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Abstract

On most modern energy markets, electricity is traded in advance and a power producer has to commit

to deliver a certain amount of electricity some time before the actual delivery. This is especially difficult for

power producers with renewable energy sources that are stochastic (like wind and solar). Thus, short-term

electricity storages like batteries are used to increase flexibility. By contrast, long-term storages allow to

exploit price fluctuations over time, but have a comparably bad efficiency over short periods of time.

In this paper, we consider the decision problem of a power producer who sells electricity from wind

turbines on the continuous intraday market and possesses two storage devices: a battery and a hydrogen

based storage system. The problem is solved with a backwards approximate dynamic programming algorithm

with optimal computing budget allocation. Numerical results show the algorithm’s high solution quality.

Furthermore, tests on real-world data demonstrate the value of using both storage types and investigate the

effect of the storage parameters on profit.
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1 Introduction

Fossil resources are finite and their usage to produce electric energy causes CO2 emissions. These are just two

reasons why more and more countries strive to substitute conventional power plants with renewable energy

sources. However, these environmental advantages play a subordinate role for investors and renewable energy

sources must be able to compete with conventional energy sources in terms of profitability. In Germany, for

example, the pioneering Renewable Energies Law (Erneuerbare-Energien-Gesetz) allowed to feed renewable

energy into the grid at a fixed price, independent of the current supply and demand situation. As the share of

renewables rises, this system is no longer viable and power producers are increasingly encouraged to sell their

energy at new electricity markets. To date, these electricity markets exist in most developed countries. Due to

technical properties of the power grid, energy is traded in advance. That is, power producers have to sell their

energy some time (e.g., 30 minutes) before delivery.

However, production of renewable energy is usually stochastic (e.g., wind and solar). Thus, renewable power

producers currently start to use energy storages like batteries to exploit daily and weekly price fluctuations and

meet their delivery commitments. All batteries suffer from a certain self-discharge. For example, the widely-

used sodium sulfur batteries lose up to 20% of the energy stored per day and can only be used as short-term

storages. A particularly large project is located in Aomori, Japan (NGK Insulators, 2019) and aims at leveling

the output of a 51MW wind farm.

Another possibility to store electricity is electrolysis: An electrolyzer uses electricity to split water into

hydrogen and oxygen. Later, the hydrogen can be used to generate electricity via a fuel cell. In addition –

and this is the main difference to other electricity storage systems –, the hydrogen can be sold directly. Its

applications include fuel for hydrogen cars, the production of ammonia for fertilizer and feed into the natural

gas grid. This technology is used, for example, in Mainz, Germany (Energiepark Mainz, 2019). Such a hydrogen

based energy storage (HES) can be used as long-term storage because it has nearly zero self-discharge. Although

the electrolyzer and the fuel cell are expensive, the hydrogen storage itself is a simple and cheap gas tank.

Accordingly, an HES is suitable to store a large amount of energy over a long period of time and can help, for

example, to exploit seasonal effects of the electricity prices.

The problem considered in this paper is the following: The decision maker is a power producer with stochastic

production (e.g., wind or solar) who aims to maximize the net present value of his or her revenue. The power

producer trades energy in the continuous intraday market 30 minutes before delivery. To reduce the risk of

energy shortages (e.g., due weather changes) and to increase his or her flexibility, the power producer uses a

battery as short-term storage and an HES as long-term storage. While the battery can only be charged or

discharged, the hydrogen in the HES can be used to produce electricity again or be sold directly. At each point

in time, the power producer has to decide on the amount of energy to sell or buy, the amount of hydrogen to

sell, and where to store excess energy (if any). The planning horizon should consist of several months (i.e., we

will use one year in the numerical study) because the HES as a long-term storage can exploit the ups and downs

in the energy prices during the different seasons.

The structure of the considered virtual power plant (combination of production and storages) is visualized

in Figure 1. A formal description of the decision problem can be found in Section 4. To show the different

behavior of the power producer in different seasons and to show the benefits from using two storage technologies,

we consider a planning horizon of one year. The common modeling approaches for such a stochastic decision

problem with timely distributed decisions are multi-stage stochastic programming and dynamic programming.

Because the computational burden of multi-stage stochastic programs increases exponentially in the number of

decision stages, we model the problem as a dynamic program. For dynamic programs, the computational burden

increases only linearly. We consider the constraints of all components (e.g., maximum power of the electrolyzer

or maximum charge/discharge rates of the battery). Since the proposed dynamic program cannot be solved
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exactly and the state, action, and outcome spaces are multidimensional and continuous, we use approximate

dynamic programming (ADP) to solve this problem heuristically. More precisely, we use a backwards ADP

(BADP) algorithm where the values of the post-decision states are approximated with a linear architecture of

basis functions.

Wind

turbines

Spot

market

Battery

Electrolyzer
Hydrogen 

tank
Fuel cell

Hydrogen

market

Figure 1: Structure of the power plant

We make the following contributions to the existing literature: (1) From an application point of view, we

model the decision problem of a profit maximizing wind power producer with a hybrid energy storage system as

a dynamic program and solve it with a BADP approach. (2) From a methodological perspective, we compare

different norms and sample weights to fit the basis functions and we present an optimal computing budget

allocation (OCBA) algorithm for these approximations and show that such an OCBA can enhance the expected

profit. (3) From a managerial perspective, we investigate the synergy effects between the long-term and short-

term storages. In doing so, we also show that a joint optimization and operation of the wind turbine and the

storages outperforms a separated optimization.

The remainder of this paper is organized as follows. Section 2 discusses the related literature. Section 3

describes the considered energy market and introduces the assumptions we use to model reality for our research.

The mathematical model and the formal optimization problem are given in Section 4. In Section 5, we present

our BADP algorithm and its variants. More precisely, we introduce the OCBA which is a rule how to sample

the states during the BADP algorithm. Section 6 contains the numerical study while Section 7 concludes the

paper. The appendix contains an overview of the notation and parameter values and the validation of the

proposed algorithm based on a simplified problem.

2 Literature review

The optimal management of a power plant with stochastic output combined with an energy storage is a highly

active research field (e.g., van der Klauw et al. (2017), Schwarz et al. (2017)). Multiple literature reviews are

dedicated to this topic (e.g., Fathima and Palanisamy (2015), Rahman et al. (2015), Weitzel and Glock (2018),

or the references in Lust and Waldmann (2018)). Therefore, we restrict this literature review to the two key

topics relevant for our contributions to distinguish this paper from the literature. First (Subsection 2.1), the

profit maximizing optimization of a stochastic power producer combined with multiple energy storages (hybrid

energy storage systems). Second (Subsection 2.2), BADP algorithms for solving energy storage problems.
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2.1 Power plant with hybrid energy storage systems

The most recent literature review is Weitzel and Glock (2018). They categorize the literature, among others,

based on storage types, planning and forecast horizon, mathematical model type and solution method. Multiple

storage types are rarely considered in the literature. Weitzel and Glock (2018) find only 16 contributions with

two or more storage types. Only six of them use an HES. In this section, we review these six papers.

Among these six, four consider microgrids without a connection to a larger grid. Accordingly, the power

producer tries to satisfy the demand of the microgrid at minimal cost. Electricity and hydrogen cannot be

bought or sold, and, thus, the HES works similar to a battery on an abstract level. The electricity is generated

at least from solar and wind energy, and costs may arise, for example, due to wear of the system’s components

or consumption of diesel fuel to generate electricity. In particular, Dufo-López et al. (2007) optimize the

configuration as well as the control of the power plant with genetic algorithms. Garćıa et al. (2013) optimize

the control of their power plant using a fuzzy logic controller. Safari et al. (2013) study a similar problem and

use a fuzzy logic controller with a particle swarm optimization algorithm. Trifkovic et al. (2014) maximize a

weighted sum of the renewable energy used and the stored hydrogen penalized with startup costs of the system’s

components. To do so, they employ a two-layer model predictive controller.

Two papers consider a grid connection. Naraharisetti et al. (2011) consider a grid-connected power plant with

multiple storages including an HES. An electricity and a hydrogen demand exist. The deterministic problem

is modeled as a mixed integer linear program. Only Garcia-Torres and Bordons (2015) explicitly consider

stochastic supply. Their microgrid includes solar and wind power and three different storage types including an

HES. Again, cost is minimized using a multi-layer model predictive controller and a rolling horizon approach is

used.

To the best of our knowledge, we are the first to capture the decision problem of a profit maximizing power

producer with multiple storage technologies in a dynamic program.

2.2 Backwards approximate dynamic programming literature

Traditional ADP algorithms, which approximate the value function, traverse the state space forwards in time.

By contrast, recently four BADP algorithms were developed in the context of energy storage problems. They

mimic backwards recursion in going through the state space backwards in time. We review these four algo-

rithms we are aware of. All of these approximate the value function of the pre-decision states and a dedicated

analytic derivation or numerical calculation of a decision’s expected value is necessary. The tractability of this

approach depends on the problem and the architecture of the value function approximation (VFA). Because

we approximate the value functions of the post-decision states we do not need such an explicit calculation of

the expectation. Instead, the expectation is implicitly numerically calculated by fitting the approximation to a

multitude of observations.

Hannah and Dunson (2011) present a BADP algorithm for their electricity storage problem. They only

evaluate a discrete set of pre-decision states, where the expected value is numerically estimated. For this a

weighted sum of the value function of the next period is used, where the weights are approximations to the

transition probabilities. If a decision leads to a non discretized state, the value function is linearly interpolated.

Gönsch and Hassler (2016) present an approximate policy iteration with forward and backward steps to tackle

an electricity storage problem with one storage type. Their hybrid approximate policy iteration iteratively

computes new VFAs. This solves the problem of the large state space, but the expected value still has to

be computed for every action and sampled state. They analytically derive the expectation and the optimal

decisions.

Cheng et al. (2017) use a BADP algorithm for their discretized storage problem. The algorithm works like

classical backwards recursion, except that not every state is evaluated, only a small sample is. They use a
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low-rank approximation to fit the VFAs. Analogous to Gönsch and Hassler (2016), the expected values have

to be computed explicitly for every decision. Considering the computational burden, this is only realistic for

bigger instances if the expected value can be derived analytically for every state and decision, but no analytic

derivations are mentioned.

Durante et al. (2020) formulate their BADP algorithm for discrete problems only. It also works like classical

backwards recursion. A small fraction of the pre-decision states is evaluated to approximate the value function

of these. After that every post-decision state is evaluated by computing the expected value of the VFA. Again,

an analytic representation of the expected value is needed for every post-decision state. They briefly mention

different methods to fit the approximation architecture, but apparently use the standard l2 -norm without

weights.

Another approach related to BADP is the approximate dual dynamic programming algorithm proposed by

Löhndorf et al. (2013). This algorithm contains a forward pass and a backward pass to approximate the value

function of the post-decision state with hyperplanes. During the forward pass, the approximate dual dynamic

programming algorithm explores new states. During the backward pass, the algorithm revisits the states from

the forward pass. For each state, it iterates over all states in the state space that share the same endogenous

parts, i.e. that only differ in the exogenous information part to derive new hyperplanes. Therefore, this approach

is only suitable for discrete or discretized exogenous information.

Summed up, to the best of our knowledge, no paper considers multiple norms or a rule for the distribution

of samples (like OCBA) in the context of BADP.

3 Market structure and assumptions

In this section, we first (Subsection 3.1) explain the considered market framework. More precisely, we introduce

the continuous intraday market and the balancing by the transmission system operator. Then (Subsection 3.2),

we state all assumptions used to capture reality in the mathematical model formulation.

3.1 Market structure and continuous intraday market

Like in most countries, in Germany multiple energy markets coexist. All markets have in common that the

energy is traded some time before the actual delivery, which is especially challenging for power producers

with stochastic supply (e.g., wind or solar). For an overview and analysis of different electricity markets see,

e.g., Koschker and Möst (2015), Bublitz et al. (2019), and the references therein. On the continuous intraday

market, the market closure is closest to the physical fulfillment of the trades (30 minutes). This makes this

market interesting for power producers with stochastic supply, as, for example, short-term weather forecasts are

more reliable than long-term forecasts.

At the continuous intraday market, trading for delivery throughout the following day starts at 16:00. The

products are commitments for electricity delivery in a specific time slot and can be traded traded up to 30

minutes before physical delivery. The continuous intraday market works similar to well-known stock markets,

so traders can observe the current price while trading but large trading volumes can influence the market prices.

Even if it is possible to trade products multiple hours ahead, the products are most liquid right before market

closure. In the continuous intraday market, hourly, half-hourly and quarter-hourly products coexist. As the

market is efficiency, these products are largely arbitrage free.

If the physical delivery/consumption of a power producer or consumer deviates from the commitment on the

continuous intraday market (or, strictly speaking, the net commitment from all markets), these imbalances are

balanced by the transmission system operator. Afterwards, the market participants are paid/billed for their over-

or underproduction (or -demand) based on the current demand and supply situation. Since the transmission
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system operator aims to reduce the risk of high energy excess and lack in the grid, the transmission system

operator forbids power producers and consumers to intentional deviate from the commitments. Therefore, power

producers have to fulfill their commitments as close as possible, even if it is more costly than the balancing by

the transmission system operator.

3.2 Assumptions

Modelling inherently requires abstraction, generalization, and simplification. Also this is often done only more

or less implicitly in the literature on energy storages, we explicitly state our assumptions that are the base

for the mathematical model giiven in Section 4. Please note that we do not describe the entire setting, but

concentrate on issues where we simplify reality to arrive at a tractable model. For each issue, we discuss why

we think the respective assumption is reasonable, e.g. because it is only a slight deviation from reality (market

rules etc.) and standard in the literature. Some simplify the model, others reduce the computational burden

of the solution approach. Physical constraints of the components (e.g., maximum discharging rate) that are

captured in the model will be introduced directly in Section 4 together with the formulae.

Assumption 1. The power producer trades only in the continuous intraday market.

Most authors consider single markets settings (e.g., Jiang et al. (2014), Hassler (2017), Cai et al. (2019),

Cruise et al. (2019), Vivero-Serrano et al. (2019), Durante et al. (2020)). Since the continuous intraday market

is the last opportunity to trade, it is the most interesting for power producers with stochastic supply. Therefore,

we focus on this short-term market.

Assumption 2. The power producer trades the hourly products right before market closure to the volume

weighted average price.

In most countries, only hourly products can be traded in a short-term market like the continuous intraday

market. To keep our research comparable with the majority of the literature regarding modeling and solution

techniques, we restrict ourselves to the hourly products. Since the hourly prices are close the the average prices

of the substituting products (quarter-hourly or half-hourly) of the particular hour, this assumption is reasonable.

Additionally we use the common assumption that the product is only traded right before market closure (e.g.,

Jiang et al. (2014), Cheng et al. (2017), Durante et al. (2020)).

Like in stock markets and in contrast to other energy markets (e.g., day-ahead market and intraday auction

market), the traders in the continuous intraday market trade to individual market prices. Since we cannot

reflect these individual trades (e.g., because of missing data and model complexity), we assume that the trades

are priced at the published volume weighted energy prices. Since most volume is traded right before market

closure, we think that (on average) the market price of the considered power producer is close to the volume

weighted energy price.

Assumption 3. The power producer is a price-taker.

Like in stock markets, large trades in the continuous intraday market can influence the market prices. We

follow the majority of the literature and consider a power producer which is small enough to be a price-taker

(e.g., Löhndorf and Minner (2010), Kim and Powell (2011), Beraldi et al. (2018), Heredia et al. (2018)). This

means that the small power producer cannot influence the market prices.

Assumption 4. The prices at the continuous intraday market follow a Markov process.

According to this assumption, the price process is memoryless and future energy prices depend only on the

most recent market price. This assumption is in line with the literature (e.g., Löhndorf and Minner (2010),

Cheng et al. (2017), Gönsch and Hassler (2016), Wozabal and Rameseder (2020)).
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Assumption 5. At any time, the power production during the next hour is known.

For example, short-term weather forecasts are much more accurate than long-term forecasts. Therefore,

the short-term energy production is reliable, in contrast to future productions. This is again in line with the

literature (e.g., Jiang et al. (2014), Durante et al. (2020), Wozabal and Rameseder (2020)).

Assumption 6. Hydrogen can be sold instantaneous to a known price.

For hydrogen, there is no market like for electricity, but hydrogen can be fed into the natural gas grid. This

is done by several German natural gas providers. Since short-term natural gas prices fluctuate significantly less

than electricity prices, it can be assumed that these are known or at least very reliable to forecast.

Assumption 7. If energy must be delivered, the demand will be satisfied from the three sources available

according to the following action preference rule: (1) currently produced energy, (2) energy from the battery,

and (3) energy from the hydrogen storage.

To reduce the complexity of the decision problem, some decisions are governed by a straightforward heuristic

action preference rule. If energy must be delivered, the demand will be satisfied preferably with currently

produced energy. If this is not sufficient, the battery will be discharged. In case even more energy is needed,

the fuel cell is used to reconvert hydrogen. If this still does not provide enough energy, balancing will take

place. Similar rules are common for settings with one storage device ( e.g., Kim and Powell (2011), Gönsch and

Hassler (2016)). In addition, this decision rule adheres to the requirements of the transmission system operator.

More precisely, our power producer tries to fulfill the commitments even if this is financially unattractive.

Assumption 8. The power producer is risk-neutral.

Since we assume that the considered power producer is risk-neutral, we maximize the expected revenue.

The power producer trades hourly (8760 times per year) and the hourly returns are only a small fraction of the

investment cost. Therefore, the risk (e.g., standard deviation) of the single hourly returns is less interesting.

Especially in the dynamic programming literature, this assumption is common (e.g., Jiang et al. (2014), Cheng

et al. (2017), Gönsch and Hassler (2016), Durante et al. (2020) ).

4 Model formulation

In this section we formally model the power producer’s decision problem as a dynamic program. To do so,

in Section 4.1, we define the decision stages including the temporal resolution and the sequence on events. In

Sections 4.2 to 4.6, we explain how we choose the five standard ingredients of the dynamic program: decision

variables, exogenous information, state variables, transition function, and contribution function. Based on this,

we formally state the power producer’s optimization problem in Section 4.7. The notation is summarized in

Table A1 in the appendix.

4.1 Sequence of events

In this section, we describe the temporal resolution of the considered decision problem as well as the sequence

of events during the decision stages. This sequence of events is illustrated in Figure 2.
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Figure 2: Sequence of events

The optimization horizon is discretized into T decision stages. These decision stages are indexed with t.

Since the power producer trades the hourly products on the continuous intraday market right before market

closure (Assumptions 1 and 2), there is a decision each hour and a period corresponds to one hour.

At the beginning of time period t, the power producer observes the state St and bases the decision xt on

this. After this, the power producer has to deliver (or store) the traded energy. The delivery to the energy

grid is not related to the current decision, but to the commitment xE
t−1, which was decided in the previous

period. In addition, the power producer delivers the hydrogen and stores the excess energy according to the

recent decisions xH
t and xB,H

t . The post-decision state Sx
t is located right after the energy and hydrogen is

delivered or stored. Immediately afterwards, the power producer observes the new exogenous information. More

precisely, he or she observes the new electricity price on the continuous intraday market and the transmission

system operator’s penalties for over- and underproduction. The hydrogen price and the next period’s energy

production also become known. The exogenous information transits the post-decision state into the new state

St+1.

As already briefly mentioned in the introduction, dynamic programming is particularly suitable for the

problem at hand. Contrary to multi-stage stochastic programming, computational complexity increases only

linearly in the length of the time horizon. This is important as energy production and energy prices show

seasonal effects (see Section 6) and because the HES is a long-term storage. Thus, we need to consider a long

time horizon consisting of several seasons as the long-term storage can store hydrogen e.g., from spring till

autumn. Accordingly, we consider a planning horizon of one year in the numerical study. Shorter horizons,

e.g., only a few weeks, can not capture the long-term advantages of the HES. However, we would like to stress

that this does not imply assuming a deterministic future or forgoing advantages of reoptimization: the longer

the planning horizon in a dynamic program, the better, as end-of-horizon effects matter less. The strength

of dynamic programming is that when solving the optimization problem for a whole year we anticipate future

outcomes, new information and adjust the hourly decisions accordingly. And because the computational burden

increases only linearly, solving one large optimization problem is as hard as solving multiple smaller problems.

4.2 Decision variables

In every period t, three decisions have to be made. Thus, the decision vector xt =
(

xE
t , x

H
t , xB,H

t

)

consists of

three components:
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• xE
t : amount of electricity (MW) to trade with delivery during period t+1 (xE

t > 0 sale, xE
t < 0 purchase)

• xH
t : amount of hydrogen (MWh) to sell with instant delivery at the end of period t

• xB,H
t : share of excess energy to store in the battery during period t

According to Assumptions 1 and 2, the power producer trades hourly products on the continuous intraday

market. Therefore only one decision for the electricity trading per period is needed. The traded energy xE
t has to

be fulfilled (delivered or received) during period t+1. Please note that the decision xH
t is only necessary because

the HES allows to sell “stored energy” directly without reconversion to electricity. In line with Assumption 6,

the hydrogen is delivered instantaneous in period t. The decision xB,H
t is the share of excess energy to store

in the battery during period t. The excess energy may be energy produced in period t or purchased electricity

decided in period t− 1. Following Assumption 7 other possible decisions are governed by a decision rule.

4.3 Exogenous information

The exogenous information

Wt =
(

PE
t , QE,u

t , QE,o
t , PH

t , Y E
t

)

(1)

becomes known during period t right before the decision xt is made. PE
t is the price (e/MWh) for electricity

during period t + 1, which is already observable during period t. PH
t is the price (e/MWh) for hydrogen in

period t. This becomes known based on Assumption 6. QE,u
t is the penalty (e/MWh) for electricity shortage

and QE,o
t the penalty price (e/MWh) for electricity overproduction in period t. Based on Assumption 5, the

electricity production Y E
t becomes known. The model and the solution approaches described in Section 5 are

independent of the price processes. Thus, the implemented processes for the exogenous information Wt are

described in Section 6.1.3 with the data for the numerical study.

4.4 State variable

The state St is an exhaustive description of the system in period t right after the exogenous information Wt

becomes known. On an intuitive level, a variable needs to be included in the state if it is necessary to make

future decisions. More formally, each variable that influences the system’s evolution (like commitments regarding

storage levels) or contributes to the objective function (like past penalty prices) must be included. Thus, the

state contains all information necessary to make the decision xt and model the future evolution of the system.

Here, the state of the system is given by

St =
(

RB
t , R

H
t , xE

t−1,Wt

)

=
(

RB
t , R

H
t , xE

t−1, P
E
t , QE,u

t , QE,o
t , PH

t , Y E
t

)

(2)

To model the future evolution of the system, the state obviously contains the storage levels RB
t and RH

t which

denote the amount of energy (MWh) stored in the battery and the hydrogen tank at the beginning of period t,

respectively. The electricity commitment for period t, xE
t−1, and the electricity production during period t, Y E

t ,

have a direct influence on the storage levels at the beginning of the next period and are therefore necessary. The

state contains the next electricity price PE
t because the power producer can already observe it and obviously

bases the decision on the next trading volume on it. Moreover, PE
t must be included as it is needed for the

electricity price process (Assumption 4). The decision is also influenced by the currently known hydrogen

price PH
t . Irrelevant for the future evolution, but necessary to evaluate the contribution function defined in

Section 4.6, are the current penalty for shortageQE,u
t and the penalized electricity price for overproductionQE,o

t .

Please note that in general, dynamic programs are modeled such that the state variable has as few dimensions
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as possible, which is not the case here. However, the above pre-decision state definition leads to a minimal

post-decision state variable, which is the only one that matters for our solution approach (see Section 5.1).

4.5 Transition function

The transition function SM
t defines the state of the next period St+1 if decision xt is made in state St and

the exogenous information Wt+1 arrives. In the transition function, we capture all characteristics of the power

plant’s components. More precisely, we take the capacity of the storages (maximum storage level) and the rated

capacity (maximum power) of the battery, electrolyzer, and fuel cells into consideration.

St+1 = SM
t (St, xt,Wt+1) =

(

RB
t+1 (·) , RH

t+1 (·) , xE
t ,Wt+1

)

(3)

, where the new storage levels are defined by

RB
t+1 (St, xt) =

(

1− γB
)

·
(

RB
t +∆t · ρBin · yBt,in (·)−

∆t

ρBout
· yBt,out (·)

)

(4)

RH
t+1 (St, xt) =

(

1− γH
)

·
(

RH
t +∆t · ρHin · yHt,in (·)−

∆t

ρHout
· yHt,out (·)− xH

t

)

(5)

with the electric power flows in and out of the storages described by the functions

yBt,in (St, xt) =







min
{

xB,H
t ·

(

Y E
t − xE

t−1

)

,
RB

max−RB
t

∆t·ρB
in

, yBin,max

}

, Y E
t ≥ xE

t−1

0 ,else
(6)

yBt,out (St) =







min
{

xE
t−1 − Y E

t , RB
t · ρB

out

∆t
, yBout,max

}

, Y E
t < xE

t−1

0 ,else
(7)

yHt,in (St, xt) =







min
{(

1− xB,H
t

)

·
(

Y E
t − xE

t−1

)

,
RH

max−RH
t

∆t·ρH
in

, yHin,max

}

, Y E
t ≥ xE

t−1

0 ,else
(8)

yHt,out (St) =







min
{

xE
t−1 − Y E

t − yBt,out (St) , R
H
t · ρH

out

∆t
, yHout,max

}

, Y E
t < xE

t−1

0 ,else
. (9)

Here, ρij , i ∈ {B,H} , j ∈ {in, out} denotes the charge/discharge efficiency of the storages. The parameters

yij,max represent the maximum power of the electrolyzer, the fuel cell and the battery and Ri
max the capacity of

the storages. Note that the discharge of the storages does not depend on the current decision but on the previous

decision xE
t−1, which is included in the state. The length of a time period ∆t is needed for the conversion of

energy (MWh) to power (MW). The hydrogen is sold after the energy is converted. The self-discharge factors

γi denote the fraction of stored energy lost by storage i over one period and are applied at the end of each

period to the current storage levels.
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4.6 Contribution function

The contribution function Ct (St, xt) describes the one-stage profit, that is, the net revenue the power producer

obtains in period t if the power producer takes decision xt in state St.

Ct (St, xt) = PH
t · xH

t +∆t · PE
t · xE

t −∆t · qgf ·max
{

0,−xE
t

}

−∆t ·QE,u
t ·max

{

xE
t−1 − Y E

t − yBt,out − yHt,out, 0
}

(10)

+ ∆t ·QE,o
t ·max

{

Y E
t − xE

t−1 − yBt,in − yHt,in, 0
}

Ct includes the hydrogen sales and the revenue of the electricity commitment for delivery in the next period

which are decided in period t. If the power producer buys energy, the power producer has to pay the grid fees

qgf . In the case of electricity shortage in the current period, he or she has to pay the penalty QE,u
t . Likewise,

if the electricity deliveries exceed the commitment xE
t−1, the power producer obtains the penalized electricity

price QE,o
t . Since the electricity commitment xE

t−1 was decided in period t− 1, the over- and underproduction

is independent of the decision in period t. According to the price-taker assumption (Assumption 3), the power

producer does not influence the market price.

4.7 Problem statement and value function

Obviously, the decision xt should depend on the current state St. Thus, we define a policy π as a function

that maps every state to a decision: Xπ
t (St). Now, we have all necessary notation and can formally state the

optimization problem faced by the power producer who maximizes the discounted (discount factor β) profit

over an optimization horizon of length T .

max
π

IE

[

T−1
∑

t=0

βt · Ct (St, X
π
t (St)) |S0

]

(11)

s.t.

St+1 = SM
t (St, xt,Wt+1) ∀t (12)

xE
t ∈

[

xE
min, x

E
max

]

∀t (13)

xH
t ∈

[

0, RH
t +∆t · ρHin · yHt,in (·)−

∆t

ρHout
· yHt,out (·)

]

∀t (14)

xB,H
t ∈ [0, 1] ∀t (15)

Following the risk-neutrality assumption Assumption (8), the objective function (11) maximizes expected

profit discounted with a factor of β. The hourly discount factor has two effects. First, this reflects that returns

in the near future are more important than returns in far future (e.g., these can be reinvested). Second, the

standard deviation of the hourly returns increases in time (more precisely, the trend increases). Since many

decision makers are slightly risk-averse, this is a simple method to include some risk- aversion. Therefore the

discounting weakens Assumption 8.

Four groups of constraints have to be respected. First, the state transition is governed by the transition

function. Second, the maximum electricity sale xE
max reflects, for example, the maximum power of the power

line connecting the producer to the grid. The lower bound xE
min restricts the power producer while buying.

For example, the power producer cannot buy more energy than the summed maximum charging powers of the

storages. Third, the selling amount of hydrogen xH
t has to be non-negative because buying hydrogen is not

considered and cannot exceed what is available. Forth, the share of energy to store in the battery xB,H
t must

obviously be in [0, 1]. All additional storage constraints are already captured by the transition function. To
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simplify the notation, we left out the straightforward definition of the initial state S0.

An equivalent formulation of this problem is the Bellman equation

Vt (St) = max
xt

Ct (St, xt) + β · IE [Vt+1 (St+1) |St] (16)

with the boundary conditions

VT (ST ) = 0 ∀ST . (17)

Obviously, the same constraints have to be respected.

5 Backwards approximate dynamic programming

In this section, we present how we solve (12) to (17) using ADP. First, we reformulate the value function (16)

using post-decision states (Section 5.1). Please note that the BADP algorithm presented in the remainder of this

section is problem independent. It works on post-decision states, but there is a straightforward reformulation

for every dynamic program. In Section 5.2, we explain the structure of the BADP algorithm developed. Then,

we turn to the details of the regression for the VFA and discuss the norms, weighted regression, and the OCBA.

The OCBA is a rule, how to evaluate the states during the BADP algorithm. In the numerical study, we show

that these uneven allocation of the computing budget can enhance the BADP algorithm.

The notation of this section is also given in Table A2 in the appendix.

5.1 Reformulation using post-decision state

The standard approach to model a dynamic program is using the pre-decision value function (16). Accordingly,

ADP usually approximates Vt(St), the value of a pre-decision state, that is, the state of the system immediately

before a decision is taken. By contrast, the post-decision states Sx
t describe the state of the system immediately

after a decision is made, but before new exogenous information becomes known. In this paper, we approximate

the values V x
t (Sx

t ) of the post-decision states. This has an important computational advantage because the

optimal decisions can be derived without an explicit calculation of the expected value for every decision (see,

e.g., (Powell, 2011, Ch. 4.6)). With the post-decision state defined as

Sx
t (St, xt) =

(

RB
t+1, R

H
t+1, x

E
t , P

E
t

)

(18)

the post-decision value function is given by

V x
t (Sx

t ) = IE

[

max
xt+1

(

Ct+1 (St+1, xt+1) + β · V x
t+1

(

Sx
t+1

))

|Sx
t

]

(19)

An additional advantage of this formulation is that the post-decision state has four dimensions less than the

pre-decision state. Because the produced energy is already delivered or stored and the hydrogen is sold, Y E
t ,

QE,u
t , QE,o

t and PH
t are not necessary anymore. The current commitment xE

t is necessary, for example, to

calculate future storage levels. Please note that it cannot be eliminated from the post-decision state as this

calculation necessitates both xE
t and the realization of production Y E

t+1. We cannot eliminate PE
t from the

post-decision state as we need this for the Markovian price process (Assumption 4). For dynamic programs in

general, the post-decision state space can be larger than the space of the pre-decision states.

For the approximation of the value function of the post-decision states V x
t , we split xE

t into a positive and

negative part and choose a second degree polynomial. Because the positive times negative part of xE
t is always
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0 this results in 21− 1 = 20 coefficients/parameters for the regression. The resulting VFA is denoted by V̄ x
t .

V̄ x
t (Sx

t ) = θ1
(

RB
t+1

)2
+ θ2R

B
t+1R

H
t+1 + θ3R

B
t+1x

E,pos
t + θ4R

B
t+1x

E,neg
t + θ5R

B
t+1P

E
t + θ6R

B
t+1

+ θ7
(

RH
t+1

)2
+ θ8R

H
t+1x

E,pos
t + θ9R

H
t+1x

E,neg
t + θ10R

H
t+1P

E
t + θ11R

H
t+1

+ θ12

(

xE,pos
t

)2

+ θ13x
E,pos
t PE

t + θ14x
E,pos
t + θ15

(

xE,neg
t

)2

+ θ16x
E,neg
t PE

t + θ17x
E,neg
t

+ θ18
(

PE
t

)2
+ θ19P

E
t + θ20 (20)

with xE,pos
t = max

{

xE
t , 0

}

and xE,neg
t = min

{

xE
t , 0

}

and coefficients θi. This allows to capture the interactions

between the four dimensions of the post-decision state space.

5.2 BADP algorithm

The value functions are approximated using the BADP algorithm as follows (see Algorithm 1 for the pseudo-

code). First, the VFA of the post-decision states in the terminal period is initialized according to the boundary

conditions (17) (Step 1). Then, BADP goes backwards in time (Steps 2 – 14) and fits the VFA V̄ x
t for each

time period t (Step 13). More precisely, in each time period, it samples M post-decision states (Step 4) and

computes the average v̄xm,t over N evaluations for each state (Steps 5 – 11). The optimal decisions of the

quadratic problem in Step 8 are computed via the Karush-Kuhn-Tucker conditions (not shown here). As we

consider a multitude of constraints of the system’s components (see Section 4), the optimal solution may be at

a border and a large number of cases (45) has to be considered.

Algorithm 1 BADP

1: Set V̄ x
T = 0

2: for t = T − 1 to 0 do

3: for m = 1 to M do

4: sample post-decision state Sx
m,t

5: for n = 1 to N do

6: sample exogenous information ωt+1 ∈ Wt+1

7: compute next pre-decision state Sm,t+1

8: x∗
t+1 := argmax

xt+1

(

Ct+1 (Sm,t+1, xt+1) + β · V̄ x
t+1

(

Sx
t+1 (Sm,t+1, xt+1)

))

9: vx,nm,t := Ct+1

(

Sm,t+1, x
∗
t+1

)

+ β · V̄ x
t+1

(

Sx
t+1

(

Sm,t+1, x
∗
t+1

))

10: end for

11: v̄xm,t :=
1
N

·
N
∑

n=1
vx,nm,t

12: end for

13: compute regression V̄ x
t using v̄xm,t,m ∈ {1, ...,M}

14: end for

Please note that the BADP algorithm primarily aims at learning the value functions to derive a policy

(decision for each state), which is done analogous to Step 8 during operations. Although the VFAs can be close

to the true values, they can obviously not be used for evaluation. In the context of ADP, the value of the policy

learned is usually estimated by simulation.

5.3 Computing regression for the BADP algorithm

In this section we present multiple methods to compute the regression in Step 13 of the BADP algorithm. Section

5.3.1 surveys different norms for the regression, while Section 5.3.2 enhances these by a weighted regression.
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In Section 5.3.3 we introduce our OCBA. This is a rule, how often the different states in the BADP algorithm

have to be evaluated.

5.3.1 Norms for the regression

In this section, we survey the BADP algorithm outlined above with two norms for the computation of the

regression of the value functions V x
t (Step 13): the l1 -norm and the l2 -norm, but every other norm could be

used as well. The l2 -norm regression which also known as ordinary least squares (OLS) is the standard approach

in ADP to fit VFAs.

A well-known shortcoming of OLS is the high sensitivity of the l2 -norm to outliers. The values v̄xm,t obtained

by the BADP algorithm and approximated in the regression are stochastic, so poor values v̄xm,t for a few post-

decision states can considerably worsen the results. To reduce this problem, we also consider the l1 -norm to

compute the parameters of the regression.

l1 -norm: Regressions with respect to the l1 -norm, minimizes the sum of the absolute errors, that is, the

differences between the values to be approximated and the resulting approximation. For M values to be

approximated and p regression coefficients, the l1 -approximation is a linear program with 2M + p + 1

decision variables and M + 1 constrains. This program may be large but has a sparse coefficient matrix

and can be solved by commercial solvers or with efficient algorithms dedicated to this problem structure

(for the linear programming formulation and an efficient algorithm see, e.g., Barrodale and Young (1966)).

l2 -norm: OLS minimizes the squared sum of the errors. The regression coefficients can be computed with

the Gaussian normal equations. For M values to be approximated and p regression coefficients, the

computational burden is a p×M to M × p matrix multiplication and a p× p equation system has to be

solved.

5.3.2 Weighted approximations

In this section, we explain how we use weighted norms to fit the VFA. An important assumption for OLS to

derive reliable regression parameters is the homoscedasticity. So if the variance of the regression errors is not

nearly constant (heteroscedasticity) OLS can result in sub-optimal VFAs and therefore lead to sub-optimal

policies. To tackle this problem, we use state-depending weights. Most forwards ADP algorithms try to visit

the most promising area of the state space more often. The resulting uneven distribution of the evaluated states

has a similar effect as a weighted approximation. By contrast, we evaluate the states multiple times to compute

weights, which is only suitable for BADP algorithms. We use a general approach which is applicable to other

problems as well. However, we evaluate it only in the context of the energy production problem considered in

this paper.

For this approach, we also estimate the variance σ2
m,t (Step 11) of the estimator v̄xm,t for V x

t

(

Sx
m,t

)

and

minimize the weighted errors with respect to the corresponding norm. For the weighted approximations, we

choose the weights 1
cv2

m,t

=
v̄2
m,t

σ2
m,t

(without normalization) with coefficient of variation cvm,t as they performed

well in preliminary tests. This approach assumes that states with low coefficient of variation cvm,t are more

reliably estimated than those with a higher coefficient of variation and therefore should influence the regression

more.

5.3.3 Optimal computing budget allocation

In the previous variants each post-decision state sampled in Step 4 is evaluated equally often (N times). However,

to estimate the values V x
t

(

Sx
m,t

)

of all sampled post-decision states equally well, states with higher coefficient

of variation need more evaluations. The OCBA algorithm is inspired by the OCBA algorithms for ranking and
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selection. There, the aim is usually to maximize the probability to choose the best alternative (see, e.g., Chen

et al. (2000), Jia (2012) and Al-Salem et al. (2017)), which leads to the allocation of the majority of simulations

to a few alternatives. By contrast, our goal is an equally good estimation for all states, using a total of N ·M
simulations. Thus, the number of simulations nm,t allocated to the m-th state sampled in period t is chosen

such that the summed squares of the ratios of the confidence levels’ lengths 2z(1−α)
σm,t√

n
and the estimated mean

v̄xm,t are minimized:

argmin
n1,t,··· ,nM,t

M
∑

m=1

(

2z(1−α)
σm,t√

nm,t · v̄xm,t

)2

= argmin
n1,t,··· ,nM,t

M
∑

m=1

cv2m,t

nm,t

(21)

This is performed as follows. First, all M states are evaluated nlb times and the coefficients of variation

cvm,t are estimated. Then, the following constrained problem can be formulated, which we solve heuristically:

min
n1,t,··· ,nM,t

M
∑

m=1

cv2m,t

nm,t

(22)

s.t.

M
∑

m=1

nm,t = N ·M (23)

nm,t ≥ nlb ∀m (24)

nm,t ∈ N ∀m (25)

If the integer constraints (25) are ignored, this is a continuous nonlinear resource allocation problem, which

belongs to a well-researched problem class (see, e.g., Bretthauer and Shetty (2002), Patriksson and Strömberg

(2015), van der Klauw et al. (2017)). Moreover, as the resource allocation problem (22–24) has a strictly convex

objective function (22), is only bounded from below (24), and only has one linear constraint (23), the problem can

be solved efficiently. We solve the continuous problem exactly with a pegging algorithm, which iteratively fixes

infeasibly low decision variables to their lower bounds. For this the unbounded solution nm,t =
cvm,t·N ·M

∑
M

m′=1
cvm′,t

∀m
is used. Finally, we round to the next integer solution.

In the literature, OCBA algorithms often ignore the lower bounds (24) to simplify the problem (e.g., Chen

et al. (2000), Jia (2012), and Al-Salem et al. (2017)). Thus, too many simulations are allocated and the

simulation budget is not respected properly. For our problem 3 – 5% too many simulations would result from

ignoring the lower bounds. While the effect on overall runtime is arguably very small, an identical number of

simulations for all variants is the foundation for the numerical comparisons. After all samples are allocated,

we use weighted approximations with weights
nm,t

cv2
m,t

(without normalization). These weights reflect that states

with more evaluations are more reliable.

Obviously it is possible to allocate not all N · M simulations at once but step by step to exploit that the

estimate for cvm,t improves as more simulations are allocated and performed. For this the lower bounds nlb

would be state depending to account for the simulations already performed.

6 Numerical Study

This numerical study is structured as follows. First, we introduce the parameter values of the power plant

and the stochastic processes in Section 6.1. Based on this we compare the BADP algorithm with the different

regression techniques in Section 6.2. After this, we use the best approach to investigate the behavior of the

power plant over the course of the year in Section 6.3.
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6.1 Data for the numerical study

Subsection 6.1.1 states the time horizon. While Section 6.1.2 describes the parameters of the power plant’s

components, the parameters for the exogenous processes are defined in Section 6.1.3. The used notation is

summarized in Table A3 and the parameter values are summarized in Table A4 in the appendix.

6.1.1 Time horizon

Energy production and energy prices are well known to show seasonal effects, which may be exploited by the long-

term storage HES. To take advantage of HES’ benefits, we thus need to consider a long time horizon consisting

of several seasons as the long-term storage can store hydrogen e.g., from spring till autumn. Accordingly, we

consider a planning horizon of one year (T = 8760). Shorter horizons, e.g., only a few weeks, can not capture

the long-term advantages of the HES. As already discussed in Section 4, we would like to stress that this does

not imply assuming a deterministic future or forgoing advantages of reoptimization. For the discount factor we

choose β = 1.05
−1

8760 which corresponds to 5% per year. This is based on a realistic return on equity.

6.1.2 Parameters of the power plant’s components

As there is to date no project which jointly uses an HES and another storage device, we base the configuration

considered on representative projects that solely use an HES or a battery. For example, the German project

RedoxWind combines a 2MW wind farm with a 20MWh redox-flow battery (Fraunhofer Institute for Chemical

Technology, 2019). Larger projects are located in Japan, where a 51MW wind farm is combined with a 245MWh

sodium sulfur (NaS) battery (NGK Insulators, 2019). These batteries have a roundtrip efficiency of 70 to 85%

and a daily self-discharge up to 20% (e.g., Luo et al. (2015), Zhao et al. (2015)). The Energiepark Mainz in

Germany uses three 2MW electrolyzers with a 26MWh storage for a 8MW wind park (Energiepark Mainz,

2019). An HES possesses a roundtrip efficiency of 35 to 65%, but it has almost no self-discharge (e.g., Zeng

and Zhang (2010), Luo et al. (2015), Zhao et al. (2015)).

In the case study, we consider a small wind farm with a rated capacity of r = 20MW. This corresponds

to 4 – 8 wind turbines. We also assume a connection to the grid with a maximum transmission capacity of

xE
max = 25MW. The sodium sulfur battery has a capacity of RB

max = 20MWh with symmetrical efficiencies

of ρBin = ρBout =
√
0.75 and a self-discharge factor of γB = 0.00925, which corresponds to 20% per day. The

maximum powers of the battery are yBin,max = yBout,max = 5MW. We model an HES with an electrolyzer and a

fuel cell with yHin,max = yHout,max = 5MW, respectively. With ρHin = 0.8, the electrolyzer has a higher efficiency

than the fuel cell with ρHout = 0.6. Compared to the other components, a hydrogen tank is cheap. Thus, we use

a large hydrogen storage with a capacity of RH
max = 300MWh to exploit the higher electricity prices at the end

of the year. As an HES has nearly zero self-discharge, we set γH = 0. While the power producer buys energy

the power producer acts like a consumer and has to pay the obligatory grid fees (up to 30e/MWh). However,

because energy storages stabilize the grid, they only pay reduced fees. This reduction is a case by case decision

(Sterner and Stadler, 2017, Ch. 15.4). We choose rather low fees of qgf = 5e/MWh.

6.1.3 Exogenous price and wind processes

In line with Assumption 4, we model the electricity price as a Markov process. More precisely, we model the

electricity price PE
t as an Ornstein-Uhlenbeck process

PE
t+1 := κ · PE

t + (1− κ) · µt + P̃E
t+1, P̃E

t+1 ∼ N
(

0, σE
)

, (26)

where the price tends to revert to the mean price µt and the noise P̃E
t+1 is normally distributed. Those

autoregressive models are widely used to describe electricity prices in the context of trading problems (e.g.,
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Löhndorf and Minner (2010), Kim and Powell (2011), Wozabal and Rameseder (2020)). For the time dependent

mean price µt, we consider dependence on hour, weekday, month (triangular splines), and a trend. We use OLS

to estimate the corresponding parameters with the prices of the German continuous intraday market of the

years 2014 to 2018 (EPEX SPOT SE, 2019). Based on assumption Assumption 5 we used the volume weighted

average price.

For the exogenous production of the wind turbines we use hourly wind data from a weather station in

Hamburg-Billbrock in Northern Germany of the years 2012 to 2016 scaled to 100m hub height. We choose

Hamburg because many wind parks are located in its surroundings. In line with the literature (e.g., Shi et al.

(2012), Gönsch and Hassler (2016), Biswas et al. (2017), Li et al. (2019)) we compute the production of the

wind turbine based on Weibull distributed wind speeds.

We estimate time dependent Weibull distributions as follows:

• For each month and for each hour, we fit a Weibull distribution using all data of these month/hour

combinations.

• For every hour, we linearly interpolate the mean and standard deviation of the monthly Weibull distri-

butions to obtain daily distributions. For this we locate the monthly distributions in the middle of the

month.

• Derive the time dependent scale parameter λt and shape parameter kt based on the interpolated means

and standard deviations.

To compute the hourly production Y E
t from a wind speed wst, we use the production function of Gönsch

and Hassler (2016):

Y E
t = Y E (wst) =



















0 , wst < sci or wst ≥ sco

a+ b · ws3t , wst ∈ [sci, sr)

r , wst ∈ (sr, sco]

(27)

The properties of the wind turbine are based on four XEMC Darwind XE128-5MW turbines with a hub height

of 100m. The maximum production of r = 20MW is generated at wind speeds above sr = 12m/s. The wind

turbines do not produce energy if the wind speed is below the cut-in speed of sci = 3m/s or above the cut-out

speed of sco = 25m/s. The auxiliary parameters a and b are given by a+ b · s3ci = 0 and a+ b · s3cr = r.

Furthermore, we assume a constant hydrogen price of PH
t = 30e/MWh. This is approximately 50% above

the average natural gas price (2017 – 2018) at the EEX (2019). Such a higher hydrogen price is reasonable

because several German natural gas providers charge their environmentally-conscious customers extra for this

so-called wind gas.

In Germany, there is no electricity market after the continuous intradaymarket and the over-/underproduction

is balanced by the transmission system operator. Afterwards, the power producer is paid/billed for the over-

/underproduction where the penalty for shortage QE,u
t is equal to the penalized price for overproduction

QE,o
t . These penalties are so-called cross-control area balancing energy prices (reBAP, for German “regel-

zonenübergreifender einheitlicher Ausgleichsenergiepreis” (TransnetBW, 2019)). The reBAP is on average as

high as the average electricity price. So power producers have nearly no financial incentive to fulfill their com-

mitments. However, the transmission system operator forbids to intentional deviate from the commitments.

Thus, power producers can not optimize their trading decisions based on the reBAP. To reflect this, we use

the penalties for intentional deviation from the balancing group contract of the year 2006 (Bundesnetzagentur,

2006). Under this former regime, power producers were not paid for overproduction (QE,o
t = 0) and in case

of underproduction had to pay the double price of the particular hour (QE,u
t = 2PE

t−1). This assumption is
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in line with the literature (e.g., Löhndorf and Minner (2010), Gönsch and Hassler (2016)). Other authors use

penalties, which linearly depend on the electricity price (e.g., Kim and Powell (2011), Moghaddam et al. (2013),

Kuznetsova et al. (2015), Hassler (2017)).

In Section 6.4, where we compare different settings, we evaluate these with the average reBAP of the years

2017 and 2018 (QE,o
t = QE,u

t = 38.40e/MWh).

6.2 Numerical evaluation of the BADP algorithm

In this section we specify the parameters of the different regression techniques for the BADP algorithm. Addi-

tionally, we compare the different approaches with an intuitive heuristic. All approaches are implemented using

Matlab version R2017a and run simulations on a standard PC with a 2.9GHz Intel Core i5 processor and 6GB

of RAM.

• l1 (M,N): This is the BADP algorithm with the l1 -norm as described in Section 5.3.1. For this and the

following BADP approaches, the M post-decision states are sampled using a space-filling design (Sobol

sequence) and each state is evaluated N times. Note that l1 (M, 1) is the standard approach that evaluates

every state once. To guarantee comparability of the results, every BADP approach performs M ·N = 5000

evaluations of post-decision states per period.

• l2 (M,N): Analogously, this BADP approach uses the standard l2 -norm as described in Section 5.3.1.

• l1-w(M,N): In this BADP approach, the weighted l1 -norm is used as described in Section 5.3.2. After

preliminary tests we choose M = 250 and N = 20 for both weighted variants.

• l2-w(M,N): Analogously, this BADP approach uses the weighted l2 -norm (see again Section 5.3.2).

• l1-OCBA(M,N): This is a BADP approach with OCBA and the l1 -norm (Subsection 5.3.3). Here, N

denotes the average number of evaluations per sampled post-decision state. After preliminary test we

choose nlb = 0.9 ·N for both OCBA variants, so 90% of the samples are allocated before we allocate the

last 10% using the OCBA algorithm.

• l2-OCBA(M,N): Analogously, this is a BADP approach with OCBA and the l2 -norm (see again Sec-

tion 5.3.3).

• ssl-heuristic: If the electricity price is above an electricity price threshold, this benchmark approach offers

the energy in the battery plus a constant offer parameter. If the price is below the threshold, this heuristic

buys energy based on the free space in the battery minus the same offer parameter. All hydrogen except

a given safety stock level (ssl) is sold. In the last period of the optimization horizon, all hydrogen and the

maximum electricity is sold. To parametrize this heuristic, the optimal safety stock level, the electricity

price threshold and the offer parameter are computed with the Matlab patternsearch algorithm. We

are confident to obtain good parameter combinations, however, a more sophisticated procedure would

probably be much faster.

We do not implement a forwards ADP approach as a benchmark. Since the revenues and penalties of over-

and underproduction in the contribution function (10) depend only on the state but not on the current action,

the state’s transition is more important than the revenues of the current action. This leads to bad decision of

forwards ADP algorithms and therefore to bad VFAs. Jiang et al. (2014) shows for an energy trading problem,

that forwards ADP approaches have to exploit the monotony and concavity in the storage level to perform well.

Since the implemented approaches cannot solve the proposed dynamic program exactly, we validate our

BADP algorithm in the Appendix B. Because there is no algorithm which can solve the dynamic program in an

appropriate time, we validate the algorithm with a simplified and discretized version of our dynamic program.
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In the following, we compare the approaches. Regarding days of the week for the price process, we use the

calendar of the year 2018. Every policy is evaluated with 1,000 simulation runs. For each approach we use the

same out of sample scenarios from our calibrated processes.

The length of the 99% confidence intervals are below 0.5% of the mean. The relative differences between

the objectives, derived with the BADP variants, and the reported evaluations are below 15%. As the policies

do not depend on the VFA itself, but on the gradient, these differences are reasonable.

l1
(5000,1)

l2
(5000,1)

 w
(250,20)

 w
(250,20)

 O
CBA(250,20)

 O
CBA(250,20)

 h
euris

tic

90

95

100

105

110
R

e
la

ti
v
e
 p

ro
fi
t 
[%

 o
f 

l2
(5

0
0
0
,1

)]

Figure 3: Comparison of variants on complete year

Figure 3 shows that the weighted approaches outperform the unweighted ones and that the OCBA variants

further improve profit. All l2 variants outperform their corresponding l1 approach. l1 (5000,1) is even not

better than ssl-heuristic. Thus, the approximation with respect to the l1 -norm is not suitable for the problem.

As it obtains the highest profit, we use l2-OCBA(250,20) in the following.

The time to learn the policy is nearly the same for all BADP variants: approximately 5.5 h. Only l2 (5000,1)

and l1 (5000,1) are a little bit slower, as the matrix multiplication and the linear program, that are used for the

computation of the regression parameters, are larger. We tested the influence of M with these two approaches

(not shown here) and choose M = 5000 as we observed only a small improvement in profit for higher values.

For M > 25, 000 there is no further improvement at all.

6.3 System behavior

In this section, we analyze the behavior of the power plant operating with a policy derived from l2-OCBA(250,20)

over a period of one year. Again, the year 2018 was used for days of the week. First, Section 6.3.1 focuses

on system behavior over the course of the year and discusses seasonal and weekly patterns. Then, Section 6.4

focuses on the importance of the different storage devices.
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Behavior over the course of the year6.3.1
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Figure 4: Electricity price, trades and production over the course of the year

Figure 4 shows the averages of the (simulated) electricity price, sales (on the positive vertical axis), purchases

(on the negative vertical axis), and production over the course of the year (daily average). Since the values

shown are averages over 1,000 simulations, the power producer appears to simultaneously sell and buy energy,

which never happens in a single simulation run. Please note that actual electricity deliveries can fall short of

sales in case of shortage, but this rarely occurs with more than 99.3% of sales actually delivered.

As expected, the electricity price shows a strong weekly pattern, which is reflected in electricity sales. On

weekends, prices are on average 16% lower than on weekdays and 12% less electricity is sold, but 44% more

electricity is bought.

There is also a clear yearly pattern. The price process successfully replicates the fact that electricity prices

tend to be lower in the market region during spring. Likewise, average production in September and October

is about only half compared to December and January. In months with lower production, sales are also lower.

Sales are always constantly considerably lower than production. This is driven by the avoidance of shortages,

losses in the system and hydrogen sales. The difference between production and sales is smaller in September

and October when prices are high and production is low. Most electricity is purchased in months with low

production (April till October). In the other months the wind turbine produces enough energy to reach the

storages’ maximum power inflow.
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Figure 5: Electricity price, trades and production over the course of the 10th week

Figure 5 shows the (simulated) electricity price, trades, and production over the course of the 10th week. In

the high price hours the average energy sales are as high as the average production. In the night hours much

less energy is sold. The rare energy purchases only occur in the night where production and prices are low.
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Figure 6: Battery usage
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Figure 7: Hydrogen usage

Those weekly patterns are also observable in the storage levels and the power flows. Thus, we show the

battery’s power flows (Figure 6) and the HES’ power flows (Figure 7) for the 10th week. As the hydrogen

sales have no weekly or seasonal pattern we do not show these. Since the values shown are averages, a storage

appears to be simultaneously charged and discharged, which never happens in a single simulation run.

Both storages are mostly charged in the night hours and between the two price peaks at day. Only on

Monday morning and Sunday, where the prices are low, the HES stores as much energy as the battery. The

stored energy in the battery is used for the daily electricity trading, while HES discharges are much lower.

Further investigations show (not shown here) that the hydrogen production peaks during the first four month

where electricity prices are low. The hydrogen reconversion peaks at the end of the year, where electricity prices

are high. This indicates, that the hydrogen is stored for multiple weeks to reconverse the hydrogen when the

electricity prices are higher or sold directly. Accordingly, the weekly average hydrogen storage level in week 30

is over thrice as high as in week ten. At the end on the year, the hydrogen storage is empty.
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Figure 8: Average energy flows (MWh, bold), normalized to a total production of 100MWh

Figure 8 displays all average energy flows. To ease the presentation, total energy production is normalized

to 100MWh. For each component of the power plant, the energy flows are given in absolute values in bold (in

MWh) and as a percentage of the energy flowing into the component.

Overall, 53.1% of the electricity produced is delivered to the grid directly. About a fifth of the production

and 1.7MWh of the purchased energy goes to the electrolyzer, of which slightly above half reaches a market

(about two-thirds as electricity and a third as hydrogen). Likewise, 27.9% of production and 2.5MWh of the

purchases go to the battery, of which about two-thirds reaches the market, the other third is lost. 1.7MWh

are lost to the self-discharge of the battery and 7.4MWh are lost due to the roundtrip efficiency of the battery.

In total, 18.3% of the energy produced is lost, mostly because of the storages’ efficiencies. Nonetheless, the

storages are valuable. First, the policy would (hopefully) just not use them if their losses exceeded the benefits.

Moreover, we will see in the next section that the system performs indeed much worse without storages.

6.4 Importance of the storage devices

In this section, the importance of the power plant’s storage devices is investigated. To do so, we compare the

basic setting with alternative settings.

Table 1: Alternative settings

Setting Evaluated with QE,o
t = QE,u

t = 38.40

basic setting 100.00%

without hydrogen sales 98.09%

without HES, doubled battery 95.76%

without battery, doubled HES 96.40%

independent optimization and operation 78.65%

Table 1 shows the profit obtained with several alternative configurations For a better comparison we.
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evaluated the profit based on the average reBAP QE,o
t = QE,u

t = 38.40e/MWh. Without the opportunity to

sell the hydrogen directly the power producer looses 2 pp of the profit. Obviously the hydrogen sales become

more important with a higher hydrogen price (not shown here). If the power producer uses only one storage

type (with doubled storage capacity and maximum power flows) profits shrink about 4-5 pp. This shows that

a combination out of short and long-term storage can be beneficial. For the independent optimization and

operation of production and the storages, the battery and the HES is not restricted by xE
max. In this setting

the wind turbine alone has to sell conservative to avoid the penalty payments, so the revenue decreases over

21 pp. If there would be no grid fees, and if the wind turbine would be allowed to deliver the production to

the market price without previous trading, there should be no difference between the jointly and the separated

optimization.

7 Conclusion

In this paper, we considered the decision problem of a power producer with stochastic production from a

renewable source and a hybrid storage (battery and hydrogen-based) who trades in advance on an electricity

market. The problem was modeled as a dynamic program and solved with a BADP algorithm where the values

of the post-decision states are approximated with a linear architecture of basis functions. Numerical evaluations

showed that the algorithm obtains good solutions.

Regarding methodology, we suggest to consider various norms and sample weights for BADP. While the

numerical study shows that the traditional l2 -norm outperforms the l1 -norm, the new weighted approach leads

to a big improvement in solution quality. OCBA further improves the results. Although we evaluated these

algorithmic strategies only for the problem considered here, we strongly believe that these findings are more

general and, thus, relevant also for the development of BADP algorithms for other problems.

Regarding managerial insights, we numerically analyzed the optimal operation of the power producer with

real-world data from Germany. While the operation over time is as expected, it is interesting to see that almost

one fifth of energy produced never reaches the grid but is lost due to the efficiencies of charging and discharging

the storages. Furthermore, we analyzed the contribution of the storage systems and saw considerable synergy

effects between the two storage types which act as short and long-term storage, respectively. Due to grid charges,

an integrated optimization of production and storage management is essential.

There are several avenues for future refinements of the model. One extension is to allow to trade multiple

hours ahead, but this extension would dramatically increase the dimensionality of the decision, state and

outcome space. Another interesting avenue seems the inclusion of limit orders. With these the power producer

can not only trade to the current price, but speculate for better prices.

23

 
Authors Accepted Manuscript



Notation and parameter valuesA

Table A1: Notation introduced in Section 4

Parameters

RB
max Storage capacity of the battery

RH
max Storage capacity of the hydrogen tank

xE
max Maximum electricity commitment

xE
min Minimum electricity commitment

ρBin Efficiency when energy is stored in the battery

ρBout Efficiency when energy is taken from the battery

ρHin Efficiency when energy is stored as hydrogen

ρHout Efficiency when hydrogen is converted to electricity

yBin,max Maximum electricity flow into the battery

yBout,max Maximum electricity flow from the battery

yHin,max Maximum electricity flow into the electrolyzer

yHout,max Maximum electricity flow from the fuel cell

γB Self-discharge per period of the battery

γH Self-discharge per period of the hydrogen tank

∆t Length of time intervals

T Number of time intervals

β Discount factor

qgf Grid fees

Decision variables xt =
(

xE
t , x

H
t , xB,H

t

)

xE
t Amount of electricity to trade (delivery during period t+ 1)

xH
t Amount of hydrogen to sell (instant delivery at end of period t)

xB,H
t Share of excess energy to store in the battery (during period t)

State variables St =
(

RB
t , R

H
t , xE

t−1, P
E
t , QE,u

t , QE,o
t , PH

t , Y E
t

)

t Discrete time index

RB
t Energy stored in the battery at start of period t

RH
t Energy stored in the hydrogen tank at the start of period t

xE
t−1 Electricity which has to be delivered in period t

PE
t Electricity price observed in period t for delivery during period t+ 1

QE,u
t Penalty for electricity shortage in period t

QE,o
t Penalized electricity price for overproduction in period t

PH
t Hydrogen price in period t

Y E
t Energy production in period t

Exogenous information Wt+1 =
(

PE
t+1, Q

E,u
t+1, Q

E,o
t+1, P

H
t+1, Y

E
t+1

)

PE
t+1 Electricity price observed in period t+ 1 for delivery during period t+ 2

QE,u
t+1 Penalty for electricity shortage in period t+ 1

QE,o
t+1 Penalized electricity price for overproduction in period t+ 1

PH
t+1 Hydrogen price in period t+ 1

Y E
t+1 Energy production in period t+ 1
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Functions

yBt,in (St, xt Power flow into the battery in period) t

yBt,out (St Power flow out of the battery in period) t

yHt,in (St, xt Power flow into the electrolyzer in period) t

yHt,in (St Power flow out of the fuel cell in period) t

Ct (St, xt Contribution function in period) t

Vt (St Value function in period) t

SM
t (St, xt,Wt+1 Transition function from period) t to t+ 1

Table A2: Notation introduced in Section 5

Sx
t (St, xt Post-decision state in period) t

V x
t (Sx

t Value function of the post-decision states in period) t

V̄ x
t (Sx

t Value function approximation of the post-decision states in period) t

xE,pos
t Positive part of commitment xE

t

xE,neg
t Negative part of commitment xE

t

θi Coefficients of the value function approximation

M Number of post-decision states to be sampled

N Number of evaluations per post-decision state (l2, l1, l2-w, l1-w)

nm,t Number of evaluations per post-decision state m in period t (l2-OCBA, l1-OCBA)

nlb Lower bound for the number of evaluations per post-decision state (l2-OCBA, l1-OCBA)

vx,nm,t n-th evaluation of sampled post-decision state m in period t

v̄xm,t Estimated mean of sampled post-decision state m in period t

σm,t Estimated standard deviation of sampled post-decision state m in period t

cvm,t Estimated coefficient of variation of sampled post-decision state m in period t

ωt Sample of exogenous information in period t

p Number of regression coefficients

Table A3: Notation introduced in Section 6

κ Mean-reversion parameter of the electricity price

µt Mean parameter of the electricity price in period t

P̃E
t+1 Noise of stochastic process of the electricity price from period t to t+ 1

σE Standard deviation of the noise P̃E
t+1

λt Weibull scale parameter of the wind speed in period t

kt Weibull shape parameter of the wind speed in period t

wst Wind speed sample in period t

r Maximum power of the wind turbines

sci Cut-in speed of the wind turbines

sco Cut-out speed of the wind turbines

sr Minimum wind speed with maximum power of the wind power plant

25

 
Authors Accepted Manuscript



Table A4: Parameter values for the numerical study

ValueParameterValueParameter

RB
max 20MWh T 8760

RH
max ∆300MWh t 1 h

xE
max 25MW xE

min −10MW

ρBin
√
0.75 κ 0.0518

ρBout
√
0.75 µt ∈ [−56.59, 163.72]e/MWh

ρHin 0.8 σE 4.455e/MWh

ρHout 0.6 QE,u
t 2PE

t−1

QE,u
t 0.00e/MWh PH

t 30.00e/MWh

γB 0.00925 qgf 5.00e/MWh

γH 0 λt ∈ [0.1001, 0.2512]

β 1.05
−1

8760 kt ∈ [1.321, 3.195]

yBin,max 5MW r 20MW

yBout,max 5MW sci 3m/s

yHin,max 5MW sco 25m/s

yHout,max 5MW sr 12m/s

B Validation of BADP using a discretized problem variant

The considered dynamic program is continuous and cannot be solved exactly. The standard approach to tackle

this is to discretize the dynamic program and to solve the discretized problem with backwards recursion and

lookup tables. In this Section, we show that our BADP algorithm can compete with this approach and is much

faster. We specify the discretized backwards recursion approach as following.

• Disc: This is a standard benchmark approach and solves a discretized and slightly simplified version of the

problem via backwards recursion. Every post-decision state is evaluated exactly, but as not all feasible

decisions lead to a discrete state, the value functions are linearly interpolated.

More precisely, the discretized prices and productions are each the 11 time dependent centroids of 10, 000

sample paths, computed with k-means clustering.

The decisions xH
t and xE

t are discretized with 11 equidistant points ([0, 5, 10, ..., 50] and [−10,−6.5, ..., , 21.5, 25],

respectively). By contrast, the decision regarding the allocation of excess energy to the storages xB,H
t is

substituted by a simple and reasonable rule: If more energy is produced in a period than delivered, the

battery is charged before hydrogen is produced.

To obtain a discrete state space, it is also necessary to discretize the storage levels. We use again 11

equidistant points. Thus, in total 14,641 post-decision states have to be considered for each time period.

Preliminary tests showed that these discretizations provide a reasonable trade-off between machine time

and quality of the solution.

Strictly speaking, Disc tackles a slightly different problem than the BADP variants and, thus, a comparison

on the power producer’s problem as described in Section 6.1 would be too optimistic with regard to the BADP

variants. To avoid this bias, we choose a conservative approach and use a discretized version of the problem to

compare the approaches.
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The discretized problem fully complies with the assumptions underlying Disc and outlined above (e.g., the

decision xB,H is substituted with a decision rule). To save time, the length of the horizon was set to T = 100.

Obviously, Disc is directly applicable to this problem, whereas the other approaches require straightforward

modifications regarding the allocation of excess energy. They employ discrete stochastic processes outlined

above and the discrete decision alternatives are enumerated. Apart from the linear interpolation, Disc solves

the discretized problem exactly.

Every policy is evaluated with 1,000 simulation runs. For each approach we use the same out of sample

scenarios from the calibrated processes.
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Figure 9: Profit and runtime of the approaches (discretized problem)

Figure 9 shows the approaches’ performance relative to Disc. The left bars correspond to the relative revenue,

while the right bars correspond to the relative machine time. As the length of the 99% confidence intervals

are below 0.5% of the mean, we do not show these. As expected, the Disc approach has the highest revenue

but also the highest machine time. While all BADP variants outperform the ssl-heuristic in terms of revenue,

among these, the l2-OCBA is the most profitable one. Because of the extremely high machine time of Disc,

cannot be used to solve the much more complex continuous problem in Section 6.2.

The profit gap between l2-OCBA and Disc is below 1.2 percentage points (pp) and this BADP variant is

about 500 times faster than Disc, which needs over 60 hours. Even if we use a much rougher discretization for

Disc, it is still slower, but with profits much lower than l2-OCBA (not shown here). This and the fact that

all BADP variants are better than ssl-heuristic already shows that all approaches considered obtain reasonable

results, even as we do not enforce the concavity of the VFAs. By contrast, Jiang et al. (2014) report that these

properties have to be enforced in their energy storage problem to obtain good results with their forward ADP

algorithm because the VFAs converge faster. By contrast, these properties are almost always satisfied with the

BADP algorithm without enforcing them.

A comparison of the BADP variants shows that the weighted variants obtain lower profits than the standard

variants with an unweighted norm and the OCBA variants. However, the unweighted variants are slightly slower

than the weighted variants because the matrix multiplication and the linear program for the computation of

the regression parameters are larger. The OCBA step itself is very fast and the OCBA variants have the

same runtime as the weighted variants. The l1 variants are always worse than the l2 variants and there is no

significant difference between l2-OCBA and l2 (5000,1).
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