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Abstract: Designer benzodiazepines (DBZDs) represent a serious health concern and are increasingly
reported in polydrug consumption-related fatalities. When new DBZDs are identified, very limited
information is available on their pharmacodynamics. Here, computational models (i.e., quantitative
structure-activity relationship/QSAR and Molecular Docking) were used to analyse DBZDs identified
online by an automated web crawler (NPSfinder®) and to predict their possible activity/affinity on
the gamma-aminobutyric acid A receptors (GABA-ARs). The computational software MOE was used
to calculate 2D QSAR models, perform docking studies on crystallised GABA-A receptors (6HUO,
6HUP) and generate pharmacophore queries from the docking conformational results. 101 DBZDs
were identified online by NPSfinder®. The validated QSAR model predicted high biological activity
values for 41% of these DBDZs. These predictions were supported by the docking studies (good
binding affinity) and the pharmacophore modelling confirmed the importance of the presence
and location of hydrophobic and polar functions identified by QSAR. This study confirms once
again the importance of web-based analysis in the assessment of drug scenarios (DBZDs), and how
computational models could be used to acquire fast and reliable information on biological activity
for index novel DBZDs, as preliminary data for further investigations.

Keywords: designer benzodiazepines; QSAR; docking; web crawler; computational models; MOE;
NPSfinder®

1. Introduction

Benzodiazepines (BZDs) were introduced into therapeutics in the early 1960s as a
safer alternative to barbiturates, but their abuse potential was recognised early on [1]. For
this reason, 35 BZDs were placed under control by the UN Convention on Psychotropic
Substances of 1971 [2,3]. Both their relatively low toxicity levels and their activity as
anxiolytics, sedative-hypnotics, anticonvulsants, and muscle relaxants made and still make
them one of the most prescribed classes of drugs across the world [4,5].

The BDZ core structure is a (1,4)-diazepine fused to a benzene ring. A phenyl moiety is
usually attached to this core. They act as positive allosteric modulators of γ-aminobutyric
acid (GABA)-A receptor (GABA-AR) [6]. The GABA-AR is a heteropentameric unit (i.e.,
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5 glycoproteins: 2 α, 2 β and 1 γ s). The α, β and γ subunits show different isoforms to
which correspond a diverse activity of BZDs [7,8]. The α1 receptors are responsible for
sedative, anterograde amnesic, and anticonvulsant actions; the α2 for anxiolytic effect
and the α2,3,5 for myorelaxant actions [9,10]. The α1 isoform has been proven as being
responsible for the addictive potential of BDZs [9,11].

BZDs have been long associated with a history of abuse, illicit trading and non-medical
use, the latter being a well-established problem associated with many overdose-related
deaths worldwide, notwithstanding the availability of flumazenil, the BZD antagonist, in
specialized settings [12,13]. The adverse effects associated with their use/abuse include
increased reaction time, motor incoordination, anterograde amnesia, restlessness, delirium,
aggression, depression, hallucinations, paranoia and fatalities [14].

The health concern associated with these molecules has increased recently due to
the appearance on the market of several new BZD analogues, belonging to the group of
new psychoactive substances (NPS) [15–17]. Even though the family of designer BZDs
(DBZDs) represent less than 2% of the total available NPSs [18,19], in the last couple of
years, they have been reported worldwide in most NPS hospitalisations and fatalities (post-
mortem) [20], and particularly so in polydrug consumption scenarios [21–24]. They are
usually ingested with other sedatives, primarily opioids, to potentiate their effects; promote
‘come down’ after stimulant use; or unintentionally, as counterfeits of prescription benzo-
diazepines [20]. Safety/toxicity profiles for most of the known DBZDs are not described
yet, with limited knowledge of their pharmacodynamics and pharmacokinetics [15,25,26].
To date, the consumption of these new and unknown molecules is regarded as a serious
threat to public health and society [20,27,28].

Currently, the United Nations Office on Drugs and Crime (UNODC) and the European
Monitoring Centre for Drugs and Drugs Addiction (EMCDDA) report a total of 30 officially
identified DBZDs [5], 70% of which were identified since 2015. However, results from
previous studies conducted on the open web [29–32] demonstrate that the number of
NPS, including DBZDs, identified online is much larger than that formally identified by
either the EMCDDA and/or the UNODC databases [33,34]. Indeed, web-based studies
have demonstrated their ability in both assessing and somewhat predicting the real-world
scenario of NPS availability [35–38]. Web-based studies typically focus on activities carried
out within both online drug forum communities and social networks, where there are
some educated/informed users (‘psychonauts’) [39,40] who are keen to ‘test’ a range of
molecules to achieve specific mindsets. Their information is routinely shared online, and
vulnerable subjects, including both children/adolescents and psychiatric patients, may
hence be at risk of accessing these ‘pro-drug’ data [39,40]. Psychonauts are a clinical ‘niche’,
and their idiosyncratic levels of medication intake are better scrutinized with the help of
the netnographic research approach [41]. To facilitate identification of those NPS being
discussed and offered for sale on the surface web, a crawling/navigating software (i.e.,
NPSfinder®), designed by Damicom, an IT enterprise based in Rome (Italy), was used. The
crawler was designed to automatically scan a list of websites for new/novel/emerging NPS
and extract a range of information including chemical and street names; chemical formulae;
three-dimensional images; and anecdotally reported clinical/psychoactive effects. The
scanned websites (Table S1) were representative of online psychonaut websites/fora and
other NPS online resources, e.g., vendor websites [42].

However, when new NPS, including DBZDs, are identified online, only very limited,
if any at all, scientific information is available on their activity/toxicity and carrying out
preclinical studies on dozens, or hundreds, of molecules may constitute an extremely time-
consuming and very expensive exercise [43]. Hence, to overcome this issue, computational
models (e.g., quantitative structure-activity relationship/QSAR and Molecular Docking)
have been suggested to help in providing levels of prediction of both biological activity and
binding affinity of unknown molecules towards a known receptor. Indeed, computational
models are well established, and successfully/extensively used tools, and especially so for
drug development [44]. They have already been applied to classical and designer benzodi-
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azepines [45,46] and other NPS classes (e.g., synthetic cannabinoids [47–49], opioids [50,51],
hallucinogenic phenylalkylamines [52], and tryptamines [53] and phenethylamines [54,55].

This study aimed to use computational models to analyse the DBZDs identified online
with the use of an automated web crawler (i.e., NPSfinder®) and to predict their possible
activity and potency on the gamma-aminobutyric acid receptors (GABA-ARs).

2. Results

The web crawler identified online a total of 4334 NPS [56]. After careful manual
analysis and evaluation, 101 molecules among these NPSs were classified as DBDZs. These
included all the molecules being formally listed and officially reported by the UNODC and
EMCDDA (Table S2). For the scope of this paper, the controlled BDZs being listed in the
Convention on Psychotropic Substances of 1971 were excluded, as they did not qualify as
designer benzodiazepines.

2.1. QSAR

The dataset obtained from the literature consisted of 76 molecules, and included 1,4-
benzodiazepines, thienotriazolo-benzodiazepines, triazolo-benzodiazepines, and imidazo-
benzodiazepines [57]. The 76 molecules were divided further into a training (67) and a test
set (9) and a SMILES string was generated for each molecule (Table S3). As per the methods
section, the training set and test set composition was determined by similarity and activity
sampling [58]. All the molecules presented experimental values of log1/c between 6.0 and
9.0, where the highest values correspond to higher biological activity.

The AutoQSAR application in MOE generated 80 QSAR models from the 260 2D
descriptors calculated. To improve the results, the function “ignore outliers” was used.
Only one compound (Ro 06-9098) was flagged by the AutoQSAR application as an outlier
and not used for the model building. The QSAR equations (80) were manually filtered,
aiming for a model with high values (>0.7) of r2 (goodness-to-fit), high values (>0.6) for
xr2 (robustness) and fewer descriptors. The model that best represented this compromise
was a 5-descriptors equation with an r2 of 0.75 and an xr2 of 0.69 (Equation (1)). Once
chosen, the model was then applied on the test set for the external validation, obtaining an
r2 = 0.66 as a measure of predictiveness and an RMSE value of 0.65. The r2 for the test set
was calculated with the use of the correlation plot function in MOE. The predicted log1/c
values for the test set were calculated with the “Model-Evaluate” function and then plotted
against the experimental values with the “Analysis-Correlation plot”, which returned the
r2 value. A better result (RMSE = 0.36) was achieved when two outliers (Ro 05-4336, Ro
05-2921) were removed from the validation set [59] as suggested in the literature.

Equation (1) QSAR Equation identified with AutoQSAR MOE application.

log 1/C =9.45416 + 0.77505*h_log_pbo + 1.24990*KierFlex − 0.03382*Q_VSA_HYD
− 0.01507*SlogP_VSA7 − 0.03849*vsa_pol

(1)

The five descriptors were determined automatically by the AutoQSAR application
among the 260 calculated and displayed in the QSAR model returned. They correlate
with logP (octanol/water partition coefficient) (SlogP_VSA7), the strength of π-electron
bonds (h_log_pbo), the total hydrophobic van der Waals surface area (Q_VSA_HYD),
the polar van der Waals surface area (vsa_pol) and the molecular flexibility (KierFlex),
thus identifying these 2D molecular parameters as important for the biological activity
of the DBZDs. For each descriptor, the single code detailed description and the relative
importance are reported in Table 1.
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Table 1. Specification of the five descriptors included in the final QSAR model.

Code Description RI

h_log_pbo Sum of log (1 + pi bond order) for all bonds 0.65
KierFlex Kier molecular flexibility index: (KierA1) (KierA2)/n 0.68

Q_VSA_HYD Total hydrophobic van der Waals surface area 1.00
SlogP_VSA7 approximate accessible van der Waals surface area contribution to logP(o/w) 0.25

vsa_pol Approximation to the sum of VDW surface areas (Å2) of polar atoms 0.29

The correlations among the chosen descriptors were checked and are reported in
Table 2. Lack of correlation values higher than 0.7 confirms no mutual correlation among
the descriptors used. In addition, calculated 2D descriptors that were not part of the final
QSAR model but are considered by default important to describe the drug-likeness of
molecules are reported in Table S4. No evaluation of PK profile or ADMET properties was
conducted.

Table 2. Mutual correlation values for the 5 descriptors chosen for the QSAR equation.

KierFlex h_log_pbo Q_VSA_HYD vsa_pol SlogP_VSA7

KierFlex 1.00
h_log_pbo 0.13 1.00

Q_VSA_HYD 0.65 0.30 1.00
vsa_pol 0.07 0.11 −0.12 1.00

SlogP_VSA7 −0.25 0.53 −0.09 0.07 1.00

The predicted log1/c values for training and test set are listed in the supplementary
information (Table S3), while the correlation between experimental and predicted data are
visualised in Figure 1.
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Figure 1. Correlation values (r2) for the training and the test set were obtained using the 5-descriptors
QSAR model generated by AutoQSAR. Note: In the two graphs, the values of log1/c experimentally
derived (x axis) are plotted against the values predicted by the QSAR model (y axis). The r2 defines
the goodness of fit of the QSAR model. A QSAR model is considered acceptable when it has an r2

value > 0.6 for the training set, and an r2 > 0.5 for the test set. This model has, respectively, an r2 of
0.75 and 0.66 for the training and test set.
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The chosen QSAR model was then used to predict log1/c values for the 101 DBZDs
identified by NPSfinder® (Table S5).

The molecules were divided into three biological activity groups according to the
resulting log1/c values: low (5.80–6.99), medium (7.00–7.99) and high (>= 8.00). The
number of DBZDs showing predicted log1/c values between 7.00–7.99 was 43 (42%), while
the ones showing predicted log1/c > 8.00 were 42 (41%). Seventeen molecules (17%)
showed predicted log1/c values lower than 7.00, indicating a low predicted biological
activity. These three groups were visually analysed to possibly identify common chemical
features. In the “high activity” group were observed: the recurrent presence of concomi-
tant substitutions in position C7 and C2′, primarily with Cl, Br and NO2; the use of a
substitute thiazole ring instead of the benzene ring in the core structure; the presence of a
triazolo/imidazole ring (N1-C2) fused on the core structure (Figure 2). For the “medium
activity” group observed were: the presence of one substituent only, primarily Br and F,
either in position C2′ or C7; the presence of bulky substituents either in position N1 or
attached to the fused imidazo/triazole ring; the lack of the pendant phenyl ring linked to
the benzodiazepine core structure (Figure 2). For the “low activity” group observed were
the presence of substituents in N1 and the substitution of the core structure benzene with
pyrrole or imidazole rings (Figure 2). Although some chemical features are identifiable
more often in only one of the three activity groups, a defined pattern/correlation could not
be established.
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For the scope of this paper, only the first ten molecules (Figure 3) with the highest
predicted log1/c, hence high predicted biological activity, were used for docking studies.
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Figure 3. 2D structures of the first ten molecules ranked according to predicted log1/c values. Colours have been used to
facilitate the identification of heteroatoms (Br, Cl, I, N, O, S) in the chemical structures. The 2D structures were built with
the use of ChemDraw Plus 12.0.

2.2. Docking

From the PDB database available structures, pdb codes 6HUO [60,61] and 6HUP [60,62]
were chosen for docking studies. Both are crystallised structures of the α1β2γ3 human
GABA-AR in complex with a benzodiazepine in its biologically active conformation (see
methods section), respectively alprazolam and diazepam.

These two co-crystallised structures were used as superposition targets for docking
calculations and ligand interactions were explored. The 6HUO binding pocket as visualised
in MOE is presented in Figure 4.

The ten molecules (Figure 3) that showed the highest predicted log1/c values were
docked into 6HUO [61] and 6HUP [62]. London dG and GBVI/WSA dG [63] were used as
the scoring methods for the docking process. For each molecule, several conformations
with different S values (Kcal/mol) were returned. The ones showing the best S value
(i.e., the lower the value, the more potent the binding) were identified. The same process
was carried out for alprazolam and diazepam (co-crystallised ligands) and their S values
were used as a reference of good binding for 6HUO and 6HUP. The S values obtained are
reported in Table 3. The 3D docking pose for each of the DBZD is reported for 6HUO, as
well as the 2D ligands interactions with the binding pocket residues (Figures 5–8). As per
Figures 5–8, the most common interactions identified between the DBZD and the binding
pocket are H-donor with HIS 102 (D chain, α subunit); H-pi with TYR 160 (D chain, α
subunit); pi-pi with TYR 58 (C chain, γ subunit); H-acceptor with SER 206 (D chain, α
subunit). The same interactions were observed with 6HUP.
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Table 3. Binding values S (kcal/mol) were generated for the ten molecules that showed the highest
predicted values of log1/c (nM), docked within the two receptors 6HUP and 6HUO. Notes: The
molecules are listed in decreasing order of their predicted log1/c (biological activity); alprazolam
and diazepam are prescription medications and here included only as a reference because they are
the respective bound ligands of 6HUO and 6HUP.

Mol. Pred. log1/c S 6HUP (kcal/mol) S 6HUO (Kcal/mol)

Ro 09-9212 9.40 –6.7 –6.4
Ro 07-5193 9.06 –6.7 –6.7
Ro 20-8065 9.04 –6.8 –6.6
Ro 07-5220 8.95 –6.7 –6.6
Ro 07-3953 8.81 –6.4 –6.5

Flucotizolam 8.77 –6.6 –6.8
Ciclotizolam 8.77 –7.7 –7.4

Desmethylflunitrazepam
(Ro 05-4435) 8.70 –7.0 –6.6

Flubrotizolam 8.67 –6.5 –6.5
Phenazepam 8.61 –6.7 –6.6
Alprazolam 7.70 –7.0 –7.0
Diazepam 7.50 –6.6 –6.5

2.3. Pharmacophore

The conformations with the best S values (more negative values) were further aligned
to produce a pharmacophore query. The two queries for 6HUO and 6HUP [61,62] are
presented in Figure 9. It should be noted that the two pharmacophore queries differed
slightly i.e., the presence of an additional hydrogen feature in position C7, and an acceptor
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feature instead of a Donor one in C4. However, they both highlight the importance of two
big aromatic functions, one in correspondence with the benzodiazepine ring and one in
correspondence with the pendant phenyl ring; one hydrogen acceptor function in position
C2; and one hydrogen acceptor or donor function in position C4.
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3. Discussion

To our knowledge, this study is the first to apply computational models to a large
range of DBZDs that have been identified online, with the help of an ad hoc web crawler,
i.e., NPSfinder®. The best 2D QSAR model obtained with MOE [63], was used here to
predict the possible biological activity of previously unreported DBZDs and validated as
able to predict the biological activity of new DBDZs as soon as they emerge online or on
the real-world markets.

Despite being an educated guess, the data obtained by the validation of the QSAR
method showed how these predicted activities can be considered reliable and useful for an
initial assessment of an unknown molecule.

In fact, according to the values of r2 (0.75) and xr2 (0.69) obtained for the training
set, the model generated shows very good results for the goodness-of-fit and robustness
(internal validation). The goodness-of-fit, or internal predictivity (r2 = 0.75) indicates
how well the model predicts biological activity for molecules used to build the model
itself but cannot predict the efficacy of the model for compounds that were not used
to train the model. Indeed, it cannot be considered as a predictivity measure for the
obtained mathematical algorithm. Hence, before using the model to predict and interpret
the biological activities of the DBDZs identified by NPSfinder®, external validation was
performed with the use of the test set. The external validation returned good values both for
r2 (0.66) and RMSE (0.36). The r2 value indicates that the QSAR model was able to predict
66% of the test set activity values, hence would be able to predict the same percentage
of a dataset of new DBZDs. The RSME value, instead, indicates the confidence of the
model. While for the r2, the closer the value is to the unit the better the model works, for
other external validation measures, as the error based ones (RMSE), there is no defined
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threshold [64]. Hence, there is no maximum value for RMSE and the lower the value the
better the confidence [65–67].

These statistical values were obtained using the “ignore outliers” function of Auto-
QSAR that automatically identified an entry from the data set as a true outlier when the
predicted log/c value was 2.5 units higher than the experimental one. True outliers are com-
pounds that show unexpected biological activity or are unable to fit in a QSAR model [68];
eliminating true outliers from a training set is good practice to increase the quality of the
model and avoid unnecessary bias [69]. Despite being identified with confidence by the
software application, to try and explain why a compound was flagged as a true outlier, a
further 3D analysis is necessary.

It should be noted that the good predictivity of this model, confirmed through internal
and external validation, is efficient only on molecule classifiable as BDZs and showing
the BDZ core structure, and cannot be used to predict biological activity on the GABA-
Ars for other chemical classes (e.g., Z-drugs) [70]. The applicability domain that can be
considered implicit here, due to the fact that only one chemical class was used to create the
QSAR model, has been set so far according to structure similarity (Tc) and include all the
molecules that showed a 0.5 average Tc value when compared to the whole dataset used to
train and validate the QSAR model.

Moreover, this QSAR model confirmed the correlation between some of the BZDs’
physiochemical characteristics already presented by previous studies [46,71,72] and biolog-
ical activity. The partition coefficient (logP, i.e., membrane permeability), the hydrophobic
surface, and the polar surface have been identified here as the most important parameters
able to define the biological activity of an index, unknown, DBZD, together with its molec-
ular flexibility. Although it is difficult to prove the exact correlation of each descriptor with
the predicted activity, one still could speculate on their possible contribution.

In particular, Q_VSA_HYD, the total hydrophobic van der Waals (vdW) surface area
appears to be the most important descriptor in the QSAR model generated (Table 1). This
descriptor, together with SlogP_VSA7 (van der Waals surface area contribution to logP)
and vsa_pol (vdW polar surface areas), identifies very important electrostatic molecular
surface properties that are correlated with membrane solubility and have been proven to
influence the membrane permeability of a molecule [73]. Moreover, hydrophobic/polar
regions of a molecule could influence its position and binding in the receptor pocket
according to the electrostatic distribution of the latter. KierFlex, the second most important
descriptor (Table 1), indicates how the flexibility of the molecule will positively impact
biological activity [74]. This may suggest the presence of a very narrow or small binding
pocket in the GABA-AR that favours the binding of more flexible molecules. The sum
of hydrogen bond donor strengths of carbon atoms, i.e., h_log_pbo, appears to be the
third most important descriptor in the QSAR model generated (Table 1). The importance
of this descriptor could be explained if one takes into consideration that the majority of
the interactions documented with the docking studies (Figures 5–8) are represented by
hydrogen donor/acceptor bonds [75]. Hence the capability of a molecule to generate this
type of bond could strongly correlate with its level of activity.

The other very interesting outcome of the QSAR analysis described here is the pre-
dicted values of the log1/c. As reported above, molecules with predicted values higher than
8.0 could be considered as possessing high levels of GABA-AR affinity. In fact, molecules
such as lorazepam and clonazepam, which are classified as high potency prescribing BZDs,
are reported in the training set with experimentally derived log1/c values respectively of
8.46 and 8.74 (Table S3).

Our prediction algorithm showed values of log1/c > 8.00 (high potency) for a big
percentage (41%) of the DBZDs (n = 101) identified by the web crawler. Among these
appear molecules such as etizolam (which is being prescribed in some countries, but
still classified as DBZD in others), and flualprazolam, two of the most popular DBZDs
worldwide [5,28]. These molecules reported as being responsible for multiple fatalities and
near misses [76] showed predicted log 1/c values between 8.10 and 8.40. In comparison,
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the top ten predicted log1/c values identified (Table 3) showed putative biological activity
levels up to ten times higher (log1/c = 9.40). Among the ten predicted most active DBZDs,
the popular phenazepam and flucotizolam [20,21,77,78] were identified, together with less
known DBZDs, of which the most potent seems to be Ro 09-9212.

Although these results need to be interpreted as only predictive values, hence not
experimentally determined, they may still present a reason for concern. First, the web
crawler identified 101 novel BZDs, and one could infer that further DBZDs will possibly
be created in the future. Second, the QSAR results tentatively suggested that about half
of these DBDZs may represent potent/very potent GABA-AR agonists. Indeed, these
biological activity values are applicable to the α1 isoform of the GABA-AR, an isoform
identified as being responsible for the addiction potential of BZDs [9]. Hence, one would
conclude that a significant proportion of DBZDs may be both potent and associated with a
strong addiction potential. Indeed, the recent scheduling of etizolam and flualprazolam [76]
but also of clonazolam, diclazepam and flubromazolam [27,79] could create “vacancies” in
the NPS market that could be easily filled with the range of DBZDs described here.

To investigate further the currently identified DBZDs’ predicted potency, the results
from the docking studies were examined. It is important to clarify here that QSAR and
docking studies are not necessarily linearly correlated, hence a high biological activity does
not necessarily correspond to a high binding affinity and vice versa [80]. Furthermore,
the prediction of the binding affinity for a particular substance per se does not give much
information about the molecule/receptor interaction (e.g., agonist; partial agonist; antago-
nist) activity. However, docking results can be used to support QSAR analysis, hence, the
predicted binding affinity values of the ten DBZDs (Table 3) were used to further analyse
the predicted biological activity values. The docking (S, Kcal/mol) values obtained for
alprazolam (S = −7.0) and diazepam (S = −6.6), were used as reference of a satisfactory
binding affinity. As explained in the method section, alprazolam and diazepam were the
active ligands co-crystallised in the receptors’ structures (6HUO and 6HUP) obtained from
PDB, hence we can assume their S values to be representative of a good receptor binding.
From Table 3, it is noticeable how the S values obtained from the best conformations for
each of the ten most active DBZD, and for both the 6HUO and 6HUP receptors, are in
line with alprazolam and diazepam. These results suggested satisfactory binding affinity
levels for the α1β2γ3 human GABA-AR. Even though the docking was performed using
the active conformation of two agonist BDZs (alprazolam and diazepam) as reference
points, no specific information on the actual agonist/antagonist role of these DBZDs can
be extrapolated.

Docking results can be very interesting in assessing the way the molecule interacts with
the residues of the binding pocket (Figures 5–8). From the 2D ligand interactions report,
we can identify which residues are recurrently involved in the binding. It should be noted
how the majority of the interactions happen with the α subunit of the GABA-AR binding
pocket. His102 (α subunit) is confirmed again as one of the most important residues for the
DBZDs binding, forming hydrogen bonds with halogenated substituents in position C2′ .
The aromatic interaction (pi-pi) between the phenyl moiety of the Tyr 58 (γ subunit) and
the triazolo moiety of the DBZDs is another recurrent interaction as well as the hydrogen
bonding with the Ser 206 of the α subunit. Although the receptor residues involved in
the binding tend to be recurrent across the different DBDZs, the moiety of the molecule to
which they bind changes. The presence of a side-chain substituent or an additional/diverse
fused ring on the main core structure (e.g., triazolo, thiophene) seems to influence the
orientation and positioning inside the pocket resulting in a change of the interaction pattern
(Figures 5–8). This is observable when comparing, for example, alprazolam with Ro 09-9212
(Figure 5). The presence of a thiophene ring seems to shift the molecule in the binding
pocket, and the repositioning seems to be driven by the hydrogen bond between the S
atom of Ro09-9212 and the Tyr 160. This results in an aromatic interaction between the
pendant phenyl ring and Tyr 58, a hydrogen bond between the halogen substituent and
the Ser 159, instead of the His102, and a further hydrogen bond between N1 and Thr 142.
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This change in residue interaction can be observed as well when compounds are docked in
6HUP. Further docking studies of the whole database will be carried out to understand if
an interaction pattern can be identified between substituents and residues.

Finally, the best conformations resulting from the docking studies were used to re-
trieve a pharmacophore map of the features common to the ten DBZDs (Table 3). The
resulting pharmacophore (Figure 9) confirmed the QSAR results and the importance of
logP and total hydrophobic van der Waals surface area (aromatic functions in Figure 9)
and the polar van der Waals surface area (hydrogen bond acceptor and donor functions
in Figure 9) in defining the biological activity of a DBDZ [46,71]. The identified pharma-
cophore highlighted the recurring presence of both two big aromatic groups and two
hydrophobic acceptor areas in those molecules showing good receptor binding affinity
levels [8,81,82] and high biological activity.

Limitations

The major limitation of this study is represented by the size of the dataset used
(training and test sets) for computational studies. To obtain a robust QSAR model, a data set
of roughly 100 entries would be desirable [83,84]. In this case, the small size of the dataset
could have affected the QSAR predictive power. However, to the best of our knowledge, no
further extensive in silico/preclinical or indeed clinical data are available. Other limitations
include the use of 2D descriptors only, as well as the use of only a single software for the
docking studies. When the QSAR studies started, knowledge of 3D superposition and
alignment was still to be acquired hence the decision was taken to rely on 2D descriptors
only. However, as including 3D descriptors could add descriptive/predictive power further
study will include a 3D approach. The validity of the study is, however, supported by
the consensus analysis (consistency of the findings across the three methods) of QSAR,
Docking and Pharmacophore modelling that has been used for this paper [46,50].

Other limitations are linked to the fact that the NPSfinder® crawling activity and the
further manual analysis has been conducted, so far, only on the surface web. Further
studies from our group will focus on both the deep web and darknet [85] and will include
other languages (e.g., Chinese, Japanese and Arabic). Moreover, the present NPSfinder®

findings related mostly to the psychonauts’ and vendor websites, which may not represent
the entirety of those NPS debated/discussed/mentioned online. Finally, the fact that
a range of DBZDs are being discussed online does not necessarily mean that they are
immediately accessible for purchase to interested customers.

4. Methods
4.1. Identification of Molecules

NPSfinder® automatically scanned the websites included in Table S1 between Novem-
ber 2017 and February 2021 and extracted the information retrieved on NPS. The predom-
inant language used was English, but other languages were also considered: Spanish,
German, Russian, Italian, Dutch, French, Swedish and Turkish. The data extracted were
stored in an online, restricted access/password-controlled database and unique NPS iden-
tified and assigned to their NPS class according to their chemical structure (e.g., structure
comparison with known BDZ and presence of diazepine ring) or scientific profile when
available in the literature [86]. No similarity index was calculated. NPSfinder® entries were
compared with the EMCDDA’s European Database on New Drugs [33] and the UNODC
Early Warning Advisory on the NPS database [34]. JMC, a registered user with authorised
access to these databases, prepared the listing for the comparison (Table S2). The compari-
son was conducted using the International Chemical Identifier Key (InChIKey) [87,88].

4.2. Computational Models

The computational analysis was carried out with MOE 2019.01, an integrated Computer-
Aided Molecular Design Platform developed in Canada by the Chemical Computing Group
ULC [63].
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4.2.1. QSAR

Quantitative structure-activity relationship (QSAR) models, that correlate molecular
structures to biological activity, were built using physiochemical, topological, electronic and
steric properties (i.e., molecular descriptors) of the molecules in question [89]. To formulate
these QSAR models, a dataset of molecules whose biological activity was known and
experimentally derived was built up. All the molecules, uploaded as SMILES into the MOE
database, were converted to MOE molecules and underwent an energy minimisation and
partial charges calculation with the molecular mechanic’s forcefields MMFF94s, using the
general energy minimisation function in MOE [90]. To create the dataset, biological activity
values were obtained from the literature [57]. The information used as biological activity
was the logarithm of the reciprocal of concentration (log 1/c), with c being the molar
inhibitory concentration (IC50) required to displace 50% of [3H]-diazepam from the rat
cerebral cortex. BZDs with provisional log1/c values or atypical atoms or substituents [57]
were not taken into consideration. Similarity coefficients (Tanimoto coefficient, Tc [91])
were calculated between all the molecules of the dataset, and average coefficients were
used as a measure of similarity with the whole dataset. The average Tc cut off was set to
0.3, hence molecules showing values <0.3 were removed from the dataset. The latter was
subsequently divided into training and test sets based on Tc and activity values (log1/c).
On average, 80% of the dataset is included in the training set and 20% in the test set, but
this ratio can be subject to modification according to the dataset size [92]. The training
set was used to build the algorithm whereas the test set was used to validate it (external
validation).

QSAR models were built automatically, using the partial least squares method of
the AutoQSAR application in MOE. Three parameters were calculated: the correlation
coefficient (r2) (goodness to fit) and the leave-one-out cross-validation (LOO) correlation
(xr2) (robustness) for the training set (internal validation); and r2 for the test set (external
validation). The r2 defines the goodness of fit of the QSAR model, while xr2 defines the
goodness of prediction [58]. A QSAR model is considered acceptable when it has an r2

value > 0.6 and xr2 > 0.5 for the training set [93] and a r2 > 0.5 for the test set [65]. A stability
test is also necessary to evaluate the significance of the model, hence the root mean square
errors (RMSEs) for the training and test sets were generated [93].

The 2D descriptors (n = 206) were calculated and further selected according to their
correlation to log1/c. The correlation was assessed with the use of QSAR-Contingency, the
MOE statistical application designed for descriptors selection. The correlation to log1/c was
calculated and a number between zero (no correlation) and −1 (full negative correlation)
or between zero (no correlation) and 1 (full positive correlation) was obtained. Descriptors
that did not correlate well or were non-contributory to the log1/c (i.e., correlation coefficient
R < 0.5) were deleted. The limited cluster of descriptors obtained was then further filtered
according to mutual collinearity (i.e., correlation values between one another > 0.7 resulted
in rejected descriptors) and relative importance value towards log1/c values in a stepwise
regression approach with repeated QSAR model generations.

Auto QSAR automatically carried out all these steps. Of the QSAR models generated,
the best one was chosen according to the resulting values of r2, xr2 (i.e., closest to 1
as possible), and the number of descriptors (i.e., the lowest) used in the mathematical
algorithm. QSAR rules suggest the use of roughly one descriptor for every ten molecules
of the training set [92,94]. The identified final QSAR model was then validated using
molecules of the test set and, once validated, used to generate predicted log1/c values for
the DBZDs identified online.

4.2.2. Docking

Molecular docking (MD) is also a mathematical algorithm that evaluates the binding
affinity between a ligand (DBDZ) and the receptor (GABA-AR). To perform the molec-
ular docking studies, crystallised structures of the receptor and its ligand bound in the
active conformation were used and obtained from the Protein Data Bank (PDB) [95]. Avail-
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able structures were refined according to source organism (the organism from which
the receptor was obtained, i.e., homo sapiens,); taxonomy (i.e., eukaryote); experimen-
tal method (the technique used to generate the 3D structure, X-ray diffraction, electron
microscopy, etc.); and refinement resolution (the resolution obtained in the 3D structure
measured in Angstrom (Å)). In particular the CryoEM structure of human full-length
alpha1beta3gamma2L GABA(A)R in complex with alprazolam, 6HUO [61], and diazepam,
6HUP [62], were chosen [60]. These structures can be identified as well in the EMDataRe-
source database respectively as EMD-0283 [96] and EMD-0282 [97]. The chosen 3D struc-
tures were prepared with the Quick Prep MOE function. The active site identified by
the co-crystallised ligands was used to dock the BDZs included in the training set to
evaluate the MOE placement and scoring methods. This process involved positioning
various conformations (energetically reasonable 3D atomic configurations) of the molecules
with respect to the binding pocket and determining the optimal interaction geometry (the
conformation of the ligand that best interacts with the ligand pocket) and its associated
energy (each conformation has an energy status associated resulting from the orientation
of the molecule chemical bonds). For each of these optimal interactions, a final score (S
(Kcal/mol)) was returned. The lower the S value was, the stronger the predicted binding
affinity of the index DBZD [63]. Once the placement and scoring methods were chosen,
they were used to dock the DBZDs identified by NPSfinder®.

4.2.3. Pharmacophore Mapping

A pharmacophore mapping exercise was conducted on the 3D conformations obtained
from the molecular docking studies. The purpose of this exercise was to define pharma-
cophore features common to those unknown DBDZs predicted to display the highest
biological activity values. For each of these, the conformation obtained with the docking
studies showing the lowest (more negative) S values was used for flexible alignment in
MOE. The flexible alignment application was run on these known conformations (i.e.,
3D coordinates), a set of alignments computed, and a final score returned for each of the
flexible alignments generated. The final score (S) quantifies the quality of the alignment in
terms of both internal strain (U score) and overlap of molecular features (F value). Lower
values are intended to indicate better alignments. For the purpose of this study, the default
setting was used, and the force field was changed to MMFF94. From the list of returned
alignments, the one showing the lowest S value was analysed and used to generate a
pharmacophore query. The pharmacophore editor application was used in the consensus
mode. The unified annotation scheme was used to automatically assign pharmacophore
annotation points (e.g., H-bond donor, H-bond acceptor, etc.) to the 3D conformations
of the DBZDs. For each annotation point (i.e., pharmacophore feature) a percentage is
returned to indicate how common that particular feature is to the set of molecules analysed.
Only the features common to 70% or more of all the DBZDs were selected and displayed in
the final pharmacophore description.

5. Conclusions

As reported in the latest UNODC reports [19,23,24], whilst DBZDs represent only a
small fraction (2%) of the total number of identified NPS, they are molecules of strong
interest for intravenous drug misusers, being associated with fatalities worldwide [16,24].
Indeed, they are increasingly being reported in polydrug consumption scenarios, usually
with other central nervous system depressants (e.g., opiates and opioids) or stimulants.
The concomitant use of more than one substance, especially of strong depressants, usually
leads to a synergistic enhancement of the adverse effects of both substances, potentially
leading to extremely severe side-effects including respiratory depression and death.

It is, therefore, relevant to assess as much as possible the extent of the DBZDs phe-
nomenon. Current findings confirmed previous studies, highlighting the importance of
web-based analysis [29–32] to retrieve as much information as possible relating to the
current drug scenarios. Indeed, 101 DBZDs, a figure three times higher than the one
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reported by both the UNODC and EMCDAA was identified by this study. Currently, the
UNODC [34] and the EMCDDA report a total of 30 officially identified DBZDs [5], 70% of
which were identified since 2015.

As, for most DBZDs being identified, the range of relevant pharmacological and
toxicity data is lacking [38], it is felt that the current findings may help in better discrim-
inating between the different DBZDs. This is particularly true for benzodiazepine NPS
because, despite their structural and chemical similarity, large differences exist between
their pharmacokinetic parameters and so they are not easily comparable [12]. Indeed, it is
suggested that QSAR and docking studies could be of great advantage in obtaining quick
and reliable predictions on biological activity, potency and even provide initial toxicity
information. In this way, it will be easier to better understand the possible harms associated
with index novel DBZDs, and this may constitute a starting point for further investigations
(e.g., de novo chemical synthesis; in vitro studies; preclinical studies).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14080720/s1, Table S1: List of websites monitored by the NPSfinder® web crawler,
November 2017- November 2020, surface web only; Table S2: List of the designer benzodiazepines
officially reported by the UNODC and EMCDDA (February 2021); Table S3: Composition of the
training and test set used to build the QSAR model; Table S4: Drug-like descriptors for the 101
DBZDs identified by the NPSfinder; Table S5: Predicted value of biological activity (log1/c) for the
101 DBZDs identified by NPSfinder®.
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