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Abstract

Video Smoke Detection is a promising solution to detected fires in buildings with

high ceilings (e.g., factories, warehouses, train stations, and tunnels) or outdoor ar-

eas (e.g., landing stripes, harbors, and pedestrian areas). It can detect smoke very

fast and prevent higher human or property damage.

These benefits are the reason why an increasing amount of research groups and

companies are aiming to develop reliable algorithms for Video Smoke Detection.

In classic approaches, physical or visual characteristics of smoke are identified and

extracted by ordinary Computer Vision algorithms to distinguish smoke from non

smoke events. These approaches require substantial limitations to the field of appli-

cation to assure that smoke behaves as expected.

Furthermore, Video Smoke Detection suffers from high false alarm rates, such that

no fully automatic smoke detection is possible and an alarm candidate has to be

checked by humans.

Due to the success of artificial intelligence in object detection, research in Video

Smoke Detection shifts more and more to apply Deep Learning methods.

In this thesis, it is shown that Deep Learning methods outperform classical Com-

puter Vision algorithms by far and can enable fully automatic Video Smoke De-

tection systems. Several state of the art Deep Learning methods are investigated

successfully concerning performance and computing complexity. This analysis in-

cludes single frame approaches based on convolutional neural networks and temporal

approaches utilizing 3D convolutions or recurrent networks. It turns out that tem-

poral information is crucial for Deep Learning methods in Video Smoke Detection.

Temporal input, like difference or optical flow of two consecutive images also im-

proves the results.

Among all investigated methods, the i3D, a network using 3D convolutions, in com-

bination with difference images performs best. It detects smoke very fast, in many

situations even faster than human. Furthermore, the computing complexity is re-

duced by a custom approach to 1% while maintaining 92% of the i3D’s performance.

This is valuable, when meeting hardware restrictions on the target platform.
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über den Tellerrand der vorliegenden Arbeit hinauszuschauen.

Danke auch an meine Eltern, die mich während meines gesamten Ausbildungsweges

begleitet haben.
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Chapter 1

Introduction

Firstly, a motivation and purpose of Video Smoke Detection (VSD) is given in

Section 1.1. In Section 1.2 the requirements for VSD algorithms are defined. Section

1.3 discusses the state of the art (SotA) in VSD. The contribution of this thesis

beyond the SotA is described in Section 1.4. Finally, an overview of the thesis’

structure is presented in Section 1.5.

1.1 Video Smoke Detection (VSD)

1.2 billion dollars losses, 16 deaths and 273 injuries annually, all due to fires in in-

dustrial and manufacturing buildings - these are the annual figures in the United

States [1]. Smoke detection systems are installed to reduce these death, injuries,

and costs. A classical smoke detector is placed under the ceiling and triggers an

alarm due to the optical, thermal, or chemical properties of smoke. This process is

not optimal for large factories and buildings with high ceilings for two main reasons.

Firstly, smoke needs time to reach the detector, which makes smoke detection very

slow. On the other hand, a single detector monitors only a tiny fraction of a room.

Both problems are solved by VSD. VSD is the solution in fields of application, where

utilization of ordinary smoke detectors is restricted, or a fast smoke detection is cru-

cial to prevent personal injury and material damage. VSD can also be applied in

outdoor scenarios, where currently no approach is available.

A camera can observe a larger room and detects smoke just as it starts to spread.

Additionally, video material can be transmitted to the fire brigade before it arrives,
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giving them an advantage in analyzing the situation. As smoke detection decides on

life and death, reliable VSD Algorithms are of humane and economic importance.

There are three ways of detecting smoke in a video surveillance area. One is to let a

person observe the recordings in real-time, which is expensive and a demanding job

since it requires great attention over several hours. The second way is to develop a

Computer Vision (CV) algorithm, which enables a fully automatic smoke detection.

To the current state of the art (SotA), this method suffers from a not acceptable

amount of false alarms. Therefore the third way is usually applied: The CV based

VSD algorithm detects possible smoke candidates, transmits them to a central con-

trol unit, which decides, whether it is a real smoke alarm or not.

Nevertheless, the overall goal is to have a fully automatic VSD using CV methods.

Deep Learning (DL) methods applied on VSD are promising to make one step ahead

of this goal since they reach remarkable results in other object detection problems

and outperform all other classic CV methods.

1.2 Requirements for VSD

In this thesis, cameras are installed to observe an arbitrary area, in which smoke

should be detected. Infrared cameras or other sensors delivering 2D images are not

considered. The recordings of each camera are processed independently and not

merged.

It is assumed that VSD is applied in a typical surveillance scenario, i.e., the camera

is fixed and does not move except some slightly shaking caused by wind or vibrations

in the environment. Relevant are all smoke recordings, in which humans can detect

smoke for sure by watching the sequence. Smoke is not recognizable by a human

when the event is too far away from the camera, completely covered by an object or

illuminated weakly. There are no further restrictions on the environment, weather,

or illumination conditions. Events, which can only be distinguished from dangerous

smoke by understanding the context, e.g., steam leaving funnels or dust, are not

considered.

A fully automatic VSD system is assessed to its ability to detect smoke as fast as

possible while being robust against false alarms, but a late smoke detection is better
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than no smoke detection. The maximum valid time for smoke detection is set to 90

seconds after the first smoke is human visible. A maximum distance to the smoke

event is not defined. The most events considered in this thesis are 5 to 30 meters

apart from the camera. The exact location of smoke in the frame is not relevant.

1.3 State of the Art

In classic approaches, the development of VSD algorithms is done in two steps:

Firstly, temporal and spatial features based on the visual characteristics of smoke

are identified. Such features transform the problem of VSD in an easier to handle

lower-dimensional domain. In the best case, smoke is separable from disturbance

events in this domain. Typical smoke characteristics for feature development are

color [2,3], static texture [4–11], dynamic textures [12–16], moving and growing be-

havior [17–25].

In recent years Deep Learning methods are also investigated for VSD. The research

starts by observing single frame methods. It is shown that one is able to detect

smoke by using convolutional neural networks (CNNs) [26]. Different SotA CNN

architectures are compared like VGG, ResNet, Inception and Xception. The exper-

imental result is that Xception works best [27].

Temporal approaches are also investigated. A two-stream approach using two net-

works one for RGB and one for optical flow is analyzed by [28]. The resulting

features are merged to classify smoke. A public dataset of smoke and non smoke

sequences crops is constructed and a combination of CNN and recurrent neural net-

work (RNN) are observed by [29] with promising results. This dataset is also used

for SotA comparison in this thesis. But this dataset is not sufficient to evaluate the

algorithms in the scope of a full VSD system.

The lack of data is a big issue when utilizing DL methods for VSD. To overcome this

issue [30] enlarges their dataset by artificial smoke data and show that this could

increase the performance. They are investigating single frames only.
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1.4 Contribution of this Thesis

In this thesis it is shown, that DL methods outperform classical CV methods by far

and enables fully automatic VSD systems. In contrast to the current SotA the DL

methods are embedded and evaluated as a full VSD system, i.e. it is assumed that

a camera delivers real time surveillance recordings and the algorithm responds with

a smoke prediction using past information only. Several new concepts concerning

data preparation and evaluation are developed and DL techniques are compared.

Data are crucial to develop and compare DL algorithms. This thesis is supported

by the Bosch Building Technology GmbH, which provides an exhaustive dataset of

smoke and non smoke (negative) recordings in surveillance scenarios, about 350

hours of video material. These data are structured and labeled for DL purposes.

This thesis compares several VSD algorithm. The algorithms should be evaluated

due to their ability to be a standalone VSD system. This means that the algorithms

are evaluated on real surveillance sequences containing smoke and negative periods.

For evaluation and comparison of the VSD algorithms a measure is developed, which

monitors the requirements of Section 1.2. It is called Detection Speed and measures

the ability of an algorithm to detect smoke as fast as possible while being robust

against false alarms.

Using this data and evaluation concept, several VSD approaches, which are already

investigated for VSD in literature are revisited: An algorithm based on traditional

CV methods using an accumulation of optical flow over time. A single frame based

CNN using RGB.

These algorithms act as baselines to compare them to algorithms utilizing new DL

ideas. The first is to use transfer learning for the CNN with RGB input. The second

is to add temporal information, which is done in two ways: Firstly using temporal

input, i.e., optical flow and image differences. Secondly, to investigate DL architec-

tures with the ability to learn temporal information. One is a combination of CNNs

and RNNs, which first extracts spatial information, of which temporal features are

derived. The other one is a SotA architecture using 3D convolutions (3D-CNN).

Furthermore, a custom approach is presented, which uses the smoke probabilities of

a CNN as an input and accumulates them over time. Also, the approaches using
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temporal DL architectures are investigated with input of image differences. It turns

out that the 3D-CNN with differences of images as input works best.

It is shown that all the approaches newly introduced in this thesis outperform the

classic VSD algorithms and Deep Learning VSD approaches by far.

DL architectures are very resource consuming. So especially when hardware restric-

tions occur, the application of these algorithms in real-time is limited. Therefore

architectures, which reduce the computing complexity, are investigated. Firstly

SotA concepts for complexity reduction of CNNs and 3D-CNNs are analyzed. Sec-

ondly, a custom architecture based on convolutional RNNs and a custom concept

for further reducing the complexity of 3D-CNNs is observed, and it is shown that

the complexity can significantly be reduced with less performance decrease.

1.5 Structure of this Thesis

This thesis starts with an overview of the basics for algorithm development using

DL methods and delimitates it from classical approaches in Chapter 2.

Chapter 3 describes a structuring concept for data to develop and compare DL based

VSD algorithm. Additionally, a measure to compare the VSD is defined, and a VSD

algorithm using classic CV methods is developed and evaluated.

A template for all DL architectures and the method, how they are trained is de-

scribed in Chapter 4.

This template is applied to a CNN using RGB images as input in Chapter 5. Fur-

thermore, temporal DL methods are developed, compared, and analyzed in the scope

of VSD. Additionally, these architectures are investigated on a public dataset.

In Chapter 6 a measure to compare the model complexity is defined, and several

methods to reduce the model complexity are observed.

Finally, a summary, results, and open questions are given in Chapter 7.
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Chapter 2

Basics

This chapter deals with algorithm development for VSD and introduces, how this

could be done using DL methods. First, an overview of how VSD algorithms are

developed in literature is given in Section 2.1. Detailed information about classic CV

algorithm and which techniques are used are not relevant for the proposed thesis.

A comprehensive overview is given in [31]. Rather interesting for this thesis is the

general concept, how features are designed and passed a decision function to predict

smoke. This classic concept is delimited to DL based methods.

In Section 2.2 the theoretical DL background is described. The thesis relevant DL

modules CNNs, 3D-CNNs, and RNNs are explained. Furthermore, it is discussed,

what challenges occur, when training and evaluating such DL modules.

An overview of the SotA in object detection and sequence classification is presented

in Section 2.3.

2.1 VSD Algorithm Development

In classical approaches features for VSD are designed by hand with much knowledge

about visual and physical smoke behavior, this approach is called handcrafted fea-

ture extraction. A VSD algorithm based on such features is called expert system.

Secondly, rules for an alarm decision in the feature domain are derived. A decision

function models these rules, and the goal is to get a good approximation of this

decision function. An architecture and a related set of parameters defines such a

decision function. Both are unknown and have to be determined. One realization
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of an architecture with parameters is called model. Two ways are applied to ap-

proximate such a decision function by a model. One is to derive the rules based on

physical smoke properties. The other way is to observe sample events, investigate

the feature domain of those, and derive a model statistically using machine learning

(ML) methods like logistic regression, support vector machine or bayesian classifier.

Figure 2.1 gives an overview.

Figure 2.1: Development workflow of VSD algorithms. The raw images are trans-
formed into the feature domain, in which a decision function separates smoke from
negatives. Using DL method the decision function is directly derived from the raw
data.

Two problems could occur using handcrafted features and a physical model or ML

based decision function. The first is that smoke and negative events are not perfectly

separated in the feature domain, which is indicated by the overlap of the green and

red circle in Figure 2.1. Secondly, that the decision function does not fit the smoke

region adequately in feature domain (Figures 2.2a and 2.2b). In classic algorithm

development, these problems are tackled separately in iterations to improve the VSD

system, which leads to very complex and hard to maintain algorithms.

In contrast, DL approaches do not necessarily require knowledge of experts. The

decision function is directly derived from the raw data, without or with low-level

handcrafted feature extraction. Strictly speaking, DL is a specific ML technique

containing neural networks since it also uses real-world data and statistical methods

to separate smoke from negative events. The difference is that the effort for feature

design is much reduced or completely skipped, and the time for sample generation,

architecture and parameter selection is increased. By reducing the handcrafted

feature design, the feature domain keeps very high or unreduced compared to the

original problem (Figure 2.2c). Therefore it is said that DL methods automatically



2.2. DEEP LEARNING BASICS 9

(a) (b) (c)

Figure 2.2: Different types of decision functions. (a) shows a physical model in the
feature domain. All input within the blue box is classified as smoke. (b) illustrates
ML in feature domain. The green and red dots are the sample data to determine
the model. All input in the violet box is classified as smoke. (c) shows a DL model
on raw data. All samples in the turquoise region are classified as smoke.

derive features and decide based on these features.

The weakness of DL models is that they require much data, which should be repre-

sentative of all real-world smoke and negative events. ML models require data for

training depending on the complexity of the feature domain, usually a very huge

amount to get good results and additionally for testing. In contrast, physical models

need data for testing only.

2.2 Deep Learning Basics

The key tool for single frame DL in CV are convolutional neural networks (CNN),

which are used to learn spatial features for defined tasks automatically. These CNNs

are explained at first.

Secondly, two ways, how to deal with image sequences are described: 3D-CNNs

and recurrent neural networks RNN. 3D-CNNs are extended versions of CNNs to

the temporal dimension. RNNs carry temporal information from frame to frame.

Furthermore, the receptive field and how to determine it is explained.

Afterward, a short introduction, how such networks are trained is given, which

challenges occur, and how to tackle them. The importance of splitting the data

into training and test set is also explained. Finally, it is described, which SotA

approaches are used for single frame and sequence-based object detection.
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2.2.1 Convolutional Neural Networks (CNNs)

Initially, a set of observed samples (X, Y ) is given. Each sample (x, y) ∈ (X, Y )

represents a corresponding pair of an input x and an output y, which is called label.

Each y is assigned to x by human supervision. In the application of VSD, x is the

recorded sequence of images, and the label y contains the information, if and where

there is smoke in this sequence. (X, Y ) are the recordings during all smoke and non

smoke experiments.

The goal is to use the observed samples (X, Y ) to find a function f , which general-

izes to arbitrary data and finds the correct label y for an input x 6∈ X, i.e. y = f(x).

f usually is a complex non linear function with a completely unknown structure.

Neural Networks (NN) are one way to approximate f by a parameterized function.

Let Nβ be a NN parameterized by β. β should be determined by the observed data

(X, Y ), so that Nβ = f . Finding β is a typical fitting problem. A NN is a stack of

layers, which consists of linearities and non-linearities (Figure 2.3).

Figure 2.3: Schematic structure of a general NN. A NN propagates an input x
through several linearities and non-linearities to predict a target output y. The
parameters of a network are fitted to observations X with labels Y .

The challenge is that the NN generalizes from the observed data (X, Y ) to arbitrary

and unknown data (x̃, ỹ) /∈ (X, Y ). A NN has many degrees of freedom in archi-

tecture design, e.g. number of layers or number and kind of non-linearities of each

layer.

A CNN is a special type of NN, which is usually applied to images. Common CNN
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layers are convolutional, pooling and fully connected layers, which are described

now.

A schematic illustration of a convolutional layer is given in 2.5. A convolutional layer

consists of l convolutional kernels Ki ∈ Rk×k×c with i = 1, . . . , l and an activation

function κ. k × k is the kernel size, typically 3× 3, 5× 5 or 7× 7. c is the number

of channels. The input of a neural network typically has three channels, one for

each of the RGB input. Channels in intermediate layers of the neural network are

the features extracted by the convolutional kernels from the input. Convolutional

kernels can be interpeted as the common filter kernels used in image processing for

discrete filters (Sobel, Laplace etc.). In contrast to classic feature extraction those

kernels are parametrized and optmized for the sample data. The stride s is the

distance between two centers of the widows of the tensor, which are convolved with

Ki. κ typically is a nonlinear function, e.g. a sigmoid, tanh or a rectified linear unit

(ReLU).
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Figure 2.4: Most common activation functions.

Let I ∈ Rh×w×c be the input tensor of a convolutional layer (for the first layer is

I = x the input of the convolutional network). Then the output of a convolutional

layer O ∈ Rbh/sc×bw/sc×l is

Oi = κ (Ki ∗s I) , (2.2.1)
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where Ki ∗s I is a discrete convolution with stride s. h×w is the spatial size of the

input tensor (for the last layer is O = y the output of the network). The choice of

s > 1 is one way to reduce the output dimensions. The values of the kernels are all

trainable.

Figure 2.5: Components and parameters of a convolutional layer. The green rectan-
gle represents a 2× 2 convolutional kernel withs stride s = 2. Each black rectangle
stands for one value in the 6 × 6 × 1 input I. The convolution results in a 3 × 3
output O.

Pooling reduces the size of the input tensor by merging the information within a

small tensor region. The most common pooling types are average and maximum

pooling. Pooling layers have a pooling size k × k, which is the region of which the

maximum/average is taken, and they use a stride s, which is the distance in each

dimension between the pooling centers. Pooling layers are not trainable.

Fully connected (FC) layers consist of an activation function κ and of a matrix D ∈
Rl×c. They transform the feature dimension by a matrix multiplication O = κ(DI).

The values of D are trainable.

The intuition behind CNNs is that they automatically learn to extract simple fea-

tures in the first layers and in deeper layers, abstract correlations between these

simple features, which are scale and rotation invariant. Examples for simple fea-

tures are edges, contrast, and color. Complex features are harder to interpret for

humans like the topology or texture of objects. Figure 2.6 illustrates the intuition
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behind a CNN for smoke.

Figure 2.6: Illustration and intuition of a common CNN architecture. A CNN yields
an image as input, and relevant information for the problem are extracted in each
layer. Finally, the information is used to predict, if there is smoke or not.

Designing such networks is challenging. Since 2014 there has been exhaustive re-

search in finding optimal architectures. The performance of architectures is usually

benchmarked on ImageNet [32]. However, this is not the only indicator of the quality

of a model architecture. Also, the number of parameter and calculation operations

are taken into account to judge the ability to use such network in systems, which

have hardware restrictions and real-time requirements.

Most popular architectural concepts are VGG [33], ResNet [34], InceptionV1 [35]

and Xception [36]. VGG uses the basic concept, which is increasing the features

while reducing the spatial size. ResNet enables a much deeper network by just

learning residuals while taking the number of features constant. Inception enables

a network to learn, which kernel size is appropriate for each layer. Xception reduces

the number of calculation operations by separately combining the features of a layer

and afterward conducting depthwise convolutions. In this thesis, the InceptionV1

is part of several DL methods, the single frame, the CNN+LSTM, and the CNN

accumulation approach. For reduction of calculation complexity a network based on

Xception is analyzed for VSD, the MobileNetV2 [37].
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2.2.2 3D-Convolutional Neural Networks (3D-CNNs)

3D-CNNs are highly correlated to (2D) CNNs the only difference is, that the input

tensor I ∈ Rt×h×w×c, i.e. it has next to spatial size h × w and the channels c,

a temporal dimension t. 3D-CNNs are supposed to extract and merge features in

temporal and spatial domain, such that for the kernel and the pooling layers a

further temporal dimension is added (Figure 2.7).

Figure 2.7: Illustration of a 3D convolution. The input of 3D convolutions is not
only one image, but a sequence of images. 3D convolutions walk through the spatial
and temporal dimensions.

The intuition behind these 3D-CNNs is that in addition to the spatial information,

which can be obtained by an ordinary CNN, also temporal information can be

learned, e.g., differences or optical flow in the first layers and object correlated

changes or higher-order dynamic textures in deeper layers. Architectural research

for 3D-CNNs is still at the beginning. In a pioneering work concerning temporal

DL architectures it is shown that an inflated Inception architecture, namely inflated

3D (i3D) [38], outperforms every other architecture with temporal components on

the Kinetics [39, 40] dataset, which is the biggest dataset containing sequences and

sequence-based labels. The Kinetics dataset differs from the VSD use case in the

sense that it contains rather short sequences (≤ 10s) extracted from movies and

private recordings, but mainly no surveillance scenarios.

In this thesis, the i3D is the architecture of choice when investigating 3D-CNNs.
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2.2.3 Recurrent Neural Networks (RNNs)

In contrast to 3D-CNNs, which extract features from a fixed time window, RNNs

extract new features from the last features, the memory, and the current input.

Firstly RNNs for sequences are observed, where each time-step is a feature vector x =

Figure 2.8: Schematic illustration of an RNN.

(x1, . . . , xT ) with xi ∈ Rc. A simplified RNN (Figure 2.8) consists of an activation

function κ and two weight matrices U ∈ Rl×c and W ∈ Rl×l. The features ht ∈ Rl

at time-step t are calculated recursively

ht = κ (Uxt +Wht−1) . (2.2.2)

The values in U and W are trainable. Such basic RNNs show bad behavior during

training of the values [41], since the gradient usually explodes or vanishes, when

dealing with long sequences.

Figure 2.9: Schematic illustration of an (Conv)LSTM. For LSTMs the ∗ is a matrix
multiplication and for ConvLSTMs it is a discrete convolution.

The RNN architecture which overcomes this issue is the long short term memory
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network (LSTM), which is the architecture of choice, when using an RNN in research

or application. The LSTM equations visualized in Figure 2.9 are as follows

ft = σ (Ufxt +Wfht−1) (2.2.3)

ĉt = tanh (Ucxt +Wcht−1) (2.2.4)

it = σ (Uixt +Wiht−1) (2.2.5)

ot = σ (Uoxt +Woht−1) (2.2.6)

ct = ft · ct−1 + it · ĉt (2.2.7)

ht = ot · tanh (ct) , (2.2.8)

where σ is a sigmoid function, · an element-wise product and U•,W• are the weight

matrices. ft is called forget gate, it input gate, ot output gate.

ct, the carry state, and ht, the hidden state, are temporal information, which are

transmitted to the next LSTM step: ct carries the long term memory and ht the

short term memory. ht is also the response of an LSTM block, which is for example

used for classification or transfered to a higher layer.

Equation 2.2.3 determines, which ratio of the long term memory should be kept.

Equation 2.2.4 can be interpreted as the impact of the input information on long

term memory. The input information is given by 2.2.5 and 2.2.6 is the output infor-

mation, which is scaled by the long term information in Equation 2.2.8 to yield the

short term memory ht. The critical component of the LSTM is Equation 2.2.7, in

which the long term information ct is calculated. The linear structure of this equa-

tion prohibits the gradients to vanish or explode during the optimization process.

To maintain the spatial structure of an input a straight forward extension of LSTMs

is given by [42], the convolutional LSTMs (ConvLSTM), in which the matrix multi-

plications are replaced by convolutions. In ordinary LSTMs the input and output are

vectors and the kernels are matrices, whereas in ConvLSTMs the input, output and

kernels are tensors like in CNNs, so that the temporal states ht and ct correspond

to feature maps of image regions. In addition to the information, a 3D-CNN can

learn, a ConvLSTM can extract long term information, like noise or slow-growing.

Intuitively, this information is characteristic of smoke.
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2.2.4 Receptive Field

The receptive field of a NN is the part of the sequence and the image region that

is associated with a certain output. This is the maximal information a NN is able

to use to determine the output. The size of such a receptive field gives a hint,

which information a network can combine for a decision and is the first step to

understand, what a network does. The bigger the spatial receptive field, the more

context information could be used by a network to generate a smoke prediction.

However, the NN is also more complex to train and needs a higher depth and more

parameters. Each dimension (time, width, height) of the input can be independently

considered so that one can restrict to a one-dimensional consideration. It is assumed

that the input dimension has arbitrary elements, and a theoretical maximal size of

the receptive field is determined. It is calculated recurrently through the layers of

a network. For pooling and convolutional layers the receptive field is calculated as

follows: Let k be the kernel/pooling size and s be the stride of the i-th layer, then

the size of the receptive field ri of this layer is

ji = sji−1 (2.2.9)

ri = ri−1 + (k − 1)ji, (2.2.10)

with r0 = j0 = 1. ji is called jump.

A recurrent layer has a receptive field of size∞. Equation 2.2.10 is used to calculate

the receptive fields of all proposed architectures.

2.2.5 Training Neural Networks

Let X = {x1, . . . , xn} be the input data and Y = {y1, . . . , yn} the labels. The goal

is to determine β, such that the average loss

L(β) =
1

n

n∑
i=1

L (Nβ(xi), yi) (2.2.11)

is minimal. L is the loss function, e.g. the euclidian distance or the relative entropy.

The optimization is usually done iteratively by gradient descent. Choose the initial

parameter set β0 according an arbitrary rule. Let βi be the parameter set after the
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i-th iteration. The next parameter set is calculated by

βi+1 = βi − ρ∇βL(βi), (2.2.12)

where ρ is the learning rate and ∇β the gradient operator. Equation 2.2.12 is

repeated until βi converges.

The learning rate is one of the most important hyperparameters while training a

neural network. It significantly influences the convergence speed, if the algorithm

converges at all and the quality of the minimum: If the learning rate is too low,

one could end up in a local minimum, and if the learning rate is too big, the global

minimum could be skipped over.

This iterative optimization process is called training, since the algorithm is improved

step by step. X is called training data or training set.

A challenging aspect is to approximate the gradient ∇βL(βt), since L(β) is a very

complex function. This approximation is made recursively by backpropagation (BP),

when training CNNs, and by backpropagation through time (BPTT) for RNNs. The

idea is to update weights starting at the last layers using the chain rule.

A common way to train a NN is not updating the weights using the whole data set

X at once, but divide X in b disjoint subsets X1, . . . , Xb, so-called batches. The

weights are updated due to this batches, i.e., instead of one big update, b small

updates are conducted. Doing all this b small updates is called an epoch. This

process is named mini-batch optimization.

There are several extensions of this optimization algorithm to make it more robust

and converge faster, e.g., introducing a momentum µ ∈ (0, 1)

gi+1 = µgi + (1− µ)∇βL(βi) (2.2.13)

βi+1 = βi − ρgi+1. (2.2.14)

The idea of momentum is that the gradients of consecutive batches are averaged

and therefore the optimization process is more robust against the influence of local

minima.

If the batches are constructed randomly new in each epoch, the optimization process

is called stochastic gradient descent (SGD). SGD allows a good generalization from
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training data to unseen data. Therefore all successful DL approaches in literature

use a variant of SGD for training. In this thesis, SGD with momentum is applied.

2.2.6 Transfer Learning

Weight initialization is very important for training NNs. The challenge is to prohibit

vanishing and exploding gradients or dead activations. One way to initialize the

weights of a NN is to use probability numbers, e.g., the method of Glorot [43]. Since

there is no external knowledge put into the weights, it is said that the network is

trained from scratch.

In contrast to this approach, one can use transfer learning, which showed outstanding

results in computer vision task, when dealing with small datasets [44]: A model

which is trained for a completely other task is fine-tuned for the target task. The

idea is that the new task has similar features, which have to be slightly different

interpreted. Furthermore, pretrained weights are usually better initialization than

random numbers. In literature transfer learning is very successful, especially, when

having small dataset for the target task.

In this thesis, the influence of transfer learning is also investigated.

2.2.7 Overfitting and Split into Training and Test Set

During the optimization process, ML/DL models can learn to perfectly separate

smoke from negative events in the training set, but this does not say anything about

the performance of the algorithm on unseen data. The question is rather, how does

the trained model generalize on unseen events. Therefore next to the training set

a second set containing smoke and negative events has to be defined, the test set.

The case that the decision function perfectly fits the training, but not the test set,

is called overfitting, Figure 2.10. Especially complex models suffer from overfitting,

also known as curse of dimensionality. But these models are necessary if the feature

domain is very complex like for DL.

In practice, the model with the best performance on the test set is chosen, which is a

good compromise between performance and generalization. The more independent

the training and the test set are, the more representative are inferences from the test

performance. The training data should also be representative to get a good gener-
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Figure 2.10: An illustration of overfitting. The dashed circles are all real-world
smoke and negative data. The dots are training and the crosses test samples. Within
the purple region are all the data, which the model predicts as smoke.

alization during the training phase. In Figure 2.10 for example the smoke training

samples cluster in a small part of the whole set, which is a typical indicator for not

being representative, whereas the test samples distribute equally in the whole set.

Since different models are evaluated and compared on the test set, there is also

an indirect optimization process on it. Therefore in practice, usually a third set is

introduced, the validation set, which is used to measure overfitting effects during

training. Finally, the test set is applied for the evaluation of the overall VSD algo-

rithm. The validation set has to satisfy the same requirements as the training and

test set. Nevertheless, the data used in this thesis are not comprehensive enough to

construct three meaningful datasets covering the requirements. Therefore the sets

are restricted to training and test, which are very carefully constructed to make

meaningful inferences from the test set. This is also established practice in VSD

literature, when DL methods are applied, e.g. [29,30].

2.3 Object Detection and Sequence Classification

DL methods are increasingly successful applied in CV tasks. VSD is a combination

of object detection and sequence classification since smoke can be treated as an

object in a video sequence. So it is nearby to apply object detection as well as

sequence classification methods to VSD.

In literature, object detection is usually done using DL methods for single frames,

which is explained first. Application of DL methods to sequence classification is
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a new research topic, not only in the field of VSD. Temporal DL methods, which

are relevant for this thesis, are presented secondly. Finally, an overview, which DL

strategies are applied to VSD so far, is given.

2.3.1 Single Frame Object Detection

Image classification and object detection are fields, in which DL methods immensely

increase the performance and open new doors. A comprehensive overview of the de-

veloped techniques and overcome challenges is given by [45]. Object detection using

DL methods is usually done by predicting a bounding box including the desired

object in a single frame. The NN is trained according to two conditions: Firstly, the

object has to be classified correctly. Secondly, the object bounding box has to be

located as exactly as possible. In recent years there was a big progress in object de-

tection. The best performance show two stage approaches [46–48]. In the first stage

a Region Proposal Networks (RPN) predicts a rough region, where an object exists.

The information in this region is afterwards compressed by ROI-pooling and fed to

a second stage, which predicts the class of the objects and finetunes the boudning

box.

In contrast one stage approaches like You Only Look Once (YOLO) [49] or Single

Shot Detection (SSD) [50] predict class and bounding boxes at the same time. There-

fore one stage approaches are easier to train and need less computational power, but

also show worse performance.

In literature normally SotA CNN architectures like VGG, Inception or ResNet pre-

trained on ImageNet are used as so-called backbone networks to extract features.

These backbone networks are combined with some post-processing afterward to ob-

tain a full classification and localization pipe. RPN architectures usually give the

best performance in object detection challenges, whereas YOLO or SSD allows a

compromise between performance and resource cost. In this thesis, a slightly differ-

ent approach is used. Therefore it is not necessary to go into details. Nevertheless,

the basic idea remains the same: Extracting features by a backbone network and

afterward classifying and localizing the smoke by a custom approach.
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2.3.2 Sequence Classification

A rather new field of research is sequence-based classification, where complete image

sequences are fed into a NN to describe scenes automatically. The idea is to combine

spatial and temporal information appropriately.

Sequence classification tasks are not as comprehensive investigated as single frame

tasks in CV, although a video sequence contains much more information than sin-

gle frames. According to the author’s estimation, there are mainly two reasons for

this: Firstly, good quality video datasets are rare, secondly training temporal DL

networks is very expensive in computing resources. E.g., the Google group used 60

GPUs for comparison of SotA temporal architectures in [38].

One way to overcome these computing resource issues is to extract temporal infor-

mation by classic CV algorithms, e.g., optical flow, and use this as an input for a

CNN. Using this approach, all stationary spatial information, like the topology of

the recording environment, is discarded. Therefore some approaches combine opti-

cal flow with RGB information [51]. The disadvantage of this approach is that one

is restricted to the temporal information of the few (usually two) frames used to

calculate this temporal information.

Nevertheless, it exists some research in DL architectures, which can learn temporal

information. Mainly two basic concepts became famous: Firstly extracting features

by a CNN and utilize the resulting spatial feature vector of each frame as the input

for a LSTM, secondly designing CNN like architectures using 3D-CNNs. Different

architectures are compared by [38] on the Kinetics datasets, which consists of more

than 300, 000 sequences and 400 action classes and has been available only since

2017. Despite the ability to automatically learn temporal information from RGB

frames, the best results are obtained by giving the networks a priori temporal in-

formation like optical flow as an extra input. It turns out that an architecture,

called i3D, which inflates the InceptionV1 idea to a 3D-CNN, outperforms all other

approaches. Furthermore, the authors showed, that pretraining on Kinetics also

increased the performance on other temporal classification datasets and made the

pretrained weights for i3D publicly available.

In this thesis, the CNN+LSTM and i3D approaches are applied to VSD and com-

pared to each other.
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Chapter 3

Data Preparation and Evaluation

Concept

Data preparation is a crucial part of developing and evaluating a DL based algo-

rithm since the algorithm can only learn what it sees during training. The higher the

variation in the dataset, the better is the generalization to similar unseen situations.

Data preparation consists of three parts: Gathering, structuring, and labeling.

Bosch has done gathering over several years. For this thesis, an exhaustive internal

dataset is provided, which contains smoke recordings and non smoke surveillance

scenarios. These are the raw data, which have to be prepared for developing and

evaluating VSD algorithms. This chapter starts with the introduction of the Bosch

dataset in Section 3.1.

Structuring includes cutting the raw data to events, clustering the events due to

their properties, and splitting the data into training and test set. A structuring

concept is presented in Section 3.2.

Labeling is to annotate the events, where smoke appears. Due to the effort, one

can spend, labeling could be done in different granularities: From frame-wise, over

bounding box to pixel-wise labels. With an acceptable effort, the smoke events in

the training set are bounding box labeled. The sequences in the test set are frame-

wise labeled. This is proposed in Section 3.3.

The goal of this thesis is firstly to verify that DL based algorithms can solve the

VSD problem and secondly to find the DL approach, which is most suitable for VSD.

The test sequences are used to compare different VSD algorithms for this purpose.
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In Section 3.4, a measure is developed to evaluate the algorithm performance on the

test set due to frame-wise labels. This measure represents the demands of a VSD

algorithm to be fast and reliable.

Finally a VSD algorithm based on classic CV methods is evaluated using this mea-

sure in Section 3.5. This evaluation acts as a baseline, which is compared to the DL

approaches analyzed in the next chapters.

3.1 The Bosch Dataset

DL requires a huge amount of data to cover all scenarios an algorithm is supposed

to manage. The goal of VSD is to distinct smoke from all other events, which could

appear in a surveillance scenario, so-called negative events. For this thesis, Bosch

provides a huge amount of less structured smoke, and negative recordings gathered

over the last years. The Bosch dataset consists of 1, 600 recordings, of which 630

contain smoke. The duration varies from one minute to about eight hours, in total

357 hours of video material. The recordings were taken in 82 different locations. At

56 of them, smoke experiments are conducted.

3.1.1 Smoke Recordings

In the last 8 years, Bosch conducted smoke experiments at different locations. Sev-

eral differently positioned cameras record these smoke experiments. Some exper-

iments are inspired by the tests, which are conducted to certify ordinary smoke

detectors, which mainly concerns the combustible material, e.g., wood (open flame,

smoldering), liquids (ethanol, gasoline, decalin), cotton and paper. These com-

bustible materials are ignited by a flame, such that an open fire occurs, or by a hot

plate so that only smoldering smoke is visible. Figure 3.1 shows some examples.

Experiments, according to standards, are costly. Therefore the most experiments

are done with different colored and sized smoke cartridges, to simulate the visual

behavior of real smoke events.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Smoke experiments at different locations and with different combustibles.
(a) Smoke cartridge in a barn. (b) Open wood fire at a gravel plant. (c) Smoke
cartridge in power station. (d) Smoke dust in a shopping center. (e) Liquid fire in
a factory. (f) Smoke cartridge in a warehouse.

3.1.2 Negative Recordings

At one location, several experiments are conducted. Therefore there are multiple

smoke events in one recording. Between these smoke, events are non smoke phases,

in which negative events like opening a garage door, moving crane, persons or idle

are recorded. Figure 3.2 shows some examples of negative recordings.

(a) (b) (c)

(d) (e) (f)

Figure 3.2: Some different kinds of negative recordings. (a) Tractor with flashing
light in a barn. (b) Moving shadows while door opening in a bus station. (c)
Emptying dustcart at a dumb. (d) Opening door in a barn. (e) Snowing at a
parking area. (f) Passing cars on a highway.

These negative events can cause the VSD system to throw a false alarm. Periods

without smoke between smoke events are not the only source for negative events
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in the dataset. Bosch has a very comprehensive database consisting of various

surveillance recordings. These recordings are also suitable to extract negatives events

from it.

3.2 Data Structuring Concept

The goal of data structuring is to define a suitable training and test set. These

datasets consist of smoke and negative samples. One sample is defined as a con-

secutive sequence of frames, which is called an event. It is not appropriate to use

complete recordings as samples for training and testing since they are too long (up

to several hours). Therefore meaningful smoke and negative events have to be ex-

tracted out of the recordings. Which rules are applied to extract such events is

described firstly.

Each set has to contain a representative amount of events, which is assured by

splitting the events due to characteristic properties, which is presented secondly.

3.2.1 Extraction of Events

For algorithm development and evaluation purposes, the raw data are divided into

suitable smoke and negative events. The training and test sets are constructed of

these events, whereas each event is one sample. Now the rules and guidelines for

extracting smoke and negative events are defined.

Smoke Events

Smoke events are extracted from the recordings taken during fire experiments. In

one recording, there are several smoke events. A smoke event starts without smoke

for the first 5-10s. The idea is that algorithms using temporal information can

attune to the background and distinguish it from smoke. In cases where smoke from

the previous events is left, this rule can be ignored. A smoke event lasts from 30s

to 500s. If an event is shorter than 30s, it is not considered. If an event is between

30s and 500s, it is cut, when there is no smoke visible anymore. If an event is longer

than 500s, it is cut to 500s.
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Negative Events

In general, every period of a recording without smoke in it is a candidate to be a

negative event. Negative events also have a duration between 30s and 500s. Idle

events, in which nothing happens, are uninteresting and not extracted as an event.

If possible there are 5-10s of idle at the beginning and end of an interesting event.

Interesting events are moving objects, blinking lights, or illumination changes.

General Rules

There are some general rules applied while extracting events. There should be no

overlap between two arbitrary sequences, such that each frame is unique. Slight

camera shaking is allowed because it is typical in environments, where big machines

are applied. However, shaking due to camera adjustment should not occur in the

events.

3.2.2 Description of Events

Smoke and negative events are described by properties, due to which it is ensured

that each set contains representative events.

The events have a wide variety, which makes smoke detection challenging (Figure

3.3). The recordings are influenced by mainly three factors: Environmental condi-

tions, recording conditions, and smoke types.

Environmental Conditions

Environmental conditions are dependent on the scenario, in which the smoke de-

tection takes place: For example the location (indoor, outdoor, semi-outdoor), the

weather (cloudy, sunny, rainy, snow), the illumination (artificial, natural) or air

conditions (turbulent, windy, steady). Typical indoor applications for VSD are

buildings with high ceilings (> 5m), calm air conditions and artificial illumination.

In such areas, smoke needs a long time to reach a detector, which is placed at the

ceiling. For example a factory hall, a warehouse, a shopping center, a train station

or an airport hangar.

In outdoor applications, no ordinary smoke detection is possible. Typical scenarios
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Figure 3.3: The smoke recording have a high variety. This requires a structur-
ing and annotation concept. There are three main properties to describe events:
recording conditions, environmental conditions and the smoke types (AM=Ambient
Smoke, BGF=Backgorund Flickering Smoke, UE=Undirected Expanding Smoke,
DE=Directed Expanding Smoke).

are a pedestrian area, a landing strip, a harbor or a garbage dumb.

Semi-outdoor applications are formally inside, but they have outdoor properties like

turbulent air conditions or illumination changes by movement of clouds and sun.

Examples are an underground/train station or a tunnel.

These influences determine the optical behavior of the smoke, the sensitivity, and

flexibility of the smoke detection system.

Recording conditions

Recording conditions concern the camera and its installation. For example the

position (bottom, middle, top), the alignment (viewing angle, opening angle), the

sensor (type, resolution, framerate) or the preprocessing (tone-mapping, codec).

The position and alignment impact the visual behavior of smoke. The sensor and

the preprocessing deliver the raw data to be used for smoke detection. The noise

disturbing smoke detection is also dependent on the sensor. In this thesis, it is

assumed that the recording device is installed at a fixed position in a surveillance

scenario. Slight shaking or camera movement is allowed, since it is typical for

scenarios like in a production factory, where big machines are utilized. Restrictions

on the sensor or the preprocessing are not defined.
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Smoke and Negative Types

Smoke types describe the visual appearance of smoke, which includes temporal prop-

erties, e.g., the expanding or motion behavior, and static properties, like brightness,

smoke density or texture. For VSD these properties are the basis to infer for unique

features to distinct smoke from other events. A detailed discussion of smoke types

is given in [52], where basically four smoke types are described: directed expanding

(DE), undirected expanding (UE), background flickering (BGF) and ambient (AM)

smoke. To each smoke event, there could be assigned at least one smoke type.

To negative events, the smoke types, to which they are similar is assigned. UE

smoke has to be differed from slowly expanding objects like objects moving towards

the camera or reflections when clouds are covering the sun.

Since thin BGF smoke is hard to distinguish from noise, noisy negative recordings

could cause BGF algorithms to give false alarms. Additionally BGF smoke with

higher smoke densities could be confused with reflections, shadows or illumination

changes.

Ambient smoke is similar to all slow-moving and noisy events.

3.2.3 Training and Test Set

The split into training and test data is crucial for the development of VSD algo-

rithms. The training set is used to optimize the model weights and the test set to

compare the models. The optimal case would be, that the sets are independently

sampled from the same representative distribution, formally: identical and indepen-

dent distributed (IID). The raw data for this thesis does not allow to fulfill this

requirement to the full extent: Even two events extracted from the same recording

or two viewpoints of the same scene are highly correlated. Nevertheless one could

reach an IID property for the training and test set to each other, which is sufficient

to get meaningful results concerning the generalization ability of the model.

For the same representative distribution, it is required, that the sets have to consist

of smoke and negative events, which cover all recording conditions, environmen-

tal conditions, and smoke/negative types equally. A good approximation of this is
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reached if each set has a similar distribution of indoor, semi-outdoor and outdoor

events and a similar distribution of smoke/negative types in smoke and negative

events.

An approximation of independence is reached if each set contains events recorded in

different scenes with different backgrounds, i.e., different environmental conditions.

The sets have no overlap in recording locations to assure independence.

It is hard to get the same distribution in environments and smoke/negative types

while prohibiting an overlap in locations if one aims not to omit some events. It is

decided to keep all events and allow some deviations in distribution. Table 3.1 gives

an overview of the resulting sets and Table 3.2 shows the property distribution. One

can verify that the properties are adequately represented in each set.

Set Smoke Negative Total Locations
Training 704 879 1583 48
Test 312 362 674 37

Table 3.1: Number of events and different locations in training and test split.

Set Indoor Outdoor Semi-
Outdoor

DE UE BGFAM

Training Smoke 65% 18% 17% 70% 46% 93% 40%
Test Smoke 50% 29% 21% 65% 51% 95% 33%
Training Negative 59% 20% 21% 30% 38% 95% 12%
Test Negative 50% 27% 23% 32% 34% 92% 15%

Table 3.2: Distribution of environments (indoor, outdoor, semi-outdoor) and smoke
types within the sets.

3.3 Labeling of Smoke Events

Labeling is the most important step to define what a model has to learn. There are

different methods to label objects in an event. These methods differ in accuracy and

effort. Two classes should be distinguished: smoke and negative. Therefore only

smoke events have to be labeled. Firstly, the different methods are discussed and it

is explained, which is chosen for this thesis.
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Labeling smoke exactly is more challenging than other objects like people or cars.

Secondly, this and possible impacts are discussed.

3.3.1 Label Method for Smoke Events

Four granularities of labeling are possible. The roughest is to label the whole se-

quence if there is smoke in it or not. Sequence-wise labeling is initially given after

separating the recordings into events. The next step is to label each frame if there is

smoke in it or not. Frame-wise labeling is also done while separating the recording

into events.

The sequence and frame-wise labeling does not take into account where smoke is

located in the image. The location can be marked by drawing a polygon around the

smoke region. In object detection, usually a rectangle is chosen, a so-called bound-

ing box (BB). One benefit of using BBs to label objects in sequences is that the

label process can be speed up by interpolation: One identifies two frames between

the object moves or grows with constant speed and interpolates the bounding boxes

linearly between those two frames. Interpolation saves a lot of time during labeling.

The finest granularity of labeling would be pixel-wise labels, which means that each

pixel containing smoke is labeled. Pixel-wise labeling is very time-consuming. Fig-

ure 3.4 shows examples for the different label methods.

(a) (b) (c)

Figure 3.4: Methods of labeling. (a) Example of frame-wise labels. Each frame
yields a label: smoke or negative. (b) Example for BB label. A rectangle surrounds
the smoke region. (c) Example of pixel-wise label. Each pixel containing smoke is
labeled.

The more accurate the labels are, the better the learning problem is defined. Due

to time restrictions, it was decided to label the 705 smoke events in the training set

with BB, which is done in about 400 hours. Based on this, the training problem

is defined. For the test set, there are frame resp. sequence-wise labels. This type
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of labeling is sufficient to determine the evaluation measure, which is proposed in

Section 3.4.

3.3.2 Smoke Specific Label Problems

Labeling smoke leads to ambiguities. If two different persons label the same smoke

event with BB, the result is likely different. The reason for this is that the smoke

density is not uniformly distributed within the smoke region [53]. In the boundary

regions of a smoke plume, thin smoke appears, which can only be recognized due

to plausibility considerations comparing with the last frames. This is illustrated in

Figure 3.5.

Figure 3.5: The label problem: Labels made by two different humans. The contin-
uous rectangle focuses on smoke with a high density. Whereas the dashed rectangle
tries to surround even thin smoke, which is hard to identify.

These labeling inconsistencies lead to contradictions when training a network to

localize the smoke, which prohibits the best generalization.

3.4 Evaluation Measure

In the previous Section, a concept to prepare data for VSD algorithm development

is presented. Now the question is, how the performance of VSD algorithms on the

test set can be monitored. In this thesis, the performance of a VSD algorithm is
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qualitatively defined as the reliability to detect smoke events as fast as possible

while being robust against negative events. The goal of this Section is to transfer

this qualitative definition into a concept to analyze VSD algorithms quantitatively.

This quantitative analysis is finally compressed into one performance measure, the

Detection Speed.

Since for the VSD purpose, low false-positive rates (FPR) are relevant, a receiver

operating curve (ROC) is introduced, which is restricted to this low FPR. The area

under curve (AUC) is used to measure the quality of the ROC.

The restricted ROC is extended, to assess the speed of detecting smoke. The algo-

rithm only has a certain time, after the smoke is visible, to detect it, the detection

time. For each detection time an ROC curve is determined. The Detection Speed

is finally defined as the mean AUC of these time-dependent restricted ROCs. Since

the exact location of smoke in a frame is not relevant, frame-wise labels are enough

to evaluate VSD algorithm using the Detection Speed.

3.4.1 The Restricted ROC

The restricted ROC is introduced to assess the ability of an algorithm to detect

smoke in a sequence while being robust against false alarms. Let n be the number

of smoke and m the number of negative events. The false alarm and detection rate

resp. FPR and TPR are defined as

FPR =
1

m
#false alarm events, (3.4.1)

TPR =
1

n
#detected smoke events. (3.4.2)

The VSD algorithm is assumed to be adjustable by a sensitivity parameter λ ∈
[0, 1], which can be interpreted as the smoke probability threshold to throw an

alarm. Increasing sensitivity leads to an increase of TPR and FPR. The ROC is the

parameterized curve (FPR(λ)/TPR(λ)). Since only low FPR are relevant for VSD,

the ROC is restricted to a FPR≤ θ, where θ ∈ [0, 1] is the maximal feasible false

alarm rate. Figure 3.6 shows the relation between the ROC and restricted ROC.

From these curves one can get an impression of the performance: The nearer the

ROC curve is to the top left corner, the better the algorithm.
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Figure 3.6: Relation between the ROC and the restricted ROC. The AUC and AUCθ

are used to measure the quality of the model, which generates this (restricted) ROC.

A typical measure to compare ROCs of different algorithms is the area under curve

AUC.

AUC =

∫ 1

0

TPR dFPR. (3.4.3)

For a complete ROC the maximum AUC is 1 and an AUC< 0.5 is worse than

guessing, if smoke is in a sequence. The area under curve AUCθ for the restricted

ROC is defined as

AUCθ =
1

θ

∫ θ

0

TPR dFPR. (3.4.4)

The factor 1
θ

normalizes the maximum of AUCθ to 1. Note that guessing would lead

to AUCθ = θ/2.

3.4.2 Detection Speed

The restricted ROC is a quantitative concept to analyze the reliability to detect

smoke while being robust against false alarms. But currently only complete events

are considered, i.e. the restricted ROC does not contain any information about,

how fast a smoke event is detected. Now a custom concept is developed to combine
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the restricted ROC and the speed in one concept. The resulting measure is called

Detection Speed DSpeed. It is constructed as follows:

1. Define a maximal false alarm rate θ and maximal detection time Tmax, at which

the algorithm has to throw an alarm latest. The detection time is the duration

from the start of the smoke event until it is detected. Note that in Section 1.2

the maximal detection time is set to Tmax = 90s.

2. Choose a fraction θ of all negative sequences for the algorithm, which are the

most difficult, i.e., for which the algorithm has the highest smoke probability.

In the next chapter, a classic CV algorithm is analyzed. Moreover, it is shown

that θ = 0.02 is suitable.

3. For the negative events use the whole sequence to calculate FPR(λ). For each

detection time t with 0 ≤ t ≤ Tmax consider only the period from the beginning

tstart of the smoke event until tstart+t. This results in time-dependent TPRt(λ).

Use this ROCθ(t) to calculate time-dependent AUCθ(t).

4. The Detection Speed is finally defined as DSpeed(θ) = 1
Tmax

∫ Tmax

0
AUCθ(t)dt.

Some corner cases are considered to get an intuition of this measure. DSpeed(θ) = 1

means that every smoke event is detected without false alarms directly when it oc-

curs. Whereas DSpeed(θ) = 0 indicates that no smoke event is detected within Tmax

without throwing false alarms for all negative events. DSpeed(θ) = 0.5 could have

several meanings. Some examples are illustrated in 3.7.

3.5 Example Evaluation: Classic VSD Algorithm

Now a model-based VSD algorithm using classic CV methods is investigated. This

investigation is an example of the proposed evaluation concept, and furthermore, a

baseline for the later investigated DL-VSD algorithms.

The idea of the algorithm was developed by Stadler [54]. The algorithm concentrates

on DE smoke. The basic property of DE smoke is a steady moving direction.

The algorithm is split into three parts. In the first part smoke candidate regions are
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Figure 3.7: Some examples for DSpeed(θ) = 0.5. Tmax is set to 270s and θ to 1.0.
(a) No smoke event is directly detected, when it occurs. The detection performance
is linear increasing with the allowed detection time until all events are detected
without false alarms after 270s. (b) Within t < 135s no event is detected without
throwing a false alarm, but for a detection time of t = 135 every smoke event is
detected without false alarm. (c) This is the typical for guessing (e.g. throwing a
coin), if there is smoke in a frame or not. Note that the guessing line depends on θ.
For θ = 0.02 the guessing line is θ/2 = 0.01

extracted by analyzing contrast and intensity changes over time.

The second part is the key part. From an analysis of physical motion properties a

smoke typical velocity range (1 px/s to 24 px/s) and motion angle range (−90◦ to

+90◦ upwards) are inferred. The CV method of choice to measure such properties

is the optical flow. If such motion properties are fulfilled over a sufficient time, the

verification time, the third part of the algorithm is checked to give an alarm.

The idea of the third part is that the smoke source is nearly at a constant position

over time. This is checked by the following condition: The velocity at the bottom of

the event has to be at least 75% less than the mean velocity of the smoke candidate

region.

The sensitivity of the algorithm is controlled by the verification time: The lower

the verification time, the higher the sensitivity of the algorithm. Higher sensitivity

means that smoke events are detected more and faster, but also more false alarms

are accepted. Note that the algorithm has been improved and adjusted many times
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Figure 3.8: (a) shows the not restricted ROCs for the the detection times 15s, 45s
and 90s. Also the resulting curve for an arbitrary detection time (t = ∞) is given.
The figure is for θ = 1.0, i.e. the full ROC without restriction. In (b) are the
restricted ROCs for θ = 0.02. (c) AUC0.02(t) curve and resulting Detection Speed
DSpeed(0.02). The maximum valid detection time is set to 90s.
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to increase the performance. Discussing all details of the algorithm is beyond the

scope of this thesis. The parameters of the proposed algorithm are adjusted by hand

using sequences from the training set and evaluation is done on the test set.

Figure 3.8 shows that the classic algorithm is robust against false alarms, since the

FPR for the lowest verification time is about 0.02. Also interesting: increasing the

allowed detection time beyond 90s can improve the result significantly, but this is

out of requirement.

The classic algorithm should be a baseline and compared to the DL approaches in

the next chapter. Therefore it is suitable to restrict the ROC to θ = 0.02 and use

the Detection Speed DSpeed(0.02) as performance measure in this thesis. The result

shows that there is a big gap for improvement, which is tackled by DL approaches

in the next chapters.
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Chapter 4

DL-VSD Concept and Framework

In the previous chapter, a comprehensive dataset for training and test of ML/DL

based VSD algorithm was described. This dataset is utilized to apply state of the

art DL based algorithms for object detection to the field of VSD. In object detec-

tion algorithms are benchmarked in challenges on public datasets like ImageNet or

PascalVOC [55]. These challenges consist of diverse detection problems with yearly

increasing difficulty. Up to now, the challenges are single-frame detection problems,

i.e., objects are detected and localized within one frame without using information

from other frames. In VSD, the scenario is typically surveillance, and one has ac-

cess to past information for a real-time decision. For an alarm, one can give the

algorithm up to 90 seconds to decide, the faster, the better. Furthermore, not the

whole smoke region has to be detected. For an alarm decision, it is sufficient to

detect parts of the smoke region. These requirements are translated into a concept

and framework for training and evaluation in this chapter.

Different DL-VSD approaches are compared. All these approaches have an under-

lying common framework and concept. All approaches utilize the same data, labels,

training framework, and measures. Firstly, the data preprocessing is explained in

Section 4.1. In Section 4.2, the custom cell wise classification approach, which is

very suitable for VSD, is introduced. Furthermore, the model structure and the

training problem, including the loss function, are defined in general. Augmentation

and regularization increase the robustness of DL models and prohibits overfitting.

These are described in Section 4.3. How the evaluation of DL-VSD approaches is
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integrated into the framework is described in Section 4.4. The framework is imple-

mented in Python using Keras and Tensorflow. Detailed implementation hints are

given in Section 4.5. The proposed concept has many degrees of freedom, and some

decisions are made due to plausibility considerations and experiences. The chapter

closes with a discussion of those aspects in Section 4.6.

4.1 Data Preprocessing

Many decisions concerning the input are made for training the DL-VSD system.

Varying the resolution during training could increase the robustness of the system,

since it is a kind of data augmentation. However, after a few experiments, it is

found that for comparable and reproducible results, all approaches require a similar

temporal and spatial resolution for training and testing.

The raw data format varies in resolution and frame rate. The resolution reaches from

256×144 to 2992×1620 px2 and the frame rate from 12.5 to 60.0 fps. The higher the

resolution and framerate, the higher the computation resources and time is needed

to train and evaluate a DL architecture. For simplicity, the original resolution and

frame rate are normalized.

The resolution is normalized inspired by [38]: The frames are resized to rv × rh =

256× 256. Especially for augmentation purposes, it has advantages to end up with

the same width and height.

Now the goal is to adjust the frame rate. A compromise between computation

complexity and relevant information has to be made. Therefore the smoke speed

vimage in the plane of the 256×256 images is estimated according to [54]. Smoke has

a velocity from vmin = 0.2 m/s to vmax = 0.35 m/s for test fires, which are commonly

used for certification of smoke detectors. It follows that choosing an average speed

of vmean = 0.275 m/s is suitable. The most recordings have a vertical opening angle

of about ηv = 60◦. Assuming that the main component of the velocity is vertically

directed and that the distance to the smoke source is about d = 20 m. The vertical
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speed in image coordinates is calculated by

vimage =
rv/2

tan (ηv/2)

vmean

d
, (4.1.1)

where the first fraction is the focal length. Using the assumptions above one yields

vimage = 3.1 px/s. To see this relevant movement the frames are extracted by 3 fps

using a constant frame skip.

The resulting sequences are stored as arrays with one byte for each channel in each

pixel. A structured investigation of resolution and frame rate is not in focus of this

thesis. Intuitively increasing the resolution and frame rate should give better results,

since the information is more detailed. But there are two disadvantages, which could

lead to worse results: Firstly, the temporal and/or spatial receptive field decreases,

when using the same architecture. Secondly, hardware restrictions make it harder

to train a network.

Nevertheless the chosen approach is a compromise and allows it to compare all DL

architecture modalities.

4.2 General DL-VSD Methodology

Now the question is answered, what the DL architecture has to learn or how the

VSD problem is defined for the training phase. Furthermore it is described, how

the weights of a DL model are updated and finally, what augmentation is useful to

prevent overfitting.

Now a short mathematical formulation of the initial situation is given. Let S1, . . . , Sn

the training sequences, where n = 1583 (704 smoke, 879 disturbance sequences).

Every sequence Si consists of Ti (T = 564) frames, i.e.

Si = (fi,1, . . . , fi,Ti) , (4.2.2)

where fi,t ∈ {0, . . . , 255}256×256×c is the t-th frame. c is the number of channels.

For each frame of each sequence fi,t ∈ Si exists a bounding box label

Bi,t = {x, . . . , x+ w − 1} × {y, . . . , y + h− 1} , (4.2.3)
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where (x, y) ∈ {1, . . . , 256}2 is the upper left corner and (w, h) ∈ {1, . . . , 256}2 the

width and height of the bounding box. If there is no smoke in the frame, it is set

Bi,k = ∅.

4.2.1 Cell-Wise Classification

The VSD problem differs from other object detection problems, because it is not

necessary to fit an accurate bounding box to the smoke region. It is sufficient to

classify at least one part of the smoke region for sure. The idea is to map a binary

label mask to each frame, which corresponds to the output size o × o of the DL

architecture, which is quadratic for all investigated approaches.

Figure 4.1: Cell-wise classification. A frame is separated into a grid. Each cell yields
the label 1, if it intersects with a bounding box and 0 otherwise.

Each frame is covered by a grid with o2 quadratic cells Cr,s with r, s = 0, . . . , o− 1,

Cr,s = {zr + 1, . . . , z(r + 1)} × {zs+ 1, . . . , z(s+ 1)} , (4.2.4)

where z is the size of a cell. The cell size depends on the output size o × o of the

DL architecture For example if the output of the architecture is 8× 8, then z = 32.

The binary mask Mi,t ∈ {0, 1}o×o for each frame fi,t is defined as

Mi,t(r, s) =

1, if Bi,t ∩ Cr,s 6= ∅

0, otherwise.

(4.2.5)
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That means, if a cell intersects with the bounding box the binary label mask is set

to 1 and 0 otherwise (see Figure 4.1). One can interpret the binary mask as the

probability of smoke existence.

4.2.2 DL-VSD Model Template

Now a template is proposed to design DL-VSD approaches, which meets the require-

ments and can easily be applied to a single frame and temporal methods.

Figure 4.2: Overview of model template and information flow. Each DL-VSD model
in this thesis is constructed of two parts: The feature extractor Fβ1 and the classifier
Cβ2 . To predict a smoke probability map Pi,t for frame t in a sequence Si. Fβ1
extracts a feature map Fi,t from the past frames f1, ..., ft. The feature map is
propagated to classifier Cβ2 , which predicts the smoke probability map.

Let Aβ be the DL system parametrized by β. β are the trainable parameter of the

neural network, which are optimized with respect to the smoke detection problem.

Aβ is separated into two parts: the feature extractor Fβ1 and the classifier Cβ2

Aβ = Cβ2 ◦ Fβ1 , (4.2.6)

where β = (β1, β2).

Fβ1 extracts features from the past t frames of the sequence Si and constructs a

feature map Fi,t ∈ Ro×o×l with size o× o, containing l features in each entry of the

map

Fi,t = Fβ1 (fi,1, . . . , fi,t) . (4.2.7)

Note for single frame architectures Fβ1 (fi,1, . . . , fi,t) = Fβ1 (fi,t). In all proposed

approaches the feature extractor is designed, such that a feature map is constructed
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for each frame. For each cell the center of the receptive field is the center of the cell,

so the features specially correspond to the cell.

The classifier Cβ2 predicts smoke probabilities for each cell out of the feature map.

The result is the smoke probability map Pi,t ∈ [0, 1]o×o

Pi,t = Cβ2 (Fi,t) . (4.2.8)

To summarize this: The whole DL-VSD model Aβ should be trained to predict a

smoke probability map at time t according to all frames it has seen until a time

point t

Pi,t = Aβ (fi,1, . . . , fi,t) . (4.2.9)

The difference to other sequence based approaches is, that every frame yields a

smoke prediction without using information from future frames. This is the typical

real-time surveillance problem. Figure 4.2 gives an overview of the model template

and the information flow.

4.2.3 Training Problem Formulation

According to the cell-wise classification approach the DL system is supposed to learn

to predict a probability map Pi,t of smoke for each time point t and each sequence

Si. The DL system is optimized, such that the mean loss between the prediction

maps and binary label maps

L =
1

n

n∑
i=1

1

Ti

Ti∑
t=1

L(Pi,t,Mi,t) (4.2.10)

is minimal. For L the mean over the binary crossentropy of each cell is used, i.e.

L(Pi,t,Mi,t) =
1

o2

o∑
r=1

o∑
s=1

Mi,t(r, s) log (Pi,t(r, s))

+ (1−Mi,t(r, s)) log (1− Pi,t(r, s)) .
(4.2.11)

The binary cross-entropy is a standard loss function for a two-class problem.
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4.2.4 Optimization of Model Weights

Model weights optimization is usually done iteratively by gradient descent. One

iteration over all samples is called epoch. A good concept to prevent overfitting is

SGD (see Section 2.2.5). The idea is to update the weights not on all samples at the

same time, but randomly decompose the training set into subsets, the batches. The

number of samples within a batch is called batch size. For parallel processing on the

GPU each sample of the batch must have the same sequence length, which is called

batch length. Each batch is completely loaded to the GPU and weights are updated

there. Therefore the batch size and length are limited by the GPU storage. The

model architecture also influences the maximal valid batch size and length since all

interim results of a forward pass are stored for the backward pass. Depending on

the DL approach 100-500 frames can be handled by the GPU at once.

The batch size and length are varied due to the different approaches, but they are

fixed during the training of each model.

If a sequence is longer than the batch length, it is cut, and if it is shorter than the

batch length, it is repeated until the batch length is reached.

SGD with a momentum of 0.9 is used. Furthermore, a gradient clipping to a max-

imum of 2.0 is conducted to suppress exploding gradients, which especially could

occur at first few updates. The learning rate decays each epoch exponentially. A

initial learning rate ρ0 > 0 and a decay rate δ ∈ (0, 1) are chosen. The learning rate

in epoch e is ρe = ρ0δ
e−1.

4.3 Improvement of Training and Generalization

This section has two goals: Firstly to improve the generalization for unseen data and

the overall performance. Secondly, to stabilize the parameter update and accelerate

the convergence during the training process.

Augmentation deals with the first goal. The training set is augmented with events,

which are transformations of original sequences. The second goal is tackled by

regularization, which increases the problem complexity.
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4.3.1 Augmentation

Data augmentation is a method to increase existing data artificially and prevent

overfitting. The idea is to change the data slightly, such that a human further

detects the object. Typical methods are cropping, rotating, flipping, or adding

noise to the original data. For the training process off all DL-VSD approaches,

cropping, rotation, and flipping are applied. Temporal changes of thin smoke have a

small but characteristic magnitude. Since even weak noise suppresses such changes,

artificial noise is not applied.

Cropping

In all DL approaches, temporal and spatial cropping is used. Spatial cropping means

that not the whole spatial part with size 256×256 is used, but each epoch a uniformly

chosen random subpart of size 224 × 224. This cropping is inspired by [38]. Note

that the same crop is used for each frame in one sample.

For temporal cropping a coherent subsequence fi,t1 , . . . , fi,t2 , where 1 ≤ t1 ≤ t2 ≤ Ti.

t1 is randomly chosen according to a uniform distribution. The sequence length is

|t2− t1|+1. This sequence length is fixed during training. If a sequence is too short,

it is not cropped, but repeated until the sequence length is reached.

The main advantage of cropping is that it prevents overfitting since it is unlikely

that the network sees the same sequences in multiple epochs.

Rotation

The sequence is either rotated by 90◦ to the left, the right or not rotated each with

the same probability. Angles smaller than 90◦ can not be computed efficiently on

the CPU and increases the training time a lot. Additional it requires padding and

interpolation. Whereas a rotation by 90◦ only needs a resorting of the values.

The most smoke events have the DE (see Section 3.2.2) property, i.e., they move

in one direction, mainly upwards or diagonal. Through rotation, the DL system is

forced to focus on all directions, which is desirable since every smoke event should

be detected.
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Flip

With equal probability, the sequence is flipped at the vertical axis, horizontal axis,

or not. Flipping is also very efficient to implement since it is again a resorting of

values.

4.3.2 Regularization

Regularization stabilizes the training and can increase generalization to unseen data

by making the training problem more complex. The methods applied during training

of the models are explained now. All of them lead to better results and some of

them to faster convergence.

Batch Normalization

Batch Normalization [56] is a concept to normalize the input of an activation func-

tion, which leads to a much faster convergence of the network. It is usually placed

between a (3D-)convolutional layer and the activation function. The normalization

parameters are determined for each batch independently. Let µB be the mean and

σB the standard deviation of the input X in batch B. Then the input is normalized

by

XBatchNorm =
X − µB
σB

. (4.3.12)

This normalized input XBatchNorm has the mean 0 and the standard deviation 1.

This simple transformation prohibits so-called dead activations. These are layers, in

which the activation function of the input results in values and gradients near zero

so that it does not have a significant influence on the weight update. Furthermore,

it prohibits the output of a layer to be deterministic since µB and σB are dependent

on the batch, which is randomly constructed.

Dropout

Dropout [57] is a successful way to prevent overfitting. During each update of the

parameters a random set of features is ignored. This means a random fraction

τ ∈ (0, 1) of features is set to 0, which are called dropped features. They do not
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influence the gradient during one update of network parameters. τ is fixed during

the whole training process.

Dropping features prohibits deterministic outputs of layers since it is unlikely that

in two distinct epochs the same features are used for the same sample.

Weight Regularization

Weight regularization is used to prevent extremely high weights by adding a penalty

to the loss function L. One common method is L2 regularization, which is applied

in this thesis. Let W be the vector of all the weights in a model then the new loss is

LL2 = L+ ω||W ||2, (4.3.13)

where || · || is the Euclidian length and ω the impact on the loss.

4.4 Testing

Evaluation of generalization and performance of different models is done on the test

set. The goal is to find the model with the best results using the Detection Speed

measure DSpeed(0.02) (see Section 3.4). Each model is evaluated on the test set

periodically during the training. Moreover, the best result is compared to the other

models.

Note that for one evaluation of the test set, all the sequences have to be processed

by the DL-VSD algorithm completely.

4.5 Implementation Details

The proposed DL-VSD framework and all models are realized in Keras [58] and

Tensorflow [59]. The training is done on an Nvidia TitanX, which has 12GB mem-

ory.

One batch is constructed as a 5-D tensor: batch size, sequence length, height in,

width in and channels. The output is designed as a 4-D tensor: batch size, sequence

length, height out, and width out. Note that for single frame approaches the se-

quence length is set to 1.
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The input of all models is normalized to [-1,1], since this is established practice

in Literature. This normalization also matches all pretrained weights used in this

thesis.

All layers of the network are wrapped by the Keras wrapper Time-Distributed ex-

cept the temporal one, i.e., LSTMs and 3D-CNNs. As activation function always

ReLU is chosen except for the LSTMs, for which the default Keras activations are

used, i.e., tanh and hard-sigmoid.

Batch Normalization is placed between each (3D)-convolution and activation func-

tion. The normalization parameters µ and σ are updated during the whole training

process by a running average, which is the Keras standard implementation.

Dropout is placed between the feature extractor and the classifier. In each sample,

the same features are dropped, i.e., for all timesteps in one sample, the same features

are chosen. The fraction of dropped features is τ = 0.4. During testing, no features

are dropped; they are scaled by the probability of being not dropped (0.6). Weight

regularization is applied with ω=1e-5.

4.6 Discussion of Proposed Concept and Frame-

work

The reader might notice that the proposed concept and framework has many de-

grees of freedom and hyperparameters, i.e., resolution and frame rate of the input,

labeling, classification concept, loss function, learning rate (schedule), batch design,

augmentation, validation loss, and regularization.

Since smoke normally covers 30%-80% of a bounding box and the label challenges

(see Section 3.3.2), there are some cells labeled as smoke, without smoke in it and

some cells not labeled as smoke with smoke in it (see Figure 4.1).

These ”black sheeps” can lead to contradictions during training. The author suggests

that removing such ”black sheeps” is one of the most obvious levers for increasing

the performance of DL-VSD systems.

For training BB information is transformed into cell-wise labels. It is also possible

to predict the bounding box directly, which is usually done in object detection (c.f.

2.3.1). For this purpose, the classifier has to be adjusted.
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When reflecting on the cell-wise classification concept, the question arises, why not

use the sequence of one cell as a sample, which would be the usual object/scene clas-

sification approach in Literature. The critical point using the cell-wise classification

concept is that it is similar to an ordinary classification concept, but with highly

correlated samples in each batch. Because DL methods generalize best, when the

samples are as independent as possible, this is a valid critic. However, the main ad-

vantage of the cell-wise approach is, that if the receptive field of the DL architecture

is bigger than one cell, the contextual information of neighbor cells can be used for

prediction of the smoke probability.

In this thesis, many hyperparameter combinations, regularization approaches, and

further DL boosting techniques were tested and optimized concerning the author’s

experience and plausibility decisions. A structured analysis of all hyperparameters,

for example, a grid search is to resource and time consuming and is therefore not

in focus of this thesis. However, some compromises are made due to hardware re-

strictions. According to the author’s estimation, it should always be possible to get

slight improvements by changing some components in the concept or framework, but

the biggest boost should always be available by increasing the data set and more

accurate labels.



51

Chapter 5

Analysis of DL-VSD Methods

In the previous chapter, the general DL-VSD framework was introduced, which is

applied to several DL approaches in this chapter.

The investigation starts with an application of the framework using a CNN, which

only receives a single frame as input in Section 5.1. With RGB as input for the CNN,

the training set is not comprehensive enough to get better results than the baseline

proposed in Section 3.5. However, using transfer learning and weights pretrained on

ImageNet the baseline is outperformed.

Single RGB frames only contain static information. For smoke, this information is

not as characteristic as dynamic properties. Therefore it is assumed that temporal

information increases the performance of DL-VSD models.

The simplest idea is to feed temporal information into a CNN. In Section 5.2 Flow

and Diff are calculated from two consecutive frames and used as input for the CNN.

It is shown that the performance significantly increases, whereas Diff input is by far

the best.

Following the intuition that a smoke covered cell stays smoke covered over time,

a handcrafted accumulation method is developed in Section 5.3, which extents the

CNN by a low pass filter. This procedure improves the performance of the stan-

dalone CNN.

Using Diff or Flow as input, temporal information is extracted by handcrafted meth-

ods. In contrast, there are DL methods, which are designed to learn temporal in-

formation automatically.

The CNN+LSTM concept is described in Section 5.4. The idea is that the CNN
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extracts spatial information. Afterward, this information is fed into a LSTM, which

extracts temporal properties. It is shown that also for this approach Diff input per-

forms better than RGB, with this procedure the performance of the CNN+Accumulation

is again improved, especially in early smoke detection.

For all these methods containing a CNN, InceptionV1 is applied.

Afterwards 3D-CNN is investigated in Section 5.5. The architecture of choice is the

i3D, which reports the best results in a comprehensive temporal architecture com-

parison in literature (see Section 2.3). It is explained how the i3D is transformed to

extract frame and cell-wise features. This architecture outperforms all the others,

which qualifies it to be the best DL-VSD approach.

As classifier, a FC layer with sigmoid activation calculates the smoke probability for

each cell independently in all approaches.

The findings are discussed in Section 5.6. All the analysis is done on the internal

Bosch dataset. This prohibits comparison to SotA VSD algorithms. Therefore the

analyzed DL-VSD approaches of this thesis are evaluated on public VSD datasets

consisting of sequences in Section 5.7. Finally, to get an impression of the algorithm

behavior in section 5.8 critical smoke and negative events are analyzed qualitatively.

5.1 Single Frame CNN for VSD

CNNs with single frame RGB input are the natural DL approach for VSD since they

have been analyzed comprehensively and successfully applied to object detection

tasks, also including VSD. The model template requires to define two parts (Figure

5.1): As feature extractor a successful SotA CNN is chosen: InceptionV1 [60] (Fig-

ure 5.2).

The InceptionV1 consists of repeatedly used 2D Inception blocks. The idea of these

blocks is to extract information of different granularity in the parallel strands and

combine them by concatenation. The stride 2 Max-Pool leads to a halving of the

spatial dimensions. The output of an 256 × 256 frame ft is an 8 × 8 feature map

Ft with 1024 features each cell. This feature map is passed forward to the classifier

frame by frame. As classifier, a FC layer with sigmoid activation is chosen, which
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Figure 5.1: The arrows show the information flow of the single frame concept using a
CNN. The frames f1, . . . , fT are independently passed through the CNN and features
F1, . . . , FT are extracted. These feature are processed by a FC layer with sigmoid
activation to calculate frame-wise probability maps P1, . . . , PT for smoke.

(a) (b)

Figure 5.2: The InceptionV1. (a) shows the repeatedly used 2D Inception block.
In (b) the whole InceptionV1 architecture is illustrated. The activation function
always is a ReLU. Between a convolutional layer and an activation function batch
normalization is placed. If not mentioned the stride is 1. Note that average pooling,
which is the last layer of the original model, is removed to maintain the spatial
structure and get a spatial feature map.

calculates the smoke probability map Pt each frame. Table 5.1 gives an overview of

the inputs, outputs and receptive fields for each layer of the InceptionV1 architec-

ture presented in Figure 5.2(b).

The InceptionV1 model is famous for its SotA performance on the ImageNet dataset.

The weights for RGB pretraining on ImageNet are publicly available. Since transfer

learning shows much better results in many applications, it is applied for RGB in-

put. Detailed design choices of such architectures are typically made by many trials

and iterative changes on benchmark tasks like image classification.
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Layer type output max receptive field
0 input T ×256×256×3 –
1 Conv T×128×128×64 1× 7× 7
2 Max-Pool T × 64× 64× 64 1× 11× 11
3 Conv T × 64× 64× 64 1× 11× 11
4 Conv T ×64×64×192 1× 19× 19
5 Max-Pool T ×32×32×192 1× 27× 27

6,7 2×2D Inc. T ×32×32×480 1× 59× 59
8 Max-Pool T ×16×16×480 1× 75× 75

9-13 5×2D Inc. T ×16×16×832 1× 235× 235
14 Max-Pool T × 8× 8× 832 1× 251× 251

15,16 2×2D Inc. T × 8× 8× 1024 1× 379× 379
17 FC (sigmoid) T × 8× 8× 1 1× 379× 379

Table 5.1: Complete architecture for single frame approach, feature extractor +
classifier. Input is a sequence of length T . The frames are processed distributed over
time by the layers, i.e. independently from each other. The FC layer transforms the
features to smoke probabilities for each cell and each time step.

The proposed architecture is trained end to end. Since there is no way the architec-

ture could profit from sequences of frames in the training phase in each epoch, one

sample is extracted out of each sequence. Each batch consists of 162 sequences with

a length of 1. The learning rate at the beginning is ρ0 = 0.001 and decayed each

epoch exponentially by δ = 0.995. The training is aborted, when the training loss

does not change anymore, which is after 1500 epochs. Every 25th epoch the model

is evaluated on the test set.

The best result on the test set is illustrated in Figure 5.3.

The dataset is not rich enough to get adequate results on RGB input on it. They

are even worse than the baseline. With pretrained weights the baseline using a clas-

sic CV algorithm is outperformed by far. There is still space for improvement left,

which is tackled in the next section by adding temporal information.

5.2 Temporal Input for CNN

The first idea to use temporal information for DL-VSD methods is to feed Diff or

Flow input instead of RGB into a CNN. Figure 5.4 shows examples for these input

modalities.

Diff and Flow contain low level temporal information, which are intuitively very

characteristic for smoke.
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Figure 5.3: The resulting AUC0.02(t) curves for the InceptionV1 (Inc) approach
using RGB input. For comparison also the classic algorithm is added. The table
summarizes the evaluation measure (DSpeed(0.02)).

To estimate probabilities for smoke the same CNN architecture as in Section 5.1 is

chosen. The backbone CNN is an IncepetionV1. It extracts features, which are fed

into an FC layer to calculate probabilities of smoke (see 5.1).

Diff and Flow information are extracted for each two consecutive frames in a se-

quence. Differences are calculated on the fly during training and evaluation, since

the computational complexity is very small in comparison to all other computing

steps. The resulting range of each channel is {−255, . . . , 255}.
Optical Flow is calculated using TV-L1 [61] from OpenCV with the default param-

eterization. The computational complexity is very high, so that it is not suitable to

calculate it on the fly. Since precalculating the Flow and store it as 32 bit floating-

point number is too memory consuming, the resulting (u, v) vectors are clipped to

the range [−10, 10]2 and normalized to the range {0, . . . , 255}2. Finally, the Flow

is stored with 8 bit for each of the two channels in each pixel. Clipping is done to

resolve the velocity of slow-moving objects higher since smoke is slow.

Training is conducted with the same hyperparameters as for RGB input. Neither for

Flow nor Diff pretraining is available. The best result on the test set is illustrated

in Figure 5.5.
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(a) (b) (c)

Figure 5.4: Visualization of different input modalities for the DL-VSD systems. (a)
RGB image with resolution 256 × 256. (b) Diff images calculated by two consecu-
tive 256 × 256 RGB images with a temporal distance of 333ms. For visualization
purpose the absolute value of the resulting difference image is inverted. (c) Flow
images calculated by two consecutive 256 × 256 RGB images with a temporal dis-
tance of 333ms. For visualization purpose (u, v) vectors are transformed into polar
coordinates (r, ϕ) and mapped to the HSV color space.

The CNN with Flow input is better than the baseline using a classic CV algorithm,

which is also based on Flow. Since both algorithms have similar input information

(the classic Algo even more) one can conclude, that the handcrafted model based

on physical smoke properties is worse than statistically learned properties.

Nevertheless, RGB with pretraining is better than Flow, which shows the benefit of

pretraining. The Diff input is by far the best. Reasons for this result are discussed

in Section 5.6.

5.3 Temporal Accumulation of CNN Prediction

Smoke usually has the expanding property, i.e., if smoke is in a cell at time t, it is

very likely that it also exists in this cell for the next frames. This assumption helps

to reject smoke similar objects, which leave cells after a few frames, like persons
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Figure 5.5: The resulting AUC0.02(t) curves for the InceptionV1 (Inc) approach using
Diff and Flow input. For comparison, the classic algorithm and the pretrained single-
frame approach with RGB input are added. The table summarizes the evaluation
measure (DSpeed(0.02)).

with white shirts. The robustness against local stable objects with random dynamic

textures, like leaves in the wind or floating water, could also be improved.

Two intuitive ways to take benefits from this property are: If the features are smoke

like in frame t, then be less sensitive in frame t+1. If the smoke feature is moderate

smoke like over a couple of following frames increase the smoke probability from

frame to frame.

According to this intuition, this section introduces a straight forward handcrafted

concept to extend the single-frame approach: The idea is to accumulate the cell-wise

smoke probabilities over time by a recurrent low pass filter

Pt = (1− γ)Pt−1 + γP̃t, (5.3.1)
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Figure 5.6: The arrows show the information flow of the single frame concept.
First spatial image features F1, . . . , FT are extracted of the sequence f1, . . . , fT .
These feature are used by a sigmoid layer to calculate frame-wise probability maps
P̃1, . . . , P̃T for smoke. And the frame-wise probabilities are then accumulated (Acc.)
over time to get more robust results P1, . . . , PT .

where P̃t is the single-frame based smoke prediction of frame t and γ is the time

constant. Figure 5.6 visualizes the information flow. Note that Pt is not clipped

according to a lower bound of P̃t, which could be a possible extension to filter out

some noise. The InceptionV1 with a FC layer trained in the last section on single

frames with Diff input is utilized. The weights of the backbone CNN, InceptionV1,

are fixed, and only the sigmoid layer is trained. To investigate the influence of the

time constant different γ are tested to find the best.

For training, a sequence length of 54 and a batch size of 3 is applied. The learning

rate started at ρ0 = 0.001 and is decayed each epoch by a factor of δ = 0.8. The

test set is evaluated each epoch. The training runs for 10 epochs. The initial smoke

probability map P0 is set to 0.5 to stabilize the training. The results are illustrated

in Figure 5.7.

The additional temporal information increases the performance in Detection Speed.

Choosing γ < 0.6 the model becomes much slower such that the AUC0.02(t) is less

than the original model for low detection times t. For 0.6 ≤ γ < 1.0 the original

model is outperformed and the accumulation increases the Detection Speed. And for

γ = 0.9 the best result is obtained. Note that the same procedure for RGB and Flow

input also leads to a similar improvement. In Section 5.6 these observation are em-

bedded in a consideration of long and short term dependencies for DL-VSD methods.
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Figure 5.7: The upper graphic shows the resulting AUC0.02(t) curve for the best
accumulation (Acc) model. For comparison also the InceptionV1 without accumu-
lation is added. The lower left illustration shows the Detection Speed with respect
to different time constants γ. Note that for γ = 1 the model is the origin Incep-
tionV1 network. The table compares the result without accumulation to the one
with accumulation for each input modality.

5.4 CNN+LSTM for VSD

The intuition behind a CNN+LSTM architecture is to first extract frame-wise spatial

features by a CNN and to use these spatial features to extract temporal information

by an LSTM. Figure 5.8 shows the information flow.

The feature extractor consists of two parts: a CNN, which is again an InceptionV1
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Figure 5.8: The arrows show the information flow of the CNN+LSTM concept. First
spatial image features F̃1, . . . , F̃T are extracted of the sequence f1, . . . , fT . These
feature are passed to a 1× 1 ConvLSTM, which combines the spatial with temporal
information to spatio-temporal features F1, . . . , FT . Finally a sigmoid layer is use to
calculate the resulting probability maps for each frame P1, . . . , PT .

and an LSTM, which works cell wise and is therefore realized by an 1 × 1 Con-

vLSTM. As classifier a FC layer with sigmoid activation is appended. Note that

this architecture theoretically can use information of all past frames for the current

smoke prediction. The 1 × 1 ConvLSTM extracts c temporal features for each cell

in each frame. Different c values are investigated.

It turns out that training this architecture to get better results than using the accu-

mulation approach, is challenging. However, the following iterative strategy finally

outperformed the accumulation approach: Start with a sequence length of 3 frames

and a batch size of 60, change to 6 frames and a batch size of 30, afterwards 12

frames and a batch size of 15 and finally a sequence length of 24 and a batch size

of 7. For each batch configuration train the model for 100 epochs. Start with the

learning rate ρ0 = 0.001 and use a decay factor of δ = 0.99. Evaluate the test set

every 5 epochs. The best results are illustrated in Figure 5.9.

As CNN the InceptionV1 is utilized. The results are created for the Diff and RGB

input images. For RGB input weights pretrained ImageNet are chosen. The first

surprising insight is that Diff input performs significantly better than RGB even

though pretraining for RGB is available. In theory, the CNN+LSTM should be

able to learn the same information, which is extracted from Diff images, since the

difference operation is linear. This behavior is analyzed in Section 5.6.

Furthermore, using Diff input the CNN+LSTM outperforms all of the currently
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Figure 5.9: The graphic shows the resulting AUC0.02(t) curve for the best
CNN+LSTM models. c = 512 performed best (c = 32, 64, 128, 256, 1024 are also
tested). For comparison also the InceptionV1 with accumulation is added. The
table summarizes the results.

investigated approaches.

5.5 3D-CNN concept

Up to now, the investigated temporal architectures do not show a significant im-

provement compared to the single frame architecture with Diff input. The CNN+LSTM

and the accumulation approach can use long term information to detect smoke, from

which they do not benefit. In this section, a 3D-CNN approach is investigated. Since

the temporal receptive field of 3D-CNNs is fixed, it completely concentrates on short

term information.

For investigations the i3D is chosen, which achieves SotA results on action recogni-

tion tasks. The temporal receptive field of i3D is limited to a fixed length, i.e. R

frames. For each frame except the first and the last R/2 of a sequence a feature
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Figure 5.10: The arrows show the information flow of the 3D-CNN concept. A
fixed sequence of length R (=temporal receptive field of 3D-CNN architecture) is
propagated through the 3D-CNN network, which extracts spatio-temporal features
FR/2. These features are passed to a sigmoid layer, which calculates the resulting
probability map PR/2 for the R/2-th frame.

map is calculated. From these feature maps smoke probability maps are calculated

by a FC layer. Figure 5.10 shows the information flow.

The i3D is constructed by inflating the CNN InceptionV1 architecture into a 3D

version. This is done by replacing 2D convolutions through 3D convolutions and

2D pooling by 3D pooling. The resulting inflated Inception module is illustrated in

Figure 5.11.

(a) (b)

Figure 5.11: The i3D: (a) the repeatedly used 3D Inception block and (b) the
architecture. The activation functions are always a ReLU. Between convolutional
layer and activation functions batch normalization is placed. The stride is of the
form time,x,y. If not mentioned, the stride is 1. The i3D architecture is similar to
the InceptionV1 (see Figure 5.2), but all 2D convolutions and poolings are inflated
to 3D versions.

Normally, the receptive field of the i3D is r = 99 frames (33s), since some of the

3D layers of the original i3D architecture have also in the temporal dimension a
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stride of 2. For the investigations of this thesis the original architecture is slightly

modified and the strides in the temporal dimension of all layer are set to 1 (Fig-

ure 5.11). This modification reduces the temporal receptive field to r = 30 frames

(10s). Additionally the padding is modified, such that each frame yields a feature

map, but for the first and the last r/2 frames there is not the full receptive field

of informations. The resulting architecture is shown in Table 5.2. Since the i3D

Layer type output max receptive field
0 input T × 256× 256× 3 –
1 3D Conv T × 128× 128× 64 7× 7× 7
2 3D Max-Pool T × 64× 64× 64 7× 11× 11
3 3D Conv T × 64× 64× 64 7× 11× 11
4 3D Conv T × 64× 64× 192 9× 19× 19
5 3D Max-Pool T × 32× 32× 192 9× 27× 27

6,7 2×3D Inc. T × 32× 32× 480 13× 59× 59
8 3D Max-Pool T × 16× 16× 480 15× 75× 75

9-13 5×3D Inc. T × 16× 16× 832 25× 235× 235
14 3D Max-Pool T × 8× 8× 832 26× 251× 251

15,16 2×3D Inc. T × 8× 8× 1024 30× 379× 379
17 FC (sigmoid) T × 8× 8× 1 30× 379× 379

Table 5.2: The i3D architecture+FC classifier. There is a slight difference to the
original i3D architecture: Firstly, the temporal stride is always set to 1 to reduce
the temporal receptive field from 99 to 30 frames. Secondly, to assure that each
frame gets a grid of smoke probabilities the padding is changed.

architecture takes a look into the future by r/2 for each frame’s decision, a penalty

for the calculation of Detection Speed is introduced

DSpeed(θ) =
1

270− r/2

∫ 270−r/2

0

AUCθ(t)dt, (5.5.2)

i.e. the maximal detection time is set to T = 270 − r/2 frames. Since AUCθ(t) is

an increasing function, this modification decreases the Detection Speed and allows

a fair comparison to approaches, which only have past information.

All input modalities RGB, Flow and Diff are investigated. For RGB and Flow

weights pretrained on Kinetics are available.

The sequence length for training is set to 30, since this is the temporal receptive

field. Note that each sample has only one frame, which takes benefit of the full

information from all other frames. One batch consists of 6 events. The learning
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rate is decaying starting at ρ0 = 0.001 each epoch by a factor of δ = 0.995. After

each 10th epoch the model is evaluated on the test. The training converges after

about 500 epochs. In Figure 5.12 the result is illustrated. Using RGB input, the
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CNN+LSTM Diff 0.6903
i3D Diff 0.7696

Figure 5.12: The graphic shows the resulting AUC0.02(t) curve for the best i3D
models. For comparison the previously best achieved results are given for each
input modality. The table summarizes the results.

result is significantly worse than the one using Diff input. Even though differences

are learnable by the first 3D convolutional layer. Similar to the CNN+LSTM this is

contradictory. Also, the Flow result is worse than Diff as observed using the single

frame CNN approach. These issues are discussed in Section 5.6.

Nevertheless, the i3D outperforms all other approaches significantly in all input

modalities. For RGB and Flow pretraining on Kinetics also improves the results. It

is also worth to notice that RGB input is better than Flow but still worse than the

currently best result on Diff. i3D using difference images is by far the best DL-VSD
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model in this thesis.

5.6 Discussion of Temporal DL Results

The analysis of DL-VSD approaches shows that combining spatial with temporal

information significantly increases the performance, which is intuitively plausible.

However, some observations are surprising: Why do the methods, which can learn,

how to deal with temporal information (DL-VSD and 3D-CNN) work better with

Diff input than with RGB? Why does the Diff input perform better than Flow?

What is more relevant for VSD long or short term information? These questions

are discussed now.

5.6.1 Advantages of Temporal Input over RGB

The claim for VSD is that the camera is fixed and there is no movement and not

more than slight shaking. Under this circumstances calculating Diff or Flow re-

moves the complete background. Especially spatial structures are suppressed. Only

temporal noise is left. Therefore the DL network is directly forced to concentrate

on movement. Since smoke is a moving object, even slow or ambient smoke slightly

differs from temporal noise, the input of the network contains enough information

to detect smoke. However, the challenge is much easier: Distinct smoke only from

moving objects.

Furthermore, there is no relevant information for smoke lost.

When only using a CNN it is therefore not surprising that temporal input performs

better than RGB. In contrast temporal architectures 3D-CNN and CNN+LSTM

theoretically can learn Diff of two images. Why does Diff also work better for

them? When considering the training runs of temporal DL architectures with RGB

input (Figure 5.13), the training loss converges to a similar value, while the test

performance is worse. This behavior is an indicator that the network suffers from

overfitting, which could be the reason why also temporal DL-VSD approaches de-

liver better results using temporal input.

There are more structural details available when using RGB images. These struc-

tural details could lead the networks to concentrate on contextual information, which
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(a) (b)

(c)

Figure 5.13: Comparison of training runs for RGB and Diff of different network
architectures: (a) i3D. (b) InceptionV1. (c) CNN+LSTM. Note that only epochs
are illustrated, in which the test set is evaluated.

has nothing to do with smoke, e.g., tiles in a fire lab. Using temporal input these

details are suppressed.

5.6.2 Diff versus Flow input

For humans, information of Flow is much easier to interpret than information of

Diff. But the DL approaches reach much better results with Diff input for all tested

DL-VSD approaches. One reason could be that Diff images have suitable benefits

for VSD. However, one should be careful inferring general conclusions, that Diff is

better for VSD than Flow, since the calculation of Flow has many degrees of free-

dom.

In comparison to Flow images, Diff images contain edge, color and contrast informa-

tion. Diff images emphasize outer and inner smoke frontiers, changes in color, and

the chaotic temporal behavior of contrast, i.e., there are no main spatial frequencies.
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These are all very characteristic properties for visual smoke behavior, from which a

DL-VSD algorithm with Diff input profits.

The TV-L1 algorithm for Flow calculation depends on many parameters, which are

chosen as the default OpenCV parameters. A structured analysis of these parame-

ters is necessary.

There are other SotA algorithm to calculate Flow, which could be more suitable

ones for DL-VSD approaches. An qualitative analysis of different Flow algorithms

for VSD with different parameter combinations is done by [54].

The parameterization of the Flow algorithm also depends on the temporal and spa-

tial resolution, which should also be varied for a structured analysis. Furthermore,

a clipping and quantization of the resulting (u, v) vectors is conducted, which can

remove relevant information. These issues require a comprehensive, structured anal-

ysis to get a robust conclusion about Flow as input for a DL-VSD system, but to

the author’s suggestion, the performance gap between Diff and Flow is too big to

be closed by optimization of the Flow hyperparameters.

5.6.3 Short versus Long Term Information

In all temporal approaches, it turns out that short term information is very charac-

teristical for smoke. The success of Diff input in Section 5.2 shows, that one yields

high-quality smoke predictions, only using two consecutive frames within 333ms.

The accumulation approach in Section 5.3 balances short and long term information.

γ ∈ [0, 1] weights the impact of short towards long term information, i.e., the smaller

γ, the higher is the impact of long term information. The conducted experiments

show that the result only improves for high values of γ. The best Detection Speed

is reached for γ = 0.9, which improved the result without accumulation by 5%. For

γ = 0.9, the impact of an observed frame vanishes after 2 further frames to < 1%.

In the accumulation approach, the long term information is added by a handcrafted

method, and there is a fixed weighting introduced, i.e., in every situation long and

short term information have not variable impact.

In contrast, the CNN+LSTM approach theoretically can learn, which information

is more relevant, dependent on the situation. For example, it should learn to detect

smoke with high density due to short term information as well as thin smoke by
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using long term information like background noise. Indeed the accumulation result

is improved by 5%. But the AUC0.02(t) in Figure 5.9 shows that, the CNN+LSTM

approach only performs better for small detection times (t <= 70s) and for a de-

tection time t > 70s the performance is equal to the accumulation approach, which

indicates that the CNN+LSTM deals better with short, but equally with long term

information compared to the accumulation method. Considering that the accumu-

lation approach does nearly not use any long term information, one can conclude

that the CNN+LSTM approach also does not significantly benefit from it. Another

suggestion is that the training sequences are too short (≤ 8s). However, using longer

sequences for training leads to worse results.

The i3D outperforms every other approach and improved the CNN+LSTM by 11%

using the information of 10s for each decision. In the scope of VSD, this is rather

short term information, e.g., background noise or slow illumination changes are not

considered for an alarm decision. The author assumes that each frame of the 10s

period is treated equally for an alarm decision using 3D convolutions, whereas the

low pass filter effects in the accumulation approach and the LSTM (see Equation

2.2.7) force the impact of past frames to vanish very fast.

These considerations lead to the question, how can a CNN+LSTM approach be

designed and trained to take more benefit of long term information and can this

outperform the i3D? The investigation of this question requires a deeper insight, of

what the network has learned and how the gradient flow impacts recurrent param-

eters, which is out of the thesis’ scope.

5.7 Evaluation on Public Dataset

The analysis of DL-VSD algorithms is done on an internal dataset, which is not

publicly available. Therefore it is difficult to rank the proposed approaches to the

literature in VSD. The goal of this section is to evaluate the DL-VSD algorithms

proposed in this chapter on a suitable public dataset and compare them to other

approaches in the literature.

Public datasets for VSD are rare, especially to compare DL approaches, which re-

quire a split into training and test set. To the author only the ones of Xu [30]
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and Filonenko [29] are known. The dataset of Xu consists of single-frame images

only. Filonenko’s dataset is a collection of crops of smoke and negative sequences.

For the thesis’ approaches, only datasets are relevant, which consists of sequences.

Therefore only the Filonenko dataset is suitable.

This section starts with a description of Filonenko’s dataset and the results he ob-

tains with his approach. Afterward, all approaches of this thesis are evaluated and

compared on this dataset using Filonenko’s measures. It can be shown that they

all outperform the one of Filonenko. Finally, the measures proposed in Section 3.4

are applied, and it turns out that the results differ from the conclusions made on

the Bosch dataset.

5.7.1 Filonenko’s dataset

Figure 5.14: Examples for the Filonenko sequences. Left shows smoke and right
negative sequences.

Filonenko’s dataset consists of 162 smoke and 234 negative sequences. These

sequences are 64×64 px2 crops of smoke and non smoke recordings. Some examples

are illustrated in Figure 5.14. The rate to which the frames are sampled is unknown,

but the author estimates that it is between 15 and 30 fps. Each sequence contains

between 65 and 512 frames. Note that training and testing a DL-VSD algorithm on

the dataset of Filonenko differs from applying it in a real VSD surveillance scenario.

Because Filonenko uses crops, i.e. small parts of an image, for training and testing.

In applications one has to further extend the algorithm and combine the predictions

of all crops to a smoke alarm decsion for the whole image.
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5.7.2 Filonenko’s Measures and DL Approach

Filonenko randomly divided the dataset into a training and test set using a ratio

of 80 to 20. It is not clear, which sequence belongs to which set. He investigated a

conceptually similar architecture compared to the proposed CNN+LSTM approach.

Firstly a custom-designed CNN extracts a feature map for each frame and secondly

this feature map is fed into a gated rectified unit (GRU), which is a specific RNN

having good gradient behavior like LSTM, but less parameters. In contrast to the

proposed approaches in this thesis, the network only predicts the last frame of a

sequence during training.

For evaluation on the test set only the first fixed number of frames at the beginning

of each sequence is considered. This fixed number of frames is varied from 2 to 67,

and each time the accuracy is calculated. Finally, Filonenko chooses the maximal
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Figure 5.15: Result of Filonenko’s approach on his test set, which is randomly
chosen from his complete data. He applied a CNN-GRU approach and analyzed
the accuracy, which depends on the number of frames from the beginning of the
sequence. The diamond boxes are estimated from Filonenko’s paper.

accuracy, which is 96.25% after 42 frames, as the measure for comparison. The

accuracy is defined as the ratio of correctly classified to all sequences of crops.

The weakness of this measure is that each data point is determined on a completely

different test set since only the first part of the sequence is chosen. Increasing the

sequence length should lead to a higher reliability in smoke detection, but since the
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negatives are also cropped, critical parts, which may begin later, could be truncated.

Therefore Figure 5.15 seems contradictory because the accuracy has a high variation

and is not increasing with the number of frames used.

A more comparable measure would be the mean over these accuracies, which is

88.98%.

5.7.3 Comparison of Proposed DL Approaches to Filonenko’s

Now the investigated approaches are applied to the dataset of Filonenko, i.e., they

are completely new trained and tested using the measure of Filonenko. Three ran-

dom splits are generated and evaluated independently, to overcome the issue that

the exact split in training and test set done by Filonenko is not clear. Finally, the

mean over the three test sets is used for comparison. In Figure 5.16 results for
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Filonenko RGB 0.8898 0.9625
Inc Acc RGB 0.9438 0.9630
CNN+LSTM RGB 0.9539 0.9676
i3D RGB 0.9533 0.9630
Inc Acc Diff 0.9466 0.9750
CNN+LSTM Diff 0.9820 0.9921
i3D Diff 0.9705 0.9875
Inc Acc pre RGB 0.9657 0.9836
CNN+LSTM pre RGB 0.9868 0.9961
i3D pre RGB 0.9765 0.9921

Figure 5.16: Evaluation of all temporal architectures proposed in this thesis on the
dataset of Filonenko using his measure. Diff and RGB input are tried. The table
summarizes the results.

all investigated DL approaches using temporal approaches are illustrated. Diff and

RGB input are used. For RGB input, pretraining is also investigated. Without
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pretraining, the Diff input performs best. However, if one uses pretraining, the re-

sults significantly improve, which is not surprising, since the smaller the dataset,

the higher the benefit of pretraining.

In contrast to the results on the Bosch dataset now the CNN+LSTM approach

achieves the best performance for all input modalities followed by the i3D.

The achieved result is also better than the one of Filonenko. Furthermore, the

curvatures have significantly less variation. Nevertheless, one has to be careful by

comparing the results, because Filonenko’s exact split into training and test set is

unknown and statistically approximated by the three randomly chosen splits.

5.7.4 Evaluation of Thesis’ Measures on Filonenko’s Dataset

Now the Detection Speed measure from the thesis is applied to the dataset of Filo-

nenko. As maximal valid detection time, 256 frames are chosen, and the ROCs are

restricted to a maximal FPR of 0.11, which covers the 5 most critical sequences of

the test set. For this investigation also the three random splits of the last section are

investigated, and for each sensitivity parameter λ the mean over the three FPR and

TPR is calculated to construct the ROC. It is not possible to evaluate the thesis’

measure on the Filonenko’s approach, since maximal scores for each frame and of

each sequence are necessary, which are not available. The result is illustrated in Fig-

ure 5.17. When considering the input modalities, the result is the same compared to

the outcome using Filonenko’s measure: RGB with pretraining is the best followed

by Diff and RGB without pretraining is worst.

Considering the DL approach the result changes: Now the i3D achieves the best

results on RGB without pretraining. The CNN+LSTM stays the best for Diff in-

put and for RGB with pretraining the results of both models are almost identical.

Again it is no surprise that RGB with pretraining delivers the best results since the

dataset is small. The author’s assumption that the CNN+LSTM approach works

better than the i3D is that all frames in one sequence have the same label. So there

is an easy rule to profit from long term information.
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Figure 5.17: Evaluation of all temporal architectures proposed in this thesis on the
dataset of Filonenko using the Detection Speed measure DSpeed(0.11). The table
summarizes the results.

5.8 Qualitative Analysis

Several DL-VSD methods are trained and evaluated on the test set using a quanti-

tative measure, the Detection Speed. Now the question is, in which situations smoke

is not detected, or the algorithms are sensitive to false alarms.

These critical smoke and negative events are analyzed due to their environmental

and recording conditions. It is not surprising that it turns out that events contain-

ing only very thin and barely moving smoke and environments with bad or rapidly

changing illumination are challenging. Critical negatives usually are events with

very slow expanding objects, shadows, or reflections.

5.8.1 Analysis of Critical Smoke Events

The restricted ROC of all temporal models using Diff input is considered in Figure

5.18 to define the critical smoke events.

The i3D shows best performance and has the ability to detect 87% of the smoke

events without false alarm within 90 seconds, the maximum required detection time.
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Figure 5.18: Restricted ROCs of all temporal approaches with Diff input. The
maximal allowed detection time of 90 seconds is used. Note that the i3D determines
the smoke probabilities by knowing the next 5 seconds. Therefore the detection time
for the i3D is reduced to 90 seconds (see also Equation 5.5.2).

The other 13% of smoke events are defined as critical. The distribution of smoke

types and environmental conditions within the critical and not critical events are

compared due to meaningful aspects in Figure 5.19.
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Figure 5.19: Comparison of meaningful aspects in distribution of smoke types and
recording conditions. The percentage values are given in relation to all events in
each column, e.g. 91% of the not critical smoke events and 62% of the critical smoke
events have the DE or UE property.

There are significant differences in smoke types. In almost all not critical events DE
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or UE smoke is recognizable. Whereas in 38% of the critical events only have the

BGF and/or AM property. This is an indicator that the i3D has difficulties with

very thin, not moving smoke. Figure 5.20 shows two examples.

(a) (b)

Figure 5.20: Examples for critical smoke events. (a) Very thin BGF smoke in upper
right corner. (b) Not moving AM smoke.

Since Figure 5.20a is even hard to detect for humans, it is not a surprise that it is

also challenging for the i3D. Whereas figure 5.20b shows for humans easy detectable

smoke, but for i3D it is not detectable, because Diff input is used and in the rare

cases, where smoke does not have inner movement, there is not the characteristic

change from one frame to the other. Figure 5.19 also shows, that beyond the smoke

behavior also the environmental conditions play an important role. The ratio of

indoor events is similar, which indicates that in closed rooms or halls with constant

illumination, the smoke type is more relevant.

There are significantly fewer outdoor events within the critical smoke recordings.

The outdoor events usually have a strong and stable illumination and low dynamic

range, since the recordings are taken during daylight, which leads to less temporal

noise. Since the smoke movement normally is in the magnitude of noise, the detec-

tion is much easier.

Semi-outdoor events are overrepresented in the critical smoke sequences. Critical

semi-outdoor environments are rather dark areas, like tunnels or train stations,

where blinking or moving lights, headlights of cars and trains, cause global light

changes, which suppress the changes caused by smoke (examples in Figure 5.21).

This light changes are especially a problem for algorithms using several seconds for

an alarm decision like the i3D.

Despite these critical smoke events, the algorithm shows impressive performance. It
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(a) (b)

Figure 5.21: Typical global light changes in semi-outdoor scenarios, which lead to
challenging smoke detection. (a)Blinking lights during smoke event in a tunnel. (b)
Headlights of an arriving train behind smoke.

often detects smoke events faster than humans and or in situations a human has to

look twice.

5.8.2 Analysis of Critical Negative Events

Critical negative sequences are defined considering the not restricted ROCs in Fig-

ure 5.22. The critical negative events are defined according to the ROC of the i3D.

From the ROC curve of the i3D see that the FPR is 26% for TPR > 99%. This

means, that there are 26% negative events, which cause a false alarm before nearly

all smoke events are detected. These events are defined as critical negatives. Fig-

ure 5.23 shows relevant distributions of negative types and environmental conditions

within the critical and not critical negative events. Especially events similar to DE

and UE smoke are critical for the DL algorithm. When investigating some examples,

one can recognize that these are slowly expanding objects with a chaotic texture,

e.g., reflections of a rising crane or shadows of opening doors. Blinking lights are

also critical, especially yellow ones because in the training set are some flames, which

are surrounded by smoke and therefore are labeled as smoke. Negative events with

flickering behavior, like trees in the wind or a lake with rough water and static

objects, which are visually similar to smoke like clouds, do not cause false alarms.

However, some complicated weather conditions like snowing are critical.

The deviations in environmental conditions seem to be transitive correlated to the

negative types, because DE or UE events, like cranes or elevators, are usually

recorded indoor.
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Figure 5.22: Not restricted ROCs of all temporal approaches with Diff input. The
maximal allowed detection time of 90 seconds is used. Except for the i3D, which uses
85s. Note that the configurable sensitivities of the Classic Algo allow a calculation of
a few points on the ROC only. The remaining points are interpolated. This results
in the dominant linear slope within the Classic Algo curve.

Figure 5.23: Comparison of critical and not critical negative events considering
meaningful distributions of negative types and environmental conditions. Again the
percentage values are given in relation to the number of events in each column. For
example 31% of the not critical negative events and 42% of the critical negative
events have the UE property.

All these critical events (except the blinking lights) have locally similar behavior

to smoke, i.e., if a cell containing the critical event is cropped, not even a human



78 CHAPTER 5. ANALYSIS OF DL-VSD METHODS

(a) (b)

(c) (d)

Figure 5.24: Examples for negative scenarios, which are critical. Yellow markers are
pre-alarms (0.02 <FPR≤ 0.10), and red markers are smoke alarms (FPR≤ 0.02). (a)
A slowly rising hydraulic ramp. The reflection on the sparkling ground causes a false
alarm. (b) Slowly passing train towards the camera. The reflection of headlights
causes the pre-alarm. (c) Snowing and windy. The event causing a pre-alarm is a
snowdrift. (d) Turning blinking light. The similarity to flames causes a pre-alarm.

can decide for sure, if it is smoke or not. Only when considering the context of the

event, a reliable decision can be made. For example, if in Figure 5.24c the part of

the street containing the snowdrift is cropped, it looks like smoke, but considering

the weather, which can be derived from the context, one can be sure that this is non

smoke.

All proposed architectures can recognize the context, since the spatial receptive

fields cover the whole image, but the dataset is not comprehensive enough, that

the algorithm learns such complex correlations. For example, there is no sequence

containing snow in the training set.

Dust or steam are not investigated as negative events in this thesis. However, using

contextual information is –to the author’s suggestion– the only way to distinguish

them from smoke.
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Chapter 6

Reduction of Model Complexity

So far, several single frame and temporal DL approaches are applied to VSD, and

they are compared due to their performance in the requirements derived measure,

Detection Speed. The architectures used for feature extraction are SotA in several

public classification challenges. What is completely left out in the current analysis,

is the complexity of the models.

VSD is a real-time problem, i.e., all calculations for the alarm decision have to be

done in real-time. The real-time ability depends on the hardware and the model

complexity, e.g., on-edge-devices usually not have the computing capability like a

desktop PC or a server. Normally, a reduction of model complexity leads to some

decrease in performance.

In this chapter, the complexity of the proposed models is analyzed and compared.

Furthermore, several approaches are investigated to decrease complexity while main-

taining performance.

In Section 6.1, the models from the last chapter are compared due to their com-

plexity. Afterward, a custom architecture based on ConvLSTMs is proposed in 6.2,

which decreases the model complexity drastically, but also the performance signifi-

cantly decreases. In Section 6.3 a SotA CNN architecture, called MobileNetV2, to

reduce the model complexity is investigated, and it is shown, that the performance

only slightly decreases by using < 50% of the InceptionV1 complexity.

3D-CNN complexity reduction is analyzed in Section 6.4. Firstly a SotA method is

applied, which maintains the i3D performance by 64% complexity reduction. Sec-

ondly, the inflation concept of the InceptionV1 architecture to i3D is applied to
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yield an inflated MobileNetV2 3D architecture, which delivers better performance

than CNN+LSTM, while reducing the model complexity to < 1% of the i3D.

From now on, only Diff input is considered because it shows by far the best results

for single frame and temporal DL architectures.

6.1 Complexity Analysis of Proposed Models

With the increasing success of DL models, the question arises, how to apply them

in applications, in which normally hardware restrictions exist. Therefore the goal of

DL research is not only to increase performance but also to design efficient models

with less complexity. One way to describe the model complexity is the number

of parameters, which is an indicator of how ”big” a model is but not how much

calculations are necessary for one forward pass of an image through the network.

6.1.1 Definition of Model Complexity

According to [37] a suitable measure for model complexity is the number of multipli-

cations and accumulations (MACs), which are needed for one forward pass. MACs

are the dominant operation using neural networks since dot products can describe

convolutions. Calculations needed for non-linearities are negligible.

The MACs can be calculated layer-wise and summed up over the whole network.

They do not only depend on the architecture, but also on the input image size and

the sequence length, since for the VSD use case the samples are defined as sequences.

The image size is always 256 × 256 × 3, but the sequence length varies. Therefore

MACs per frame are used for model complexity comparison. It is assumed that the

input sequence has a length of T . Now it is described how the MACs are calculated

for different layers.

MACs of 2D Convolutional Layers

Since 2D convolutional layers are independent of time, the MACs per frame can

directly be computed for each frame. Let K ∈ Rk×k×c be the kernel size, I ∈ Rh×w×c

be the input andO ∈ Rh′×w′×c′ the output of the layer. Note that h,w can be reduced
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to h′, w′ using strides> 1. When ignoring padding effects, it follows

MACs per frame ≈ k2h′w′cc′. (6.1.1)

MACs of 3D Convolutional Layers

Since the MACs of 3D convolutions are dependent on the sequence length, the MACs

have to be normalized by the number of input frames T . Let K ∈ Rt×k×k×c be the

kernel size, I ∈ RT ′×h×w×c be the input and O ∈ RT ′′×h′×w′×c′ the output of the

layer. When ignoring padding effects, it follows

MACs per frame ≈ tk2T ′′h′w′cc′/T. (6.1.2)

Note that the input of the first layer is the number of input frames. Therefore the

expression is divided by T .

MACs of ConvLSTMs

Since there is no reduction in the temporal component by ConvLSTM, only one

frame is considered when calculating the MACs per frame. Let K ∈ Rk×k×c be the

kernel size, I ∈ Rh×w×c be the input and O ∈ Rh′×w′×c′ the output of the layer.

The calculation of the activations and the element-wise products and additions are

negligible. When ignoring padding effects, it follows

MACs per frame ≈ 8k2h′w′cc′. (6.1.3)

6.1.2 Complexity Comparison of Proposed Models

Figure 6.1 summarizes the resulting model complexities against the performance of

the architectures proposed so far in a blob diagram. Since the recurrent accumula-

tion operation is neglegible, the InceptionV1 and the Acc approach have the same

complexity and number of parameters. Whereas the CNN+LSTM approach has

57% more parameters, but only 10% more MACs are necessary for one forward pass
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Model #Params in Mio MACs/frame in Mio DSpeed(0.02)
Inc 5.59 1955 0.6313
Inc Acc 5.59 1955 0.6646
CNN+LSTM 8.76 2157 0.6903
i3D 12.28 5519 0.7696

Figure 6.1: Blob diagram, that shows the complexity of currently investigated mod-
els in MACs against the Detection Speed (DSpeed(0.02)). The area of the blob is
proportional to the number of parameters. The table summarizes the results.

since the LSTM is applied on small input resolution. The i3D has by far the biggest

complexity: 2.6 times the CNN+LSTM complexity and 1.4 times more parameters,

since it completely consists of 3D convolutions.

6.2 DeepConvLSTM – A Custom Architecture

Now the goal is to reduce the model complexity while maintaining the performance.

The first idea is a custom architecture, which can extract long and short term in-

formation at each layer. The investigation of CNN+LSTM shows, that extracting

long term information at high level of spatial abstraction does have less benefit (see

Section 4.6).

The question arises if it is possible to get better results by adding long term infor-

mation at other levels of spatial abstraction. This could be done to the full extent

by replacing convolutional layers in a CNN by ConvLSTMs (Figure 6.2). This
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Figure 6.2: The arrows show the information flow of the DeepConvLSTM. The
ConvLSTMs are stacked, so that the architecture has the ability to extract long and
short term temporal information at each spatial abstraction level.

Layer type kernel
size/stride

output max receptive
field

0 input – T ×256×256×3 –
1 ConvLSTM 3× 3 T ×256×256×4 T × 3× 3
2 3D Max-Pool 1× 3× 3/(1,2,2) T ×128×128×4 T × 5× 5
3 ConvLSTM 3× 3 T ×128×128×8 T × 9× 9
4 3D Max-Pool 1× 3× 3/(1,2,2) T × 64× 64× 8 T × 13× 13
5 ConvLSTM 3× 3 T × 64× 64× 16 T × 21× 21
6 3D Max-Pool 1× 3× 3/(1,2,2) T × 32× 32× 16 T × 29× 29
7 ConvLSTM 3× 3 T × 32× 32× 32 T × 45× 45
8 3D Max-Pool 1× 3× 3/(1,2,2) T × 16× 16× 32 T × 61× 61
9 ConvLSTM 3× 3 T × 16× 16× 64 T × 93× 93
10 3D Max-Pool 1× 3× 3/(1,2,2) T × 8× 8× 64 T × 125× 125
11 ConvLSTM 3× 3 T × 8× 8× 128 T × 189× 189
12 FC (sigmoid) 1× 1× 1 T × 8× 8× 1 T × 189× 189

Table 6.1: The DeepConvLSTM architecture. Behind each 3D convolutional layer
are batch normalization layers. The activation used in the ConvLSTM are hard
sigmoid and tanh.

concept is called DeepConvLSTM. The intuition of this architecture is, that it can

extract long and short term information at each spatial abstraction level. In con-

trast 3D-CNNs can only extract short term information at each abstraction level

and CNN+LSTMs can extract long and short term information only for the highest

spatial abstraction level.

Furthermore, the architecture can learn more representative and simpler smoke in-

formation and therefore having less complexity.
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A simple architectural concept is investigated (Table 6.1), which is basically an

adaption of a VGG [33]. The network is trained with a sequence length of 100

frames each sample and a batch size of 5. The learning rate is decayed each epoch

by a factor of 0.995 starting with 0.001. The test set is evaluated every 3 epochs.

The training needs about 300 epochs for convergence. Figure 6.3 shows the result

in the context of the SotA models from the last chapter. This simple architecture

Model #Params in Mio MACs/frame in Mio DSpeed(0.02)
Inc 5.59 1955 0.6313
Inc Acc 5.59 1955 0.6646
CNN+LSTM 8.76 2157 0.6903
DeepConvLSTM 1.18 349 0.4510

Figure 6.3: Blob diagram, that compares complexity and performance to the the
other DL models.

delivers good results: It has only 16% model complexity and 13% parameters of the

CNN+LSTM approach while maintaining 65% of the performance.

The DeepConvLSTM is also analyzed on the dataset of Filonenko (Figure 6.4). The

DeepConvLSTM reaches second best results using Diff images as input, but despite

the lack of pretrained weights for RGB all other approaches are outperformed by far

in Filonenko’s evaluation methods and in Detection Speed. The author’s assump-

tion, why the results on Filonenko’s dataset are so good is that it is easier to learn

long term information by a stack of LSTM than for only one LSTM layer.

One can conclude that a stack of ConvLSTM is a promising and simple approach
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to reduce the model complexity and get good results compared to the baseline.
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Model Input Mean Max DSpeed(0.02)
CNN+LSTM Diff 0.9820 0.9921 0.9187
DeepConvLSTM Diff 0.9798 0.9901 0.8785
CNN+LSTM pre RGB 0.9868 0.9961 0.9231
i3D pre RGB 0.9765 0.9921 0.9256
DeepConvLSTM RGB 0.9958 1.0000 0.9836

Figure 6.4: Evaluation of the DeepConvLSTM on the dataset of Filonenko using
his measure and the measure presented in this thesis. For comparison the currently
best models on Filonenko’s dataset are also given. Diff and RGB input are tried as
input. The table summarizes the results.

6.3 Complexity Reduction of CNNs

In literature, there are also some approaches to reduce the model complexity of

CNNs while maintaining the performance. One SotA concept is introduced in [37],
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the MobileNetV2. This architecture combines the full experience gathered by de-

signing CNNs. However, the main idea to reduce the model complexity is depthwise

separable convolutions, which consists of two parts. Depthwise convolutions are

convolutions conducted for each input channel of a layer independently. Afterward,

a 1× 1 convolution is conducted to extract information between the channels. This

reduces the MACs from k2h′w′cc′ of a ordinary 2D convolution to h′w′c(k2 +c′). For

example one has an input tensor of size 64 × 64 × 32, 3 × 3 convolutional kernels

with stride 1 and 64 output channels. A normal 2D convolutional layer needs 75M

MACs, whereas a depthwise separable convolutional layer gets by with 10M MACs,

but it has the opportunity to extract similar information.

The number of features extracted by each layer is controlled by α ∈ (0,∞). On the

Model #Params in Mio MACs/frame in Mio DSpeed(0.02)
Inc 5.59 1955 0.6313
DeepConvLSTM 1.18 349 0.4510
MN α = 1.00 2.23 391 0.6261
MN α = 0.75 1.36 271 0.6095
MN α = 0.50 0.69 125 0.5919
MN α = 0.35 0.40 75 0.5722

Figure 6.5: Blob diagram, that shows the complexity in MACs per frame against the
Detection Speed (DSpeed(0.02)). The MACs per frame on the x-axis are scaled loga-
rithmically. MobileNetV2 (MN) for different α is compared to single frame concept
Inception. Also, the DeepConvLSTM architecture is shown for model complexity
comparison.

ImageNet dataset SotA results are reached for α = 0.35, 0.50, 0.75, 1.00, 1.40. For
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the purpose of this thesis α = 0.35, 0.50, 0.75, 1.00 are trained in the same way like

the Inception architecture, i.e. sequence length 1, batch size 162 and for learning

rate decay factor 0.999 starting with 0.001. The results are shown in a blob diagram

(Figure 6.5). Since the MobileNetV2 should be applicated in the same way like the

InceptionV1, i.e., as a backbone for the accumulation or CNN+LSTM approach,

it is suitable only to compare it to the single frame results of InceptionV1 : For

α = 1.0 the complexity is reduced to 20% and 99% of the performance is reached.

For α = 0.35, the model complexity is reduced to 4% and 91% of the performance

is maintained, which is significantly better than the DeepConvLSTM.

Embedding the MobileNetV2 architectures into the accumulation and CNN+LSTM

approach should give the same improvement, but it is not investigated.

6.4 Complexity Reduction of 3D-CNNs

In Section 5.5, it is found that the i3D, a 3D-CNN architecture, delivers by far the

best results for VSD, but it also has by far the highest model complexity. Now

the question arises if there are 3D-CNN architectures, which deliver similar perfor-

mance, but have less model complexity. Two approaches are considered, one from

literature, which is mainly based on partly replacing the 3D convolutions by 2D

convolutions, called Fast S3D, and the other one is a custom approach, which trans-

forms the MobileNetV2 into an inflated MobileNetV2 3D like it is done to yield the

i3D by inflating the InceptionV1 architecture. Both approaches deliver a perfor-

mance worse than the i3D but better than the other approaches and especially the

inflated MobileNetV2 3D architecture reduces the model complexity drastically.

6.4.1 Fast S3D

In [62] a simple idea to reduce the complexity of i3D is presented, where 3D convolu-

tions are partly replaced by 2D convolutions. The strategy is successively replacing

the 3D convolutions at the bottom and the top of the network. It turns out that

replacing all 3D Inception modules by 2D modules at the bottom of the network

except the last two is a sweet spot, i.e., a compromise between model complexity

and performance.
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Furthermore, the complexity is reduced by separating the temporal and the spatial

part of a 3 × 3 × 3 convolutional kernel into a stack of two kernels: 1 × 3 × 3 and

3×1×1. The resulting architecture using these two complexity reduction techniques

is called Fast S3D.

The Fast S3D is similarly modified as the i3D, i.e., the temporal stride is set to 1,

and padding is done, such that each frame yields cell-wise predictions for each frame.

The spatial receptive field remains the same as Inception and i3D, but the temporal

receptive field reduces to 7 frames. Figure 6.6 shows the result. The complexity

is finally reduced to 36% of the i3D with 94% of the performance. Compared to

the CNN+LSTM approach the complexity is 7% reduced and the performance 5%

increased.

Model #Params in Mio MACs/frame in Mio DSpeed(0.02)
CNN+LSTM 8.76 2157 0.6903
i3D 12.28 5519 0.7696
FastS3D 6.44 2009 0.7268
MN α = 1.0 2.23 391 0.6261
iMN 3D α = 0.1 0.11 54 0.7093

Figure 6.6: Blob diagram, that shows the complexity in MACs per frame against
the Detection Speed (DSpeed(0.02)). The MACs per frame on the x-axis are scaled
logarithmically. The main focus is on the 3D-CNN architectures Fast S3D and
Inflated MobileNetV2 3D with α = 0.1 (iMN3D 0.10).
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6.4.2 Inflated MobileNetV2 3D

The Fast S3D has an InceptionV1 like model complexity with i3D like performance.

Compared to the MobileNetV2 architectures, the complexity of this is still very high.

The question arises if it is possible to get an i3D like performing architecture with

MobileNetV2 like model complexity.

The idea is to inflate the MobileNetV2 to a 3D-CNN in the same way as the i3D is

constructed from the InceptionV1.

Inflation concretely means that the 2D convolutions and the 2D depthwise separable

convolutions have to be replaced by 3D counterparts, which is a straightforward

extension. The temporal strides are set to 1, and padding is conducted, such that

each frame yields cell-wise predictions. The resulting architecture is called Inflated

MobileNetV2 3D. The spatial receptive field is the same as for the MobileNetV2,

and the temporal receptive field is 37 frames.

Since there is no optimized version of depthwise 3D convolutions in Tensorflow,

a custom version is implemented, which iterates over the input channels and is

therefore slow on the GPU. Due to this only one small α = 0.1 is tested (Figure

6.6). The resulting architecture only has a model complexity of 1% compared to

the i3D, but 92% of the performance. Compared to the Fast S3D, it has 3% of

complexity and maintains 98% of the Detection Speed. These investigations show

that 3D-CNNs not only perform best for VSD. 3D-CNNs are also the best DL

method to reduce the model complexity significantly while maintaining excellent

performance.
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Chapter 7

Conclusion

Firstly, the story of the proposed thesis is summarized in section 7.1. Afterward,

the main results are emphasized in section 7.2. Finally, the main open questions,

which arise during the research for this thesis, are given in section 7.3.

7.1 Summary

The goal in this thesis is to investigate, if and which DL methods can improve al-

gorithms in the area of VSD. The key role of this investigation is data preparation

and the definition of a measure for comparison. The investigations are done on an

internal dataset of Bosch Building Technologies GmbH, which consists of about 1000

smoke and 1200 negative sequences.

These data are carefully structured into training and test sets. The key require-

ments for doing so are that each set is representative, and the sets are independent

of each other. Representative is assured by constructing the sets, such that smoke

types and environmental conditions have the same distribution. Independence is

approximated by choosing disjoint recording locations for the sets.

Smoke is labeled with bounding boxes in the training sequences and by frame in the

test sequences, which is a compromise between effort and labeling accuracy.

The different VSD algorithms are compared on the test set using a measure named

Detection Speed, which takes values in the range from 0 to 1, the higher the better.

This measure represents the ability of a VSD algorithm to detect smoke as fast as

possible within a maximal required detection time of 90s.
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Afterward, a VSD algorithm using classic CV methods is analyzed. The key idea

of this algorithm is to accumulate the optical flow to detect smoke typical moving

behavior over time. This algorithm reaches a Detection Speed of 0.1814, which leaves

much space for improvement using DL approaches.

The training problem for the DL approaches is defined as a cell-wise classification

problem: The input is a sequence of frames, and each frame is divided into a rough

grid. For each cell in the grid and each frame, the DL algorithm predicts the prob-

ability that the cell contains smoke. To predict smoke in the current frame, the

models only use information of previous frames in the sequence.

The investigation starts with the analysis of a CNN architecture, the InceptionV1.

The first shot is using RGB images as input and train the network from scratch.

The result is a Detection Speed of 0.1076, which is worse than the classic algorithm.

When using transfer learning with pretrained weights on ImageNet, the result im-

proves to 0.2670, which is significantly better than the baseline. The disappointing

result without pretraining shows that the data set is not comprehensive enough to

learn static, single frame-based, features, which are characteristic of smoke. How-

ever, the good result with pretraining indicates that this characteristic information

is in the dataset.

In classic VSD algorithms, temporal information is highly relevant to detect smoke,

which also follows the human intuition. One way to use temporal information in a

CNN is to put this information in the input. This is done by using Flow and Diff

images, which leads to a significant improvement: 0.2252 for Flow and 0.6313 for

Diff, which is impressive since this information was only taken from two consecutive

frames within 333ms. One also observes that using Diff input nearly no overfitting

effects occurred in contrast to the RGB input.

Following the intuition, that smoke has the expanding property and frames, which

are covered by smoke, usually remain covered for the next frames, a simple hand-

crafted extension of the CNN is introduced: The smoke probabilities of each cell are

temporally accumulated over time by a first-order low pass filter. This stabilizes the

CNN output and leads to a performance of 0.6646 for Diff input.

The next step is to investigate DL methods, which can extract temporal information

on their own. The combination of CNN and LSTM directly delivers an improvement
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to: 0.3775 for RGB and 0.6903 for Diff.

The last investigated DL concept is 3D-CNNs. The architecture, which shows the

best results in action recognition tasks, is the i3D. RGB and Flow weights, which

are pretrained on Kinetics, are available. The i3D shows the best performance when

the same input modalities are compared, 0.5650 for RGB and 0.5139 for Flow. Both

results are worse than CNN with Diff input, but using Diff input for the i3D the

result increases to 0.7696, the best performance reached over the whole thesis.

These DL models have high computing complexity and are not applicable when

having hardware restrictions, especially because VSD is a problem, which has to be

solved in real-time. The model complexity is measured in MACs per frame. Sev-

eral approaches are investigated to reduce the model complexity while maintaining

performance. Starting with a custom architecture, the DeepConvLSTM, which is a

stack of ConvLSTMs, reduced the complexity to 16% of the InceptionV1 architec-

ture, but also the performance reduced to 68% of the CNN+LSTM approach. Then

an approach from literature is tested, the MobileNetV2, which reduces the complex-

ity down to 4%-20% of the InceptionV1 architecture, but still maintains 91%-99%

of the InceptionV1 performance.

The i3D has the highest model complexity 2.6 times the complexity of CNN+LSTM

but reaches by far the best results using 3D convolutions. An approach from liter-

ature to reduce the model complexity is investigated, the Fast S3D, which replaces

the most 3D convolutions by 2D convolutions. With 36% computing complexity it

reaches 94% of the i3D performance. Finally, the custom idea to inflate the 2D Mo-

bileNetV2 to the 3D version is investigated. This 3D MobileNetV2 only needs 1%

computing complexity and meets 92% of the i3D performance, which is still better

than the CNN+LSTM.

7.2 Results

Data preparation and structuring is crucial for applying DL methods to VSD. If it

is done insufficiently, any result is vulnerable.

The proposed Detection Speed measure enables to evaluate and delimit VSD algo-

rithms in the context of real surveillance scenarios.



94 CHAPTER 7. CONCLUSION

It is shown that DL can close the gap to fully automatic VSD. Only smoke events,

which are even hard to detect by humans and negative events, which need contex-

tual information to be distinct from smoke, are critical.

Among all investigated DL methods the one with 3D convolutions work best and

all approaches benefit from Diff input.

When meeting hardware restrictions, it is possible to reduce the model complexity.

For all investigated approaches, the computing effort can significantly be reduced.

The best compromise between complexity and performance is again obtained by

utilizing 3D-CNNs.

7.3 Open Questions

During the investigations in this thesis also some questions occurred, which are not

sufficiently answered yet.

It is found that 3D-CNNs perform better than RNNs even though RNNs could ben-

efit from much more temporal information than 3D-CNNs. The assumption is that

it is hard to teach RNNs long term information.

It is also found that Diff as inputs works much better than RGB even when using

temporal DL approaches and pretraining on RGB is available. This is contradictory,

since Diff information should be learnable from RGB input. The explanation for

this observation is the tendency of fast overfitting when using RGB.

Nevertheless those effects needs a deeper insight in what the DL methods learn and

how one can influence this to further improve the results in VSD. There is an own

field of research dealing with such questions, which is called ”explainable AI”.

Another problem, which occurs, when investigating DL algorithms with research

purposes is that there is no relevant public dataset available. Investigations done

on internal datasets are hard to comprehend, suffer from less credibility and are not

comparable to other authors. A sufficient public dataset with events created and la-

beled to the guidelines given in this thesis would be of high value for the whole VSD

community. This includes smoke and negative events recorded in diverse recording

locations.
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