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mit ihrer bedingungslosen Unterstützung durchweg einen sicheren Rückhalt geboten

haben.





VII

Kurzfassung

Im Rahmen der biomechanischen Forschung spielt die Simulation des menschlichen Be-

wegungsapparates eine zentrale Rolle für das Verständnis der menschlichen Bewegung

oder der Belastungen bei spezifischen Tätigkeiten. Wichtig ist hierfür die korrekte Dar-

stellung der Muskeln, wobei eine Balance zwischen hoher Genauigkeit und Recheneffi-

zienz gefunden werden muss. Ein gängiger Ansatz ist daher das Darstellen der Muskeln

als dünne, masselose Linien und die Festlegung ihres Pfades durch das Wickeln über

definierte Flächen. In Fällen, in denen die Muskeldicke nicht zu vernachlässigen ist und

während der Kontraktion sogar noch variiert, geraten diese Methoden an ihre Grenzen,

da ein aufwändiges Platzieren und Verschieben der Wickeloberflächen notwendig wird.

Hier setzt diese Arbeit an: Ziel ist, eine neue, kontinuierliche Methode zu entwickeln, um

dicke, konvexe Muskeln, deren Radius entlang ihrer Mittellinie definiert ist, reibungsfrei

über glatte und konvexe Oberflächen zu legen und dabei die Lage der Mittellinie auto-

matisch zu bestimmen. Die Endpunkte des Muskels sollen dabei frei beweglich sein und

Dehnung sowie damit verbundene Querkontraktion des Muskels und Änderung seiner

äußeren Erscheinungsform ebenfalls berücksichtigt werden.

Ausgehend von einer Diskretisierung des dicken Muskels als Perlenschnur wird die kon-

tinuierliche Berechnung der gewickelten Mittellinie als Grenzwert für eine unendliche

Anzahl von Perlen abgeleitet. Zunächst ohne Längsdehnung wird das Verschieben des

Muskels entlang der Oberfläche untersucht und die Geschwindigkeitsübertragung von

einem zum anderen Ende hergeleitet. Anschließend werden die Bedingung der konstan-

ten Länge aufgehoben und die Auswirkungen der Längsdehnung und Querkontraktion

mit Hilfe der Störungsrechnung untersucht, wobei eins der freien Muskelenden vorerst

fixiert wird. Die Kombination dieser Ansätze ermöglicht schließlich das gewünschte

Wickeln, Verschieben und Dehnen eines dicken Muskels auf einer glatten Oberfläche.

So entsteht ein aus zwei verschachtelten Integrationen bestehender Algorithmus: Die

äußere bezieht sich auf die Erfüllung der Bindungsgleichungen an den Übergängen vom

gewickelten Segment zu den unverformten freien Enden; die innere sorgt für die dafür

benötigten, entlang des gewickelten Segments übertragenen Größen, nämlich der Länge

der Mittellinie, der Geschwindigkeitsübertragung und des Einflusses der Dehnung.

Die Methode wird im Vergleich zu einer Perlenketten-Diskretisierung sowie zu Iteratio-

nen auf Positionsebene validiert. Dabei erweist sie sich als äußerst recheneffizient und

genau. Zuletzt wird das Verfahren erfolgreich auf den musculus deltoideus als biome-

chanisches Beispiel des in die Frontalebene projizierten Schultergelenks angewendet.
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Abstract

In the context of biomechanical research, the simulation of the human musculoskeletal

system plays a central role in understanding human motion or physical stress during

specific movements. The correct representation of the muscles is important in this

context, whereby a balance between high accuracy and computational efficiency has

to be found. A common approach within muscle-actuated simulations is, therefore, to

model the muscles as thin, massless lines and define their path by wrapping them over

defined obstacle surfaces. These methods reach their limits in cases where the muscle

thickness is not negligible and may even vary during contraction. Here, a laborious

placement and displacement of the wrapping surfaces becomes necessary.

This problem is addressed in this thesis: The objective is to develop a novel, contin-

uous approach for placing thick, convex muscles, with the radius defined along their

centerline, frictionlessly over smooth and convex surfaces and having the location of

the centerline automatically determined. The endpoints of the muscle are supposed to

move freely and stretching as well as associated lateral contraction of the muscle and

change in its outer appearance are also to be taken into account.

For this purpose, starting from a discretization of the thick muscle as a string of spher-

ical beads, the continuous computation of the position of the wrapped centerline is

derived as limit for an infinite number of beads. Not considering the elongation at

first, the muscle sliding along a surface is regarded and the velocity transmission from

one end to the other is derived. Then the condition of constant centerline length is

omitted and the effects of longitudinal elongation and lateral contraction of the muscle

are examined using perturbation theory, with one of the muscle’s free ends initially

held fixed. The combination of these approaches through superposition finally allows

the desired wrapping, sliding and stretching of a thick muscle on a smooth surface.

This leads to an algorithm consisting of two nested integrations: The outer integra-

tion concerns the satisfaction of the constraint equations at the segment transitions

between wrapped segment and undeformed free end straight line segments, while the

inner integration provides the required quantities along the wrapped segment, i.e., the

centerline length, the velocity transmission, and the influence of strain.

The method is validated against an implementation of a bead chain discretization as

well as position-level iterations. It proves to be highly efficient in terms of computation

with high accuracy. Finally, it is successfully applied to the musculus deltoideus in the

biomechanical example of a shoulder joint projected onto the coronal plane.
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1 Introduction

1.1 Motivation

Modeling strands like muscles or ligaments is required in many biomechanical appli-

cations that deal with the analysis of the human musculoskeletal system in order to

deepen the understanding of movement and physical loads during certain activities.

In relation to the task at hand, it is necessary to weigh up between high accuracy

and complexity combined with high modeling and computing effort on one side and a

highly reduced model with the shortest possible computation time at the expense of

accuracy on the other side. In musculoskeletal simulations, it is commonly necessary to

calculate the muscle forces or the joint loads. Here, the muscle models involved usually

require the length of the muscle as well as the change in length as input variables, and

a key issue is to determine them quickly and reliably. Thus, it is standard practice

to model muscles as thin massless lines, where the exact placement of these lines in

the moving system poses a problem and is usually only solved approximately defining

their path using via points (as the simplest variant) or – more advanced – by wrap-

ping them over specifically defined obstacle-surfaces to obtain smooth muscle paths.

Careful placement of the wrapping obstacles is necessary to guide them close to the

actual centerline of the anatomical muscle where the line of action of the muscle forces

is assumed to be. This becomes even more difficult if the shape of the muscle changes

during the movement. Furthermore, the muscle diameter may be non-negligible and

may be combined, in particular, with a non-constant cross-section thickness, as exem-

plarily demonstrated in Fig. 1.1 for the musculus deltoideus, which is located between

clavicula and humerus wrapping over the shoulder joint and which is responsible for

the abduction of the upper arm.

a) b)

Figure 1.1: Example: Musculus deltoideus pars acromialis for abduction
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Discrete methods, modeling the strand, for example, as a chain of spherical beads,

provide a general and powerful workaround having the advantage of a fast derivation.

The disadvantage is, however, that their implementation is mostly complex, involving

multiple contact detection and bookkeeping about it, which in turn can be associated

with very high computation times. Also, in musculoskeletal simulation models, dis-

crete approaches may lead to jerky, unrealistic forces and moment arms due to their

discontinuity when coupled to dynamic muscle models, which affect the resulting body

and joint loads.

1.2 State of the art

Taken literally, the term “biomechanics” designates “the study of the structure and

function of biological systems by means of the methods of mechanics.”[26, p. 189]

Two main objectives are pursued here: On the one hand, the modeling of a given

physiological system is one of the best ways to understand it [88, p. 403]. On the other

hand, computer modeling and simulation allow to estimate quantities like muscle forces

or joint loads where in vivo measurements are painful or impossible [75, p. 1948].

According to the areas of activities, the field of biomechanics may be subdivided into

orthopedic biomechanics, sports biomechanics, forensic biomechanics, human factors,

ergonomics etc. However, they all have in common that, pursuant to the definition,

mechanical knowledge is used and applied to biological systems to study specific is-

sues, such as gait and motion analysis, the connection between mechanical stress and

orthopedic disorders, rehabilitation after injuries, the design of workplaces, or analysis

and optimization of athletic movement techniques [65, p. 1].

In most of these fields focusing on humans or animals, modeling and simulation of the

musculoskeletal system are fundamental. It is composed of a passive and an active part.

The passive part is also called the skeletal system and consists of the bones, ligaments

and joints. Hereby, bones and ligaments are load-transmitting elements and responsible

for the statics of the musculoskeletal system. Joints are special arrangements of bones

and ligaments that allow certain movements. [65, p. 2][71, p. 54-59]

The active part of the musculoskeletal system is the so-called muscular system con-

taining around 220 separate, striated skeletal muscles [71, p. 54]. They are connected

to the bones through tendons and can actively change their length and thereby exert

forces on the passive musculoskeletal system. In doing so, they produce not only move-
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ment but are also able to maintain posture (postural muscles) and ensure the statics

of the entire body. Since muscles can only actively shorten but can not lengthen, each

joint requires more than one muscle to enable possible movements. This means that

the active muscle does not only move the joint but it does also lengthen the muscle,

which is responsible for the counter-movement. [65, p. 3][71, p. 54-59]

Thus, the muscles play a central role in moving the musculoskeletal system, and for

modeling and simulating such a system, adequate modeling of the muscles is essential.

The relationship between the shortening of a muscle and the resulting muscle force

that is actually applied to the joints and creating the movement is defined in so-called

muscle models.

1.2.1 Muscle models

There exists a variety of muscle models, ranging from simple torque generators to

complex high-order nonlinear systems like the one presented by Hatze[28] in 1978 de-

pending on more than 50 parameters to describe the motion of a single joint[88, p.

404]. In [88], Winters and Stark distinguish three types of muscle models:

• The first one is a simple second-order differential equation, which treats the

muscle as a “black box”[88, p. 404] and tries to reproduce the input-output-

relation by setting model parameters according to the task and the movement

operating range.

• Muscle models of the second category are based on the muscle model introduced

by A. V. Hill[32, 34] and thereby include a macroscopic view on the muscle.

• The third type of muscle models is based on the muscle model of Huxley[38],

which gives an even more detailed, microscopic view of the muscle.

Most of the muscle models use the muscle length and the length change as input

parameters. So do the models of Hill and Huxley, which are most commonly used.

Based on his earlier works [30, 31] on the relationship between the energy developed in

an excited muscle and the shortening of the muscle where Hill already found out, that

the relation between the force and the speed of shortening is an intrinsic property of

the muscle itself without depending on interventions of the nervous system [23], Hill

succeeds 1938 in giving the state equation for the speed of shortening under a constant
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load (tension) F as

(F + a)(v + b) = (F0 + a)b (1.1)

where v is the velocity of contraction, a is the coefficient of heat per muscle elongation,

F0 is the maximum isometric tension (or load) generated in the muscle, and b ≈ a v0
F0

is a muscle constant [29].

Recapitulated, Hill’s muscle model consists of three elements: the contractile element

(CE) containing force-length and force-velocity relations, as well as two elastic elements

– one in series (SEE) and one in parallel (PE) – like it is illustrated in Fig. 1.2.

Inputs for the contractile element are the neural muscle stimulation or activation of

the muscle, the muscle length and the contraction velocity. A one-dimensional force is

the output. Additionally the constant, muscle-specific parameters have to be supplied.

[42, 33, 91, 25, 24, 72]

CE SEE

PE

P P

muscle activation

muscle length

contraction velocity

constant muscle parameters

muscle force

Figure 1.2: Hill-type muscle model (combined from [91, p. 367] and [69, p. 13])

Today, Hill’s muscle model has become established and is still broadly used [25, 19,

72, 50, 48, 54, 24, 58, 83] due to its excellent tradeoff between high accuracy and low

computational costs [88] as well as easy implementation[86]. Sometimes, it is slightly

modified or extended, for example, by also considering history effects, recruitment

patterns or high frequency oscillation damping[25, p. 1][27].

The Huxley-type muscle model is based on the “sliding filament theory”, explaining the

muscle contraction by muscle proteins that slide past each other generating movement

and thereby connecting biochemistry to mechanics. This theory was discovered inde-

pendently by two different research groups: Andrew F. Huxley and Rolf Niedergerke

from the University of Cambridge [39] and Hugh Huxley and Jean Hanson from the

Massachusetts Institute of Technology [40]. In [38], A. F. Huxley presented a mathe-

matical model to describe the muscle’s behavior on a microscopic level, which is able
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to describe phenomena where Hill’s model comes too short[88, p. 405][86]. Here, the

chemical interactions between actin and myosin (motor proteins within the muscle),

which are responsible for the muscle’s contraction are considered in order to predict

the mechanics and energetics of a muscle [86, p. 4827][90, p. 91]. T. L. Hill and his

colleagues [35, 36] as well as Wood and Mann [89] also published valuable contributions

to this topic. The mathematical description of the sliding filament theory results in a

set of coupled first-order differential equations[90, p. 91][36, p. 285 f.].

Zahalak [90] presented a rational mathematical procedure, which is a compromise be-

tween the Huxley-based mechanistic models and the Hill-based phenomenological mod-

els [88, p. 406] and which, therefore, enabled numerical simulation due to being less

complex [42, p. 59].

All of these models have in common that they have to be provided with muscle-specific

parameters like the shortening heat, the increase of energy or the isometric tension in

the case of Hill’s muscle model as well as with quantities depending on the movement

like the muscle’s actual length and the length change.

The required muscle data is generated in two different ways: By the dissection of

cadaver specimen, muscle volume, fiber length and physiologic cross-sectional areas

can be detected [1, 8]. In this procedure, however, it is not possible to measure the

muscle in vivo while performing various movements. This can be achieved though

by using magnetic resonance imaging (MRI). In [84], for example, the position of the

muscles’ centerlines is measured via MRI for different configurations. In [37], MRI data

is used to measure muscle volume and to identify muscle structures. The boundaries

of the muscle are manually outlined and used to create three-dimensional polygonal

surfaces. On the basis of these models, volume and length of each muscle of the upper

limb were measured. Another aim in using MRI data can be the development of a 3D

finite element model as it is done by Calvo et al. in [9] for the tibialis anterior of a rat.

FEM muscle models

Using the finite element method (FEM) or the finite volume method (FVM) is the most

accurate and detailed way to model the geometry of the anatomical muscle. Here, the

muscle is treated as a viscoelastic solid, and these methods are widely used in order to

obtain highly accurate three-dimensional muscle models, which are also able to repro-

duce 3D deformations [82, 76, 66]. Through the combination with three-dimensional

FEM or FVM models, it is possible to extend Hill’s originally one-dimensional muscle
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model to a 3D Hill-type muscle model [46, 41, 7, 52]. The high resolution of FEM

and FVM models involves however a high complexity that causes difficult modeling

and long computing times. Especially due to the high computational intensity, FEM

and FVM models are used in simulations only for selected single muscles [82, p. 73].

In the field of computer graphics, where a realistic appearance is most important, the

use of FEM/FVM models is very common. For simulations of movements where mul-

tiple muscles are involved like they are used for gait analysis, for example, they are

highly unsuitable. Besides, FEM discretizations do not directly represent the fiber-like

properties of muscles. These have to be implemented by additional functions [7].

Muscle models in computer graphics

However, muscles are not only modeled within biomechanical applications. Researchers

in the field of computer graphics are also engaged in this subject, focusing on the

external appearance in order to create realistic animations of living creatures. In [68],

Scheepers et al. identify three anatomical structures having an influence on the surface

form: the skeleton, the panniculus adiposus (or fat layer) and the musculature. So,

visually realistic modeling of the musculature is one aspect to obtain natural-looking

3D character animations. This can be achieved by using deformed cylinders as muscle

models, as applied by Wilhelms and Van Gelder[87] to build a complete model of a

monkey. The muscles are deformed passively as the result of the joint motions with

the objective to maintain the muscle volume approximately constant. Here, the focus

lies on visual realism of the muscles instead of precision and calculation of the joint

loads during certain movements. In [68], for example, points that define the muscles

are adjusted visually to create the desired deformation. Pai[60] introduces a dynamic

strand model based on Cosserat rods[3, 67] to model thin deformable objects and uses

it to simulate strands of surgical sutures. These spline-based strand models can also

be applied to represent tendons, muscles or the individual fascicles of each muscle,

which is done, for example, to build forearm and hand models[61, 62, 80, 81]. In

first attempts, the muscle is hereby modeled with its centerline being the axis of the

Cosserat rod. Then it is improved by modeling it as a generalized cylinder with a cubic

B-spline curve as centerline. The cross-sectional area is variable and scaled during

the motion to take volume preservation into account. This is exemplarily applied to

modeling a hand consisting of bones, joints and muscles. For a predefined movement,

the deformations of the skin surface caused by the underlying muscles and tendons can

then be realistically represented[80]. So, although thick muscles are indeed considered
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here, the primary concern is to reproduce their outer contour as realistically as possible

and not to provide the values needed in the muscle models to calculate muscle forces

or joint loads.

Muscle models in musculoskeletal simulations

In multibody simulations, where the musculoskeletal system contains a large number

of muscles, muscles are usually reduced to muscle paths modeled as thin massless lines

that transmit the muscle forces and that are defined between origin and insertion.

Origin and insertion is the medical term for the points where the muscle is attached to

the skeletal structure. The simplest, fastest, but also the coarsest method is to model

the muscle path as a straight line between origin and insertion[2, 58, 57, 47, 74]. In

sensitivity analysis, however, it was found out that small changes in the moment arm

with which the muscle force is applied to the joint[64, p. 1249f.][59] or in the parameters

of muscle geometry[17, p. 671] have a large effect on the calculated muscle forces and

joint loads[18, p. 1931]. This is the source of the effort to define the muscle paths as

precisely as possible and ideally locate them along the midline of the anatomical muscle

while keeping an eye on the computation time. The methods used to achieve this are

diverse and have been constantly developed further. First improvements were made

defining so-called via points through which the muscle path must pass and which are

attached to the bone structure. Here, the muscle path consists of straight-line segments

between the via points[15, 73, 56, 55]. Due to kinks at the via points and the fact that

the number of via points can vary during the movement[15], nonsmooth curves are

obtained for the muscle path, which can lead to undesired jumps when calculating the

muscle forces.

An alternative to defining the bent muscle path by via points is to wrap it over the

path constraining geometries. Here, two different types of wrapping approaches can

be distinguished: First are the ones where the wrapping geometry is given as a surface

discretization, for example, in the form of bone meshes[18] or slices[21]. These have

the advantage that it is possible to wrap them over complex bone geometries, and

that they are computationally efficient[69]. However, the disadvantage here is that the

wrapping over surface edges causes a nonsmooth rate of length change of the muscle

path and the associated discontinuities in the calculated muscle force[69]. In 2017,

Zarifi and Stavness[92] present a new approach to the general wrapping methods that

allows for wrapping the thin-line approximated muscle directly on bone geometries

given by arbitrary meshes. Lloyd et al.[49] resume to this approach by proposing a
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robust and fast method for wrapping thin, massless muscles frictionlessly on arbitrary

surface meshes by discretizing the muscle into small straight-line segments. For the

second kind of wrapping approach, smooth surfaces are used. In 1994, van der Helm

[85] is one of the first to fit simple geometries like spheres, cylinders or ellipsoids into

the bone geometry and to wrap the muscle path around them. As a restriction, origin,

insertion and the center of the wrapping geometry have to lie in one plane[11, p. 1210].

Six years later, Garner and Pandy[22] present the idea of the so-called obstacle-set

method. They assume that the muscle force acts along the centerline of the muscle,

which can be idealized as an elastic band that moves frictionlessly over neighboring

anatomical structures that constrain the muscle path. To model these constraints,

they introduce the use of simple rigid bodies like spheres and cylinders on which the

curved part of the muscle path is wrapped. The whole muscle path is represented by a

series of straight line and curved line segments that are connected by via points. There

exist two types of via points: those that are fixed on the bone reference frame, and those

that are fixed on the wrapping geometries. Kinks at the transition of a straight-line to

a curved-line segment are possible. Audenaert and Audenaert[4] and Marsden et al.[51]

consider the whole muscle path between origin and insertion and look for the globally

shortest muscle path, using geodesic wrapping on the smooth wrapping surfaces, which

are again spheres and cylinders. Here, the curved-line and the adjacent straight-line

segments are connected smoothly. The solution to this problem is found as the result

of an optimization problem. In 2016, Scholz et al.[70] present an analytical solution to

this problem that uses natural geodesic variations to formulate an explicit path-error

Jacobian, which makes the algorithm computationally very efficient. The presented

muscle wrapping approach is formulated independently of the surface representation

that can be explicit or implicit and allows the use of complex wrapping surfaces that

match the anatomical structures more accurately than spheres and cylinders.

Thus, muscle wrapping has become standard in the context of creating musculoskeletal

simulations, as evidenced by the fact that it is already implemented in popular sim-

ulation software such as SIMM (Software for Interactive Musculoskeletal Modeling)[14],

OpenSim[13] and Anybody Modeling System[12] for simple wrapping geometries. While

these wrapping algorithms are already very sophisticated, they still face the challenge

of placing the wrapping surfaces correctly. When the obstacle geometries are fitted

to the bone geometries, the resulting wrapped path corresponds to the line of contact

rather than the centerline of the muscle. However, the latter is generally assumed to

be the line of action of the muscle force. If one wants the wrapped path to be closer to

the anatomical midline of the muscle, the wrapping surface must be lifted accordingly.
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However, during the movement the problem might arise that the wrapping surfaces

need to be displaced continuously to approximate the centroid line of the muscle when

the shape of the anatomical muscle changes due to contraction. This is not possible

by this approach.

To overcome these difficulties, a discrete approach to wrap thick strands was introduced

in [20]: Franci and Parenti-Castelli present an elastic fiber model where the volume of

the fiber is represented by a chain of contacting spheres or “beads”. The accompanying

fiber contact model allows the detection of contact between the fiber and the body

surface as well as the contact of the fibers with each other. The model is exemplarily

used to model a ligament in the ankle joint, but the basic idea of representing a

volumetric fiber by a chain of spheres can be applied to generic situations. A muscle

modeled as a bead chain can be directly wrapped over the bone geometry while its

centerline is automatically lifted to its approximated position. While this approach is

very general and powerful, it has the disadvantage of being computationally expensive

due to the extensive contact detections and record-keeping about it. Furthermore, it

is discontinuous as a result of the discretization. Especially the last point becomes a

serious disadvantage when the method is applied for modeling muscles to compute the

resulting muscle forces. This was the starting point of this thesis.

1.3 Objective and basic assumptions

The aim of this thesis is to develop a novel, continuous and computationally efficient

method to wrap and slide muscles with variable thickness over smooth surfaces. The

thickness of the muscle is thereby described mathematically along its centerline, and

wrapping of this thick muscle over the surface leads to a centerline muscle path that

is automatically computed according to the local thickness and the surface curvature.

To this end, smooth differential equations are derived as the limit of infinitesimally

close beads. Due to the complex differential geometric relationships involved in the

derivation, the approach is presented here for the planar case. The spatial case can be

derived based on these models in later work.

The approach is based on the assumptions that

(1) muscle strands are perfectly slack (thus, no bending moments occur),

(2) the cross-sections remain planar and undeformed after flexion,

(3) there are no friction effects between muscle and surface,
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(4) the variation of the muscle’s cross-section is convex, and

(5) the arbitrary wrapping surface is also smooth and convex.

In addition, in Chapter 3 and Chapter 4, the muscle’s centerline is assumed to be

constant. In the last two chapters (Chapter 5 and Chapter 6) this constant length

condition is finally omitted to cover elongation with compressible cross-sections.

1.4 Overview

The work is organized as follows: In Chapter 2, some mathematical fundamentals from

differential geometry as well as perturbation theory are briefly introduced, which will

be referred to in the later chapters of the method derivation.

Chapter 3 defines mathematically what is meant by a “thick muscle” in the context

of this thesis, and a bead chain, inscribed into the muscle’s contour, is introduced as a

discrete approximation. From this, the continuous approach for a thick, conical muscle

segment wrapping over a given arc length of a convex surface is derived as the limit

of infinitesimally close beads at position level. Subsequently, the velocity transmission

(from one endpoint of the wrapped muscle segment in contact with the surface to the

other) is also deduced first from bead to bead and then continuously for an infinite

number of beads. The length of the muscle’s centerline is assumed to be constant.

In Chapter 4, the condition that the centerline length is constant is still valid and

the approach is extended for the case of varying muscle thickness (non-constant conic-

ity) and free muscle ends that are not in contact with the surface and can perform

prescribed motions. Here, two different effects can occur in the area of the wrapped

muscle segment: The first is pure wrapping or unwrapping at the transition to the free

end segments, the second is a displacement of the muscle in the contact area. The

terms “wrap” and “pull” are introduced to distinguish these components. Constraint

equations in the longitudinal and transverse directions are formulated on velocity level

for the two transitions from the wrapped segment to the free end segments. Finally,

the continuous method is validated by comparison with a bead chain discretization of

the muscle strand.

In Chapter 5, the constant-length condition is omitted, and the method is extended to

cover elongation with compressible cross-sections. Starting from the simplest case of

a cone-shaped muscle on a circular surface, the method is generalized to the case of a

convexly curved muscle on a convex surface.
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In Chapter 6, the approaches developed in Chapter 4 and Chapter 5 are combined with

the goal of enabling stretching and sliding of a thick muscle with two free ends. Again,

the derivation is first presented for the case of a cone-shaped muscle wrapping over a

circle and is generalized from there. Hereby, the changes resulting from displacement

and those associated with stretch are considered separately and transferred from one

end of the muscle to the other.

Chapter 7 concludes this thesis by briefly summarizing and discussing the major find-

ings achieved by this work. This also includes an outline for possible future directions.
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2 Mathematical Foundations

2.1 Differential geometry

In this chapter a brief insight into fundamental differential geometric properties of

curves is given, which provides a basis for Chapter 3. The focus lies on planar curves,

and it is based on the literature on differential geometry of Strubecker [77, 78], Struik

[79], Klingenberg [44, 45], do Carmo [10], Pressley [63] and Bär [5].

2.1.1 Parametric description of curves

A parametrized curve c in R
n is an indefinitely often differentiable map c : I 7→ R

n

and c(I) is called the image of the curve. The interval I ⊆ R is the parameter domain

and the elements u of I are called parameters. The curve c is said to be regular if

d c(u)/du 6= 0 for all u. [45, p. 8]

Another approach to define a spacial curve is to interpret it as the path of a point in

motion [79, p. 1][63, p. 2]. The rectangular coordinates (x, y, z) of the point can be

expressed as functions of a parameter u inside a certain interval I ⊂ R

x = x(u), y = y(u), z = z(u) (2.1)

with u ∈ I.

Often u is thought of as time, but this is not necessary, because the parametrization

of a given curve is not unique. For example, the parametrization c(u) of a parabola

given as the level curve y = x2 has to satisfy c2(u) = {c1(u)}
2 and could, for instance,

be c(u) = (u, u2), but it also could be c(u) = (u2, u4) or infinitely many others [63, p.

2 f.]. Equivalent parametrizations of a curve can be transformed into each other by

parameter transformation [45, p. 8]. The change of variables can be performed by a

substitution u = f(v) without changing the curve itself [79, p. 1].

2.1.2 Arc length

One parametrization, which stands out against the others, is the parametrization by

arc length. The arc length is the length of a curve, and for a curve c starting at a point
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c(u0) it can be computed by the function s(u) given by

s(u) =

∫ u

u0

∥∥∥∥
d c(ū)

dū

∥∥∥∥ dū . (2.2)

A curve is said to be parametrized by arc length if ‖d c(u)/du‖ = 1 [45, p. 9].

According to the approach of considering c(u) as the path of a moving point, ‖d c(u)/du‖

is the speed of the point, which is the same as the rate of change of distance along the

curve [63, p. 11]. Hence, one can speak of a curve that is parametrized by arc length

as a unit-speed curve, because d c(u)/du is a unit vector for all u ∈ I.

2.1.3 Tangent, normal and curvature

The first derivative of a parametrized curve is also called the tangent vector

t(s) =
d c(s)

ds
= c′(s) , with (. . .)′ =

d

ds
, (2.3)

of c at the point c(s). When c(s) is a unit-speed curve t(s) is a unit vector.

Plane curves

As shown in Fig. 2.1, for a plane curve the normal field can be easily defined by rotating

the tangent vectors counterclockwise by π/2 as

n(s) :=

[
0 −1

1 0

]
t(s) . (2.4)

Because the curve is unit-speed, it holds

t(s) · t(s) = 1 . (2.5)

t(s)
n(s)

s
cc(s)

π
2

Figure 2.1: Tangent and normal to curve c (modified according to [5, p. 40])
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Differentiation of this equation with respect to s yields

⇔ 2t′(s) · t(s) = 0 , (2.6)

which implies that the tangent t and t′ are orthogonal to each other. Consequently,

t′(s) is a multiple of n(s),

t′(s) = χs(s)n(s) . (2.7)

The function χs : I 7→ R is called signed curvature of c. The signed curvature is a

measurement, which indicates the divergence of the curve from a straight line (χs = 0)

[5, p. 41]. In other words, it can be interpreted as the rate at which the tangent vector

rotates [63, p. 38]. For χs < 0 the tangent rotates clockwise for a curve that is curved

to the right, for χs > 0 the tangent rotates counterclockwise and the curve is curved

to the left (see Fig. 2.2).

A curve with a constant curvature χs = const 6= 0 is a circle with the radius r = 1
‖χs‖

.

Space curves

A requirement to define the signed curvature of planar curves is the definition of the

normal described above. For the spatial case, the normal field cannot be defined as

easily because there exists an infinite number of vectors, which are orthogonal to the

χs < 0 χs = 0 χs > 0

t(s1)

n(s1)

t(s2)

n(s2)

t(s3)

n(s3)
c′′(s1)

c′′(s3)
c

Figure 2.2: Changing curvature χs along the curve c (modified according to [5, p.

41][63, p. 35][45, p. 16])
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curve’s tangent. Here, one has to renounce the sign and compute the curvature χ by

χ(s) := ‖c′′(s)‖ . (2.8)

For a three-dimensional curve one also speaks of the so called Frenet-Serret frame,

which consists of the three orthonormal unit-vectors: the tangent vector t, the normal

vector n and the binormal vector b [63, p. 46 ff.][5, p. 65 ff.], that can be computed by

t := c′ , (2.9)

n :=
1

χ
t′ , with χ = ‖t′‖ , and (2.10)

b := t× n . (2.11)

Since this work is restricted to planar curves, the spatial relationships are given here

only for completeness and to deepen the understanding.

2.1.4 Osculating circle and evolute

The reciprocal of the curvature is called curvature radius

ρ(s) =
1

‖χ‖
. (2.12)

It is the radius of the circle, which is the closest quadratic approximation to the curve,

termed the osculating circle. It is defined as “the circle passing through three con-

secutive points of the curve”[79, p. 14] and illustrated in Fig. 2.3. The center of the

osculating circle M(s) is also called the center of curvature and lies on a straight line

in the direction of the normal n(s) through the contact point c(s).

The set of all centers of curvature of a curve c is called the evolute of c [5, p. 64]

[77, p. 64]. Initially the evolute of a curve was described by Christaan Huygens as

the envelope of the curve’s normals, meaning that the tangents of the evolute are

identical to the normals of the curve [77, p. 65]. Fig. 2.4 illustrates the evolute (red)

of an ellipsoidal curve (gray) with four exemplary points c(si) on the curve and the

corresponding centers of the osculating circle M(si) on the evolute. The connection of

the center of curvature M(si) and the related point c(si) on the curve, illustrated for

i = 1, 2, 3, 4, is tangential to the evolute and normal to the curve, having the length

ρ(si), which corresponds to the curvature radius. For s1, also the osculating circle with

radius ρ(s1) is pictured.
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Struik sums it up and formulates a relationship between the arc length of the evolute

and the difference of the radii of curvature, which is used in Chapter 3: “The tangent of

the locus of [c] of the centers of the osculating circles of a plane curve has the direction

of the principal normal of the curve; its arc length between two of its points is equal

to the difference of the radii of curvature of the curve at these points.” [79, p. 42]

t(s)

n(s)

c

c(s)

ρ(s)

M(s)

Figure 2.3: Osculating circle

c(s1)

M(s1)

c(s2)

M(s2)

c(s3)

M(s3)

c(s4)

M(s4)

ρ(s1)

ρ(s2)
ρ(s3)

ρ(s4)

Figure 2.4: Evolute of an ellipse with osculating circle at s1
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2.2 Perturbation theory

Preliminarily to Chapter 5, a brief introduction to first-order perturbation theory is

given here based on the literature of Bellmann [6] and Kato [43]. Perturbation theory

is an approach to solve a physical problem where the exact solution is not known

and it is based on a series expansion. The main idea is to decompose the problem

into a solvable and a perturbative part, approximating the exact solution y by the

perturbative expansion

y = y0 + ǫ1 y1 + ǫ2 y2 + ... (2.13)

with y0 being the unperturbed solution and y1, y2, ... representing the first-order, second-

order, ... perturbative corrections for 0 < ǫ≪ 1. Thus,

y ≈ y0 + ǫ1 y1 (2.14)

is called first-order perturbative solution and obtained by truncating the higher-order

terms.

Hence, given a first-order differential equation

ẏ = f(t, y, ǫ) , (2.15)

the first-order perturbative approximation

y(t) = y0(t) + ǫ y1(t) (2.16)

is inserted into Eq. (2.15), leading to

ẏ0 + ǫ ẏ1 = f(t, y0 + ǫ y1, ǫ)

= f0(t, y0) + ǫ
∂f

∂y

∣∣∣∣
ǫ=const

y1 + ǫ
∂f

∂ǫ

∣∣∣∣
y=const

. (2.17)

By equating coefficients, two independent differential equations are obtained

ẏ0 = f0(t, y0) (2.18)

ẏ1 =
∂f

∂y

∣∣∣∣
ǫ=const

y1 +
∂f

∂ǫ

∣∣∣∣
y=const

(2.19)

that need to be solved simultaneously.
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3 Thick muscle wrapping with constant conicity

and constant length

This chapter lays the foundation for the continuous approach to wrapping thick muscles

developed in this thesis. Therefore, the chapter starts with the mathematical definition

of a “thick muscle” and presents a chain of beads with finite number of beads fitted

into the muscle contour as a discretization. To begin with, only the part of a conical

muscle wrapped around a convex surface is considered here and the continuous solution

is derived as the limit case of a string of an infinite number of beads. This is done both

at the position level and at the velocity level when the velocity transmission along the

surface from one muscle end to the other is determined. In addition to the assumptions

mentioned at the beginning, a constant muscle centerline length is assumed here.

3.1 Thick muscle model

To model a “thick muscle”, it is assumed that its thickness can be defined for every

point on its centerline. Therefore, it can be described by a function b(s), where b is the

half-thickness of the muscle’s cross-section and s gives the position along the muscle’s

centerline. The length of the centerline is supposed to be constant and does not change

when the muscle undergoes deformations due to being wrapped over obstacle surfaces.

Inspired by [20], this muscle can be discretized by a chain of N spherical “beads”,

which are inscribed into the muscle geometry and which are pairwise connected by

massless threads of constant length ∆s̄ between their centers. In Fig. 3.1 this is shown

for N = 6 and a muscle having the form of a cone with the constant cone half-angle α.

α

∆s̄∆s̄∆s̄ ∆s̄ ∆s̄

r1r2r3r4r5r6

b0b0

Figure 3.1: Chain of six spherical beads inscribed in a conical thick muscle
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α
α

r(s)
s

s̄

Q

PP̄

b(s)

b0

Figure 3.2: Relationship between bead radius r(s) and muscle’s half-thickness b(s)

Like illustrated in Fig. 3.2, the relationship between the radius of the inscribed bead

touching the cone in point Q and the corresponding half-thickness b(s) of the strand

in this point is given by

r(s) =
b(s)

cosα
. (3.1)

It is obvious that the center P̄ of this inscribed bead does not lie in point P given by

s. Therefore, the variable s̄ is introduced, giving the positions of the inscribed beads.

For a cone with half-thickness

b(s) = b0 + s tanα , (3.2)

the relationship between s and s̄ can be computed straightforwardly by

s̄ = s+ b(s) tanα = b0 tanα +
s

cos2(α)
. (3.3)

Like visualized in Fig. 3.3, the muscle must not necessarily have the form of a cone.

Instead the strand’s cross-section can be described by any function b(s). The half-angle

α then becomes variable and depends on s as

tan(α(s)) =
d

ds
b(s) . (3.4)

In this case, fitting the beads into the strand needs some additional computation com-

pared to the cone where α is constant. Letting the distance ∆s̄ between the bead

centers be constant, the position rP of a single bead on the strand’s centerline is de-

fined by given s̄. The bead radius r(s̄) and the corresponding centerline length s(s̄)

are then determined by solving the two-dimensional root function

F = rP (s̄) + en · r(s̄)− rQ( b(s) ) = 0 (3.5)

using Newton iterations, where en is the normal vector to the surface curve at contact

point Q.
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α(s) b(s)

r(s)

ss̄ PP̄

Q

et en

Figure 3.3: Chain of eight spherical beads inscribed in a thick muscle with non-

constant conicity (α(s) 6= const)

3.2 Position analysis

3.2.1 Discrete wrapping by a chain of spherical beads

To obtain muscle paths, so-called wrapping obstacles have to be defined, represent-

ing bones, chords or ligaments, which limit and guide the muscles’ movements. In

a three-dimensional environment these wrapping obstacles are three-dimensional sur-

faces. Here, with the restriction to the two-dimensional case, a wrapping obstacle is a

two-dimensional, continuous curve lying in a plane. For easier understanding and to

simplify the later transferability to the three-dimensional case, these curves are nev-

ertheless referred to as “surfaces” in the context of this work. Between origin and

insertion, the thick muscle, which is modeled like described in Section 3.1, wraps over

the wrapping obstacle.

Let σ describe a natural coordinate along the wrapping surface curve. For illustration

purposes, this curve is regarded as an ellipse with semi-major and semi-minor axes a1, a2

(Fig. 3.4). Also, the bead radius is assumed to correspond to that of an inscribing circle

of a cone with constant cone half-angle α, i. e. ri = r1 + tanα s̄i, with s̄i = (i − 1)∆s̄

for i = 2, . . . , N with N being the total number of beads.

The radius vector rPi to the center of a bead “i” is given by

rPi(σi) = xQ(σi) + ri en(σi) (3.6)

where xQ is the radius vector to the contact point of the surface curve and en is the

normal vector to the surface curve at this point.
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Q1

e1n

xQ1

rP1
r1

Q2

e2n

xQ2

rP2

r2
∆s̄

x

y

a1−a1

a2

−a2

Figure 3.4: Sequence of two beads on an ellipse

For two consecutive beads, the constant-distance condition yields the root function

F (σi) = [ rPi(σi)− rPi−1(σi−1) ]
2 −∆s̄2 = 0 , i = 2, . . . , N , (3.7)

which can be solved successively for σi, i = 2, . . . , N starting at a given initial point

rP1(σ1) = xQ(σ1) + r1 en(σ1) by Newton iterations using the scalar “Jacobians”

Ji(σi) =
d

dσ
F (σi) = 2

[
rPi(σi)− rPi−1(σi−1)

]
·
d

dσ
rPi(σi) (3.8)

where

d

dσ
rPi(σi) =

d

dσ
xQ(σi) + ri

d

dσ
en(σi) . (3.9)

For the example of a contact ellipse, it holds

xQ =

[
a1 cos(σ)

a2 sin(σ)

]
, en(σ) =

1

λ

[
a2 cos(σ)

a1 sin(σ)

]
and (3.10)

d

dσ
xQ =

[
−a1 sin(σ)

a2 cos(σ)

]
,

d

dσ
en(σ) =

1

ρ

[
−a2 sin(σ)

a1 cos(σ)

]
(3.11)

with σ as surface coordinate, ρ equal to the curvature radius (see Eq. (3.24) further

below) and λ =
√
a21 sin

2σ + a22 cos
2σ.
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3.2.2 Continuous wrapping as limit case

The continuous wrapping curve can be seen as the limit case of an infinite number of

beads with an infinitesimally small distance ∆s̄ to their neighboring beads. Regarding

two consecutive beads “i” and “i+1” (see Fig. 3.5), according to Huygens, the centers

of curvatureMi andMi+1 lie on the evolute of the surface curve and thus on the surface

normals ein and ei+1
n . For the limit case of ∆s̄→ 0, Mi lies on the line connecting Mi+1

and P̄i and the distance between the centers of curvature is ∆ρi = ρi+1 − ρi.

In this case, the triangle P̄iMi+1P̄i+1 can be used to determine the angle ψ+
i between

the line connecting the bead centers “i” and “i+1” and the surface normal ein at bead

“i”. Applying the law of cosines yields

lim
∆s̄→0

{
(ρi+1 + ri+1)

2 = ∆s̄2 + (ρi +∆ρi + ri)
2 − 2∆s̄(ρi +∆ρi + ri) cosψ

+
i

}
. (3.12)

ein

ei+1
n

ρi

ρi+1

Mi

Mi+1

P̄i

P̄i+1

Qi

Qi+1

ψ+
i

ψ−
i+1

∆s̄

r(s̄i)

r(s̄i +∆s̄)

x0

y0

∆ρi

bead “i”

bead “i+ 1”

Figure 3.5: Thread angle at bead “i”
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Inserting ri+1 = ri +∆s̄ sinα, the equation can be converted to

lim
∆s̄→0

{
cosψ+

i = cos
(
90

◦
+ α

)
+∆s̄

cos2 α

2 (ρi+1 + ri)

}
(3.13)

⇒ lim
∆s̄→0

ψ+
i = 90

◦
+ α . (3.14)

Analogously, for the angle ψ−
i+1 it holds

lim
∆s̄→0

ψ−
i+1 = 90

◦
− α . (3.15)

Also, the angle at the last bead “N” between the free line and the surface normal

vector for the case that the last bead is just touching the surface converges to this

value for the limit case of ∆s̄→ 0

ψ+
N → 90

◦
+ α . (3.16)

An enveloping cone with the actual cone half-angle α(s) = arctan (db/ds) can be

constructed for every bead in contact. Thus, the cone can be seen as the natural

geometry of the continuous strand (Fig. 3.6). For constant cone half-angle α, the

half-width b of the cross-section is given in terms of the continuous cone centerline

et

en

s
s̄

P
P̄

Q α

α b(s)
r(s̄)

u

M

eC

e⊥C

ρ(u)

du

dϕ

Figure 3.6: Envelopping cone at bead in contact as natural strand geometry
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path length s as b(s) = r(s̄) cosα. The path length s thus “lags” behind the sum

s̄ = (i− 1) ·∆s̄ of bead-pair threads as

s = s̄− sinα r(s̄) = s̄− sinα s̄ sinα = cos2α s̄ . (3.17)

For general cross-sections b(s) and in the limit ∆s̄→ ds̄, this leads to the infinitesimal

relationship

ds = cos2α ds̄ . (3.18)

According to the constant-length assumption of the strand centerline, the increase

ds of the length of the wrapped centerline must correspond to the projection of the

infinitesimal displacement drP of the center point P of the cone center on the free line,

i. e.

ds = drP · eC , (3.19)

where eC is the normal vector to the cone front-end cross-section. The infinitesimal

increment drP of the center point P of the cone front cross-section when moving by ds

on the centerline is hereby given by

drP = ρ dϕ et + b(s) dϕ eC +
db(s)

ds
ds e⊥C (3.20)

where et is the tangent vector to the surface curve at contact point Q, ρ is the curvature

radius of the wrapping surface curve at this point, e⊥C is the unit vector in direction of

the cone cross-section and dϕ is the infinitesimal rotation about the curvature center

of the wrapping surface given by

dϕ =
1

ρ(σ)

∥∥∥∥
d

dσ
xQ(σ)

∥∥∥∥ dσ . (3.21)

The three components of the infinitesimal displacement drP are shown in Fig. 3.7 a)

for a constant cone half-angle α where the red arrow “1” designates the displacement

by ρ dϕ in direction of the surface tangent et, the green arrow “2” represents the

displacement in direction of eC caused by the change of inclination due to the rotation

by dϕ about the instant center of rotation M (that is equivalent to the center of

curvature) and the third component (marked by the blue arrow “3”) is the displacement

in direction of e⊥C provoked by the change of the cross-section db(s). Vector addition of

the three infinitesimal components results in the total infinitesimal displacement drP ,

like shown in Fig. 3.7 b).
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α
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α

b(s) b(s)

dϕdϕ
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P ′eCeC

e⊥Ce⊥C

etet
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1

22
3

3
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a) b)

drP

Figure 3.7: Three components of the infinitesimal displacement of point P for con-

stant cone half-angle α a) single displacements at their origin of generation b) total

displacement drP as vector addition polygon
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Inserting Eq. (3.20) into Eq. (3.19) leads to

ds = [ ρ(σ) cosα + b(s) ] dϕ . (3.22)

A brief overview of the scalar products of the unit vectors eC , e
⊥
C , et and en is given

in appendix A. Combining Eq. (3.22) with Eq. (3.21) renders the ordinary differential

equation for determination of s(σ)

ds

dσ
=

1

ρ(σ)

∥∥∥∥
d

dσ
xQ(σ)

∥∥∥∥ [ ρ(σ) cosα(s) + b(s) ] = f(s, σ) . (3.23)

For the example of the ellipse with the semiaxis lengths a1 and a2, ρ(σ) and dϕ are

given by

ρ(σ) =

√
a21 sin

2σ + a22 cos
2σ

3

a1 a2
and (3.24)

dϕ =
a1 a2

a21 sin
2σ + a22 cos

2σ
dσ (3.25)

leading to the ODE

ds

dσ
= a1a2

ρ(σ) cosα(s) + b(s)

a21 sin
2σ + a22 cos

2σ
= f(s, σ) . (3.26)

After solving Eq. (3.23) rendering s(σ), the radius vector rP (s) to the centerline of the

continuous strand can be computed as

rP (s) = xQ(σ) + b(s) [ cosα(s) en(σ)− sinα(s) et(σ) ] . (3.27)

3.2.3 Comparison of bead and continuous method

The presented continuous solution was compared to the discrete bead model for dif-

ferent cases. The first example presented here is the contact of a conical strand with

constant half-angle α = const on a circular wrapping surface curve with constant cur-

vature radius ρ = R = const. Fig. 3.8 visually shows the accordance between the red

centerline of the bead method and the green centerline of the analytical method. Using

the relationship between s and s̄ given in Eq. (3.17) the red and the green centerline

can easily be converted into each other for the limit case of ∆s̄→ 0.

Additionally, the relationships between significant variables are exemplarily investi-

gated for this example and the limit case of ∆s̄ → 0. In case of a circular wrapping

surface curve, the natural surface coordinate σ(s) and the angle ϕ(s) around the cen-

ter of curvature M , which is constantly the center of the circle here, are identical (see

Fig. 3.9).
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Figure 3.8: Comparison of the discrete bead chain method to the continuously

wrapped cone with fitted inscribed beads at both ends for a1 = a2 = R,α = const
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Figure 3.9: Comparison of the bead and the continuous method for a conical muscle

with a constant half-angle α wrapping on a circle with constant curvature radius ρ =

R = const a) bead chain method for a finite number of N beads b) continuous solution

and bead chain method for an infinite number of beads
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Relationship between s and ϕ

Let the half-width b of the cross-section be defined by

b(s) = tanα s (3.28)

and the curvature radius of the surface curve be constantly ρ = R. Inserting this into

Eq. (3.22) leads to

ds = (R cosα + tanα s)dϕ . (3.29)

Separating and integrating this equation yields the relationship between s and ϕ for

the initial values s0 = ϕ0 = 0 as

∫ s

s0

1

R cosα + tanαs̃
ds̃ =

∫ ϕ

ϕ0

dϕ̃ (3.30)

⇒ s(ϕ) =
R cos2α

sinα

(
etanαϕ − 1

)
. (3.31)

As was to be expected, for a cone wrapping on a circle, the curve of its midline s

depending on ϕ has the form of a logarithmic spiral.

Increment angle ∆ϕ(s̄)

Looking at the bead chain method with a finite number of beads (left part of Fig. 3.9),

the increment angle ∆ϕ(s̄) changes from step to step for ∆s̄ having a constant length.

For the triangle P̄ (s̄)MP̄ (s̄+∆s̄), the law of cosines can be applied, leading to

∆s̄2 = [R + r(s̄+∆s̄)]2 + [R + r(s̄)]2 − 2 [R + r(s̄+∆s̄)] [R + r(s̄)] cos (∆ϕ(s̄)) .

(3.32)

For small increments ∆s̄ = ds̄ and ∆ϕ = dϕ, the cosines can be approximated by

cos (dϕ(s̄)) ≈ 1− dϕ2/2. Given r(s̄+ ds̄) = r(s̄) + dr and dr = sinα ds̄, it follows

ds̄2 = sin2α ds̄2 + [R + r(s̄)]2 dϕ2 + [R + r(s̄)] sinα ds̄ dϕ2 . (3.33)

Neglecting the last higher order term and inserting r(s̄) = sinα s̄ yields the relationship

dϕ =
cosα

R + sinα s̄
ds̄ . (3.34)
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Relationship between s̄ and ϕ

Integrating Eq. (3.34) provides the relationship between ∆ϕ and s̄

∫ s̄

s̄0

cosα

R + sinα s̃
ds̃ =

∫ ϕ

ϕ0

dϕ̃ . (3.35)

For the initial values ϕ0 = s̄0 = 0, one obtains

s̄(ϕ) =
R

sinα

(
etanαϕ − 1

)
. (3.36)

Using Eq. (3.17), Eq. (3.31) can also be transformed into Eq. (3.36), which is a proof

for the consistence of the equations.

Comparison for ρ and α not constant

The example presented before of a cone wrapping on a circle is a special case where

α and ρ are constant. The derived continuous solution, however, is more generally

applicable. This is exemplarily shown in Fig. 3.10 a) for a cone wrapping on an ellipse,

thus here the radius of curvature ρ is not constant and in b) for a muscle with a

non-constant variation of its cross-section wrapping on a circle. The green line shows

the continuous midline path and the red line represents the discrete “bead” centerline.

In both cases, the continuous method converges to the discrete method for ∆s̄ → 0.

Clearly, the start and end of the continuous path correspond to the centers of the chord

length of the inscribed circles at the start and end, respectively, showing the general

applicability of the method as limit case ∆s̄→ 0 of the bead chain method.
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Figure 3.10: Comparison of the discrete bead chain method to the continuously

wrapped cone with fitted inscribed beads at both ends for a) ρ 6= const, α = const

b) ρ = const, α 6= const
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3.2.4 Kink between wrapped centerline free segment line

Interestingly, the tangent to the wrapped centerline of the continuous muscle strand at

the end of the wrapped segment marked in green in Fig. 3.11 is not parallel to the free,

straight centerline of the unwrapped segment (marked in red) but displays a “kink”.

The resulting angle between the tangent to the centerline and the normal to the front

cross-section of the continuous strand is called β and can be determined by

tan β =
drP · e⊥C
drP · eC

. (3.37)

While the projection of drP to the normal to the cross-section eC was already computed

in Eq. (3.22), projecting drP to the cone cross-section direction e⊥C leads to

drP · e⊥C = b tanα dϕ . (3.38)
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Figure 3.11: “Kink” between tangent to wrapped centerline and free line, illustrated

for the example of a cone wrapping on a circle
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Inserting both in (3.37), gives for the angle β between the tangent to the centerline

and the normal to the front cross-section of the continuous strand

tanβ =
b(s) tanα

ρ(σ) cosα + b(s)
. (3.39)

However, this seemingly paradoxical behavior is consistent for the limit ∆s̄ → 0 for

the inscribed circle at point Q, where the free line is equal to the external thread at

the last bead, which is tilted by α with respect to the surface tangent (Fig. 3.11).

For the special case of a cone wrapping on a circle, the question whether for a growing

length of the wrapped strand s → ∞ the kink angle β will grow infinitesimal large

or whether it converges to an upper limit was investigated. For this case, it holds

b(s) = b0 + tanα s and ρ(σ) = R = const, thus, Eq. (3.39) becomes

tanβ =
tanα b0 + tan2α s

R cosα + b0 + tanα s
. (3.40)

So, for a cone wrapping on a circle and the limit case of s→ ∞,

lim
s→∞

tan(β) = tan(α) (3.41)

⇒ lim
s→∞

β = α (3.42)

the kink angle β converges to the cone half-angle α.

3.3 Velocity analysis

To derive the velocity transmission along the surface of a thick, wrapped muscle strand,

the propagation of infinitesimal displacements is examined, i.e., the transmission of

an infinitesimal displacement du0 at the start of the wrapping segment to the corre-

sponding infinitesimal displacement duE at its end. For simplicity reasons, these are

expressed in terms of velocities which correspond to the infinitesimal displacements

divided by dt resulting in u̇0 and u̇E, where the dot notation is used to indicate the

time derivative. The quotient of these velocities yields the “Jacobian” from start to

end of a wrapped muscle.

3.3.1 Discrete bead chain approach

For the discrete bead method, there are two possibilities of achieving this:
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Figure 3.12: Velocity transmission between two neighbouring beads (curvature centers

for ∆s̄→ 0)

(A) by shifting the start by a small increment and re-computing the bead chain, and

(B) by propagating the midpoint velocities pair by pair considering the condition of

constant thread length between two adjacent midpoints.

Method A is straightforward. For method B, the propagation results from

vi+1 · e
i,i+1
∆s = vi · e

i,i+1
∆s with ei,i+1

∆s =
rPi+1 − rPi

‖ rPi+1 − rPi ‖
; i = 1, . . . , N − 1 (3.43)

as can be seen in Fig. 3.12. Since vi = vi e
i
t with scalar vi, this leads to

vi+1 =
eit · e

i,i+1
∆s

ei+1
t · ei,i+1

∆s

vi =
sinψ+

i

sinψ−
i+1

vi ; i = 1, . . . , N − 1 (3.44)

with angle ψ−
i between the surface normal at bead “i” and the “predecessor” thread

ei−1,i
∆s (Fig. 3.12). For comparison purposes, the velocity at the bead midpoint is trans-

formed to the velocity u̇i at the contact surface by the scaling factor ρ/(ρ+ r), leading

to the final velocity propagation formula

u̇i+1 =
sinψ+

i

sinψ−
i+1

ρi (ρi+1 + ri+1)

ρi+1 (ρi + ri)
u̇i ; i = 1, . . . , N − 1 , (3.45)

which can be solved recursively starting from a given velocity u̇1.
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3.3.2 Continuous approach

In the continuous case, the centers of curvature lie on the evolute of the surface curve,

as it was derived by Huygens and described in Section 2.1.4. Thus two infinitesimally

neighboring centers of curvature Mi,Mi+1 are separated by the difference ∆ρi of cur-

vature radii between them, as illustrated in Fig. 3.12. In the limit ∆s̄ → 0, it hence

follows

(ρi + ri) sin(ψ
+
i ) = (ρi+1 + ri+1 −∆ρi) sin(ψ

−
i+1) . (3.46)

Inserting this into the velocity transmission equation Eq. (3.45) provides for the velocity

transmission from u̇i to u̇i+1 for two neighboring beads

1

ρi
(ρi+1 + ri+1 −∆ρi) sin(ψ

−
i+1) u̇i =

1

ρi+1

(ρi+1 + ri+1) sin(ψ
−
i+1) u̇i+1 (3.47)

from where one obtains by setting ρi+1 = ρi + ∆ρi and neglecting higher order terms

in ∆ρ,

u̇i+1

u̇i
=
ρi+1

ρi

(
1−

∆ρi
ρi+1 + ri+1

)

≈

(
1 +

∆ρi
ρi

)(
1−

∆ρi
ρi + ri

)

≈ 1 +
ri

ρi (ρi + ri)
∆ρi . (3.48)

By concatenating the pairwise velocity transmission for all N − 1 beads with i =

2, . . . , N after given bead “1” it follows

u̇N
u̇1

= [1 + η1 ∆ρ1] [1 + η2 ∆ρ2] . . . [1 + ηN−1 ∆ρN−1] (3.49)

for the velocity transmission between the first and the last beat with

ηi =
ri

ρi (ρi + ri)
. (3.50)

Multiplicated, the summands can be grouped together by the following summations

u̇N
u̇1

=1 +
N−1∑

i=1

ηi ∆ρi +
N−1∑

i1=1

N−1∑

i2=i1+1

ηi1ηi2 ∆ρi1∆ρi2

+
N−1∑

i1=1

N−1∑

i2=i1+1

N−1∑

i3=i2+1

ηi1ηi2ηi3 ∆ρi1∆ρi2∆ρi3

+ . . . . (3.51)
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For small ∆ρi the velocity transmission can be approximated by the Taylor series for

the exponential function exp (
∑N−1

i=1 ηi ∆ρi) centered at zero. The complete proof is

given in appendix B. Thus, according to this, the total geometric sequence can be

rewritten as

lim
∆ρi→0

(1 + η1 ∆ρ1) (1 + η2 ∆ρ2) . . . (1 + ηN−1 ∆ρN−1)

= lim
∆ρi→0

1 +

[
N−1∑

i=1

ηi ∆ρi

]1
+

1

2

[
N−1∑

i=1

ηi ∆ρi

]2
+

1

3!

[
N−1∑

i=1

ηi ∆ρi

]3

+ . . .+
1

k!

[
N−1∑

i=1

ηi ∆ρi

]k
+ . . .+

1

(N − 1)!

[
N−1∑

i=1

ηi ∆ρi

]N−1

= lim
∆ρi→0

exp

(
N−1∑

i=1

ηi ∆ρi

)
(3.52)

For the limit ∆s̄→ 0. it follows ∆ρ→ dρ and dρ = dρ/dσ dσ, giving for the quotient

of the velocities u̇E, u̇0 at the end and the start of the wrapped segment, respectively,

the continuous solution

u̇E
u̇0

= exp

(∫ σE

σ0

r(s(σ))

ρ(σ) [ ρ(σ) + r(s(σ)) ]
·
dρ

dσ
dσ

)
(3.53)

where s(σ) is determined by the ODE Eq. (3.26) and r(s) = b(s)/ cosα(s). Denoting

the exponent in Eq. (3.53) by κ(σ), the quotient of output to input velocity can be

described by

u̇E
u̇0

= eκ(σE) (3.54)

where κ(σ) results from numerical integration of the two coupled ODEs

dκ

dσ
=

r(s)

ρ(σ) [ ρ(σ) + r(s) ]
·
dρ

dσ
, (3.55)

ds

dσ
=

1

ρ(σ)

∥∥∥∥
d

dσ
xQ(σ)

∥∥∥∥ [ ρ(σ) cosα(s) + b(s) ] . (3.56)

For the example of the ellipse, one obtains for instance

dκ

dσ
=

r(s)

ρ(σ) [ ρ(σ) + r(s) ]
·
dρ

dσ
, (3.57)

ds

dσ
= a1 a2

ρ(σ) cosα(s) + b(s)

a21 sin
2σ + a22 cos

2σ
, (3.58)

with

dρ

dσ
=

3

2
( a21 − a22 ) sin σ cos σ

√
cos2 σ

a21
+

sin2 σ

a22
. (3.59)
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Note that if one stores the function s(σ) after solving the ODE Eq. (3.23) (e. g. by table

lookup and interpolation), one can dispense of the second ODE Eq. (3.56) and only

integrate the first one Eq. (3.55). However, in the present case simply the two coupled

ODEs were integrated using a standard ODE integrator such as Matlab ode45, which

rendered good results even for low accuracy (RELTOL=ABSTOL=10−1).

3.3.3 Case examples

To illustrate Eq. (3.53) and deepen the understanding, it is examined for three different

case examples shown in Fig. 3.13: An infinitesimal thin line, a muscle strand with

constant thickness and a cone wrapped on a circle.

a) Case 1: Infinitesimally thin line

b) Case 2: Constant thickness c) Case 3: Cone wrapped on circle

Figure 3.13: Three case examples for illustration of the velocity transmission

Case example 1: Infinitesimally thin line

In the case of an infinitesimally thin line, the strands cross-section is zero, so it holds

r = 0 and, hence, for the velocity transmission

u̇E
u̇0

= e0 = 1 , (3.60)

meaning that the velocity is the same at both ends, which is the expected result for a

thin line.
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Case example 2: Strand with constant thickness

For a strand with a constant thickness b it holds r = b = const. Hence, for the velocity

transmission from start to end, it applies

u̇E
u̇0

= exp

(∫ σE

σ0

r

ρ(σ) [ ρ(σ) + r ]
ρ′ dσ

)
. (3.61)

The substitution dρ = ρ′ dσ yields

u̇E
u̇0

= exp

(∫ ρE

ρ0

r

ρ [ ρ+ r ]
dρ

)
=

(ρ0 + r) ρE
ρ0 (ρE + r)

. (3.62)

To verify this result, the velocity transmission from start to end of the strand is derived

in an alternative way. For r = b = const, it holds α = 0 and the points P̄i and Pi are

identical and lie on the surface normal. Therefore, the velocity transmission can also

be derived by using the instantaneous centers of rotation, which are identical to the

centers of curvature (see Fig. 3.14). According to the assumption that the length of

the centerline is constant, it holds

vE = v0 (3.63)

for these velocities. To relate them to the velocities of the contact points Q0 and QE

at the surface, the instantaneous center of rotation is used and one obtains

v0 = u̇0
ρ0 + r

ρ0
and (3.64)

vE = u̇E
ρE + r

ρE
. (3.65)

Ω0

ρ0

r0u0

v0
P̄0

ΩE

ρE

rE

uE

vE
P̄E

Figure 3.14: Instantaneous centers of rotation Ω0 and ΩE at both ends of a wrapped

strand with constant cross-section
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The velocity transmission u̇E/u̇0 is obtained by equating the right-hand sides of these

equations yielding

u̇E
u̇0

=
(ρ0 + r) ρE
ρ0 (ρE + r)

, (3.66)

which is the same as derived above in Eq. (3.62).

Case example 3: Cone wrapped on circle

The third considered case example, shown in Fig. 3.13 c), is a cone with constant half-

angle α = const wrapped on a circle with constant radius ρ = R = const. Thus, it

holds

ρ′ = 0 , (3.67)

which leads to the velocity transmission

u̇E
u̇0

= exp

(∫ σE

σ0

r(s(σ))

R [ R + r(s(σ)) ]
· 0 dσ

)
= 1 . (3.68)

This, too, corresponds to the expected result because both endpoints of the wrapped

cone in contact with the circular surface move on the same circular path and the arc

length between both points remains constant (the circle could rotate underneath the

cone without changing its wrapped geometry).

3.3.4 Numerical comparison

The discrete and continuous approaches were compared for an ellipse (a1 = 100, a2 =

50) as contact curve and a total of 90
◦
of polar angle starting at the vertical apex, as

illustrated in Fig. 3.15. Hereby, for the discrete approach, both methods were applied,

i.e. (a) by shifting the initial bead by a small amount (∆σ = 0.0001) (“Bead A”) and

(b) by the pairwise transmission of the velocities (“Bead B”).

The results of the velocity transmission u̇0/u̇E are shown in Table 3.1 for the con-

tinuous method and the discrete method for different numbers of beads and discrete

transmission methods. For the bead method, the combinations of the number of beads

N and the distance between the beads ∆s̄ were chosen to cover approximately the

same elliptical arc described above. The results for the continuous method were ob-

tained for the same startpoint and endpoint of the corresponding bead chain. For finer
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Comparison between Bead Chain Method and Continuous Method 

 for b0 = 5, alpha = 20°, a  = 100, a  = 50
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Figure 3.15: Test example for velocity transmission

Table 3.1: Comparison of velocity transmission u̇E/u̇0 from start to end

Velocity Transmission u̇E/u̇0 CPU d/c

N ∆s̄ Bead A Bead B continuous Bead A Bead B

8 29.231 0.45413 0.45413 0.45108 2.42 16.65

16 13.67694 0.45174 0.45174 0.45108 3.20 17.65

32 6.62157 0.45124 0.45123 0.45108 5.20 18.82

64 3.258655 0.45112 0.45112 0.45108 11.12 21.36

128 1.616548 0.45109 0.45109 0.45108 24.44 26.88

256 0.80511 0.45109 0.45108 0.45108 54.83 36.29

discretizations both computations of the bead method converge to the result of the

continuous approach proving the consistency of the latter.

In Table 3.1, the relative computation time as factor discrete/continuous (“CPU d/c”)

is given for different numbers of beads, which was computed in Matlab using a Newton

tolerance 10−6 and ode45 with relative tolerance 10−6 and absolute tolerance 10−3.

Clearly, the continuous method is more efficient than the discrete method by a factor

of 2.4 to 55 depending on the number of beads and the chosen discrete transmission

method.
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4 Wrapping and sliding with variable conicity and

constant length

In the last chapter, an approach was presented for wrapping a thick, conical muscle

(with the cone half-angle α being constant) over an arbitrary convex surface on a given

arc length. This approach is now being extended for variable conicity (α 6= const) as

well as to include free endpoints O and I (inspired by the muscle’s origin and insertion

points) that can move freely except for the constraint that the length ℓ of the muscle’s

centerline remains constant. Accordingly, such a thick muscle consists of a wrapped

segment (between the points A and B, see Fig. 4.1) in the middle, which is in contact

with the surface and two free, straight ends on both sides. Let s denote the centerline

path length. The length of the centerline is measured separately for each segment:

Hereby, sA is the length of the straight connection from point O to point A, sAB is the

length of the centerline of the wrapped strand segment between the points A and B,

and sBI is the length of the straight line segment between the points B and I. Let the

position of point O be a function of time t. Then all quantities of the wrapped strand

will be functions of two independent variables: the surface coordinate σ indicating

the location and progress along the strand at the time t, and the time t denoting the

change at a location σ when time t changes. The velocity of the free endpoint I can be

split into two components: The component v
||
I in the direction eCB of the free, straight

centerline that is normal to the muscle’s cross-section in B and the component v⊥I

perpendicular to the first one in the direction of e⊥CB. The same applies to v
||
O and

v⊥O at the other end of the strand. For endpoints moving only in the perpendicular

direction, the strand is not sliding but just wrapping on and off the surface.

Let P be an arbitrary point on the wrapped centerline of the muscle between A and

B. Then QP describes the corresponding contact point between strand and surface

whose arc coordinate is given by uP . Based on the description of the ellipse from the

previous chapter, a corresponding natural surface coordinate σP can also be used here

to describe the position xQP of QP . Again, dϕP is an infinitesimal rotation increment

of the surface normal when progressing on the surface by an infinitesimal arc increment

du while ρP is the radius of curvature. In the following, the basic relationships between

these parameters will be clarified and terms for them will be introduced.

For the surface path increment, it holds

duP =

∥∥∥∥
∂xQP

∂σ

∥∥∥∥ dσP =̂ Juσ
∣∣
P
dσP (4.1)
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O

I

A

B

P

QP

v
||
I

v⊥I

v
||
O

v⊥O

sA(σA, t)

sAP (σA, σP , t)
sAB(σA, σB, t)
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e⊥CP

eCB

e⊥CB

dϕA

σA

uA
ρA

dϕP

σP

uP

ρP

dϕB

σB

uB
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QAQB

Figure 4.1: Free ends: Thick muscle wraps over surface between origin and insertion

and with it, the rotation increment of the surface normal can be expressed by

dϕP =
duP
ρP

=̂ Jϕσ
∣∣
P
dσP (4.2)

where Jϕσ
∣∣
P
and Juσ

∣∣
P
denote the surface Jacobians evaluated at point QP .

During the motion of the endpoints O and I, the shape of the muscle changes: The

middle segment can either wrap further on the surface (or respectively further wrap

off the surface) without any sliding (as in the scenario where the endpoints move only

in the perpendicular directions v⊥O or v⊥I ) or the strand can only slide on the surface

with the contact points QA and QB (or equivalently σA and σB) remaining fixed.

As the strand can slide on the surface, the centerline path length sP at point P is

a function of the wrapping surface coordinate σP at a fixed time, and the change of

strand location for fixed surface coordinate σA is a function of time (termed “pulling”

according to increasing the value of sA). An infinitesimal change dsP of P is thus

composed of two independent increments, denoted in shortcut as “wrap” and “pull”:

dsP =
∂s

∂σ

∣∣∣∣
t=const

dσP +
∂s

∂t

∣∣∣∣
σP=const

dt =̂ dswrap + dspull . (4.3)
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The same dependency holds for increments of half-angle αP and half-thickness bP :

dαP =
∂α

∂σ

∣∣∣∣
t=const

dσP +
∂α

∂t

∣∣∣∣
σP=const

dt =̂ dαwrap + dαpull , (4.4)

dbP =
∂b

∂σ

∣∣∣∣
t=const

dσP +
∂b

∂t

∣∣∣∣
σP=const

dt =̂ dbwrap + dbpull . (4.5)

Using the chain rule, these can be led back to the path coordinate variations dswrap

and dspull as

dαwrap =
∂α

∂σ

∣∣∣∣
t=const

dσP =
∂α

∂s
·
∂s

∂σ

∣∣∣∣
t=const

dσP =̂ Jαs ds
wrap , (4.6)

dαpull =
∂α

∂t

∣∣∣∣
σ=const

dt =
∂α

∂s
·
∂s

∂t

∣∣∣∣
σ=const

dt =̂ Jαs ds
pull , (4.7)

dbwrap =
∂b

∂σ

∣∣∣∣
t=const

dσP =
∂b

∂s
·
∂s

∂σ

∣∣∣∣
t=const

dσP =̂ Jbs ds
wrap and (4.8)

dbpull =
∂b

∂t

∣∣∣∣
σ=const

dt =
∂b

∂s
·
∂s

∂t

∣∣∣∣
σ=const

dt =̂ Jbs ds
pull (4.9)

where Jbs and Jαs are the Jacobians with respect to s as

Jbs =
∂b

∂s
= tanα and (4.10)

Jαs =
∂α

∂s
=
∂2b

∂s2
1

1 + J2bs
. (4.11)

4.1 Kinematical equation for the infinitesimal increment of P

The increment drP of point P can be described by the (linear) sum of the increment

at the surface, the rotation of the segment QP P , and the increment of the length of

the segment QP P as

drP = ρP etP dϕP + bP (dϕP − dαP ) eCP + dbP e
⊥
CP (4.12)

like described in detail in Chapter 3.2.2 (see Eq. (3.20)) except for the extension

that the variable conicity has to be considered in the second term that concerns the

inclination of muscle’s cross-section, with dαP acting in the opposite direction of dϕP

like illustrated in Fig. 4.2 for ρ = const and, thus, shortening the green arrow “2” in

Fig. 3.7.
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Figure 4.2: Change of the inclination of the cross-section due to dαP and dϕP

Inserting Eq. (4.2), Eq. (4.4) and Eq. (4.5) yields

drP = ρP etP Jϕσ
∣∣
P
dσP

+ bP

[
Jϕσ
∣∣
P
dσP −

(
dαwrap

P + dαpull
P

)]
eCP

+
(
dbwrap

P + dbpullP

)
e⊥CP , (4.13)

which together with Eq. (4.6),Eq. (4.7), Eq. (4.8) and Eq. (4.9) leads to

drP = ρP etP Jϕσ
∣∣
P
dσP

+ bP Jϕσ
∣∣
P
dσP eCP − bP Jαs

∣∣
P
dswrap

P eCP − bP Jαs
∣∣
P
dspullP eCP

+ Jbs
∣∣
P
dswrap

P e⊥CP + Jbs
∣∣
P
dspullP e⊥CP . (4.14)

By regrouping this equation with regard to the wrapping and the pulling components,

one obtains

drP =
[
ρP Jϕσ

∣∣
P
dσP etP +

(
bP Jϕσ

∣∣
P
dσP − bP Jαs

∣∣
P
dswrap

P

)
eCP + Jbs

∣∣
P
dswrap

P e⊥CP

]

+
[
−bP Jαs

∣∣
P
dspullP eCP + Jbs

∣∣
P
dspullP e⊥CP

]
(4.15)

=
∂rP
∂σ

∣∣∣∣
t=const

dσP +
∂rP
∂t

∣∣∣∣
σP=const

dt (4.16)

=̂ drwrap
P + drpullP , (4.17)
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which also consists of a partial derivative with respect to the surface coordinate where t

is held constant and a partial derivative with respect to t where the surface coordinate

u (or σ) is held constant.

4.2 Wrapping path from A to B

Analogously to Section 3.2.2, the wrapping path from A to B for fixed time (dt = 0) is

obtained by projecting Eq. (4.15) onto eCP . Thus, the kinematic condition Eq. (3.19)

transferred to the new notation is

∂rP
∂σ

∣∣∣∣
t=const,P

dσP eCP =
∂s

∂σ

∣∣∣∣
t=const,P

dσP =̂ dswrap
P . (4.18)

Together with Eq. (4.15) for dt = 0 (see appendix A for summary of scalar products),

dswrap
P =

[
ρP Jϕσ

∣∣
P
dσP

]
etP · eCP

+
[
bP Jϕσ

∣∣
P
dσP − bP Jαs

∣∣
P
dswrap

P

]
eCP · eCP (4.19)

yields the differential equation for dswrap
P

dswrap
P =

ρP cosαP Jϕσ
∣∣
P
+ bP Jϕσ

∣∣
P

1 + bP Jαs
∣∣
P

dσP (4.20)

=̂ Jsσ
∣∣
P
dσP (4.21)

where the Jacobian Jsσ
∣∣
P

is used in the following as a shortcut. This conforms to

Eq. (3.22) in Chapter 3 except for the extension in the denominator taking into account

the variable conicity. Letting σP ≡ σ, the wrap length from A to B can be computed

by integrating this differential equation for the limits σA and σB

sAB =

∫ B

A

dswrap =

∫ σB

σA

∂s(σ, t)

∂σ

∣∣∣∣
t=const

dσ =

∫ σB

σA

Jsσ(σ, t)|t=const dσ . (4.22)

4.3 Velocity constraints at A and B

The constraints arise from the boundary conditions at points A and B and the condition

of constant total length. At both endpoints, there are two boundary conditions: one

in longitudinal and one in orthogonal direction. For simplicity reasons, the constraints

are expressed in terms of velocities, which correspond to the infinitesimal expressions

derived above divided by dt.
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4.3.1 Longitudinal constraint at point A

The length condition that the distance between the points O and A must correspond

to the path length sA results in the kinematic condition

(vA − vO) · eCA = ṡA =̂ ṡwrap
A + ṡpullA (4.23)

stating that the difference of velocities of points A and O projected on the cross-section

normal must be equal to the total change of the path coordinate at point A. Together

with vA =
dr

A

dt
, Eq. (4.15) and Eq. (4.3) with P ≡ A, one obtains

d

dt

{
ρA etA Jϕσ

∣∣
A
dσA +

[
bA Jϕσ

∣∣
A
dσA − bA Jαs

∣∣
A
dswrap

A

]
eCA

+Jbs
∣∣
A
dswrap

A e⊥CA − bA Jαs
∣∣
A
dspullA eCA + Jbs

∣∣
A
dspullA e⊥CA

}
· eCA

− vO · eCA

=
dswrap

A

dt
+

dspullA

dt
. (4.24)

Expanding this equation and eliminating equivalent terms by applying Eq. (4.20) yields

−bA Jαs
∣∣
A
dspullA − v

||
O =

dspullA

dt
, (4.25)

which leads to

ṡpullA =
−v

||
O

1 + bA Jαs
∣∣
A

. (4.26)

4.3.2 Transversal direction at point A

The second condition that must be met at the contact point A between the wrapped

and the straight strand segment is the orthogonality of the free centerline to the cross-

section of the muscle in A, which is fulfilled if the following equation is true

(rA − rO) · e
⊥
CA = 0 . (4.27)

On velocity level, this leads to the kinematic condition

(vA − vO) · e
⊥
CA + (rA − rO) · ė

⊥
CA = 0 (4.28)

where the inclination of e⊥CA changes due to the rotation ϕ̇A about the center of cur-

vature and the change α̇A of the cone half-angle as

ė⊥CA = (ϕ̇A − α̇A) eCA . (4.29)
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Together with Eq. (4.2), Eq. (4.6) and Eq. (4.7) this results in

ė⊥CA =
[
Jϕσ
∣∣
A
σ̇A − Jαs

∣∣
A
ṡwrap
A − Jαs

∣∣
A
ṡpullA

]
eCA . (4.30)

Inserting Eq. (4.30), Eq. (4.15) and sA = ‖rA − rO‖ in Eq. (4.28) and solving for σ̇A

yields

σ̇A =
v⊥O −

(
Jbs
∣∣
A
− sAJαs

∣∣
A

)
ṡpullA

Jbs
∣∣
A
Jsσ
∣∣
A
+ sA

(
Jϕσ
∣∣
A
− Jαs

∣∣
A
Jsσ
∣∣
A

)
− ρAJϕσ

∣∣
A
sinαA

. (4.31)

Using this result in Eq. (4.20) with P ≡ A immediately leads to ṡwrap
A .

4.3.3 Longitudinal direction at point B

The constraint defining the longitudinal direction at point B arises from the condition

that the overall length of the strand must be constant, which is given by the equation

sA + sAB + sBI = ℓ = const (4.32)

with the corresponding time derivative

ṡA + ṡAB + ṡBI = 0 . (4.33)

The length change at A results from Eq. (4.3) as

ṡA = ṡwrap
A + ṡpullA . (4.34)

For the length change ṡAB, the partial derivative of the length sAB that is already

derived in Eq. (4.22) as

sAB = sAB (σA, σB, t) =

∫ σB

σA

∂s(σ, t)

∂σ

∣∣∣∣
t=const

dσ (4.35)

leads to

dsAB =
∂sAB

∂σA

∣∣∣∣
σB ,t=const

dσA +
∂sAB

∂σB

∣∣∣∣
σA,t=const

dσB +
∂sAB

∂t

∣∣∣∣
σA,σB=const

dt . (4.36)

Hence, on velocity level one obtains

ṡAB =
∂sAB

∂σA

∣∣∣∣
σB ,t=const

σ̇A +
∂sAB

∂σB

∣∣∣∣
σA,t=const

σ̇B +
∂sAB

∂t

∣∣∣∣
σA,σB=const

(4.37)
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with

∂sAB

∂σA

∣∣∣∣
σB ,t=const

σ̇A =
∂

∂σA

∣∣∣∣
σB ,t=const

{∫ σB

σA

∂s(σ, t)

∂σ

∣∣∣∣
t=const

dσ

}
σ̇A

= −
∂s

∂σ

∣∣∣∣
t=const,A

σ̇A

= −ṡwrap
A , (4.38)

∂sAB

∂σB

∣∣∣∣
σA,t=const

σ̇B =
∂

∂σB

∣∣∣∣
σA,t=const

{∫ σB

σA

∂s(σ, t)

∂σ

∣∣∣∣
t=const

dσ

}
σ̇B

=
∂s

∂σ

∣∣∣∣
t=const,B

σ̇B

= ṡwrap
B (4.39)

and

∂sAB

∂t

∣∣∣∣
σA,σB=const

=
∂sB
∂t

∣∣∣∣
σA,σB=const

−
∂sA
∂t

∣∣∣∣
σA,σB=const

= ṡpullB − ṡpullA . (4.40)

Inserting ṡA and ṡAB into Eq. (4.33) yields for the length change ṡBI

ṡBI = −
(
ṡwrap
A + ṡpullA

)
−
(
ṡwrap
B − ṡwrap

A + ṡpullB − ṡpullA

)

⇔ ṡBI = −ṡwrap
B − ṡpullB . (4.41)

This has to be equivalent to the velocity difference of the points B and I in direction

of eCB, leading to the equation:

(vI − vB) · eCB = ṡBI . (4.42)

Applying Eq. (4.15) for P ≡ B and Eq. (4.41) results in

vI eCB −
{
ρB etB Jϕσ

∣∣
B
σ̇B +

[
bB Jϕσ

∣∣
B
σ̇B − bB Jαs

∣∣
B
ṡwrap
B

]
eCB

+Jbs
∣∣
B
ṡwrap
B e⊥CB − bB Jαs

∣∣
B
ṡpullB + Jbs

∣∣
B
ṡpullB e⊥CB

}
· eCB

=− ṡwrap
B − ṡpullB . (4.43)

Using Eq. (4.20), equivalent terms can be eliminated and the simplified equation is

⇒ v
||
I = −

[
1 + bB Jαs

∣∣
B

]
ṡpullB . (4.44)



4 Wrapping and sliding with variable conicity and constant length 47

On the other hand, ṡpullB is related to ṡpullA by the velocity transmission along the

wrapped centerline between A and B. Hence, the velocity transmission factor κ̂AB

is introduced as

κ̂AB =
ṡpullB

ṡpullA

=
(ρB cosαB + bB)ρA
(ρA cosαA + bA)ρB

eκ (4.45)

where eκ is the quotient of output to input velocity on surface level defined by Eq. (3.53)

between A and B

eκ =
u̇B
u̇A

= exp

(∫ σB

σA

r(s(σ))

ρ(σ) [ ρ(σ) + r(s(σ)) ]

dρ

dσ
dσ

)
. (4.46)

Thus, it holds for ṡpullB

ṡpullB = κ̂AB ṡ
pull
A = −κ̂AB

v
||
O

1 + bA Jαs
∣∣
A

(4.47)

and a global longitudinal input-output velocity transmission is obtained as

v
||
I = κ̂AB

1 + bB Jαs
∣∣
B

1 + bA Jαs
∣∣
A

v
||
O . (4.48)

4.3.4 Transversal direction at point B

Analogously to the transversal direction at point A in Section 4.3.2, the transversal

direction at point B is defined by the orthogonality condition

(rI − rB) · e
⊥
CB = 0 (4.49)

expressing that the free line-segment at B must be perpendicular to the strand cross-

section in B, resulting in the kinematic condition

(vI − vB) · e
⊥
CB + (rI − rB) · ė

⊥
CB = 0 . (4.50)

Analogously to Section 4.3.2, this yields for σ̇B the expression

σ̇B = −
v⊥I −

(
b′B + ℓBI Jαs

∣∣
B

)
ṡpullB

−b′BJsσ
∣∣
B
+ ℓBI

[
Jϕσ
∣∣
B
− Jαs

∣∣
B
Jsσ
∣∣
B

]
+ ρB Jϕσ

∣∣
B

sinαB

. (4.51)

4.3.5 Geometric interpretation of “pulling” at the muscle’s free end

Fig. 4.3 illustrates the geometric interpretation of Eq. (4.26), from where it follows

−v
||
Odt =

(
1 + bA Jαs

∣∣
A

)
dspullA . (4.52)
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The figure shows the surface and the boundary cross-section of the continuous strand

at the surface end-contact point A for the two points in time t (upper figure) and

t+dt (lower figure). The surface coordinate σA is held constant between them, i.e., the

same contact point is regarded in both points of time. At time step t, the boundary

cross-section (called “old” face and represented by the dotted line) is inclined by the

half-angle α(sA). Pulling at the strand’s right end O by −v
||
Odt brings the “new” face

with the inclination α(sA+dspullA ) to σA at the time step t+dt. According to Eq. (4.52),

−v
||
Odt is the sum of the change dspullA (ii) of the midline path coordinate from A(t) to

A(t + dt) and the arc length of the circle with radius bA and half-angle Jαsds
pull
A (i).

This length is the same as the length of the path from A(t) to A∗(t) at σA + dσA at

the same half-angle α(sA) as it holds

−v
||
Odt = (ρA cosαA + bA) JϕσdσA . (4.53)



4 Wrapping and sliding with variable conicity and constant length 49

point at time: t

point at time: t+ dt

σA = const

A(t)

A∗(t)

A(t+ dt)
(i)

(i)

(ii)

(ii)

α(sA)
α(sA + dspullA )

“pull”

−v
||
Odt

“old” face

“old” face

“new” face

bA

σA

σA

σA + dσA

bAJαsds
pull
A

dspullA

Figure 4.3: Equation
(
1 + bA Jαs

∣∣
A

)
dspullA = −v

||
Odt = (ρA cosαA + bA) JϕσdσA geo-

metrically interpreted
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4.4 Discrete bead chain method

For comparison, a discrete bead chain method is implemented where beads are fitted

into the muscle’s geometry having the constant distance ∆s̄ to each other. As derived

in Chapter 3, the continuous method can be seen as the limit case of the bead method

for ∆s̄ becoming infinitesimally small. Analogous to the continuous strand, between

the endpoints called O and I, the bead chain is wrapped over an arbitrary surface

for which the contact curve is an ellipse in the example presented in Fig. 4.4. Here,

too, one can distinguish between a wrapped part of the strand in the middle of the

chain where the beads are in contact with the surface and two adjacent straight chain

segments on both ends where the beads are lined-up on a straight line from the last

bead in contact (LCA or LCB) to the corresponding endpoint (O or I). It is assumed,

that the current state of the beads, meaning the number of the first and the last bead in

contact, as well as the position of the beads given by the surface coordinate σ is known

at the beginning. For a defined movement of the endpoints, first the displacement of

the bead chain is computed using the known state of beads in contact. Secondly, the

status of the beads in contact must be checked for the new configuration and corrected

if necessary.

Here, two cases might occur:

(1) A bead that was in contact before must now lift off, and

(2) a bead that was free before is now getting into contact with the surface.

O

I NFA

LCA

SLCA

NFB LCB SLCB

σNFA

σLCA

σSLCAσNFB

σLCB
σSLCB

Figure 4.4: Free ends: Thick bead strand wraps over surface between origin and

insertion
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O

NFA

LCA γkrit,A

γfree,A

eLCA

efreeA

en

P̄SLCA

Figure 4.5: Condition for lift-off

ONFA
LCA

en
P̄LCA

P̄NFA

QNFA

σNFA
σLCA

d

rNFA

Figure 4.6: Condition for touchdown

The condition for the lift-off at the right end A is illustrated in Fig. 4.5. The unit

vector eLCA in direction of the center of the second-last connected bead (SLCA) to

the center of the last connected bead (LCA) is computed as

eLCA =
rP̄LCA

− rP̄SLCA∥∥rP̄LCA
− rP̄SLCA

∥∥ (4.54)

while it holds for the unit vector from the center P̄LCA in direction of the free line

efreeA =
rP̄NFA

− rP̄LCA∥∥rP̄NFA
− rP̄LCA

∥∥ . (4.55)

The angle between the surface normal en at bead LCA and eLCA is called γkrit,A, while

γfree,A is the angle between the surface normal and efreeA. Lift-off of bead LCA takes

place if it holds γfree,A − γkrit,A < 0.

For testing the touchdown of the next free bead at A (NFA), see Fig. 4.6, the shadow

coordinate σNFA has to be determined by solving

∆rQNFAP̄NFA
(σNFA) · et(σNFA) = 0 . (4.56)

Then the bead NFA gets in contact for d =
∥∥∆rQNFAP̄NFA

∥∥ − rNFA < 0 with rNFA

being the radius of the free bead.

4.5 Comparison

The continuous solution was obtained by numerical integration of Eq. (4.26), Eq. (4.31),

Eq. (4.48), and Eq. (4.51) using the Matlab Runge-Kutta routine ode45 with the rela-

tive tolerance reltol= 10−6. Alternatively, a Newton solver can be regarded using the

corresponding four position constraints as zero functions and the velocity transmission

for associated Jacobian evaluation. For each evaluation of the differential equations at

a new point, an inner integration over sAB according to Eq. (4.22) as well as that of
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the input-output velocity transmission factor eκ according to Eq. (3.53) is necessary,

which were again carried out using ode45 and the precision of the outer integration.

The regarded example is a stretch of thick muscle strand wrapped on an ellipse with

semi-major axis a1 = 1 and semi-minor axis a2 = 0.5 with dimensionless coordinates.

Two cases of thick strands are regarded: One with a constant half-angle α (termed

“constant conicity”), and one with a parabolic change of strand thickness over strand

length as illustrated in Fig. 4.7 a) and Fig. 4.8 a). The dotted lines represent the

corresponding boundary cross-sections of the continuous strand at the surface end-

contact points A and B. The end O is moving on a circle of radius r = 0.4 with

constant angular velocity Ω = 1◦/s, while the end I can slide in horizontal direction.

This resembles a slider-crank mechanism with the thick muscle acting as a “coupler”

and the crank angle acting as input, while the slider motion xI is the dependent variable.

For the numerical integration, the relative maximum error in all constraints lay below

10−6, showing good convergence and precision.
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Figure 4.7: Thick muscle with constant half-angle α
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For comparison purposes, the continuous muscle was also approximated by a chain of

inscribed circles (“beads”) with equidistant centers in a way that the continuous muscle

becomes their hull. The “fineness” of the discretization is described by the number of

beads N within the total stretch of the continuous muscle. The contact between the

circles and the ellipse was solved by Newton iterations using the Matlab solver fsolve

with constant rotation increments of 1◦ at the crank. If a bead entered or left the

contact with the ellipse at a step, the corresponding bead location was corrected, i.e.,

no interval nesting was performed to determine the exact crank angle value at which

touch-down or lift-off occurs.

The initial configuration was chosen so that points O and I exactly match for both

methods. Accordingly, the length of the bead method varies depending on the number

of beads. Additionally, at the beginning of the motion, the position of the first and the

last bead in contact with the surface is exactly the same as the beginning and the end

of the continuously wrapped strand. Figs. 4.7 and 4.8 show the corresponding configu-
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rations (a) and the results (b) of the difference of the computed value for the dependent

slider variable xI between the continuous method and the bead discretization for three

different degrees of resolution. It can be seen that the continuous method approaches

the bead case for finer discretizations, proving its consistency. Moreover, it can also

be seen that the discretized approach leads to unrealistic “pulsating” motions, with

frequency and amplitude inversely proportional to the bead pair distance. In figure

(c), position, velocity and acceleration of point I are plotted for the case of n = 9

beads (colored curves) and compared to the smooth curves of the continuous method

(dashed thin black lines). While the position graph seems smooth, the acceleration

graph shows a jerky behavior including “spikes” due to sudden bead contact. This is

disadvantageous for applications where the strand force is a function of strand length

and strand length rate of change such as e.g. in the Hill muscle model, as then the

force will the vary correspondingly discontinuously, slowing down numerical integra-

tion schemes. In the table (d), the maximal difference between displacement xI of the

discrete and the continuous method as well as the relative CPU time as factor dis-

crete/continuous (“CPU d/c”) are shown for a sample of discretization fineness (“N”).

Visibly, the continuous approach leads to a much faster, more precise, and more easily

implementable approach.
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5 Wrapping with elongation and compressible

cross-sections

In this chapter the method is extended to cover elongation with compressible cross-

sections instead of the constant length condition. Hereby, the extension is evolved

in three successive steps, starting with the simplest case of a conical muscle with a

constant change in the cross-section (α = const) along the length coordinate wrapping

on a surface with constant curvature radius. In the second step, the circular surface

curve is replaced by an ellipse where the curvature radius is non-constant. Last, variable

conicity (α 6= const) of the muscle is considered. In all three cases, the point O is held

fixed, which is generalized to the moving point O in Chapter 6.

5.1 Case 1: Stretching cone on circle

The basic idea is illustrated for a cone-shaped muscle in Fig. 5.1 showing the original

muscle at the top with the unstretched length ℓ0. Below, the muscle is stretched by

∆ℓ. Accordingly, the longitudinal strain is ε = ∆ℓ/ℓ0. To simplify the derivation, it is

assumed here that the thickness b0 at the end of the muscle remains constant during

the elongation process. Thus, the half-angle α of the cone depends on ε, as it holds

tanα0 =
b0
ℓ0

(5.1)

for the unstretched cone and

tanα(ε) =
b0

ℓ0 (1 + ε)
=

tanα0

1 + ε
(5.2)

for the stretched cone.

Let the cone-shaped muscle be wrapped over the circular surface curve with constant

curvature radius ρ, as illustrated in Fig. 5.2, with free end O fixed and free end I

moving like a prismatic joint in direction of uI with the joint variable sI . Between the

contact points QA and QB, the muscle wraps around the surface with ϕA and ϕB being

the corresponding surface variables, whereas A and B are the corresponding points on

the centerline of the muscle marking the transition from the straight line segment to

the wrapped segment of the centerline and vice versa. The length of the straight line

segments of the centerline between O and A as well as B and I are measured by sOA

and sBI , respectively. The wrapped part of the centerline between A and B is denoted
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ε = 0

ε > 0

α0

α

b0

b0

ℓ0

ℓ = ℓ0 (1 + ε)
∆ℓ = ℓ0 ε

Figure 5.1: Stretched muscle: Basic idea

sAB. Summed up, they correspond to the overall muscle length

ℓ = sOA + sAB + sBI . (5.3)

The muscle half-thickness bA and bB at A and B, respectively, depends on the length

of the centerline in these points. Thus, for a cone, it holds

bA = tanα sOA and (5.4)

bB = tanα sOB (5.5)

with sOB = sOA + sAB, where sAB is obtained by integrating Eq. (3.22) over ϕ

sAB =

∫ ϕB

ϕA

[ ρ cosα + b ] dϕ . (5.6)

5.1.1 Boundary constraints at A and B

As already presented in Chapter 4, at points A and B, there are two boundary con-

ditions each, one in the longitudinal and one in the transverse direction. At A, the

longitudinal condition says that sOA has to correspond to the distance between the

points O and A

g1A = sOA −∆rOA · eCA = 0 (5.7)
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Figure 5.2: Case 1: Cone stretching over circle

with ∆rOA = rA − rO and rA = ρ eAn + bA e
⊥
CA, whereas the orthogonal constraint

stipulates that the free end ∆rOA = rA − rO has to be orthogonal to the muscle’s

cross-section at A (and therefore orthogonal to e⊥CA)

g2A = ∆rOA · e⊥CA = 0 . (5.8)

Expanded, the following constraint equations result

g1A = sOA − ρ sinα(ε) + rO · eC(ϕA, ε) = 0 (5.9)

g2A = tanα(ε) sOA + ρ cosα(ε)− rO · e⊥C(ϕA, ε) = 0 . (5.10)

At B, the longitudinal constraint corresponds to

g1B = sOB + sBI − ℓ(ε) = 0 (5.11)

which contains the condition that the overall length ℓ depending on the longitudinal

strain ε has to equal the sum of the centerline segments with

sOB = sOA + sAB , (5.12)

sBI = ∆rBI · eCB = [rI − rB] · eCB , (5.13)

rI = rI,0 + uI sI and (5.14)

rB = ρ eBn + bB e
⊥
CB . (5.15)
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The second condition at B specifies that, again, the free end ∆rBI at I is orthogonal

to the cross-sectional area at B, resulting in

g2B = ∆rBI · e
⊥
CB = 0 . (5.16)

Expanded, this leads to the following constraint equations at B

g1B = rI · eC(ϕB, ε)− ρ sinα(ε)+ sOB(ε)− ℓ(ε) = 0 (5.17)

g2B = rI · e
⊥
C(ϕB, ε)− ρ cosα(ε)− tanα(ε) sOB(ε) = 0 . (5.18)

Defining the state vectors zA at point A and zB at point B as

zA =

[
sOA

ϕA

]
and zB =

[
sI

ϕB

]
(5.19)

it is straightforward to obtain the Jacobians JA := ∂g
A
/∂zA and JB := ∂g

B
/∂zB as

JA =
∂g

A

∂zA
=

[
1 −rO · e⊥CA

tanα −rO · eCA

]
(5.20)

and

JB =
∂g

B

∂zB
=




uI · eCB −rI · e
⊥
CB +

∂sOB

∂ϕB

uI · e
⊥
CB rI · eCB − tanα

∂sOB

∂ϕB


 (5.21)

with

∂sOB

∂ϕB

= ρ cosαB + bB (5.22)

to formulate the implicit constraint at velocity level as

ġ
A
= JA żA +

∂g
A

∂ε
ε̇

!
= 0 and (5.23)

ġ
B
= JB żB +

∂g
B

∂ε
ε̇

!
= 0 . (5.24)

5.1.2 Derivatives with respect to strain

For the case of a conical muscle geometry stretching on a circle, differentiating the

constraints Eq. (5.9) and Eq. (5.10) at A as well as Eq. (5.17) and Eq. (5.18) at B with

respect to the longitudinal strain ε leads to

∂g1A
∂ε

= − ρ cosα
∂α

∂ε
+ rO · e⊥C

∂α

∂ε
(5.25)

∂g2A
∂ε

=
∂ tanα

∂ε
sOA − ρ sinα

∂α

∂ε
+ rO · eC

∂α

∂ε
(5.26)
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and

∂g1B
∂ε

= rI · e
⊥
C

∂α

∂ε
−ρ cosα

∂α

∂ε
+

∂sOB

∂ε
− ℓ0 (5.27)

∂g2B
∂ε

= −rI · eC
∂α

∂ε
+ρ sinα

∂α

∂ε
− tanα

∂sOB

∂ε
−
∂ tanα

∂ε
sOB (5.28)

where the derivatives of the muscle parameter α with respect to ε are straightforward

to obtain from Eq. (5.2) as

∂ tanα

∂ε
= −

tanα

1 + ε
and (5.29)

∂α

∂ε
= −

sinα cosα

1 + ε
. (5.30)

The key term to be determined here is the derivative ∂sOB/∂ε of the total length sOB

of the (wrapped) strand on the surface with respect to the strain ε. This derivative is

abbreviated in the following by the symbol

κεOB =
∂sOB

∂ε
(5.31)

describing the linear transmission factor from infinitesimal changes dε of the strain to

infinitesimal changes dsOB for fixed surface end-point σB of the wrapped strand after

elongation. Clearly, this is a coupled problem as after elongation the strand changes

geometry and, thus, both the length of the strand as well as its wrapping behaviour

change.

In this setting, since the centerline of a cone wrapped around a circle is shaped as a

logarithmic spiral, ∂sOB/∂ε = κεOB can be found on the one side by direct derivation

of sOB with respect to ε as expanded out in the next section. On the other side, the

transmission factor κεOB can be determined by perturbation theory, which is the general

case and which is explained in Section 5.1.4 for the case of a conical muscle and circular

surface and compared to the explicit solution of Section 5.1.3 as a preparation of the

general case.

5.1.3 Direct derivation of sOB with respect to strain for a logarithmic spiral

For the direct derivation of sOB with respect to the strain ε, the total length of the

wrapped muscle centerline sOB has to be calculated first. By quadrature-integration of

ds = (ρ cosα + tanα s) dϕ (5.32)
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after separation of variables, this leads to

s(ϕ) =
ρ cosα

tanα

(
etanαϕ − 1

)
+ sOA e

tanαϕ (5.33)

for the initial values s0 = sOA and ϕ0 = 0 for simplification without loss of generality.

The rate with which the length of the centerline s changes if the strain ε is varied

while the other variables are held constant can be determined by direct derivation of

Eq. (5.33) with respect to ε

∂s

∂ε
(ϕ) =

ρ∂ cosα
∂ε

tanα

(
etanαϕ − 1

)

−
ρ cosα

tan2α

∂ tanα

∂ε

(
etanαϕ − 1

)

+
ρ cosα

tanα

∂ tanα

∂ε
ϕ etanαϕ

+ sOA

∂ tanα

∂ε
ϕ etanαϕ

+
∂sOA

∂ε
etanαϕ (5.34)

with

∂ cosα

∂ε
= − sinα

∂α

∂ε
. (5.35)

Thus, for ∂sOB/∂ε it holds after setting ϕ ≡ ϕB

∂sOB

∂ε
=
∂s

∂ε
(ϕB) = κεOB . (5.36)

5.1.4 Derivative of sOB with respect to strain using perturbation theory

In order to generalize the determination of ∂sOB/∂ε = κεOB, perturbation theory[6, 43]

is applied. Hereby, the differential equation

ds

dϕ
= f(s, ϕ; ε) = ρ cosα(ε) + tanα(ε) s (5.37)

is solved using first-order perturbation theory where a change in the longitudinal strain

is interpreted as a small perturbation dε leading to

s(ϕ, dε) = s1(ϕ) + s2(ϕ) dε . (5.38)

Applied to Eq. (5.37), this results in

d

dϕ
s1 +

d

dϕ
s2 dε = f0(s1, ϕ; ε) +

(
∂f

∂s

∣∣∣∣
ε=const

s2 +
∂f

∂ε

∣∣∣∣
s=const

)
dε (5.39)
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which with

∂f

∂s

∣∣∣∣
ε=const

= tanα(ε) and (5.40)

∂f

∂ε

∣∣∣∣
s=const

= ρ
∂ cosα

∂ε
+
∂ tanα

∂ε
s (5.41)

leads to

d

dϕ
s1 +

d

dϕ
s2 dε = ρ cosα + tanα s1

+ tanα s2 dε

+ ρ
∂ cosα

∂ε
dε+

∂ tanα

∂ε
[s1 + s2 dε] dε . (5.42)

Equating coefficients, this yields the two differential equations

d

dϕ
s1 = ρ cosα + tanα s1 (5.43)

d

dϕ
s2 = tanα s2 + ρ

∂ cosα

∂ε
+
∂ tanα

∂ε
s1 (5.44)

that can be solved successively. The integration of Eq. (5.43) can be done explicitly

resulting in

s1(ϕ) =
ρ cosα

tanα

(
etanαϕ − 1

)
+ sOA e

tanαϕ (5.45)

for the initial values ϕ0 = 0 and s0 = sOA. The inhomogeneous differential equation

Eq. (5.44)

d

dϕ
s2 − tanα s2 = ρ

∂ cosα

∂ε
+
∂ tanα

∂ε
s1 (5.46)

leads to the solution

s2 = s2,H + s2,P (5.47)

where s2,H is the homogeneous solution and s2,P is the particular solution. The homo-

geneous equation

d

dϕ
s2,H − tanα s2,H = 0 (5.48)

is solved by separation of variables as

s2,H = C exp

(
−

∫ ϕ

0

− tanα dϕ̄

)
= C etanαϕ . (5.49)
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The particular solution is found by replacing the coefficient C of integration by the

function K(ϕ) and inserting

s2,P = K(ϕ) etanαϕ (5.50)

d

dϕ
s2,P =

dK(ϕ)

dϕ
etanαϕ +K(ϕ) tanα etanαϕ (5.51)

into Eq. (5.46). This leads to

dK(ϕ)

dϕ
= e− tanαϕ

{
ρ
∂ cosα

∂ε
+
∂ tanα

∂ε
s1

}
(5.52)

which together with Eq. (5.45) results in

dK(ϕ)

dϕ
= e− tanαϕ ρ

∂ cosα

∂ε
+
∂ tanα

∂ε

ρ cosα

tanα

(
1− e− tanαϕ

)

+ sOA

∂ tanα

∂ε
. (5.53)

Integration leads to

K(ϕ) =

∫ ϕ

0

d

dϕ
K(ϕ̄)dϕ̄

=
1

− tanα
ρ
∂ cosα

∂ε

(
e− tanαϕ − 1

)

+
∂ tanα

∂ε

ρ cosα

tanα

{
ϕ+

1

tanα

(
e− tanαϕ − 1

)}

+ sOA ϕ
∂ tanα

∂ε
(5.54)

which together with Eq. (5.50), yields

s2,P =
ρ∂ cosα

∂ε

tanα

(
etanαϕ − 1

)

−
ρ cosα

tan2α

∂ tanα

∂ε

(
etanαϕ − 1

)

+
ρ cosα

tanα

∂ tanα

∂ε
ϕ etanαϕ

+ sOA

∂ tanα

∂ε
ϕ etanαϕ . (5.55)

By requiring the initial condition

s2(ϕ0) =
∂sOA

∂ε
, (5.56)

it follows

C ≡ s2(ϕ0) =
∂sOA

∂ε
(5.57)
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and the overall solution becomes

s2(ϕ) =
ρ∂ cosα

∂ε

tanα

(
etanαϕ − 1

)

−
ρ cosα

tan2α

∂ tanα

∂ε

(
etanαϕ − 1

)

+
ρ cosα

tanα

∂ tanα

∂ε
ϕ etanαϕ

+ sOA

∂ tanα

∂ε
ϕ etanαϕ

+
∂sOA

∂ε
etanαϕ . (5.58)

Thus, both perturbation theory and the explicit solution render the same results, as

expected.

5.2 Case 2: Stretching cone on ellipse

In an intermediate step, the equations are now extended for the case where the radius of

curvature of the contact surface is not constant, as is the case for the ellipse exemplarily

shown in Fig. 5.3. As already introduced in Chapter 3, ϕ is now replaced by σ as

surface coordinate, defining the actual position on the surface. Consequently, the only

difference from the derivation in the last chapter is that the radius of curvature now

depends on σ. Accordingly, the same constraint equations, now formulated in general

terms with ∆rOA = rA − rO = rQ(σA) + bA e
⊥
CA − rO for an arbitrary surface and

bA = sOA tanα and bB = sOB tanα for a cone shaped muscle, result as

g1A = sOA −
[
rQ(σA)− rO

]
· eC(σA, ε) = 0 (5.59)

g2A = tanα(ε) sOA +
[
rQ(σA)− rO

]
· e⊥C(σA, ε) = 0 (5.60)

for end A and

g1B =
[
rI − rQ(σB)

]
· eC(σB, ε)+ sOB(ε)− ℓ(ε) = 0 (5.61)

g2B =
[
rI − rQ(σB)

]
· e⊥C(σB, ε)− tanα(ε) sOB(ε) = 0 (5.62)

for end B. For the adjusted state vectors with now general surface coordinate σ, one

obtains

zA =

[
sOA

σA

]
and zB =

[
sI

σB

]
, (5.63)



64 5 Wrapping with elongation and compressible cross-sections

A

B

bA

bB

O

I

QA

QB

eCA

e⊥CA

eCB

e⊥CB

x

y

I0

sI

uI

sOA

sAB

sBI

σA

σB

Figure 5.3: Case 2: Cone stretching over ellipse

and the following Jacobian matrices are obtained

JA =
∂g

A

∂zA
=

[
1 −ρA cosα +

[
rQ,A − rO

]
· e⊥CA

tanα −ρA sinα +
[
rQ,A − rO

]
· eCA

]


1 0

0
dϕ

dσ


 (5.64)

JB =
∂g

B

∂zB

=

[
uI · eCB −ρB cosα + (ρB cosα + bB)−

[
rI − rQ,B

]
· e⊥CB

uI · e
⊥
CB −ρB sinα + tanα(ρB cosα + bB) +

[
rI − rQ,B

]
· eCB

]


1 0

0
dϕ

dσ




(5.65)

where dϕ/dσ depends on the chosen surface curve geometry and are given for the

example of an ellipse in Eq. (3.25). The implicit constraints at velocity level are

ġ
A
= JA żA +

∂g
A

∂ε
ε̇

!
= 0 (5.66)

ġ
B
= JB żB +

∂g
B

∂ε
ε̇

!
= 0 . (5.67)

Hereby, the constraints at A and B have to be derived with respect to ε. For this, the

derivatives of the cross-section vectors eC and e⊥C with respect to ε are needed, which
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Figure 5.4: Schematic illustration of the relation between the cross-section vectors eC

and e⊥C and the muscle half-angle α

in turn can be obtained with the help of the chain rule by

∂eC
∂ε

=
∂eC
∂α

∂α

∂ε
= e⊥C

∂α

∂ε
(5.68)

∂e⊥C
∂ε

=
∂e⊥C
∂α

∂α

∂ε
= −eC

∂α

∂ε
(5.69)

where ∂α/∂ε depends on the muscle’s geometry and, for the cone, is already given in

Eq. (5.30), whereas the relation between the cross-section vectors eC and e⊥C and the

half-angle α are visualized in Fig. 5.4.

The derivatives of the constraints with respect to ε can be formulated as

∂g1A
∂ε

= ( −
[
rQ,A − rO

]
· e⊥C
) ∂α

∂ε
(5.70)

∂g2A
∂ε

= ( −
[
rQ,A − rO

]
· eC + sOA

[
1 + tan2α

]) ∂α
∂ε

(5.71)

for end A and as

∂g1B
∂ε

= rI · e
⊥
C

∂α

∂ε
−ρB cosα

∂α

∂ε
+

∂sOB

∂ε
− ℓ0 (5.72)

∂g2B
∂ε

= −rI · eC
∂α

∂ε
+ρB sinα

∂α

∂ε
− tanα

∂sOB

∂ε
−
[
1 + tan2α

] ∂α
∂ε

sOB (5.73)

for end B. While the derivatives of the cone half-angle α with respect to ε is the same

as in Section 5.1.2, now when computing ∂sOB/∂ε, the variable radius of curvature ρ

has to be taken into account.

5.2.1 Wrapping path from O to B for stretched conical muscle

In order to find the infinitesimal change in the path length sOB with respect to an

infinitesimal change of the strain ε , perturbation theory is used like introduced in

Section 5.1.4.
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Thus, the differential equation

∂s

∂σ
= [ρ(σ) cos (α (s (ε))) + b (s (ε))]

dϕ

dσ
(5.74)

= f(s, σ, ε) (5.75)

is solved using first-order perturbation theory where a change in the longitudinal strain

is interpreted as a small perturbation dε leading to

s(σ; dε) = s1(σ) + s2(σ) dε . (5.76)

Applying that to the differential equation yields

ds1
dσ

+ dε
ds2
dσ

= f(s1 + dε s2, σ, ε+ dε)

= f(s1, σ, ε) +
df

ds

∣∣∣∣
ε=const

s2 dε+
df

dε

∣∣∣∣
s=const

dε

= f(s1, σ, ε) +

(
df

ds

∣∣∣∣
ε=const

s2 +
df

dε

∣∣∣∣
s=const

)
dε (5.77)

and equating the coefficients with respect to dε is leading to the system of linear

differential equations

ds1
dσ

= f(s1, σ, ε)

ds2
dσ

=
df

ds

∣∣∣∣
ε=const

s2 +
df

dε

∣∣∣∣
s=const

(5.78)

with

s1 =̂ sOB (5.79)

s2 =̂
∂sOB

∂ε
= κεOB . (5.80)

This leads to the coupled ODEs




∂s

∂σ
∂κεOB

∂σ


 =

[
ρ cosα + s tanα

κεOB tanα + ρ ∂ cosα
∂ε

+ s ∂ tanα
∂ε

]
dϕ

dσ
(5.81)

that have to be solved for the interval [σA, σB] for initial values

s(σA) = sOA (5.82)

κεOB =
∂sOA

∂ε
. (5.83)
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5.3 Case 3: Stretching curved muscle on ellipse

5.3.1 Curved muscle geometry

In this section, the algorithm is extended for a curved muscle geometry with variable

muscle thickness ∂α/∂s 6= 0. As part of the derivation, a parabolic muscle geometry

will be presented here as an example, which can be approximated to the conical muscle

geometry by parameter selection for comparison purposes. However, it is generally

possible to use any convex muscle geometry.

ℓ

λℓ

b(s)

bE

α(s)

ᾱs

Figure 5.5: Case 3: Parabolic example for a curved muscle geometry

The half-width b of the curved muscle shown in Fig. 5.5 depending on the position s

on the centerline is defined by

b(s) =
bE

ℓ (2λ− 1)

(
2λ s−

s2

ℓ

)
(5.84)

starting at zero for s = 0 and with half-width bE at the end of the muscle for s = ℓ

with ℓ being the muscle’s total length. Thus, the half-angle α between the tangent to

the curve and the centerline is now variable and depending on s. The position of the

vertex of the parabola is defined by the parameter λ > 0.5. For λ→ ∞, the geometry

of the parabolic muscle for the range considered 0 ≤ s ≤ ℓ approximates that of a cone

with half the opening angle ᾱ = arctan (bE/ℓ) as indicated in gray.

5.3.2 Lateral contraction

As a first rough consideration of the deformation of the muscle due to stretching, the

lateral contraction is exemplarily introduced using Poisson’s ratio[16, 53], which defines
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the ratio of the volume change related to the length change

∆V

V
= (1− 2ν)

∆ℓ

ℓ
(5.85)

where ν denotes the Poisson’s ratio. For simplicity, instead of the volume, the area of

the cross-section is used in the present context, leading to

A (ℓ)− A (ℓ0)

A (ℓ0)
= (1− 2ν)

ℓ− ℓ0
ℓ0

(5.86)

with the actual muscle length ℓ and the length of the unstretched muscle ℓ0 and

A (ℓ) =

∫ ℓ

0

b (s) ds =
bE ℓ

2λ− 1

3λ− 1

3
. (5.87)

Let the muscle geometry for the unstretched case be defined by the parameters b0E,

λ and ℓ0. Then the actual parameter bE for the current longitudinal strain ε can be

calculated by

bE(ε) = b0E

(
1− 2ν

ε

1 + ε

)
(5.88)

after substituting ℓ = ℓ0(1 + ε) and Eq. (5.87) into Eq. (5.86).

After inserting Eq. (5.88) into Eq. (5.84), the derivatives with respect to s and ε are

straightforward to calculate.

5.3.3 Boundary constraints at A and B

As illustrated in Fig. 5.6, the curved muscle is now wrapped in place of the cone over

the ellipse, with its end O fixed and its end I vertically slidable as before. Again,

an orthogonality and a length condition apply at both connection points A and B, as

derived in more detail in Chapter 5.1.1, leading to the equations

g1A = sOA −
[
rQ(σA)− rO

]
· eC(σA, sOA, ε) = 0 (5.89)

g2A = b(sOA) +
[
rQ(σA)− rO

]
· e⊥C(σA, sOA, ε) = 0 (5.90)

at end A and

g1B =
[
rI − rQ(σB)

]
· eC(σB, sOB, ε)+ sOB(ε)− ℓ(ε) = 0 (5.91)

g2B =
[
rI − rQ(σB)

]
· e⊥C(σB, sOB, ε)− b(sOB, ε) = 0 (5.92)
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Figure 5.6: Case 3: Curved muscle stretching over ellipse

at end B with the difference to Section 5.2 that the inclination of the cross-section

vectors eC and e⊥C now not only depends on the surface coordinate σ and the longitu-

dinal strain ε, but also on the actual muscle half-angle α, which itself depends on the

corresponding centerline coordinate s.Defining again the state vectors at A and B as

zA =

[
sOA

σA

]
and zB =

[
sI

σB

]
, (5.93)

the implicit constraints at velocity level apply as

ġ
A
= JA żA +

∂g
A

∂ε
ε̇

!
= 0 and (5.94)

ġ
B
= JB żB +

∂g
B

∂ε
ε̇

!
= 0 . (5.95)

At end A, the derivatives of eCA and e⊥CA with respect to ϕ are again

∂eCA

∂ϕ
= −e⊥CA (5.96)

∂e⊥CA

∂ϕ
= eCA . (5.97)
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At B, the change in the muscle length in the wrapped segment sAB leads to a change

in the total muscle length sOB at B and thus to a change in ϕB as

∂eCB

∂ϕ
= e⊥CB

[
−1 +

∂α

∂s

∂sOB

∂ϕ

]
(5.98)

∂e⊥CB

∂ϕ
= eCB

[
1−

∂α

∂s

∂sOB

∂ϕ

]
. (5.99)

As derived in Chapter 4, the arc length ODE for α 6= const and ρ 6= const to compute

the wrapping path between O and B is

∂s

∂σ
=
∂s

∂ϕ

dϕ

dσ
=
ρ(σ) cos (α (s)) + b (s)

1 + b (s) ∂α
∂s

dϕ

dσ
. (5.100)

leading to

∂eCB

∂ϕ
= −e⊥CB

[
1−XB

∂α

∂s

∣∣∣∣
B

]
and (5.101)

∂e⊥CB

∂ϕ
= eCB

[
1−XB

∂α

∂s

∣∣∣∣
B

]
(5.102)

with

XB =
∂sOB

∂ϕ
=
ρ cosα + b

1 + b∂α
∂s

∣∣∣∣∣
B

. (5.103)

Additionally applying

∂rOQA

∂ϕ
= ρA e

A
t , (5.104)

∂rQBI

∂ϕ
= −ρB e

B
t , (5.105)

∂ℓ

∂ϕ
= 0 and (5.106)

∂b

∂ϕ
=
∂b

∂s

∂s

∂ϕ
= tanαXB , (5.107)

it holds for the Jacobians

JA =
∂g

A

∂zA
=

[
1− rOQA · e⊥CA

∂α
∂s

∣∣
A

−ρA cosαA + rOQA · e⊥CA

tanαA − rOQA · eCA
∂α
∂s

∣∣
A

−ρA sinαA + rOQA · eCA

][
1 0

0 dϕ

dσ

]

(5.108)

with rOQA =
[
rQ,A − rO

]
and

JB =
∂g

B

∂zB

=

[
uI · eCB −ρB cosαB − rQBI e

⊥
CB

(
1−XB

∂α
∂s

∣∣
B

)
+ XB

uI · e
⊥
CB −ρB sinαB + rQBI eCB

(
1−XB

∂α
∂s

∣∣
B

)
− tanαB XB

][
1 0

0 dϕ

dσ

]

(5.109)
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with rQBI =
[
rI − rQ,B

]
.

Differentiating the constraints Eq. (5.89) - Eq. (5.92) with respect to ε leads to

∂g1A
∂ε

=−
[
rQ,A − rO

]
· e⊥C

∂α

∂ε

∣∣∣∣
A

(5.110)

∂g2A
∂ε

=−
[
rQ,A − rO

]
· eC

∂α

∂ε

∣∣∣∣
A

+
∂bA
∂ε

(5.111)

at end A and to

∂g1B
∂ε

=
[
rI − rQ,B

]
· e⊥C

∂α

∂ε

∣∣∣∣
B

+
∂sOB

∂ε
− ℓ0 (5.112)

∂g2B
∂ε

= −
[
rI − rQ,B

]
· eC

∂α

∂ε

∣∣∣∣
B

−
∂bB
∂ε

(5.113)

at end B. Note that while the derivatives of the cross-section radius b and the muscle

half-angle α with respect to ε at A only consist in the formula given by the muscle’s

geometry differentiated with respect to ε, at B, also the change of the muscle’s length

at B due to the length change in the wrapped segment sOB caused by the muscle

deformation have to be taken into account as

∂α

∂ε

∣∣∣∣
B

=
∂α

∂ε

∣∣∣∣
sOB=const

+
∂α

∂s

∂sOB

∂ε
(5.114)

∂bB
∂ε

=
∂bB
∂ε

∣∣∣∣
sOB=const

+
∂b

∂s

∂sOB

∂ε
. (5.115)

This finally leads to

∂g1B
∂ε

= rQBI · e
⊥
C

{
∂α

∂ε

∣∣∣∣
sOB=const

+
∂α

∂s

∂sOB

∂ε

}
+
∂sOB

∂ε
− ℓ0 (5.116)

∂g2B
∂ε

= −rQBI · eC

{
∂α

∂ε

∣∣∣∣
sOB=const

+
∂α

∂s

∂sOB

∂ε

}
−
∂bB
∂ε

∣∣∣∣
sOB=const

− tanα
∂sOB

∂ε
.

(5.117)

5.3.4 Wrapping path from O to B for stretched curved muscle

Analogously to Section 5.2.1, perturbation theory is used to determine ∂sOB/∂ε. Thus,

the differential equation

∂s

∂σ
=
ρ(σ) cos (α (s (ε))) + b (s (ε))

1 + b (s (ε)) ∂α
∂s

dϕ

dσ
(5.118)

= f(s, σ, ε) (5.119)
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is solved using first-order perturbation theory where a change in the longitudinal strain

is interpreted as a small perturbation dε leading to

s(σ; dε) = s1(σ) + s2(σ) dε . (5.120)

Applying that to the differential equation yields

ds1
dσ

+ dε
ds2
dσ

= f(s1 + dε s2, σ, ε+ dε)

= f(s1, σ, ε) +
df

ds

∣∣∣∣
ε=const

s2 dε+
df

dε

∣∣∣∣
s=const

dε

= f(s1, σ, ε) +

(
df

ds

∣∣∣∣
ε=const

s2 +
df

dε

∣∣∣∣
s=const

)
dε (5.121)

and equating the coefficients with respect to dε leads to the system of linear differential

equations

ds1
dσ

= f(s1, σ, ε)

ds2
dσ

=
df

ds

∣∣∣∣
ε=const

s2 +
df

dε

∣∣∣∣
s=const

(5.122)

with

df

ds
=

tanα− 2 ρ sinα∂α
∂s

− b
[
ρ sinα

(
∂α
∂s

)2
+ (ρ cosα + b) ∂2α

∂s2

]

(
1 + b ∂α

∂s

)2 (5.123)

df

dε
=

(
−ρ sinα∂α

∂ε
+ ∂b

∂ε

) (
1 + b ∂α

∂s

)
− (ρ cosα + b)

(
∂b
∂ε

∂α
∂s

+ b ∂2α
∂s ∂ε

)

(
1 + b ∂α

∂s

)2 (5.124)

that have to be solved for the interval [σA, σB] to obtain

s1 =̂ sOB and (5.125)

s2 =̂
∂sOB

∂ε
= κεOB (5.126)

for initial values

s(σA) = sOA (5.127)

κεOB =
∂sOA

∂ε
. (5.128)

5.4 Algorithm

In summary, the presented algorithm consists of two nested integrations, as illustrated

in Fig. 5.7. In the external integration, the constraint matching takes place, where the
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External integration

(“constraint matching”)

State vector:

xconstr =

[
zA

zB

]
=




sOA

σA

sI

σB




ODE function vector:

dxconstr

dt
= f constr

(
t, xconstr, xinternal, ε

)

Internal integration

(“wrapping”)

State vector:

xinternal =

[
sOB

κεOB

]

ODE function vector:

dxinternal

dσ
= f internal

(
σ, ε, xinternal

)

σA, σB , sOA, ε

sOB , κ
ε
OB

Figure 5.7: Algorithm consisting of external and internal integration

implicit velocity constraints at A and B are solved for derivatives of the state vectors

with respect to time t, żA and żB, as

dxconstr

dt
=

[
żA

żB

]
=




dsεOA

dσε
A

dsεI

dσε
B



=




−J−1
A

∂g
A

∂ε

−J−1
B

∂g
B

∂ε


 ε̇ . (5.129)

Additionally, an internal integration is necessary to compute sOB and κεOB. Therefore,

the coupled ODE

dxinternal

dσ
=

d

dσ

[
s

κεOB

]
=




f(s, σ, ε)

∂f

∂s

∣∣∣∣
ε=const

∂s

∂ε
+
∂f

∂ε

∣∣∣∣
s=const


 (5.130)

with

f(s, σ, ε) =
∂s

∂σ
=
ρ(σ) cos (α (s, ε)) + b (s, ε)

1 + b (s, ε) ∂α
∂s

dϕ

dσ
(5.131)

is solved for the interval [σA, σB] with the initial conditions

xinternal0 =




sOA

∂sOA

∂ε
−
∂s

∂σ

∣∣∣∣
A

∂σA
∂ε


 . (5.132)
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5.5 Computational results

For a comparison regarding computation time and accuracy, the presented approach

was applied to the example of a curved muscle like presented in Section 5.3.1 for

the dimensionless parameters ℓ0 = 15.0, b0E = 1.058, λ = 0.65 and ν = 0.5 of the

unstretched muscle that is wrapping on an ellipsoidal surface curve with its center at

the origin of the coordinate system and the dimensionless semiaxis lengths a1 = 4.2

and a2 = 3.0. Point O is fixed at (4.66, 3.91) while point I starts at (−4.99,−3.65) for

ε0 = 0 and can slide vertically so that the boundary constraints are fulfilled for any ε.

The presented method was implemented in Matlab using the Runge-Kutta routine

ode45 for integration of the velocity constraints in the range [ε0, εE] and compared

with iterations at position level using equidistant Newton steps (Table 5.1). The start

and the end configuration are illustrated in Fig. 5.8. The computations were performed

on a processor Intel(R) Core(TM) i7-10850H CPU @ 2.70GHz. One can recognize that

the integration method is more than twice as fast with respect to the iteration method,

with still excellent accuracy at the end of the integration.

In order to be able to better classify the results, it should be regarded that even the

position-level iterations provide a significant improvement in terms of accuracy and

computation times compared to the bead-chain discretization. Due to the increasing
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Figure 5.8: Start and end configuration
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Table 5.1: Computational results

Model and numeric parameters

ε0 εE ∆ε tolNewton tolODErel tolODEabs

0.0 1.0 0.01 10−8 10−8 10−8

Method Computation time [s] Accuracy

Integration 0.5800 1.4e-08

Iteration 1.1378 -4.9e-11

complexity in the implementation of the bead-chain method no comparisons were car-

ried out with respect to this method due to the immense effort to implement beads in

contact with the surface and their positions for the general case of stretching.
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6 The general planar case: Stretching and sliding

In the final step, the method derived in Chapter 4 for shifting an inextensible thick

muscle strand is merged with the method derived in Chapter 5 for stretching a thick

muscle with one free end and one fixed end with the goal of enabling stretching and

sliding of a thick muscle with two free ends. The crucial point will be to combine

displacement and elongation, which requires corresponding splitting of velocities at

end A.

The chapter is again structured to start with the simplest case, a cone wrapping around

a circle (α = const, ρ = const), and successively increasing the complexity, first to

general surfaces with non-constant curvature (ρ 6= const) and finally to general muscles

with variable conicity (α 6= const).

6.1 Case 1: Stretching and sliding of cone on circle

The first example case of a cone wrapping and sliding on a circle is almost identical to

the one presented in Section 5.1 with the only difference that now end O is freely mov-

able instead of fixed. As shown in Fig. 6.1, a prismatic joint is exemplarily introduced

at O for this purpose, with the free direction of motion specified by the unit vector uO

and with the joint variable sO for the actual motion. Thus, analogously to endpoint I

it holds for O

rO = rO,0 + uO sO . (6.1)

At point A, this leads to the constraint equations

g1A = sOA − ρ sinα(ε) + rO(sO) · eC(ϕA, ε) = 0 (6.2)

g2A = tanα(ε) sOA + ρ cosα(ε)− rO(sO) · e
⊥
C(ϕA, ε) = 0 (6.3)

now additionally depending on sO. Neither the Jacobian JA = ∂g
A
/∂zA nor the deriva-

tive with respect to the longitudinal strain ∂g
A
/∂ε depend on sO and, thus, can be

calculated as derived in Section 5.1. On the other hand, the total change of the state

variables

zA =

[
sOA

ϕA

]
(6.4)
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Figure 6.1: Case 1: Cone stretching and sliding over circle

does depend on the motion sO and results from the superposition of the effects due to

strain (dzεA) and displacement (dzvA) as

żA = −J−1
A

∂g
A

∂ε
ε̇− J−1

A

∂g
A

∂sO
ṡO

= dzεA + dzvA (6.5)

with

∂g
A

∂sO
=

[
uO · eCA

−uO · e⊥CA

]
and dzvA =

[
dsvOA

dϕv
A

]
. (6.6)

Note that with ∂g
A
/∂sO the velocity of the point O is again split into two components,

v
||
O = uO · eCA ṡO and v⊥O = uO · e⊥CA ṡO , (6.7)

as in Chapter 4.

At end B, the constraints are such as in Chapter 5

g1B = rI · eC(ϕB, ε)− ρ sinα(ε) + sOB(ε, sO)− ℓ(ε) = 0 (6.8)

g2B = rI · e
⊥
C(ϕB, ε)− ρ cosα(ε)− tanα(ε) sOB(ε, sO) = 0 (6.9)
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with the only difference that the length of the centerline sOB from O to B now also

depends on the location of the point O.

Hence, the total change in the state variables at the left end B,

zB =

[
sI

ϕB

]
, (6.10)

results again from the superposition of the effects due to strain and displacement:

żB = −J−1
B

(
∂g

B

∂ε
ε̇+

∂g
B

∂sO
ṡO

)
(6.11)

with

∂g
B

∂sO
=




∂sOB

∂sO

− tanα
∂sOB

∂sO


 . (6.12)

To determine how sOB changes for a change in sO, it is necessary to examine the changes

at end A more precisely, because pure wrapping at A does not affect the length sOB.

Instead, it is the “pull” component that has an effect on sOB and its magnitude must

be determined.

For the actual case of a cone-shaped muscle wrapping over a circular surface, Fig. 6.2

illustrates what happens at end A for a displacement of dsO of point O, without

considering any elongation or compression (see also Section 4.3.5). Shown in gray is

the muscle in its initial position, with QA as the contact point with the surface at the

surface coordinate ϕA and with the corresponding point A on the centerline at the

transition between the wrapped segment and the free end. Pulling the point O by dsO

in the direction of uO leads to the new position of the muscle marked in black with the

new cross-sectional point A′. In this process, two effects superpose:

(a) First, at the original contact point QA, the point A
′′ is pulled to the position A′′′,

where due to the cone shape the inclination of the cross-sectional area remains

the same. Thus, the length of the free segment sOA increases by dspullOA , which

in the initial muscle (gray) corresponds to the wrapping length between A and

A′′ with corresponding surface coordinate dϕpull
A . This effect is called again the

“pull” component.

(b) Secondly, the muscle is wrapped due to the orthogonal movement of the endpoint

O by the angle −dϕv
A, leading to the new contact point Q′

A and a decrease of the
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Figure 6.2: Case 1: Pulled cone shaped muscle on circle – end A

length of the free segment sOA by −(ρ cosα+ bA) dϕ
v
A. This effect is called again

the “wrap” component.

Thus, the change dspullOA of the centerline due to the pulling results as

dspullOA = dsvOA − (ρ cosα + bA) dϕ
v
A

= dsvOA −
∂s

∂ϕ

∣∣∣∣
A

· dϕv
A . (6.13)

From this, the change dϕpull
A in surface coordinate caused only by the “pulling” can be

determined as

dϕpull
A =

dspullOA

ρ cosα + bA
=

dsvOA

ρ cosα + bA
− dϕv

A . (6.14)

Only this component is transferred to end B by means of the velocity transmission

derived in Section 3.3. As derived in Section 3.3.3, for the case of a surface with a
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constant radius of curvature, the velocity is transmitted in a ratio of 1 : 1 and it follows

that dϕpull
B = dϕpull

A , which finally leads to

dspullOB =
∂sOB

∂sO
ṡO = (ρ cosα + bB) dϕ

pull
B . (6.15)

With this, simultaneous stretching and sliding results in

żB = −J−1
B

(
∂g

B

∂ε
ε̇+

[
dspullOB

− tanα dspullOB

])
(6.16)

for the state variables at end B.

6.2 Case 2: Stretching and sliding of cone on ellipse

Taking into account a variable radius of curvature for the surface, as shown in Fig. 6.3

for a cone wrapping over an ellipse, one can proceed analogously to Section 6.1. Only

the determination of dspullOB must now take into account the complete velocity transmis-

sion of Section 3.3.2.

Compared to Section 5.2, the constraint equations are now also dependent on the

position sO of the point O, leading to

g1A = sOA −
[
rQ(σA)− rO(sO)

]
· eC(σA, ε) = 0 (6.17)

g2A = tanα(ε) sOA +
[
rQ(σA)− rO(sO)

]
· e⊥C(σA, ε) = 0 (6.18)

at end A and

g1B =
[
rI − rQ(σB)

]
· eC(σB, ε)+ sOB(ε, sO)− ℓ(ε) = 0 (6.19)

g2B =
[
rI − rQ(σB)

]
· e⊥C(σB, ε)− tanα(ε) sOB(ε, sO) = 0 (6.20)

at end B. Analogously to the derivation in Section 6.1, the changes in the state

variables

zA =

[
sOA

σA

]
and zB =

[
sI

σB

]
, (6.21)

can now be calculated by means of superposition as

żA = −J−1
A

(
∂g

A

∂ε
ε̇+

[
v
||
O

−v⊥O

])
(6.22)

żB = −J−1
B

(
∂g

B

∂ε
ε̇+

[
dspullOB

− tanα dspullOB

])
(6.23)
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Figure 6.3: Case 2: Cone stretching and sliding over ellipse

with

v
||
O = uO · eCA ṡO and v⊥O = uO · e⊥CA ṡO (6.24)

and the Jacobians JA = ∂g
A
/∂zA and JB = ∂g

B
/∂zB as well as the derivatives with

respect to ε, ∂g
A
/∂ε and ∂g

B
/∂ε, calculated as in Section 5.2.

For the determination of dspullOB , again the “pull” component of the velocity transmission

needs to be computed. At end A, this can be calculated identically to the previous

section by first considering the displacement of the endpoint O separately

dzvA =

[
dsvOA

dσv
A

]
= −J−1

A

([
v
||
O

−v⊥O

])
. (6.25)

and then subtracting from it the part that leads to the wrapping or unwrapping of the

muscle

dspullOA = dsvOA − (ρ cosα + bA) dϕ
v
A (6.26)

with

dϕv
A = dσv

A

dϕ

dσ

∣∣∣∣
A

. (6.27)
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From dspullOA , again, the infinitesimal rotation caused by the pulling dϕpull
A around the

center of curvature M can be calculated as

dϕpull
A =

dspullOA

ρ cosα + bA
=

dsvOA

ρ cosα + bA
− dϕv

A . (6.28)

For the velocity transmission to B, one has according to Section 3.3, Eq. (3.53),

u̇B
u̇A

= eκ
v
AB = exp

(∫ σB

σA

b

ρ [ ρ cosα + b ]

dρ

dσ
dσ

)
(6.29)

with the relationship b = r cosα between the half-thickness b and the bead radius r

already inserted. It follows

dupullB = eκ
v
AB dupullA (6.30)

or in terms of infinitesimal rotations dϕ around the center of curvatureM (see Fig. 6.4)

ρB dϕpull
B = eκ

v
AB ρA dϕpull

A

⇔ dϕpull
B = eκ

v
AB

ρA
ρB

dϕpull
A , (6.31)

from which dspullOB can be calculated as

dspullOB = (ρB cosα + bB) dϕ
pull
B . (6.32)
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6.3 Case 3: Stretching and sliding of curved muscle on ellipse

For the general case of muscles with variable half opening angle (i.e. α 6= const) like

illustrated in Fig. 6.5, the explicit function for calculating the muscle’s half-thickness

(in Section 6.3 described as b = s tanα) has now to be replaced by the more general

formulation b = b(s). At end A, this leads to

g1A = sOA −
[
rQ(σA)− rO(sO)

]
· eC(σA, sOA, ε) = 0 (6.33)

g2A = b(sOA) +
[
rQ(σA)− rO(sO)

]
· e⊥C(σA, sOA, ε) = 0 . (6.34)

At end B, however, since α varies along the length s of the muscle, the inclination of

the cross-sectional area at B also depends on sO. This must be taken into account

when differentiating the constraint equations

g1B =
[
rI − rQ(σB)

]
· eC(σB, sOB, ε, sO)+ sOB(ε, sO)− ℓ(ε) = 0 (6.35)

g2B =
[
rI − rQ(σB)

]
· e⊥C(σB, sOB, ε, sO)− b(sOB, ε, sO) = 0 (6.36)

with respect to sO. Thus, for the calculation of the changes of the state variables

zA =

[
sOA

σA

]
and zB =

[
sI

σB

]
, (6.37)
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Figure 6.5: Case 3: Curved muscle stretching and sliding over ellipse
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the following equations result from superposition

żA = −J−1
A

(
∂g

A

∂ε
ε̇+

[
v
||
O

−v⊥O

])
(6.38)

żB = −J−1
B



∂g

B

∂ε
ε̇+




dspullOB +(rQBI · e
⊥
CB)

∂α

∂s

∣∣∣∣
B

dspullOB

− tanα dspullOB − (rQBI · eCB)
∂α

∂s

∣∣∣∣
B

dspullOB





 . (6.39)

While the Jacobians JA = ∂g
A
/∂zA and JB = ∂g

B
/∂zB, as well as the derivatives with

respect to ε, ∂g
A
/∂ε and ∂g

B
/∂ε, can be calculated like derived in Section 5.3, dspullOB

results analogous to Section 6.2 by separately considering the pure pull components

from

dzvA =

[
dsvOA

dσv
A

]
= −J−1

A

([
v
||
O

−v⊥O

])
. (6.40)

For the pull component dspullOA at A, it holds again

dspullOA = dsvOA −
∂s

∂ϕ

∣∣∣∣
A

dϕv
A (6.41)

with

dϕv
A = dσv

A

dϕ

dσ

∣∣∣∣
A

, (6.42)

and

∂s

∂ϕ
=
ρ(σ) cosα(s) + b(s)

1 + b(s)
∂α

∂s

. (6.43)

From this, the velocity transmission from A to B, can be determined analogously to

Section 6.2 as

dspullOB = eκ
v
AB

ρA
ρB

∂s
∂ϕ

∣∣∣
B

∂s
∂ϕ

∣∣∣
A

dspullOA . (6.44)

6.4 Algorithm

In summary, the presented algorithm consists again as in Chapter 5 of two nested inte-

grations (Fig. 6.6). The external integration concerns the satisfaction of the constraint

equations at the segment transitions between wrapped segment and undeformed free
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External integration

(“constraint matching”)

State vector:

xconstr =

[
zA

zB

]
=




sOA

σA

sI

σB




ODE function vector:

dxconstr

dt
= f constr

(
t, xconstr, xinternal, ε, sO

)

- 2 input variables (ε, sO)

- 4 dependent variables (sOA, σA, sI , σB)

Internal integration

(“wrapping”)

State vector:

xinternal =



sOB

κεOB

κvAB




ODE function vector:

dxinternal

dσ
= f internal

(
σ, ε, xinternal

)

σA, σB , sOA, ε

sOB , κ
ε
OB , κ

v
AB

Figure 6.6: Algorithm consisting of external and internal integration

end straight line segments, where the implicit velocity constraints at A and B are

solved for derivatives of the state vectors with respect to time t, żA and żB, as

dxconstr

dt
=

[
żA

żB

]
=




dsεOA + dsvOA

dσε
A + dσv

A

dsεI + dsvI

dσε
B + dσv

B



=




−J−1
A

(
∂g

A

∂ε
ε̇+

∂g
A

∂sO
ṡO

)

−J−1
B

(
∂g

B

∂ε
ε̇+

∂g
B

∂sO
ṡO

)


 .

(6.45)

Note that the selected state variables (sOA, σA, sI , σB) can be exchanged by another

choice involving the two input variables (ε, sO). For instance, it is possible to define

the movement of the endpoints O and I (by choosing sO and sI as input variables) and

then to determine the resulting strain ε (together with sOA, σA, σB) as a state variable

via constraint matching.

The internal integration provides the required quantities transmitted along the wrapped

segment that are necessary to formulate the constraint equations at B. As shown

previously, they depend on the length of the wrapped centerline sOB, on the length

change with respect to ε introduced as κεOB = ∂sOB/∂ε as well as on the length change

of dspullOB due to sliding of the muscle with

dspullOB = eκ
v
AB

ρA
ρB

∂s
∂ϕ

∣∣∣
B

∂s
∂ϕ

∣∣∣
A

(
dsvOA −

∂s

∂ϕ

∣∣∣∣
A

dσv
A

dϕ

dσ

∣∣∣∣
A

)
. (6.46)
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To determine these three quantities (sOB, κ
ε
OB and κvAB), the coupled ODE

dxinternal

dσ
=

d

dσ




s

κεOB

κvAB


 =




f(s, σ, ε)

∂f

∂s

∣∣∣∣
ε=const

∂s

∂ε
+
∂f

∂ε

∣∣∣∣
s=const

h(s, σ, ε)




(6.47)

with

f(s, σ, ε) =
∂s

∂σ
=
ρ(σ) cos (α (s, ε)) + b (s, ε)

1 + b (s, ε) ∂α
∂s

dϕ

dσ
and (6.48)

h(s, σ, ε) =
∂κvAB

∂σ
=

b(s, ε)

ρ(σ) [ ρ(σ) cosα(s, ε) + b(s, ε) ]

dρ

dσ
(6.49)

must be solved for the interval [σA, σB] with the initial conditions

xinternal0 =




sOA

∂sOA

∂ε
−
∂s

∂σ

∣∣∣∣
A

∂σA
∂ε

0


 (6.50)

for each “external” step.

6.5 Computational results for the test case of Section 6.3

Analogously to Section 5.5, the integration based, continuous approach presented here

was applied to a curved muscle modeled like described in Section 5.3.1 for the dimen-

sionless parameters ℓ0 = 20.0, b0E = 3.5265, λ = 0.65 and ν = 0.5 of the unstretched

muscle that is wrapping on an ellipsoidal surface curve with its center at the origin of

the coordinate system and the dimensionless semiaxis lengths a1 = 4.2 and a2 = 3.0.

The velocity constraints were formulated with respect to ε as

dxconstr

dε
=




dzA
dε
dzB
dε


 =




−J−1
A

(
∂g

A

∂ε
+
∂g

A

∂sO

dsO
dε

)
dε

−J−1
B

(
∂g

B

∂ε
+
∂g

B

∂sO

dsO
dε

)
dε


 (6.51)

and implemented in Matlab using the Runge-Kutta routine ode45 for integration in the

range [ε0, εE], given in Table 6.1. Endpoint O, starting at (4.66, 3.91), is supposed to

move along a horizontal prismatic joint with the velocity dsO/dε = 1.0, while endpoint

I, starting at (−4.99,−6.71), is sliding along a vertical prismatic joint to fulfill the

constraint equations. The initial and final configurations are shown in Fig. 6.7.
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Figure 6.7: Start and end configuration

Table 6.1: Computational results

Model and numeric parameters

ε0 εE ∆ε dsO/dε tolNewton tolODErel tolODEabs

0.0 1.0 0.01 5.0 10−8 10−8 10−8

Method Computation time [s] Accuracy

Integration 0.5655 4.9e-09

Iteration 1.1281 2.4e-10

The continuous method is compared to iterations on position level. For the iterations,

equidistant Newton steps were used as given in Table 6.1. The computations were

performed on a processor Intel(R) Core(TM) i7-10850H CPU @ 2.70GHz. The results

are very similar to those in the last chapter; here, too, the integration method is more

than twice as fast, with still excellent accuracy at the end of the integration.

As in the previous chapter, again it should be noted here that the comparison with the

iterations of the method at the position level is already a high-level comparison. In

terms of computation time and accuracy, an even clearer superiority is to be expected

compared to the discrete bead method, which has already been shown in Chapter 3

and Chapter 4 for the case without stretching, where high computational saving in

the order of factors of 200–800 could be substantiated. However, due to the complex

implementation of the bead chain, this comparison has been omitted at this point.
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6.6 Computational results for the planar deltoid muscle

Finally, the presented method is applied to the shoulder-example mentioned at the

beginning (see Fig. 1.1) of the musculus deltoideus projected onto the coronal plane.

The muscle is attached to clavicula (origin) and humerus (insertion) and the prime

mover for the lifting of the upper arm during abduction along the coronal plane.

To map the shape of the muscle in a rough approximation, a parabolic thick muscle is

first defined as shown in Fig. 6.8 with the overall length ℓ0, the vertex in the middle

for the maximal thickness bmax and the thickness b0 at the endpoints. With this, the

muscle thickness related to the centerline can be generally calculated as:

b(s) =
4

ℓ20
·

(
s−

ℓ0
2

)2

· (b0 − bmax) + bmax . (6.52)

Longitudinal elongation and transverse contraction are implemented by using the model

illustrated in Fig. 6.9 showing the unstretched muscle at the top with the initial length

ℓ0. Below, the muscle is stretched by ∆ℓ. Accordingly, the longitudinal strain is ε = ∆ℓ
ℓ0
.

The notation x̂ is introduced where the hat signifies that x is a stretched variable. The

variable ŝ denotes the stretched coordinate of the centerline

ŝ = (1 + ǫ) s . (6.53)

Assuming that the muscle is made of a compressible material, the lateral contraction

is assumed to fulfill the relationship

∆b

b
= −ν

∆ℓ

ℓ
= −ν ε (6.54)

s
b(s)

b0

bmax

ℓ0
2

ℓ0

Figure 6.8: Parametrization of parabolic muscle
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unstretched

stretched

b0

b̂0

b(s)

b(s)

b̂(ŝ)

ǫ · ν · b(s)

s

ŝ

ℓ0

ℓ0 +∆ℓ = (1 + ǫ)ℓ0

Figure 6.9: Stretched muscle: basic idea

where ν is the Poisson’s ratio. This leads to the new profile distribution

b̂(ŝ) = (1− νǫ) · b(s(ŝ)) . (6.55)

Based on this, the necessary derivatives with respect to s and ε are straightforward to

derive.

An ellipse was fitted into the shoulder joint as the wrapping surface, with its center at

the origin of the coordinate system and the semiaxis lengths a1 = 4.2 and a2 = 3.0. The

unstretched (contracted) muscle is approximately defined by the parameters ℓ0 = 16.0,

b0 = 0.0, bmax = 3.0 and ν = 0.5. Its origin O is fixed to the clavicula with the

coordinates (1.22, 3.04). Its insertion I is fixed to the humerus, which rotates around

the shoulder joint for which the center of rotation J is assumed to lie at the coordinates

(−2.0, 0.0). The distance between the center of rotation J and the insertion I is

approximated as 11.25.

Again, the velocity constraints formulated with respect to ε as given in Eq. (6.51) are

used and implemented in Matlab using the Runge-Kutta routine ode45 for integration
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Figure 6.10: Application of the presented method for modeling the musculus del-

toideus for the abduction of the upper arm with schematic visualization of the bone

geometries

in the range [0.4, 0.0]. The computations were performed on a processor Intel(R)

Core(TM) i7-10850H CPU @ 2.70GHz and the integration took an average time of

1.02s. Fig. 6.10 shows the initial and the final pose.



91

7 Conclusions and Outlook

In conclusion, this contribution presents a novel, continuous and fast approach for the

planar wrapping of thick muscle strands over frictionless, convex surfaces with non-

constant curvature taking into account longitudinal elongation and lateral strain of the

strand.

For this purpose, starting from a discretization of the thick muscle as a string of beads

with a finite number of beads, a continuous description of the wrapped muscle was

derived as the limit of a bead chain in contact with the surface for an infinite number

of beads. After beginning with regarding only the wrapped segment, the complexity is

increased step by step and the method is, thus, generalized. First is considering free

muscle ends and displacement along the contact area. Second is taking into account

and analyzing the influences of longitudinal strain and cross-contraction of the wrapped

muscle, where one muscle end is held fixed at first. Finally, these two approaches are

combined to allow free movement of the free endpoints as well as longitudinal stretching

and cross-contraction of the muscle at the same time.

Summarized, the presented algorithm consists of two nested integrations: An exter-

nal integration where the matching of the constraints takes place so that the length

constraints and the orthogonality constraints are satisfied at both winding ends. The

internal integration is required to determine the three transmissions along the wrapped

segment:

(a) The length of the wrapped centerline segment,

(b) the velocity transmission along the wrapped segment due to displacement, and

(c) the influence of elongation and lateral contraction on the wrapping length.

The analytical method was verified by comparison with a discretization of the muscle

as a string of beads and by iteratively solving the constraint equations at position level.

For the case of a constant length of the centerline, a computation time benchmark using

an implementation of the bead method resulted in computational savings by a factor

of 200-800. Even taking into account that the implementation of the bead method still

offers optimization potential in terms of computation time, the superiority of the ana-

lytical method clearly emerges, since it is additionally smooth, as well as significantly

faster and simpler to implement once it has been derived, while still providing highly

accurate results.

This lays the foundation for wrapping muscles of non-negligible thickness over friction-
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less surfaces on a planar arc, as it was exemplarily demonstrated for the introductory

example of the shoulder joint by applying the approach to the deltoid muscle, which is

responsible for the lifting of the upper arm during abduction along the frontal plane.

An ellipse was fitted into the shoulder joint as the wrapping surface. By shortening of

the muscle, the upper arm is lifted and the thickening of the muscle, according to the

assumption of lateral strain that the volume remains constant, is automatically taken

into consideration in the calculation of the resulting muscle path.

Although the presented method was developed starting from the biomechanical prob-

lem of muscle wrapping, it can also be applied to tendons and ligaments as well as other

non-biomechanical problems where strands of non-negligible thickness are wrapped over

surfaces.

To give an outline for possible subsequent, future directions, the extension to spatial

wrapping curves provides a first reasonable extension, since the approach is limited in

this work to the planar case due to the complex differential geometric relations. The

consideration of multiple or concave wrapping surfaces may also prove useful. Given

that the approach presented here requires as surface information only the tangent, the

normal and the radius of curvature at the contact point, one way to achieve this is

to combine the thick muscle approach introduced here with the geodesic-based muscle

wrapping algorithm presented in [69, 70] by taking the geodesic as the contact curve

and placing the thick muscle on top.
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A Scalar products of unit vectors

α

eC

e⊥C

P

QP

x

y

et

en

ρrQ dϕ

b

Figure A.1: Illustration for scalar products of unit vectors

The scalar products of the surface curve unit vectors, i.e., the surface tangent et and

the surface normal en, with the muscle’s unit vectors (eC normal to the muscle’s cross-

section and e⊥C tangential to it), as given in Fig. A.1, yield

et · eC = cosα , (A.1)

et · e
⊥
C = − sinα , (A.2)

en · eC = sinα and (A.3)

en · e
⊥
C = cosα (A.4)

with α being the actual conicity of the muscle (which may vary over the muscle’s

length).
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B Proof of the Taylor series approximation in

Section 3.3.2

By concatenating the pairwise velocity transmission for all N − 1 beads i = 2, . . . , N

after given bead “1” it follows

u̇N
u̇1

= [1 + η1 ∆ρ1] [1 + η2 ∆ρ2] . . . [1 + ηN−1 ∆ρN−1] (B.1)

for the velocity transmission between the first and the last beat with

ηi =
ri

ρi (ρi + ri)
. (B.2)

Multiplicated, the summands can be grouped together by the following summations

u̇N
u̇1

= 1

︸︷︷︸
= T0

+
N−1∑

i=1

ηi ∆ρi

︸ ︷︷ ︸
= T1

+
N−1∑

i1=1

N−1∑

i2=i1+1

ηi1ηi2 ∆ρi1∆ρi2

︸ ︷︷ ︸
= T2

+
N−1∑

i1=1

N−1∑

i2=i1+1

N−1∑

i3=i2+1

ηi1ηi2ηi3 ∆ρi1∆ρi2∆ρi3

︸ ︷︷ ︸
= T3

+ . . . . (B.3)

For small ∆ρi the velocity transmission can be approximated by the Taylor series for

the exponential function exp (
∑N−1

i=1 ηi ∆ρi) centered at zero. The first two summands

T0 and T1 can also be expressed by

T0 =

[
N−1∑

i=1

ηi ∆ρi

]0
(B.4)

T1 =

[
N−1∑

i=1

ηi ∆ρi

]1
. (B.5)

The third sum T2 can be approximated by

T0 + T1 + T2 ≈ T0 + T1 +
1

2

[
N−1∑

i=1

ηi ∆ρi

]2
, (B.6)
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because it holds

1

2

[
N−1∑

i=1

ηi ∆ρi

]2
=

1

2

N−1∑

i1=1

N−1∑

i2=1
i2 6=i1

ηi1ηi2 ∆ρi1∆ρi2

︸ ︷︷ ︸
= T2

+
1

2

N−1∑

i=1

η2i ∆ρ
2
i

︸ ︷︷ ︸
≪ T1

(B.7)

where the second term can be neglected due to being of higher order and, thereby,

negligibly smaller than T1.

Analogous to this, the fourth sum T3 can be approximated as follows

T0 + T1 + T2 + T3 ≈ T0 + T1 + T2 +
1

3!

[
N−1∑

i=1

ηi ∆ρi

]3
(B.8)

because it analogously applies

1

3!

[
N−1∑

i=1

ηi ∆ρi

]3
=

1

3!

N−1∑

i1=1

N−1∑

i2=1
i2 6=i1

N−1∑

i3=1
i3 6=i1
i3 6=i2

ηi1ηi2ηi3 ∆ρi1∆ρi2∆ρi3

︸ ︷︷ ︸
= T3

+
1

3!
· 3

N−1∑

i1=1

N−1∑

i2=1
i2 6=i1

η2i1ηi2 ∆ρ
2
i1
∆ρi2

︸ ︷︷ ︸
≪ T2

+
1

3!

N−1∑

i=1

η3i ∆ρ
3
i

︸ ︷︷ ︸
≪ T1

(B.9)

where the last two terms are again negligibly smaller than T2 and T1, respectively, and

can therefore be neglected.
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So for any specific number k the following statement can be formulated

1

k!

[
N−1∑

i=1

ηi ∆ρi

]k
=

1

k!

N−1∑

i1=1

N−1∑

i2=1
i2 6=i1

. . .
N−1∑

ik=1
ik 6=i1
ik 6=i2
...
ik 6=ik−1

ηi1ηi2 . . . ηik ∆ρi1∆ρi2 . . .∆ρik

︸ ︷︷ ︸
= Tk

+
1

k!

N−1∑

i=1

ηki ∆ρ
k
i

︸ ︷︷ ︸
≪ T1

+
k

k!
· 3

N−1∑

i1=1

N−1∑

i2=1
i2 6=i1

ηk−1
i1

ηi2 ∆ρ
k−1
i1

∆ρi2

︸ ︷︷ ︸
≪ T2

+ . . . (B.10)

with all other terms (except for the first one that equals TK) being negligibly smaller

than the previous sums Ti with i = 1, . . . , k − 1 which leads to

Tk ≈
1

k!

[
N−1∑

i=1

ηi ∆ρi

]k
. (B.11)

By mathematical induction, it can be proven that this statement holds for all k ∈ N.

Having shown that this statement is true for the first four sums and assuming that it
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is true for k, it has to be shown that it is true for its successor k + 1:

1

(k + 1)!

[
N−1∑

i=1

ηi ∆ρi

]k+1

=
1

k!

[
N−1∑

i=1

ηi ∆ρi

]k

︸ ︷︷ ︸
≈ Tk

·
1

k + 1

[
N−1∑

i=1

ηi ∆ρi

]

≈
1

k + 1



N−1∑

i1=1

N−1∑

i2=i1+1

. . .

N−1∑

ik=ik−1+1

ηi1ηi2 . . . ηik ∆ρi1∆ρi2 . . .∆ρik




︸ ︷︷ ︸
= Tk

[
N−1∑

i=1

ηi ∆ρi

]

=
N−1∑

i1=1

N−1∑

i2=i1+1

. . .

N−1∑

ik+1=ik+1

ηi1ηi2 . . . ηik+1
∆ρi1∆ρi2 . . .∆ρik+1

︸ ︷︷ ︸
= Tk+1

+
1

(k + 1)!

N−1∑

i1=1

N−1∑

i2=1
i2 6=i1

. . .

N−1∑

ik=1
ik 6=i1
ik 6=i2
...
ik 6=ik−1

η2i1ηi2 . . . ηik ∆ρ
2
i1
∆ρi2 . . .∆ρik

︸ ︷︷ ︸
≪ Tk

(B.12)
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