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Abstract

Lattice imperfections (or defects) are ubiquitous in materials. Understanding the properties

of various defects is crucial to improve materials’ performance. In magnetic materials, as it

is shown in this work, complicated interactions between the structural aspects of defects and

magnetism are present. While comprehending these interactions at the atomic scale is highly

relevant, the theoretical treatment of high-temperature paramagnetic (magnetically disor-

dered) states, in particular, poses serious challenges. In the present thesis, a new, efficient

first-principles method is introduced for the accurate computation of atomic relaxations in

magnetically disordered systems with defects. The method is based on the spin-space av-

eraging technique, and is general by construction, i.e., it is applicable to any magnetically

disordered system with defects.

Firstly, the strength of the method is benchmarked for the vacancy defect in body-centered

cubic (bcc) Fe by computing vacancy formation and migration energies. The impact of

proper atomic relaxations is found to be significant and is compared with other approximate

schemes, followed by a discussion on the influence of thermal expansion.

In the following stage, the relaxation method is applied to address vacancy-mediated diffu-

sion in the dilute FeMn system, which is decisive for steels’ performance. Mn is found to

diffuse very fast relative to Fe in the ferromagnetic state and much slower in the paramag-

netic state. The presence of Mn is shown to reduce the acceleration of diffusion coefficients

across the magnetic order-disorder transition. These findings are linked to the strong impact

of disordering on chemical interactions.

Further, the remarkable impact of magnetic states on the Mn segregation behavior at the

grain boundaries is presented. A new phenomenon, where the grain boundary and bulk

simultaneously exist in different magnetic states, is brought forward. Throughout the dis-

cussion, interplays of structure, chemistry and magnetism are identified. The effect of Mn

segregation and vacancy formation on grain boundary decohesion is presented.

Finally, the discussions on the influence of structure, chemistry on magnetic properties are

furthered by studying twin boundaries in MnAl permanent magnets. Magnetic domains un-

dergo remarkable changes in the presence of twin boundaries, and the underlying mechanisms

are linked to magnetocrystalline anisotropy energies and domain wall energies.
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Zusammenfassung

Störungen der Kristallstruktur sind in Materialien allgegenwärtig. Das Verständnis der

Eigenschaften verschiedener Defekte ist dabei entscheidend, um die Leistungsfähigkeit dieser

Materialien zu verbessern. In magnetischen Materialien gibt es komplizierte Wechselwirkun-

gen zwischen den strukturellen Aspekten von Defekten und dem Magnetismus. Während

das Verständnis dieser Wechselwirkungen auf atomarer Ebene von großer Bedeutung ist,

stellt insbesondere die theoretische Behandlung paramagnetischer (magnetisch ungeordneter)

Hochtemperaturzustände eine große Herausforderung dar. In der vorliegenden Arbeit wird

eine neue, effiziente First-Principles-Methode zur genauen Berechnung atomarer Relaxatio-

nen in magnetisch ungeordneten Systemen mit Defekten vorgestellt. Das Verfahren basiert

auf der SSA-Technik (engl.: Spin-Space-Averaging) und ist von seiner Struktur her so allge-

mein, dass es ist auf jedes magnetisch ungeordnete System mit Defekten anwendbar ist.

Zunächst wird die Stärke der Methode für den Leerstellendefekt in kubisch-raumzentriertem

(bcc) Fe durch Berechnung der Leerstellenbildung und der Migrationsenergien demonstri-

ert. Der Einfluss der richtigen atomaren Relaxation ist signifikant und wird mit anderen

Näherungsverfahren verglichen, gefolgt von einer Diskussion über den Einfluss der thermis-

chen Ausdehnung.

Im folgenden Schritt wird die Relaxationsmethode angewendet, um die Leerstellengetriebene

Diffusion im verdünnten FeMn-System zu behandeln, die für die Leistungsfähigkeit von

Stählen entscheidend ist. Mn diffundiert relativ zu Fe im ferromagnetischen Zustand sehr

schnell und im paramagnetischen Zustand viel langsamer. Es wird gezeigt, dass die Anwesen-

heit von Mn die Beschleunigung der Diffusionskoeffizienten beim Übergang von magnetischer

Ordnung zu Unordnung reduziert. Diese Ergebnisse sind mit einem starken Einfluss von Un-

ordnung auf chemische Wechselwirkungen verbunden.

Weiterhin wird der bemerkenswerte Einfluss magnetischer Zustände auf das Mn Segre-

gationsverhalten an den Korngrenzen dargestellt. Ein neues Phänomen, bei dem Korn-

grenze und Volumen gleichzeitig in verschiedenen magnetischen Zuständen existieren, wird

vorgestellt. Während der Diskussion werden Wechselwirkungen von Struktur, Chemie und

Magnetismus identifiziert. Der Effekt der Mn-Segregation und der Leerstellenbildung auf die

Dekohäsion der Korngrenzen wird dargestellt.

Schließlich werden die Diskussionen über den Einfluss von Struktur und Chemie auf mag-

netische Eigenschaften durch die Untersuchung von Zwillingsgrenzen in MnAl Permanent-

magneten erweitert. Magnetische Domänen unterliegen bemerkenswerten Veränderungen

bei der Anwesenheit von Zwillingsgrenzen, und die zugrundeliegenden Mechanismen sind

mit magnetokristallinen Anisotropieenergien und Domänenwandenergien verbunden.
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1 Introduction

Simply put, materials physics involves a thorough understanding of the physical properties

of materials at its core. The numerous possibilities for improving materials properties and

designing novel materials that arise through materials physics have made the field highly

relevant and ever so fascinating. Steels are exemplary structural materials to demonstrate

this: known for their strength, durability, recyclability, and low cost, steels have become an

integral part of human life. Understandably, this has led to a constant yearning for improved

physical properties in steels. However, the incredible complexities of structural, chemical,

and magnetic degrees of freedom that prevail in steels serve as bottlenecks to achieve such

improvements. On the other hand, the same complexities have captivated physicists and en-

gineers alike [2, 1]. Understanding these phenomena is crucial to ultimately engineer steels

with advanced properties, such as the example shown in Fig. 1-1 (adopted from [1] and

[2]). As presented in the figure, while the ferritic steels exhibit excellent elongations prior

to fracture, they have low ultimate tensile strength, whereas the situation is opposite in the

case of martensitic steels. Therefore, the design of advanced steels with transition/twinning

induced plasticity (TRIP/TWIP) that show high elongation while maintaining high tensile

strength, is of great interest. In order to achieve this, various complex events need to be

comprehended at the atomic scale. Of many phenomena that need to be subjected to careful

studies in steels, the emergence of a variety of defects, their competition, solute segregation

to defects, diffusion, fracture, are some of the important examples. Moreover, thermal treat-

ments during the engineering introduce different magnetic states in these materials, such as

the low-temperature ferromagnetic state and high-temperature paramagnetic state, which

demand proper considerations. Thus, it is necessary to take the interplay of aforementioned

phenomena and magnetism into account, and this forms the crux of the thesis.

Theoretical modelling of the paramagnetic state involves the challenging task of treating

complicated interactions of disordered magnetic moments. As such, it is a relatively young

field compared to that of chemical disorder [10]. Nevertheless, significant progress has been

achieved in treating the magnetic disorder in perfect bulk systems. We discuss some im-

portant methods and their relevance with respect to this in chapter 2. The presence of

defects brings about additional complications due to their structural complexities, and the

1



Chapter 1. Introduction

theoretical modelling in this regard is limited in the literature. In particular, the deviations

from the bulk ordering that arise due to defects result in atomic relaxations. To capture the

atomic relaxations, an accurate computation of the atomic forces is necessary. Among the

state-of-the-art methods, density functional theory (DFT) is the most feasible tool to achieve

this. The limited number of works available in the literature that deal with defects in the

paramagnetic state make severe assumptions regarding atomic relaxations [11, 12, 13, 14].

We introduce a novel method to treat atomic relaxations in magnetically disordered defect

systems in chapter 3. The method is benchmarked using a vacancy defect in body-centered

cubic (bcc) Fe as a prototype.

Figure 1-1: Elongation-tensile strength relation for different kinds of steels. The image is
adopted from [1] and [2].

FeMn alloys are important constituents of alloy steels, and Mn addition is known to strengthen

steels by forming solid solutions in the ferrite. As observed in the phase diagram [15, 16],

bcc FeMn is stable up to 5% Mn composition. Computations involving bcc FeMn systems

2



are known to be cumbersome because of the intricate magnetic interactions between Mn and

the Fe matrix [17, 18]. Moreover, vacancy-Mn interplays are ubiquitous in steels, and under-

standing them is of high interest both theoretically and experimentally. Related to this, the

temperature evolution of kinetic properties of Mn in bulk is highly relevant since kinetics

determines segregation, precipitation, nucleation, etc., in materials. We try to tackle this

by studying vacancy-mediated Mn diffusion in the ferromagnetic and paramagnetic states

in chapter 4. The relaxation method developed in chapter 3 is adopted here for the accu-

rate computation of the paramagnetic energies. Among other discussions in the chapter,

we discuss the effect of Mn on the distinctive ’kink’ or acceleration of diffusion coefficients

[19, 20, 21, 22] observed across the magnetic order-disorder transition. During the course of

the chapter, we showcase the dominance of magnetic disordering on chemical distinctiveness.

Following the diffusion studies in bulk, we analyse Mn segregation at the grain boundaries

in chapter 5. Mn segregation is known to cause grain boundary embrittlement, consequently

promoting fracture in steels [23, 24, 25]. Recently, remarkable spinodal decompositions were

observed at ferrite (bcc) grain boundaries following Mn segregation [26, 27], which could

result in phase transformations from the ferrite (bcc) to austenite (fcc). Therefore, in order

to ultimately improve steels’ properties, controlled engineering of grain boundaries [24] via

a detailed understanding of Mn segregation behaviour is needed at the atomic scale. Var-

ious heat treatments are required to achieve such engineering [25], which in turn alter the

magnetic state of the system depending on the corresponding temperatures of operation.

In this regard, the computational study of the paramagnetic state (i.e., high-temperature,

magnetically disordered state) at the grain boundaries is not a trivial task, and is almost

non-existent in the literature for steels. Nonetheless, the newly developed relaxation scheme

paves an efficient way to tackle this issue. Subsequently, we explore and discuss the struc-

tural, chemical, and magnetic interplay at the grain boundaries in both the magnetically

ordered and disordered states. Finally, taking the clue from experimental speculations [25]

that the vacancies and Mn-vacancy pairs could be pivotal in promoting grain boundary em-

brittlement, we investigate vacancy formation and perform first-principles tensile tests for

different situations at the grain boundary.

Inspired by the impressive structural, chemical, and magnetic interplay at the FeMn grain

boundary, we study such coupling, albeit of a different kind, at the twin boundaries in τ -

MnAl in chapter 6. τ -MnAl are a class of permanent magnets that have high coercivity, high

energy product, and that are hard to demagnetize [28, 29, 30]. The τ phase forms in the Mn

composition range of ∼ 50 at.% to 60 at.%, and is strongly ferromagnetic. τ -MnAl magnets

are recently being considered as alternatives to the high-performing, costly rare-earth-based
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magnets and low-performing, cheap ferrites [31, 32]. The experimental Curie temperature

(i.e., magnetic order-disorder transition temperature) for τ -MnAl is around 558 K - 653 K

[32, 33], and it has been reported that even after heating and keeping the τ -MnAl sample

at 473 K for several weeks did not change its magnetic properties substantially [34]. For all

these reasons, τ -MnAl deserve significant scientific attention. During the formation of this

phase, a large number of twin boundaries occur [35, 36, 37]. Studies involving micromag-

netic simulations and Kerr microscopy experiments have shown that the twin boundaries

could act as pinning sites for magnetic domains [38, 39], but the connection at the atomic

scale remains elusive. As we find in the chapter, these defects bring about dramatic changes

in the magnetic properties at the atomic scale that were hitherto unknown. We employ a

correlative state-of-the-art theoretical and experimental technique to dissect these findings,

which will contribute to the design of these materials with improved magnetic properties.

Thus, beginning with the development of a novel atomic relaxation method for defective

magnetically disordered systems in chapter 3, we apply it to reveal vacancy-mediated Mn

diffusion properties in bcc FeMn in chapter 4. Following this, we extend the application to the

structurally more complex grain boundary defect in chapter 5. Here, we identify structural,

chemical, and magnetic couplings, while discussing the highly relevant Mn segregation and

subsequent embrittlement. Finally, in the similar spirit, the influence of twin boundaries on

magnetic properties in τ -MnAl is presented in chapter 6. In the next chapter, i.e., chapter

2, we the briefly explain the methods adopted to achieve these results.
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2 Theoretical methods

2.1 Density-functional theory

Quantum mechanics is necessary to understand the physical properties of materials at the

atomic/sub-atomic scale and involves solving the well-known Schrödinger equation. The

Schrödinger equation, while having a simple yet beautiful mathematical form, cannot be

solved exactly even for materials with more than a few atoms. Therefore, the incredible

complexity of many-body interactions at the electronic scale requires certain physically well-

justified and meaningful assumptions to reduce the Schrödinger equation to a more tractable

form. In this regard, density-functional theory (DFT) has made tremendous progress. Since

most of the physical properties of materials are determined by their electronic structure,

DFT provides a mathematically rigorous prescription based on electron density to describe

the electronic structure of materials from first-principles. Over the last decades, DFT has re-

alized substantial progress in accurately predicting various fundamental physical properties

of not only bulk materials, but also systems with point defects, extended defects, surfaces etc.

Since the main results in the thesis are obtained using DFT, a brief overview of the theory

is mentioned in the present chapter.

2.1.1 Schrödinger equation and Born-Oppenheimer approximation

The time-independent, non-relativistic Schrödinger equation for a system of N electrons and

M nuclei is given as,

ĤΨ(q,Q) = EΨ(q,Q) . (2-1)

Here, the Hamiltonian Ĥ contains different kinetic energy and potential energy contributions

to the total energy E and can be expressed in atomic units as:

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
a=1

∇2
a

Ma

+
N∑
i=1

N∑
j>i

1

|ri − rj|
+

M∑
a=1,M

M∑
b>a

ZaZb
|Qa −Qb|

−
N∑
i=1

M∑
a=1

Za
|ri −Qa|

. (2-2)
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The first term represents the kinetic energy of the electrons and the second term represents

the kinetic energy of the nuclei. Here∇2 is the Laplace operator andMa is the mass of nucleus

a. The potential part is represented in the last three terms, with the third term describing

the repulsive interaction between the electrons and the fourth term describing the repulsive

interaction between the nuclei. The last term represents the attractive interaction between

the electrons and the nuclei. Za, Zb are the mass numbers of the nuclei a and b respectively.

q collectively represents 3N spatial coordinates (r) and N spin coordinates of the electrons,

while Q describes 3M spatial coordinates of the nuclei. Ψ is the wave function of the system.

As discussed before, solving the Schrödinger equation is complicated even for a system with

a few atoms. In this regard, certain meaningful assumptions were made by Max Born and

Robert Oppenheimer in 1927 to obtain an approximate form of the Hamiltonian in Eq. (2-

2), called as the Born-Oppenheimer approximation [40]. Within this approximation, since

the nucleus is much heavier than the electrons, the nucleus can be considered to be at rest

with respect to the electrons. As a consequence, the kinetic energy term for the nuclei in

Eq. (2-2) is zero. Further, the nucleus-nucleus repulsive interaction does not vary in space

and can be considered to be a constant. Therefore, the electronic part of the Hamiltonian is

decoupled from the nucleic part. The resulting electronic Hamiltonian can be written as:

Ĥe = −1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j>i

1

|ri − rj|
−

N∑
i=1

M∑
a=1

Za
|ri −Qa|

. (2-3)

Using the electronic Hamiltonian Ĥe, one can rewrite the Schrödinger equation as:

ĤeΨe = EeΨe . (2-4)

Here, Ψe is the electronic wave function and Ee is the electronic part of the total energy E.

The nucleic part of the energy En consists only of the potential term
M∑

a=1,M

M∑
b>a

ZaZb
|Qa −Qb|

and

is a constant as discussed before. Therefore, the total energy is,

E = Ee + En . (2-5)

Despite the aforementioned simplifications, solving the many-body Schrödinger equation re-

mained intractable. Therefore, Hartree (1928) [41] introduced further approximations by

assuming the one-electron model where each electron is assumed to be interacting with an

averaged field, called as the mean-field. In 1930, Fock extended Hartree’s model by consid-

ering the antisymmetric nature of the Fermionic wave function, known as the Hartree-Fock

method [42]. The resulting Schrödinger equation is solved iteratively using the variational

8



2.1. Density-functional theory

principle. However, due to the underlying mean-field assumption, the Hartree-Fock method

is not very accurate when deviations from this assumption are present.

2.1.2 Electron density

The electron density, ρ(r), can be defined as the number of electrons in a unit-volume at a

given point r in space. Since the square of the wave function |Ψe(q)dq|2 can be regarded as

the probability of finding electrons in volume dq, the electron density can be written as:

ρ(r1) = N

∫
..

∫
|Ψe(q1, ..,qi, ..qN)|2ds1dq2..dqi..dqN , (2-6)

where s represents the spin coordinate and qi = (si, ri). It is to be noted that the defined

electron density is a multiple integral that provides the probability of finding an electron

in the volume element dr1. By invoking the fact that electrons are indistinguishable, the

probability to find any electron is N times the probability to find one electron. Thus,∫
ρ(r1)dr1 = N . (2-7)

Therefore, while the wave function is not measurable, the electron density can be measured

(for example, from X-ray diffraction experiments) and has a direct physical interpretation.

Further, the electron density directly links the wave function to many observable physical

properties.

Even before DFT was introduced, the idea to use the electron density as the key variable was

attempted as early as in 1927 by Llwellyn Thomas and Enrico Fermi, known as the Thomas-

Fermi model [43, 44]. Within this model, the kinetic energy and potential energy terms of

the Hamiltonian were expressed as functionals of the electron density, thereby expressing

the total energy of the ground state as a functional of the electron density. However, the

assumption was made without any rigorous proof. In addition, the expression for the kinetic

energy was approximated and the exchange and correlation terms were ignored. Because of

the aforementioned reasons, the Thomas-Fermi model was inaccurate for many applications.

2.1.3 Hohenberg-Kohn theorems

DFT originated in 1964 with the two theorems put forth by Walter Kohn and Pierre Ho-

henberg, collectively known as the Hohenberg-Kohn theorems [45]. By notating the terms in

Eq. (2-3) as
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Ĥe = T̂e + V̂ee + V̂ext , (2-8)

where, T̂e is the electron kinetic energy operator, V̂ee is the electron-electron repulsion oper-

ator and V̂ext is the external potential due to nucleus-electron attraction. Further, by taking

the expectation values with respect to Ψe,

〈Ψe| Ĥe |Ψe〉 = 〈Ψe| T̂e |Ψe〉+ 〈Ψe| V̂ee |Ψe〉+ 〈Ψe| V̂ext |Ψe〉 , (2-9)

E = Te + Vee + Vext . (2-10)

It is to be noted that the forms of first two terms are universal and independent of the

system as they are only dependent on the number of electrons (determined by ρ(r)), while

the external potential is system dependent.

The first of the two Hohenberg-Kohn theorems states that the external potential (Vext) is

a unique functional of the ground-state electron density (ρ(r)) and that there exists a one-

to-one mapping between them. This relation can be proven by reductio ad absurdum. A

direct consequence of the theorem is that the Hamiltonian and the total energy are unique

functionals of the ground-state electron density. From Eq. (2-10), since the external po-

tential (from the first theorem) and thereby the ground-state energy is a functional of the

electron density, one can conclude that Te and Vee are functionals of the electron density,

too. Therefore,

E[ρ(r)] = Te[ρ(r)] + Vee[ρ(r)] + Vext[ρ(r)] . (2-11)

The sum of the first two terms Te[ρ(r)]+Vee[ρ(r)] = FHK has a universal form and is termed

as the Hohenberg-Kohn functional, while the external potential is dependent on the system

under consideration. If the mathematical form of the Hohenberg-Kohn functional is known,

the DFT provides a prescription to solve the Schrödinger equation exactly. However, the

search for the form of the functional still continues and is approximated depending on the

problem in hand.

The second theorem states that the lowest energy can be achieved as the output only if the

ground-state electron density is the input density. Hence, the theorem delivers a powerful

way to solve for the true ground-state energy practically, via the variational principle. To

summarize, by making the electron density as the central quantity in DFT, the first theorem

substantially reduces the dimensionality of the problem (from 3N to 3) since it is no longer
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2.1. Density-functional theory

dependent on the number of electrons in the system. Finally, the second theorem paves way

for the variational principle to solve for the ground-state energy. However, it is to be noted

that the exact form of FHK is still unknown. Kohn and Sham addressed the issue in 1965

via the Kohn-Sham approach [46].

2.1.4 Kohn-Sham approach

The Kohn-Sham [46] approach focuses on separating the known and unknown parts of FHK ,

such that all the unknown parts are summed up in one term and that the known part can

be determined exactly. Firstly, by decoupling Vee[ρ(r)] as Vee[ρ(r)] = EH [ρ(r)] + Encl[ρ(r)]

in Eq. (2-11),

E[ρ(r)] = Te[ρ(r)] + EH [ρ(r)] + Encl[ρ(r)] + Vext[ρ(r)] . (2-12)

Here, EH [ρ(r)] is known as the Hartree potential, which contains the classical Coulomb inter-

actions and Encl[ρ(r)] represents the non-classical part of the electron-electron interactions.

Next, to provide a more accurate description of the kinetic energy term, Kohn and Sham

introduced a set of non-interacting electrons as the reference system and thereby transformed

the original many-electrons Schrödinger equation to a set of one-electron Schrödinger equa-

tions. In such a fictitious system, the electron density of non-interacting electrons is assumed

to be the same as the electron density of the original system with interacting electrons. As

a consequence, the kinetic energy of such a fictitious system can be exactly determined.

However, it is to be noted that the kinetic energy of the true system of interacting electrons

differs from that of the non-interacting system by an unknown term. Such a term is added to

Encl[ρ(r)] and the resulting functional is termed as the exchange-correlation energy. Hence,

all the unknowns are collected in the exchange-correlation energy. Therefore,

E[ρ(r)] = Tnon−int[ρ(r)] + EH [ρ(r)] + EXC [ρ(r)] + Vext[ρ(r)] . (2-13)

Tnon−int[ρ(r)] is the kinetic energy of the fictitious system and EXC [ρ(r)] contains the residual

kinetic energy (Te−Tnon−int) and non-classical electron-electron interactions. Since the exact

form of EXC [ρ(r)] is not known, it is approximated by various functionals depending on the

material system and the physical quantity of interest.

2.1.5 Exchange-correlation functionals

Different functionals have been introduced to approximate the exchange-correlation poten-

tial. Among them, the local density approximation (LDA) [47] and generalized gradient

approximation (GGA) [48] are two of the well-known functionals. A brief overview of LDA
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and GGA is summarized as follows:

LDA assumes a uniform electron gas model with constant electron density within each in-

finitesimal volume of the total volume of the system. While such an assumption is far away

from many realistic systems where electron densities vary rapidly in space, it allows for an ex-

act (or very accurate) treatment of the exchange-correlation energy. Within LDA, EXC [ρ(r)]

is given as,

ELDA
XC [ρ(r)] =

∫
ρ(r)εXC [ρ(r)]dr . (2-14)

Where, εXC [ρ(r)] is the exchange-correlation energy per electron in a uniform electron gas

with density ρ(r). For spin-polarized systems, a variation of the LDA, known as the local

spin-density approximation (LSDA) was introduced. In LSDA, EXC is given as:

ELSDA
XC [ρ↑(r), ρ↓(r)] =

∫
ρ(r)εXC [ρ↑(r), ρ↓(r)]dr , (2-15)

with ρ(r) = ρ↑(r) + ρ↓(r). In general, the exchange part is overestimated while the correla-

tion part is underestimated in LDA/LSDA. Partly because of the resulting error-cancellation,

LDA/LSDA are good approximations for many systems. However, LDA/LSDA fail when

the electron density has large spatial variations.

GGA overcomes the aforementioned shortcoming of LDA, by introducing an additional vari-

able: the gradient of the electron density (∇ρ(r)). EXC [ρ(r)] in GGA attains the following

form:

EGGA
XC [ρ(r)] =

∫
ρ(r)εXC [ρ(r),∇ρ(r)]dr . (2-16)

For spin-polarized systems, the spin electron densities and their gradients are considered. In

this case, EXC becomes:

EGGA
XC [ρ↑(r), ρ↓(r)] =

∫
f [ρ↑(r), ρ↓(r),∇ρ↑(r),∇ρ↓(r)]dr . (2-17)

Different forms for f [ρ↑(r), ρ↓(r),∇ρ↑(r),∇ρ↓(r)] have been proposed in the literature. Some

well-known examples are the approximations introduced by Perdew and Wang (PW91) [49]

and by Perdew, Burke, and Ernzerhof (PBE) [48]. While GGA gives accurate results for

many systems, it is not reliable for strongly correlated systems, semiconductors etc. Further

improvements over GGA have been proposed in the literature, of which an example is meta-

GGA [50], where the Laplacian of the energy density (second order contributions) is taken

12



2.1. Density-functional theory

into account as an additional variable. GGA-PBE is used in the present thesis, as it is

sufficiently accurate for material systems under study.

2.1.6 Pseudopotentials and Projector-Augmented Wave method

In order to increase the computational efficiency of DFT calculations, Heine introduced a

pseudopotential approach in 1970 [51]. In this approach, the core electrons are assumed to

be frozen, since atomic bonds are mainly formed by the valence electrons. Subsequently, the

potential due to nuclei is substituted by an effective potential and the Kohn-Sham equations

are solved only for the valence electrons.

Among different pseudopotentials, the projector-augmented wave (PAW) potential proposed

by Blöchl (1994) [52] is one of the most commonly used potentials. Mathematically, PAW can

be seen as a generalization of the pseudopotential approach and the latter can be obtained

naturally from PAW as an approximation. PAW preserves the accuracy of the all-electron

potential and simultaneously provides the computational efficiency of the pseudopotential

approach. For a deeper understanding, the reader is referred to the seminal paper by Blöchl

[Projector augmented-wave method, P. E. Blöchl, Phys. Rev. B 50, 17953].

2.1.7 Spin-polarized DFT

The extension of the Hohenberg-Kohn-Sham equations to spin-polarized systems was pro-

posed by Barth and Hadin in 1972 [53]. In this approach, the electron density was replaced

by a more general spin density matrix. The spin density matrix γαβ(r) includes the electron

density scalar ρ(r) and magnetization density vector m(r). α, β =↑, ↓ are the spin variables1.

γαβ(r) =
1

2
(ρ(r)δαβ +mx(r)σxαβ +my(r)σyαβ +mz(r)σzαβ) . (2-18)

Here, δ and σ = (σx, σy, σz) are the identity and Pauli matrices respectively and are of the

order of 2× 2. The Pauli matrices are:

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
. (2-19)

1It is to be noted that the scalar electron densities were used for spin-polarized cases in Eq. (2-17) and Eq.
(2-15) for the ease of representation, whereas a general matrix notation for the spin density is adopted
in this section.
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Instead of the scalar electron density, the spin density is the fundamental variable in spin-

polarized DFT. Hence, the Kohn-Sham energy functional can be represented as,

E[γαβ(r)] = Tnon−int[γαβ(r)] + EH [γαβ(r)] + EXC [γαβ(r)] + Vext[γαβ(r)] . (2-20)

The above prescription for the spin density matrix to treat magnetism in DFT is applicable

to both collinear and non-collinear magnetic systems. In the case of non-collinear magnets,

the spin density matrix will have non-zero off-diagonal components, whereas they reduce

to zero in the case of collinear magnets (from Eq. (2-18), since my, mx are zero for a

collinear system). Further, the form of the Kohn-Sham energy functional remains the same

as described by Eq. (2-20), irrespective of the collinear or non-collinear cases.

2.2 Magnetic disorder

Magnetism plays a significant role in determining structural and chemical properties of many

materials such as Fe-based alloys. On exposure to real environment conditions, magnetic

behaviour, and thereby the physical properties of materials can change. An important ex-

ample is the change from an ordered magnetic state to a disordered (or paramagnetic) state

when a magnetic material is exposed to high temperatures. Therefore, the relevance of un-

derstanding such magnetic excitations and their proper treatment is paramount.

Early models to treat magnetism were based either on the local moments model (Heisenberg-

like, where electrons are assumed to be localized) or the itinerant electrons model (based

on Stoner description) [10]. Further, Moriya introduced a model [54] that treats the local

moment model and the itinerant model as limiting cases. Moriya described magnetism based

on spin density fluctuations and used the notion of average local moments. In 3d-transition

elements like Fe and their alloys, magnetism is determined by itinerant electrons that are

strongly localized on atoms and the longitudinal fluctuations survive even above the Curie

temperature. Therefore, one can assume that they behave in Heisenberg-like manner. Since

Moriya’s work, the theoretical understanding of ordered magnetic materials has found sub-

stantial progress in condensed matter physics and material science. On the other hand, the

study of magnetic disorder is a relatively young scientific field and still needs development

of new methods, largely owing to the difficulty in handling complex interactions of random

magnetic moments.

Different methods have been introduced to treat magnetic disorder in bulk systems. Since

the central idea of the thesis is to develop and apply a computationally efficient yet accurate
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method to describe the impact of magnetic disorder on defect properties, only the ingredients

used to achieve this goal are described in the current section.

2.2.1 Disordered Local Moments and Special Quasirandom Structures

DFT provides an accurate description of paramagnetic energies and forces that are neces-

sary to describe defect properties. The disordered local moment (DLM) method, introduced

by Hubbard [55] and Hasegawa [56], aims at treating magnetic disorder within DFT. DLM

considers magnetic moment vectors with finite sizes and random directions that are fixed

in space at lattice sites. Hence, a small subset of the infinite configuration space is sam-

pled and the temporal variation of moments are mapped onto the space. However, DFT

calculations involving non-collinear magnetic moments are cumbersome and computation-

ally demanding. In this regard, Gyorffy et al. [57] rigorously proved that one can ignore

non-collinearity within DLM by assuming complete randomness of moments and forsaking

the spin-orbit coupling. DLM can be coupled with single-site approximations such as the

coherent-potential approximation (CPA) [57], to calculate paramagnetic energies. However,

the CPA method fails to account for atomic relaxations, especially in the presence of defects

such as vacancies, grain boundaries etc. where accurate computations of atomic forces are

pivotal. The solution to the problem would be to employ the supercell approach, where

the configuration space is modelled by a supercell that repeats in space as a consequence of

applying periodic boundary conditions.

While DLM establishes that magnetic disorder can be emulated within DFT by performing

calculations on a set of configurations with random collinear moments, the question remains

as to how to choose such configurations from the huge set of possible candidates within the

supercell approach. An efficient way to tackle the issue is to employ special quasirandom

structures (SQS), originally demonstrated for chemical disorder by Zunger et al. in 1990 [58].

SQS has been later extended and applied to magnetic disorder successfully. Considering the

Heisenberg Hamiltonian for magnetism,

Hm = −
∑
i,j 6=i

Jijei.ej , (2-21)

where, ei, ej are the unit vectors in the same directions as of the magnetic moments at sites

i and j respectively. Jij is the magnetic exchange parameter. Considering ηth coordination

shell, the same equation can be rewritten as:

Hm = −
∑
η

Jηnη < φη > . (2-22)
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Here, jη is the effective exchange parameter, nη is the number of atoms and < φη > is the

average spin correlation function in the ηth shell respectively. For the fully paramagnetic

state, the spin correlation function < φη > should reduce to:

< φη >=
1

N

∑
i,j⊂η

ei.ej = 0 . (2-23)

SQS gives a prescription for a paramagnetic supercell to satisfy Eq. (2-23) for the given

Hm. Hence, SQS is an efficient tool to simulate magnetic disorder within supercell based

DFT. Computationally, the magnetic structure as given by SQS has to be preserved over

the course of DFT calculations, as the spins can flip since disordered magnetic states are

unstable. To achieve this, the spins need to be constrained and the constraint scheme needs

to robust, efficient and reliable in determining paramagnetic energies. Such a spin constraint

scheme is discussed next.

2.2.2 Spin constraints

Early works on implementing spin constraints within DFT relied on adding penalty contri-

butions to the total energy expression. As a result, computationally demanding convergence

tests need to be carried out to reduce the penalty energies, since they can lead to inac-

curate total energies. An alternative, computationally robust constraint method [3] based

on the PAW formalism implemented by Maximilian Grabowski and Christoph Freysoldt

(Max-Planck-Institut für Eisenforschung) is discussed in this section. This tool is tested and

applied in the atomic relaxation method [3] developed (discussed in the next chapter) by the

author in the present thesis. In general, the total spin moment can be defined as,

Mtot =

∫
d3r M(r) , (2-24)

where M(r) is the magnetization density,

Mp(r) =
∑
αβ

σpαβ
∑
n

fnψ
∗
nα(r)ψnβ(r) . (2-25)

Here, p corresponds to a Cartesian component, fn is the occupation number. The rest

of the symbols have the same meaning as discussed in earlier sections. The total spin

moment Eq. (2-25) is not sufficient to characterize magnetic disorder in the system since

local magnetic moments of individual atoms need to be defined. Among different definitions

for magnetic moment of an atom that are available in the literature, the PAW based definition

allows to enforce constraints to high accuracy. In this formalism, the atomic moment is linked
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to the partial-wave within the PAW sphere and is given as,

Ma =
∑
ijα

χαγ
aα
ij Ωij , (2-26)

where Ma refers to the atomic moment of atom a and χ is the spin sign,

χα =

{
+1 for α =↑
−1 for α =↓ . (2-27)

Ωij is an integral defined by the partial-waves within the PAW cut-off radius rcut, and has

the dimension of volume -

Ωij =

∫
d3r φi(r)φj(r)Θ(rcut − |r− ra|) , (2-28)

where Θ is the Heaviside function and φ(r) is the partial-wave. Since the atomic moments are

well-defined in 2-26, spin constraints can be introduced via the standard Lagrange formalism.

Therefore, the goal is to find the stationary points of the functional

L = F el[ψ{nσ}, f{nσ}]−
∑
a

νa
(
Ma[ψ{nσ}, f{nσ}]−Ma,target

)
.

Here, Ma,target are the target spins, and νa the corresponding constraints that enter the

equation as Lagrangian multipliers. F el refers to the electronic free energy functional. The

stationary points are found by minimizing the functional with respect to Lagrangian param-

eters, i.e.,

δL
δ〈ψn|

= 0 , (2-29)

∂L
∂fn

= 0 , and (2-30)

∂L
∂νa

= 0 . (2-31)

Therefore, along with usual constraints ψn and fn, the spin constraints ν enter the Hamilto-

nian. Consequently, an additional factor or term is added to the Kohn-Sham equation. For a

self-consistent algorithm to solve the constrained Kohn-Sham equation, the spin constraints

ν should be determined. In order to achieve this, in the first step, an iterative diagonalization

is used to solve the constrained Kohn-Sham equation for the given charge density. Using the

resulting eigenfunctions and eigenvalues, initial magnetic moments and spin constraints are

updated via a conjugate gradient minimization. Finally, corresponding wave functions are
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calculated and the new charge density is found out to be used as input for the next iteration

in the constrained Kohn-Sham equation.

Within the aforementioned approach, the spin constraint on each atom has a physical mean-

ing since it can be considered as an external magnetic field that drives the atomic moment

towards the target moment. To summarize, the approach may be considered as a local

projection of the wave function onto a locally reduced basis set. Within this projection,

the constraining field then takes the form of a homogeneous magnetic field inside the PAW

cut-off sphere.

2.2.3 Atomic forces and Spin-Space Averaging

Atomic forces are fundamental ingredients to compute atomic relaxations. Consequently,

the accuracy of various properties (such as phonons, defect energies, diffusion coefficients

etc.) depends on the accuracy of forces. In general, sophisticated electronic structure meth-

ods such as dynamical mean-field theory (DMFT) cannot compute atomic forces efficiently.

On the other hand, empirical approaches like the embedded atom method (EAM) do not

capture the magnetic degrees of freedom correctly. In this regard, DFT has proved to be

very successful in the accurate and efficient computation of forces in magnetic systems. The

Hellmann-Feynman forces as obtained from DFT are true forces for magnetically ordered

states at low magnetic temperatures. On the other hand, the magnetic degrees of freedom

are much faster than the atomic degrees of freedom at high magnetic temperatures, leading

to their adiabatic decoupling. Therefore, the atoms do not observe instantaneous forces (or

Hellmann-Feynman forces) of any particular magnetic configuration, rather they experience

an averaged force of many configurations. Thus, only an average of energies of different

magnetic configurations is not sufficient but an average of forces is necessary to capture and

characterize magnetic disorder.

The spin-space averaging (SSA) approach introduced by Körmann et al. (2012) [59] is based

on the aforementioned idea. The SSA forces are defined as:

F i
SSA =

∑
K=1,M

pKF
i
K , (2-32)

where, F i
K is the Hellmann-Feynman force on the ith atom in the Kth magnetic configuration,

M is the total number of magnetic configurations and F i
SSA is the spin-space averaged force

on the ith atom. pK denotes the Boltzmann weight for the Kth magnetic configuration

given as pK = exp[−EBO
K /kBT ]/Z, where EBO

K is the magnetic Born-Oppenheimer energy
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2.2. Magnetic disorder

for the Kth magnetic configuration, kB is the Boltzmann constant and Z is the magnetic

partition sum. For a complete magnetically disordered state, we are interested in the fully

paramagnetic limit of T →∞, in which all configurations have the same weight pK = 1/M .
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3 Atomic relaxation method for

magnetically disordered materials with

defects

(The main results of the chapter have been published in - Atomic relaxation around defects

in magnetically disordered materials computed by atomic spin constraints within an efficient

Lagrange formalism. Omkar Hegde, Maximilian Grabowski, Xie Zhang, Osamu Waseda,

Tilmann Hickel, Christoph Freysoldt, and Jörg Neugebauer, Phys. Rev. B 102, 144101

(2020))

3.1 Introduction

Physical and structural properties of materials differ when they are exposed to different en-

vironmental conditions. For example, structural defects such as vacancies emerge at high

temperatures. Simultaneously, physical properties such as the magnetic state and entropic

excitations of the material change. Therefore, in order to understand effects of structural

defects on material characteristics, it is necessary to study their behaviour in the presence of

high temperature magnetic state, which is a disordered state in general. Methodologically,

the treatment of magnetic disorder is challenging. In addition, the presence of defects adds

to the challenge, since the coupling of structural and magnetic degrees of freedom needs to

be handled carefully. The coupling affects atomic relaxations that arise from bond breakage

due to deviations from ordered structural configuration, and relaxations in turn depend on

atomic forces. Thus, atomic forces are fundamental in determining defect properties and

their accurate description requires a parameter-free theory.

First-principles density-functional theory (DFT) has been the front runner for such calcula-

tions [60]. DFT provides an accurate description of forces at the atomic level, and achieves

it within the confines of computational limits. While empirical methods such as embedded

atom methods (EAM) do not accurately capture atomic forces, advanced electronic structure

methods such as dynamical mean-field theory (DMFT) demand computational efforts that

21



Chapter 3. Atomic relaxation method for magnetically disordered materials with defects

are impractical to achieve for current standards.

As discussed in chapter 2, many studies have been performed in order to understand bulk

properties of magnetically disordered materials [61, 62, 63, 64, 65, 66, 67]. Similarly, DFT

has made great progress in understanding defect systems [68]. However, only a few theoret-

ical works that combine both magnetic disorder and defects can be found in the literature

[69, 70, 10, 71, 72, 73, 74]. Such studies employ approximative methods to calculate defect

energies, especially by making assumptions on atomic relaxations. For example, some of

these studies [69, 11, 12] assume the atomic geometry in the ferromagnetic geometry for the

paramagnetic state. However, through tracer diffusion experiments, Iijima et al. [22] have

shown that the atomic relaxations around the vacancy in the paramagnetic state are larger

than the relaxations in the ferromagnetic state. On the other hand, some studies [13, 14]

fully relax atoms in each magnetic configuration. We show in this chapter that such a set-up

that is based on the assumption that the time-scale for magnetic relaxations are comparable

to that of atomic relaxations can lead to vacancy energies that are largely different from

experimental values. These approximative schemes are discussed in the results section of the

chapter. Recently, Gambino and Alling [71] computed atomic relaxations within the adia-

batic approximation. In this case, an averaging over atomic positions obtained from a set of

calculations with changing magnetic configurations was carried out. However, the approach

converges the forces indirectly without a direct control over their accuracy, and requires a

large number of DFT calculations to achieve this goal.

In the present chapter, a newly developed atomic relaxation method [3] based on spin-space

averaging (SSA) [63] is presented. SSA was originally introduced to describe phonons in

paramagnetic (PM) or magnetically disordered materials (discussed in methodology chap-

ter). SSA is based on the adiabatic limit, a physical approach to the PM state, where the

magnetic degrees of freedom are assumed to change much faster compared to the atomic

degrees of freedom. Therefore, SSA relies on computing averaged forces obtained from many

different magnetic configurations, rather than instantaneous forces from any particular mag-

netic configuration. The disordered local moment (DLM) model (discussed in chapter 2) is

used to sample the configurational space of the PM state within the supercell approach of

DFT. Since such excited states or configurations are far from the energy minimum or ground-

state, a robust and reliable spin-constraint approach (discussed in methodology chapter) is

used to constrain the magnetic moments so that the magnetic disorder is conserved through-

out the calculation run.

The new relaxation method (SSA relaxation method/scheme) is applied to a prototype sys-
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3.2. Generating random magnetic configurations

tem of body-centered cubic (bcc) Fe with a vacancy as the defect, since many works in the

literature are available for comparison. Another motivation is to gain new insights into va-

cancy formation, migration and activation energies, since vacancy energetics can be decisive

in understanding diffusion mechanisms and mechanical properties of the material. The re-

sults obtained from SSA relaxation method are compared with alternative, approximative

relaxation approaches. The impact of volume expansion and comparisons with experimental

literature are discussed.

The chapter is organized as follows: section 3.2 discusses generation of magnetic configura-

tions, section 3.3 presents simulation algorithm for SSA relaxations, computational details

are discussed in section 3.4. Results are presented and discussed in section 3.5 and the

chapter is concluded with section 3.6.

3.2 Generating random magnetic configurations

By neglecting spin-orbital coupling, magnetic disorder can be represented by randomised

collinear atomic moments within DFT [57]. In this regard, special-quasirandom structures

(SQSs) [58, 75] provide an efficient prescription to emulate randomness in a given supercell,

as discussed in chapter 2. Originally introduced for chemical disorder, the SQS approach

has been generalized for magnetic disorder [75, 76] and several works in the literature have

successfully employed collinear SQSs to reveal PM bulk properties in different materials

[75, 77, 59, 76]. In the present chapter, a perfect bulk in the PM state is sampled by ap-

plying spin constraints on randomly distributed spin-up and spin-down magnetic moments

provided by a binary SQS, such that the total magnetic moment sums up to zero. An ex-

ample of the SQS structure for a 2×2×2 bcc cell is shown in Fig. 3-1. Different SQSs can

be generated by considering different pair correlation functions. In Tab. 3-1 energies and

lattice parameters of different magnetic SQSs are compared. Since the energies and lattice

parameters are very similar for different SQSs, a single SQS is sufficient to represent the

bulk PM state. Such an observation is supported by previous studies [77], where different

magnetic SQSs with different pair correlation functions were shown to yield similar energies

and equilibrium volumes in bcc Fe.

Unlike the situation in perfect bulk, creating a vacancy in a bulk SQS results in a specific

magnetic environment around the vacancy. Therefore, various local magnetic environments

need to be superimposed for a proper representation of the PM state. In order to generate

different magnetic structures with a vacancy, either a vacancy can be created at the same po-

sition in different SQSs or a vacancy can be created at different positions in a given SQS. The
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Chapter 3. Atomic relaxation method for magnetically disordered materials with defects

Figure 3-1: An example of a SQS structure for
a 2×2×2 bcc cell is shown. Note
that the actual calculations em-
ploy a 3×3×3 bcc cell.

Magnetic state ∆E (meV) a (Å)

Ferromagnetic 0 2.834
Paramagnetic (SQS A) 193 2.829
Paramagnetic (SQS B) 196 2.830
Paramagnetic (SQS C) 196 2.830

Table 3-1: Comparison of energy differences
(∆E) and lattice parameters (a
(Å)) for the bulk ferromagnetic
(FM) and PM states. Different
SQSs that are generated by consid-
ering different correlation functions
are compared for the PM state.
∆E is the energy difference with
respect to the FM ground-state at
0 K. 3×3×3 supercells are consid-
ered for the calculations.

latter method has two advantages: (1) It is similar to the spin-wave method [69, 12], where a

completeness of spin configurations is ensured and thereby the translational symmetry of the

system is naturally incorporated (2) generating a single parent SQS is sufficient for both the

bulk and vacancy structures, without any need for additional SQSs. The choice of the parent

SQS is neither unique nor crucial, as realized in Tab. 3-1. In addition to generating different

magnetic configurations, atomic forces are symmetrized according to the structural symme-

tries of the system and thereby effectively increasing the total number of magnetic snapshots.

It is to be noted that once an atom is removed from the bulk SQS to create a vacancy, the

total magnetic moment is not zero. A magnetic moment which is equal in magnitude and

opposite in direction to the spin of the removed atom remains as surplus. Nonetheless, since

a superposition of different magnetic configurations with either positive or negative residual

spins is considered, the effective moment of the vacancy can be regarded as zero.

3.3 Protocol for SSA relaxation

The algorithm for carrying out relaxation in the PM limit is shown in Fig. 3-2 and discussed

in the current section:

• After generating random magnetic configurations as discussed in the above section, a
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Figure 3-2: Schematic picture with the algorithm for the SSA relaxation method. Various
tools (Random magnetic configuration generator, DFT code with spin constraint
tool, SSA scheme, External structural optimizer, and ART tool for migration
barrier calculations) are combined and connected to build the final protocol [3].

static spin-constrained DFT calculation is performed on each magnetic configuration.

Such a constraint scheme is discussed in the last chapter, and is applied for the first time

to obtain the results in the present chapter. The forces on the atoms in all magnetic

configurations are collected after the electronic minimization. A set of forces obtained

from each magnetic configuration, say Nth configuration for example, is represented as

{FN} and the total energy as EN in Fig. 3-2.

• Each atom experiences a different force in different magnetic configurations. Forces

on each atom from all the configurations are averaged according to the SSA scheme

(discussed in the methodology chapter) [63]. The SSA force in the PM limit is defined

as:

25



Chapter 3. Atomic relaxation method for magnetically disordered materials with defects

F i
SSA =

1

N

N∑
K=1

F i
K . (3-1)

Here, F i
SSA is the SSA force on the ith atom. F i

K is the force on the ith atom in the

Kth magnetic configuration, N is the total number of magnetic configurations.

• In the next step, the SSA forces are symmetrized according to the crystal symmetries of

the system. It is to be noted that symmetry-breaking might occur in defect structures

that could be smothered by explicit symmetrization. However, such a situation does

not arise in the present system of study, i.e., bcc Fe with a vacancy.

• In the case of calculations involving saddle-point configurations (or migration barri-

ers), the symmetrized SSA forces are further transformed according to the activation-

relaxation technique (ART) [78, 79]. ART systematically explores the local potential

energy surface and activates the migrating atom from the local minimum to the ad-

jacent saddle point. Thus, ART bypasses the need for an expensive search of entire

transition path.

• In the following step, the atoms are relaxed according to the SSA forces (or SSA + ART

forces in the migration barrier calculations). For this purpose, the optimization scheme

’external structure optimizer’ (SxExtOpt) [80] is used in our work. The advantage of

using SxExtOpt is two-fold: (1) The structural optimization scheme needs to interrupt

the calculation and should carry out the optimization externally, since the output forces

from DFT calculations undergo a series of treatments as discussed above. SxExtOpt

facilitates such an external optimization (2) SxExtOpt parametrizes the force Hessian

on the fly and therefore ensures fast convergence. Since SSA relaxation scheme is,

in general, computationally much more expensive than a simple DFT run, a faster

convergence of the geometry is much desired.

• The new output geometry from structural optimization is provided as an input struc-

ture for magnetic configurations for the next set of spin-constrained DFT calculations.

The steps discussed before are repeated until the SSA forces are converged to the

required criterion.

The relaxation scheme described is referred to as ’SSA relaxation’. The schematic of such

a protocol is represented in Fig. 3-2. To bring together different parts of the complex

algorithm, the python based integrated development environment (IDE) pyiron [81] is used.

pyiron provides a platform to set-up DFT calculations, perform external optimizations and

analyze the output data.
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3.4 Computational details

The SPHInX package [82] is used to perform DFT calculations. The calculations employ

PAW [83, 84] formalism with the Perdew-Burke-Ernzerhof (PBE) flavor of the generalized-

gradient approximation (GGA) [85, 48]. A 3 × 3 × 3 cell of 54 atoms is used for all bulk

calculations, while vacancy calculations involve 53 atoms. The 0 K equilibrium lattice pa-

rameter for both the FM and PM states is found to be about 2.83 Å(Tab. 3-1). For the

calculations that include volume expansion in the paramagnetic state, a lattice constant of

2.87 Å is used. This value is obtained using the relative lattice expansion coefficient near

the Curie temperature that is measured from experiments [86]. Fermi-Dirac smearing is

used for all the calculations, with a smearing width of 0.1 eV. The width is chosen such that

the corresponding electronic temperature (about 1160 K) is above the Curie temperature

(1043 K) in order to emulate electronic temperature in the PM state. Further, it is verified

that reducing the smearing width to 0.05 eV changed the vacancy formation energy by only

about 2 meV. An energy cut-off of 600 eV and k-point mesh of 6×6×6 are chosen. 10−5 eV

is chosen to be the convergence criterion for the total energy in the electronic relaxation

loop. Ionic relaxation is stopped when the forces are converged within 0.015 eV/Å. The

convergence of SSA forces for the first and second nearest-neighbour atoms of the vacancy

in the vacancy formation energy calculation are shown in Fig. 3-3.

Magnetic moments are allowed to relax for FM calculations, whereas the spin constraints are

applied for PM calculations. For the PM bulk, moments are constrained to 2.1 µB as obtained

from a moment-energy optimization at 0 K. In the presence of the vacancy, the change in the

magnitude of magnetic moment of the nearest-neighbour atoms is considered after carrying

out a set of spin constrained calculations to identify the optimum moment magnitude (2.3

µB) via moment-energy optimization. However, it is to be noted that constraining moment

magnitude is an approximation. Therefore, it is necessary to ensure that the resulting

contribution to the total energy is small. To derive the penalty energy that arises from

constraints, one can use Lagrange multipliers as

νa = dE/dMa , (3-2)

where, νa is the Lagrange multiplier, E is the energy and Ma is the magnetic moment of atom

a. Near the optimum value, the energy depends quadratically on the magnetic moment, i.e.,

∆E =
(dE/dM)2

2S
. (3-3)

Here, S = d2E/dM2 = dν/dM is the spin stiffness. For the current study, the root-mean-

27



Chapter 3. Atomic relaxation method for magnetically disordered materials with defects

Figure 3-3: Convergence of SSA forces for the first and second nearest-neighbour atoms of
the vacancy. The ionic relaxation is stopped when the force on each atom is
within 0.015 eV/Å, which is marked by the orange dashed line.

square (rms) value for the constraining field strength is rms(ν) = 30 meV/µB. From the

bulk calculations, the spin stiffness of S = 550 meV/µ2
B per atom is extracted. Using these

values, the energy contribution from constraints is found to be small and is about 1 meV

per atom. In addition, the value is similar for bulk, vacancy and transition states. As a

result, the error cancellations from the energy differences will further reduce the impact of

constraining magnitudes of moments. Therefore, constraining the magnitudes is not a major

assumption, while it substantially improves the numerical efficiency of DFT calculations.

The convergence of vacancy formation energies with respect to the number of magnetic

structures is considered: the difference in vacancy formation energies calculated for six and

eight configurations is found to be about 20 meV and the difference in vacancy formation

energies calculated for seven and eight structures is found to be about 5 meV. Thus, eight

configurations are chosen for all PM calculations. Further, the symmetries of the crystal

structure are utilized while symmetrizing the forces, which increases the total number of

magnetic snapshots. For example, for the vacancy state, the effective number of magnetic

snapshots is 8 × 48 = 384. Therefore, the number of magnetic configurations needed to

achieve convergence depends inversely on the number of symmetries of the system.
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The vacancy formation energy is calculated as [68]

Ef = Evac
N−1 −

(
N − 1

N

)
Ebulk
N , (3-4)

and the migration energy as

Em = Esaddle
N−1 − Evac

N−1 . (3-5)

Here, Evac
N−1, E

bulk
N , Esaddle

N−1 are the energies of - supercell with vacancy, a perfect bulk and a

supercell with a saddle-point, respectively. In the case of SSA relaxations (i.e., paramagnetic

case), the averaged total energy obtained from all the magnetic configurations after achieving

the convergence of SSA forces is considered. ART [78] is used to determine migration barriers.

The activation energy Ea is defined as the sum of the vacancy formation energy Ef and the

vacancy migration energy Em.

3.5 Results and Discussion

The application of the SSA relaxation scheme to bcc Fe as a prototypical material system

and the resulting physical insights are presented in the current section. The calculated values

of vacancy formation energies, migration energies and activation energies for different cases

are summarized in Tab. 3-2. The impacts of magnetic disordering, relaxations and volume

expansion are discussed systematically as follows:

3.5.1 Impact of magnetic disorder

Bcc Fe shows a strong FM ordering at low temperatures. In the FM state, the calculated

formation, migration and activation energies are 2.15 eV, 0.74 eV and 2.89 eV respectively,

as shown in Tab. 3-2 and Fig. 3-4. These values are well in agreement with experiments

(EFM
a = 3.01 eV [89], 2.75 eV [22]) and previous theoretical results [12, 11]. Thus, in order

to properly capture the PM state, it is to be noted that magnetic disorder such as the one

given by the SQS structure is indeed required. In other words, as discussed in chapter 2,

the pair correlation functions need to be reduced to zero (or close to zero) for a proper sam-

pling of the PM state and only achieving zero magnetization is not sufficient. For example,

assuming an ordered magnetic configuration such as the antiferromagnetic (AFM) state in

place of random magnetic configurations can lead to erroneous results for the PM state:

when vacancy calculations are performed in the AFM state, a negative vacancy formation

energy is obtained. The negative value arises because the removal of an atom to create

29



Chapter 3. Atomic relaxation method for magnetically disordered materials with defects

Ef (eV) Em (eV) Ea (eV)
This work

FM 2.15 0.74 2.89
PM (SSA relaxed) 1.62 0.30 1.92
PM (unrelaxed) 1.94 0.63 2.57
PM (FM relaxed) 1.71 0.50 2.21
PM (individually relaxed) 0.99 0.45 1.44

PM (SSA, a = 2.87 Å) 1.89 0.35 2.24
Experimental values for PM

Matter et al. [87] 1.60
de Schepper et al. [88] 1.79
Iijima et al. [22] 2.61
de Schepper et al. [89] 2.37

Other theoretical values for PM

Gambino et al. [71] (a = 2.84 Å) 1.61
Ruban et al. [69] (a = 2.90 Å) 1.77
Sandberg et al. [11] 1.54 0.40 1.97
Ding et al. [12] (a = 2.90 Å) 1.98 0.43 2.41

Table 3-2: First-principles values of activation energy Ea for self-diffusion, the vacancy for-
mation energy Ef and the migration barrier Em for nearest neighbour vacancy
jumps [3] in bcc Fe. For the PM state, energies obtained from different relaxation
schemes are compared. The values are presented for the theoretical equilibrium
lattice constant a = 2.83 Å, if not indicated differently.

the vacancy results in a more stable state that involves a ferromagnetic interaction of the

eight nearest neighbour atoms around the vacancy. Since the vacancy formation energy is

negative, further calculation of the migration barrier has not been performed. Though the

AFM state does not occur at any temperature in bcc Fe, the distinctive result of negative

vacancy formation energy signifies the importance of considering disordered local magnetic

moments for the PM state.

On introducing magnetic disorder, the vacancy energies decrease substantially and system-

atically compared to the FM state: the vacancy formation energy for the SSA relaxation

(1.62 eV) is ∼ 0.5 eV smaller and the migration energy (0.30 eV) is reduced by 0.44 eV,

resulting in a difference of about 1 eV in the activation energy (Fig. 3-4). The larger va-

cancy energies in the FM state as compared to the PM state could be because the formation

of a vacancy involves overcoming both the structural and magnetic symmetries in the FM

state. The relative effect is highest in the case of the migration energy, where the magnetic
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Figure 3-4: Comparison of activation energies, which are the sums of formation energies
(lower section of each bar) and migration energies (upper section of each bar),
between physically realistic SSA relaxations and other relaxation considerations
in the PM state in bcc Fe. Results are shown for the theoretical equilibrium
lattice constant (a = 2.83 Å) and at a high-temperature lattice constant (a =
2.87 Å) close to the Curie temperature [3].

disorder changes the migration barrier by more than 50% as compared to the FM barrier.

The change in the activation energies of the two magnetic states manifests as a prominent

kink (first-order transition) in the diffusion-coefficients (Fig. 4-5 in chapter 4) at the Curie

temperature. Thus, magnetic disorder has a dramatic effect on vacancy energetics. The

impact of atomic relaxations on vacancy energies is discussed next.

3.5.2 Impact of atomic relaxations

The main results obtained from the SSA relaxation are described in this section. These main

results are compared with approximative relaxation schemes that are used in the literature

(mentioned in the introduction of the chapter). Accordingly, the PM vacancy energies are

classified as those obtained from (1) the unrelaxed case, (2) the FM relaxed case, (3) the
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SSA relaxation, and (4) the individually relaxed case. The results concerning the equilibrium

lattice parameter, i.e., a = 2.83 Å, are discussed in the current section Fig. 3-4. Each of the

relaxation schemes is defined and discussed in detail as follows.

1. In the unrelaxed case, the vacancy energies are calculated by averaging the total ener-

gies of different magnetic configurations that have the atomic structure of the perfect

bulk in which an atom is removed to create a vacancy. The main reason to consider

such a case is straightforward: the vacancy energies obtained from this case purely

incorporate the effect of magnetic disorder and this gives an opportunity to decouple

its effect on relaxations and relaxation energies. In such a case, the vacancy formation

energy is 1.94 eV, the migration energy is 0.63 eV and the activation energy is 2.57 eV.

The activation energy is smaller than the FM counterpart by 0.32 eV, which signifies

the strong impact of magnetic disordering. However, this is only about a one-third of

the total decrease in the PM state as obtained from SSA relaxation. Consequently, it

is evident that the relaxation effects are crucial and cannot be neglected.

2. Similar to the unrelaxed case, the FM relaxed values are obtained by freezing the atomic

structure of all the magnetic configurations, but to the relaxed geometry in the FM

state. The underlying assumption in such a method is that the structural configuration

corresponding to the PM minimum is close to that of the FM minimum. While the FM

relaxed method has been used in the literature [12, 11], a careful and proper treatment

of atomic relaxations in the PM state is necessary for many systems, including bcc

Fe. As shown in Fig. 3-4, for this case, the vacancy formation energy is 1.71 eV, the

migration energy is 0.50 eV, and the activation energy is 2.21 eV. Compared to the

activation energy in the FM state, where the structural configuration is the same but

the magnetic state is different, the reduction is 0.68 eV. On the other hand, compared

to the activation energy in the unrelaxed case, where the structural configuration is

different but the magnetic state is the same, the reduction is 0.36 eV. Therefore, it

is evident that while the change in the magnetic state is the most dominant factor

in driving the reduction in activation energy, the contribution of atomic relaxations is

still significant.

3. The last bar in Fig. 3-4 shows values corresponding to the SSA relaxation method.

Physically, the SSA relaxation scheme is nearest to the true picture, where an atom in

the PM state experiences an averaged force because of the rapidly changing magnetic

environment. Here, the vacancy formation, migration, and activation energies are

1.62 eV, 0.30 eV, 1.92 eV, respectively. Therefore, the reduction in activation energy

compared to the activation energy in the FM relaxed state is about 0.3 eV. This
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signifies that it is crucial not only to consider the proper magnetic state, but also

proper relaxations in the proper magnetic state. The migration energy for the SSA

relaxation is the lowest amongst all the schemes, and the migration energy calculations

depend on relaxations in both the vacancy state and saddle-point state.

4. Another commonly employed relaxation scheme in the literature [13, 14] is the ‘indi-

vidually relaxed’ scheme. Here, each random magnetic configuration used for the SSA

averaging is allowed to relax completely until the forces on all the atoms in that par-

ticular magnetic configuration are vanishingly small. The averaged energy of all such

configurations is considered. Unlike any of the previous cases, here different magnetic

configurations end up with different atomic configurations after structural relaxations.

Such a relaxation method differs fundamentally from the SSA relaxation, because the

physical picture in the individually relaxed scheme assumes a time-scale for the mag-

netic degrees of freedom that is comparable to that of the atomic degrees of freedom.

In other words, each atom is assumed to react and adjust to a specific magnetic envi-

ronment unlike the SSA relaxation. The vacancy energies are listed in the 5th row in

Tab. 3-2. Clearly, the vacancy formation energy (0.99 eV) and the activation energy

(1.44 eV) are substantially smaller and the lowest of all the relaxation schemes. The

reduction in the energies can be attributed to the stronger relaxations of atoms, as

they are not constrained by any external conditions. In the case of the vacancy state,

symmetry breaking relaxations are observed, leading to further decrease in the forma-

tion energy. On the other hand, the SSA relaxation counterpart has a larger value,

since the structural minimization in this case does not correspond to the minimization

of any single random magnetic configuration, but is correlated to many configurations.

The large difference in the activation energies is rooted in the underlying assumptions on

time-scales of the atomic and magnetic degrees of freedom. In the individually relaxed

scheme, the time-scales are assumed to be comparable, whereas in the SSA relaxation scheme,

the magnetic degrees of freedom are much faster than atomic degrees of freedom (adiabatic

limit). The observation (5th row in Tab. 3-2) that the activation energy obtained from the

individually relaxed scheme is unrealistic and artificial justifies the assumption of the adia-

batic limit. The vacancy formation energy from the SSA relaxation is in agreement with the

value obtained by Gambino et al. [71], where a position averaging scheme was considered in

the adiabatic limit.

The atomic geometries obtained in different relaxation schemes for the nearest-neighbour

atoms of the vacancy are quantified in terms of their displacements from their positions in

the perfect bulk in Fig. 3-5. The structural configuration is different for different magnetic
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configurations in the individually relaxed scheme. Therefore, the averages of displacements,

which are calculated over all these structural configurations, are considered to represent

the relaxations in the individually relaxed case in Fig. 3-5. The SSA displacements are

sandwiched in between the other two schemes. Due to crystal symmetries, all the first

nearest-neighbour atoms of the vacancy in the vacancy state can be quantified by the same

value. However, these atoms can be further classified as the first, second and third nearest-

neighbours of the migrating atom in the saddle-point case. From the figure - (1) the yellow

coloured atoms are the first nearest-neighbours and experience a slightly repulsive force

away from the migrating atom, (2) the second nearest-neighbour atom marked in green

experiences a small attractive pull towards the vacancy and (3) the third nearest-neighbour

atoms marked in orange are benefited by the atoms moving away from the vacancy and at the

same time attracted by two vacancies, resulting in large displacements into the core. In bcc

structures, second nearest-neighbour atoms of the vacancy in the vacancy state also undergo

significant relaxations. The relaxations of these second nearest-neighbour atoms show similar

trend as the first nearest-neighbour atoms with respect to the different relaxation schemes.

The displacements or relaxations in the PM state as observed from the SSA relaxation are

larger compared to the FM state. Such an observation is in agreement with conclusions

from tracer diffusion experiments by Iijima et al. [22]. The tracer diffusion coefficients for

the self-diffusion in bcc Fe obtained from this work were used to find the fraction of the

kinetic energy that is carried by the migrating atom via the equations derived in earlier

works [90, 91]. In turn, the fraction of the kinetic energy of migrating atom is related to the

activation volume [92, 90], which is an effective measure of atomic relaxations during the

vacancy activation. Consequently, the atomic relaxations in the PM state were found to be

relatively larger than the FM state.

3.5.3 Inclusion of volume expansion

At high temperatures, volume expansion occurs and hence it becomes necessary to incor-

porate the change in lattice parameter for the PM state. While the results in the previous

sections correspond to the equilibrium lattice parameter (a = 2.83 Å) at 0 K, the current sec-

tion describes the effect of lattice expansion. To this end, a lattice parameter of 2.87 Å that

is obtained by extrapolating the equilibrium lattice constant using the experimental relative

lattice expansion co-efficient [86] above the Curie temperature is used. The inclusion of vol-

ume expansion makes the comparison with experimental results more viable.

The vacancy formation, migration, and activation energies after including volume expansion

are compared with those of with equilibrium volume in Fig. 3-4. Evidently, the inclusion

34



3.5. Results and Discussion

Figure 3-5: Displacements of nearest-neighbour atoms of the vacancy for different relaxation
schemes for the PM state of bcc Fe are shown [3]. Atoms are represented accord-
ing to local symmetry, and the displacements are linked to the corresponding
atoms in the diagrams given in the inset. Blue bars show the displacement in
the vacancy state and yellow, green, and orange bars depict the displacements
in the transition state.

of volume expansion results in an increase of vacancy activation energy, driven largely by

the increase in formation energy. This is because of the smaller equilibrium volume for the

vacancy formation as compared to the bulk equilibrium volume. The activation energy for

the SSA relaxation in this case is 2.24 eV, with the formation energy of 1.89 eV and the

migration energy of 0.35 eV. It is to be noted that the activation energy has a similar value

as that of the FM relaxed scheme (2.21 eV) with equilibrium lattice constant. This is only a

coincidence and could be because of error cancellation in the FM relaxed case: the exclusion

of both proper SSA relaxation (which reduces the activation energy relatively) and volume

expansion (which increases the activation energy) could lead to such a cancellation. In gen-

eral, both SSA relaxations and volume expansion need to be considered for a more exact

treatment of magnetic disorder at high-temperatures.
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The available literature (Table 3-2) for vacancy formation and activation energy in bcc Fe

show dispersed values, for both theory and experiments. The experiments can be largely

classified as positron annihilation experiments [93, 87, 88] and tracer diffusion experiments

[89, 22]. de Schepper et al. [88] studied a high purity sample for positron annihilation

experiments as compared to previous experiments in the literature. The vacancy formation

energy from volume expansion inclusive SSA relaxation (1.89 eV) is in good agreement

with such positron annihilation experiments by de Schepper et al., (1.79± 0.10). The tracer

diffusion experiments [89, 22] observe that the relaxations in the PM state is larger compared

to the FM state, agreeing with the SSA relaxation calculations. Quantitatively, the activation

energies obtained from the tracer diffusion experiments (2.37-2.61 eV) are larger compared

to the value obtained from SSA relaxations (2.24 eV). Though the magnetic entropy is not

explicitly calculated in the present study, it is to be noted that the SSA relaxation method

presented in this chapter is aimed at obtaining total energies in the paramagnetic (fully

disordered, at high temperatures) state, where the magnetic entropy contributions to the

vacancy formation and migration free energies are known to be zero due to cancellation

effects when taking the difference between the defect and perfect bulk cell [74]. This is also

true for the fully ordered ferromagnetic state for similar reasons.

3.6 Conclusions

A new physically realistic atomic relaxation scheme, which captures the adiabatic limit for

defect systems in the presence of magnetic disorder, is introduced. Within the limitations of

DFT and the adiabatic limit, the SSA relaxation scheme is an exact method that is computa-

tionally efficient. In developing the SSA relaxation method, various tools are combined and

collaborated with the DFT code SPHInX. However, the structure of the method is designed

with a goal of smooth transferability to any DFT code that has a constrained magnetism

scheme, and the method can be applied to magnetically disordered materials with any kind

of defects.

The SSA relaxation is benchmarked by applying it to bcc Fe with a vacancy by calculating

the vacancy formation, migration, activation energies in the PM state. Comparisons are

made with the relaxation schemes commonly employed in the literature. All the PM results

are consistently smaller compared to the values in the FM state, in agreement with the ex-

perimental literature. In general, the impact of magnetic disorder is found to be dominant

in determining vacancy energies, while a significant contribution arises from the relaxations.

Differences in the activation energies obtained from the FM relaxed scheme, individually

relaxed scheme as compared to the SSA relaxations provide new physical insights: The
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FM relaxations (or displacements) are much different and smaller compared to the SSA (or

PM) relaxations, in agreement with the experimental observations. The activation energy

obtained from the individually relaxed scheme is too small and different compared to the

SSA relaxation scheme and experiments. This finding establishes that the slow time-scale

for magnetic degrees of freedom as assumed in the individually relaxed scheme is far from

physical reality. The adiabatic limit, where the magnetic degrees of freedom are faster com-

pared to the atomic degrees of freedom assumed in SSA relaxations, is justified. The atomic

displacements in the SSA relaxation are larger than the FM relaxed and smaller than the

individually relaxed displacements. This indirectly implies that in a system where the dis-

placements (and hence resulting energies) obtained from the FM relaxed and individually

relaxed schemes show similar values, the more expensive SSA relaxations could be replaced by

one of these cheaper relaxation schemes or by taking the energy average of both the schemes.

Further, the impact of volume expansion is studied by performing SSA relaxations using

the lattice parameter of the system at the Curie temperature. The results show a notable

increase in the vacancy formation and activation energies. Finally, it is shown that for a viable

comparison with the experiments, the SSA relaxations as well as the volume expansion need

to be included for the high-temperature PM state.
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4 Impact of magnetism on diffusion of

Mn in α-Fe bulk

4.1 Introduction

The study of diffusion, which is a crucial kinetic phenomenon, is needed to understand the

physics of segregation, nucleation and precipitation in materials. As a consequence, also me-

chanical properties of materials depend on their atomic diffusion processes. For this reason,

understanding diffusion properties is paramount in systems such as Fe-based alloys that have

important practical applications.

FeMn systems form an important class of steels. Mn segregation from bulk to extended de-

fects such as grain boundaries and dislocations in steels is well-known but detailed physical

knowledge as to their kinetics and mechanisms is lacking. A part of such an understanding

concerns Mn diffusion in the bulk. Properties such as diffusion coefficients in Fe-based alloys

have been measured via tracer diffusion experiments [6, 94, 95, 5, 96, 97, 98, 99, 100, 101, 102,

103, 104, 105, 106]. However, these measurements are restricted by the temperature range

they can access. While the theoretical computation of diffusion in non-magnetic materials is

relatively straightforward, magnetic systems such as α-Fe and its alloys exhibit a characteris-

tic deviation from the Arrhenius behaviour as the magnetic order undergoes a transition to a

disordered state above the Curie temperature. While several theoretical studies are available

for self-diffusion in pure Fe [107, 108, 109, 110, 74], the treatment of paramagnetic (PM)

state in these works is typically subjected to serious assumptions on atomic relaxations,

as discussed in the previous chapter. In comparison, studies regarding Mn-vacancy diffu-

sion in Fe are scarce [111, 112]. Both these works reported the vacancy-Mn binding energies,

vacancy formation energies and migration barriers in the FM state but ignored the PM state.

In the present chapter, the SSA relaxations method introduced before is employed to gain

physical insights into the diffusion of Mn in Fe. Diffusion coefficients, solute-solvent diffusion

ratios and correlations factors are central physical quantities that need to be computed in

order to investigate diffusion mechanisms. The Ruch model [113], which is based on a model

39



Chapter 4. Impact of magnetism on diffusion of Mn in α-Fe bulk

introduced by Girilfaco [114], is used here to compute self diffusion coefficients. Le Claire’s

model [115] provides the ratio of diffusion coefficients of the solute to that of the solvent.

These models are discussed in the next section. The computational details are provided in

Sec. 4.3, results and discussions in Sec. 4.4 and the conclusions of the chapter are drawn in

Sec. 4.5.

4.2 Diffusion coefficients

4.2.1 Ruch model

Diffusion in material systems such as bcc Fe and its alloys deviates from the Arrhenius

behaviour across the magnetic order-disorder transition, resulting in a characteristic kink

in the diffusion profile. Here, the diffusion accelerates with respect to temperature when

transforming from an ordered to a disordered magnetic state. To predict such a diffusion

profile, Ruch et al. introduced a model [113] that interpolates vacancy activation energies

between the magnetically ordered (FM) and disordered (PM) states:

D(T ) = D(0) exp

[
−E

PM
a (1 + αS(T )2)

RT

]
. (4-1)

Here, D(T ) is the diffusion coefficient at temperature T , D(0) is the pre-exponential fac-

tor, EPM
a is the activation energy in the PM state, S is the normalized magnetization at

temperature T and R is the universal gas constant. The α parameter is given by,

α =
EFM
a − EPM

a

EPM
a

. (4-2)

Therefore, the description of diffusion coefficients requires the determination of activation

energies in the FM and PM states. It is interesting to note that while the FM activation en-

ergies are straightforward to capture in first-principle studies, the low-temperature diffusion

coefficients or activation energies are difficult to measure in tracer diffusion experiments. On

the other hand, the opposite is true for the high temperature PM state.

4.2.2 Ratio of diffusion coefficients

In the presence of a solute atom next to the vacancy, the relative rate of solute diffusion

coefficients with respect to self-diffusion coefficients of the host atom provides useful insights.

To this end, Le Claire formulated [115] a model based on the nearest neighbour (NN) jumps

of the vacancy, which provides the ratio of diffusion coefficient of the solute to that of the
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host atom. Taking the example of the FeMn system, the ratio is given by,

DMn

DFe

=
f2
f0

ω2ω4

ω0ω3

with ωi = νe
− E

(i)
m

kBT , (4-3)

where DMn and DFe are the Mn and Fe diffusion coefficients respectively, and ωi are the

jump frequencies. ν are the attempt frequencies that depend on the mass of the atom. f0 is

the correlation factor of the pure system, and is a constant for the given crystal structure.

For the bcc systems, f0 is 0.7272. In the present case of Mn in Fe, the attempt frequencies

of Fe and Mn are assumed to be equal, since their atomic masses are similar.

Figure 4-1: Migration energies for the 1NN jumps of the vacancy (dashed circle) in the

vicinity of a solute atom (orange circle). E
(0)
m is the self-diffusion migration

barrier of the host atom and represents any jump that is not affected by the
presence of the solute atom. Arrows represent the directions of atomic jump.

Different migration barriers considered for the Le Claire’s model are presented in Fig. 4-1.

Unlike the case in pure Fe with a vacancy, where all the 1NN jumps were similar, the pres-

ence of a solute causes non-random or correlated jumps. Such correlations are stored in f2,

known as the kinetic correlation factor of the solute. f2 is a function of all the NN jumps
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and is given by,

f2 =
µ

2(ω2/ω3) + µ
(4-4)

µ = 7−
(

1 + 0.512

(
ω0

ω4

))−1
(4-5)

− 2

(
1 + 1.536(

ω0

ω4

)

)−1
−
(

1 + 3.584(
ω0

ω4

)

)−1
f2 attains values between 0 and 1. The smaller the f2, the more correlated are the vacancy-

solute jumps and vice-versa. This means that the chemical environment is highly distinguish-

able for the vacancy if f2 is smaller, and indistinguishable as f2 approaches the asymptotic

value f0 (f2 approaches f0 when ω2 ≈ ω3 and ω3 ≈ ω4, from Eq. (4-6). Subsequently, DMn

≈ DFe (from Eq. (4-3)). For more details regarding the equations, the reader is referred to

LeClaire [115] and Manning [116].

4.2.3 Mixing scheme for the ratio of diffusion coefficients

The Ruch model provides a prescription for interpolating between the FM and PM activation

energies via the α parameter (Eq. (4-2)), given by -

Ea(T ) = EPM
a (1 + αS(T )2) . (4-6)

An explicit calculation of the migration barrier at each intermediate temperature is compu-

tationally costly. Therefore, in order to evaluate the diffusion ratios as discussed previously,

one needs an interpolation scheme for individual migration barriers, too. To realise this, an

interpolation scheme similar to that for the activation energies is employed for each migration

barrier:

Em(T ) = EPM
m (1 + αmS(T )2) , (4-7)

where Em is the migration energy or barrier. Here, αm is given by,

αm = (EFM
m − EPM

m )/EPM
m . (4-8)

Therefore, each migration jump is associated with a specific αm. In order to compare the

impact of different interpolation schemes, a similar interpolation was applied directly on the

diffusion coefficients instead of individual migration energies, and the obtained results were

very similar. Therefore, for the rest of the chapter, only the aforementioned interpolation of
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migration energies is considered to discuss the results. The interpolated migration barriers

are further used to determine the diffusion coefficients and kinetic correlation factors. The

Ruch model is employed to determine the diffusion coefficients of pure Fe, and the Le Claire’s

model is further used to extract the Mn diffusion coefficients from the ratios. Experimental

values of the pre-exponential factor and magnetization [117] are used as input parameters

for the Ruch model.

4.3 Computational details

4.3.1 DFT based calculations

The DFT calculations are performed with the SPHInX [118] code, by employing the Perdew-

Burke-Ernzerhof (PBE) generalized-gradient approximation (GGA) [85, 48], using the pro-

jector augmented wave (PAW) [119, 120] formalism. In order to make direct comparisons

with experimental results, the experimental lattice constants [86] of 2.86 Å and 2.90 Å are

considered for the FM and PM states respectively. These values are larger than their corre-

sponding equilibrium lattice constants at 0 K (obtained from DFT) as a result of thermal

expansion. 3× 3× 3 supercells of 54 atoms are considered for bulk calculations and a single

vacancy is created for vacancy calculations. For the FeMn system, a single Fe atom is re-

placed by a Mn atom.

A 6× 6× 6 k−point mesh and an energy cut-off of 600 eV are taken for all the calculations.

The error in total energy due to the choice of these parameters is minimized to 1 meV/atom

after careful convergence tests. A smearing width of 0.1 eV, within the Fermi-Dirac smearing

scheme, is chosen. The criterion for electronic convergence of the total energy is 10−5 eV.

Structural optimization for atomic relaxations is carried out with SxExtOpt [80]. The con-

vergence criterion for atomic forces in structural optimization is set to 0.015 eV/Å.

As discussed in the previous chapter, spin constrained calculations are performed for the

PM state. Magnetically disordered structures are generated using the SQS [58] method.

Adiabatic decoupling, where the magnetic degrees of freedom are rapidly changing relative

to the atomic degrees of freedom, is assumed. The previously introduced SSA relaxation

method [3] is employed for all the calculations in the PM state. The results obtained using

the SSA relaxations are labelled as DFT-SSA in figures involving comparisons with the

experiments and effective interaction model (discussed below). Spins are not constrained

for the FM calculations. In the FM bulk state, Mn couples antiferromagnetically to Fe (-

2.05 µB), whereas it attains a moment magnitude of 1.8 µB in the PM state. The magnetic
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moments in the PM state for both the bulk and vacancy structures are determined by careful

moment-energy optimizations. The presence of Mn in the proximity of the vacancy results

in the vacancy-Mn binding energy given by,

Ebinding =
(
E(N−1)

vac + E
(N−1)
Mn

)
−
(
E

(N−2)
vac,Mn + E(N)

)
. (4-9)

The energies on the right hand side of the equation refer to supercells with a single vacancy,

with a single Mn atom in the Fe bulk, with both the vacancy and Mn atom, and without

both, respectively. Here, N is the total number of Fe atoms is in the pure bcc bulk state.

For the PM state, energies of different magnetic configurations are averaged to obtain each

term. According to this definition, a positive binding energy refers to an attractive interac-

tion between the vacancy and the Mn atom.

The migration barriers are computed by Activation-Relaxation Technique (ART) [121]. The

migration energy corresponding to the transition (trans) state is defined as:

Em = Etrans − Evac, (4-10)

where Etrans is the energy of the transition state supercell.

4.3.2 Effective interaction model and tracer diffusion experiments

The main results of the current chapter are compared with the results of the colleagues from

CEA Saclay (A. Schneider, F. Soisson, C.-C. Fu) and the University of Münster (V. Kulitckii,

S. Divinksi, G. Wilde), where the former contributed through an effective interaction model

(EIM) coupled with Monte Carlo (MC) simulations [74] and the latter conducted tracer

diffusion experiments. Therefore, some of the central figures present the results of these

studies along with those of DFT-SSA. However, these results are added to compare and

confirm the independent results obtained in the current chapter, and are not a part of the

thesis. The results are a part of the publication: The impact of magnetic transition on Mn

diffusion in α-iron: Correlative state-of-the-art theoretical and experimental study, O. Hegde,

V. Kulitckii, A. Schneider, F. Soisson, T. Hickel, J. Neugebauer, G. Wilde, S. Divinski, C.-C

Fu, Phys. Rev. B 104, 184107 (2021) [4].

4.4 Results and discussions

The results pertaining to vacancy energies are discussed first in this section, followed by a

discussion on diffusion properties.
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4.4.1 Vacancy energies

The vacancy formation energies in pure Fe for the FM and PM states are 2.22 eV and 1.96

eV respectively, for the experimental lattice parameters. The presence of Mn generates a

binding energy with the vacancy, calculated according to Eq. (4-9). In the FM state, the

1NN binding energy between Mn and the vacancy is 0.15 eV and reduces to 0.10 eV in

the PM state. Here, the positive value refers to an attractive interaction between the solute

and the vacancy. The 1NN vacancy-Mn binding energy in the FM state reported in the

literature (0.15 eV [112], 0.17 eV [111]) is in good agreement with the the current work.

The energies in the PM state have not been reported before. When Mn is present at the

2NN distance, the binding energies are 0.06 eV and 0.03 eV for the FM and PM states,

respectively. Small values for the 2NN binding energies indicate that the 2NN jumps of the

vacancy can be neglected. To determine the formation energies at intermediate tempera-

tures, they are obtained by subtracting the migration energy at any given temperature from

the activation energy at the same temperature, both of which are given by the Ruch model

discussed before. The resulting profiles of formation energies for pure Fe and Mn in Fe are

shown in Fig. 4-2.

Figure 4-2: Vacancy formation energies in pure Fe and in the dilute case of Mn in Fe. The
vacancy is positioned at 1NN distance from Mn in the dilute FeMn system.
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Migration energies (eV)
Ferromagnetic Paramagnetic

E
(0)
m 0.73 0.43

E
(2)
m 0.46 0.41

E
(3)
m 0.64 0.42

E
(4)
m 0.58 0.36

Table 4-1: The calculated migration energies for the exchanges of the vacancy with nearest
neighbour atoms in both the FM and PM states in pure Fe and dilute FeMn
system. E

(0)
m is the migration barrier for the jump in pure Fe (or any Fe jump

that is unaffected by the presence of Mn). E
(2)
m is the migration barrier for the

Mn jump. E
(3)
m and E

(4)
m represent the Fe jumps that dissociate and associate

Mn-vacancy pair, respectively (Fig. 4-1).

Figure 4-3: Vacancy migration energies for the intermediate temperatures obtained by the
Ruch interpolation for the 1NN jumps of the vacancy in FeMn [4].

Different migration barriers for the jumps depicted in Fig. 4-3 and the limiting values in the

fully FM and PM states are enlisted in Tab. 4-1. Clearly, the energies for the PM jumps are

significantly smaller than their FM counterparts. This is because of magnetic disordering

reduces the barriers and in addition larger relaxations in the PM state result in further de-

crease of the barriers. It is interesting to note that the migration energy of Mn (E
(2)
m = 0.46
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eV) differs largely from the pure Fe barrier (E
(0)
m = 0.73 eV) in the FM state. This is a first

indication that Mn diffuses much faster than Fe in the FM state. The fact that the jump

that associates the vacancy and Mn (E
(3)
m ) is smaller than the jump that dissociates them

(E
(4)
m ) agrees well with the observation that the 1NN Mn-vacancy binding is attractive, in

both the FM and PM states.

These fully FM and PM migration barriers are further fitted according to the Ruch model

as given in Eq. (4-7) to obtain intermediate migration barriers, which are represented in

Fig. 4-3. It is immediately apparent from the figure that the migration energies for different

jumps have more dispersed values in the FM state and are much closer in the PM state. This

means that the distinction of chemical environment around the vacancy is rather reduced in

the PM state compared to the FM state. This is further confirmed later in the discussion of

kinetic correlation factors.

Figure 4-4: Vacancy activation energies for pure Fe and Mn in Fe.

The activation energies in the fully FM and PM states are obtained by the summation of

corresponding formation and migration energies. In pure Fe, the values are 2.95 eV and 2.39

eV in the FM and PM states respectively. For the dilute FeMn system, the values are 2.53 eV

and 2.27 eV in the same order. It is important to note that the activation energy difference
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between the FM and PM states is remarkably reduced on the introduction of Mn solute. This

difference, as will be seen in the next section, will effectively reduce the kink or acceleration in

Mn diffusion coefficients relative to Fe diffusion across the Curie temperature. The profiles of

activation energies are shown in Fig. 4-4. Similar to the formation and migration cases, the

PM window of difference in the activation energies for Fe and Mn is much smaller than that

in the FM state, indicating a dominant effect of magnetic disordering on the local chemistry

around the vacancy.

4.4.2 Diffusion parameters

The self-diffusion coefficients of Fe are derived from the Ruch model (Eq. (4-1)) using acti-

vation energies in the FM and PM states. The resulting diffusion profile is presented in Fig.

4-5. The comparison of the obtained diffusion coefficients with the experimental literature

shows a good agreement between DFT-SSA and experiments. The kink marks the transfor-

mation from the FM to PM state.

Figure 4-5: Self-diffusion coefficient in bcc Fe as a function of temperature, obtained from
DFT-SSA. The experimental values from Iijima et al. [5] and Hettich et al. [6]
are compared.
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The Mn diffusion coefficients and their profiles are plotted in Fig. 4-6. The DFT-SSA results

are compared with the EIM-MC results from the collaborators from CEA Saclay and tracer

diffusion experiment results from the collaborators from the University of Münster. Overall,

all the profiles are in good agreement with each other. The novelty of the DFT-SSA results

lies in an accurate handling of the PM state and its atomic relaxations, but an interpolation

scheme such as the Ruch model is required to fit the FM and PM activation energies.

On the other hand, EIM-MC explicitly computes the diffusion coefficients at intermediate

temperatures, but assumes the FM geometry for all the temperatures. Precision parallel

grinding and ion-beam sputtering are used in the experiments for measuring the penetration

profiles of the tracer at higher and lower temperatures, respectively. The novelty of the

current experimental data is that the temperature range over which the diffusion coefficients

are measured is larger than that in previous experiments. Therefore, the three different

methodologies validate each other and agree well. This indicates that simpler models such

as the Ruch model and Le Claire’s model give reliable results for dilute alloys, provided that

accurate energies as obtained from DFT-SSA are used as model inputs.

Figure 4-6: Diffusion coefficient of Mn in bcc Fe as a function of temperature, obtained from
DFT-SSA, EIM-MC and experimental measurements [4]. EIM-MC are obtained
by the collaborators from CEA Saclay and the experimental measurements are
conducted by the collaborators from the University of Münster.
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Fig. 4-7 compares the Fe and Mn diffusion coefficients obtained from DFT-SSA. From the

figure, it is clear that the kink in Mn diffusion profile is remarkably reduced as compared

to Fe. This is a direct consequence of the fact that the difference in activation energies of

the two magnetic states is larger in the case of Fe than Mn. Such a behaviour is largely

due to the difference in activation energies in the FM state, since the PM activation energies

for Fe (2.39 eV) and Mn (2.27 eV) are similar and result in the PM diffusion profiles to

be almost parallel. In the FM state, the Mn-vacancy binding energy is larger as compared

to the PM state. As a consequence, the vacancy formation energy is much reduced in the

presence of Mn. Further, the Mn migration energy (0.46 eV) is substantially smaller than

the barrier in pure Fe (0.73 eV). This is because of the larger size and similar atomic mass of

Mn in comparison with Fe, which favours an exchange of Mn with the vacancy more than Fe.

Figure 4-7: Comparison of the diffusion profiles for self-diffusion and Mn diffusion in α-Fe.

The ratio of diffusion coefficients obtained from DFT-SSA through Le Claire’s model are

presented along with the EIM-MC and experimental results in Fig. 4-8. In the fully PM

regime, all the results are in perfect agreement, where the ratio is almost a constant and

Mn diffuses about 2-3 times faster than Fe. Just below the Curie temperature, DFT-SSA
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continues to be in good agreement with the experiment. At about 900 K, the DFT-SSA

value (about 10) lies in between the EIM-MC (about 15) and experimental (about 5) value.

For the large part, the three methodologies are in good agreement. The experimental error

reduces as one moves towards higher temperatures. The ratio increases exponentially as the

temperature decreases, indicating that Mn diffuses much faster than Fe in the FM state.

Reiterating the point made before, the small value of the ratio in the PM state demonstrates

that the magnetic disordering reduces or erases chemical distinctiveness.

Figure 4-8: Ratio between the Mn diffusion coefficient in bcc Fe and the Fe self-diffusion
coefficient [4]. The EIM-MC results are obtained by the collaborators from CEA
Saclay and the experimental measurements are conducted by the collaborators
from the University of Münster.

To understand the effect of magnetic disorder further, the solute (or Mn) correlation factors

are studied and shown in Fig. 4-9. Since these factors are currently not possible to extract

from the tracer diffusion experiments, only the DFT-SSA and EIM-MC results are presented.

When only FM barriers are considered even at high temperatures, the profile deviates signif-

icantly from the curve that includes proper PM considerations. This indicates that the effect

of magnetic disorder is paramount at high temperatures. At low temperatures the kinetic
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correlation factor approaches 0 and at high temperatures it reaches the asymptotic value of

0.7272 or the self-diffusion correlation factor (a constant for the bcc crystal structure). Here,

the low values mean that the solute and vacancy jumps are highly correlated and vice-versa.

Therefore, in the FM state the chemical identity is preserved whereas magnetic disordering

in the PM state destroys it, resulting in random exchanges of solute and host atoms with

the vacancy.

Figure 4-9: Kinetic correlation factors for Fe self-diffusion (f0: green line) and Mn diffusion
(f2: blue lines) [4]. The f2 kinetic correlation factor determined by considering
only the barriers in the FM state is also displayed (orange lines) for comparison
and to highlight the impact of magnetic disorder. The EIM-MC results are
obtained by the collaborators from CEA Saclay.

4.5 Conclusions

The impact of magnetism on diffusion properties of the dilute FeMn system has been studied

in the present chapter. In the FM state, the presence of Mn in the vicinity of the vacancy

leads to an attractive binding energy and a substantially smaller migration barrier for the

Mn-vacancy jump as compared to the jump in pure Fe. Magnetic disordering in the PM
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state exhibits a significant influence on vacancy energetics, resulting in their reduction as

compared to the values in the FM state. In addition, the energetics of vacancy, in particular

migration energies for different jumps have more similar values in the PM state and are more

dispersed in the FM state. This indicates that magnetic disorder dominates over chemical

identities at high temperatures. This conclusion is further strengthened by the study of

solute kinetic correlation factors, which reveals a clear and crucial impact of the magnetic

disorder at high temperatures. The FM state exhibits a low value of the correlation factor

while it reaches a high, asymptotic value with respect to the solvent correlation factor (f0)

in the PM state, indicating that the jumps are highly correlated in the FM state and are

more random in the PM state.

Diffusion coefficients, which are important for practical and engineering purposes, are deter-

mined from the Ruch model and Le Claire’s model with vacancy activation and migration

energies obtained from DFT-SSA as model inputs. For the case of self-diffusion in Fe, good

agreement with the existing experimental literature is seen. The non-Arrhenius behaviour

is marked by the kink in the diffusion profile across the Curie temperature. For the Mn

diffusion, excellent agreements with the tracer diffusion experiments and EIM-MC results

are obtained. The Mn diffusion profile shows a reduced kink in the diffusion profile across

the magnetic order-disorder transition as compared to Fe self-diffusion. This is mainly due

to (i) the larger binding energy and remarkable reduction in the Mn migration barrier as

compared to the pure Fe barrier in the FM state, (ii) similar activation energies for Fe and

Mn diffusion in the PM state, which lead to a decrease in the difference of activation energies

between the FM and PM state for the Mn case compared to Fe self-diffusion. The ratios

of diffusion coefficients obtained from the Le Claire’s model, which uses migration barriers

obtained from DFT-SSA, is in good agreement with the experiments and EIM-MC results.

Mn diffuses very fast compared to Fe in the FM state (about 20 times at 800 K) and diffuses

only about twice as fast as Fe in the PM state. In general, good agreement between DFT-

SSA, experiments and EIM-MC for different diffusion properties show that simpler models

such as the Ruch model and Le Claire’s model provide excellent results for dilute alloys if

accurate energies as obtained from DFT-SSA are given as inputs. Thus, new physical in-

sights and deeper understanding regarding vacancy mediated diffusion in the FeMn system

are obtained.
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5 Interplay of structure, chemistry and

magnetism at FeMn grain boundaries

5.1 Introduction

Grain boundaries are an important class of extended defects that are ubiquitous and in-

fluence various physical properties of materials, such as toughness, fracture, and corrosion

[122, 24, 123]. The presence of grain boundaries not only alters the local structure, but can

have impact on the local chemistry via solute segregation. In turn, segregation can have

impact on the mechanical properties of grain boundaries [25], and provides opportunities for

grain boundary engineering [24]. For example, solute segregation is linked to grain boundary

embrittlement in various materials [124, 125, 126], including steels [25]. Experimentally, in

order to control the segregation and engineer the grain boundary toughness, various heat

treatments are performed [24]. Different heat treatments could inadvertently result in dif-

ferent magnetic states in the material, demanding a thorough understanding of magnetism

and the related physics.

Over the course of the present chapter, magnetism is identified and discussed as one of the

important aspects in determining FeMn grain boundary energetics, such as grain boundary

formation energies, Mn segregation energies, vacancy formation energies etc. Through these

discussions, the complex interplay of local structure, chemistry, and magnetism are revealed.

The relaxation scheme (SSA relaxations) [3] introduced in chapter 3 and applied to under-

stand diffusion in the FeMn bulk in chapter 4 facilitates the study of such an interplay even in

the magnetically disordered state. Finally, the knowledge from Mn segregation and vacancy

formation is used to perform first-principles tensile tests in order to understand the impact

of different situations on the grain boundary decohesion.

The chapter is organized as follows: Definitions of various energies are discussed in sec.

5.2, followed by computational details in sec. 5.3. The results concerning grain boundary

formation energies, segregation energies, vacancy formation energies, a special case of mag-

netic states at intermediate temperatures and tensile tests are discussed in sec. 5.4, before
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concluding the chapter in sec. 5.5.

5.2 Computation of grain boundary energetics

First-principles DFT provides an accurate description of grain boundary energetics. In

the present section, the formulas used to describe such energies are discussed. The grain

boundary formation energy (or simply termed as grain boundary energy) is given as:

∆EGB =
EGB − Ebulk

2A
. (5-1)

Here, EGB and Ebulk are the energies of the grain boundary and bulk supercells that have

the same number of atoms. A is the area of the grain boundary plane in the given supercell.

To account for two grain boundaries that exist in the supercell due to periodic boundary

conditions, a factor of 2 is introduced in the denominator. It is to be noted that while the

grain boundary energy for a pure system is unique for the given grain boundary structure,

for systems with solutes, it depends on the solutes’ substituted sites. Here, a positive value

of ∆EGB would mean that the grain boundary formation is an endothermic process. Since

it is obvious that ∆EGB refers to the formation of a grain boundary in the current chapter,

the subscript is dropped for the rest of the chapter.

Even a minuscule amount of solutes at the grain boundaries can have a significant impact on

the structural and mechanical properties. Therefore, it is necessary to have a quantitative

measure of their segregation drive. In this regard, the segregation energies are defined as:

EX@i
seg = (EX@i

GB − EX
bulk)− (EGB − Ebulk) , (5-2)

where EX@i
seg is the segregation energy of solute X at site i of the grain boundary, EX@i

GB is the

total energy of the supercell with the solute X at site i of the grain boundary and EX
bulk is the

total energy of the bulk supercell with the solute. Assuming that the solute X is segregated

and is situated at the i-th site, the segregation energy of the next solute atom X ′ at j-th

site is given as,

EX′@j
seg = (EX@i,X′@j

GB − EX,X′

bulk )− (EX@i
GB − EX

bulk) . (5-3)

In order to extract the fractional occupancy of a solute atom at a grain boundary, McLean

introduced a thermodynamic model [127]. This model is analogous to the Langmuir adsorp-
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tion isotherm for gases, and is known as the Langmuir-McLean isotherm -

cX@i
GB

1− cX@i
GB

=
cbulk

1− cbulk
e−E

X@i
seg /kBT . (5-4)

cX@i
GB is the fraction of the solute at a grain boundary site i, cbulk is the solute fraction in

the bulk and T is the temperature. The Langmuir-McLean isotherm accounts for the con-

figurational entropy, and assumes that the solute-solute interactions are negligible and that

the segregation is parametrized by a single term Eseg. As a first approximation and for the

purpose of the current chapter, the Langmuir-McLean model serves sufficiently well. More

complex models have been developed, such as those introduced by Seah and Hondros (for

ordered binary systems) [128], Fowler adsorption isotherm (solute-solute interactions) [129],

Guttman isotherm (interactions for multiple co-segregation) [130].

The vacancy formation energy Evac@i
f at a grain boundary site i in Fe is defined as,

Evac@i
f = Evac@i

GB − EGB + µFe,bulk . (5-5)

Here, Evac@i
GB is the total energy of the grain boundary supercell with a vacancy at site i and

µFe,bulk is the chemical potential of pure Fe.

5.3 Computational details

First-principles DFT calculations are performed with SPHInX [118] using the generalized-

graident approximation (GGA) [85, 48], within the projector augmented wave (PAW) for-

malism [119, 120]. Σ5[001](310) (Fig. 5-1) is taken as the representative grain boundary for

the calculations, unless otherwise specified. Supercells of 80 atoms are used for both grain

boundary and bulk calculations. The optimised dimensions for the grain boundary cell are:

a = 18.483 Å, b = 8.972 Å, c = 5.674 Å.

A 3× 6× 9 k−point mesh and energy cut-off of 500 eV are used for all the calculations. The

error in total energy due to the choice of these parameters is minimized to 1 meV/atom after

careful convergence tests. Fermi-Dirac smearing scheme with a smearing width of 0.1 eV is

chosen. The criterion for electronic convergence of the total energy is 10−5 eV. Structural

optimization for atomic relaxations is carried out with SxExtOpt [80]. The convergence

criterion for atomic forces in structural optimization is set to 0.02 eV/Å.

The ferromagnetic calculations are unconstrained (unless otherwise indicated) and param-
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Figure 5-1: Σ5[001](310) grain boundary with different sites labelled. A supercell with 80
atoms is used with an additional layer in the c-axis. Only one atom in each layer
(along b-axis) is labelled, since they are symmetrically equivalent to the other
sites in the same layer for the given pure grain boundary.

agnetic calculations are constrained. Since the moment magnitudes change in the vicinity

of the grain boundary, the optimum values are obtained by a set of constrained test calcu-

lations. For the paramagnetic grain boundary calculations, six magnetic configurations are

used initially for performing SSA relaxations, i.e., for force averaging. Later, the relaxed ge-

ometry or positions obtained from the SSA relaxations are distributed over fifteen magnetic

configurations to perform averaging over total energies. Such a scheme has been adopted

due to the expensive nature of paramagnetic relaxations in extended defects, including grain

boundaries. The averaged energies are considered for the computation of grain boundary

energetics. These various random magnetic configurations are generated by special quasiran-

dom structures (SQSs) [58] method, where the atoms with opposite moments are distributed

randomly by minimizing the correlations (described in the Theoretical Methods chapter).

Different configurations can be generated by varying the cluster sizes for minimizing corre-

lations. Thus, the randomness in each structure can be regarded as of good quality.
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Figure 5-2: Convergence of averaged grain boundary (Σ5[001](310)) energy in the paramag-
netic state with respect to the number of random magnetic configurations.

The convergence of paramagnetic grain boundary energies for pure Fe with respect to the

number of random magnetic configurations (or SQSs) is presented in Fig. 5-2. The y-

axis represents grain boundary energy that is averaged over the corresponding number of

configurations given in the x-axis. Clearly, the grain boundary energy lies in a small window

of≈ 0.01 J/m2 from about 8 magnetic configurations, and a total of 15 configurations is taken

to confirm convergence. This is because the symmetries of the system are further reduced

on incorporating Mn solutes or a vacancy, and a slightly larger number of configurations will

ensure the convergence of paramagnetic energies.

5.4 Results and discussion

The results are presented and discussed in the present section. In the ferromagnetic bulk,

Fe atoms have a magnetic moment of 2.20 µB, whereas the Fe atoms at the grain boundary

layer (i.e., at site 1 and equivalent sites in Fig. 5-1) possess a moment of 2.53 µB. The larger

volume at the grain boundary site results in the increase of the moment size. As shown in

Fig. 5-3, the magnitude of the moments are 2.08 µB in the paramagnetic bulk, and 2.30 µB
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at the grain boundary layer.

A single Mn solute in the ferromagnetic bulk couples antiferromagnetically with the Fe atoms

with a moment of -2.05 µB. It is known that Mn in Fe bulk has a local energy minimum for

the ferromagnetic coupling, with only a small difference in energy compared to the antiferro-

magnetic global minimum [18]. Therefore, the initial conditions specified in the calculation

run can determine the final moment for Mn, and a careful set up is needed to achieve the

convergence to the global minimum. At the grain boundary in the ferromagnetic state, Mn

strongly couples antiferromagnetically to Fe, with a larger moment of -3.10 µB. In the param-

agnetic bulk, Mn attains a moment magnitude of 1.80 µB, and 2.60 µB at the grain boundary

layer. Therefore, for both the magnetic states, the change in Mn magnetic moment is larger

than the Fe moment. Further, it is to be noted that the changes in moment magnitudes from

the bulk to the grain boundary are similar for the ferromagnetic and paramagnetic states.

Figure 5-3: Magnetic moments of Fe and Mn in bcc Fe bulk and grain boundary, for the
ferromagnetic and paramagnetic states. For the paramagnetic state, only the
magnitudes of moments are considered.

The antiferromagnetic coupling of Mn in the Fe bulk and grain boundary is also evident

from the resolved local density-of-states (DOS), shown in Fig. 5-4. In the figure, the DOS
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for the Mn solute atom and its nearest neighbour Fe atom are shown. Clearly, for Mn in the

bulk, the majority spin state is down-spin state, since larger number of states are occupied in

the down-spin region below the Fermi level [131, 132]. On the other hand, Fe atom exhibits

up-spin state as the majority spin state. Further, broad peaks are observed between -4 eV

to -2 eV in the down-spin state for Mn, suggesting the localisation of d-electrons in the ma-

jority spin (or down-spin in this case) state. These features arise from an antiferromagnetic

coupling of Mn atom in Fe bulk shown in Fig. 5-3. ’

At the grain boundary, the local DOS for Mn is significantly different than that in the bulk.

As can be seen in Fig. 5-4, the broader peak that is present around -4 eV in the bulk

becomes sharper at the grain boundary. Also, the peak height is larger for Mn atom at

the grain boundary. In addition, a sharp peak that is present in the bulk above the Fermi

level reduces in height for the grain boundary Mn atom. All these observations suggest an

even stronger antiferromagnetic coupling of a Mn atom at the grain boundary with a larger

moment magnitude.

Figure 5-4: Local density-of-states (DOS) of a Mn atom in the bulk and grain boundary,
along with the DOS of its nearest neighbour Fe atom. The Fermi energy is
shifted to 0 eV.

5.4.1 Grain boundary formation energies

The grain boundary energies quantify the ease of formation of grain boundaries. They are

calculated according to Eq. 5-1 and are shown in Fig. 5-5. The grain boundary energy in the
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ferromagnetic state is calculated to be 1.57 J/m2 and agrees well with the literature values

[133]. The presence of Mn at the grain boundary (site 1 in Fig. 5-1, 25% coverage for the

considered supercell) reduces the grain boundary energy to 1.50 J/m2. On the other hand,

the impact of the paramagnetic state is remarkable as seen in Fig. 5-5: the grain boundary

energy in pure Fe is 0.96 J/m2 and is smaller than the ferromagnetic state by 0.61 J/m2.

While a theoretical computation in the paramagnetic state is not present in the literature,

an experimental estimation of grain boundary energies as a function of temperature has been

carried out by Geise et al [8]. In these experiments, bulk diffusion and grain boundary diffu-

sion coefficients were used to calculate grain boundary energies via a semi-empirical formula

given by Gupta et al.,[134] and Borisov et al [9]. These experimental values are given in Tab.

5-1. The samples were polycrystals of pure Fe, hence a direct quantitative comparison is not

possible. However, similar to the theoretical prediction, the grain boundary energy reduces

with increasing temperature, and attains a value of about 0.98 J/m2 for the pure sample

above the Curie temperature, indicating a strong impact of magnetism on grain boundary

energies.

Figure 5-5: Grain boundary energies for pure Fe and Mn segregated Fe grain boundaries, in
both the ferromagnetic and paramagnetic states.

On substituting a Mn atom at the grain boundary layer (25% coverage for the considered su-

percell) in the paramagnetic state, the grain boundary energy reduces slightly to 0.94 J/m2,

i.e., by 0.02 J/m2 compared to the pure Fe case. It is interesting to note that for both the

pure Fe and FeMn systems, the difference in the total energies between the ferromagnetic
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and paramagnetic grain boundary supercells is much smaller than the difference between the

bulk supercells.

T (K) pure less pure
766 1.18 1.07
905 1.13 1.09
1005 1.06 1.05
1092 0.98 0.98

Table 5-1: Experimental grain boundary energies (in J/m2) estimated by Geise et al [8] from
the diffusion data in α-Fe, using a semi-empirical approach of Borisov et al. [9].

Starting from the ferromagnetic state in pure Fe, the gradual decrease of grain boundary

energy with the magnetic disorder growing outwards from the grain boundary layer, i.e.,

layer with site 1 in Fig. 5-1, can be seen in Fig. 5-6. Such a figure helps in understanding

the stepwise impact of paramagnetism on the grain boundary energy. Clearly, more than

half the reduction of the grain boundary energy in going from the fully ferromagnetic state

to fully paramagnetic state, i.e., 0.61 J/m2, already occurs when the first 20% of the system

(layers next to and including the grain boundary) is magnetically disordered. Therefore,

unsurprisingly, the disordering of the immediate layers around the grain boundary has the

maximum impact on grain boundary energy.

Figure 5-6: Change in grain boundary energy with increasing magnetic disorder in the su-
percell, starting from the grain boundary layer until it covers the entire supercell.
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5.4.2 Mn segregation energies

The segregation behaviour of solutes can have a drastic influence on the mechanical proper-

ties of materials. In order to understand the dependence of the Mn segregation on the low-

and high-temperature magnetic states, segregation energies are discussed in this section.

These segregation energies are calculated according to Eqns. 5-2 and are presented in Fig.

5-7.

Figure 5-7: Mn segregation energies with respect to different sites (labelled in Fig. 5-1) in
the grain boundary supercell, for the ferromagnetic and paramagnetic states.

The segregation profile for the ferromagnetic state is discussed first. The segregation en-

ergy at a site in the grain boundary layer (i.e., at site 1 in Fig. 5-1) is -0.42 eV, which is

large. Here, the negative sign refers to attractive interaction. The drive for segregation is

even stronger for the sites in the layers immediately next to the grain boundary, where the

segregation energy is -0.51 eV. It is interesting to note that though the Voronoi volume is

larger for the grain boundary sites, segregation is more favourable for the next layer. As

discussed in the previous chapter, Mn diffuses very fast relative to Fe in bulk. Therefore,

the segregation of Mn from bulk to the grain boundary is kinetically favourable, too. The

segregation energy decreases sharply further away from this layer and is almost 0 for the

layer with site 5, which can therefore be considered as bulk-like.
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A hypothesis as to why the layer next to the grain boundary is more attractive for Mn

can be based on arguments regarding magnetism. The sites in this layer (such as site 2 in

Fig. 5-1) have very closely situated nearest neighbours (site 2’) at a distance of about 2.27

Å (lattice parameter = 2.83 Å). Therefore, the presence of two strongly ferromagnetic atoms

at these two sites that are at a short distance from each other could lead to magnetic frustra-

tions. Thus, the presence of an atom like Mn that exhibits strong antiferromagnetic (AFM)

coupling could reduce these frustrations. To further probe this hypothesis, since a direct

investigation of magnetic pair interaction parameters is not straightforward for structures

such as grain boundaries, an indirect study of the effective magnetic interaction parameter

is presented in Fig. 5-8. By flipping the spin of Fe atom (AFM Fe) at different sites in pure

Fe grain boundary, one can take the difference of the supercell energies with and without the

spin flip (Edown-Eup). Such a difference is proportional to the effective interaction parameter

(Jeff ) and will be called so for the present. To avoid the atomic spin reverting back to

the ground state during the calculation run, the spins are constrained to the magnitudes

exactly equal to those in the completely spin-up state. The difference (or the effective pa-

rameter) is large in the bulk, i.e., about 0.84 eV, indicating that including a Fe atom with

spin-down state is highly unfavourable. This is expected, since bulk bcc Fe is a strongly fer-

romagnetic system. For the grain boundary sites, the profile shown in Fig. 5-8 is interesting.

Figure 5-8: Effective magnetic interaction parameters at different sites (labelled in Fig. 5-1)
in the grain boundary supercell, for the ferromagnetic Fe system. Segregation
energies of AFM Fe atom is shown in the second y-axis.
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For the site 1 in the grain boundary layer, the effective parameter is much smaller than

the bulk value, about 0.51 eV. The smallest value is for the site in the layer next to the

grain boundary layer, which is 0.34 eV. This strengthens the hypothesis that the presence of

an atom with spin-down state could relieve the possible frustrations due to closely located

ferromagnetic atoms. In fact, the entire profile looks similar to the Mn segregation profile

qualitatively. Quantitatively too, if we consider the segregation energy of the AFM Fe atom

that can be obtained taking the difference of grain boundary Edown-Eup values and the bulk

counterpart, the values are similar to the Mn segregation energies (Fig. 5-8). Towards the

site 5, the effective parameter almost attains the bulk value.

The paramagnetic segregation profile in Fig. 5-7 is remarkably different to the ferromagnetic

profile. The energies are considerably smaller in magnitude compared to the ferromagnetic

state, indicating that the segregation drive is reduced on transition to the magnetically dis-

ordered state. Unlike the ferromagnetic case, the segregation tendency in the paramagnetic

state is largest for the grain boundary site 1, where the segregation energy is -0.13 eV. It is

to be noted that the layer next to the grain boundary is not the most favourable, since the

moments are disordered by default and Mn moment is not special as in the ferromagnetic

case. Segregation energy gradually reduces away from the grain boundary layer and becomes

almost 0 for the fifth layer, similar to the ferromagnetic case.

Figure 5-9: Mn occupancies at different sites (labelled in Fig. 5-1) in the grain bound-
ary supercell, calculated using the ferromagnetic and paramagnetic segregation
energies assuming 10% Mn composition in the bulk.
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Figure 5-10: Mn occupancies at different sites (labelled in Fig. 5-1) in the grain boundary
supercell, calculated using the ferromagnetic and paramagnetic segregation en-
ergies for the same temperature (1050 K) assuming 10% Mn composition in
the bulk.

The occupancy of Mn at different sites can be extracted using the corresponding segregation

energies for the ferromagnetic and paramagnetic states via McLean’s model as given in Eq.

(5-4), for the given bulk composition and temperature. Assuming 10% Mn composition in

the bulk, which is relevant for many existing experimental works [24, 123, 25], the occupancy

profile at two different temperatures pertinent to the ferromagnetic and paramagnetic states

are calculated and presented in Fig. 5-9. Sites in the first three layers are completely oc-

cupied by Mn in the ferromagnetic state at 400 K, while the occupancy beyond the third

layer reduces sharply and is nearly zero for the fifth layer. For the paramagnetic state at

1050 K, the occupancy at a site in the grain boundary layer is around 0.3 and decreases

gradually as one moves away from the grain boundary layer. It is important to calculate

the occupancy for the temperatures relevant for the paramagnetic state using paramagnetic

segregation energies, since using ferromagnetic segregation energies can give substantially

different occupancies for these temperatures. For example, occupancies obtained for the

same temperature (1050 K) using the ferromagnetic and paramagnetic segregation energies

differ significantly as shown in Fig. 5-10. In this case, the ferromagnetic segregation energies

substantially overestimate the occupancies compared to the paramagnetic state. Therefore,

entropic arguments alone do not provide a complete understanding. The reduction in the Mn
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composition in the grain boundary at higher temperatures has also been reported in atom

probe tomography (APT) experiments [25], which emphasizes the importance of proper

paramagnetic energy considerations. To obtain the Mn concentration at the grain boundary

in the paramagnetic state experimentally, the material can be quenched from paramagnetic

temperatures such that the Mn concentration is frozen in and can be measured by APT.

Figure 5-11: Segregation energies for the second Mn atom when a Mn atom is located at
the grain boundary layer (site 1 in Fig. 5-1), for the ferromagnetic and para-
magnetic states.

To understand how the Mn-Mn interactions at the grain boundary influence the segregation

behaviour, segregation energies are calculated for the second Mn atom when the first Mn

atom is located at site 1 in the grain boundary layer (Fig. 5-1). These energies are calcu-

lated according to Eq. (5-3) and the results are presented in Fig. 5-11. From the figure,

the segregation energy for the second Mn atom at a nearest neighbour site in the grain

boundary layer (i.e., along c-axis in Fig. 5-1) in the ferromagnetic state is much smaller in

magnitude (-0.05 eV) compared to when only one Mn atom is present (-0.42 eV), probably

due to Mn-Mn repulsion when both the Mn atoms are located in the same layer. On the

other hand, the segregation drive is even larger for the nearest neighbour site in the layer

next to the grain boundary in comparison with the single Mn atom. In fact, this is the most

favourable geometry for the grain boundary system with two Mn atoms, more so than the
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case where both the Mn atoms are present in the layer (at two nearest neighbour sites in

this layer) next to the grain boundary. For the next layers, segregation energies are similar

to those for the single Mn atom.

In the paramagnetic state, the segregation profile for the second Mn atom is very similar

to the single Mn atom case both qualitatively and quantitatively, with the grain boundary

layer being the most favourable for both the Mn atoms. Therefore, the Mn-Mn interaction

can be assumed to be negligible, leading to a similar conclusion as the one that was drafted

in the last chapter: magnetic disordering dominates chemical interactions and erases their

effects.

The Curie temperature marks the transition from the ferromagnetic state to the paramag-

netic state. While the Curie temperature for the bulk bcc Fe is well-known (1043 K), the

question arises as to whether the formation of a grain boundary leads to a different Curie

temperature locally. However, a direct computation of Curie temperatures for such defect

systems is not trivial. Since the paramagnetic energies obtained from SSA relaxations are

highly accurate, these energies are used to extract Curie temperatures through the mean-field

definition:

TC =
2

3
× (EFM − EPM)

NkB
, (5-6)

where EFM and EPM are the supercell energies in the ferromagnetic and paramagnetic states

respectively, N is the number of atoms in the supercell and kB is the Boltzmann constant.

It is known that the mean-field definition overestimates the Curie temperature in systems

such as bcc Fe. Since the true Curie temperature is known for bcc Fe, all the obtained

Curie temperatures in the following are rescaled by a factor accordingly. Curie temperatures

obtained from the mean-field model and the corresponding rescaled values are presented in

Fig. 5-12 as a function of Mn composition, for both the bulk and grain boundary systems.

The calculated values are fitted with a linear fit.

In the bulk, the Curie temperature decreases at the rate of 20 K per Mn %. This slope lies

within the values reported in the literature (10 K per Mn % [135], 43 K per Mn % [136]).

The grain boundary Curie temperatures are remarkably different and smaller than the bulk

values. Even for pure Fe, a difference of around 240 K is observed, with the rescaled grain

boundary Curie temperature being 802 K. The Curie temperature for the grain boundary

further decreases with the addition of Mn at the rate of 12 K per %. This indicates that there

exists a temperature window where the bulk is in the ferromagnetic state (Curie temperature

being much higher) and the area around the grain boundary is in the paramagnetic state
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Figure 5-12: Mean-field Curie temperatures as a function of Mn composition, for both the
bulk and grain boundary systems.

(Curie temperature being lower). For example, for the pure Fe, the range is between 802 K

to 1043 K. Below 802 K, both the bulk and grain boundary are in the ferromagnetic state,

and both are in the paramagnetic state above 1043 K. The figure is an excellent example

to showcase the structural, chemical, and magnetic interplay at the grain boundaries. Here,

the structural transformation, i.e., the formation of grain boundaries remarkably affects the

magnetic order-disorder transition temperature. Simultaneously, the local chemistry, i.e., Mn

composition influences the Curie temperature, too. In the earlier discussions, a significant

impact of the magnetic states on the grain boundary energies and Mn segregation energies

are observed. On the other hand, in the present discussion, local structure and chemistry are

seen to influence the Curie temperature, and hence the local magnetic state. The change in

the local magnetic state further influences segregation, and so on, revealing an astonishing

interplay of magnetism, chemistry and structure.

The segregation energies and site occupation values discussed earlier correspond to such

cases, where both the bulk and grain boundary have the same magnetic state, i.e, either

in the very low temperature limit or very high temperature limit. Since the intermediate

temperature window implies simultaneous presence of the paramagnetic state in the grain

boundary and ferromagnetic state in the bulk, the corresponding segregation energies are
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calculated by substituting ferromagnetic bulk supercell energies and paramagnetic grain

boundary energies in Eq. (5-2). The resulting segregation energies and occupation values

are presented in Fig. 5-13. Since the layers including and immediately next to the grain

boundary are of interest, segregation energies are calculated for these layers, and the ferro-

magnetic bulk is assumed to begin from the fifth layer on either side of the grain boundary

layer. It is clear from both the segregation and occupancy profiles that this special case lies

in between the limiting cases. However, the segregation drive is much stronger than the case

where both the bulk and grain boundary are in the paramagnetic state.

Figure 5-13: Segregation energies and occupancies for the case with the grain boundary in
the paramagnetic state and the bulk in the ferromagnetic state. The other two
limits are also shown for comparison.
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5.4.3 Vacancy at the grain boundary

Figure 5-14: Vacancy formation energies at different grain boundary sites, for the ferromag-
netic and paramagnetic states. Bulk values (dashed-dot lines) have been added
for the reference.

The formation of vacancies in the vicinity of grain boundaries can have a drastic impact on

the mechanical properties. Experimentally, it has been speculated that the vacancies could

accelerate the grain boundary decohesion [25], ultimately leading to the fracture of the ma-

terial. Moreover, vacancies are crucial for understanding kinetics of segregation. Therefore,

insights about vacancy formation energies will be relevant in this regard. These energies are

calculated according to Eq. (5-5) and the results are plotted in Fig. 5-14. As presented

in chapter 2, the vacancy formation energies in bulk Fe are 2.15 eV and 1.62 eV for the

ferromagnetic and paramagnetic states respectively, for the equilibrium lattice constant of

2.83 Å. In the ferromagnetic state, the formation energy at site 1 in the grain boundary

layer is almost the same as that in the bulk. However, a drastic reduction in the vacancy

formation energy is observed for the layer next to the grain boundary, qualitatively similar

to the segregation profile. The vacancy formation energy in this layer is 0.89 eV, which is

more than 1 eV smaller than the bulk value. The smaller formation energy indicates that

this layer could act like a sink for vacancies. The formation energy is relatively much larger
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for the third layer, i.e., about 1.77 eV, and is similar for the fourth layer. The bulk value is

attained in the fifth layer, similar to the segregation profiles.

In the paramagnetic state, the vacancy formation energy in the grain boundary layer is

slightly larger than the bulk value. However, similar to the ferromagnetic state, the next

layer is the most favourable for vacancy formation with the formation energy of 0.65 eV.

This is lower than the ferromagnetic counterpart, therefore this layer can be regarded as a

better vacancy sink. Since these calculations are highly expensive and the profile after the

second layer is similar for various cases that are discussed previously, separate calculations

have not been carried out except for the fifth layer. Again, the vacancy formation energy at

site 5 (in Fig. 5-1) in the fifth layer is the same as in the bulk.

5.4.4 Grain boundary decohesion

Mn is known to cause grain boundary embrittlement and fracture in steels [24, 25, 137].

Having understood that Mn segregation is thermodynamically favourable in the previous

sections, finally the extent of its effect on grain boundary decohesion, based on local geom-

etry and chemistry is studied in this section. Moreover, as discussed in the last section, it

is also important to understand the impact of vacancies on decohesion since Mn-vacancy

pairs have been speculated to significantly contribute to the fracture in experiments [24, 25].

While the fracture of Mn decorated grain boundaries in steels have been observed experi-

mentally [24, 25], Ito et al., [137] have theoretically studied twin boundary decohesion by Mn

in bcc Fe. In this study, a single Mn atom at the grain boundary layer in the ferromagnetic

state was considered. A more complex study of the impact of Mn at different sites, larger

concentration, vacancies and vacancy-Mn pairs is missing in the literature. The present sec-

tion attempts to address these issues. It is to be noted that all the results presented in this

section concern the ferromagnetic state, since tensile test calculations are highly expensive

even for the magnetically ordered state. Full-fledged magnetically disordered calculations are

extremely time consuming and are omitted for the current study. However, comments on

the transferability of the ferromagnetic results to the paramagnetic state are made wherever

possible.

The tensile tests are performed by increasing the uniform, uniaxial strain in the [310] direc-

tion normal to the grain boundary plane (or along a in Fig. 5-1), until the grain boundary

fractures. Strain is defined as the change in the cell length divided by the equilibrium cell

length (i.e., ∆a/a). Energies at each strain are calculated and the stress at each strain is cal-

culated by taking the difference of these energies and dividing by the corresponding change
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Figure 5-15: Stress-strain curves obtained from first-principles tensile tests for pure Fe (green
dashed line), Mn substituted at site 1 covering 25% of the grain boundary layer
or layer 1 (blue dashed line), Mn at site 2 covering 25% of the layer next to
the grain boundary layer (light blue dashed line) and when the entire grain
boundary layer is covered by Mn (red dashed line).

in volume of the cell, via the centered-difference method. The resulting stress-strain curves

when a Mn atom is situated at site 1 (25% coverage of layer 1 or grain boundary layer),

at site 2 (25% coverage of the layer next to grain boundary layer), when the entire grain

boundary layer is covered with Mn (100% coverage of the grain boundary layer in Fig. 5-1)

and for the pure Fe case are presented in Fig. 5-15. The system size and periodic boundary

conditions inhibit the emission of dislocations and thereby curb plasticity. Due to this, the

stress values are artificially high [138]. On the other hand, such a set-up allows to capture

purely the impact of Mn (or vacancy, studied later) on grain boundary decohesion. The pure

Fe grain boundary fractures when the strain is around 30%. Substituting Mn at site 1 (25%

coverage of the grain boundary layer) significantly reduces the fracture strain to about 24%,

already indicating that Mn embrittles the grain boundary. Mn embrittlement ability is even

more severe at site 2, in the layer next to the grain boundary layer (25% coverage of this

layer). Here, the fracture strain reduces to 19% and the stress corresponding to the fracture

(fracture stress) reduces too. As discussed in the last section, site 2 is the most favourable

for Mn segregation. To understand the stress-strain behaviour for a larger Mn concentration,
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Figure 5-16: Stress-strain curves for the Fe grain boundary with a vacancy in site 1 (black
dashed line), site 2 (yellow dashed line). The case of pure Fe without any
vacancy has been added for reference.

the entire grain boundary is covered with Mn (100% coverage of the grain boundary layer).

For this case, the fracture strain is smaller than when a single Mn atom is located at site 1

(25% coverage of the grain boundary layer), but is the same as when a single Mn atom is

located at site 2 with a slightly smaller fracture stress.

In Fig. 5-16, the stress-strain curves for the vacancy at site 1 and site 2 are shown, the

latter being the most favourable for vacancy formation. The presence of vacancy at these

sites has even larger impact on the grain boundary fracture as compared to Mn at corre-

sponding sites, as shown in Fig. 5-16. The fracture strain is about 19% for the vacancy at

site 1, showing a strong impact on the grain boundary decohesion. Similar to Mn, the pres-

ence of vacancy at site 2 is even more detrimental to the grain boundary, with the fracture

strain of 16%. The vacancy formation energies are much smaller for this layer in both the

ferromagnetic and paramagnetic states, as discussed in the last section. Of both the mag-

netic states, the vacancy formation energy is even smaller for the paramagnetic state, and

the ferromagnetic results discussed here could also be relevant for the paramagnetic state.

Therefore, vacancies can also be key promoters of embrittlement in both the magnetic states.
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Figure 5-17: Stress-strain curve for Fe grain boundary with both Mn and vacancy in the
second layer (violet dashed line), compared with the cases of a Mn atom in the
second layer, Mn covering the entire grain boundary layer and vacancy in the
second layer. Pure Fe case is also added for reference.

The impact of Mn-vacancy pair on the grain boundary decohesion is studied by substituting

a Mn atom and creating a Fe vacancy in the layer next to the grain boundary, named as 2nd

layer in Fig. 5-17. This layer is chosen since it is the most favourable for Mn segregation and

vacancy formation. In the figure, the stress-strain curve corresponding to the Mn-vacancy

pair is compared with the most detrimental cases with respect to Mn or vacancy that are

discussed above, which are: (a) a Mn atom at site 2 in the layer next to the grain boundary,

(b) Mn atoms cover entire grain boundary layer (c) a vacancy in the layer next to the grain

boundary. The case of pure Fe grain boundary has also been shown for reference. From

the figure, it is clear that the presence of both Mn and vacancy is highly detrimental to the

grain boundary toughness, the fracture strain being 13.5%. Compared to all the discussed

cases, this is the most detrimental situation. Therefore, the experimental speculations that

the Mn-vacancy pairs could contribute substantially to the grain boundary fracture [24, 25]

are confirmed in the present study.
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5.5 Conclusions

In summary, the relaxation scheme based on SSA has been extended and applied to grain

boundaries in the present chapter, thereby gaining new physical insights. Beginning with

the grain boundary formation energies, a remarkable impact of magnetic disordering is seen.

The reduction in grain boundary energies in the paramagnetic state is in agreement with

the trends observed in the tracer diffusion experiments. The scheme is further applied to

predict Mn segregation behaviour at the grain boundary, where, again, a substantial im-

pact of magnetism is observed. Moreover, largely different segregation energies at different

grain boundary sites are observed, particularly for the ferromagnetic state. The chemical

complexity is increased in the next step by considering Mn-Mn interactions at and in the

vicinity of the grain boundary. The segregation profile is again significantly different for the

two magnetic states. The paramagnetic profile is similar to the single Mn case whereas it is

much different for the ferromagnetic case. The reduced segregation drive in the paramagnetic

state agrees well with the APT experiments at high temperatures. A special case, where the

grain boundary exhibits paramagnetic state while the bulk is in the ferromagnetic state is

revealed and discussed via mean-field considerations. This is made possible by the accurate

computation of paramagnetic energies using SSA relaxations. Overall, a remarkable impact

of structural-chemical-magnetic coupling on these different physical properties is observed.

The vacancy formation energies are studied in the next step, and the grain boundaries are

identified to be potential vacancy sinks in both the magnetic states.

The first-principles tensile tests are carried out based on the knowledge extracted from the

segregation and vacancy formation studies. The extent of Mn embrittlement at different sites

and different concentration is discussed. Vacancies too, are found to be highly detrimental

to the grain boundary, whereas the Mn-vacancy pair is identified as the most detrimental of

all the cases.

Thus, the present chapter probes, predicts, and reveals various structural, chemical, and

magnetic properties of FeMn grain boundaries. The physical understandings drawn from

the present chapter could be used for the theoretical and experimental engineering of grain

boundaries in steels.
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6 Influence of twin boundaries on

magnetic domains in τ -MnAl

(The main results of the chapter have been published in - Influence of crystalline defects on

magnetic nanodomains in a rare-earth-free magnetocrystalline anisotropic alloy. Dhanalak-

shmi Palanisamy, András Kovács, Omkar Hegde, Rafal E. Dunin-Borkowski, Dierk Raabe,

Tilmann Hickel, and Baptiste Gault, Phys. Rev. Materials 5, 064403 (2021). The citation

is given in reference [7].)

6.1 Introduction

Permanent magnets are an important class of materials used in hydro-electric industries,

robotics, and electrical appliances [139] etc. As discussed in chapter 1, in general, permanent

magnets form a category of ”hard” magnetic materials that are hard to demagnetize. Such

magnets possess large coercivity, remnant magnetization and magnetic anisotropy. In this

regard, the best magnets are based on rare-earth (RE) elements [140] such as neodymium,

dysprosium, cerium etc. However, as they are named, they occur in rare amount in nature

and most of them are very expensive. On the other hand, Fe-based magnets are abundant

and cheap, but yield low values of magnetic energy density. Therefore, low-cost magnets

that are RE-free yet exhibit large coercivity and magnetic anisotropy, such as τ -MnAl, are

gathering large interest in the scientific and industrial communities [28].

MnAl exhibits an L10 crystal structure that extends from the near-equal-stoichiometric com-

position till about 60% Mn composition, known as the τ phase. This phase is ferromagnetic

and exhibits a large magnetic anisotropy along with a high magnetic energy density [35, 7].

The τ phase forms from the hexagonal ε phase via a massive transformation [37]. During this

transformation, a large number of twin boundaries, dislocations and antiphase boundaries are

formed [35]. Such defects can play a crucial part in determining the performance of magnets.

In the previous chapter, the interplay of grain boundary structure, chemistry, and magnetism

had been explored in FeMn alloys. Since such interactions were remarkable, the current chap-
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ter carries a similar philosophy albeit for a different system with different applications. The

chapter explores the influence of twin boundary defects and their local chemical composition

on the magnetic properties of τ -MnAl, using correlative theoretical and experimental studies.

The chapter is organized as follows: Sec. 6.2 discusses theoretical and experimental methods

used, the results are presented and discussed in Sec. 6.3 and the conclusions are drawn in

Sec. 6.4.

6.2 Computational and experimental details

6.2.1 First-principles calculations

First-principles DFT calculations are performed with the Vienna Ab-initio Simulation Pack-

age (VASP) [141]. The PBE-GGA framework [85, 48] with the PAW formalism [119, 120] is

used for all DFT calculations. An energy cut-off of 500 eV is chosen along with a Monkhorst-

Pack k-point mesh of 2× 5× 10. These parameters are chosen after performing convergence

tests and confirming that the resulting error contribution to the total energy is smaller than

1 meV/atom. All the calculations are performed with Methfessel-Paxton smearing [142], and

a smearing width of 0.1 eV. The convergence criterion for the total energy in the electronic

minimization is 10−6 eV and the convergence criterion for forces in ionic relaxation is 0.01

eV/Å. Supercells of 72 atoms are used for all the main results, unless otherwise specified.

The equilibrium lattice parameters for the bulk L10 structure are a = 3.88 Å, c = 3.50 Å,

in the face-centered tetragonal (fct) unit cell. While atomic positions and cell volumes are

relaxed for all the calculations, a previously relaxed structure is considered for determining

magneto-crystalline anisotropy energies (MAEs) via non-self-consistent, static calculations.

A higher electronic convergence criterion of 10−7 eV is considered for MAE calculations. In

addition, the spin-orbital coupling is switched on. Twin boundary supercells are oriented

along [112̄], [111], [11̄0] directions.

The twin boundary formation energies (TBEs) are evaluated as

TBE =
Etwin − Ebulk

2A
. (6-1)

Here, Etwin is the energy of the twin supercell, Ebulk energy of the bulk supercell and A is the

area of the twin boundary. Since the twin boundary occurs twice in the supercell because

of the boundary conditions, a factor of 2 is introduced in the denominator. The solution
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enthalpy (ESE) is defined as

ESE =
[(EMn55.5Al44.5 − EMn50Al50)− x(µMn − µAl)]

x
, (6-2)

where EMn55.5Al44.5 is the energy of the off-stoichiometric supercell (such a composition is

considered in order to be consistent with the experiments), EMn50Al50 is the energy of the

equal-stoichiometric supercell, µMn and µAl are the chemical potentials of Mn and Al re-

spectively. x is the number of atoms of Al replaced by Mn in the Al-sublattice of equal

stoichiometric composition to achieve the off-stoichiometric composition. Bcc Mn and fcc

Al are considered for chemical potentials. The formation energies and solution enthalpies

are confirmed to be converged with respect to the supercell length, height and width by

performing calculations on larger supercells with 144 atoms for both the bulk and twin. In

the case of the bulk off-stoichiometric composition, the averaged energy over four different

chemical configurations is considered. For the twin case, the energy is averaged over six dif-

ferent chemical configurations. Since the concentration of Mn in the Al-sublattice is small,

the configuration space for the given supercell is not large and can be sufficiently sampled

by a few configurations.

The domain wall energy (DWE) is calculated as the difference in the energies of supercells

with and without the domain wall, per unit area of the domain wall. 180◦ domains are

considered as they are found to be the most relevant domains in experiments. Specifically

in the bulk, 180◦ domains occur along the easy axis because of the large MAE. The domain

wall width is assumed to be negligible for simplification. In order to decouple the effect of

the twin boundary on the DWE and the MAE from bulk contributions, the twin supercells

are considered such that all the atoms are twin-like. The MAE is defined as the difference

in the energy of a supercell with the magnetic moments oriented along the easy axis and

the energy of a supercell with the magnetic moments oriented along the hard axis per unit

volume of the system. In general, anisotropy energies are referred to as the differences in

energies with the moments oriented along different axes, where the MAE is the maximum

possible difference.

6.2.2 Correlative APT-TEM studies

Correlative APT-TEM studies are carried out by the experimental collaborators (Dhanalak-

shmi Palanisamy, Baptiste Gault) from MPIE, Düsseldorf. The experimental results are

added for comparison and confirmation of the theoretical results, and are not the part of

this thesis. MnAl alloy is melted and homogenized at 1373 K for 10 hours. Immediately, wa-
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ter quenching is carried out, resulting in the retention of parent ε phase, a high-temperature

phase, at room temperature. Finally, the sample is subjected to heat treatment for 2 hours

at 723 K, which results in the formation of τ phase. Specimens that are shaped like needles

are prepared from the micro-twin regions in the τ -phase of MnAl, in a dual beam scan-

ning electron microscope (SEM) - focused ion-beam (FIB) instrument. These specimens are

subjected to TEM and APT studies. TEM measurements are carried out with aberration-

corrected Titan microscope operated at 300kV. APT measurements related to compositions

at atomic-scale are performed using LEAPTM 5000 XS instrument operated with a laser

pulse repetition rate of 200 kHz and energy of 40pJ.

6.2.3 Off-axis electron holography

Off-axis electron holography studies are carried out by the experimental collaborators (András

Kovács, Rafal E. Dunin-Borkowski) from FZ Jülich. In these experiments, the phase change

of the incident electron wave due to the magnetic field of the sample is quantitatively mea-

sured, as shown in Fig. 6-1. Consequently, a hologram is generated, which is an interference

pattern formed by the superposition of a complex specimen wave with a tilted reference

wave.

Figure 6-1: Schematic of the off-axis electron holography technique. The figure is gener-
ated by the experimental collaborators from FZ Jülich and is adapted from the
collaborative work published in Phys. Rev. Materials 5, 064403 (2021) [7].
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6.3 Results and discussion

The results pertaining to the interplay of structural defect (in this case twins), chemistry,

and their impact on magnetic properties in τ -MnAl phase are discussed in this section. In

the first part the structural and chemical properties are presented, whereas the second part

showcases their relation with magnetic domains.

6.3.1 Structural and chemical properties of MnAl twin boundaries

As mentioned in the introduction, the formation of the τ -MnAl phase via a massive transfor-

mation from hexagonal ε phase is accompanied by the formation of a large number of twins.

These twin boundaries are observed to have similar characteristics as face-centered-cubic

(fcc) twin boundaries [35] and belong to the family of (111) planes. This is expected, since

L10 can be regarded as an fct structure. Therefore, fct Σ3 [11̄0](111) twin boundaries are

considered for the first-principles study (Fig. 6-5).

Figure 6-2: (a) BSE image of the microstructure, (b) BF- and DF-TEM images of the spec-
imen, (c) BF-TEM image of the area considered for APT study and the APT
profile revealing Mn segregation at the twin boundary. The figure is generated
by the experimental collaborators from MPIE Düsseldorf and is adapted from
the collaborative work published in Phys. Rev. Materials 5, 064403 (2021) [7].

The observations from backscattered electron microscopy (BSE) and correlative APT-TEM

studies are presented in Fig. 6-2. The microstructure analysis through BSE (Fig. 6-2a)

reveals a large number of micro-twins. The bright-field (BF) TEM images are shown in

Fig. 6-2b. The electron diffraction pattern shows the reflection of (111) twin diffraction

spots. The dark-field (DF) TEM images of both the matrix and the twins provides their
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corresponding contrasted reflections. The area marked by the red dashed line is considered

for the APT analysis. The APT result in Fig. 6-2c divulges the composition profile across

the twin boundary and reveals the segregation tendency of Mn at the twin boundary. Mn

enrichment raises its composition upto 63% at the twin boundary, while it is 55% in the

matrix region.

Figure 6-3: Formation energy convex hull for the bulk and twin structures of τ -MnAl as a
function of Mn composition.

DFT calculations allow for an understanding of these experimental observations at the atomic

scale. The DFT calculations are carried out for both the equal- and off-stoichiometric com-

positions, where the former is the only compound considered for the for the convex hull

shown in Fig. 6-3. Pure elements are used as the end points of the convex hull. As seen

from the figure, DFT can resolve such small energy differences with high accuracy. From

the convex hull, it is evident that the formation energy points of Mn55.5Al44.5 lie below the

hull for both the bulk and twin structures. This indicates that the off-stoichiometric compo-

sition is relatively stable and does not decompose in both the structures. The fundamental

reason behind such a stability has been traced to the reduction of magnetic frustrations in
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the Mn-sublattice by the presence of excess Mn atoms in the Al-sublattice [143]. Further,

the TBEs for both Mn55.5Al44.5 (0.09 J/m2) and Mn50Al50 (0.11 J/m2) are observed to be

very low, agreeing with the experimental observation of a large number (and high density)

of twin boundaries in the τ phase. Finally, the solution enthalpies of the excess Mn atoms in

Mn55.5Al44.5 as calculated according to Eq. (6-2) show reduced values in the presence of twin

boundary (0.52 eV) as compared to the perfect bulk (0.59 eV). This observation rationalises

the segregation tendency of Mn at the twin boundary as obtained from the APT studies.

Thus, the correlative TEM-APT-DFT study allows for the observation and analysis of the

structural and chemical interplay in τ -MnAl.

6.3.2 Magnetic domains and anisotropies

MnAl permanent magnets are known for their large coercivity and subsequent applications.

Magnetic properties depend on the nucleation and pinning of magnetic domains. In this

regard, the impact of twin defects on their magnetic properties is crucial to understand. The

off-axis holography (described previously) provides highly resolved domain structures and

domain directions. In Fig. 6-4, magnetic induction maps obtained from electron holography

and their corresponding BF-TEM images are shown. In the case of the specimen without

twins, magnetic domains are observed to be large in size, with a few 180◦ domain walls. As

the density of twins increases, a plethora of remarkably fine shaped magnetic domains that

have mosaic-like shape are observed. The size of these domains reduce to about 10-40 nm in

the high density sample. Such domains are found to be highly stable, as a large number of

them do not alter in size or directions before and after the saturation of the applied external

magnetic field. These observations highlight the dramatic impact of twin boundaries on the

magnetic domain properties. Consequently, the twin density can be crucial in determining

the performance of τ -MnAl permanent magnets.

DFT calculations show that the excess Mn atoms in the Al-sublattice align antiferromag-

netically to the Mn-sublattice atoms in both the bulk and twin regions. In particular, the

moment of excess Mn atoms at the twin boundary is about -2.5 µB, whereas it is about +2.4

µB for the atoms in the Mn-sublattice. As a result, one can conclude that the segregated Mn

atoms lead to a reduction in the local magnetization in the proximity of the twin boundary.

This might lead to the pinning of magnetic domain walls at the twin boundary, complying

with the electron hologram observations. In other words, the reduction of local magnetiza-

tion at the twin boundary pins the reversed domains and prevents them from moving across

the twin boundary to the neighbouring grain, ultimately leading to the increase in the co-

ercivity of the material. Such a pinning phenomenon has been experimentally observed in
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Figure 6-4: Magnetic domain structure of τ -MnAl with higher and lower densities of mi-
crotwins. (a), (c), (e) are BF TEM images and (b), (d), (f) are the correspond-
ing projected in-plane magnetic induction maps recorded using off-axis electron
holography. The figure is generated by the experimental collaborators from FZ
Jülich and is adapted from the collaborative work published in Phys. Rev. Ma-
terials 5, 064403 (2021) [7].

Nd-Fe-B permanent magnets [144], where the segregation of non-magnetic Nd atoms at the

grain boundaries resulted in the pinning of domain walls and increased coercivity. While Mn

segregation could lead to domain wall pinning, it is to be noted that the pinning mechanism

alone cannot explain the observation of a large number of nano-domains at the twin bound-

ary. To understand this, the impact of twin boundaries on magnetic anisotropy energies and

domain wall energies are studied.

The MAEs for the equal- and off-stoichiometric compositions in the bulk and twin phases are

presented in Fig. 6-6b. Clearly, the presence of the twin boundary results in a substantial

reduction of the MAE as compared to that in the bulk region. The variations due to com-

positional differences are not significant. The easy axis in the bulk is [001], which changes
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Figure 6-5: Schematic of the the bulk and twin supercells along with the domain walls
considered for calculations.

to [112̄] in the twin region. Besides the MAE, which is the largest difference (between the

easy axis and hard axis), other anisotropy energies are substantially reduced in the vicinity

of twin boundary, as shown in Tab. 6-1. Here, a few examples are taken to demonstrate

that the anisotropy energies in the twin region are consistently smaller than in the bulk,

since such calculations are computationally highly expensive and even more so in the case

of extended defects such as twin boundaries.

Anisotropy energies (MJ/m3)
Bulk Twin

[001] - [100] 1.76 0.56
[001] - [110] 1.77 0.14
[112̄] - [100] 1.15 0.66
[112̄] - [110] 1.16 0.28

Table 6-1: Calculated anisotropy energies between different axes in the bulk and twin su-
percells.

Since the rotation of magnetic moments precedes the formation of domains walls, anisotropy

energies are crucial to understand domain formation. The low values of anisotropy energies

87



Chapter 6. Influence of twin boundaries on magnetic domains in τ -MnAl

Figure 6-6: Calculated DWEs and MAEs for the equal- and off-stoichiometric compositions,
in both the bulk and twin regions.

discussed above indicate that the twinning facilitates an easier formation of domain walls

as compared to the bulk. While the anisotropy energies address the process that precedes

the formation of domain walls, the question is also about the stability of the 180◦ domain

walls after they are formed. For this purpose, 180◦ domains are created in the bulk and twin

supercells, as shown in Fig. 6-5. As in the case of MAEs, the presence of twin boundaries

result in a notable decrease of the DWEs compared to the bulk, as shown in Fig. 6-6a. Once

again, the dependence of DWEs on structures (bulk and twin) outweigh the dependence on

compositions (equal- and off-stoichiometric), where the latter is insignificant. The smaller

values of DWEs in the twin supercell indicate the higher stability of the domain walls as

compared to the bulk. This provides a possible understanding of the stability of domain

walls observed in the electron-holography experiments. Thus, together with the anisotropy

energies, domain formation energies confirm the experimental observations and corroborate

the remarkable influence of the twin boundaries on the formation of magnetic domain walls

in τ -MnAl.
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6.4 Conclusions

Correlative studies of the structural, chemical, and magnetic properties of the technologi-

cally important class of permanent magnets, τ -MnAl, are presented in this chapter. The

complexities pertaining to these properties at the atomic scale demand novel combination

of the theoretical and experimental approaches. In this regard, in the first part, the knowl-

edge from the first-principles DFT studies is compared with the APT-TEM experiments to

confirm and understand structural and chemical properties. TEM experiments find a large

density of twin boundaries in the off-stoichiometric τ -MnAl sample. DFT values of the twin

boundary formation energies are very small, in agreement with the experiments. Further,

the formation energy hull confirms the relative stability of the off-stoichiometric composition.

APT composition profile across the twin boundary show an enrichment of Mn, supported by

the reduction of Mn solution enthalpy in the twin region as calculated in DFT. The interac-

tions of twin boundaries with magnetic domains are studied by off-axis electron holography

experiments. The electron holograms reveal numerous finely structured magnetic domains,

with a large number of 180◦ domain walls. The number of domains scales directly with the

density of twins while their size scales inversely. DFT studies show that while the reduced

magnetization could promote domain wall pinning at the twin boundary, the remarkable

reduction in MAEs and DWEs provide deeper understanding of the formation and stability

of the 180◦ domain walls.

The direct link of the defect structure and chemistry to the magnetic properties allows for

the design of these magnetic materials with desired performances. The co-validation of the

theoretical and experimental studies paves way for the computational prediction and design

followed by experimental realisation in the future works.

89



Chapter 6. Influence of twin boundaries on magnetic domains in τ -MnAl

90



7 Summary and outlook

The realms of defects and magnetism are vast in their own right, and their interplay is gain-

ing significant relevance. This thesis aims at contributing a small portion in expanding such

an area of overlap. In particular, the branch of computational materials physics concerning

defect properties in magnetically disordered systems is still young, albeit challenging. We

discuss our general motivations to address such challenges and to study material systems

considered in the thesis, in chapter 1. More specific motives are discussed in the beginning

of corresponding chapters. Further, we discuss the theoretical methods that underlie the

tools adopted to achieve the results of the thesis in chapter 2. The presence of defects,

such as vacancies, cause breaking of bonds and result in atomic relaxations. In this regard,

we introduce a new method to account for atomic relaxations in magnetically disordered

systems in chapter 3. The method is based on spin-space averaging (SSA), which considers

the physical picture of rapidly varying magnetic degrees of freedom compared to the atomic

degrees of freedom, i.e., the adiabatic approximation. Consequently, averaging of forces on

atoms in different magnetic configurations is needed to capture the true paramagnetic state.

We discuss how we bring different tools together to achieve this in the chapter. We apply the

relaxation method, called as SSA relaxations, to the case of mono-vacancy in bcc Fe. The

resulting relaxations and vacancy energies are found to be significantly different from those

obtained from the approximative methods used in the literature, reiterating the importance

of considering proper relaxations. In particular, assuming the physical limit where the time-

scale for magnetic degrees of freedom are comparable with the atomic degrees of freedom

leads to vacancy energies that deviate largely from the experimental values. Through these

results, the adiabatic approximation is justified for vacancy in bcc Fe. Finally, the relevance

of volume expansion is discussed in the chapter.

Defects in FeMn steels control various physical phenomina such as segregation, spinodal

decomposition, phase transformation, fracture etc [26, 27, 23, 24, 25]. In this regard, it is

pivotal to understand diffusion of Mn in bcc Fe. In particular, magnetic order-disorder tran-

sition could play decisive role in determining Mn diffusion properties. Therefore, in chapter

4, we use the SSA relaxation method to investigate and understand the impact of magnetic

order/disorder on Mn diffusion in bulk Fe. To this end, we calculate Mn-vacancy binding
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energies, vacancy formation energies, migration energies and activation energies in both the

ferromagnetic and paramagnetic states. The migration barriers in the magnetically ordered

state are more dispersed while they are more similar in the disordered state, implying that

magnetic disordering dominates and reduces chemical distinctiveness. This is confirmed by

studying Mn correlation factors, which show that the vacancy jumps are more random in the

disordered paramagnetic state and highly correlated in the ferromagnetic state. Using the

vacancy energies, the Mn and Fe diffusion coefficients, their ratios, correlation factors are

extracted via the Ruch model and LeClaire’s model. The self-diffusion coefficients of Fe show

the prominent kink in the diffusion profile at the magnetic order-disorder transition. The

kink is substantially reduced for the diffusion profile of Mn in bcc Fe. Mn diffuses very fast

relative to Fe in the ferromagnetic state, as compared to the paramagnetic state. We com-

pare our results with those of effective interaction models and tracer diffusion experiments

obtained by our collaborators. Excellent agreements between theoretical and experimental

results are seen, confirming the above derived physical conclusions.

Mn segregation at Fe grain boundaries are known to cause embrittlement and phase trans-

formation. However, physical understanding of the segregation is little-known. We study

grain boundaries, which are structurally more complex defects, in chapter 5. Once again,

the SSA relaxations facilitate paramagnetic considerations even for grain boundaries. The

ferromagnetic and paramagnetic states have very different grain boundary energies, with

the latter being smaller, indicating strong magnetic coupling to the structural defect. The

temperature dependence of the trend is consistent with the experimental literature. The

chemical degrees of freedom are introduced by studying Mn site dependency in the context

of segregation, and the results once again mark the importance of proper paramagnetic treat-

ment. Combined with the understanding from chapter 4, where Mn was shown to diffuse

much faster than Fe at low temperatures in the ferromagnetic state, the highly attractive

segregation energies for the ferromagnetic state indicate that the Mn segregation to grain

boundaries is both kinetically and thermodynamically favoured in the ferromagnetic state.

By increasing Mn coverage in the grain boundary, Mn-Mn interactions are included. Mn

segregation drive is found to be very strong in the ferromagnetic state and only slightly so in

the paramagnetic state. Using the paramagnetic energies, a special case in the intermediate

temperatures, where the grain boundary is in the paramagnetic state and the bulk is in the

ferromagnetic state, is revealed. Overall, segregation studies show extraordinary interplay

of structure, chemistry, and magnetism. Finally we bridge our physical understanding with

engineering: By using knowledge from the segregation study, we discuss the degree of em-

brittlement caused by Mn, vacancy, and their combinations via tensile tests, the knowledge

of which is crucial for ”segregation engineering” at the grain boundaries.
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Figure 7-1: Summary of defect types, keywords and schematic diagrams corresponding to
each result chapter in the thesis.

We consider a different system, MnAl permanent magnets, in chapter 6. The spirit of struc-

tural, chemical, and magnetic interplay is carried forward from the last chapter, but for

twin boundaries in τ -MnAl. The results are presented in combination with the sophisticated

experiments carried out by our collaborators. In the first part, the structural and chemical

studies from theory are carried out in conjunction with the atom probe tomography (APT)

experiments. APT reveals a number of Mn enriched twin boundaries in the off-stoichiometric

sample. We show that the off-stoichiometric composition is indeed stable, by constructing

the formation energy hull. The small values of twin boundary energies explain the large

number of twin boundaries in the sample. Mn solution enthalpies are smaller in the vicinity

of the twin boundary as compared to the bulk, in agreement with Mn enrichment observed in

the APT studies. In the next part, we study the influence of these structural and chemical as-

93



Chapter 7. Summary and outlook

pects on the magnetic properties along with the electron holography experiments performed

by our collaborators. The experiments show a large number remarkably fine 180◦ domains

at the twin boundaries, and only a few domains in the bulk. Theoretically, we explain these

findings based on the domain wall energies and magnetocrystalline anisotropy energies, both

of which are found to be significantly smaller in the twin region in comparison with the

bulk. The small anisotropy energies mean easier rotation of magnetic moments to form the

domains and the small domain wall energies indicate the high stability of 180◦ domains after

their formation.

Thus, we learnt the above discussed findings through this thesis and try to expand the

horizons of the field of magnetism in defects, albeit to a small degree. Though highly

challenging, we see a few interesting opportunities through which one can further develop

the methods presented in the thesis. Firstly, the vibrational contribution to the free energy

[145, 146, 147] can be significant at finite temperatures and needs to be included for a more

accurate description of the defect energetics in the paramagnetic state, since vibrational

contributions can be pivotal in determining defect phase digrams [148, 149]. While this

needs significant methodological developments and computational efforts, the ever-increasing

efficiency of modern computer clusters can make it feasible in the near future. Next, we

consider the data generated in the thesis to be sufficiently accurate (in particular those

concerning the paramagnetic state, since they are under-represented in the literature) to

be used as input for kinetic Monte Carlo simulations. Especially, the study of diffusion

phenomena in the vicinity of grain boundaries at finite temperatures would be of great

interest in light of recent experimental observations of spinodal decomposition in FeMn grain

boundaries [26]. Finally, the application of SSA relaxations to other industrially relevant

materials would be exciting. In this regard, we have begun studying Ni2MnGa Heusler

alloys, a class of magnetic shape memory alloys known for their applications in magnetic

actuators and sensors, and the first results are promising.
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