPD-Surrogate accounts for all capacity restrictions. However, the integration of upgrading 

via the construction of artificial surrogate resources increases the complexity of the network 

structure, because even single-leg products for higher compartments now need capacity on 

multiple surrogate resources. This more complex network is more vulnerable to fluctuations 

in the dual prices used to decompose it into the single-resource dynamic programs (20). How-
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ever, it turns out that these vulnerabilities of DPD-Surrogate are only prevalent in situations 

that are unlikely to persist in revenue management practice, that is, when capacity is not 

scarce at all or when economy demand is comparatively weak. 

A standard way to mitigate the sensitivity of DLP’s dual values regarding demand and capac-

ity situations is to resolve the model during the booking horizon. This usually improves reve-

nues at the cost of an increased runtime resulting from the recalculation of all the dynamic 

programs after obtaining the new dual values. We also tried this and found that revenues 

mostly improve slightly, but sometimes also decline. The extreme outliers where a mecha-

nism especially suffers from ‘bad’ dual values become less severe. For example, the biggest 

difference between DPD-Upgrade and DPD-Surrogate in the Balanced demand pattern at 

1.0   declines from almost exactly 4% to 3%. Since this effect of resolving is standard and 

does not change the overall message, we do not report the results here. 

SUCC mimics the traditional way of incorporating upgrade decisions in airline revenue man-

agement systems. It also ‘decomposes’ the original problem in the sense that the DLP’s pri-

mal solution is used to explicitly reserve seats in advance for upgrades based on the expected 

demand. Compared to the other approaches, SUCC provides very stable but mostly inferior 

revenues. This mirrors a well-known observation from standard revenue management, where 

capacity control policies based on a primal solution are usually less sensitive to changes in the 

demand forecast, but provide considerably lower revenues without sophisticated nesting struc-

tures allowing the acceptance of requests exceeding the expected values.  

6 Conclusions 
In this paper, we present two reformulations of the recently proposed dynamic programming 

model of airline network revenue management with integrated upgrade decision-making, 

namely the ad hoc upgrading formulation and the surrogate upgrading formulation. We derive 

a number of structural properties and insights, such as opportunity cost monotonicity of the ad 

hoc formulation which allows us to further simplify the procedure in the airline context, and a 

counter example why monotonicity does not hold in general for arbitrary industry settings 

with upgrades. Furthermore, the surrogate upgrading formulation is formally equivalent to a 

standard dynamic programming formulation without upgrades which many revenue manage-

ment systems are based on, with only the model parameters having to be adapted. The most 

important aspect, however, is that we are able to show that both formulations are formally 

equivalent to the original model and thus really are lossless reformulations of it in the airline 

context. Even more, opposed to the original model, both reformulations are suited for apply-
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ing dynamic programming decomposition, which is the most common technique to handle 

real-world problem sizes in theory as well as in practical applications. This is an important 

result, as until now, it has not yet been clear how to make the dynamic programming model 

with integrated upgrade decision-making applicable in practice. However, depending on the 

chosen reformulation, the result of applying dynamic programming decomposition differs, 

such that one could also expect different results in terms of attainable profit when the ap-

proaches are applied in practice. To investigate potential differences, we perform a number of 

computational experiments based on an extract from an airline network that has been adapted 

from the literature. Depending on the specific demand situation, we observe large revenue 

differences in some cases. This is because the approaches are strongly dependent on the qual-

ity of the used shadow prices from the corresponding DLP. For example, low shadow prices 

in the decomposition of the ad hoc upgrading model formulation lead to cheap upgrade oppor-

tunities, which might in turn result in too much low value demand being accepted. Addition-

ally, many other effects are identified and discussed.  

Based our results, we derive the following managerial implications:  

 Similar to standard capacity control without upgrades, both proposed decomposition 

approaches are applicable to realistic problem sizes owing to their one-dimensionality 

regarding capacity. 

 Our results indicate that both decomposition approaches significantly outperform suc-

cessive planning as the de facto industry standard, given real world revenue manage-

ment assumptions like scarce capacity. 

 Under conditions that are usually given in real world revenue management practice, 

the surrogate upgrading decomposition performs at least as good as or better than the 

ad hoc upgrading decomposition. 

 The surrogate approach allows successfully addressing upgrade settings with standard 

methods for revenue management without upgrades, simply by adequately defining ar-

tificial resources and changing the different tickets’ consumption values, without hav-

ing to modify the logic of the existing revenue management systems. However, the 

modification of the system’s input comes at the cost of the results no longer being 

readily interpretable. This needs to be taken into consideration when implementing the 

approach in practice. 

 In case of very weak overall demand compared to capacity as well as in case of a 

comparatively weak demand for economy class, the ad hoc upgrading decomposition 
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outperforms the surrogate upgrading decomposition. Even though those conditions are 

unlikely to persist in practice, this shows that the choice of the approach should 

strongly depend on which typical situations regarding for instance demand intensity 

are regularly experienced by the specific airline and what the prevalent upgrade ratio 

is.  

 The ad hoc upgrading approach is quite intuitive, because the dynamic programs di-

rectly incorporate the upgrade decision in terms of a disjunction and the results of ap-

plying the decomposition approach are readily interpretable. However, it must be con-

sidered that the logic of the existing revenue management systems needs to be 

changed slightly, since the disjunction must be integrated into the existing dynamic 

programming routines. 

Overall, both approaches proposed in this paper can be a meaningful alternative to the exist-

ing traditional successive planning approaches. Therefore, we strongly encourage airline prac-

titioners to implement and test the proposed approaches and explicitly investigate the revenue 

advantage over successive planning, as well as which of the decomposition approaches turns 

out to be more suited to their specific setting. 
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In the following Appendices A.1 to A.3, we present the proofs of the Propositions 1, 2, and 3 

stated in Sections 3 and 4 of the paper. Unless otherwise mentioned, we use the mathematical 

notation as defined in Sections 2 to 4. In Appendix A.4, we present an additional comparison 

of the revenues obtained with the different mechanisms in Section 5. 

A.1. Proof of proposition 1 

Proposition 1.    AH AH
k kV ,t V ,  q q'X X t ' for all k, t ,  with and . X 0

l lq l q lx ,x  kl  q q

Proof. The proof uses and generalizes the single-leg proof stated in Steinhardt and Gönsch 

(2012). To simplify the derivation without loss of generality, we assume concerning the value 

function (5) that if a request is accepted, the controller chooses the upgrade assignment with 

the smallest index on each flight leg if  1
1

AH
k

r
arg min V ,t

 s k

 q
q

X

n

 is not unique; that is, if there 

are several possible assignments with the same minimal opportunity cost. Furthermore, we 

reformulate the value function (5) by means of an s policy matrix  with 

 determined for each stage with the following meaning: if a request 

for product  arrives in the current time period, it will be denied if 

U

 0 1klu , ,...,m k ,l

k



l  with , and oth-

erwise accepted and upgraded to resource type  on flight leg l . The set 

0klu 

 Xklu   contains all 

policies  that are feasible with the remaining capacity U X and is formally defined by 

     0 1 0 kl( ku l )
kl kl kl k

l

|u , ,...,m k ,l u l u r l k
                  

    
X U A X .   (A.1) 

Then (5) can be rewritten as 

 
 

     
0 0

1 1 1


kl

kl kl

( ku l )AH AH AH
k k k

k|u l l k|u l

V ,t max t p V ,t t V ,t 
    

                
      

  
U X

X X A

 0 0AHV ,

 


X   (A.2) 

Xwith the boundary condition . 

From the definition of the opportunity cost, showing   AH AH
k kV ,t V  q q'X X

l( kq l ) ,t  X A

0t 

0 0l
 

,t  is equiva-

lent to showing 
l l

V ,
   

. We prove this inequality by 

induction over t . It holds for , because 

l l   
. Next, assume that the result holds for 

. We now show that it will then also hold for t.  

l( kq l )AH AHt V
   X A

0lq l ) ( kq l )AHV , V ,       X A( kAH X A

1t 

 2

Therefore, let us consider the optimal policies ( )qU  and ( )q'U

AH

 at stage t  for the problems 

 and 
l

V . We first restrict ourselves to the special 

case that  and  may only have different values on one single flight leg , that is, 

 and . We refer to this as the single-leg monotonicity. The problems can 

then be rewritten as V ,  and , 

l( kq l )AH

l

V ,
  
 

X A

q q

l lq q l l    q

t l( kq l )AH   X A

l

l( kq l ) (

l l 

 
 

X A

,t



t

 

lkq l )    
 

A

l

l q 
AH t l l( kq l ) ( kq l )

l l

V , 



     
  

X A A
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lrespectively. From the base case, it immediately follows that ( )* ( )*
kl klu u k ,l   q q . Now 

monotonicity can be shown componentwise for each of the terms that add up to the term 

within the outer brackets of , by relating the terms product by product. As the assign-

ments may only differ on leg , the argumentation completely follows the single-leg argu-

mentation by Steinhardt and Gönsch (2012, Online Appendix A.1) and is thus omitted here. It 

follows that the inductive step holds with respect to single-leg monotonicity, which can more 

generally be stated as follows for an arbitrary resource l ' : 

(A.2)

l

      AH ( kq l ) AH ( kql )V ,t V    X A X A , tt  ,  with  and .    (A.3) X 0qlx     q q q lx , 

Based on this, we now consider arbitrary assignments q

jq j ) A

( kqA

q and the hypothesis  

 .  (A.4) 

(A.4)

1l( kq l )

l j

,t j ,...,s
 

   
 

A

,t 

l l
( k( kq l ) ( kq l )AH

l l j

V ,t 

 

    
 

 X A X AAHV

AH



For ,  simplifies to 1j 

    (A.5) 

(A.5)

11

1

l l( kq l ) ( kq l ) )AH

l l

V ,t V 



          
    

 X A X A

which holds because it directly follows from single-leg monotonicity , which has already 

been shown to hold for . Specifically, the state of the corresponding two value functions in 

 only differs on the first flight leg. The inequality therefore directly follows from  

by setting , , 

(A.3)

(A.3)

t

( kA
1

lq l )

l

 X X
1q q 1q q  , and 1l  . 

Next, we show that if (A.4) holds for 1 1j s   , it also holds for : j

l l )

l j

,t
 

 
 



jl
( kq j ) ( kq l )

l j



 

 
 

 
 A A

1

1 1

jl l
( kq j )( kq l ) ( kq l ) ( kqAH AH

l l j

V ,t
 

   

      
 

 X A A A A
 

V X

l j 



l

jl l
( kq j )( kq l ) ( kq l ) ( kq l )AH AH

l j

V ,t V  
     

 
 X A A A l ,t

 

l j

X A

where the last inequality again follows from single-leg monotonicity, which becomes clear by 

setting 
1 1l j l j   

, l( kq l ) ( kq l )   X X A A
jq q , jq q , and l  j  in (A.3). Thus, it also 

holds for . It follows from this that the original inductive step also holds for the non-

single-leg case that completes the proof: 

j s

jl l
( kq s )( kq l ) ( kq l ) ( kq l )AH AH

l l s l

V ,t
        

    
  X A X A A A l ( kq l )AH
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A.2. Proof of proposition 2 

Proposition 2.    PP AHV , ,t V , ,tX Y X Y    for all   t , , X Y 

Proof. We first reformulate the value functions  PPV , ,X Y t  and  AHV ,X t


 by means of an 

 policy vector  with 1n  1

T

nu ,...,uu  0 1u , kk    determined for each stage with the 

following meaning: if a request for product  arrives in the current time period, it will be 

denied if , and accepted if 

k

0ku  1ku  . Thus, (4) can be rewritten as 

 
 

     
1 1

1 1k

PP

k k

( kr l )PP PP PP
k k k

, k|u l k|u

V , ,t max t p V , ,t t V , ,t 
  

   
         

    
  

u X Y
X Y X Y A X Y


1

k

   (A.6) 

with 

   0 1 k( kr l )PP
k k

l

, |u , , u
         

  
X Y u X Y A

  
 (A.7) 

and boundary condition  0 0PPV , , X Y . 

Regarding  AHV ,X t



 


X

, we use the reformulation (6) that is based on Proposition 1. To guaran-

tee that the policy u  is feasible with the remaining capacity X , the vector must satisfy 

     0 1 0 l
n ( kq l )AH

k s k
l

| , u r | k
                

    
u X u u q A X  1 .

 
 (A.8) 

Then, (6) can be rewritten as 

 
 

       0

1 1

1 1 1k ql
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k k

( k ,min q r |x ,l )AH AH AH
k k k

k|u l k|u

V ,t max t p V ,t t V ,t  

  

                
      

  
u X

X X A


(A.9) 

 0 0AHV , Xwith the boundary condition . Note that the  simpler term 

 0min q r | x
k ql

   can be used instead of  0in q r | x q m    l k ql

 AHu X

q m  as defined in 

(6).  The or-condition ( ) capturing the case that there is no capacity left on one of the 

required flights cannot occur here because only feasible policies 

q m 
  are considered. 

First note that 

     AH PP, , X Y X Y       (A.10) 

which follows directly from the single-leg proof in Steinhardt and Gönsch (2012, Online Ap-

pendix A.2). Specifically, let us consider an arbitrary vector   AH ,u X Y  with a vector 

component k with 1ku  . This implies that the request needs to be acceptable on each leg l , 

that is  , which corresponds exactly to the restriction imposed on the defi-( kql ) Akq r |  X

 4
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nition of  in the single-leg case. Conversely, let us consider an arbitrary vector  AH X

 ,X YPPu   with a vector component  with k 1ku  , that is, request  can be accepted in 

the postponement dynamic program. Then note that the definition of  is separable in the 

legs, that is, for each leg , the conditions 
r' r

k



l rr' l rlz y r  , 
r r

r r rl lz x r and  

must hold. This exactly corresponds to the definition of  in the single-leg case 

and thus to the restrictions imposed on the definition of 

0rr' lz 

r,r' r  

 PP ,X Y  therein. Therefore, the 

proof of (A.10) can be performed leg by leg. For each leg, it strictly follows the argumenta-

tion in the single-leg proof. 

Moreover, from the argumentation there we also have  

  k l( kr l ) kr l )

l l

, ,

 5

(     
 

 A X Y   0l k ql
r | AX Y  with  r min q , l   X Y . (A.11) 

We now perform induction over  to show Proposition 2. From (A.6), (A.9), and (A.10) it 

follows that the assumption holds for t

t

0  for all   , X Y : 
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1

PPV , ,X Y V .  

Next, we assume the result holds for t   and show that it holds for t . From , , 

and the inductive step for  we have 
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A.3. Proof of proposition 3 

Proposition 3.     PP SurrV , ,t V , X Y X Y t   for all   t , , X Y 

Proof. To show the equivalence of (4) and (7), we first reformulate both value functions, sim-

ilar to the proof of Proposition 2, by means of an 1n  policy vector  with  1

T

nu ,...,uu 
 0 1ku , 

k

k  determined for each stage with the following meaning: if a request for product 

 arrives in the current time period, it will be denied if 0ku  , and accepted if . Thus, 

we need to show that 

1ku 

   (A.12)  
 

  1


k

PP

( kr l )PP PP
k k k k

, k l

V , ,t max t u p V , u ,t


     
  

 
u X Y

X Y X Y A  

with  as defined in (A.7) and boundary condition  PP ,X Y  0 0V , , X Y  is equivalent to 

  
 

     1
 Surr

kSurr Surr
k k k k

' k

V ',t max t u p V ' u ,t


  
u X

X X A
 

 (A.13) 

with 

       01 kSurr
k k|u , ' u k      X u X A 0

 
   (A.14) 

and the boundary condition  0 0SurrV ', X . 

To prove that        PP SurrV , ,t V ,t t , ,  X Y X Y X Y  , we first show that the same 

product requests can be accepted in the postponement and in the surrogate formulation, that 

is,  

        PP Surr,   X Y X Y X Y ,  .
 

  (A.15) 

Note that given Proposition 2, this equation can be shown to follow from a proof stated in the 

context of static production planning models with machine flexibility by Leachman and Car-

mon (1992), which is based on reformulating the linear program as a transportation-type net-

work flow problem and then applying Gale's flow feasibility theorem to show its equivalence 

to a corresponding surrogate formulation. In what follows, we present an alternative proof for 

the special case of upgrades in the airline context. 

To prove (A.15), we need to show that      PP Surr,    u X Y u X

   k
ku k    X Y A 0

kA

Y , which is 

equivalent to 
l

. Regarding the compo-

nents of the right hand side of the latter equivalence, by using the definition of  and that 

of 

k( kr l )
k, u

   
 

X Y A


  (Definition 2), we obtain 

              k kkr l kr l kr lk
k k il il il k il k ilrlrl rli r i r

u u x y u u  
 

            X Y A X Y A A X Y A k rl. 
 (A.16) 

 6

Authors Accepted Manuscript



Thus, it suffices to show that    ,    X Y X Y 0   with  kkr l
ku Y Y A  to prove that 

the same requests can be accepted.   

We first show that   . From the definition of , we have  ,    X Y X Y 0  

  0ril ril rl irl rl
i r i r

, z r,i r,l | z y z x r,l
 

         X Y  . Now, we have: 

0ril ril rl irl rl
i r i r

z r,i r,l | z y z x r,l
 

          

0ril ril rl ir ' l r l
i r r r i r r r

z r,i r,l | z y z x r,l
     

          
 

0 0ril ril rl r l r l ir l
i r r r r r i r r r

z r,i r,l | z y x y z r,l  
      

              
 

0 0ril ril rl r l r l
i r r r r r

z r,i r,l | z y x y r,l 
   

           
 

 0 0ril ril rl r l r l
i r r r

z r,i r,l | z y x y 
 

         r,l  
 

 0
rl

r ,l   X Y  

   0 X Y ,
 

where the first implication is obtained by adding up the conditions irl rl
i r

z x


   for  all  com- 

partments higher than r , the second by using 
r r i r r r i r i r r r       

ir ' l r il ir lz z  


  z    and 

i r

 and the third by omitting 
i r r r

r il r lz y    ir lz 
 

  using that the ir lz   are nonnegative. The 

fourth implication is a simple rearrangement, the fifth directly follows from the definition of 

  (Definition 2) and the last states the result for the whole matrix.  

Next, we show that     ,    X Y 0 X Y  , which is equivalent to showing that the fea-

sibility problem (1)-(3) has a solution:   0ril ril rlz r,i r,l | z y
i r

        X Y 0 

rilz

 

i r

. To this end, we show that conditions (1)-(3) hold if we define the  values 

recursively as follows: 

irl rlz x r ,  l


 . 

 
  (A.17) 

1 1

m i

ril rl ri l il r il
i i r r

z min y z ; x z 
    

  
 

 

Thinking algorithmically, the intuition behind (A.17) is for each leg l  to assign commitments 

to compartments as high as possible. We start with the highest compartment  and first as-

sign commitments  that require this compartment. If capacity in compartment  remains 

unallocated, we move on to commitments 

m

mly m

1m ,ly 

1m

 that need at least the next lower compartment 

and assign them to compartment . When all the capacity of compartment is allocated, we 

move on to the next lower compartment 

m m

 . Again, we first assign the remaining commit-

ments  that need this compartment. If capacity in compartment  remains 

unallocated, we move on to commitments that need at least the next lower compartment and 

1m ,l my z  1,m,l 1m
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nts yet to be assigned (left term in the minimum) and the unallocated 

First, we need 

the m

have not yet been assigned. This continues until all commitments are assigned to compart-

ments. In doing so, the number of commitments assigned in each step is restricted by the 

number of commitme

capacity (right term). 

to show that constraints (3) are fulfilled given t finition, that is, 

0rilz r ,i r ,l   . To see this, note that both terms in inimum in (A.17) are nonnegative. 

erm is nonnegative for i m

his de

Clearly, the left t  . For i m , the definition (A.17) ensures that 

ril rl ri lz y z    from which the nonnegativity of the left term recursively follows. The right 

nonnegative for i r
i i

term is clearly  . For i r , the definition (A.17) ensures that 

constraints

ity constraint 

ril il r il
r r i

z x z 
 

    from which the nonnegativity of the right term recursively follows. 

We now turn to  (2). For all legs l  and co ents r , the corresponding capac-mpartm

irl rl
i r

z x


  (2) directly follows (A.17) because from there we have 

1 1 1
1 2 2

rl l i l rl r rl rl r rl
i r r r

z min y z ;x z x z
m r r

  
 

 ow that constrain s

 f

   

     
 

    which represents the capacity constraint. 

Finally, we must sh ts (1) are fulfilled. Here, we show for all leg  and

partments r  that 
1

m

rrl rl ri l
i r

z y z 
 

    which is equivalent to the minimum or rrlz  in (A.17) 

being on the left hand side. This me ns that capacity on compartment r  ( rl

 

 l  com-

a x ) is sufficient for 

all comm  compartme hat have not al er compart-

ments ( rl ri l
i r

y z 
 

  ). For rrlz , (A.17) simplifies to 
1

m

rrl rl ri l rl
i r

z m y z ; x
 

itments f ready been assig hor nt r  t ned to igh

1

m

in
   
 

 because the 

last sum can be omitted as its lower limit mation ( 1r of sum  ) is greater than its upper limit 

of summa n ( rtio ). Thus, the minimum in (A.17) for 

lent to 

 x   (A.18) 

, we h whether the left side or the right 

rrlz  being on the left hand side is equiva-

1i r   

To show that constraints (A.18) a lled distinguis

m

rl ri l rly z   , 

re fulfi

side of the minimum in definition (A.17) of 1r ,r ,lz  applies: 

 The left side applies if all commitment ent r  have already been assigned to 

higher compartments. Then, we have 1

m

r ,r ,l rlz y

s for compartm

2i r
ri lz   

 
  and, clearly, the left hand side 

 Let us now consider that the right side of (A.17) applies, that is, 

1 , and, thus,  

 r
 

  (A.19) 

of (A.18) is 0 for rrlz  and (A.18) obviously holds.  

 the case 
1

1 1
1

r

r ,r ,l r l r r l
r r

z x z


 
 

  
i

1
ril il r il

r r

z x z i
 

    , 
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which follows from the recursive definition of . Condition  is quite interpret-

able, because it simply states that, in case that not all commitments for compartment r  

have already been assigned to higher compartments, there is no free capacity on these 

higher compartments.  

(A.17) (A.19)

Now, for , we have r m

   X Y 0  
 

 0 r l r l
r r

x y l 


    
 

r l r l
r r r r

y x 
  

   l
 

1

i

r l ril r il r l il
r r i r r r r r i r

y z z x x  
       

 
     

 
    

i

l
 

1
r l ril r il rl

r r i r r r

y z z x l
 

         
      i
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1
rl r r l ril r il rl

r r r r i r r r

y z z
 

       z x  
       

 
 i

y z z z x        

l

l

x

 

1
rl r r l ril r il rl

r r r r i r i r r r
  

        

y z x r,l   
 

rl ril rl
i r  

where the third implication follows by subtracting 
r r i  1

i

ril r il il
r r

z z 
  

   
 i

  
r r m

m

r' l r' i l
i r'

y z 




 which is ob-

tained by rearranging terms and adding up (A.19) for all i . For , the 

same chain of implications applies, by inductively using 

1 1,..., 

  for  in the 

fifth implication.  

r' r

Thus, we have     , ,     X Y 0 X Y X Y   . Overall, this shows that 

     PP Surr, X Y X Y ,X Y holds for all . 

We now perform induction over t  to show        PP SurrV , ,t V ,t t , ,   X Y X Y X Y  

(Proposition 3). From , , and , it follows that the assumption holds for 

 for all 

(A.12) (A.13) (A.15)

0t    , X Y : 

    0 0 0PP SurrV , , V ,  X Y X Y .  

Next, we assume that the result holds for 1t   and show that it holds for t . In the following, 

the first equality is , the second follows from (A.15), the third is the inductive step for  

, the fourth follows from , and the fifth is : 

(A.12)

1t  (A.16) (A.13)

 

 
  1k

PP

PP

( kr l )PP
k k k k

, k l

V , ,t

max t u p V , u ,t


      
  

 
u X Y

X Y

X Y A
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  1


k

Surr

( kr l )PP
k k k k

k l

max t u p V , u ,t



 

      
  

 
u X Y

X Y A
 

  
       1



k

Surr

kr lSurr
k k k k il

k

max t u p V u ,t


 
 

   
u X Y

X Y A

      


 

 
  

1
Surr k k k k

k

max t u p V u ,t
 


u X Y

X Y A


  SurrV ,t X Y

kSurr     
 

 
□ 

A.4. Supplementary material 

In Table A.1, we present a detailed comparison of the revenues obtained with the different 

mechanisms. For example, the SUCC column contains the percentual revenue gain over 

SUCC. To avoid redundancy, only values for mechanisms that are usually superior to SUCC 

are reported here. For example, if DPD-Surrogate and SUCC are compared, the second line of 

the SUCC column contains the revenue gain of DPD-Surrogate over SUCC.  
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Table A.1: Relative performance at the 99% confidence level 
Balanced  demand, a=0.9 StrongEco demand, a=0.9

% over % over

DPD-Upgrade 0.09 ±0.19 1.77 ±0.78 2.26 ±0.72 DPD-Upgrade 0.01 ±0.01 6.20 ±1.25 -0.22 ±0.53
DPD-Surrogate -2.45 ±0.92 -0.82 ±1.14 DPD-Surrogate 0.23 ±0.53 6.44 ±1.03
SUCC -1.65 ±0.77 SUCC -5.84 ±1.18

Balanced  demand, a=1.0 StrongEco demand, a=1.0

% over % over

DPD-Upgrade 0.38 ±0.44 1.95 ±0.84 4.36 ±1.10 DPD-Upgrade 0.20 ±0.27 6.08 ±1.15 -0.75 ±0.57
DPD-Surrogate -3.81 ±1.11 -2.31 ±1.16 DPD-Surrogate 0.96 ±0.66 6.89 ±1.20
SUCC -1.53 ±0.87 SUCC -5.54 ±1.10

Balanced  demand, a=1.1 StrongEco demand, a=1.1

% over % over

DPD-Upgrade 2.00 ±0.58 2.60 ±0.78 0.01 ±0.47 DPD-Upgrade 0.59 ±0.26 4.79 ±0.96 -1.41 ±0.55
DPD-Surrogate 1.99 ±0.69 2.58 ±0.87 DPD-Surrogate 2.03 ±0.62 6.30 ±0.78
SUCC -0.58 ±0.91 SUCC -4.01 ±0.95

Balanced  demand, a=1.2 StrongEco demand, a=1.2

% over % over

DPD-Upgrade 3.10 ±0.66 1.99 ±0.73 0.09 ±0.49 DPD-Upgrade 1.11 ±0.39 3.05 ±1.09 -2.49 ±0.77
DPD-Surrogate 3.01 ±0.72 1.90 ±0.75 DPD-Surrogate 3.69 ±0.88 5.68 ±0.78
SUCC 1.09 ±0.89 SUCC -1.88 ±1.15

Balanced  demand, a=1.3 StrongEco demand, a=1.3

% over % over

DPD-Upgrade 4.55 ±0.76 1.66 ±0.73 -0.13 ±0.57 DPD-Upgrade 1.49 ±0.44 2.27 ±1.17 -3.83 ±0.77
DPD-Surrogate 4.70 ±0.84 1.79 ±0.75 DPD-Surrogate 5.53 ±2.41 6.34 ±0.90
SUCC 2.85 ±0.97 SUCC -0.76 ±1.15

Balanced  demand, a=1.4 StrongEco demand, a=1.4

% over % over

DPD-Upgrade 6.47 ±0.82 1.69 ±0.55 0.22 ±0.54 DPD-Upgrade 4.33 ±0.97 2.00 ±1.02 -3.37 ±0.86
DPD-Surrogate 6.24 ±0.99 1.47 ±0.67 DPD-Surrogate 7.98 ±1.07 5.56 ±0.73
SUCC 4.70 ±0.94 SUCC 2.29 ±1.14

Balanced  demand, a=1.5 StrongEco demand, a=1.5

% over % over

DPD-Upgrade 8.16 ±1.22 1.17 ±0.63 -0.06 ±0.60 DPD-Upgrade 5.54 ±0.92 0.84 ±1.18 -4.36 ±0.88
DPD-Surrogate 8.23 ±1.26 1.23 ±0.74 DPD-Surrogate 10.36 ±1.13 5.45 ±0.72
SUCC 6.91 ±1.24 SUCC 4.66 ±1.29

SUCC
DPD-

Surrogate
FCFS SUCC

DPD-
Surrogate

FCFS

FCFS SUCC
DPD-

Surrogate

FCFS SUCC
DPD-

Surrogate
SUCC

DPD-
Surrogate

FCFS

FCFS SUCC
DPD-

Surrogate

FCFS SUCC
DPD-

Surrogate

FCFS SUCC
DPD-

Surrogate
SUCC

DPD-
Surrogate

FCFS

FCFS SUCC
DPD-

Surrogate

FCFS SUCC
DPD-

Surrogate

FCFS SUCC
DPD-

Surrogate
SUCC

DPD-
Surrogate

FCFS

FCFS SUCC
DPD-

Surrogate
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