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Algorithm for computing the
connectivity in planar kinematic
chains and its application

Wenjian Yang1, Huafeng Ding2 and Andres Kecskemethy1

Abstract

The number of synthesized kinematic chains usually is too large to evaluate individual characteristics of each chain. The

concept of connectivity is useful to classify the kinematic chains. In this paper, an algorithm is developed to automatically

compute the connectivity matrix in planar kinematic chains. The main work is to compute two intermediate parameters,

namely the minimum mobility matrix and the minimum distance matrix. The algorithm is capable of dealing with both

simple-jointed and multiple-jointed kinematic chains. The present work can be used to automatically determine kine-

matic chains satisfying the required connectivity constraint, and is helpful for the creative design of mechanisms. The

practical application is illustrated by taking the face-shovel hydraulic excavator for instance.
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Introduction

Structure synthesis of kinematic chains is an effective
way to derive novel mechanisms with excellent per-
formances.1,2 During the last several decades, numer-
ous methods have been developed to synthesize
various kinds of kinematic chains, including simple-
jointed3–9 and multiple-jointed chains.10–15 The
number of synthesized kinematic chains is usually so
large that it is hard or impossible to evaluate individ-
ual characteristics of each chain. Therefore, in prac-
tical application, some parameters are used to classify
the kinematic chains, and restrict the number of
chains required to be considered. This work is
useful for selecting suitable kinematic chains and
enhancing the efficiency in the design of mechanisms.

In the initial stage of designing mechanisms, the
most discussed parameters for classifying kinematic
chains include the number of links, the mobility of
the kinematic chain, the number of joints suitable to
be selected as actuated joints, the type of kinematic
joints, the degree of the frame link and the degree of
the end-effector, etc. This paper will discuss another
important parameter called the connectivity. In a
given kinematic chain, the connectivity Ci, j between
links i and j is defined as the relative mobility between
links i and j. For some kinds of mechanisms such as
the face-shovel hydraulic excavator,16 the main
motion mechanism of forging manipulator17,18 and

the parallel robot,19,20 the connectivity between the

frame link and the end-effector should be equal to a

specified value. Therefore, the connectivity is useful

for selecting the candidate kinematic chains satisfying

the required constraint. The connectivity determines

the ability of the end-effector to perform a task rela-

tive to the frame link.
The connectivity between two links of an open

kinematic chain can be easily measured as the mobil-

ity of all the associated joints between the two links.20

For this reason, the studies for computing the con-

nectivity in literature mainly focused on closed kine-

matic chains.
Tischler et al.19,21 discussed the relationship

between the connectivity and variety, and enumerated

the kinematic chains that are matched to a predefined

task on the basis of variety. Shoham and Roth20

developed the adding virtual edge method to calculate

the connectivity in planar and spatial mechanisms,
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and attempted to derive the manipulators whose
frame link and end-effector have the connectivity of
six. Belfiore and Di Benedetto22 developed an auto-
matic procedure to compute the connectivity in spa-
tial kinematic chains. Liberati and Belfiore23

developed a procedure to identify whether a kinemat-
ic chain has partial mobility, and developed an algo-
rithm called “circuits gradual freezing” to compute
the connectivity in planar and spatial kinematic
chains. Martins and Carboni24 redefined the concepts
of connectivity in an algorithmic form, and computed
the connectivity in planar kinematic chains. Huang
et al.25 developed a mathematical formula to compute
the connectivity in planar kinematic chains.

The studies for computing the connectivity in lit-
erature only focused on simple-jointed kinematic
chains. It should be mentioned that, apart from
simple-jointed kinematic chains, multiple-jointed
kinematic chains which possess the merits of minimiz-
ing space requirement and weight, reducing the
number of polygonal links and simplifying the kine-
matic analysis, have also been used in various
mechanical systems.11–15,18 However, the analysis of
connectivity in multiple-jointed kinematic chains to
the knowledge of the authors has not been discussed
in literature. The main purpose of this paper is to
develop an automatic algorithm for computing the
connectivity in planar closed kinematic chains,
including both simple-jointed and multiple-jointed
kinematic chains.

Basic concepts

Simple-jointed and multiple-jointed kinematic
chains

If all the joints of a kinematic chain are binary, the
kinematic chain is a simple-jointed kinematic chain.
For example, Figure 1(a) shows the mechanism of the
face-shovel hydraulic excavator in Ding et al.,16 and
Figure 1(b) shows the corresponding kinematic chain
which is a 12-link 3-DOF (degree-of-freedom) simple-
jointed kinematic chain. A multiple-jointed kinematic
chain is a chain containing at least one multiple joint.
For example, Figure 2(a) shows the main motion
mechanism of the forging manipulator in Ref. [18],
and Figure 2(b) shows the corresponding kinematic
chain which is a 14-link 3-DOF multiple-jointed kine-
matic chain. Joints J1 and J2 in Figure 2(b) are mul-
tiple (ternary) joints. A d-nary multiple joint is
equivalent to (d-1) revolute joints.

Single-color and bicolor topological graphs

A simple-jointed kinematic chain can be represented
by a single-color topological graph where a solid
vertex denotes a link and an edge denotes a joint. A
multiple-jointed kinematic chain can be represented
by a bicolor topological graph where the additional

multiple joint is denoted by a hollow vertex.14 For

example, the single-color topological graph of

Figure 1(b) is shown in Figure 3(a), and the bicolor

topological graph of Figure 2(b) is shown in Figure 3

(b), where hollow vertices 15 and 16 denote multiple

joints J1 and J2, respectively.

Fractionated and non-fractionated graphs

If a graph can be separated into two independent sub-

graphs at a vertex, this vertex is called a cut vertex

and this graph is said to be vertex-fractionated; if a

graph can be separated into two independent sub-

graphs at an edge, this edge is called a bridge and

this graph is said to be edge-fractionated.26 For exam-

ple, Figure 4(a) shows a vertex-fractionated graph

where vertex 3 is a cut vertex, and Figure 4(b)

shows an edge-fractionated graph where edge 5-11 is

a bridge. If a graph cannot be separated into two

independent sub-graphs at any vertex or edge, this

graph is said to be non-fractionated. For example,

the graphs shown in Figure 3 are non-fractionated.

The algorithm for computing the

connectivity

In a given kinematic chain, each link has a connectiv-

ity relative to each other link. The connectivity

between each pair of links can be denoted by the con-

nectivity matrix. In this section, an algorithm is
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Figure 1. (a) The mechanism of a face-shovel hydraulic
excavator and (b) its kinematic chain.

(a) (b)

Figure 2. (a) The main motion mechanism of a forging
manipulator and (b) its kinematic chain.
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developed to compute the connectivity matrix in
planar kinematic chains. The algorithm has been
automated with the aid of computer programming
language Cþþ. Figure 3(a) is used to interpret the
algorithm step by step.

Step 1 Compute the minimum mobility matrix.
Step 1.1 Determine the minimum independent

loops in the given topological graph.
According to Euler’s equation, the number of inde-

pendent loops is r¼E – Nþ 1, where E is the number
of edges and N is the total number of vertices (includ-
ing solid and hollow vertices) in the topological
graph. An array of minimum independent loops is
denoted as {L1, L2 . . . Lr}. Minimum independent
loops are determined according to the following two
rules.

Rule 1: Each minimum independent loop contains
as few solid vertices as possible.

Rule 2: Each minimum independent loop cannot
be obtained by combining other minimum indepen-
dent loops.

In Figure 3(a), the number of independent loops is
r¼ 4. The minimum independent loops are deter-
mined as {L1¼ 1-2-3-4, L2¼ 1-4-10-11-12, L3¼ 4-5-
6-10, L4¼ 6-7-8-9-10}.

Step 1.2 Acquire non-fractionated sub-chains by
combining the minimum independent loops, and
compute the mobility (namely DOF) of each

sub-chain. For the four minimum independent loops
in Figure 3(a), there are 24 linear combinations result-
ing in (24–1) sub-chains (there is one null combina-
tion). Then, fractionated sub-chains and repetitive
sub-chains are eliminated. Ten non-fractionated
sub-chains in Figure 3(a) can be acquired, as shown
in Figure 5. According to Grübler equation, the
mobility of a kinematic chain is defined by F¼ 3(ns–
1)–2R, where ns and R are the numbers of links (solid
vertices) and revolute joints in a sub-chain, respective-
ly. Taking Figure 5(e) for instance, we have ns ¼7 and
R¼ 8; hence, its mobility is F¼ 3� (7–1) – 2� 8¼ 2.
The mobility of each sub-chain is shown in Figure 5.

Step 1.3 Determine all the sub-chains containing
two specified solid vertices i and j. The minimum
mobility of these sub-chains is signed as Mi,j. If
there exists no any sub-chain containing solid vertices
i and j, let Mi, j be equal to the mobility of the given
topological graph (this situation occurs only when the
given topological graph is fractionated). For vertices
1 and 5 in Figure 3(a), the sub-chains containing the
two vertices are Figure 5(f), (h), (i) and (j). The min-
imum mobility of the four sub-chains is 2, thus we
have M1,5¼ 2.

Step 1.4 Acquire the minimum mobility matrix
M¼ (Mi,j)n�n, where Mi, j is the element in i-th row
and j-th column of the matrix, and n is the number of
solid vertices in the given topological graph. All
matrices involved in this paper are symmetric and
the diagonal elements are equal to zero. The mini-
mum mobility matrix (Mi,j)12� 12 of Figure 3(a) is
automatically computed and shown in the upper-
right sub-window of Figure 6.

Step 2 Compute the minimum distance matrix.
Step 2.1 Acquire the weighted adjacency matrix

W¼ (Wi,j)n�n. The weighted distance Wi, j between
solid vertices i and j is determined according to the
following equation.

Wi; j ¼

0; if i is equal to j;
1; if vertex i is adjacent to vertex j;
1; if vertices i and j are adjacent to

the same hollow vertex;
1; otherwise

8>>>><
>>>>:

(1)

In equation (1), the third case only occurs in the
multiple-jointed topological graph. For example, in
Figure 3(b), solid vertices 3 and 4 are adjacent to
hollow vertex 15. We should add a virtual edge
between vertices 3 and 4 and set W3,4¼W4,3¼ 1.
The notation “1” means an infinite value. In the
computer program, it can be set as a considerably
large number such as 50. The weighted adjacency
matrix (Wi,j)12� 12 of Figure 3(a) is shown in Figure 7.

Step 2.2 For each two solid vertices i and j in a sub-
chain whose mobility is equal to 1, if Wi,j 6¼ 1, add a
virtual edge between vertices i and j, then set Wi,j¼ 1

Figure 3. The topological graphs corresponding to Figures 1
(b) and 2(b).
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Figure 4. Fractionated graphs.
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and acquire the modified weighted adjacency
matrix W0.

The sub-chains in Figure 5(a) and (c) have the
mobility of 1. For Figure 5(a), vertices 1 and 3 are
not adjacent, as well as vertices 2 and 4, thus W1,3 6¼ 1
and W2,4 6¼ 1. As show in Figure 8(a), a virtual edge is
added between vertices 1 and 3, as well as vertices 2

and 4. For the modified weighted adjacency matrix

W0 in Figure 8(b), elements W1,3 and W2,4 are set as

“1”, and the symmetric elements W3,1 and W4,2 are

also set as “1”. Similarly, by considering the sub-

chain in Figure 4(c), elements W4,6, W6,4, W5,10 and

W10,5 in Figure 8(b) are set as “1”.
Step 2.3 Define an array of recursive matrices D0,

D1 . . . Dk . . . Dn where Dk¼ (Dk
i;j)n�n. Set D0¼W0

and compute D1 . . . Dk . . . Dn in turn according to

the recursive formula in equation (2).

Dk
i;j ¼ min : f Dk�1

i;j ; Dk�1
i;k þDk�1

k;j g (2)

The formula in equation (2) is known as Floyd

Algorithm, which is frequently utilized to compute

the minimum distance in graphs. Using this formula,

the n-th recursive matrix Dn ¼ (Dn
i;j)n�n is the mini-

mum distance matrix D¼ (Di, j)n�n of the

topological graph. Here, Di, j is the minimum distance

between solid vertices i and j (virtual edges are

included).
Continuing the example, the initial matrix D0 is

equal to the matrix W ’ shown in Figure 8(b). Then,

compute the first recursive matrix D1¼ (D1
i;j)12� 12

according to the formula D1
i;j ¼min:{D0

i;j,

D0
i;1 þD0

1;j}, and compute the second recursive

matrix D2¼ (D2
i;j)12� 12 according to the formu-

la D2
i;j ¼min:{D1

i;j, D
1
i;2 þD1

2;j}, and so on. For exam-

ple, we have D1
1;2 ¼min:{D0

1;2, D
0
1;1 þD0

1;2}¼ min:{1,

0þ 1}¼1, and D1
2;12 ¼min:{D0

2;12, D
0
2;1 þD0

1;12}¼ min:

{1, 1þ 1}¼ 2. The first recursive matrix D1 is shown

Figure 5. Non-fractionated sub-chains in Figure 3(a).

Figure 6. Automatic computation of connectivity matrix in
Figure 3(a).
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in Figure 9. The 12-th recursive matrix is the mini-
mum distance matrix D¼ (Di, j)12� 12, as shown in the
lower-left sub-window of Figure 6. The element Di, j is
the minimum distance between solid vertices i and j.
For example, element D2,5 of the minimum distance
matrix in Figure 6 is equal to 2. This value corre-
sponds to the path 2-4-5 which has two edges in
Figure 8(a).

Step 3 Compute the connectivity matrix C¼
(Ci, j)n�n according to the formula in equation (3),
where k is the order of the screw system (k¼ 3 for
planar kinematic chains).

Ci;j ¼ min : Mi;j;Di;j; k
� �

(3)

According to the minimum mobility matrix M¼
(Mi, j)12� 12 acquired in Step 1, the minimum distance
matrix D¼ (Di, j)12� 12 acquired in Step 2 and k¼ 3,
the connectivity matrix C¼ (Ci, j)12� 12 of Figure 3(a)
can be acquired, as shown in the lower-right sub-
window of Figure 6. The connectivity between the
frame link (link 1) and the end-effector (link 9) is
C1,9¼ 3.

Computation of the connectivity in a
multiple-jointed kinematic chain

The following process with considering Figure 10 is
used to prove the ability of our algorithm for dealing
with multiple-jointed kinematic chains.

Step 1 Compute the minimum mobility matrix.
The graph in Figure 10 has four independent loops.
Its minimum independent loops are determined as
{L1¼ 2-3-4-5-13, L2¼ 5-9-11-12-13, L3¼ 1-2-13-5-9-
10, L4¼ 5-6-7-8-9}. Fourteen non-fractionated sub-
chains can be acquired and shown in Figure 11. The
minimum mobility of all the sub-chains containing
solid vertices i and j is signed as Mi, j. For example,
considering vertices 2 and 5, the sub-chains contain-
ing the two vertices are Figure 11(a), (c), (e), (f), (g),
(i), (j), (k), (l), (m) and (n). The minimum mobility of
these sub-chains is 1, thus we have M2,5¼ 1. The min-
imum mobility matrix (Mi, j)12� 12 of Figure 10 is

Figure 7. The weighted adjacency matrix of Figure 3(a).

(a) (b)

Figure 8. (a) The graph in Figure 3(a) with adding virtual
edges and (b) the modified weighted adjacency matrix.

Figure 9. The first recursive matrix derived from Figure 8(b).

Figure 10. A 12-link 3-DOF multiple-jointed kinematic chain.

Yang et al. 5
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automatically computed and shown in Figure 12(a).

In order to save space, the software interface is not

displayed.
Step 2 Compute the minimum distance matrix.
Step 2.1 Vertices 2 and 5 are adjacent to hollow

vertex 13, hence vertices 2 and 5 are connected with a

virtual edge. Edges 2-13 and 5-13 are equivalent to

one revolute joint, hence the distance between vertices

2 and 5 is equal to 1. Similarly, vertices 2 and 12, and

5 and 12 are, respectively, connected with a virtual
edge, as shown in Figure 13(a). According to equa-

tion (1), the weighted adjacency matrix W¼ (Wi,

j)12� 12 of Figure 10 is acquired and shown in

Figure 13(b). Due to the addition of virtual edges,

Figure 11. Non-fractionated sub-chains in Figure 10.

Figure 12. Automatic computation of connectivity matrix of Figure 10.

6 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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we have W2,5¼W5,2¼W2,12¼W12,2¼W5,12¼
W12,5¼ 1.

Step 2.2 The sub-chains in Figure 11(a) and (b)
have the mobility of one, hence vertices 3 and 5, 2
and 4, 5 and 11, and 9 and 12 are, respectively, con-
nected with a virtual edge, as shown in Figure 14(a).

The modified weighted adjacency matrixW ’ is shown

in Figure 14(b).
Step 2.3 The initial matrix D0 is equal to the matrix

W ’ shown in Figure 14(b). Compute D1 . . .. . . Dk

. . .. . . D12 in turn according to the recursive formula

in equation (2). The 12-th recursive matrix is the min-

imum distance matrix D¼ (Di, j)12� 12 of Figure 10, as

shown in Figure 12(b). The element Di, j is the mini-

mum distance between solid vertices i and j (virtual

edges are included). For example, the element D1,5 of

the minimum distance matrix in Figure 12(b) is equal

to 2. This value corresponds to the path 1-2-5 in

Figure 14(a).
Step 3 According to the formula in equation (3),

the connectivity matrix C¼ (Ci, j)12� 12 of Figure 10 is

shown in the Figure 12(c).
To verify the validity, the present algorithm has

been used to the kinematic chains discussed in litera-

ture.23–25 The results of the connectivity matrix are

completely consistent with the existing results. Our

results for multiple-jointed kinematic chains are

new. The main work of our algorithm is to compute

two intermediate parameters, namely the minimum

mobility matrix and the minimum distance matrix.

Minimum independent loops are combined to derive

sub-chains and minimum mobility matrix. In order to

derive the minimum distance matrix, solid vertices

adjacent to the same hollow vertex are connected

with a virtual edge, and solid vertices in 1-DOF

sub-chains are also connected with a virtual edge.

Compared to the previous method,25 the present

method is simpler, and possesses the ability to deal

with both simple-jointed and multiple-jointed kine-

matic chains.

(a) (b)

Figure 13. The weighted adjacency matrix of Figure 10.

(a) (b)

Figure 14. The modified weighted adjacency matrix of
Figure 10.

Figure 15. A part of the 1962 planar 12-link 3-DOF kinematic chains.

Table 1. Structural characteristics of the face-shovel hydraulic excavator.

No. Structural characteristics No. Structural characteristics

1 The mechanism is planar and closed 4 The mechanism has 10 or 12 links

2 The mechanism is non-fractionated 5 The mechanism has three DOFs

3 The mechanism is simple-jointed or multiple-jointed 6 The mechanism only has revolute and prismatic joints

Yang et al. 7
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An example of the practical application

In our previous work, some methods have been devel-

oped to automatically synthesize simple-jointed kine-

matic chains9 and multiple-jointed kinematic

chains.13,14 The present algorithm can be used to

derive suitable mechanisms based on the synthesis

results. This section aims to interpret how the present

work is used in the design of mechanisms. The main

steps of the conceptual design of a specified mecha-

nism are illustrated as followed.
Step 1 Determine the structural characteristics of

the specified mechanism, and acquire all possible

kinematic chains based on the synthesis results.
Let us take the face-shovel hydraulic excavator for

instance (one valid mechanism is shown in Figure 1).

The structural characteristics of the excavator are

listed in Table 1. Here, we only consider 12-link

simple-jointed mechanisms. According to Ding

et al.,9 there are 1962 planar simple-jointed non-frac-
tionated 12-link 3-DOF kinematic chains. A part of
the 1962 topological graphs sketched by the software
in Ding et al.9 are shown in Figure 15.

Step 2 Determine the kinematic chains satisfying
the fundamental constraint.

A binary path is defined as a path whose starting
and ending vertices are non-binary, and the other
middle vertices are binary. A binary path having k
middle vertices is called a k-length binary path. For
example, the path 6-7-8-9-10-11 in the first graph in
Figure 15 is a 4-length binary path.

The face-shovel hydraulic excavator is actuated by
three separate hydraulic cylinders. The end-
effector which is a binary link is directly actuated
by one of the three hydraulic cylinders. Therefore,
the topological graph suitable for application as
the excavator should contain at least two 2-length
binary paths and one 3-length binary path. The
kinematic chains satisfying this fundamental con-
straint can be easily selected from the 1,96,212-link
3-DOF kinematic chains. For example, two
kinematic chains satisfying this constraint are
depicted in Figure 16.

Step 3 For each kinematic chain, determine the
frame link, end-effector and actuated joints.

The frame link and end-effector of the face-shovel
hydraulic excavator should satisfy the following con-
straints: (1) The frame link is a non-binary link, (2)
the inversions having different frame links are non-
isomorphic, (3) the frame link and the end-effector
are not in the same minimum independent loop, and

Figure 16. Two 12-link 3-DOF kinematic chains satisfying the
fundamental constraints.

(a) (b)

Figure 17. The valid mechanisms derived from Figure 16.

Table 2. The selection of the frame link and end-effector for the first graph in Figure 16.

No.

The selection of frame link The selection of end-effector

Constraint (1) Constraint (2) Constraint (3) Constraint (4)

Case 1 Link 1 Link 1 Links 6 and 8 Link 6

Case 2 Link 4 Link 4 Links 6 and 8 Link 8

Case 3 Link 5 Link 5 None None

Case 4 Link 9 Link 9 None None

Case 5 Link 10 Link 10 None None

8 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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(4) the frame link and the end-effector have the con-

nectivity of three.
Take the first graph in Figure 16 for instance.

Links 1, 4, 5, 9 and 10 are non-binary, and the inver-

sions by selecting the five links as frame links are non-

isomorphic. Therefore, links 1, 4, 5, 9 and 10 can be

selected as the frame link, as shown in Table 2. The

end-effector is a binary link in the 3-length binary

path. Only links 6 and 8 can be the end-effector.

According to constraint (3), the cases 3, 4 and 5 in

Table 2 are invalid, because links 5, 9, 10, 6 and 8 are

in the same minimum independent loop 5-6-7-8-9-10.

Let us consider case 1 in Table 2. Using the present

algorithm, the connectivity between links 1 and 6 is

C1,6¼ 3, and the connectivity between links 1 and 8 is

C1,8¼ 2. According to constraint (4), only link 6 can

be selected as the end-effector. Similarly, in case 2,

only link 8 can be selected as the end-effector.

Therefore, two valid mechanisms can be derived

from the first graph in Figure 16, as shown in

Figure 17(a). In the first mechanism, link 1 is the

frame link and link 6 is the end-effector. In the

second mechanism, link 4 is the frame link and link

8 is the end-effector. Similarly, two valid mechanisms

can be derived from the second graph in Figure 16, as

shown in Figure 17(b).
The present algorithm can be used to determine

mechanisms satisfying the required connectivity con-

straint. The mechanisms having excellent performan-

ces can be derived by conducting the dimension

computation, kinematic analysis and dynamic

analysis.

Conclusions

The parameter of connectivity can serve as a con-

straint to derive mechanisms that are matched to a

specified task. In this paper, an automatic algorithm

is developed to compute the connectivity matrix in

planar closed kinematic chains. The main work is to

compute two intermediate parameters, namely the

minimum mobility matrix and the minimum distance

matrix. Minimum independent loops are combined to

derive sub-chains and minimum mobility matrix, and

Floyd Algorithm is used to derive minimum distance

matrix. Solid vertices adjacent to the same hollow

vertex are connected with a virtual edge, and solid

vertices in 1-DOF sub-chains are also connected

with a virtual edge.
The algorithm is applicable for both simple-jointed

and multiple-jointed kinematic chains. Whereas, the

existing methods only focused on simple-jointed kine-

matic chains. The practical application of the algo-

rithm is illustrated by taking the face-shovel

hydraulic excavator for instance. The algorithm

can be used to derive both simple-jointed and

multiple-jointed mechanisms that are matched to a

specified task.
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Appendix

Notation

Ci,j the connectivity between links i and j
C the connectivity matrix
D the minimum distance matrix
Di,j the minimum distance between solid vertices i

and j
E the number of edges
Mi,j the minimum mobility of the sub-chains con-

taining vertices i and j
M the minimum mobility matrix
n the number of solid vertices
r the number of independent loops
Wi,j the weighted distance between solid vertices i

and j
W the weighted distance matrix
W the modified weighted distance matrix
k the order of the screw system
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