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Kurzfassung 

In vielen Anwendungen in Produktionsumgebungen werden elektromechanische Antriebssysteme, die aus mehreren Ge-

trieben bestehen, nicht zustandsorientiert gewartet. Die schlechter werdenden Anlagenzustände, die im Zusammenhang 

mit den jeweiligen Getriebezuständen stehen, können somit nicht erkannt und analysiert werden. Dies führt mit zuneh-

mender Betriebsdauer zu einer Verminderung des Wirkungsgrads sowie im weiteren Sinne zu ungeplanten Fehlern und 

Ausfällen der Antriebseinheiten. Die Integration von Beschleunigungssensoren in die verbauten Getriebe bietet die Mög-

lichkeit den Zustand der Antriebssysteme getriebespezifisch zu überwachen. Die Messungen werden unter Laborbedin-

gungen sowohl an Getrieben im Neuzustand als auch an Feldrückläufern, die unter realen Bedingungen in Produktion-

sumgebungen eingesetzt sind, durchgeführt. Die relevanten Signalanteile in den erfassten Schwingungssignalen werden 

mit Hilfe einer Hüllkurvendemodulation hervorgehoben und mit einem künstlichen neuronalen Netz weiterverarbeitet, 

sodass eine getriebespezifische Schadensanalyse von Fehlerzuständen ermöglicht wird. Eine Optimierung der Hyperpa-

rameter des neuronalen Netztes ermöglicht eine bestmögliche Parameterabstimmung, sodass eine möglichst gute Perfor-

mance des Algorithmus erreicht wird. 

Abstract 

In many applications in production environments, electromechanical drive systems consisting of several gearboxes are not 

maintained in a condition-oriented manner. The deteriorating system conditions, which are related to the respective gear-

box conditions, can therefore not be recognised and analysed. With increasing operating time, this leads to a decrease of 

the efficiency and, in the broader sense, to unplanned errors and failures of the drive units. The integration of acceleration 

sensors in the installed gearboxes offers the possibility to monitor the condition of the drive systems in a gearbox-specific 

manner. The measurements are carried out under laboratory conditions on gearboxes in new condition as well as on field 

returns used under real conditions in production. The relevant signal components in the recorded vibration signals are 

highlighted with the help of an envelope demodulation and further processed with an artificial neural network, so that a 

gearbox-specific damage analysis of fault conditions is possible. An optimisation of the hyperparameters of the neural 

network enables the best possible parameter tuning so that the algorithm achieves the best possible performance. 

 

 

1 Introduction 

The gearboxes installed in electromechanical drive sys-

tems, which in this application are planetary and offset 

gearboxes, have an essential influence on the reliability of 

the overall system. According to the current state of the art, 

most drive systems from industrial practice are not main-

tained in a condition-oriented manner. This leads to un-

planned failures as well as the replacement of components 

before the actual service life of the components is reached. 

Gearbox-specific condition monitoring on the drive sys-

tems using two acceleration sensors enables a damage de-

tection on the installed gearboxes, so that the probability of 

failure of the entire drive system is reduced. A vibration-

based monitoring of the drive system, the pre-processing 

of the acquired data with an envelope demodulation and a 

fast Fourier transform (FFT) as well as the damage detec-

tion with a multi-input feed-forward neural network is ex-

perimentally considered under laboratory conditions. The 

best possible tuning of the hyperparameters of the artificial 

neural network is achieved by optimising the parameters 

for better performance. 

 

2 State of the art 

The implementation of a condition monitoring system in-

creases the reliability of gearboxes and drive systems. It is 

possible to use different status variables, such as the Root-

Mean-Square, that allow conclusions to be drawn about the 

system status of the drive systems for status-oriented and 
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status-based monitoring. Vibration analysis, which is to be 

implemented in the present application, offers the essential 

advantage that damage and faults in systems can be de-

tected with a clear warning time. [1–3] 

The mechanical components of electric motors, e.g. the 

roller bearings, can also be included in condition monitoring 

systems [4]. The generation of faulty system states some-

times requires very long operating times of the drive sys-

tems until a damage occurs. In reality, defective returns 

from field operation with a degraded overall state are there-

fore often used and compared with systems in a fault-free 

state [2, 5]. It is important to note that vibration measure-

ments can be negatively influenced by the sensor position-

ing, external vibration excitation as well as the sensor per-

formance [6–8]. The analysis of periodically occurring vi-

brations, which are caused by gear damage, for example, is 

often carried out using frequency domain analysis, as this 

offers the possibility of identifying the source of the faults 

[3]. The use of envelope analysis helps to reveal periodical 

excitations hidden in the raw vibration signal [9]. The cal-

culation of condition indicators in the time and frequency 

domain also enables conclusions regarding component-spe-

cific faults and damages [10]. Following the conventional 

analysis methods, machine learning algorithms offer essen-

tial advantages in damage analysis and the detection of 

faulty conditions [11]. There are various feature extraction 

methods and machine learning algorithms for analysing sen-

sor data in the context of machine fault detection, such as 

neural networks and support vector machines [12]. 

A paper shows that neural networks enable a classification-

based analysis of acquired sensor data. It is also described 

that processing vibration and current signals with deep 

learning algorithms leads to better classification results in 

certain applications. Modern machines are complex in de-

sign, so it is important to focus on the vibrations caused by 

faulty parts rather than all the vibrations generated. [13] 

A backpropagation neural network is also used for a classi-

fication based on the speed of a gearbox and oil-related 

gearbox faults. The use of calculated power spectrums re-

sults in refined signals to enable an improved feature extrac-

tion. The analysis of vibration signals provides important 

data on the condition of the system, fault detection as well 

as monitoring parameters. [14] 

The state of the art describes existing methods of fault  

analysis on drive systems using conventional analysis me-

thods as well as machine learning models. This work has 

similarities with various other publications. As a differenti-

ation, however, it should be emphasised that a gearbox-spe-

cific fault analysis is carried out using faulty returns from 

field operation. 

 

3 Data generation 

The vibration data is generated on an electromechanical 

drive unit consisting of an electric motor, a planetary gear 

and an offset gear (Figure 2). Acceleration sensors are in-

stalled on each of the gearboxes so that gearbox-specific 

monitoring is possible. The planetary gearbox has a trans-

mission ratio of 𝑖𝑃 = 24.92 and the offset gearbox of 𝑖𝑂 =
1.5. The tests are carried out at maximum speed of the 

drive unit.  

 
Figure 2: Test setup 

The tests are carried out according to the test plan shown 

in Table 1. The prefix “P” represents the planetary gearbox 

and the “O” denotes the offset gearbox. The OK stands for 

a gearbox in a good condition and NOK for a gearbox in a 

bad condition (field return). The different test setups in 

Table 1 are realised by combining the different gearboxes 

with different system states. For this reason, assembling 

and disassembling of the drive units is necessary. The 

measurement duration per test is 𝑡𝑆 = 0,5 𝑠 at a sampling 

frequency of 𝑓𝑆 = 25600 𝐻𝑧.  

 

Table 1: Test plan 

  

Figure 1: Damage progression as a function of time [1] 
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Figure 3: Training, test and validation data 

The training and test data are extracted in relation to the 

validation data in a ratio of 2/3 to 1/3, as visualized in 

Figure 3. The last measurement series in each test setup 

(for example 193 to 288 for test setup 1) is used for valida-

tion. The training and test data are split randomly.  

4 Model architecture 

4.1 Experimental results 

The spectrograms in Figure 4 show the amplitude levels of 

the envelope spectrums by FFT for both gears and both 

conditions depending on the measurement number. It 

should be noted that the upper bound of the colour scale for 

each gear type is limited to the mean value plus three times 

the standard deviation of all amplitudes. Thus, some ex-

treme amplitudes get cut off, but the overall visibility of 

the most amplitudes at relevant frequencies is improved. 

Beginning and end of each data block for training/test and 

validation according to the measurement plan is high-

lighted in the spectrograms. 

 

 

 

 
 

 

 
 

Figure 4: Spectrograms of the envelope signals of the planetary and the offset gearbox 
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Basically, for all four gearbox and condition combinations, 

it can be seen that the envelope spectra shown are not ho-

mogeneous across the measurement numbers. Despite the 

constant external operating conditions, fluctuations in both 

the amplitudes of significant frequencies and background 

noise are visible.  

In the case of the planetary gear (prefix P), it can be seen 

that there is often a higher amplitude level in the NOK state 

than in the OK state, which is attributed to general wear. In 

addition, one can find some characteristic frequency lines 

in OK state, which are also visible in the NOK spectro-

gram. However, several distinctive characteristic frequen-

cies, which are easily distinguishable in the NOK spectro-

gram, are not present in the OK state or have only low am-

plitudes. Overall, both states are also clearly differentiable 

from each other visually. 

The offset gear (prefix O) differs from the findings above. 

Considerable noise and distinctive characteristic frequen-

cies are present in the OK state as well as in the NOK state. 

There is significant inhomogeneity of the individual spec-

trums in the spectrograms. If - as in this case - no precise 

assignment of the individual fault frequencies is done, the 

OK and NOK states of the offset gear cannot be clearly 

distinguished. In general, the maximum amplitudes of the 

offset gear are lower than those of the planetary gear. 

4.2 Multi-input neuronal network 

A multi-input feed-forward neural network is used for con-

dition classification. It consists of two separate input layers 

for the envelope spectrums of both sensors. The number of 

neurons per input layer is equal to the amount of discrete 

frequencies per spectrum. Each input layer is followed by 

a hidden layer, whose outputs are concatenated then. From 

now on, data of both sensors is processed together. This is 

done by another hidden layer and the subsequent applica-

tion of a dropout function that prevents overfitting. The fi-

nal output layer consists of two neurons that each represent 

the condition of one gearbox. Figure 5 shows the resulting 

structure of the neural network. 

 

 
Figure 5: Structure of the neural network 

Because a multi-label classification is implemented here, 

both neurons can have the value 0 or 1 independently from 

each other. 0 represents an OK gear, a value of 1 denotes a 

NOK gear.  The real value of an output neuron is usually a 

decimal number between 0 and 1. If a user-defined thresh-

old (here at 0.7) is exceeded, the decimal number is 

rounded up to 1, otherwise it is set to 0. The choice of 

threshold can significantly influence the classification. 

While the number of neurons of the input and output layer 

is determined a priori by the number of input (each 2999) 

and output (2) values, the structure of the hidden layers is 

relatively freely selectable. However, the classification re-

sult often depends heavily on the choice of suitable param-

eters. Hyperparameter optimisation can be applied as a 

transparent method for selecting these parameters. In the 

present case, the number of neurons 𝑁𝐻𝐿1, 𝑁𝐻𝐿2 and 𝑁𝐻𝐿3 

of the respective hidden layers, the batch size and the drop-

out rate are determined by hyperparameter optimisation. It 

should be noted that the number of neurons for both 𝑁𝐻𝐿1 

and 𝑁𝐻𝐿2 should be the same, which is ensured here via a 

constraint. A random search (see Figure 6) is performed on 

a predefined search space (see Table 2) with a maximum 

of 512 allowed iterations.  

 

 
Figure 6: Hyperparameter optimisation 

The validation accuracy of the neural network is consid-

ered as a criterion for the evaluation of the suitability of 

each parameter set. The absolute frequency distribution of 

the resulting validation accuracy during optimisation pro-

cess is shown in Figure 7. It can be seen that several com-

binations provide a validation accuracy up to 100 %.  

 

 
Figure 7: Absolute frequency of a validation accuracy 

during hyperparameter optimisation 

The parameter combination shown in Table 2 was chosen 

for the final classification process. This choice was made 

based on good experience with similar configurations in 

previous examinations. 

 

Table 2: Search space and chosen hyperparameter 
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4.3 Algorithm performance 

The training of the neural network over 256 epochs with a 

learning rate of 10−4 leads to a steadily decreasing loss 

function (Figure 9) when using training and test data. The 

global course of training and test accuracy (Figure 8) is 

monotonically increasing and converges to 1 (100 %).  

 

 
Figure 8: Accuracy of the train and test 

 

 
Figure 9: Loss function of the train and test 

 

Minor deviations could be related to the random selection 

of the training and test data. The subsequent prediction of 

the system state by using the validation data results in a 

validation accuracy of 100 % for the planetary gear and 

98 % for the offset gear (see matrices in Figure 10).  

 

  
Figure 10: Confusion matrices of the validation accuracy 

The system conditions OK and NOK can be well differenti-

ated by the algorithm. This justifies the usage of a neural 

network especially because of the difficult (visual) distinc-

tiveness regarding the offset gearbox condition (see 4.1). 

5 Summary and outlook  

In summary, artificial neural networks significantly im-

prove the fault detection performance of envelope spectra. 

Inhomogeneous unclear frequency patterns can be classified 

with satisfactory accuracy. The generalisation of the algo-

rithm to a wider range of good and damaged gearboxes and 

its sensitivity to different degrees of damage are open ques-

tions to be considered in future work. 
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