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Abstract

Vortex-induced vibration (VIV) of cylindrical structures in fluid flow is a well-explored topic 
that is relevant to many fields of engineering. In particular, it is a classical topic within fluid-
structure interaction (FSI). In offshore engineering, VIV often causes fatigue in slender 
structures, such as risers, mooring lines, and pipelines. Recently, VIV has been a key issue in 
wind turbine tower design. Turbine towers can be subject to VIV when exposed to stream flow 
because the shedding of vortices downstream of the structure induces forces on the structure 
that may cause vibrations. A detailed understanding of this FSI phenomenon and efficient 
estimation of such self-excited and self-sustained oscillations are required for the reliable 
prediction of the fatigue damage and the development of VIV suppression techniques. The 
study of this problem is hampered by a lack of high-quality measurements and a lack of reliable 
models to predict the response and the fluid loading on towers undergoing VIV.

In the present study, experimental and numerical investigations on a cantilever cylinder with 
free end boundary conditions have been studied. Methods of eliminating or reducing vortex-
induced oscillations are by varying structural or aero/hydro-dynamics behavior.  Structural
methods, such as those that involve altering damping, mass, or natural frequency, however,
aerodynamic/hydrodynamic techniques, such as those that change the flow pattern using 
alternative methods. 
A series of experiments were performed in an enclosed towing tank to investigate the response 
amplitudes, hydrodynamic forces, lock-in region, Strouhal number, and frequency response 
while varying the locations of different newly developed angular-position fin plates. The 
experiments were conducted in a uniform current flow with cylinder models below the critical 
mass value and allowed to oscillate in two degrees of freedom in the inline and transverse 
directions. The results demonstrated the disappearance of the synchronization features when 
the models approached their natural frequencies, which led to a significant reduction in the 
response amplitudes. Interestingly, strong suppression of over 90% and 75% was observed for 
the inline response and transverse response, respectively. This trend is also apparent for the lift 
and drag forces when compared with the measuring data of the smooth cylinder, demonstrating 
a potential solution for these mitigation tools.
A further experimental investigation was performed in a wind tunnel to examine VIV behavior 
in an attempt to understand the free end effect with a high Reynolds number and a rigid
installation without adding storing elements. Wind tunnel experiments were conducted at 
Reynolds numbers ranging from 3.6 × 104 to 3.26 × 105. The current study produced several 
important results. The study showed that the response amplitude with vortex shedding was finite, 
even at the synchronization point. It increased with flow velocity and affected synchronization 
behavior. The lock-in region was reduced to a certain point. Results suggested that 
nonlinearities occurred when vortices were shed due to the influence of the free end conditions 
and the higher Reynolds numbers. The present study focused on aspects that have not been fully 
addressed by previous studies, such as end-cell induced vibration. The end-cell-induced 
vibration that occurred at a high wind speed was not influenced by the high damping ratio of 
the model, while the amplitude response of the ordinary VIV decreased significantly.

Generally, the use of computational fluid dynamics (CFD) has added value in supporting 
decisions surrounding the risk management of operating assets. Regarding the numerical 
investigations of the VIV of a cantilever cylinder, the new models for suppressing VIV were 
examined. The effect of these tools was tested numerically using CFD simulation, which is an 
attractive and cost-effective alternative to model tests. Numerical simulations were carried out 
for a low mass ratio cylinder model subjected to uniform flow.
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The present numerical model was first verified for different grid resolutions and validated by 
comparison with published experimental data, and the results indicate that the outcome was 
satisfactory. The supercritical to upper transition flow regime around a 3D smooth circular 
cylinder at a Reynolds number range of  4,000 to 14,000 was examined numerically using 
standard 3D detached-eddy simulation approaches. The objective of the present study was to 
evaluate whether the models are applicable for further experiments and engineering design 
within these flow regimes. The simulation results also demonstrated the feasibility of these 
devices and encourage further experimental studies. 

Over the past decades, VIV has been extensively studied, and the majority of literature consists 
of experiments or semi-empirical modeling. In contrast, FSI simulations, by combining CFD 
and computational structural dynamics solvers, have received less attention. One of the 
objectives of this thesis was to investigate the VIV of elastically mounted rigid cylinders and 
flexible cylinders using fully 3D FSI simulations. The results from 3D simulations were close 
to previous experimental results. The solid stress tool coupled with a morphed mesh was 
utilized within StarCCM+ to test their ability to simulate such cases. Finally, further 
experimental investigations and CFD simulations regarding the effect of group arrangements 
of the towers and the effectiveness of suppression measures are proposed for future research.
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1. Introduction

1.1 Problem Statement

The phenomenon of vortex-induced vibration (VIV) has been a well-known and widely 
explored topic since ancient times. However, the modeling of VIV for engineering purposes 
presents several challenges due to the complexity of the phenomena involved. VIV is a complex 
phenomenon that is relevant in various disciplines, including fluid mechanics, structural 
mechanics, vibrations, complex techniques for data analysis, and numerical methods applied to 
fluid dynamics and solid mechanics. At a practical level, circular cylinders exist in many 
engineering and industrial applications, such as offshore platforms, power lines, bridge supports, 
and heat exchangers. In the design of these structures, knowledge is needed regarding the forces 
involved, frequencies, heat transfer, and flow behavior.

It is well known that the fluid-induced forces on cylindrical structures are strong enough to set 
the body into oscillatory motion due to the wake vortex shedding flow. If a flexible or elastically 
mounted rigid cylinder is placed in a fluid flow, the dynamic fluid force induces the vibration 
of the cylinder, which in turn modifies the flow and leads to a fully coupled fluid-structure 
interaction (FSI). When VIV occurs, the material is subject to cyclic bending stresses, and the 
structure starts to oscillate. These oscillations are of great interest for structural engineers, not 
only because of the large oscillation amplitude but also due to the long-term cyclic loads, which 
can cause significant fatigue stress and crack growth over time, eventually leading to fracture. 
The highly non-linear interaction between the fluid flow and the structure response needs to be 
studied by complex experimental techniques or computational fluid dynamics (CFD). 
Further challenges emerge when the cylinder is standing in a flat-plate boundary layer, as a 
more complex 3D flow field develops. Besides, a horseshoe vortex formed at the cylinder wall 
junction has practical importance in applications, and hence it has been the focus of numerous 
studies. Thus, there is an added complexity when the cylinder has a free end exposed to the 
flow. 

The subject of VIV for a finite cylinder is of practical interest in many fields of engineering. 
For example, marine risers in petroleum production influence the dynamics of riser tubes 
bringing oil from the seabed to the surface. The subject is also important to the design of civil 
engineering structures such as bridges and chimney stacks, as well as to the design of marine 
and land vehicles, and VIV can cause large-amplitude vibrations of tethered structures in the 
ocean. The offshore industry has been at the forefront of interest in FSI for many decades. 
  
Currently, wind energy research and development programs are being created to advance the 
global wind industry and increase the share of energy from renewables. In the offshore wind 
industry, the risk of VIV becomes greater as the size of the towers increases. It is a phenomenon 
of significant importance because of the fatigue damage on the wind turbine towers. The 
possible reduction of their service lifetime can be critical for the fatigue design; hence, they 
must be carefully designed to avoid environmental and economic catastrophes. In addition, 
maximum loads due to VIV events can be crucial for the design of the quayside foundation 
frames and sea fastenings. Owing to the above features, suppression, reduction, prediction, and 
control of VIV are primary objectives and require an understanding of the physics involved in 
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VIV. An understanding of VIV is critical to safely design many common engineering structures, 
yet there is still much to learn regarding VIV.

VIV research can follow multiple approaches, experimentally, laboratory tests are the best way 
of producing high-quality data because all the system input parameters are under control. 
However, in experiments, the required degree of certainty is not possible to be achieved. On 
the other hand, in a laboratory, it is very difficult to achieve realistic fluid and structural 
parameters such as the Reynolds number (Re), aspect ratios, and mass ratios. Numerical 
simulations that take advantage of enhanced numerical algorithms and increased computational 
power have become an important and valuable tool for solving this kind of problem, and more 
benchmarks have become possible within the last decade. As a subclass of FSI problems, VIV 
problems mainly focus on the understanding of the complex physics of the flow surrounding a 
moving bluff body and the associated vortex shedding process. Generally, for large, unsteady 
flow-induced structural deformations, a tightly coupled FSI approach is required in which 
structural and fluid governing equations are simultaneously satisfied. This can be accomplished 
by solving iteratively at each time step until a specified tolerance is met. A tightly coupled FSI 
approach typically requires far more computing resources than loosely coupled FSI approaches, 
where the governing equations are not simultaneously satisfied, or CFD-only simulations (one-
way coupling). 
Due to this difficulty, in VIV research, many FSI simulations have used 2D fluid domains such 
as those by Wanderley et al. [1] and Zhao et al. [2]. The efficient numerical simulation of FSI 
is essential to realistically simulate the related flow problems. To the author's knowledge, only 
a limited number of studies dealing with the flow past a bluff body have used a series of methods 
to investigate the FSI effects on the structure. Studies [3], [4], and [5] treated the structure as a 
mass-spring system; [5] described it as a discrete structural simplification. Although better 
computers are gradually becoming available to researchers, they are still extremely expensive 
to use because of their time consumption. Several numerical models have been proposed to 
analyze and predict the fatigue life caused by such a topic. The methods for predicting the VIV 
range from simple modal analysis to fully coupled analysis of the FSI by solving the Navier–
Stokes equations.

1.2 Aims of the Research

The main aim of the study is to investigate the VIV of a cylindrical structure in steady flow 
through extensive experimental tests and numerical simulations and to validate the numerical 
code with experimental data. Finding a practical solution and presenting suppression tools are 
the intended contributions of the present study. This thesis focuses on the VIV of a cylinder, 
including the VIV of a rigid cylinder flexibly mounted with two degrees of freedom (2DOF), 
and tools to suppress the VIV of a stationary cylinder and flexible cylinder with 2DOF. The 
main objectives of this thesis are as follows:

- Understand the mechanism of VIV and its characteristics at different parameters and 
conditions by carrying out experimental investigations of the VIV of a cylinder in a 
water recirculating tank and a wind tunnel. Newly developed attached configurations of 
fins have been provided.

- Through experimental investigations, illustrate the effectiveness of the three different 
fin allocations in suppressing VIV, even with one additional challenge: that the cylinder 
model has a mass below the critical value allowed to oscillate in transverse and in-line 
directions.
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- Conduct numerical investigations of the 3D flow around a stationary cylinder subjected 
to newly developed attached structures to examine its effect on suppressing VIV.

- As FSI simulations of the VIV of cylindrical structures are still quite limited, provide a 
challenging and well-defined validation test case for the FSI of the smooth cylinder in 
turbulent flow to close a gap in the literature.
        

- Understand the correlation and difference between the shedding frequency and the 
structure oscillating frequency in the transverse direction obtained from experimental 
measurements and numerical calculations.

1.3 Thesis Layout

This thesis is organized as follows. First, it introduces the nature and significance of the research. 
It next presents a literature review and background information before establishing the research 
methodology. An extensive discussion of the results and elaboration of the research outcomes 
follow. Recommendations for future studies are suggested so that the objectives achieved in 
this study may be further developed. The detailed organization of the thesis is as follows:

Chapter One: Introduction
This chapter introduces the research topic and thesis objectives. Besides, it outlines the 
motivation and objectives of the research.

Chapter Two: Theoretical Background and Literature Review
This chapter presents a brief theoretical background on the flow around a circular cylinder. In 
addition, the literature review discusses the significance of the VIVs of circular cylinders, flow 
around stationary circular cylinders, and the importance of vortex shedding and parameters for 
the analysis of vortex shedding. VIV of a flexible cylinder with one DOF (1DOF) and 2DOFs, 
including describing the differences between free and forced oscillation experiments, VIV and 
galloping, and VIV suppression tools that have been created through experiments and numerical 
investigations. 

Chapter Three: Experimental Investigation
Chapter 3 summarizes the experimental methods used in the present study. It explains the 
details of the experimental apparatus and procedure for the 2DOF experiments. In addition, 
models description and parameters are then covered in this chapter.

Chapter Four: Numerical Method
Chapter 4 includes fundamental equations of fluid dynamics and approximations of different 
terms. It covers the basic equations for flows together with the numerical methods used to solve 
them. Beginning from the Navier–Stokes equations, models to deal with turbulent flows yield 
additional equations of conservation. Components of the finite volume method (FVM) used to 
discretize and solve these equations are described, and a linear algebraic system of equations is 
obtained. Following a pressure-velocity coupling approach. Furthermore, brief details about the 
numerical method used for the structure solver and the technique used to couple the governing 
equations of the fluid and structure are described.

Chapter Five: Experimental Results
Chapter 5 presents the experimental results, discussion, and comparison with previous literature. 
The first part demonstrates the cylinder test cases performed in the Re range 1.9 x 104 to 7.2 x 
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104 at the towing tank. In the second section of the chapter, wind tunnel experiments conducted 
at Re values ranging from 3.6 × 104 to 3.26 × 105 are presented.

Chapter Six: Numerical Simulations and Results
Chapter 6 investigates the VIV of a single cylinder. Following the numerical simulation, a grid-
and time-independent study, validation, and comparison of numerical results are included. The 
study focuses on the forces applied to the cylinder models and the corresponding frequencies 
and responses. Velocity and pressure are also presented. In the first section, CFD analysis is 
performed for a fixed-cylinder case using two turbulence models: unsteady Reynolds-averaged 
Navier–Stokes (URANS) simulations and detached-eddy simulations (DESs). Then, various 
newly developed structures attached to the smooth cylinder surface are examined to illustrate 
their influence in suppressing VIV. Finally, a 3D numerical FSI validation test case is presented. 
The results from 3D simulations are close to previous experimental results.

Chapter Seven: Conclusions
In this chapter, conclusions are provided based on findings from the numerical and experimental 
results of this work, and possible recommendations for future studies are proposed. 



5

2. Theoretical background and Literature 

review

Bodies subjected to fluid flow are classified as being streamlined or bluff depending on their 
overall shape. Bluff bodies are characterized by flow separation along a large section of the 
structure’s surface [6], in which they generate separated flow over a substantial proportion of 
their surface. The flow structure around bluff bodies is characterized by a region of disturbed 
flow behind the body designated by the wake. Within the near-wake zone, various forms of 
flow instabilities may be triggered and amplified. These instabilities are manifested by the 
generation of unsteady flow structures and eventually lead to turbulence as the Re is 
progressively increased (see Fig. 2). The stable street of alternating vortices in the wake has 
been noted by Von Kármán, following Benard, who, in 1908, related the wake’s periodicity to 
the vortices. Circular cross-section bodies such as cylinders are classified as bluff bodies since, 
as a result of their shape, they generate particularly large and typically unsteady flow separation 
structures [7].

The velocity field around a circular cylinder is associated with the characteristic pressure 
distribution around the cylinder. The flow past a circular cylinder causes maximum pressure at 
the front stagnation point, minimum pressure at its sides, and pressures that increase toward the 
aft stagnation point. The measured pressure is expressed via a non-dimensional parameter 
designed by pressure coefficient:

௣ܥ                                                                       = ௣ି௣ಮ଴.ହఘ௎మ                                                       (1)

where ߩ is the fluid density, ݌ is the local pressure on the surface, ݌ஶ is the free-stream static 
pressure and 0.5ܷߩଶ is the free stream dynamic pressure. The circumferential angle is usually 
measured from the stagnation point, ߠ = 0,  to 1800. For a viscous fluid, friction reduces the 
kinetic energy of the fluid particles, and these are no longer able to reach the aft stagnation 
point. The pressure gradient in the boundary layer causes the flow near the body to revert. The 
fluid then detaches itself from the body and separates the boundary layer from the body surface. 
This point of detachment is called the “separation point.” The reverse motion then creates 
vortices, which separate from the body and move downstream, forming a von Kármán vortex 
street.

2.1 Theoretical Background

The flow of a uniform flow around a circular cylinder has been extensively studied by King [8], 
Sarpkaya [9], Skop and Griffin [10], Bearman [6], Norberg [11], and Williamson [12] [13] and 
reviewed in books by Sumer and Fredsoe [14] and Chen [15]. As mentioned above, due to the 
pressure gradient, the flow near the body will revert, and there will be a flow away from the 
body, separating the boundary layer from the body surface. The sketch in Fig. 1 classifies the 
region around the cylinder, showing the boundary layer with the attached flow and the wake 
region with the flow separated from the cylinder surface. At the boundary layer, the flow 
velocity is zero, and shear layers are formed because of the separation of the boundary layer on 
the cylinder surface. The strength of each shear layer increases away from the cylinder surface, 
and it continues to grow until a stronger opposing shear layer breaks off the former shear layer 
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and results in vortex shedding downstream of the cylinder [16]. The mutual interaction between 
the two separating shear layers is the key factor in the formation of a vortex-street wake.

Figure 1 Definition sketch illustrated boundary layer and wake region around cylinder [17]

A key dimensionless parameter to characterize the flow past a bluff body is the Reynolds 
number, Re which defined as:

                                                                     ܴ݁ = ௎஽
ఔ                                                               (2)

where D is the cylinder diameter, U is the flow velocity, ߥ = μ/ρ is the fluid kinematic viscosity,
ρ is the fluid density, and μ is the fluid dynamic viscosity. Figure 2 shows the flow regimes as 
Re increases for a smooth circular cylinder.
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Figure 2 Regimes of flow around a smooth, circular cylinder in a steady current [14]

The creeping flow past a cylinder persists without separation up to Re ≃ 5. For 4–5 ˂ Re > 40, 
a new laminar flow regime starts that is characterized by the separation of the shear layers, 
asymmetrical pair of vortices is observed behind the body as shown in Fig. 2b. The transverse 
oscillation begins at the end of the near-wake and initiates a wave along the trail for Re > 40, 
where the steady, elongated, and closed near-wake becomes unstable. 
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Strouhal [18] observed that upon varying the flow velocity U, the vortex shedding frequency 
from a cylinder of diameter D is proportional to U/D. This constant is the Strouhal number (St), 
which is defined by the following equation:

                                                                      ܵ௧ = ௙ೞ஽௎                                                               (3)

where ௦݂ is the frequency of the vortex shedding, D is the characteristic length of the cross-
section (cylinder diameter). He found the mean value of the proportionality to be 0.185 for a 
stationary cylinder. Vortex shedding in the wake of a fixed circular cylinder in a free stream is 
characterized by the Kármán vortex street, in which vortices are shed periodically in the wake 
of the cylinder at the Strouhal frequency ௦݂. The St value depends on the body shape, roughness 
of the cylinder, and Re. Fig. 3 presents the relationship between St and Re. As depicted in Fig. 
3, the upper and lower branches show the difference between a cylinder with a rough and a 
smooth surface. 

Figure 3 Relation between the Strouhal number and the Reynolds number [162]

The value of St ≈ 0.2 in the subcritical range ܴ݁ = 500~10ହ, is almost constant; however, in 
the range Re = 105 ∼ 106, its value increases. For flexible cylinders or elastically mounted rigid 
cylinders, the wake behind the cylinder is characterized by the periodic shedding of vortices or 
groups of vortices, which similarly generates a time-variable pressure over the cylinder that 
causes periodic forcing on the cylinder in both drag and lift directions.

Forces exerted on the cylinder are a function of this periodic vortex shedding frequency, usually 
causing large amplitude vibrations [19]. The drag force will consist of a mean value and an 
oscillating component with a peak frequency at twice the vortex shedding frequency[20]. The 
lift force will have zero mean and the peak oscillatory component at the vortex shedding 
frequency.
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Fluid-Structure Interaction

The vortex shedding frequency in Equation 3 refers to a stationary cylinder. The vibration of a 
flexible structure induced by transverse fluid flow continuously changes the boundary and flow 
conditions, resulting in more complex phenomena due to the interaction between dynamic flow 
and cylinder motion. Investigations into VIV have shown that the parameters that affect VIV 
may be classified as structural parameters or flow parameters. The classical experiment is to 
adjust the natural frequency of the structure so that it matches the vortex shedding frequency 
௦݂ and thereby create oscillations of the cylinder. 

The interaction of fluids and structure can produce a potentially destructive force on the 
structure itself. The collapse of the Tacoma Narrows Bridge in 1940 is a famous example of 
this phenomenon. After four months, it was opened to traffic due to wind-induced vibrations 
[21]. The FSI between the gusts of wind and the bridge triggered large-scale heaving and 
torsional vibrations, leading to a complex oscillation that eventually reached a severe enough 
magnitude to cause the dramatic collapse of the bridge [22].

   a)  The collapse of the Tacoma Narrows Bridge       b) Three collapsed towers in Ferrybridge, UK

Figure 4 Examples of structural damage due to VIV

In another example, in 1965 [168], three cooling towers, part of a group of eight, collapsed after 
an hour in Ferrybridge as shown in Fig. 4b. A witness described the motion of the tower as this 
of a belly dancer.

Dimensionless parameters

In the literature, different parameters characterize the VIV phenomenon. This section 
summarizes these expressions and parameters and explains how they are used in this work.

Reynolds number, Re

Re is used to describe the flow regimes of the vortex shedding. It is defined as the ratio between 
the inertial and the viscous forces. It determines the flow regime and is also of importance for 
the correlation length in fixed cylinder cases.
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Reduced Velocity, Ur

The reduced velocity is the ratio of the path length in the flow direction per cycle to the model 
width;

                                                                   ௥ܷ = ௎
௙೙஽                                                                (4)

where U is the mean flow velocity and ௡݂ is the natural frequency of the system. The natural 
frequency in air and a vacuum is almost the same, but in still water, the natural frequency for 
normally dense cylinders is significantly reduced due to the added mass effect. Normally, the 
peak of the normalized amplitude of the VIV phenomenon occurs at Ur = 5–6. Two versions of 
the reduced velocity have been used [23]: nominal reduced velocity when the natural frequency 
in the air is used and true reduced velocity when using the true vibration frequency.

Strouhal Number, St

The Strouhal number is related to the shedding frequency of the periodic motion for fixed 
cylinders as previously discussed. For oscillating elastically mounted cylinders, the St is highly
dependent on the natural frequency of the system.

Damping Ratio, ࣀ
For any damped system, the damping ratio is defined as the ratio of the damping constant to the 
critical damping constant:

ߞ                                                                = ௖
௖೎ = ௖

ଶ௠ఠ೙                                                           (5)

where c is the viscous damping coefficient, m is the mass of the structure, and ωn is the natural 
angular frequency.

Amplitude Ratio, A*

The response amplitude of the structure is presented as the ratio of the vibration amplitude to 
the diameter of the cylinder (D). 

Frequency Ratio, ࢌ∗
The frequency ratio is defined as the ratio of the vibration and shedding frequency to the natural 

frequency of the system:
௙ೞ௙೙.

Mass Ratio, m*

The mass ratio (m*) is the ratio of the total oscillating body mass, which includes the enclosed 
fluid mass, to the displaced fluid mass:

                                                  ݉∗ = ௠೚ೞ೎௠೑ ; ݉௢௦௖ = ݉ +݉௔                                                 (6)

where ݉௙ is the displaced fluid mass and ݉௔ is the added fluid mass. The displaced fluid mass 
is obtained using the following equation:

                                                                   ݉௙ = ଵ
ସܦߩߨଶ(7)                                                     ܮ

Where L is the submerged length of the cylinder.
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2.2 Literature Review

The majority of related studies have focused on cylinders with 1DOF. Typical force models 
concerned with VIV only consider forces associated with the cross-flow oscillation of the 
structure that is, with the cylinders vibrating only in the transverse direction of the incident flow. 
When the cylinder’s vibration (or response) frequency, ௦݂, approaches the natural frequency of 
the system, ௡݂, large-amplitude (up to the order of the cylinder diameter) vibrations occur. This 
is the so-called “lock-in” or “synchronization” phenomenon [17]. If at resonance, the flow 
velocity increases further, the shedding frequency is said to lock into the frequency of the 
oscillating cylinder. Then, it strongly deviates from the Strouhal law as its shedding frequency 
is no longer proportional to U/D. Eventually, at reduced but still high velocities, the shedding 
frequency again follows the Strouhal law. This lock-in phenomenon causes something like an 
extended resonance as the wake continues to excite the cylinder at its natural frequency. Instead 
of VIV occurring only when these frequencies match, they are generated over a relatively wide 
range of frequencies. Fig. 5a schematically plots the vortex-induced transverse motion 
amplitude, Y, versus the product StUr. Here, the motion amplitude is normalized against the 
cylinder diameter D, and ௥ܷ = ܷ/ ௡݂ ܦ is the normalized reduced flow velocity. As can be 
seen, the schematically plotted motion amplitudes remain high even after the flow velocity 
surpasses the region of pure resonance.

                   

a) vortex-induced transverse amplitude                                           b) vortex-induced shedding frequency

Figure 5 VIV Characteristics vs. the product StUr

Fig. 5b schematically plots the vortex-induced normalized shedding frequency, ௦݂, normalized 
against the cylinder’s natural frequency, ௡݂, versus the product StUr. As seen, at StUr = 0, where 
there is no flow, there are two frequencies, one occurring at the natural frequency of the cylinder 
(at ௦݂/ ௡݂= 1.0), while the other is zero in this case because at StUr = 0 there is no flow and, 
therefore, no vortices are being shed. As the flow velocity increases, the shedding frequency of 
the wake first follows the Strouhal law. Then, as the flow velocity increases further, the vortex
shedding frequency approaches the cylinder’s natural frequency, and these two frequencies 
collapse into a single lock-in frequency. With further increasing flow velocity that is, at larger 
values of StUr, the shedding frequencies separate again, and after the synchronization region, 
the increasing shedding frequency follows the Strouhal law. 

The most significant characteristics of VIV response are the oscillating amplitude, its frequency, 
and the range of synchronization. The amplitude during lock-in and the band of fluid velocities 
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over which the lock-in phenomenon exists is strongly dependent on the associated relative 
damping, usually expressed as the ratio of the damping force and excitation force and the mass 
of the structure. To illustrate, we shall briefly introduce the single-degree-of-freedom motion 
equation to represent the vortex-induced vibrations of a cylinder in the (transverse) y-direction 
perpendicular to the free stream flow

The most significant characteristics of VIV response are the oscillating amplitude, its frequency, 
and the range of synchronization. The amplitude during lock-in and the band of fluid velocities 
over which the lock-in phenomenon exists are strongly dependent on the associated relative 
damping, usually expressed as the ratio of the combined mass and damping of the structure. To 
illustrate, I shall briefly introduce the single-DOF motion equation to represent the VIV of a 
cylinder in the (transverse) y-direction perpendicular to the free-stream flow:

ݕ̈݉                                                                   + ݕ̇ܿ + ݕ݇ = (8)                                             ܨ

where m is the total oscillating structural mass (excluding the hydrodynamic added mass), c is 
the structural damping, k is the restoring force constant, and F is the fluid force in the transverse 
direction. When the structure’s oscillation frequency is synchronized with the periodic vortex-
induced wake frequency, the force, F(t), and the response, y(t), are given by

(ݐ)ܨ                                                             = ݐ߱)݊݅ݏ଴ܨ + ߶)                                             (9)

        and

(ݐ)ݕ                                                               = (10)                                                 (ݐ߱)݊݅ݏܣ

where ω is the circular frequency of oscillation, and ϕ is the phase angle between the fluid force 
and body displacement. The response amplitude ratio, A*, and frequency ratio ݂∗ is derived 
straightforwardly as follows [24]:

∗ܣ                                                              = ଵ
ସగయ

஼೤ ௦௜௡థ(௠∗ା஼ಲ)఍ (௎
∗

௙∗)݂∗                                          (11)

                                                                  ݂∗ = ට ௠∗ା஼ಲ௠∗ା஼ಶಲ                                                      (12)

where CA is the potential flow added mass coefficient (CA =1.0 for a circular cylinder), and CEA

is an effective added-mass coefficient that includes an apparent effect, Cy cos ߶, due to total 
transverse fluid force in phase with the cylinder’s acceleration:

ா஺ܥ                                                              = ଵ
ଶ஺∗గయ (௎∗௙∗)2 Cy cos ߶                                     (13)

This fundamental equation describes the varying response of the peak amplitude, ܣ௠௔௫∗ , as a 
function of the mass ratio, m∗, and damping ratio, ζ. Among others, the Scruton number is one 
of several related parameters that essentially consist of the product of the mass ratio and the 
damping ratio. Other names used are reduced damping, response parameter, mass damping, and 
stability parameter, which is defined by [25]:

                                                               ܵ௖ = (14)                                                   ܦߩ/ߞ݉ߨ4

Recent research considers the relationship between mass, damping, and reduced flow velocity. 
At high values of the mass/damping parameter m*ζ, only two response branches exist, namely, 
the initial and the lower branches [26]. Khalak and Williamson [24], by examining the vortex 
shedding response over a wider range of m*ζ values, demonstrated the existence of three 
oscillation branches, namely, the initial, the upper, and the lower branches. Of practical 
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relevance is that ocean structures, such as risers and cables, typically have a structural mass that 
is relatively close to the displaced mass of the fluid (m* ~ 2.0) and that structural damping is 
relatively low (ζ < 0.01). By presenting two responses of the vibrating system, Fig. 6 
schematically illustrates the effect of a low value and a high value of m*ζ on cylinder response 
when plotted against the reduced velocity. Graph (a) in this figure plots the transverse response 
amplitude of a cylinder in an airflow that is, for a high mass/damping parameter ratio at high 
values of m*ζ showing that the synchronized lock-in range can be divided into an initial branch 
and a lower branch. Graph (b) plots the response for a low mass/damping ratio at a lower value 
m*ζ, and a third, upper response branch is presented. The response demonstrates that for the 
lower value, m*ζ produces two-phase jumps, whereas, in the vibration for a high value of m*ζ, 
only a single-mode jump is produced. 

a)
b)

Figure 6 Amplitude response for high (a) and low (b) mass/damping parameters [27]

Many vortex formation modes correspond to response branches associated with VIV. The first 
jump (H) signifies the transition of the vortex phase from the initial to the upper branch, and 
this jump is associated with the changed timing of vortex shedding. The second jump (I) 
represents the transition of the phase decreasing from the upper to the lower branch, and this 
jump is not associated with such a switch in the timing of vortex shedding. The initial branch 
itself seems to be divided into quasi-periodic and purely periodic sub-regimes. In the initial 
branch, the 2S mode prevailed, with two single vortices shed from the cylinder over one period 
of vibration. However, in the lower branch, the 2P mode existed, with two pairs of vortices shed 
from the cylinder in one period of vibration. Khalak and Williamson [24] and Laneville [28]
reported that the jump of vibration amplitude from the initial branch to the lower branch 
corresponds to a vortex shedding pattern changing from 2S to 2P mode. The jumps between the 
three branches were associated with changes in the phase angle between the cylinder response 
and the exciting force. The third P + S pattern (one single + one pair of vortices per cycle) 
appeared initially only in the forced vibrations. Fig. 7 shows the vortex mode map created by 
Williamson and Roshko [29], which translated a sinusoidal trajectory over a wide range of 
amplitudes and wavelengths. Their map standardizes the vortex shedding with the oscillation 
of the cylinder with Y-only motion in the plane (λ/D, A/D). It is possible to observe the map 
with the different zones corresponding to the vortex pattern shedding into the cylinder 
transversely to the flow in the function of the oscillation amplitude and wavelength. The shape 
of the structure also affects the response regime of the reduced velocity [26].
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Figure 7 Vortex flow patterns in the wake of the circular cylinder [29]

Two-DOF VIV (Inline & Transverse motion) 

While high attention has been given to studying the 1DOF VIV of a circular cylinder in the 
transverse direction of the flow, it is logical to assume that the associated oscillating vibrations 
occur in the streamwise and transverse directions, rather than in the transverse direction only. 
In reality, vortex-induced forces acting on the cylinder fluctuate in the streamwise and 
transverse directions. Although the transverse (lift) fluctuation is generally larger than the 
streamwise (drag) fluctuation, the resultant streamwise vibration must have some effect on the 
wake [30]. Jauvtis and Williamson [31] carried out studies of vortex-induced cylinder motions 
where the natural frequencies in the (X) and the cross-flow (Y) directions were precisely the 
same—that is, where ௡݂௬/ ௡݂௫ = 1. They found a remarkable similarity between inline and 
cross-flow motion responses, indicating that transverse (cross-flow) response modes are almost 
unaffected. They observed that when the mass ratio is gradually reduced at a fixed mass-
damping, the peak of the transverse amplitude is not affected, and this holds true for a mass 
ratio as low as m* = 6.0 [31]. With mass ratios lower than 6, a new response branch with peak 
amplitudes considerably greater (≈ 1.5 diameters) than that in the 1DOF VIV was found. The 
super-upper branch interestingly starts and terminates directly above the boundaries of the 2P 
mode only for the transverse motion. This super-upper branch displays a highly stable, periodic, 
and hysteretic behavior of the shed vortices, and the in-line and transverse movement of these 
vortices are strongly coupled. The 2T mode vortex structure meaning that two triplets of 
vortices are shed from the cylinder in one vibration period was found as the response amplitude 
reached its maximum value. In the in-line direction, the maximum amplitudes are close to 0.3 
diameters.

The authors used digital particle image velocimetry (DPIV) to study the wake vorticity fields 
for each response branch. Although the experiments of Stappenbelt and Lalji [24] showed that 
the super-upper response branch occurs in the 2DOF cases up to a mass ratio of 8.76, they 
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concur with Jauvtis and Williamson [32] that offshore design codes should reflect the 
significant deviation from the 1DOF VIV data when dealing with the low mass ratios typically 
encountered in the offshore structure design. The disparity between their results and the work 
of Jauvtis and Williamson implies that the experiments of Stappenbelt and Lalji were performed 
with higher damping. Laneville reported that the 2S and 2P vortex shedding modes are 
influenced by the X–Y motion of the circular cylinder and that the degree of this effect is related 
to the time derivation of the motions [28]. Govardhan and Williamson [33] carried out 
experiments for mass ratios of m* = 100 down to m* = 1.0 that yielded negligible oscillations: 
However, with reduced mass, large-amplitude oscillations appear suddenly at a critical mass 
ratio of 0.542. The Re values for these experiments ranged from 4,000 to 22,000 [34]. In 2003, 
the authors deduced the following expression for the frequency of the lower-branch vibration
at low mass/damping ratios: (m* + CA) ߞ < 0.05. Results based on this expression agreed with 
a wide set of experimental data [33].

Figure 8 Cylinder orbits at varying frequency ratios [35]

Another experiment by Morse and Williamson [36] investigated the effect of Re on ݉௖௥௜௧∗ . They 
observed that ݉௖௥௜௧∗ gradually increases from 0.36 to 0.54 over the Re range from 4,000 to 
30,000. They predicted the critical mass below which no coherent region exists that is, where a 
body can resonate over an unlimited range of flow velocities. For the 2DOF cylinder in 
subcritical tests, Dahl et al. [37] also reported the occurrence of figure-eight orbits. Each time 
a vortex is shed, a weak fluctuating drag is generated, with the fluid flow inducing inline 
oscillations. This occurs at a reduced velocity of Ur = 1/2St.

Another form of wake instability was observed for circular cylinders in a range of reduced 
velocities less than 1/2St. Inline oscillations, caused by this effect, have not been observed for 
bodies in the air; however, serious oscillations may occur in denser fluids of substantially 
greater mass ratios, such as water. Their measured maximum amplitudes were less than 1.5D 
and, hence, much smaller than those experienced in vortex-excited cross-flow vibrations. 
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Fig. 8 presents orbital plots from their experimental investigation, obtained from inline versus 
cross-flow (transverse) motions at different frequency ratios. With their apparatus, they attained 
a maximum amplitude ratio of A* = 1.35; however, in some cases, the cylinder reached the end 
of the guide bearing railing, which in Fig. 8 is indicated by an asterisk (*). On the other hand, 
inline motions significantly affect the phase of vortex shedding, and in the wake of the cylinder, 
this appears as a higher power input.

Jeon and Gharib [30] confirmed this with data obtained from a DPIV system and a strain gauge 
force balance. They observed that at zero phases, the changing sign of lower frequency 
oscillations is transferred to the wake, and at the -45° phase more than 50% higher power gain 
to the wake when the in-line (streamwise) motion is added. Since the energy transfer between 
the body and the wake is sensitive to the relative phase between the force and the body motion, 
the phase of the streamwise motion can control even the sign of energy transfer (wake driving 
the body or vice versa). It appears that changing the relative phase of shedding causes a 
corresponding change in the phase of the lift force. As the frequency ratio increases, this peak 
response shifts to higher reduced velocities, where the drag excitation frequency is closer to the 
in-line natural frequency. Moreover, the onset of the disappearance of the two pairs of vortices 
being shed from the cylinder in one period of vibration, the so-called 2P shedding mode, was 
delayed. That is, the changing energy balance in the relative phase of the streamwise motion 
caused this 2D response. Interestingly, Blevins and Coughran [38] reported that the 2DOF 
motions occur over a wider band of entrainment velocities than the transverse-only motions.

Furthermore, the Massachusetts Institute Of Technology (MIT) towing test measurements by 
Dahl et al. [35] revealed that this kind of motion is characterized by third-harmonic transverse 
oscillations, a phenomenon related to multi-vortex patterns forming in the wake of the cylinder. 
They found that the associated large-amplitude lift force components govern first-harmonic 
components. These dominant third-harmonic lift components occur when the in-line cylinder 
motions describe a figure-eight shape as the cylinder crosses the centerline of this figure-eight 
shape. It is worth noting that additional high-frequency harmonics affect the fatigue life of 
oscillating structures because of their significant influence on the structure’s stress level. Thus, 
large-amplitude third-harmonic oscillations may drastically decrease the fatigue life of long 
string-like structures, such as marine risers, especially if a large number of natural frequencies 
are generated. Experiments by Srinil et al. [39] revealed that even a small change of the in-line 
and transverse structure frequency affects the 2DOF vortex-induced maximum attainable 
amplitudes. It is worth noting that the in-line response, in particular, may significantly 
contribute to fatigue because the associated lowest modes generate double-frequency in-line 
oscillations. Recently, 2DOF vortex-induced cylinder motions have received special attention 
because the offshore industry must deal with vortex shedding resonance, which is virtually 
impossible to avoid.

Influencing parameters

A simple dimensional analysis has been used to obtain the parameters of controlling the 
transverse vortex-induced vibration of a cylinder [9]. As mentioned, parameters that affect 
vortex-induced vibrations may be classified as structure parameters and flow parameters. The 
structural one is; structure mass, damping, aspect ratio, surface roughness, and cross-section 
shape. While the flow parameters are; Reynolds number, end conditions, tip flow, correlation 
length, flow ratio, turbulence, and flow shear. A simple dimensional analysis has been used to 
obtain the parameters for controlling the transverse VIV of a cylinder [9]. As mentioned, 
parameters that affect VIV may be classified as structural parameters or flow parameters. 
Structural parameters include the structure mass, damping, aspect ratio, surface roughness, end 
conditions, and cross-section shape, while the flow parameters are the Re value, tip flow, 
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correlation length, flow ratio, turbulence, and flow shear. The most significant parameters are 
presented here. More details and an extensive literature review on parameters that affects vortex 
shedding can be found in the publishing proceeding review paper by Mh. Youssef et. al. (2020).

 Cylinder Mass Ratio

For an elastically mounted cylinder, the oscillation frequency depends primarily on the mass 
ratio. Khalak and Williamson [19] observed that for a constant value of m*ζ, reducing the mass 
ratio causes the maximum amplitude of oscillation to remain almost constant over a larger 
synchronization range. Modir et al. [40] experimentally studied the effect of the mass ratio of 
an elastically mounted rigid circular cylinder on the maximum amplitude of oscillation and 
frequency response. The experiments were performed over a wide range of Re values, ranging 
from 1.7 x 104 to 7.0 x 104. Tests, performed in a towing tank water channel, demonstrated that 
the amplitude of oscillation tended to decrease at larger mass ratios of the system. By decreasing 
m*, the authors observed that the range of synchronization expanded and shifted to higher Re 
values, a process that demonstrates the dependence of VIV on the mass ratio. Furthermore, the 
range of synchronization expands and shifts to higher Re values, and the maximum amplitude 
of oscillation increases as the mass ratio decreases. The range of synchronization strongly 
depends on the mass ratio. Although these results were obtained by changing the mass ratio, 
the corresponding damping ratio also changed. These results agreed with those of Blevins and 
Coughran [38]. 

Figure 9 Transverse response ratio of four cylinders of different mass ratio [38]

Blevins and Coughran performed their experiments with a constantly reduced damping of 4ܦߩ/ߞ݉ߨଶ. To illustrate the effect of decreasing the mass ratio, Fig. 9 plots maximum 2DOF 
cylinder responses as functions of reduced flow velocity for decreasing mass ratios of m/ρD² = 
17.1, 5.01, 2.80, and 1.57, here for the cases with constantly reduced damping of 1.24 and at 
Re values up to 150,000. With decreasing cylinder mass ratios, the response increases at higher 
velocities. For the lowest mass ratio, the synchronization region extends beyond the range of 
the velocities in the experiments. Furthermore, a steadily increasing linear path appears instead 
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of a curved path for the upper branch. This observation could have been associated with the 
effect of the changing Re and not the mass ratio, as this behavior occurred for the other mass 
ratios shown in Fig. 11.

 Cylinder  damping 

Structure damping is useful in the practical VIV response prediction of flexible structures.
Venugopal [41] in his doctoral thesis proposed three damping expressions, namely, one for the 
zero flow case, one for a low flow velocity case, and one for a high flow velocity case. Vikestad 
et al. [42] revised these expressions because they were too inaccurate. Klamo et al. [43]
experimentally investigated the effect of damping on amplitude and frequency. They reported 
that, for a given Ur, the value of the amplitude response ratio A* decreases as damping is 
increased. In addition, with increasing damping, the reduced velocity that corresponds to the 
system entering the desynchronized region decreases, the width of the hysteretic jump 
decreases, and the size of the upper branch decreases because the jump to the upper branch is 
delayed, as shown in Fig. 10. This figure plots the cylinder response obtained from tests by 
Blevins and Coughran [38] on a 2DOF oscillating cylinder with a constant mass ratio of m* = 
5.02, but for the six increasing damping ratios of ߞ = 0.006, 0.0015, 0.0026, 0.0051, 0.0085, 
and 0.0122. They observed that similar to the mass ratio, the damping ratio controls not only 
the maximum amplitude but also the lock-in region of the system. These experimental 
measurements by Blevins and Coughran [38] documented the same behavior as those of Klamo 
et al. [43]. Although generally the results of Blevins and Coughran [38] compared favorably to 
those of Bahmani and Akbari [44], their amplitudes and the associated synchronization range 
deviated somewhat. This could be due to the lower damping ratios of their tests. As seen in Fig. 
10, for all these tests, the upper branch meets the lower branch at a fixed value of Ur, 
independent of damping. 

Figure 10 Transverse response ratio of a cylinder for six different damping ratios [43]

For other systems, this value is different but always independent of damping. Blevins and 
Coughran [38] performed similar tests for a high damping ratio. 
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More specifically, Klamo et al. [43] observed that as the velocity is decreased, the jump 
extending downward from the upper to the initial branch occurs when the amplitude response 
reaches the 2S/2P boundary. In contrast to the case of increasing flow velocity, for decreasing 
velocity, the change from the desynchronized region to the lower branch is dramatic and takes 
the form of a jump discontinuity.
Recently, Vandiver [45] introduced a new damping parameter, c*, to replace the damping ratio 
ζ. As long as a periodic cylinder response dominated, he used his damping coefficient to 
correlate damping and lift. He did so whenever the product of the damping parameter and the 
non-dimensional amplitude equaled 0.79. Garcis et al. [46] tested this value to obtain the effect 
of damping on variable added mass. They reported that Vandiver’s damping coefficient agreed 
closely with the maximum lift coefficient of the square root of 0.79. Vandiver and Rao [47]
extended the use of the damping parameter c* to the analysis of a long flexible cylinder.

 Reynolds Number

The Re value also affects the response. To obtain an upper branch response, damping must be 
low enough and the Re value high enough. Typically, at higher Re values, the cross-flow 
amplitude is larger than at lower Re values. This trend concurs with the results of cylinder 
response measurements by Dahl et al. [35]. The response profile of a system is controlled by 
the combination of damping and Re. The maximum resonant amplitude of lightly damped 
smooth cylinders increases with Re. Blevins and Coughran [38] measured an amplitude of 1.75 
times the cylinder diameter for a smooth 2DOF cylinder at a Re of 139,000. This finding 
demonstrated that the Re value has a stronger influence on the cylinder response than the mass 
ratio, m*, or the product of the mass ratio and damping ratio, m* Raghavan and Bernitsas [48] .ߞ
observed that the Re value rather than m* or (m* + CA) ߞ dictates high-amplitude VIV. They 
conducted their experiments for the same mass ratio and nearly the same value of (m* + CA) ߞ, 
but at Re values between 104 and 105. The increased Re resulted in increased amplitudes of 
oscillation and wider ranges of synchronization. Synchronization starts at a higher normalized 
velocity, the response remains in the 2P regime, and the lower branch disappears as it is 
overtaken by an extended upper branch. The 2P mode and the higher modes were observed to 
occur in the upper branch, where, at high Re values, due to the higher level of velocity 
fluctuations, the 2P mode becomes more stable and stronger and thus leads to a stronger forcing 
and larger amplitude of oscillation.

Furthermore, Raghavan and Bernitsas [48] reported no hysteretic response between the initial 
and upper branches. It seems that there is a critical combination of the Re and reduced velocity 
above which a linear and steadily increasing upper branch appears rather than a curving upper 
branch, as seen for the low Re cases shown in Fig. 11. A similar response is seen in Fig. 9 over 
the same Re range. Tests at higher Re values need to be examined. It seems that the maximum 
amplitude of oscillation is determined by the vortex structure that the system can support, which 
is highly related to the primary factors of the damping, mass ratio, and Re. Carberry et al. [49]
showed that over a small range of subcritical Re values, the phasing of vortex shedding is only 
slightly dependent on the Re value [49]. However, a stronger dependence exists between the 
magnitude of forces exerted on the cylinder and the Re value because even a small variation of 
the shedding point can affect the vortex patterns.
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Figure 11 Transverse response ratio at high Reynolds number and high damping [48]

Suppressing vortex-induced vibration

Suppressing VIV is no easy undertaking, but there are several ways of reducing the amplitude 
response. One way to do so during design is to avoid the resonant area completely by changing 
the natural period of the motion [50] or changing the design of the structure, such as the 
diameter, to delay the synchronization region. This is possible only when the highest Strouhal 
frequency for the cross-section is lower than the fundamental natural frequency so that the local 
reduced velocity will then be less than 5 for all frequencies. An alternative way is to be above 
the resonant area, which is much more complicated because there will always be a higher 
natural mode with a frequency that corresponds to the shedding frequency. Vandiver reported 
that the combination of shear flow and the excitation of the higher modes (above mode number 
100) greatly reduces the probability of lock-in [51]. Another way is to increase the mass of the 
structure and the damping to reduce or avoid the peak amplitudes, but implications for the 
natural frequency of the motion must be considered. In marine applications, it is seldom 
possible to increase the damping enough to avoid higher amplitude responses. The most popular 
way is to modify the pattern of the vortices and their effect on the structure by including 
protuberances on the surface of the structure. This is a consequence of the modification of the 
boundary layer around the cylinder. Several techniques have been studied and applied in several 
fields. There are three categories of passive control devices, according to the Zdravkovich 
classification, depending on how such a device influences the vortex shedding [52]: (i) surface 
protrusions (strakes, wires, fins, studs, etc.), which affect separation lines or separated shear 
layers; (ii) Breaking the flow into many small vortices such as perforated shrouds and axial 
slats; and (iii) near-wake stabilizers, which affect the switch of the confluence point, preventing 
the building of the vortex street. Scruton and Walshe [53] first examined helical strakes for 
suppressing VIV on cylindrical structures. The parameters that affect the effectiveness of the 
strakes are their number, height, and pitch (see Fig. 12). These results have been confirmed by 
Vickery and Watkins tests in the water field [54].
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Figure 12 Circular cylinder fitted with helical strakes [55]

Blevins et al. conducted tests with 5%, 7%, and 13% of diameter high helical strakes. Strakes 
successfully suppressed large-amplitude VIV; the remaining oscillations were small and 
irregular. However, to simulate a local strake defect, when one diameter length of 7% high 
strakes was removed, the oscillation amplitude increased by a factor of four at the worst 
orientation. This finding suggests that local strake irregularities, such as at pipe joints, strake 
clamps, access holes, and marine growth, impair the effectiveness of low strakes [38]. 
Removing one diameter length of the 10% and 13% high strakes did not significantly change 
the cylinder response. 

A rigid splitter plate is one of the most frequently used suppression devices. Roshko (1953) 
observed that a splitter plate with a length of 5 cylinder diameters attached to a fixed cylinder 
was sufficient to stop vortex shedding formation completely and increase the base pressure 
considerably [56]. He found a massive reduction in vortex interaction and a delay in the 
formation of vortices by extending the separated shear layers downstream of the trailing edge, 
where the experiment was conducted at a subcritical flow in the Re of 1.45 x 104. In the range 
of 104 ˂ Re ˂  5 x 104, Apelt et al. reported the effects of wake splitter plates on circular cylinders. 
It was found that splitter plates longer than 2D in the wake of a circular cylinder can 
progressively modify the drag and vortex shedding up to a plate length/diameter (L/D) ratio of 
3, while no further changes occur with a greater L/D ratio [57]. Kwon and Choi [58] simulated 
the laminar vortex shedding behind a circular cylinder using splitter plates attached to the 
cylinder, confirming the findings of Apelt et al. [57]. In 1980, Gartshore et al. carried out 
experimental tests on sectional models of a bare circular cylinder and cylinders fitted with 
different configurations of fins, as shown in Fig. 13. 
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Figure 13 Different sectional models tested by Gartshore et al. [59].

The results showed that strakes were the most effective of the simple devices tested. The straight 
fins, whether attached to the front and back or top and bottom, caused an increase in the 
maximum amplitude of the response [59]. This increase may have been due to sharp edges near 
the top or bottom of the cylinder causing galloping, which means it would have been due to a 
combination of galloping and vortex excitation.

Qiu et al. later studied the effect of cylinders with frontal, wake, and bilateral splitter plates on 
vortex shedding formation with wind flow [60]. They found that vortex shedding from the 
cylinder can be suppressed effectively by a splitter plate with a length of 3 cylinder diameters 
in the wake as it isolates the separated shear layers on the side of the cylinder. The application 
of a splitter plate was investigated experimentally by Ibrahim et al. in 2008; their results 
contradicted the assumption that the behavior of fixed cylinders with attached splitter plates can 
be extended to the free-moving case. They found that, rather than suppressing vibration, 
attachment of a short splitter plate to the riser may amplify the structures' VIV. They observed 
that splitter plates of lengths greater than 2 cylinder diameters suppressed VIV over the tested 
range as a result of hydrodynamic damping and a reduction of the interaction of vortices [61]. 
There was, however, a trend of slightly increasing amplitude, which was reduced as the plate 
length increased. In recent years, studies have illustrated the flow around a circular cylinder 
with a flexible plate. After conducting experiments with a flexible splitter plate attached to the 
cylinder, Liang et al. (2018) reported that the entire synchronization region is postponed and 
that the shear layers and vortex shedding could be well controlled for a plate length of less than 
1.1 cylinder diameters [62]. Strykowski and Sreenivasan reported that at low Re values, vortex 
shedding behind a cylinder can be controlled by placing another, much smaller cylinder in the 
near-wake of the main cylinder to alter and suppress the vortex shedding behind it [63]. These 
results were numerically verified by Dipankar et al. [64]. Hwang and Yang numerically studied 
drag reduction on a circular cylinder using two splitter plates with the same length [65]. The 
combined effect of the dual detached splitter plates, where the upstream splitter plate reduces 
the stagnation pressure by friction and the downstream one increases the base pressure by 
suppressing vortex shedding, results in significant drag reduction on the cylinder.
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It is worth mentioning that such devices increase the cost of the structure model and that they 
complicate handling during installation. Some devices also reduce the drag coefficient, 
especially the streamlined fairing, which can reduce the drag coefficient to the order of 0.1 
[20]. One essential drawback is the installation of such a mitigation device, which is 
complicated and costly, especially for cylinders with a low aspect ratio. Spoiler plates are 
relatively simple to build compared with other passive control solutions. In 2020, Bianchi et al. 
carried out experiments in a towing tank investigating the effect of spoiler plates along the 
vertical axis of low aspect ratio (cylinder length to diameter ratio = 1.5). A desynchronization 
of vortex shedding, reduction of the in-line and transverse responses, and decreasing drag forces 
occurred for the most improved case [66].

During the past decades, numerous efforts have been made in the study of flow control around 
the bluff body. Generally, the control of wake flow can be classified into two categories: passive 
and active. For the category of passive controls, no power input is required; however, for the 
category of active controls, external power input is generally needed. To date, various forcing 
devices have been applied to perform active control of vortex shedding behind the bluff body. 
Examples are a rotary body [67], streamwise and transverse oscillations of a bluff body [68], 
inflow oscillation, steady and time-periodic blowing suction, distributed and electromagnetic 
forcing [69], and plasma actuation [70]. For a brief treatise on active control, see the 
comprehensive review by Choi et al. [71]. Among various active control approaches, the 
rotational oscillation of the cylinder is used extensively. Gopalkrishnan et al. investigated the 
feasibility of free shear flow control and energy extraction from the large eddies in a free shear 
flow. The oncoming vortices of the Kármán street were repositioned, and their strength was 
changed using the foil model. This resulted in new stable patterns downstream from the plain
foil, where three distinct modes were identified [72]. The partial rotation restricted to the
upstream part of the cylinder could achieve more drag reduction [73]. 

Free vibration and force-excited experiments

Because the amplitude and frequency of the motion can be altered at will, several investigators 
have conducted forced oscillation experiments rather than free ones. For a freely suspended 
bluff body oscillating at a steady amplitude, it can be assumed that if the same body is forced 
to oscillate at a similar amplitude ratio, reduced velocity, and Reynolds number, then the flow 
patterns will be identical. The available experimental evidence suggests that free and forced 
vibration flows are the same [74]. It is reported that free vibration tests are performed without 
using any exciting mechanism for the oscillation either in a wind tunnel or in a water tunnel, 
mainly for flow visualization reasons. The free oscillation of a cylinder is closer to the true
nature of the VIV. The flow velocity increases from low values to higher ones, step by step, 
measuring the steady-state vibration amplitude for each flow velocity. However, forced 
oscillation experiments are performed using an excitation mechanism in which the flow velocity 
is kept constant while the amplitude and frequency of oscillation vary. These tests can 
regularize and idealize the various aspects of VIV, leading to the extraction of forces from 
repeated sinusoidal oscillations. For each test, the required driving force for the oscillation is 
measured throughout a range of reduced velocities Ur.

The difference between the free and forced oscillation experiments is that, in the former ones, 
the Re value varies, while in the latter ones it is constant. Furthermore, there is a two-way 
coupling in free vibration between the wake and the cylinder motion, which is the driving 
mechanism. Morse and Williamson reported that with carefully selected conditions, there is 
very strong agreement with the predictions of critical mass from controlled vibration, and 
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therefore, the direct measurements from free vibration experiments are obtained similar to 
forced test[75]. Hover [76] performed other investigations of free and forced oscillation in a 
water tank, with the amplitude and phase of the lift coefficient extracted in both cases. Although 
in forced oscillation tests, the force correlation along the span of the cylinder was better, the 
correspondence of the lifting coefficient in forced and free vibration tests was remarkably close. 
Although the free and forced vibration cases exhibit many similarities in the wake modes and 
fluid forcing, there are still major differences in the energy transfer between the fluid and the 
structure [17]. Dahi et al. (2006) have stated that "Since we cannot control the damping in the 
system perfectly and the pluck tests do not provide an accurate description of oscillatory 
damping, ߝerror was not always zero." The power lost to structural damping should equal the 
power input from the motor so that the average fluid power is zero [35]. In the correlation 
between end lift forces, however, the forced vibrations yield a completely different view of 
transition than that seen for the free vibrations, but similar wake properties develop even when 
the lift forces are drastically different [77].

Galloping phenomena and VIV

Of considerable interest is a dynamic instability triggered by the asymmetric cross-section of 
the bluff body immersed in a flow. The potential was recently demonstrated for limiting or 
utilizing the response of quasi-steady galloping oscillations in the plunging mode. The term 
“galloping” describes the kind of flow-induced vibration that occurs for bodies with non-
circular cross-sections. Assi and Bearman [78] showed that classical galloping of non-circular 
cylinders, such as square cylinders, is caused by fluid dynamic instabilities, where the motion 
of the cylinder generates forces that increase the vibration response amplitude. Lower 
frequencies and larger amplitudes than VIV characterize this phenomenon, and these 
amplitudes increase at higher velocities until the structure fails. Galloping occurs above a 
critical flow speed and does not depend on vortex formation.

Nakamura et al. [79] were among the first to study a circular cylinder galloping in the presence 
of a long stationary splitter plate. Recently, Mannini et al. [80] investigated the VIV interface 
phenomenon of galloping of low-damped rectangular cylinders. Mills et al. [81] suggested that 
the flow structure and dynamic behavior of vortices could be altered by changing the cylinder’s 
chord-to-thickness ratio. They found that the similarity of the relationship between St and the 
chord-to-thickness ratio is due to peaks of base suction occurring when the leading-edge 
vortices pass the trailing edge. It is at this point that the phase of the perturbation cycle (and of 
the leading-edge shedding cycle) leads to the shedding of trailing-edge vortices. Mannini et al. 
provided a comprehensive review of the literature on the galloping of a rectangular cross-
section cylinder [82]. Galloping could also occur due to marine organisms on marine cables 
[83]. The galloping response has also been observed in a circular cylinder, free to oscillate, and
fitted with three different splitter plates has been investigated by Assi and Bearman [84]. Zheng 
and Wang numerically studied the galloping oscillation of a circular cylinder combined with 
different fairing devices [85].

Parkinson and Wawoznek performed an experimental investigation of the interaction between 
galloping and the Kármán vortex resonance of a square cylinder in a smooth wind flow. They 
found the instability started at the critical velocity for vortex resonance wind speeds, rather than 
that predicted by the quasi-steady theory. Furthermore, they reported that a ratio of 2.15 was 
necessary to separate the two modes of force-induced motion [86]. Below this ratio (≈ 2), 
galloping oscillations with amplitudes increasing linearly with flow velocity were observed 
between the two resonance velocities of VIV and galloping. The interface phenomenon between 
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VIV and galloping is important from a practical engineering point of view. This mechanism 
still requires more investigation to clarify unknown features, such as large-amplitude oscillation 
inflow speed ranges, for which classical VIV theories are unable to reliably predict excitation-
induced galloping.

Cylinder model

Most of the studies were conducted on rigid circular cylinders in which ends were fixed with 
elastic fixation from one or both ends, allowing a uniform distributed response along the span. 
There have been only a few studies of a fundamental nature probing the extent to which 
allowing an elastically mounted body to move in 2DOF will modify the forces, responses, and 
vorticity dynamics of the body in a flow. There are also very few studies that look into variation 
in amplitude along the span of cylindrical bodies, such as cantilevers and flexible cables.

The early studies of cantilever cylinders were conducted by Vickery and Watkins [54]. King 
tested a PVC cantilever cylinder in a water channel [87]. Results show a maximum amplitude 
followed by a slight decrease and then a linear increase also as the damping ratio decreases [87]. 
Another cantilever study by Fujarra et al. [88] involved a similar mass ratio and damping ratio 
as seen for the elastically mounted rigid cylinder [89]. The response of the cantilever appeared 
to exhibit a single initial branch, which then dropped to a lower branch instead of three branch 
types for a 2D rigid one. A jump phenomenon was observed, and a high-speed mode of large 
amplitude response was found outside the principal synchronization regime. Regarding the 
synchronization behavior in all the research on cantilever cylinders, no lock-in region was found 
like that found under other conditions. This finding is in agreement with Williamson et al.’s 
[90] study of a plastic cylinder. Bernitsas et al. found that the tip flow reduces the lift force 
exerted on a cylinder and narrows the range of synchronization [91]. This behavior did not 
occur in a cantilever test model by Pesce et al. [88], but their test model was made of aluminum 
alloy, and thus this outcome was possible due to the vibration behavior of the nonmetallic test 
model.
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3. Experimental Methods

Experimental investigation of VIV has a history of around 80 years and still going on to find 
out more details about the VIV dynamics and methods to suppress. However, a few amounts of 
work have been performed in parallel with respect to surface-mounted bluff bodies. It is 
important to investigate flow around the finite circular cylinder of moderated aspect ratio
because it is encountered in various engineering applications. Furthermore, it is essential to 
experimentally investigate VIV suppressing tools to be used as basic data for optimizing 
structural design.

In order to analyze the VIV for flow past a finite cylinder, the experiments have been performed 
for different test cases and under different conditions.  This chapter describes the details of the 
experimental investigations performed to illustrate the different characteristics of VIV at the 
water tank and the wind tunnel with cylinder models below the value of the critical mass ratio, 
and a high mass ratio model without any added storing elements, respectively. The description 
for each experiment includes experimental apparatus, experimental rigs, data acquisition, and
test procedures to simulate free vibration VIV. The preliminary analyses, including the free 
decay test in air or/and water, are also presented in this chapter.

3.1 Water Tank Tests

VIV Suppressing For Critical Mass Ratio

In this section, A series of experiments have been undertaken aimed at reducing drag forces 
and suppressing vortex shedding from circular cylinders. In this work, the newly developed fin 
plate configuration attached to flexible cylindrical models for suppressing vortex-induced 
vibration has been experimentally investigated in the regime of Reynolds number range Re = 
1.4x104-8.0x104 in the towing tank. These models have been demonstrated numerically as will 
be discussed in chapter 6. Experimental tests have been carried out on sectional models of a 
plain circular cylinder, and on cylinders fitted with different newly developed configurations of 
fins. In order to examine the potential of the used suppressing techniques, a cylinder had a mass 
ratio of  0.455 below the critical value and an aspect ratio of 18.8 has been tested. Three 
positions around the cylinder of the fins plate were considered: 800, 900, and 1100 from the 
stagnation point.

3.1.1 Water tank facility

The experiment was carried out in the circulating towing tank of the Institute of Ship 
Technology, Ocean Engineering, and Transport Systems (ISMT) of the University of Duisburg-
Essen, Germany. The main tank dimensions were 6.00m x  1.47m x  0.67m (length x width x 
depth), and the flow had a maximum velocity of 2.25 m/s with turbulence (Tu ˂  2.2%) during 
the tests. Figure 17 illustrates the experiment setup via a schematic diagram for both 
instrumentation systems in collecting the dynamic response of the vibrating system and the 
stream flow throughout the test section. 
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3.1.2 Test model

The polyvinyl chloride (PVC) cylinders tested were a smooth cylinder and three cylinders with 
different fin plate arrangements. All the tested cylinders had an outer diameter of 32mm, a wall 
thickness of 1.7mm, and an aspect ratio L/D of 18.75. 

The low blockage ratio of 1.95 (less than 6%), defined as the ratio of the water channel’s cross-
sectional inlet area and a cylinder’s cross-sectional area, ensured that the channel walls did not
affect vortex shedding frequencies so that the Strouhal number was independent of the blockage 
ratio and the aspect ratio of the cylinder, therefore, the vortex shedding frequency was 
independent of these ratios [92]. The models were mounted with a threaded stainless steel pin 
on a force-torque sensor that was placed underneath the channel’s bottom. A 2.0mm gap 
between the cylinders and the channel’s bottom allowed oscillations in the inline and the 
transverse flow stream directions.

Besides the plain cylinder, three cylinders fitted with fin plates were studied. Eight fins were 
attached symmetrically to to a cylinder at radial positions of 90, 80, and 110 deg from its front 
stagnation point. Each fin was built out of stainless steel and had a length of 60mm, a breadth 
of 4mm, and a thickness of 0.5mm as shown in Fig. 14. Table 2 presents the cylinder parameter 
values for each case tested in the present experiments.

Figure 14 Tested cylinder models parameters at radial positions of (a) 90 deg fin position, (b) 80 deg 
fin position, and (c) 110 deg fin position from its front stagnation point

Eight fins were attached symmetrically to the inline flow direction for each arrangement. Each 
fin was built out of stainless steel and had a length of 60mm, a breadth of 4mm, and a thickness 
of 0.5mm. Similar to the assembly conducted in section 6.2, the upper fin was placed 60mm 
below the cylinder’s top while the lower fin was situated 120mm from the channel’s bottom 
surface. Furthermore, a gap of 60mm separated each fin. The radial fin positions were 80, 90, 
and 110deg from the cylinders‘ front stagnation point. Additionally, all fins were attached at an 
angle of 45deg relative to the inline flow direction. The fins were glued with flexible silicon to 
the cylinders’ surface. Therefore, a fillet weld was applied between fins and cylinder surface at 
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the downstream side of the fins. A three-dimensional printed negative form was used to keep 
the cylinders and their fins in position during gluing. Figures 14 and 15 display the fin 
arrangements.

Figure 15 Arrangement of eight fin plates attached symmetrically along with cylinder length

3.1.3 Experimental setup and instrumentation

A Disynet DA 3102-015g accelerometer was placed 5.0mm below the cylinder top to measure 
the cylinder’s inline, transverse, and vertical accelerations. The 15 x 15 x 15mm3 accelerometer 
weighed about 15gram, had a measurement uncertainty below 1%. Normally, the accelerometer 
measured static and dynamic accelerations and was able to measure up to 15g. However, in 
over-range, it measured up to ±20g, where g is the earth's gravitational acceleration. The 
accelerometer was calibrated using the earth gravitation of 1g before starting the measurement 
campaign. The accelerometer cable trace is kept beside the tank walls and far enough away 
from the models (˂ 70 wire diameter) to ensure that its effect could be negligible as shown in 
Fig. 16.
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Figure 16 Accelerometer sensor cables location

Meanwhile, a force torque-sensor was used to measure simultaneously forces (drag and lift) 
and moments on the cylinder in six degrees of freedom acting on a cylinder. The six 
simultaneously recorded signals from the force balance were processed using a balance 
calibration matrix to obtain time histories of load components acting on a cylinder. These time 
histories were acquired with a 95% confidence level. Both, acceleration and force-torque 
measurements were sampled at 2400Hz. In the present study, a right-handed Cartesian 
coordinate system specified x-, y-, and z-directions corresponding to inline (stream), transverse 
(cross-stream), and the vertical (axial cylinder) directions, respectively. The z-direction points 
up towards the free surface opposite the direction of gravity as indicated in Fig. 17. 

Figure 17 Schematic of the experimental setup including a typical configuration of the experiment 
tools



30

The origin of the Cartesian coordinate system was located at the center of the bottom end of the 
cylinder. During the experiments, the temperature variation in the water channel test section 
was kept below 0.5deg Centigrade. In the present tests, a Laser Doppler Velocimetry (LDV) 
system with an optical fiber probe and a front lens with 800 mm that was mounted vertically 
over the water channel on a 3D transversing mechanism allows traveling in each direction 
automatically. LDV is non-intrusive and with no calibration required [93]. For more detail 
about LDV measurements, refer to N. Shapley (1993) [94]. LDV measurements are based on 
the Doppler effect that is the two coherent monochromatic laser beams of wavelength λ are 
intersecting with an angle θ to constitute a cigar-like shape probe volume constituted of fringes 
formed by the interference between the two beams. When the particle is traversing through the 
probe volume, it diffuses the light in all directions. The light scattered by the traversing particle 
is received by photo-multipliers. Here, The system was used in backscatter mode so that the 
probe in both transmitting and receiving signals to measure inline and transverse flow velocities. 

The LDV system used a continuous wave Ar-Ion laser. Glass hollow spheres with an outer 
diameter between 9 and 13µm with a density close to the water density were used as seeding 
particles. Here, the free flow was captured 10D in front of the cylinder at z/L =0.85 and 0.75. 
The obtained inlet velocities were compared with the mean inlet velocities which were 
measured by the LDV method. Table 1 lists comparative inlet velocities obtained from the water 
channel control panel and from the LDV system near the inlet section located ten-cylinder 
diameters ahead of the cylinder at a height of z/L = 0.75.

Additionally, the wake flow properties were measured at several positions in the cylinder wake 
to capture vortex shedding frequencies. The locations of the measuring points have been 
measured at x/D = 1,2,3,4, and 5 downstream of the cylinder, and z/D =0.5 and 0.75. In this 
study, the flow velocities were measured along the centerline of the cylinder’s wake.

Table 1 Comparative axial inlet velocities obtained from the water tunnel control panel
and from the LDV system

Axial  flow velocity [m/s] Turbulence intensities
[%]

Measured by Tunnel 
Control Pannel

Measured by LDV 
system

2.3 2.187±0.081 1.89±0.24

1.8 1.705±0.076 1.99±0.23

1.6 1.503±0.079 1.99±0.24

1.4 1.303±0.069 2.00±0.20

1.2 1.123±0.051 1.99±0.22

1.0 0.979±0.050 2.03±0.28

0.8 0.789±0.041 2.05±0.26

0.6 0.569±0.002 2.13±0.22

0.4 0.355±0.020 2.25±0.33
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3.1.4 Test procedure and data analysis

The experimental data were acquired through two data acquisition systems with a sampling rate 
of 2400 Hz. Three channels were used to record the response data of the cylinder and six-
channel for the forces, and moments. The Fast Fourier Transform (FFT) procedure was applied 
for the raw signals to analyze the frequency content of the measured time-series data to obtain 
the power spectral density (PSD), describes how the power of the signal is distributed over 
frequency and measured in (G2/Hz) where the acceleration is measured in G. For the motion of 
the cylinder, the accelerations were converted to displacements by a double trapezoidal 
integration method using MATLAB software.

A bandpass filtering operation should be taken to remove the undesirable frequencies. The 
signal was low-pass filtered at the Nyquist frequency, 100Hz, and high-pass filtered at 1 Hz to 
remove the low-frequency components that are disproportionately amplified during the 
integration. As integration reduces high-frequency vibration and amplifies low frequencies, a 
high pass filter with the same cut-off value is used to attenuate low frequencies after integration 
[95]. Meanwhile, frequencies higher than 40.0 Hz are cut off to avoid the 50.0 Hz-noise of 
alternating current (AC) signal. It is sufficiently large to cover the high-order vibration 
frequencies concerned in this study. All the used sensors have been synchronized with the 
navigation data to allow combining them. The test duration was approximately ten minutes for 
each velocity. Repeatability tests are completed to estimate the first-order variable uncertainty 
for the experiments [96]. The data were processed in a MATLAB environment to obtain a 
cylinder’s response amplitudes, flow velocities, forces acting on the cylinders, and dominant 
frequencies.

The structural damping and natural frequency were evaluated by hammering free decay tests. 
The logarithmic decrement method was used to calculate the damping ratio for the 
underdamped system in the time domain. The damping ratio for the experiments was calculated 
from the natural log of the ratio of the amplitudes of successive peaks [97]. The damping caused 
by friction between the internal planes that slip or slide as the material deformed is known as 
hysteresis or structural damping.

The root mean squares (r.m.s.) values of the displacement amplitudes and forces were computed
for comparison to achieve more accurate data analysis [98]. Some analyzed parameters were 
presented as a function of the reduced velocity, Ur. The damping coefficient was determined 
based on the equation:      

ߞ                                                                                    = ఋ
ଶగ                                                  (15)

where the hysteresis logarithmic decrement, ߜ, is defined as follows:

ߜ                                                                                 = ݈݊ ௬೙௬೙శభ                                             (16)

Amplitudes ݕ௡and ݕ௡ାଵ are two successive cycles of the free decay test.
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Figure 18 Time series for the smooth cylinder without fins in air (A) and in water (B) and 
corresponding PSD of the lateral acceleration in air (E) and water (F), time series of the cylinder with 

fins positioned at 110 deg in air (C) and in water (D) and corresponding PSD of the lateral acceleration 
in air (G) and water (H), time series of the cylinder with fins positioned at 90 deg in air (I) and in water 
(G) and corresponding PSD of the lateral acceleration in air (M) and in water (N), and time series of 
the cylinder with fins positioned at 80 deg in air (K) and in water (L) and corresponding PSD of the 

lateral acceleration in air (O) and in water (P), where the acceleration is measured in G and equal to 
(m/s2).
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Examples of the time series of the smooth and fined cylinder cases for free decay test in the air 
and water, identified as symbols w,  are presented in Fig. 18. The free decay test was repeated 
ten times, and the average values were calculated for each test.
Table 2 lists the parameters of each tested cylinder, comprising mass ratio m∗, front projected 
area A, natural frequencies fnx and fny for the streamline and the lateral flow directions in air, 
respectively, natural frequencies fnwx and fnwy for the streamline and the lateral flow directions 
in water, respectively, and damping ratios ζwx and ζwy in water as a percentage of critical 
damping for the streamline and the lateral flow directions, respectively. Cross-sectional areas 
were measured using a CAD tool; dry and wet frequencies and damping percentages, as well 
as mass ratios, were calculated based on a cylinder’s total weight and the attached fins. The 
associated experimental measurement uncertainties, estimated to be less than about 4%, were 
obtained using the method of Moffat (1988) [99].

Table 2 The structural characteristics for each tested model

Model m* A 
(mm2)

fnx [Hz] fny   [Hz] fnwx   [Hz] fnwy  
[Hz]

࢞࢝ࣀ (%) ࢟࢝ࣀ (%)

Smooth 
Cylinder

0.535 19200 20.01 20.01 11.7 11.7 3.8 3.8

Cylinder 
with 80 

deg. fins

0.535 20233.2 20.70 21.19 11.84 11.90 4.4 5.7

Cylinder 
with 90 

deg. fins

0.537 20319.6 21.03 20.82 11.77 12.13 3.9 7.7

Cylinder 
with 110 
deg. fins

0.537 19974 20.34 20.29 11.26 11.61 3.8 4.9

With the relatively small differences between the characteristics of the four tested cylinders 
listed in table 2, it is clear that the attached fins did not have any significant changes in the 
stiffness of the smooth cylinder. Consequently, responses of cylinders fitted with fins that 
differed from responses of the smooth cylinder would have been expected to be caused by the 
wake region changes that would raise as a result of using these new fin configurations.
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3.2 Wind Tunnel Tests

In this section, VIV around a cantilever cylinder at a wind tunnel has been investigated. Flow 
over the free end of a high mass ratio circular cylinder and flow around the wall junction of the 
cylinder cause the local flow field and the wake behind the cylinder to become strongly three-
dimensional. The flow field is also characterized by a set of time-averaged streamline counter-
rotating vortex pairs within the wake near the free end (tip or trailing vortices) associated with 
a downwash flow on the wake centerline in addition to the familiar Kármán vortex shedding 
from the sides of the cylinder [109]. Due to the downwash flows behind the free end of the 
finite cylinder, the three-dimensionality of the wake becomes strong. Few studies addressed the 
effect of various parameters, such as Reynolds number, aspect ratio, and boundary layer 
thickness, on the local flow field and how the flow field relates to what happens near the wake 
region [110]. The early studies of cantilever cylinders were done by Vickery & Watkins [54]. 
A PVC cantilever cylinder was tested in the water channel by King [13]. Results show a 
maximum amplitude followed by a slight decrease and then a linear increase also as the
damping ratio decreases and as the reduced velocity at which peaks appear decrease [87]. 
Another cantilever study by Fujarra et. al. [88] had a similar mass ratio and damping ratio as 
the elastically mounted rigid cylinder [89]. They reported that the response of the cantilever 
exhibits a single initial branch, which then drops to a lower branch instead of three branch types 
of responses for a rigid one. A jump phenomenon was observed, and a high-speed mode of 
large amplitude response was found outside the principal synchronization regime. Regarding 
the synchronization behavior (when the cylinder’s vibration frequency approaches its natural 
frequency), for all the research on cantilever cylinders mentioned, no lock-in region was found 
to be similar to that found under other conditions. This phenomenon also agreed with the case 
of the plastic cylinder of Williamson et. al.  [90]. Bernitsas et. al. found that the tip flow reduces 
the lift force exerted on the cylinder and narrows the range of synchronization [91]. This 
behavior did not happen for the cantilever test model of Pesce et. al. [88], but their test model 
was made of aluminum alloy, and one might expect that this was possibly due to the vibration 
behavior of the nonmetallic test model. With the high mass cantilever cylinder in this study, the 
same behavior occurred. In the no-lock-in region, with the use of a propylene material, the 
damping ratio was greater, and, also, the Reynolds number regime was higher. 

3.2.1 Wind tunnel facility  

The experiments were conducted in a subsonic wind tunnel at the Institute of Thermo and Fluid 
Dynamics, Ruhr University Bochum. It consisted of an open 2.5m long test section of 1.5m 
width and 1.2m height, and its free stream attained a velocity up to 50m/s with low turbulence 
of less than 0.2%. The tunnel was powered by a 150kW direct current motor driving a 
commercial axial flow fan. Figure 19 shows a schematic of the wind tunnel. The test section 
velocity was calibrated against the pressure difference. The freestream velocity measurement 
from the wind tunnel control panel was calibrated, and the calibration coefficients acquired 
from the tests are shown in Fig. 20. The calibration factor was applied to the velocity data, 
which converted measured volts to meters per second.
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Figure 19 Schematic of the wind tunnel

3.2.2 Test model

The test model was made of a standard propylene circular cylinder. Table 3 lists the material 
and section properties of the cylinder. To minimize the cylinder blockage, the selected aspect 
ratio was sufficiently small to guarantee a blockage ratio of less than 6 %. Therefore, the vortex 
shedding frequency was independent of this ratio [92]. Furthermore, to achieve adequate 
rigidity and for the purpose of fixation, a 10cm long PVC circular rod was installed inside at 
the bottom of the cylinder.

Table 3 Test Model Parameters

Parameter Value

m ....... Cylinder mass 0.47273 kg

mtotal... Total model test mass 1.640 kg

D...Outer diameter 0.11 m

t... Thickness 2.7 mm

L....Cylinder Length 1.014 m

L/D.....Aspect ratio 10
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m*  ........Mass ratio 747.4

Strouhal no... St  0.18

Theoretical natural frequency... ௡݂ 30.01

3.2.3 Experimental setup and instrumentation

In the present work, a separate cylinder set, an accelerometer, a load cell, data acquisition 
equipment, and a digital camera have been used. Identical accelerometer types with identical 
technical parameters, used in section 3.1, have been used in wind tunnel experiments. The 
accelerations were sampled at 2400 Hz for ten minutes. The voltages were converted to 
acceleration using the unique calibration determined for the accelerometer. The accelerometer 
was calibrated using the earth gravitation of 1g before starting the measurement campaign. The 
voltage magnitude was found to depend linearly on the acceleration (see Fig. 20). Details of the 
acceleration measurement parameters are given in table 4.

Table 4 Acceleration Measurement Parameters

Parameter Value

Sampling frequency 2400 Hz

Sampling time 10 minutes

Accelerometer full-scale range ± 20 g 

Accelerometer Uncertainty ˂ 1%

Also, a force torque-sensor was used to measure simultaneously forces (drag and lift) and 
moments on the cylinder in six degrees of freedom. The six signals from the balance were 
simultaneously acquired at a sampling rate of 2400Hz and were processed through a balance 
calibration matrix to obtain time histories of load components acting on the model with a 95% 
confidence level.
The model was placed vertically on a horizontal plane and bolted down to a heavy steel base 
plate, firmly fastened to another plate connected to a six-axis force/torque load cell, which in 
turn was connected to the floor of the tunnel’s working section by about nine bolts fastened to 
two other plates. The weight of the connector plates was about 3.8kg. A schematic drawing 
( see Fig. 21) shows a rigid circular cylinder cantilevered by adapter plates between the cylinder 
and the load cell.



37

Figure 20 Calibration curve for the velocity Sensor

                                               a)                                                                       b)

Figure 21 plan view (a) and side view (b) of the experimental setup

A wooden ground plate was installed on the floor of the wind tunnel test section and arranged 
parallel to the free stream velocity (U) to produce a fully developed turbulent boundary layer at 
the location of the cylinder and to ensure that the specified aspect ratio of ten was maintained 
for the test cylinder. The boundary layer thickness in the proximity of the model was less than 
9% of the model height, ensuring a negligible influence on the vortex shedding frequency and 
the free end flow [34]. Figure 22 shows the experimental setup and the coordinate system for 
each sensor.

3.2.4 Test procedure and data analysis

The experiments were conducted in the subcritical flow region, where vortex shedding became 
distinctly turbulent and where three-dimensional features took place in the wake. The Reynolds 
number ranged from 3.6x104 to 3.26x105, corresponding to the so-called reduced velocity, Ur, 
ranging from 1.94 to 18.00. As mentioned this normalized reduced velocity is written as ܷ௥ =௎
௙೙஽, where ௡݂ is the measured fundamental natural frequency of the cylinder, and D is the 

cylinder’s diameter. The test duration was approximately ten minutes for each velocity. The 
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data were processed in a MATLAB environment to obtain the amplitudes of responses and 
forces and their dominant frequencies. The experimental data were acquired by two data 
acquisition systems with a sampling rate of  2400Hz. Three channels were used to record the 
response data of the cylinder and six channels for the forces and moments. The fast Fourier 
transform (FFT) procedure was applied for the raw signals to analyze the frequency content of 
the measured time series.

Figure 22 Experimental setup and the coordinate systems of sensors

For the motion of the cylinder, the measured acceleration was integrated twice to give 
displacements by a double trapezoidal integration method using the MATLAB program. Two 
points need to be mentioned before applying the above approach for displacement 
reconstruction. One is that the accelerometer was composed of two parts, and the used data 
were obtained by subtracting the offset. The other one is that a bandpass filtering operation 
should be taken to remove the undesirable frequencies at the Nyquist frequency, 100 Hz. Before 
integrating the acceleration time series data into the displacement time history, the acceleration 
data were lowpass filtered to remove their high-frequency noise by a cut-off frequency of 40Hz. 
As integration reduced the high-frequency vibration and amplified low frequencies, a high pass 
filter with the same cut-off frequency was used to attenuate low frequencies after integration. 
A 5th-order Butterworth filter was used due to its maximally flat response in the passband and 
the filter was applied in both the forward and backward direction in time, resulting in no phase 
distortion to the acceleration. Both the accelerometer and load cell sensors have been 
synchronized with the navigation data to allow combining them. The test duration was 
approximately ten minutes for each velocity. Repeatability tests are completed to estimate the 
first-order variable uncertainty for the experiments [96]. The data were processed in a 
MATLAB environment to obtain the amplitudes of responses, velocities, forces, and their 
dominant frequencies.

The structural damping and natural frequency of the cylinder were evaluated by hammering 
free decay tests. The natural frequency was determined by applying the Fast Fourier Transform 
(FFT) procedure for the raw signals from both the accelerometer and load cell sensors. 
Meanwhile, The logarithmic decrement method was used to calculate the damping ratio for the 
underdamped system in the time domain. Linear vibration theory proposes a damping 
coefficient that is directly proportional to the velocity of oscillations. The damping caused by 
friction between the internal planes that slip or slide as the material deformed is known as 
hysteresis or structural damping. 
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For a lightly damped system, ܿ/2݉ < ඥ݇/݉, where c is the damping constant, and ݇ is the 
cylinder stiffness. For any damped system, the damping ratio ߞ is defined as the ratio of the 
damping constant to the critical damping constant:

ߞ                                                                     = ௖
ସగ௠௙೙                                                              (17)

The structural damping was measured by perturbing the cylinder from its equilibrium position, 
in still air, and measuring the decay in amplitude. The damping ratio for the experiments was 
calculated from the natural log of the ratio of the amplitudes of successive peaks using the 
logarithmic decrement method. The logarithmic decrement represents the rate at which the 
amplitude of a free-damped vibration decreases. It is defined as the natural logarithm of the 
ratio of any two successive amplitudes. the hysteresis logarithmic decrement, ߜ, can be written
as follows:

ߜ                                                           = ݈݊ ௬೙௬೙శభ = ଶగ఍
ඥଵି఍మ                                                     (18)

For small damping, the damping coefficient was determined based on the equation:

ߞ                                                                    ≅ ఋ
ଶగ                                                                          (19)

It is noticed that for values up to ߞ = 0.3, equation 19 could be used instead of equation 17 [97].
Figures 23 and 24 presented the signals before and after filtering, respectively, for a sample test 
case. The free decay test was repeated five times, and the average values were calculated for 
each test. It was found that the damping value varied by 1.9% and that the natural frequency 
was 23.4Hz. The frequency was less than the theoretical calculated due to the effect of the 
attached mass of the test model setup.
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Figure 23 Recorded data from decay test no. 0126

Figure 24 Analyzing data for a decay test No. 0126 in x-direction; left, Time series output; right, The 
fitting analysis
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4. Numerical Methods

The availability of powerful supercomputers recently has allowed users in performing 
simulations to obtain optimum results as well as in numerical modeling of fluid dynamics. The 
numerical modeling in fluid dynamics, so-called computational fluid dynamics (CFD), 
becomes very important in the design process for many purposes as well as in the marine 
industry.

However, Computational Fluid Dynamics (CFD) has gained momentum and its value in cost-
effectiveness could include CFD results enabling the design of smaller and lighter equipment 
or enabling simpler and cheaper examinations before practical installations. Experiments are 
sometimes preferable to provide design data and verification. However, offshore structures are
constrained by many factors, such as experimental facility availability and capacity limits, 
model scale limit, the difficulty of current profile generation, and cost and schedule concerns. 
Under such conditions, CFD simulation provides an attractive alternative to model tests and 
also provides a cost-effective alternative.

Unlike the model testing facility or experimental laboratory, in CFD simulations there is no 
need for a big facility. Furthermore, CFD also offers no capacity limit, no model scale limit,
and cost and schedule efficiency. Indeed, the advantages of using CFD compared to 
experiment-based approaches can be concluded as follow:

a) Ability to assess a system that controls experiments is difficult or impossible to perform (very 
large system).

b) Ability to assess a system under hazardous conditions (e.g. safety study and accident 
investigation).

c) Gives unlimited detail level of results.

Up to this date, no general solution to the Navier-Stokes equation exists and only for simplified 
flows such as Stokes flow. This means we need to turn to numerical solutions to achieve an 
approximate solution to the fluid flow. CFD encompasses a large array of numerical methods 
for predicting the flow of gas and fluid. The central idea is to take a geometrical representation 
of a body of interest, discretize the governing equations of fluid flow onto a surrounding 
computational grid, apply boundary conditions, and solve for the fluid velocities, densities, and
pressures in the domain of interest. It is worth noting that Numerical solutions are always 
approximated values. Even if the equations are precisely solved, the solution will not match 
reality completely. So, the computation results always need to rely on experimental data for 
validation.

4.1 Flow Model  

The commercial CFD code STAR-CCM+ software package developed by CD-adapco has been 
used. It is a finite volume solver with significant multiphysics capabilities including tools for 
FSI, rigid body dynamics, and free-surface flow. The main methods used by STAR-CCM+ in 
the present calculations are described in the following sections. An entire simulation workflow 
can start and end in STAR-CCM+, however, it is also able to interface with third-party packages 
and be integrated as a black box CFD solver within an FSI framework.
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4.1.1 Governing equations

This section introduced the governing equations of fluid dynamics. In fluid dynamics, the flow 
is described by the conservation of mass, conservation of energy, and conservation of 
momentum. The fundamental equation for viscous fluid flow is the Navier-Stokes equation. 
This equation is derived by applying Newton’s second law to fluid motion under the assumption 
that stress in the fluid arises due to the velocity gradient and a pressure term. The equation can 
therefore describe viscous flow. The solution of this equation can provide the velocity, pressure, 
density, and temperature in the fluid. It is governed by the following equations of momentum 
and mass conservations. The conservation principles are written here in differential form using 
Einstein’s notation

                                                          
డఘ
డ௧ + డ(ఘ௨೔)డ௫೔ = 0                                                            (20)

The governing equation of momentum conservation is given as

                                            

                                                  
డ(ఘ௨೔)డ௧ + డ(ఘ௨೔௨ೕ)డ௫ೕ = డఛ೔ೕడ௫ೕ + ߩ ௜ܾ                                               (21)

Where ݑ௜ are the velocity components in spatial directions ߩ ,௜ݔ is the fluid density, ሬܾ⃗ is the 
body forces acting on the fluid such as gravity or buoyancy, and the Cauchy stress tensor ߬. In 
the present thesis, we are only interested in the velocity and pressure, as the density is assumed 
incompressible and up to this date, the temperature has not been considered relevant. The fluids 
are assumed Newtonian, therefore, the stress tensor ߬௜௝ is defined as

                                                 ߬௜௝ = ߤ ൬డ௨೔డ௫ೕ + డ௨ೕడ௫೔ − ଶ
ଷ
డ௨ೖడ௫ೖ ௜௝൰ߜ − ௜௝                                   (22)ߜ݌

Where ݌ is the fluid pressure, ߤ is the dynamic viscosity of the fluid, and ߜ௜௝ is the Kronecker 
delta. With the assumption of an incompressible and isothermal fluid, the time derivative of 
density in continuity equation (22) vanishes transforming the equation to

                                                                          
డ௨೔డ௫೔ = 0                                                          (23)

Further, using the continuity equation (22) the divergence term in the definition of shear stress 
tensor (equation (24)) vanishes, and the momentum equation for an incompressible fluid is 
written as

                                 
డ(ఘ௨೔)డ௧ + డ(ఘ௨೔௨ೕ)డ௫ೕ = డ

డ௫ೕ ߤ] (డ௨೔డ௫ೕ + డ௨ೕడ௫೔) − [௜௝ߜ݌ + ௜                             (24)ܾߩ

Equations (23) and (24) defined the conservation principles for an incompressible, isothermal,
and Newtonian fluid motion. These equations defined the fluid subproblem of the coupled fluid-
structure interaction study in this work. The incompressible Navier-Stokes equations (23 and 
24) were written for an Eulerian frame of reference. The Eulerian formulation of flow field is a 
way of looking at the fluid motion while focusing on a specific location in space, through which 
the fluid flows. Therefore, the formulation is not suitable for moving boundaries with body-
fitted meshes. In this case, the Arbitrary Lagrangian-Eulerian formulation is used for the
solution of conservation equations of the fluid subproblem on moving grids.
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The main idea of the ALE approach is that an observer is neither located at a fixed position in 
space nor moves with the material point, but it can move arbitrarily. To achieve this for the 
conservation laws already described, a relative velocity is introduced in the convective term. 
Then the equations were written as

                                                                    
డ௨೔డ௫೔ = 0                                                                (25)

                                    
డ(ఘ௨೔)డ௧ + డ(஡௨ೕ(௨೔ି௨೔೒))డ௫ೕ = డ

డ௫ೕ ߤ] (డ௨೔డ௫ೕ + డ௨ೕడ௫೔) − [௜௝ߜ݌ + ௜                  (26)ܾߩ

The equations are written to account for the motion of the entire grid as a whole (rigid body) or 
relative to the grid (grid deformation), and therefore ݑ௜௚is the grid velocity in ௜ݔ direction. 

4.1.2 Pressure-velocity coupling

For compressible flows, the continuity equation can be used to determine the pressure and the 
density based on an equation of state. However, in the case of incompressible flow, A solution 
of the Navier-Stokes equations is difficult due to the absence of an equation to solve the pressure.
To obtain a consistent solution of pressure and velocity, the conservation equations must be 
reordered to obtain dedicated equations for the velocity and pressure fields.

For this purpose, projection methods that combine the conservation equations eq. (25) and eq. 
(26) to obtain an explicit equation for the pressure. The most common approaches based on 
pressure correction equation are SIMPLE (Semi-Implicit Method for Pressure-Linked 
Equations), Patankar and Spalding [124], and PISO (Pressure-Implicit with Splitting of 
Operators), Issa [125]. PISO procedure has been successfully adapted for the iterative solution 
of steady-state problems. it consists of one predictor step and two corrector steps. The SIMPLE 
algorithm uses an iterative method that satisfies both conservation equations which is described 
as follow [104]

1. The estimated pressure from the previous iteration or time-step has been used to solve the 
momentum equation to obtain the velocity field.

2. Using obtained velocities to determine the mass imbalance.

3. Use the mass imbalance to correct the pressure field and again the velocity field.

4. Repeat the processes till the mass and momentum equations get satisfied.

In the solver, discretized continuity and momentum equations are used to derive the pressure 
correction equation. Each component of momentum is solved to obtain the unknown velocities. 
The velocities obtained cannot satisfy the continuity equation because the pressure value used 
during iteration is from a previous time-step or iteration. Then, a correction in velocities as well 
as correction in pressure obtained from the last time-step satisfying the continuity as well 
momentum equation is required. 

The discretized equation, using an implicit method, for velocities for a new time-step n+1 at 
node C can be written as

௜,಴௡ାଵݑ஼௨೔ܣ                                      + ∑ ௜,೗௡ାଵ௟ݑ௟௨೔ܣ = ܳ௨೔௡ାଵ − ቀఋ௣೙శభఋ௫೔ ቁ஼                                  (27)

Where ݈ denotes the neighboring point. During each time-step, an approximation is made 
because the velocity is not updated, however, the velocity is improved by solving the 
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momentum equation. Consequently, the pressure correction equation is solved to correct 
pressure and velocity values to satisfy the mass conservation equation. For an unsteady problem, 
the repetition of the steps is involved until conservation equations are satisfied with tolerance.
The repetition of these steps within each time-step is referred to as outer iteration indexed by 
m. Momentum equation solved in mth outer iteration is

∗௜,಴௠ݑ஼௨೔ܣ                                      + ∑ ௜,೗௠∗௟ݑ௟௨೔ܣ = ܳ௨೔௠ିଵ − ቀఋ௣೘షభ
ఋ௫೔ ቁ஼                                    (28)

The coefficients A and the source term Q depend on the solution equation that was linearized 
and the coefficient matrix and source term are based on variable values from the previous 
iteration. To enforce the continuity constraint, both pressure and velocities are corrected. they 
need to be corrected and updated as presented

∗∗௜௠ݑ                                    = ∗௜௠ݑ + ᇱݑ ܽ݊݀ ∗௠݌ = ௠ିଵ݌ + ᇱ                                (29)݌

Where ݑ௜௠∗∗ and ݌௠∗ are corrected velocity and pressure respectively. These values must 
satisfy the linearized momentum and continuity equation. Momentum equation for corrected 
variables is in SIMPLE defined as

∗∗௜,಴௠ݑ஼௨೔ܣ                                              + ∑ ௜,೗௠∗௟ݑ௟௨೔ܣ = ܳ௨೔௠ିଵ − ቀఋ௣೘∗
ఋ௫೔ ቁ஼                            (30)

The relation between correction terms for pressure and velocity was determined by subtracting 
equation 27 from equation 28 and dividing by AP. Finally, These lead to the Poisson-like 
pressure-correction equation

                                                      
ఋ
ఋ௫೔ ൥ ఘ

஺೛ೠ೔൬ഃ೛ᇲഃೣ೔൰
൩
௣
= ቂఋ൫ఘ௨೔೘∗൯

ఋ௫೔ ቃ௣                                             (31)

4.1.3 Finite volume method

The geometric discretization of the physical domain results in a mesh on which the conservation 
equations are eventually solved. This requires the subdivision of the domain into discrete non-
overlapping cells or elements that completely fill the computational domain to yield a grid or 
mesh system. One of the popular methods used to approximate the differential equations by a 
system of algebraic equations and calculate the solution numerically is a Finite Volume Method 
(FVM). The most advantage of FVM is that there is no restriction on the user over the type of 
mesh created i.e it is suitable for any type of grid, therefore, it is suitable for complex geometry. 
This method divides the solution domain into a finite number of contiguous control volumes
(CV) enclosed by control volume surfaces (S), and the conservation equations are applied to 
each CV. The usual approach is to define CVs by a suitable grid and assign the computational 
node to the CV-centroid. Flow variables like pressure, temperature, velocity, and turbulent 
kinetic energy (tke) are going to be stored at the cell centroid. These flow variables are assumed 
to vary linearly across the cell, i.e, between the cell centroid and the various phases of the cell. 
The finite volume method uses the generic transport equation in an integral form as:

ௗ
ௗ௧ ∫ ௜ݑߩ ܸ݀ + ∫ ௜ݑߩ ൫ݑ௝ − .௝௚൯ݑ ሬ݊⃗ ݀ܵ = ∫ ߤ (డ௨೔డ௫ೕ + డ௨ೕడ௫೔) ௝݊ ݀ܵௌ + ∫ ௜௝ߜ݌ ௝݊݀ܵௌ + ∫ ௜ܸ݀௏௏ܾߩ                                         

(32)
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                                                               ∫ ௜݊௜݀ܵݑ = 0ௌ                                                       (33)

If we sum equations for all CVs, we obtain the global conservation equation, since surface 
integrals over inner control volume faces cancel out and volume integrals add together to the 
volume integral over the whole domain. Thus global conservation is built into the method and 
this provides one of its principal advantages.

Figure 25 2D-view of control volumes with different neighboring cells, C, N, W, E, and S with the 
interfaces w, e, n, and s

In 3D, the midpoint rule is the simplest second-order approximation. Higher-order 
approximations, which require the integrand at locations other than the cell-face center (e.g. 
corners and center of edges) are possible, but they are more difficult to implement. Figure 25  
illustrates a 2D-view of control volumes with different neighboring cells, C, N, W, E, and S 
with the corresponding interfaces w, e, n, and s. According to the linear interpolation, the value 
of the scalar variable ߶ at the interface w and e can be obtained as follow:

                                             ߶௪ = ௪݂߶஼ + (1 − ௪݂)߶ௐ                                                     (34)

                                               ߶௘ = ௘݂߶஼ + (1 − ௘݂)߶ா                                                        (35)

Where  ௪݂ = ஼ௐݔߜ/௪ௐݔߜ and ௘݂ = ஼ாݔߜ/௘ாݔߜ are the interpolation functions which are 
defined in the interpolation method for a second-order central differencing scheme. To obtain 
an algebraic equation for a particular CV, the surface and volume integrals need to be
approximated using quadrature formulas as illustrated below.

Approximation of Surface Integrals
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In 2D Cartesian control volumes, the CV surface consists of four plane faces N(North), 
S(South), E(East), and W(West) as presented in Fig. 25. Additional two plane faces, T(top) and 
B(bottom) directions, are added when extending to 3D CV. 

The net flux of the convection (ݒ߶ߩ. ݊) or diffusion (Γథ∇߶. ݊) term through the CV-boundary 
equals the sum of integrals over all faces of the control volume; four (in 2D) or six (in 3D)
given by

                                                            ∫ ݂݀ܵ = ∑ ∫ ݂݀ܵௌೖ௞ௌ                                               (36)

where ݂ is the component of the convection or diffusion flux vector in the direction normal to 
CV face and Sk is the area of the projection of cell face k. It’s worth mentioning that the control 
volume should not overlap and each control volume face is common to the two neighboring 
control volumes. In order to calculate an integral value of diffusive and convective terms at P, 
two levels of approximation are needed. The first integral approximation is in terms of the 
variable values at one or multiple locations on the cell face by using a suitable quadrature 
formula. Furthermore, the cell-face values are approximated in terms of the CV-center values 
by a suitable interpolation. An easier way is to apply the midpoint rule for the approximation 
and approximate as the product of integral at face center and CV face area given by

௘ܨ                                                                 = ∫ ݂ ݀ܵ ≈ ௘݂ܵ௘ௌ೐                                             (37)

Since the value of the ݂ is not available as control volume face center e, which can be obtained 
by interpolation. The truncation error of this integral approximation is a second-order 
approximation as it is proportional to the square of the mesh spacing. The values of fw need to 
be calculated with at least second-order accuracy to preserve the accuracy of the midpoint rule.
its second-order makes it accurate enough for most engineering applications, and its simplicity 
makes the implementation in computer code easy. The value of ௘݂ has to be computed with at 
least second-order accuracy to preserve the second-order accuracy of the midpoint-rule 
approximation of the surface integral.

Approximation of Volume Integrals

Some terms in the transport equations, source term (ݍ), require integration over the control 
volume. The simplest method to approximate a volume integral is again the second-order 
accurate approximation using the midpoint rule. The volume integral is replaced by the product 
of the mean value of the integral term and the volume of the control volume is given by:

                                                          ܳ஼ = ∫ ݍ ܸ݀௏ ≈ ஼∆ܸ                                              (38)ݍ

Where ݍ஼ is the value at the control volume center C and ∆V is a volume of the control volume.
no interpolation is necessary to evaluate the integrand since all variables are available at node 
C.

An approximation of higher-order needs the values of q at more locations than just the control 
volume center. These values have to be obtained by interpolating nodal values or by using shape 
functions. The integrand, denoted by ݂, involves the product of several variables and/or variable 
gradients at those locations.
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4.1.4 Turbulence model

In laminar flow, fluid can be thought of as flowing in layers parallel to each other as the viscous 
effects dominate the momentum effects. While the turbulent flow is a flow regime characterized 
by chaotic and random fluctuating property changes. This includes low momentum diffusion, 
high momentum convection, and rapid variation of pressure and velocity in space and time.
These fluctuations mix transported quantities such as momentum, energy, and species 
concentration, and cause the transported quantities to fluctuate as well. The fluctuating velocity 
fields manifest themselves as eddies. The turbulent flow consists of a spectrum of different 
scales (eddy sizes). The largest eddies are of the order of flow geometry and the smallest eddies 
are by viscous forces dissipated into internal energy. The largest eddies extract their energy 
from the mean flow while the small eddies receive the kinetic energy from slightly larger eddies 
and so on. This process of energy transfer is called the cascade process [126]. In 1941, A. N. 
Kolmogorov provides two specific, testable results: the 2/3 law which leads directly to the 
prediction of a K-5/3 decay rate in the inertial range of the energy spectrum, and the 4/5 law that 
is the only exact results for N-S turbulence at high Re.

However, laminar flows often permit analytic solutions to N-S equations in simple cases, the 
presence of turbulence presents many difficulties in obtaining a solution due to its inherently 
wide range of length and time scales. The smallest dynamically significant scale of turbulent 
flow is the Kolmogorov scale ߟ, also called the dissipation scale, since scales smaller than ߟ
are dominated by viscous rather than inertial forces. The largest scale measuring the size of the 
largest energy-containing scales is called the integral scale ݈଴ . For homogenous isotropic 
turbulent flow, where the turbulent kinetic energy K is the same in all directions, the smallest 
and related to the Reynolds number by [127]:

                                                         
௟బఎ = ࣩ(ܴ௘యర)                                                                   (39)

Therefore, ࣩ(ܴ௘యర) degrees of freedom are needed to represent all the scales of motion in a cube 
of edge length ݈଴.
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Figure 26 Energy cascade and different length scales of turbulence

Hence Kolmogorov’s hypothesis of the local isotropy turbulent flow, large-scale turbulence 
may still be anisotropic. ݈ாூ is the length scale that forms the demarcation between the large 
scale anisotropic eddies (݈ > ݈ாூ) and the small scale isotropic eddies (݈ < ݈ாூ). ݈ாூ can be 
estimated for many high Reynolds number flows as ݈ாூ ≈ ݈଴/6 [128]. The size range (݈ < ݈ாூ)
is referred to as the universal equilibrium range in which the time scales are small compared to 
Kolmogrove time scale. A new length scale ݈஽ூ, approximately ≈ ߟ60 for many turbulent high 
Reynolds number flows, splits the universal equilibrium range into two subranges. The inertial 
subrange (݈ாூ > ݈ > ݈஽ூ) where the inertial effects on the fluid flow are dominant and the 
viscous effect is negligible. The other subrange is (݈ < ݈஽ூ) where the motion experience 
viscous effects as shown in Fig. 26. Furthermore, the Taylor microscale ߣ , which falls in 
between the large-scale eddies and the small-scale eddies, is a measure of the large-scale eddies 
in the inertial subrange.

Two methods can be used to avoid the need to solve these small scales and high frequencies: 
filtering and time averaging [129]. Some models for the Navier-Stokes equations that form a 
hierarchy of approximations to the full multiscale picture of turbulence are presented in the next 
section.
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Direct Numerical Solution (DNS)

DNS is a method that presents the solution of the discretized Navier-Stokes equations with all 
scales of the turbulent motions in the flow between ߟ and ݈଴ resolved and nothing modeled.
DNS is a useful tool to examine fine structures of a particular flow of academic interest and to 
provide reference data for research in turbulence, but it is currently too expensive (in terms of 
simulation time and computational hardware as well) to use in many practical and industrial 
problems. It is only possible to be performed at a low Reynolds number problems due to the 
high number of operations as the number of mesh points is equal to Re3. Therefore, the 
computational cost of DNS is very high even at low Re.

Reynolds Averaged Navier-Stokes (RANS)

RANS method is the time-averaged equations of motion of the fluid flow. It governs the 
transport of the averaged flow quantities, with the complete range of the turbulent scales being 
modeled and The fluctuating component is included by way of a turbulence model. Therefore, 
it greatly reduces the required computational effort and resources and is widely adopted for 
practical engineering applications. RANS’ solution is steady-state, i.e. it does not contain any 
information about transient flow effects which could be important in many engineering 
problems. RANS models gained widespread popularity and have been used in engineering for 
decades owing to their low computational requirements and predictable behavior. The 
requirements for mesh resolution are relatively low because fine turbulent scales do not have to 
be resolved. Meshes are constrained purely by the requirement to reduce numerical 
discretization error below a given threshold and geometric accuracy requirements.

The main idea in Reynolds-averaging is that for an unsteady flow, ensemble averaging can be 
used to write any flow variable in terms of an average value and a fluctuation about that average.
For such a flow, a certain value ߶ is expressed as:

(௜ݔ)߶                                                  = ߶ഥ (௜ݔ) + ߶ᇱ(ݔ௜, (40)                                                 (ݐ

This approach is applied to all flow variables in the continuity and momentum equations to 
remove the rapidly fluctuating components. Through ensemble averaging of nonlinear terms, 
new terms that involve mean values of the products of rapidly varying quantities is been 
introduced. Omitting the details of the derivations, the incompressible RANS equations are
written in a differential form with tensor notation as:

                                                              
డ௨೔డ௫೔ = 0                                                                    (41)

                                  
డ௨೔డ௧ + ௜ݑ డ௨೔డ௫ೕ = − ଵ

ఘ ቀడ௉డ௫೔ቁ + ߥ డమ௨೔డ௫ೕమ − డ௨ഢᇲ௨ണᇲതതതതതതത
డ௫ೕ                                            (42)

where ݑ௜ᇱ  is the fluctuating part of the velocity; P is the dynamic pressure, and ߩ  is the fluid 
density. These new terms, ݑ௜ᇱݑ௝ᇱ , are known as the Reynolds stresses and must be modeled 
numerically. These additional terms give additional unknowns in the equations and therefore 
the equations must be closed by approximating them with a turbulence model, introducing 
another equation to the system. Turbulence models vary in complexity from one to two-
equation models, and various forms of handling the additional terms.

Using the Boussinesq approximation, the Reynolds stress component, ݑపᇱݑఫᇱതതതതതത, is expressed in 
terms of a turbulent viscosity ்ߥ and the mean flow gradients such as:
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ఫᇱതതതതതതݑపᇱݑ−                                                 = ்ߥ ൬డ௨೔డ௫ೕ + డ௨ೕడ௫೔൰ − ଶ
ଷ ௜௝ߜ݇                                         (43)

Where ߜ௜௝  is the Kronecker delta function and k is the turbulent kinetic energy.

A standard shear-stress transport (SST) k-ω turbulence model is used in the present study. In 
order to close the governing equations, the Shear Stress Transport (SST) k-ω turbulence model 
has been developed by (Menter [130]; Menter et al. [131]). Menter’s SST model reduces to a 
k–ω model near solid walls while switches to a k–ε model away from solid surfaces. The SST 
k-ω model has shown good performance in simulating the boundary layer flows with significant 
adverse pressure gradient applications where viscous flows need to be well resolved and 
turbulence models are applied throughout the boundary layer. The model is a combination of a 
k-߳ model and a k-ω model. The standard k-߳ model has the benefits in the free stream, but 
perform badly in the near-wall region and the opposite is true for the standard k-ω model. The 
model constant in the (SST) k-ω turbulence model which used in this study are listed below in 
table 5.

Table 5: Parameters of the (SST) k-ω turbulence model

∗ࢼ ૚ࢻ ૚ࢼ ૚࢑࣌ ૚࣓࣌ ૛ࢻ ૛ࢼ ૛࢑࣌ ૛࣓࣌
0.09 5/9 3/40 0.85 0.5 0.44 0.0828 1.0 0.856

Large-Eddy Simulation (LES)

Large-eddy simulation is based on a space filtering method in CFD. LES is intermediate 
between RANS and DNS in terms of resolved scales. LES directly computes the large-scale 
turbulent structures which are responsible for the energy and momentum transfer in the flow 
while the smaller scale of dissipative and more isotropic structures are being modeled.

The spirit of LES is to explicitly resolve the large scales responsible for the mixing and for 
determining the dissipation rate while modeling the smallest eddies which are universal and 
responsible for the final energy dissipation into heat. In order to distinguish between the large 
and small scales, a filter function is being used in LES. A filter function dictates which eddies 
are large by introducing a length scale. Scales are resolved as long as they are above a certain 
size, determined by the filter width, usually denoted as ∆ത. LES becomes DNS, in the limit ∆ത→ߟ. Scales that fall below the filter size are parameterized by the LES model using information 
from the resolved scales and theoretical or empirical arguments. Usually, LES models are
performed based on the eddy-viscosity hypothesis. 

Many LES models are based upon the assumption that the sub-filter scale obeys the local 
isotropy hypothesis. In practice, this means that the filter width should be in the inertial 
subrange. A practical base is that if 80% of the kinetic energy is in the resolved scales, the filter 
width is small enough and the LES is termed ‘well resolved’ as stated by S.Pope (2014) [126]. 
The filter size must satisfy the condition ∆ത≥ ∆, where ∆ is some metric of the local grid size 
which requires careful definition on unstructured mesh. The grid has to be fine enough to 
capture the gradients of the mean flow, which is far less demanding than DNS.

On a practical note, the LES technique is a good compromise between the two extreme 
approaches DNS and RANS. It provides a good representation of the turbulence and allows to 
have transient flow information. It requires much less computational resources than the DNS 
approach however, it can be prohibitively slow to solve due to the requirement to resolve all 
the scales of turbulence down to a point in the inertial range.
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However, LES is capable to solve high Reynolds numbers and more complex geometries 
problems, the development of robust, accurate, and fast LES models are crucial to meet the 
needs of the industry. RANS still holds considerable appeal to the industry although advantages 
can be gained from simulating a problem in greater detail. Nevertheless, there is also a need to 
simulate ever larger components, or even entire systems, and include extra physical effects such 
as Fluid-Structure Interaction problems such as VIV phenomena. It is therefore widely 
acknowledged that a gap exists between RANS and LES, and recently the development of 
hybrid RANS-LES methods is aimed at addressing this.

Detached-Eddy Simulations (DES)

Detached Eddy Simulation DES is one of the particular hybrid RANS-LES methods, which 
shows the greatest promise for widespread practical applications. The goal was to develop a 
modified version of the Spalart-Allmaras model [132] more practical than LES to deal with 
high Reynolds numbers in turbulent flows. The original DES concept sketch from the 
presentation of the 1997 paper is shown in Fig. 27. which illustrates well the envisioned 
application area of DES. The extensive surface area covered by thin boundary layers can be 
reliably treated using RANS and would incur unmanageable numerical expense with LES. The 
separated region of largescale turbulence behind the spoiler contrastingly represents an ideal 
application region for LES. The onset of this region is needed to be dictated accurately where 
the separation point would be dictated by the RANS model s a distinct disadvantage.

Figure 27 Original concept sketch of DES [133]

The computing cost problems and the resolution near walls were resolved by using the RANS 
model within boundary layers and bure LES outside. The DES aims to improve the flow 
prediction following separation. For a brief treatise on a comprehensive review of prominent 
application examples and a discussion of the DES state of the art, recourse is sought to the 
review article of Spalart (2009) [134]. 
DES is classified as a non-zonal hybrid method which means that the RANS and LES 
functionality is handled by the same set of model and flow field equations. DES is a 3D 
unsteady numerical solution using a single turbulence model, which acts as a sub-grid-scale 
model in regions where the grid density is fine enough for LES and as a RANS model in other 
regions. Meaning that the fundamental coupling of the RANS and LES activity is corresponding 
to the local grid resolution.

In the S-A model, the original wall distance is used and the working variable ߥ෤ is used to form 
the eddy viscosity and its transport equation takes the form Spalart et al. [135]
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డఔ෥
డ௧ + ݑ డఔ෥

డ௫ + ߭ డఔ෥డ௬ + ߱ డఔ෥
డ௭ = ܿ௕ଵ[1 − ௧݂ଶ] ሚܵߥ෤ + ଵ

ఙ ቂ∇. ቄቀଵோ + ෤ቅߥ∇෤ቁߥ + ܿ௕ଶ(∇ߥ෤)ଶቃ −
ቂܿఠଵ ఠ݂ − ௖್భ఑మ ௧݂ଶቃ ቀఔ෥ௗቁ + ௧݂ଵΔܷଶ                                                                                            (44)

With d as the wall distance, ሚܵ as modified vorticity and an auxiliary function for near-wall 
behavior ఠ݂. The model defines the eddy viscosity field as

௧ߥ                                 = ෤ߥ జ݂ଵ, జ݂ଵ = ఞయ
ఞయା௖ഔభయ , ߯ = ෤ܴ                                    (45)ߥ

The DES formulation is obtained by replacing the distance to the nearest wall in all terms, d, 
by distance ሚ݀ defined as follows:

                                                                   ሚ݀ = ݉݅݊(݀, (46)                                             (߂஽ாௌܥ

where Δ is the largest grid spacing in all directions. In ordinary applications of DES, the wall-
parallel grid spacings (e.g., streamwise and spanwise) are typical of the order of the boundary 
layer thickness, and the S-A RANS model is retained throughout the boundary layer. 
Consequently, the prediction of boundary layer separation is determined in the RANS mode of 
the DES model. Away from solid boundaries, the closure is a one-equation model for the 
subgrid viscosity. When the productive and destructive terms of the model are balanced, the 
length scale ݀ = ஽ாௌΔܥ in the LES region yields a Smagorinsky type eddy viscosity, ߥ෤ ∝ ܵ∆ଶ. 
Analogous to the classical LES model, with ∆ small enough to allow the energy cascading down 
to the grid size, cause this pseudo-Kolmogorov length scale based on the eddy viscosity to be 
proportional to the grid spacing. We specified a model constant of ܥ஽ாௌ = 0.65 to ensure a 
homogeneous turbulent flow and with model parameters given in [132]. Additional features like 
delayed DES (DDES) are used to prevent the model from generating unphysical separations by 
switching into the LES mode too early, which usually occurs for ambiguous grids, and low 
Reynolds number correction for the LES treatment of free shear layers are also available in 
IDDES formulation of Strelets [136]. The generally high quality of the result obtained gives 
rise to a high level of optimism that DES could become the future tool in the industrial CFD 
community.

The simulations in this project are based on the method of Computational Fluid Dynamics 
(CFD), for the simulation of the interaction between monopile and waves were the FVM-Solver 
was based on the Reynold-Averaged Navier-Stokes Equations been used, in the following 
paragraphs were the theoretical backgrounds introduced.

4.2 Structural Model

Mechanical systems in general consist of structural components that have distributed mass and 
elasticity. To the authors' knowledge, only a limited number of studies dealing with the flow 
past a bluff body used a series of methods to investigate the FSI effects on the structure thus far 
has been limited to discrete systems that have a finite number of degrees of freedom. Studies 
[3], [4], and [5] treated the structure as a mass-spring system;  labeled described it as a discrete 
structural simplification with lumped masses and discrete elastic elements governed by a set of 
second-order ordinary differential equations. Rods, beams, and other structural components on 
the other hand should be considered as continuous systems that have an infinite number of 
degrees of freedom, and as a consequence, the vibration of such systems is governed by partial 
differential equations which involve variables that depend on time as well as the spatial 
coordinates [137].
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This chapter introduces the major concepts involved within structural mechanics, in particular 
geometrically nonlinear problems and the FEM. The theory covered in this section forms the 
basis of the finite Starccm+ plugins described in Chapter 7.3. The key concepts are presented, 
however, numerous textbooks offer more detailed formulations of structural mechanics 
problems and the FEM [138].

4.2.1 Governing equations

Solid mechanics studies the displacement of a solid continuum under applied loads and 
constraints. The fundamental laws that govern solid mechanics are the same laws that describe 
fluid mechanics. Applied loads can cause a displacement of the solid structure from an initial 
configuration to a deformed configuration. Therefore, the total displacement is the sum of rigid 
body motion u(X, t) and its reference configuration, X. Thus, the position of the material point 
in the deformed configuration is defined as:

                                                      x(܆, t) = ܆ + u(܆, t)                                                    (47)

The deformation gradient F is used to relate the deformation of an element in the current 
configuration with that in the reference configuration and introduced as:

                               F = ப୶
ப܆ = I + ப୳

ப܆ = ܫ +
⎝
⎜⎛
ப୳౮பଡ଼

ப୳౮பଢ଼
ப୳౮ப୞ப୳౯பଡ଼

ப୳౯பଢ଼
ப୳౯ப୞ப୳౰பଡ଼

ப୳౰பଢ଼
ப୳౰ப୞ ⎠

⎟⎞                                          (48)

Where I is the identity matrix, the displacement u in component form can be expressed as u =
൛ݑ௫ ௬ݑ ௭ൟ୘ݑ , and X, Y, and ܼ are the Cartesian components of the material point position 
vector ܆ . There are many stress and strain measures formulas are used within structural 
mechanics, depending on the frame of reference that is used. In the present study, the 
infinitesimal strain assumption is used to describe the elastic behavior of the structure. In cases 
of low deformation, the assumption of infinitesimal strain can greatly reduce the computational 
time required to solve the problem. However, in cases where the body only undergoes rigid-
body rotation, the infinitesimal strain measure does not remain zero. In these cases, the Green-
Lagrange strain measure is required. The Lagrangian strain measure also referred to as the 
Green-Lagrange strain tensor, uses the initial undeformed configuration as its reference frame. 
This strain tensor, E, measures the difference in the square of the length of an infinitesimal 
segment in its reference configuration and current configuration as follow:

                                                  E = ‖dx‖ଶ − ‖d܆‖ଶ = ଵ
ଶ (F୘F − I)                                     (49)

The present work relied on Cauchy's equilibrium equations to describe the two-degrees-of-
freedom (2DOF) motions of the solid prism structure. These equations expressed the 
conservation of linear momentum for a continuum. Using the Lagrangian approach, we reduced 
the time derivative of the velocity to obtain the partial second derivative of the displacement 
described as follows:

଴üߩ                                                               + .ߘ ߪ − ܾ = 0                                                   (50)

where ߩ଴ is the density of the structure, b is the total body force per unit volume, ü the second 
time derivative of u (displacement) and σ is the Cauchy stress tensor or true stress. This equation 
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is known as the strong form of the conservation equation while the weak form can be obtained 
by multiplying the equation by a test function δw, integrating the domain, and applying Gauss’s
theorem. The weak form is also referred to as the principle of virtual work, which stated that
the sum of the internal work and external work is equal to zero as described below:

ݓߜ                                                            = ௜௡௧ݓߜ + ௘௫௧ݓߜ = 0                                        (51)

This equation forms the basis of the computation of structural mechanics problems using the 
FEM.

4.2.2 Finite element method

The Finite Element method is a powerful tool for finding approximate solutions to continuous 
problems. Similar methodology to other numerical techniques that approximate continuous 
partial differential equations with discrete algebraic equations. In this section, the relevant 
formulations and solvers used in the presented finite element models will be described.

The finite elements used to discretize the structural geometry have five aspects that affect the 
behavior of the element and as a result, the overall solution. The first of these is the element 
family which describes the type of problem being solved and the level of precision of the model.
At the core of finite element analysis is the geometry of interest. The overall geometry is 
subdivided into a discrete number of finite elements. Major families of elements include 3D 
continuum, shell, beam, rigid, truss, and membrane elements as shown in Fig. 28.

Figure 28 Major families of elements Used for FEM discretization

The second feature of an element is degrees of freedom because They are the primary solution 
variables that are being solved for at the nodes of the model. 

Each element is comprised of nodes and shares them with other interconnected elements 
immediately surrounding it. Together, all of the elements and nodes form a grid that defines the 
discretized structure. The total number of DOF in all the connected elements is dependent on 
the third feature, the total number of nodes, and the order of interpolation. The solution variables 
are only solved at the nodes of the model so that obtaining the solution at an arbitrary point 
requires the interpolation of the nodal solution values to that location. The total number of nodes 
in the element determines the order of interpolation. There are two primary element types which 



55

are linear (1st order interpolation) and quadratic (2nd order interpolation). As shown in Fig. 28, 
for 3D continuum elements, linear elements have 8 nodes and quadratic elements have 20 nodes.

The accuracy of a finite element model depends greatly on the selection of the element and 
properties concerning the problem of interest. Specifically, in bending-dominated problems, 
care should be taken to ensure an appropriate number of elements through the thickness to 
ensure that the bending stresses are resolved. In Starccm+, the only available solid element was 
the 3D continuum which was used in this work. Due to the solid element would show the 
bending behavior much stiffer in comparison with the analytical solution(the locking problems) 
the 3D continuum elements were introduced in the present work for FE with quadratic shape. 
The quadratic reduced integration elements are generally free of locking and are good general-
purpose elements for stress/displacement analysis. It is worth noting here that fully integrated 
linear 3D elements have eight nodes and eight integration points. Conversely, a fully integrated 
quadratic element has 20 nodes and 27 integration points. The fourth and fifth features of an 
element are the elements’ formulation and integration.

In each element, the displacement is described locally through the element shape functions 

                                                                   u = Nu୑                                                              (52)

where N is the element shape functions and u୑ is the local nodal displacements. Therefore, the
derivatives of the variable u concerning the undeformed coordinates ܆ are related to the nodal 
quantities u୑ through

                                                                  
ப୳
ப܆ = ப୒౉ப܆ u୑                                                          (53)

The relationship between the elemental Green-Lagrange strains and displacements is given by

                                                                        E = Bu                                                           (54)

where B is the strain-displacement matrix. Then, the principle of virtual work is discretized 
using the Finite Element method

Πߜ = u୑୘ߜ ቂ∫ B෡୑୘ S dV + ∫ N୑IN୒ρ଴ü୒୚బ dV + ∫ N୑b୚బ dV − ∫ N୑τത୻ dΓ୚బ − f୑୔ቃ = 0        

(55)

where f୑୔ was introduced to take into account point forces at node M. Since u୑ is zero at the
Dirichlet boundaries, but otherwise arbitrary, the expression within brackets must be zero, 
leading to the discrete equilibrium equations.

                                                            f୑୧୬୲ + M୑୒ü୒ = f୑ୣ୶୲                                                (56)

Where Each of the components of Equation 58 can be formulated as follows

f୑୧୬୲ is the internal force at node M
                                                           f୑୧୬୲ = ∫ B෡୑୘ S dV୚బ                                                   (57)
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M୑୒ü୒ is the inertial term, with the mass matrix M୑୒ expressed as

                                                     M୑୒ü୒ = ∫ N୑IN୒ρ଴୚బ dV                                           (58)

f୑ୣ୶୲ is the external force applied at node M:

                                               f୑ୣ୶୲ = ∫ N୑b୚బ dV − ∫ N୑τത୻ dΓ − f୑୔                                   (59)

For large displacements, the internal forces are a nonlinear function of the displacement. The 
sensitivity of the internal forces with respect to the displacement is defined by the stiffness 
matrix

K୑୒ = ߲f୑୧୬୲߲u୑
an iterative procedure is required to solve this problem. For each iteration, the incremental 
displacement is calculated and used to update the total displacement as

                                                          u୧ାଵ + u୧ = δu୧                                                           (60)

The dynamic solution must satisfy the equation

                                               Mü୧ାଵ + Kδu୧ + u̇୧ܥ = f୑ୣ୶୲ − f୑୧୬୲                                       (61)

Standard 2nd order Newmark-beta scheme is the time discretization method used within this 
work. The Newmark-Beta method, with constants γ and β, between time steps n and n + 1, rests 
on the following assumptions

                                       u̇୬ାଵ = u̇୬ + ൫(1 − γ)ü୬ + γü୬ାଵ൯∆t                                          (62)

                                   u୬ାଵ = u୬ + ∆tu̇୬ + ∆tଶ ൬ቀଵିଶஒଶ ቁ ü୬ + βü୬ାଵ൰                             (63)

The constants γ and β are used to control the stability and accuracy of the analysis. The method 
is 2nd order accurate and unconditionally stable when γ =0.5 and β =0.25.

The material under study in this work was made of Polyvinylchloride (PVC). With only 
information about itsYoung’s Modulus and density, a linear elastic model is the only option 
that can be defined directly, however, due to the nature of PVC and the long polymer chains 
which define its molecular structure, PVC is most likely not isotropic. In the absence of any 
information pertaining to the directional dependencies of its behavior, an isotropic, linear elastic 
model was defined in the present work.

4.2.3 Fluid-structure interaction 

In this thesis, the fluid domain is solved with CFD calculations, while the solid domain is solved
with FEA calculations. These two solution domains create the foundation for the numerical
fluid-structure interaction analysis. This coupled interaction between the fluid and solid 
introduces a challenging problem both numerically and computationally. This section is aimed 



57

to describe and how these are dealt with in Starccm+. In this thesis, the FSI study is done solely 
by the use of Solid stress solver within Starccm+. In the following, some classifications of the 
interactions and the capabilities that are needed to address FSI problems in Starccm+ are given.

Fluid-structure interaction (FSI), can be grouped into distinct categories:

• “One-way” coupling

• “Two-way” coupling

One-Way coupling

One-way interaction problems indicate that the fluid may impart some action on the structure 
but the response of the structure to the fluid loading does little to affect the fluid motion. Take,
for example, the analysis of a piston in an internal combustion engine. The piston has a huge 
impact on the flow in the engine, while the fluid does not deform the piston. A one-way 
interaction implies that we only send information from one code to another, from CFD solver 
to FE solver.

Two-way coupling

A case where the fluid motion and pressure affect the displacement and deformation in the 
structure (or rigid body motion) and this deformation leads to a change in the fluid flow is 
referred to as a "two-way" interaction. Two-way interaction implies that we send information 
between two codes. Vortex-Induced Vibration implies a classical example of strong coupling. 
The flow past a bluff body exerts oscillating forces when alternate vortices are shed. These 
oscillating forces generate high response amplitudes in the structure followed by changes in the 
fluid flow vortices formation. Therefore, oscillating forces have been affected as well.

For strong coupling, the physical coupling is two-way and the coupling between the codes is 
pronounced. This is associated with dynamic problems where the dynamic loads and the 
structural velocities change dramatically. An implicit coupling scheme is necessary for this type 
of problem since the deformations and fluid flow can change dramatically over time to assure 
the strong coupling we need to perform several exchanges within each time step.

The FSI approach utilized two-way coupling, where the fluid-structure coupling model only 
accounts for the fluid forces computed by the separated flow. This meant that the mathematical 
models for the fluid flow and the motion of the solid structure were integrated separately, as 
schematically illustrated by the flow chart in Fig. 29. The simulation within each time step was 
initiated by solving the Navier–Stokes equations to obtain the forces on the cylinder. Then, the 
fluid forces were applied to the solid boundary at the fluid-structure interface, and the forces 
were transferred to the structural dynamic model to obtain the displacements of the structure. 
The new mesh configuration was evaluated based on these displacements. The two-way 
coupling accounted for the effect of the solid structure’s displacement on the fluid flow. All the 
FSI simulations were initialized from the final flow field obtained for the rigid cases. Figure 29
shows the flow chart of the FSI solution algorithm
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Figure 29 Flow chart of the FSI solution algorithm

When simulating an FSI case, Starccm is required to account for the changes of shape for the 
solid structure. FSI simulations with large displacements of the solid structure result in large 
deformations of the fluid mesh. When these distortions affect the quality of the fluid mesh, a 
new fluid mesh based on the deformed solid structure is been created. After remeshing, the fluid 
mesh is based on the new solid part, which represents the deformed structure, while the solid 
mesh is based on the undeformed part. Due to the deformation of the solid structure as a result 
of the fluid loads, the new fluid mesh is directly linked to the solution state in the structure at 
the time of remeshing. Starccm+ stores the solid mesh configuration at the time of remeshing 
and uses it for all subsequent mapping of data between the fluid and the solid mesh. In this 
thesis, a morphing of the fluid and solid displacement has been assigned to the structure domain. 
Morphing is the deformation of the fluid grid by moving the fluid vertices in such a manner as 
to conform to the solid structure and maintain a reasonable quality fluid grid. This is done by 
altering the cell shape and at the same time ensuring that all cells maintain the same neighboring 
cell. To account for the arbitrary motion of the fluid mesh, Starccm+ uses a space conservation 
law to conservatively and accurately express the transport motion.

When dealing with the FSI problem, due to different discretization techniques applies for the 
subtasks (finite volumes and finite element), two meshes have existed; one for the fluid domain 
and one for the structural domain. This difference in the mesh is often due to the difference in 
physical processes in the fluid and the structure. One challenge in FSI, therefore, is the 
difference in the resolution between the fluid and the structure mesh. Figure 30 presented an 
example of a non-matching grid. The challenge subsequently was finding consistent and 
conservative interpolation methods across these non-matching meshes. The Mapped Contact 
Interface is an indirect interface type between fluid/solid boundaries that allows for a non-
conformal mesh and has been used in the present work. The grid to grid data interpolation steps 
included the data transfer from fluid loads determined by the CFD solver to the CSD solver, 
and from the structure displacements predicted by the CSD solver back to the CFD solver. A 
compact scheme has been used. This scheme builds a connectivity map by finding the nearest 
neighbor of a face on the opposite side of the interface. After the connectivity map is created,
The conservative method based on weighted interpolation, using face area ratios, is defined.
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Figure 30 Example of the interface between non-conformal grids

The forces from the fluid imparted on the structure at its nodal points in two steps. First, the 
traction at the center of the fluid face is interpolated to the center of the solid face, then the 
traction at the center of the solid face is converted to a single force vector by multiplying it by 
the face area and subsequently distributed to the element nodes. The transfer of displacements 
from the CSD solver back to the CFD solver is completed through a similar process.

Grid motion

The coupled boundaries at the fluid-solid interface are moved according to the displacements 
calculated by Abaqus. All of the fluid domain grid vertices must also be moved to maintain the 
quality of the cells in the region surrounding the coupled boundaries and avoid squashed cells. 
In STAR-CCM+, grid motion is referred to as mesh morphing. The mesh morphing solver 
collects the displacements of all control points, calculates an interpolation field throughout the 
domain using multiquadric interpolation theory, and then applies the field to all the vertices to 
get the new grid. Mesh morphing can also be used in a more general sense to model moving 
boundary conditions by applying rigid body grid motion to the grid vertices. In the case of the 
sloshing tank, the rigid body rotation of the tank walls is applied with this solver. The angular 
displacement time history is input into STAR-CCM+ as a table and then linearly interpolated 
to determine the angular position at any time within the history.

Together the grid deformation due to the fluid-structure interaction and the rigid body rotation 
of the tank are superimposed to arrive at the final morphed grid. For large deformations or non-
periodic motions, it may be advisable to remesh the fluid domain periodically or use an overset 
grid combined with mesh morphing.
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5. Experimental Results

5.1 Water Tank Tests Results

5.1.1 Smooth cylinder 

As seen in Fig. 31, it can be seen that the measured r.m.s. values of motion amplitudes 
(normalized against D) at the top end of the test cylinder in a streamline and transverse 
directions to the flow are plotted against the reduced velocity, Ur. This figure depicts also the 
associated orbital trajectories for the top end of the smooth cylinder. For an elastically mounted 
cylinder having a low but super-critical mass ratio, the lateral displacement amplitude response 
was divided into three regimes. 

Figure 31 Root mean square (r.m.s.) values of measured normalized stream-wise (x/D) and lateral 
(y/D) top-end displacement amplitudes (and the associated trajectories) vs. reduced velocity (Ur) for

the smooth cylinder.
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First, there was the initial branch at low reduced velocities, characterized by small-amplitude 
displacements. This is followed by the second regime, consisting of an upper branch in which 
the displacement amplitudes reached a maximum. The third regime occurred after the lock-in 
range, where the lateral displacement amplitudes decreased, and this regime was known as the
lower branch. For that mass ratio range, two jumps in the displacement response are observed 
between each branch. From Fig. 31, the smooth cylinder is set into vibration at a reduced 
velocity of about 1.1 and at Ur  ≈ 3.0, the streamline, as well as the transverse amplitudes, starts 
to increase at a greater rate. Although not shown in this figure, the maximum displacement 
amplitudes of nearly 0.8D occurred at a reduced velocity of Ur ≈ 5.0. Both the streamline as 
well as the transverse response characteristics are similar.

Although there does not appear to be a clear amplitude jump distinguishable, a break in the 
branch around Ur ≅ 2.8 has been imposed from the transverse response curve. Then, the 
amplitude increasing nearly linearly with flow speed before a break in the increasing slope 
observed at about Ur ≅ 4.2. Unfortunately, the smooth cylinder could not withstand the severe 
fatigue stress applied at such conditions and it fractured, as shown in Fig. 41, at Ur ≅ 5. Similar 
behavior for the response of a critical mass ratio of 0.54 has been reported by Leong and T. Wei 
[100] and Geo et al. [95], and the lower branch can never be reached. 

For the inline motion, the amplitudes of the vibrations in the streamline became larger as Ur

increased and, due to the mean drag force effect. Different from the previous note, for y/D, a 
large jump in the branch has occurred at Ur ≅ 3.8. However, owing to limitations in the top 
speed of the water tunnel, it was not possible to ascertain whether the streamwise amplitude 
keeps increasing or if it approaches an asymptote.

Figure 32 Motion trajectories of the smooth cylinder’s top in flows at different velocities (left), black 
lines represent trajectories over the entire duration of the experiments; red lines, trajectories obtained 

over one cycle, and the plot of normalized lateral shedding frequency vs. reduced velocity (right)

Furthermore, one can see that the maximum streamwise amplitude is large, Ax = 0.42D 
compared to the value of 0.3D reported in the 2DOF elastically mounted cylinder above critical 
mass ratio case of Jauvtis & Williamson (2004), principally because of the effect of mass ratio. 
Figure 32 gives the cross-flow dominant mode measured by LDV and dimensionless 
fundamental still water natural frequency ௦݂௬/ ௡݂௪௬ against the reduced velocity Ur. The cross-
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flow shedding frequency ( ௦݂௬) was determined from the velocity spectra using the Fast Fourier 
Transform (FFT). 

The estimation of power spectra presented in this study was the interpolation of the arbitrarily 
or randomly sampled LDV data to obtain a uniform velocity over time, which is then resampled 
in equal steps with a sampling frequency close to the average sampling frequency. Nobach [169]
described the details of up-to-date available methods to analyze the frequency spectrum from 
arbitrarily sampled data acquired by LDV measurements. The dominant peak in each spectrum 
is assumed to correspond to the vortex shedding frequency ( ௦݂).
It may be observed that the cross-flow frequency data, appearing in Fig. 32 as hollow circles, 

vary linearly with reduced velocity. This trend was well fitted by a linear regression using the 
least square method, appearing in Fig. 32 as a dashed line. The slope of this fitting line was
found to be 0.14 and referring to Strouhal no. Besides, the cylinder motion trajectories 
corresponding to the cross-flow shedding frequencies were presented at different reduced 
velocities. Figure 32 (left) Black lines represent trajectories over the entire duration of the 
experiments; red lines, trajectories obtained over one cycle. 

Although a figure eight configuration more or less describes all the motion trajectories shown 
in the left graph of Fig. 32, the lock-in region was not achieved yet because our experimental 
setup was unable to generate high enough velocities. For lower reduced velocities, the dominant 
oscillating frequency was different from the shedding frequency. Here, it is worth emphasizing 
that, The presence of the cylinder’s free end altered the flow structure in the near wake region, 
thereby affecting the vortex shedding process, the vortex structure itself, and the surface 
pressure distribution on a cylinder. This may well result in more than one frequency appears. 
Only the dominant frequency among others has been considered for calculations of the Strouhl 
number in the present work. 

Figure 33 Drag and lift forces coefficients versus the reduced velocity
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The variations of the transverse force (lift) and the streamline force (drag) with the reduced 
flow speed velocity, Ur are shown in Fig. 33. In the present work, the drag coefficient and the 
lift coefficient were determined by taking the r.m.s. values of the measuring forces. The drag 
and lift coefficients were defined as follows

ௗܥ                                            = ௟ܥ      ,(2/ܣଶܷߩ)/௫ܨ = (64)                              (2/ܣଶܷߩ)/௬ܨ

where Fx is the drag force in the (streamwise) x-direction, and Fy is the lift force in the 
(transverse wise) y-direction obtained by load sensor measurement. The drag coefficient on the 
bare cylinder increases as the flow speed, as does the in-line deflection. As seen, the mean drag 
coefficients gradually decrease from a value of Cd = 1.1 at Ur = 1.0 to a value of Cd = 0.9 at Ur

= 3.45 and then suddenly increase to a value of Cd = 1.4 at Ur = 3.9. Figure 33 includes also 
comparative sample results from VIV experiments of Geo et al. on flexible cylinders with 
critical mass ratios[95]. However, the drag coefficient observed was smaller than the present 
study, this may be caused by the difference in their end condition (2D), and the difference in 
values of aspect ratio (181.8). The lift coefficient Cl showed a typical behavior as the drag 
coefficient does. It increased rapidly decrease from a value of Cl = 0.5 at Ur = 1.0 to a value of 
Cl = 0.3 at Ur = 1.6 and then gradually increase to a value of Cl = 0.7 at Ur = 4.9.

5.1.2 Cylinder with attached fins

Amplitude response 

For the cylinders fitted with fin plates, Fig. 34 presents r.m.s. values of measured normalized 
transverse top-end response amplitudes, y/D, against reduced velocity, Ur. Comparative r.m.s.
values for the smooth cylinder are also plotted in this figure. As mentioned above, three angular 
positions have been chosen for the fins’ location, and the values corresponding to the three 
angular positions of 80, 90, and 110deg are indicated in the figure’s legend. It is known that in 
the subcritical range of Reynolds numbers, the boundary layer separation point oscillates at 
angular positions between 80 and 90deg from the front stagnation point [101] [102]. Besides, 
the published literature suggests that there is a correlation between the angle of separation and 
the base pressure coefficient [103].
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Figure 34 Comparative r.m.s. amplitudes of normalized lateral top-end amplitude response vs. 
reduced velocity for the smooth cylinder and the finned cylinder models

One additional location has been examined at angle 1100 from the front stagnation point. For 
the cylinder fitted with fin plates at a radial position of 1100, the vortex shedding process is less 
pronounced, and the pressure becomes more or less constant and equal to the base pressure [11]. 
The placement of the fin plates for suppression aims to stretch the shear layer vorticity away 
from the cylinder wake region before it rolls up into the vortices. Then, the vortex formation 
length would be increased. This is a matter of finding experimentally the best angle position at 
which fin plates would be located. More about the fins position and arrangements were 
discussed in detail later in chapter 6.2. 

All cylinders fitted with fin plates show a continuous increase in response as flow speed 
increases. Cylinders with 1100 fin plates show a somewhat steeper response curve when 
compared with the other tested models, but the response of none of the cylinders represents a 
resonant behavior typical of VIV.

In fact, the response curves for the 800 and 900 fin plate cases were similar. With the 900 fined 
cylinder showing the lowest response than the 800 and 1100 models at lower reduced velocity 
till Ur =3.7, then it started to jump to higher values of the response. 

The plots showed that the fitting of fins caused a significant reduction in transverse response. 
For the cylinders fitted with fins at 80 and 90 degrees, the transverse response is at Ur =4.25 is 
about 35 % less and, for the cylinder fitted with fins at 1100, it is about 88 % less than the 
response of the smooth cylinder. Owing to the imitated maximum velocity attainable in the 
water channel in the present tests, for the cylinders fitted with fin plates at 80 and 90 degrees, 
the synchronization region did not be reached, i.e., the region where the vortex-shedding 
frequency matches the cylinder’s natural frequency. However, for the cylinder fitted with fin 
plates at 1100, the lock-in region is obtained, as seen by the power spectral density distributions 
of the wake behind this cylinder presented in Fig. 38. For higher reduced velocities, it may be 
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expected that the amplitudes will increase monotonically both for the cross-flow and in-line 
motions and a constant amplitude response would have been observed (seen in 800 and 1100

fins response shape), as observed previously by Leong and T. Wei [100]. It seems that each 
sharp change in the rate of a response manifested a changing wake of vortices and, accordingly, 
indicates a different vortex branch.

Some significant differences in the fined cylinders' dynamics characteristics from the smooth 
case were found in the transverse displacement curves. Observe in Fig. 34 that for the cylinder 
fitted with fins at 800, the break in the curve, i.e., the steep increase of y/D values occurred at 
Ur = 2.7, while for the cylinders fitted with fins at 90 and 110 degrees, this steep increase 
occurred at Ur = 3.8 and Ur = 4.27, respectively. This indicates that the onset of lock-in for the 
finned cylinders occurred at higher velocities than for the bare cylinder, i.e., the jump to the 
upper branch was delayed. This feature was consistent with the remarked conclusion that would 
be shown later in chapter 5.2 that reported the onset of lock-in occurs at a higher velocity than 
for the plain cylinder i.e the jump to the upper branch is delayed. This is due to the influence of 
the location of fin plates on increasing the vortex formation length and then decreasing the 
vortex strength near the wake region at a low velocity.

It is worth mentioning that cases, when the peak amplitude is suppressed by 30% or more 
compared to the peak amplitude of the smooth cylinder response, are classified as strong 
suppression cases [91]. In the present tested tools, all the cylinders models fitted with fins 
reduced the transverse response by more than 30% at Ur =4.25 as illustrated. 

Figure 35 Comparative r.m.s. amplitudes of normalized inline amplitude response vs. reduced velocity 
for the finned cylinder models and the smooth cylinder

One of the most remarkable features for the cylinders below the critical mass ratio is the severe 
increase in the inline response amplitude which could reach 2.5D. C. Leong and T. Wei [100]
observed that the inline amplitude response keeps increasing and does not approach an 
asymptote value like its lateral counterpart.
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In the present study, the inline response of the cylinders fitted with fins at 80 and 90 degrees
was reduced to at least 67%, and the greatest amplitude reduction of nearly 82% was obtained 
for the cylinder fitted with fins located at 1100 from the front stagnation point. Although the 
slope of the inline amplitudes in Fig. 35 increases at Ur = 1.4 for the cylinder fitted with fins at 
80deg and at Ur = 4.3 for the cylinder fitted with fins at 900, these slopes increase significantly 
less than the slope for the smooth cylinder. Furthermore, for the cylinder fitted with fins at 1100, 
there is no sudden increase of the slope of the inline amplitudes, acknowledging the 82% 
amplitude suppression for Ur =4.81 compared to that of the smooth cylinder. Table 6 presents 
approximated reduction caused by using these fin plate configurations at different reduced 
velocities. It is worth recalling that, the smooth cylinder has high fatigue stress and damage 
occurs at a reduced velocity of about 4.81.         

Furthermore, in the third model with 1100, the in-line response presented a first-order linear 
relation with the increase in the reduced velocity with nearly no slope changes despite the 
frequencies lock-in, which was reached at a reduced velocity of about 5.0 (see Fig. 38).

Table 6 Approximated reduction percentage of displacement response for the tested 
cylinders at different reduced velocities

Reduced 
velocity

Reduction percentage in 
axial displacement

Reduction percentage in 
lateral displacement

Model 
80

Model 
90

Model 
110

Model 
80

Model 
90

Model 
110

At Ur = 
3.27 44% 71% 57% 53% 75% 90%

At Ur = 
3.8 50% 72% 62% 53% 87% 96%

At Ur = 
4.25 66% 85% 77% 35% 68% 88%

At Ur = 
4.81

67% 67% 81% 12% 15% 75%

Forces analysis

For stationary and flexible cylinders, it was proved that the effect of the fin plates attached to 
the cylinder is very important on the characteristics of the fluid flow characteristics and, in turn, 
the drag and lift forces as well as the oscillating cylinder responses. The measured total 
streamwise (drag force including inertia forces) and lateral forces (lift force including inertia 
forces) were not increased by the presence of the attached fin plates. The fin plates caused the 
streamwise force to stay below the streamwise force of the smooth cylinder, despite the fact 
that the fins slightly increased the cylinders’ frontal area. 
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In VIV, although the lift force is proportional to the strength of the vortices, the drag force 
acting on the cylinders was not amplified by the presence of the attached fin plates in equivalent 
ranges of flow velocities. Figure 36 plots comparative r.m.s. values of stream-wise (in-line)
force and lateral force versus reduced velocity acting on the smooth cylinder and on the 
cylinders fitted with fin plates at 80 and 110 degrees. Unfortunately, the load cell signals have 
been corrupted for the case model 90 deg fined cylinder and they were eliminated from the 
analysis. However, it is expected to be similar to the behavior of the 80 deg fined model, as do 
the response features. 

Figure 36 Comparative r.m.s. amplitudes of stream-wise (top) and lateral forces (bottom) vs. reduced 
velocity Ur acting on the smooth cylinder and on the cylinders fitted with fin plates positioned at 80and 

110 degrees.

Very interestingly, although the fins increased the cylinders’ cross-sectional area, the drag 
forces on all the finned cylinders were smaller than the drag force on the smooth cylinder. To 
illustrate, it is worth noting that the flow-induced forces are likely to split into two components: 
pressure force acting normal to the wall surface (ܨ௪௣), and shear force, caused by a wall-normal 
gradient of wall parallel velocity components, acting tangential to the wall surface (ܨ௪் ). Forces
that act upon the flow direction is the drag force while the upward forces represent the lift force 
[104].
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௪௣ܨ                                             = ∫ௌ ௪்ܨ              ,ܵ݀݊݌ = ∫ௌ ߬௡௧(65)                                   ܵ݀ݐ

Where, ߬௡௧ = డ௎೟డ௡)ߤ )௪ is the shear stress components, t  is a unit vector in the x-direction, and ݊  is a unit vector in the y-direction. The response reduction of the fined cylinder in the present 
work lies in the fact that the pressure force acting normal to the wall surface (ܨ௪௣), ௪௣ܨ =∫ௌ ܵ݀݊݌ , keeps decreasing with increasing Re due to the fins’ effect, accordingly, the drag and 
lift forces decrease in sequence. The same features are observed in chapter 6.2, as illustrated 
later, however, the drag forces, in chapter 6.2, have been started with higher values. This seems 
due to the influence of viscous effect which has been decreased in the present test due to higher 
Re. It is worth noting that the inertia force is influenced by the cylinder response which is 
affected by the lift and drag forces applied on the cylinder surface.
Observed that drag continues to drop with increasing the angular position of the attached fin 
plate's location. This claim remains valid for the entire range of reduced velocities considered 
in the experiments. The same was verified to occur for the lift force features. Although the 
cylinders vibrating amplitudes became larger with increasing flow velocity, the fin plates kept 
the lift force below the lift force of the smooth cylinder. On the contrary to the displacement, 
there is no pronounced jump of the lift and drag force coefficients at higher reduced velocities; 
nevertheless, the cylinders with fin plates approached their natural frequencies during the 
corresponding synchronization range of VIV, which was reached at a reduced velocity of about 
5.0 for the cylinder with fin plates located at 110 deg. 
However, a break in the slope was observed for all the tested cylinders, including the plain 
cylinder, at an asymptotic value of Ur = 1.8 for the smooth cylinder and for the cylinder with 
the fins attached at 110deg, and at an asymptotic value of Ur = 3.0 for the cylinder with fins 
attached at 800. No clear explanation could be offered for this kind of behavior because the 
frequency response showed that at this reduced velocity different shedding frequency has been 
observed than the oscillating frequency of the cylinder as discussed later. This means that this 
behavior has not related to the synchronization features. More experiments with visualization 
tools are needed for more investigation.
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Figure 37 Comparative r.m.s. values of stream-wise (top) and lateral force coefficients (bottom) vs. 
reduced velocity for the smooth cylinder and for the cylinders fitted with fin plates at 80 and 110

degrees

Nevertheless, for the cylinder with fin plates positioned at 800, these fin plates reduced the lift 
and drag force coefficients for Ur  = 4.8 by about 30 and 62%, respectively. Similar behavior 
has been shown for the forces coefficients as depicted in Fig. 37. Using equation 64 to non-
dimensional the force quantities and calculate the drag and force coefficients for the different 
tested models. 
For the cylinder with fins attached at 1100, drag and lift force coefficients remained nearly 
constant after reaching the lock-in condition at the onset of synchronization, which theoretically 
occurred at Ur = 4.81, i.e., when the shedding frequency approached the cylinder’s wet natural 
frequency. At Ur > 4.81, the lift coefficients started to decrease in a non-conventional behavior 
as the reduced velocity keep increasing up to the limitation of the present study. The drag 
coefficient was found to be approximately constant after approaching the lock-in region. It 
seems that the fin plates have a great effect on suppressing VIV features even at the resonance
condition.  

Frequencies and trajectories

As mentioned above, the velocity signals, in the cylinders’ wake region, captured by LDV from 
the cylinder wake region were analyzed to investigate the effect of the fined models. Since the 
vortex shedding frequency was measured at the mid-height of the cylinder, the effects of the 
wall boundary layer and the horseshoe vortex on the shedding frequency were considered to be 
very small. Figure 38 plots the comparative normalized frequency ratio, ௦݂௬/ ௡݂௪௬, versus the 
reduced velocity, Ur, for the smooth cylinder and for the cylinders fitted with fin plates at 80, 
90, and 110 degrees.
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Figure 38 Comparative shedding frequency ratio vs. reduced velocity for the smooth cylinder and for 
the cylinders fitted with fin plates positioned at 80, 90, and 110 degrees

Along with the abrupt increase in amplitude observed in Fig. 37, the frequency ratio ௦݂/ ௡݂௪, 
where ௦݂ flow shedding frequency also registers a step-increase. Thereafter, the frequency 
undergoes a steep increase almost linearly to higher velocities values as shown in Fig. 37. All 
three tested models showed the same features to the smooth cylinder. It is worth noting that, 
Roshko, in 1961 [105] found for Reynolds' numbers, Re > 3.5x106 that there was a regular 
vortex development in flow past a stationary cylinder characterized by Strouhal numbers with 
a nearly constant value of 0.26-0.27, but the wake width was less than that at R~ 105. Also, 
working from Roshko's concept [56] of a Universal Strouhal number, it was found that, for a 
stationary cylinder that St at Re ~ 105 agreed quite well with St at Re ~ 107, which would imply 
that vortex development would be similar except for the difference in wake widths causing the 
lift force coefficient to be somewhat lower at R ~107 than at R~ 105. On the assumption that 
somewhat similar action would occur with an oscillating cylinder and based on the consistent 
results obtained in chapter 6.2, it was considered that the models would behave in a similar 
behavior. This means that as the Strouhal number  is approximately similar for all the tested 
models, the vortex development was different in wake widths and lengths because of the 
attached fin effect resulting in decreasing the lift force coefficient.

It is observed that Strouhal's law behavior in the present experiments could be divided into two 
distinct regions for each model. They deviated from the smooth cylinder slope at different 
reduced velocities. It is well known that the vortex shedding frequency very strongly deviates 
from the Strouhal law at the lock-in velocities range, however, abrupt deviation of the shedding 
frequency could be seen in Fig. 37 before approaching the coincided point ( ௦݂௬ / ௡݂௪௬=1). 
Furthermore, as the frequency response approaches the lock-in, there does not appear to be any 
dramatic change at the peak response of the upper branch. This confirms the constant monotonic 
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behavior for the transverse response observed of the upper branch for the subcritical mass ratio 
cylinders [100].  

Even when reaching the synchronization point for the 1100 fin positioned model case at reduced 
velocity Ur ≅ 5.37, the features did not show any distinct behavior and with no synchronization
region. Figure 39 presents power spectral density (PSD) distributions of transverse velocity 
components measured at the cylinders’ mid-height downstream locations of x/D = 5. For this 
cylinder, the corresponding oscillating frequency was obtained from accelerometer 
measurements. These distributions indicated that a clear and strong coupling synchronization 
occurred between fluid and structure. As seen, with an increase of the reduced velocity, the 
peak amplitude of these distributions become larger, and the frequency approaches the 
cylinder’s natural frequency in the water of ( ௡݂௪௬ =11.7). 

Figure 39 Comparative power spectral density distributions of lateral acceleration  (left) and the lateral 
velocity of the wake behind the cylinder (right) fitted with 110 deg fin plates of x/D =5 and 

y/D =0

The data suggest that when the fluid flows past the cylinder attached with fin plates at these 
specific locations and when the cylinder started to oscillate, the fins broke up the flow and 
generate vortices at different locations along the cylinders’ lengths. These vortices might have 
been out of phase with one another and, due to a partial cancellation of the out-of-phase lift 
forces at the different spanwise positions, the lift coefficient for the finned cylinders decreased 
to values below those for the smooth cylinder. very similar, with the strakes effect on the wake 
vortices reduction in correlation in previous literature reported data [55]. Further investigations 
using a DPIV system would have been necessary to examine this aspect. Unfortunately, such a 
facility was unavailable.

The median and distribution of the data can be determined by a histogram. To demonstrate this, 
creating a Density histogram has been used to provide a visual representation of data 
distribution. It is well known that Histograms can display a large amount of data and 
the frequency of the data values. Histograms provide a visual interpretation of numerical data 
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by showing the number of data points that fall within a specified range of values. Figure 40 
presents our comparative time series of normalized inline and transverse cylinder displacements 
and the associated probability density function (PDF) of r.m.s amplitudes for the peak of points 
of the normalized displacements response for the smooth cylinder and the cylinders fitted with 
fins at 80, 90, and 110 degrees for the reduced flow velocity of Ur = 4.81. Using a Matlab 
function [106], Hilbert transformations of the recorded time series obtained the density 
histogram of inline and transverse responses for the cylinder tops. These bell-shaped density 
histograms graphically represent the normal distribution of a single data set tallied into classes.

                                    a) Smooth Cylinder                                 b) 80 deg. fined Cylinder

                                  c) 90 deg. fined Cylinder                             d) 110 deg. fined Cylinder

Figure 40 Comparative time series of normalized inline and transverse cylinder displacements and the 
associated power spectral densities of r.m.s. amplitudes for the smooth cylinder and the cylinders 

fitted with fins at 80, 90, and 110 degrees for the reduced flow velocity of Ur = 4.81
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The graphs in Fig. 40 depict the limits of these classes, here the maximum normalized responses, 
and their heights were calculated by dividing the relative frequency by the class width. The 
resulting heights are called densities; the vertical scale is called the density scale [107]. The 
sample time series shown in Fig. 40 illustrates that the presence of the fins caused a remarkable 
reduction of the cylinders’ response. Besides, the drop in the r.m.s. amplitudes also reduced the 
range of maximum oscillations, an aspect of considerable practical significance in that a large 
oscillation itself may damage a structure rather than fatigue-related synchronization frequencies. 
These features are common, especially for the light cylindrical structures with mass ratios below 
the critical mass ratio. This happened with our smooth cylinder as it was too light to withstand 
the fatigue stresses and, consequently, it was damaged

Figure 41 presented the crack area that occurred with the plain cylinder model at a reduced 
velocity of about Ur ≅ 4.81 due to the fatigue stresses caused by the high range of oscillating 
displacement before the onset of the synchronization frequencies. Further studies are needed to 
figure out the correlated changes in vortex modes trying to figure out the feature and improve 
the reduction percentage. Also, illustrating these attached fin plates with a flexible 2DOF
cylinder with a mass ratio above the critical is expected to have an intensive effect in 
suppressing VIV as well as observed in the present work for cylinder below the critical mass 
ratio. Varying geometric parameters could be a way for more enhancement studies.  One of the 
simple ways of enhancement is by shaping the free end tip corner smoothly as has been 
illustrated by Park and Lee 2004 [108]. Additional investigations would have been required to 
confirm and validate these effects also for flows at higher Reynolds numbers.

Figure 41 Structural fatigue damage of the smooth cylinder
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5.2 Wind Tunnel Tests Results 

Researchers are seeking a combined parameter, like Skop and Griffin parameter SG or m*ߞ, as 
a universal parameter to couple the effects of both mass and damping on the dynamic response 
of the cylinder in the VIV problem. Griffin et al. attempted to expand the application of the 
mass-damping parameter to the prediction of the maximum response amplitude of a wide 
variety of flexible structures. The Griffin plots showed general trends of agreement between 
maximum response amplitude and Scruton number but there was lots of scattering to the data. 
In Figure 42, the data points are overlaid by an empirical curve of Skop & Griffin [10], 
indicating that this data agreed favorably with past results, deviating by a mere 3.6%. The
results are plotted as continuous light lines. 

Figure 42 Normalized maximum amplitude vs. Scruton number [111]

Amplitude response

Figure 43 plots measured r.m.s values of motion amplitudes (normalized against D) at the top 
end of the test cylinder in a streamline and transverse directions to the flow against the reduced 
velocity, Ur. Root means squares displacement at cylinder top, Yrms, increased as the reduced 
velocity increased. However, there is a distinct peak in the Yrms distribution, which is consistent 
with the synchronization behavior discussed below. The measurements agreed favorably with 
the resulting transverse response and with the response of So et. al. [112]. The peak amplitude 
of the VIV occurred at Ur = 4.20. Thereafter, the amplitude of the VIV decreased significantly 
until Ur = 4.65 and then started increasing again until reaching the highest velocity available in 
this test. On the other hand, the peak in this test was larger than the one obtained by So et al. 
[22], and this was caused by the higher Reynolds numbers. 
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Figure 43 r.m.s. Values of normalized streamline (x) and lateral (y) top-end motion amplitudes Vs. 
reduced velocity (Ur)

It is clear that the free end had a great influence on the VIV. Although the amplitude of end-
cell-induced vibration (ECIV) was unsteady, the VIV remained nearly steady. This was 
indicated in the time histories at lower values of Ur as seen in Fig. 44. The amplitude of the 
model’s response due to the ECIV that occurred at a high wind speed was not influenced 
although the critical damping ratio of the model was higher, whereas the amplitude of the 
ordinary vortex-induced vibration decreased significantly [113]. It seemed that the increase of 
the displacement amplitude after the peak occurred was due to the tip vortex, as it was not 
affected by the high damping ratio of the model

Furthermore, the peak due to ECIV, occurring at a wind speed higher than the ordinary vortex 
shedding speed, was two times greater than reported by Wooton and 2.9 times greater than 
reported by Kitagawa et. al. [114]. This could have been due to the higher Reynolds number in 
these experiments. The ECIV would have occurred at four times higher velocity. For the inline 
motion at Ur  = 4.60, the amplitudes of the vibrations in the streamline and transverse directions 
were nearly equal. The streamline amplitudes became larger as Ur increased and, due to the 
mean drag force effect, quadratic polynomials approximated their functional relationship quite 
well.
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Figure 44 Time series and frequency plots of inline (X) and transverse (Y) accelerations and forces at 
a flow velocity of 9.00 m/s

Behavior of forces

The relationships between the reduced wind speed velocity, Ur, and the transverse force (lift) 
and the streamline force (drag) are shown in Fig. 45a. Drag forces were related to the drag 
coefficient as shown in Fig. 45b. The drag coefficient increased by about 30% throughout the 
range tested although it did not dramatically depend on the Reynolds number. The drag force 
coefficient, obtained from r.m.s. force values, was consistent with [115],  but it decreased to a 
value of about 0.05 because the surface of the commercial pipes used was smooth. In the 
subcritical region, the lift force plotted in Fig. 45 increased at higher velocities until near the 
end of the region. At Ur =15.89 (Reynolds number = 2.975x105) it began to decrease. As the 
minimum wake width occurred when the Reynolds number was 3x105, it seemed probable that 
the bubbles separating from the cylinder's surface became unstable and asymmetrical, leading 
to an angled wake. As with the two-dimensional cylinder, alternating vortex shedding, 
associated with fluctuating pressures acting on the surface of the cylinder, was responsible for 
the fluctuating lift force coefficients. The aerodynamic lift coefficients were sensitive to several
influences, principally Reynolds number, surface roughness, turbulence scale and intensity, end 
conditions, and the aspect ratio of the structure. For such a large number of parameters, most 
experiments dealing with the behavior of lift concentrated on varying only one or two 
parameters.
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                                a)                                                                b)

Figure 45 r.m.s. Values of drag force (Fx) and transverse force (Fy) (a), and of lift and drag coefficients 
(b) VS. reduced velocity (Ur)                    

Norberg [116] highlighted his investigations of lift acting on a stationary circular cylinder and 
presented experimentally obtained lift coefficients at Reynolds numbers ranging from 47 to 
2x105. He discussed the investigations concerning fluctuating lift and the effect of Reynolds 
numbers. He found that at higher Reynolds numbers the pressure distribution around the 
cylinder surface increases. He justified this dramatic flow variation with the appearance of more 
than one peak occurring near flow separation angles because the shear layer changes and suction 
peaks appear due to vibration effects. Additionally, investigations of three-dimensional effects 
are hampered by the relative lack of comparative data. Park & Lee [117] examined circular 
cylinders with aspect ratios of 6, 10, and 13 at a Reynolds number of 2x104. They reported that 
as the flow approaches the cylinder tip, it accelerates upward and separates from the leading 
edge of the free end. They detected also a dominant 24Hz signal, which remains constant with 
aspect ratio. They reported that the increasing pressure away from the tip is due to the 
decreasing influence of downwash and the dominant vortex shedding from the cylinder sides.

In the present study, the first peak in the lift coefficient diagram identified the tip vortex. It 
differed from the dominant frequencies at the upper and lower part of the cylinder as shown in 
Fig. 44. The other peaks were associated with the changing correlation length of the near wake 
shedding process, which indicated a phase change as illustrated below. The last peak fluctuating 
point seemed to be due to the beginning of the unstable separation bubbles at the end of the 
subcritical region. 

Khalak & Williamson [25] demonstrated the effect of free end conditions on vortex shedding 
at Reynolds numbers between 1000 and 20000 by comparing the case of parallel shed vortices 
and the case of obliquely shed vortices. They also illustrated the characteristics of the shedded 
forces and their frequencies. Contrary to their experimental results, the lift coefficient is well 
approximated by a quadratic polynomial function, unlike their obliquely shed vortices case. 
These results confirmed that the increasing Reynolds number and the changing mass ratio affect 
the lift coefficient because it depends on Reynolds number and vibratory effects. The same
discrepancy occurred for the drag coefficient. The increasing drag occurred in the obliquely 
shed vortices case, under a condition similar to these experiments, but not in the parallel shed 
vortices case. At higher Reynolds numbers, the drag coefficient increases by about 55%. With 
increasing Reynolds number, it seems that in the obliquely shed vortices case characteristics 
become more pronounced than in the parallel shed vortices case. This suggests that the 
Reynolds number has a strong effect.
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Oscillating frequency response

The cylinder frequency was measured directly from two separate sensors attached to the 
cylinder at its top and bottom. Figures 44 and 46 show data samples of FFT frequency plots
that we used to analyze the frequency content of the measured time series. The acceleration 
frequencies had stronger peaks than the force frequencies. Similar to [118], various frequencies 
appeared for the transverse direction, whereas in the streamline direction, only one dominant 
frequency appeared as VIV excited higher harmonic motions. Frequency content in the 
transverse direction changed from one to two and three components, depending on the velocity, 
and the curve shape changed as one response component was converted to the other component. 
At lower velocities ranging from U = 5.0 to 8.5m/s (Ur = 1.94 to 3.29), the frequency content 
consisted of two components. At U = 5.0m/s, the second frequency was 2.7 times higher than 
the first frequency, and, at U = 8.5m/s, it decreased until it reached the value of 1.7 for the first 
frequency, accompanied by a drop of response amplitude. The response amplitude ratio started 
to increase again at U = 9m/s until reaching its peak at U = 11m/s (Ur = 4.2) at which the 
frequency ratio (dominant oscillating frequency/natural frequency) equaled 1.008. The 
dominant frequencies of the lift force spectra, which had the largest peaks, were normalized 
against flow velocity and cylinder diameter, D, to neglect the dependency of Reynolds number 
and facilitate comparing these measurements with those of Khalak and Williamson [115].

Figure 46 Power spectral densities (PSD) of transverse accelerations at the bottom-end of the 
cylinder

These results emphasized again the complicated nature of the obliquely shedding vortices, 
ECIV, at increasing Reynolds numbers. The associated frequencies reflected the presence of 
cellular vortex shedding. As seen in Fig. 47a, at the Reynolds number of 7.982 x 104 (Ur = 4.2), 
a distinct peak characterizes the normalized frequency response, which rapidly decreases as the 
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Reynolds number increases. Similar characteristics were seen when comparing the frequency 
change at increased values of the reduced velocity, Ur, with those of [112]. These results 
exhibited a marked agreement of similar response characteristics although the decrease started 
after the first increase and the jump occurred at synchronization. As Ur increased, there was 
generally a decrease in the oscillating frequency, indicating also the effect of cylinder vibrations 
on vortex shedding and its associated frequency. Figure 47b plots the frequency ratio (dominant 
frequency of the cylinder obtained from lift force spectra/cylinder natural frequency) against 
the reduced velocity, Ur. These characteristics were thought to be due to two effects. First, 
cylinder vibrations and fluid forces converged to create higher harmonic excitations. Wang et 
al. [119] analytically demonstrated the occurrence of nonlinear (higher-order) force 
components, even for a case of relatively weak fluid-structure interaction. 

                                          a)                                                                        b)

Figure 47 Dominant frequencies from lift spectra, nondimensionalized by flow speed, U, and diameter, 
D, Vs. Reynolds number (a) and dominant frequency ratio obtained from lift force spectra Vs. reduced 

velocity (b) 

Figure 48 Drag force frequencies from drag force spectra Vs. reduced velocity
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They proved that the free vibration of an elastic cylinder introduces a third and higher harmonic 
to the transverse fluid force, followed by the displacement response. Second, strong 
nonlinearities of aerodynamic forces induced the intermittent generation of the tip-associated 
vortices. This counter-intuitive behavior was related to the change of drag frequency ratio (drag 
frequency/natural frequency) with velocity. As shown in Fig. 48, the drag frequency seemed to 
be constant and coincided with the natural frequency. Recall that Alfred & Karancheti [30] 
investigated the same range of frequency components for descending counter-rotating swirling 
vortices from the free end of a finite cylinder at Reynolds numbers ranging from 0.85x105 to 
7.70x105 [101]. Park & Lee [117] also found the same 24Hz frequency characteristics generated 
at the free end of a finite cylinder at a Reynolds number of 20000. Such a prediction of the tip 
vortex frequency could not be detached from the measured value of the natural frequency of 
the model (23.4Hz), which seemed to have occurred coincidentally. This coincidence prevented 
the streamline frequency to attain a value of twice the transverse frequency causing the VIV 
characteristics to disappear. However, detailed flow information would have been required to 
support this hypothesis.

It was of interest to investigate the manner of the vibrating cantilever transitions from one mode 
of response to another. To provide evidence for mode changes, we had to rely on other than
response data. In some cases, the phase of motions and in other cases the phase of fluid forces 
was an excellent indicator to evaluate these transitions [90]. An important feature of the 
dynamics of such an elastically mounted cylinder was the jump-in phase, θ, between the 
transverse force and the cylinder displacement, which occurred when the response changed 
modes. 

Figure 49 Phase angle between the transverse force and transverse motion of the cylinder Vs. flow 
velocity

Figure 49 shows the phase between the transverse force and the transverse cylinder 
displacement. Of interest was, contrary to Hubert [32], that the phase change occurred suddenly 
in a distinct manner at many points during synchronization. As velocity increased, the phase 
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angle between the force exerted on the cylinder by the fluid and its displacement showed a
discontinuous jump. This should have been caused by the sudden 180 deg. a phase angle change 
of vortex shedding [120]. Similar graphs of the phase angle between the streamline and the 
transverse motion of the cylinder as a function of the reduced velocity, Ur, and the phase angle, 
θ, of the aerodynamic forces. Hubert [32] investigated the VIV of long flexible cylinders in a 
water tunnel and found that, in the synchronization range, a phase angle change of about 180deg 
occurs gradually [121]. To illustrate these changes, we attempted to visualize the vortex modes 
in each region. Unfortunately, at higher speeds, these attempts failed.

Modes of Vortex Formation 

Many vortex formation modes correspond to response branches associated with vortex-induced 
vibrations. The well-known vortex wake modes comprise the 2S mode, consisting of two single 
vortices per cycle, and the 2P mode, consisting of two vortex pairs of vortices per cycle. These 
two modes are common for one and two-degree-of-freedom cylinders. Jauvtis & Williamson 
[8] investigated the so-called super upper branch mode. The vortex formations corresponded to 
the 2T mode. They consisted of a triplet of vortices formed per half-cycle. For the lightest 
bodies, the larger transverse amplitude was found to correspond to a new vortex formation 
mode defined as the 2C mode, which consisted of two co-rotating vortices per half cycle. Figure 
50 visualizes the formation of such a 2C mode during a single cycle. 

Figure 50 Evaluation of the 2C mode in time during one cycle of the tested pivoted cylinder [122]
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a)

b)

c)

d)

Figure 51 Visualizations of a variety of vortex formation patterns observed in the wake of the tested 
cylinder at flow velocities of 5 m/s (a), 10 m/s (b), 17m/S (c), 19 m/s (d), and 25m/s (e)

The formation of such patterns depended on various parameters, such as Reynolds number, 
cylinder motions, and accelerations, phase angles, etc., that were functionally related to each 



83

other. To visualize the vortex patterns, the smoke wire flow visualization technique is used. A 
constantan wire, made of copper-nickel alloy, produced dense smoke from burning oil and 
introduced smoke lines into the flow. Using a cylindrical lens, a beam from an ND-YAG laser 
source of continuous power output produced pulses of 532nm wavelength. Screenshots were 
obtained from a Canon EOS 80D digital camera with a resolution of 1600x1200 pixels and a 
frame rate of 50Hz. Oriented appropriately, it captured the smoke lines at the beginning mode 
of a vortex formation pattern. Here, the laser sheet illuminated the x-y plane at the midspan of 
the cylinder (z/L = 0.5) to avoid the influence of the free end. 

Figure 51 shows flow patterns obtained at different flow velocities. Each velocity corresponded 
to a different phase region. As shown, each pattern provided evidence for mode changes. At a 
velocity of 5m/s, the pattern seems to be a 2S vortex mode, while at 10 m/s, it seems to be a 2P 
vortex mode. The 2C vortex modes are formed at velocities of 17, 19, and 25m/s as they 
occurred in the same phase region. The 2C vortex modes were not observed before in 
aerodynamics tests, because the mass ratios were higher than unity. There appeared to be no 
obvious explanation for the existence of such a pattern, confirming that further investigations 
would have been necessary. Unfortunately, facilities were unavailable to examine this aspect.

5.2.2   Summary and discussion

There is an integrated effect of several parameters combined in the present work, that would 
have a great influence on the VIV characteristics. Among them, higher mass-damping ratio, 
higher Re, and Intermediate aspect ratio which increases the effect of the tip vortex. As 
mentioned, The VIV phenomena are characterized by the higher amplitude of oscillation, range 
of synchronization, and oscillation frequency. If the cylinder vibrates at, or near, its structural 
natural frequencies, then the vibration is initially limited only by the cylinder damping.    
However,  at the moment the amplitude reaches about 1 to 1.5 times the cylinder diameter, the 
boundary layers are altered enough by the cylinder motion and the vibration becomes self-
limiting.  If the cylinder does not vibrate at, or near, its structural natural frequencies,  then the
vibration is a forced vibration and is typically limited to about 0.1-0.2 times the cylinder outside 
diameter.    This was the case in the present work. Thus, because the lift forces were not 
sufficient to produce larger motions than this. This also might be the reason for decreasing the 
range of synchronization which seems to be a distinct point. Furthermore, The higher Re may 
be the reason for shifting the start of synchronization range to Ur = 4.2 instead of 5. The same 
effect was found as damping increased by Klamo et al. [43].

In addition, the drag coefficient showed significantly lower values. It is worth noting that the 
drag coefficient is strongly coupled to displacement, with the smoothest cylinder having the
lowest drag. D. W. Allen and D. L. Henning reported that if the cylinder's surface roughness is
sufficiently smooth the  VIV all but disappears and the drag coefficients are very low [123].
However, their experiments were conducted at the critical and supercritical Reynolds number 
range. It might be one of the tested parameters that could result in shifting of these features to 
lower Re.  

One other area of importance is the vibration response frequencies. Of particular significance
is axial frequency behavior which seems to be almost constant and coincides with the natural 
frequency. One could relate this frequency to the tip vortex frequency as it has been seen to 
have the same value in some previous works of literature as discussed in chapter 2. Besides, 
Due to additional vortex formation patterns appear depending on the particular cylinder motion 
and behavior. This could explain some differences being seen in Fig. 45. There have been few 
studies that have measured the wake velocity field downstream of the cylinder tip.
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Further tests with special tools and simulations are needed to investigate the tip vortex 
frequency and determine its’ contributions to VIV especially for this range of aspect ratios and 
Reynolds numbers.



85

6. Numerical Simulations and Results

As mentioned in the past chapter, numerical simulation is a useful tool to study VIV because it 
provided a simultaneous vision of the wake patterns, fluid forces, and body responses, which 
allowed for a coupled analysis of the flow-structure system. However, the numerical simulation 
of VIV in conditions close to those encountered in nature or in the experimental works remains 
challenging. Recent studies have shown that with the improvement of numerical methods and 
the development of computational resources, the investigation of VIV in the turbulent regime 
via numerical simulation becomes possible [139]. Several approaches have been employed in 
the field of CFD to study the flow past a cylinder problem. The knowledge and experience 
found in the literature show that the simulation of flows at high Reynolds number problem in 
all of its length and time scales would only be completely achieved using direct numerical 
simulation. However, it requires massive computational resources for a consistent (i.e., time 
and grid-independent) simulation for high Reynolds numbers and thus stands as a tool used 
mainly for more fundamental research rather than for engineering applications. This explains 
why most of the numerical works concerning VIV have been dedicated to low Reynolds number 
configurations. The numerical study and physical analysis of the pressure and velocity fields in 
the near wake of a circular cylinder have been investigated by Braza et al [140]. Coutanceau 
and Defaye have investigated this problem for different Reynolds numbers [141]. The turbulent 
flow over the cylinder was also investigated by Rai & Moin for high Reynolds number [142].

All of the above numerical studies have solved the unsteady Navier-Stokes Equation in two 
dimensional. They described the relevant flow by the global parameters such as the Strouhal 
number as a main feature of the unsteady wake, drag, and lift coefficients in the wall region; 
nevertheless, poor analysis is provided for the near wake characteristics.

Nowadays it is known that unsteady Reynolds Averaged Navier–Stokes (RANS) models fail to 
predict proper flow physics in many cases. A step towards the attempts to simplify the 
numerical approaches, one is naturally led to the large-eddy simulations, which represents a 
less computational effort at the cost of introducing some modeling in the sub-grid scales. 
Nevertheless, a full and correct (without near-wall modeling) LES for high Reynolds numbers 
is still unfeasible due to the approximately same computer requirements as DNS. The detached 
eddy simulations DES,  based on the Spalart-Allmaras one equation turbulence model [132], is 
a hybrid RANS/LES approach that operates like RANS in the near-wall regions and like LES 
in separated flow zones. It is particularly attractive because it achieves good results in several 
conditions with fewer computational resources than standard LES. The performance of DES 
for a given grid may be less accurate than the performance of DES on a coarser grid. This is 
because the concept of grid spacing for DES is an ambiguous and crucial requirement of grid 
spacing, which must be taken into account [143]. However DES & LES have a demand for 
much greater computer power than RANS methods, they are computing fluctuation quantities 
resolve shorter length scales than RANS models [104].

As mentioned above, many factors such as Reynolds number, length of the plate, frequency, 
and amplitude can affect the flow pattern. Recently, a vast amount of studies has been conducted 
to increase the understanding of different VIV features of the flow past a circular cylinder 
experimentally, numerically, and theoretically. By contrast, there are very few similar studies 
found for demonstrating the various method for suppressing. Especially, there is rarely 
numerical investigation represented the effects and flow features for different suppressing tools, 
for example, M. Springer et al. [144].  Besides, Ranjith et. al. presented a numerical 
investigation of the flow around a circular cylinder with and without the helical strakes at 
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Reynolds numbers 100&28000 has been presented. It is found that at low Reynolds number 
flows, since the boundary layer thickness is high, the same helical strake of 0.15d in height is 
not given the same effectiveness in reducing the vortex shedding. A maximum of 19% reduction 
is possible at Low Reynolds numbers [55]. However, Computational Fluid Dynamics (CFD) 
has gained momentum and its value in cost-effectiveness could include CFD results enabling 
the design of smaller and lighter equipment or enabling simpler and cheaper examinations 
before practical installations.
In the first part of this chapter, Computational Fluid Dynamic (CFD) analysis is performed for 
a fixed-cylinder case, at Reynolds number Re = 7000, where different mesh qualities and two 
different turbulence models have been evaluated. Unsteady Reynolds-averaged Navier–Stokes 
(URANS) simulations and detached-eddy simulations (DES) were performed of flow around a 
circular cylinder. The results were compared with experimental results [115]. Secondly, newly 
developed various fin configurations attached to the plain cylinder surface have been employed 
to investigate numerically the flow characteristics behind a stationary circular cylinder and 
illustrate their effect on suppressing VIV. For comparing the various attached structure features, 
the only focus was on the turbulent flow, thus, the Reynolds number was fixed at Re =5.3x103. 
Finally, a new turbulent FSI validation test case is defined based on detailed measurements and 
the experimental results for the smooth cylinder (chapter 5.1) have been used to validate.

6.1 Turbulence Model Assessment

6.1.1 Computational domain

The numerical computational domain was defined by a rectangular box. Table 7 lists the 
dimensions and Fig. 52 presents a top view of the computational domain surrounding the 
cylinder. The arrows at the left (inlet) side of the domain indicate the flow direction. The inlet 
boundary was located five-cylinder diameters away from the cylinder axis [145]. The origin of 
the cartesian coordinate system was located at the center of the top end of the cylinder. Similar 
to the experiments of Khalak and Williamson [115], a small gap of 0.04D existed underneath 
the bottom of the cylinder. 

Table 7 Domain and cylinder dimensions

Geometric 
parameter

Symbol Value 
[m]

Domain length
LD 2.5

Domain width
W 0.41

Cylinder diameter
D 0.0381

Cylinder length
L 0.3810

Domain depth
H 0.3830



87

Figure 52 Top view of the computational domain

6.1.2 Grids and boundary conditions

To quantify the dependence of the numerical results on mesh density, numerical simulations on 
three different grids characterized by successively finer meshes were performed. Mesh 1 
described the coarsest grid; mesh 2, the medium grid; mesh 3, the finest grid, and mesh 4, the 
superfine grid. Table 5 lists the number of cells, the grid spacing Δx in the flow direction, and 
the time step size Δt of these four grids, and Fig. 53 exemplarily depicts top and side views of 
the medium grid (mesh 2). and side views of the medium grid (mesh 2). The top graph in this 
figure includes a zoom-in view of the prism layer surrounding the cylinder, with a total of 120 
grid nodes situated along its circumference. As seen in Fig. 53, four refined grid blocks 
surrounded the cylinder and its wake region to adequately capture high-velocity gradients near
the cylinder’s surface. Based on previous studies [146], [49], configurations and dimensions of 
these grid blocks, see Fig. 52, were selected to optimally identify the evolution of vortex 
structures behind the cylinder. Nonetheless, to improve the computational efficiency, a coarser 
mesh was specified in regions far away from the cylinder.

The inflow boundary condition represented a uniform velocity profile equal to the free stream 
velocity. The outflow boundary required more care because it would have been incorrect to 
specify velocities occurring infinitely far away from the cylinder at the outlet boundary. 
Therefore, the gradients of the outflow velocity in the streamwise direction were set to zero, 
and the pressures were assigned a reference value of zero. The outlet was located at the right 
boundary. On the top and bottom boundaries, a slip condition was assumed; on the side 
boundaries, a non-slip condition. A non-slip boundary condition was assumed also on the 
cylinder surface. To improve temporal accuracy and to ensure numerical stability, the wall 
function's y+ value always equaled unity, and the Courant-Friedricks-Lewey (CFL) number 
never exceeded the value of 0.2.
The numerical simulations implemented the SIMPLE algorithm in code Starccm+ to enable 
utilizing second-order temporal discretizations. As an upwind scheme has limits when 
performing DES simulations [104], a hybrid second-order upwind/central scheme has been 
used, where the blending factor was computed to optimally account for the flow features. While 
the second-order upwind scheme has been used for the calculations using the SST k-ω
turbulence approach.
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Figure 53 Top view (top) and side view (bottom) of the computational mesh 2 on the medium grid

6.1.3 Numerical verification and validation

For turbulent flows, it is expected that the major source of modeling error to be caused by the 
turbulence models. To systematically assess numerical errors, it should be distinguished 
between modeling errors ߳ெ , discretization errors ߳ௗ , and iteration errors ߳ூ . Hence, total 
computational error ்߳ was obtained from their sum:

                                                         ்߳ = ߳ெ + ߳ூ + ߳ௗ                                                         (66)

Many practical problems of fluid dynamics are currently analyzed by numerical solution of the 
mathematical models by Computational Fluid Dynamics (CFD). It is no longer enough to 
produce a solution, this approach is called the “engineering approach”, but rather the credibility 
of the simulations must be established with the Verification and Validation “scientific approach” 
[145]. Due to unsteady flow simulations, the numerical results were sensitive to spatial and 
temporal discretization. According to ITTC guidelines, the total numerical error consists of 
contributions from incomplete iteration convergence ߜூ, numerical grid density ீߜ, time step 
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size ்ߜ, and other parameters ߜ௉. According to these guidelines, it was also recommended that 
studing for all input quantities systematically by keeping other parameters fixed [147]. 
Therefore, the contributions were assumed independent, corresponding to orthogonal 
dimensions constituting the space of uncertainty, which does not allow for interactions between 
uncertainty contributions. An alternative approach of Oberhagemann and el Moctar [148], 
especially suitable for transient problems, was used to estimate the discretization errors. The 
method required the same refinement factors to be applied to all dimensions and that spatial 
and temporal refinements be done simultaneously. It is considered a uniform refinement in all 
directions (space and time) that corresponded to a constant CFL number. The one dimensional 
CFL number, a reasonable measure for convection dominated flow, was expressed as follows:

ݎ                                            = ∆௫೔శభ∆௫೔ = ∆௧೔శభ∆௧೔ ⇒ ܮܨܥ = ݑ ∆௧
∆௫ = (67)                                  ݐݏ݊݋ܿ

where ∆ݔ and ∆ݐ are the spatial and time-step sizes, respectively, the index i denotes the level 
of refinement, r is the refinement factor, and u is the fluid velocity. In this approach, contrary 
to Eça and Hoekstra [149], the coarsest grid (mesh 1) was the reference grid, and further grid 
refinements were made via the refinement factor. A non-dimensional scalar grid refinement 
ratio, ߓ, measured the relative grid resolution as follows:

௜ߓ                                                 = ටଵ
ଷ ൤ቀ∆௫೔∆௫భቁ

ଶ + ቀ∆௬೔∆௬భቁ
ଶ + ቀ∆௭೔∆௭భቁ

ଶ൨                                      (68)

where ∆ݔଵ ଵݕ∆ , , and ∆ݖଵ are arbitrarily chosen as reference grid spacings. Following this 
approach, ߓஶ = 0 corresponds to a grid representing infinitely small grid spacing in all 
directions, which is associated with the grid-independent solution. Then, the discretization error 
was estimated as a function of ߛ via Taylor series expansion as follows:

                                                    ߳ௗ ≈ ஽ߜ = ߶௜ − ߶଴ = ܽଵߓ௜ + ܽଶߓ௜ଶ                                   (69)

where ߶ is the sought after variable, and ߶௜ is the result obtained on the grid with spacing ∆ݔ௜. 
For second-order approximations, a minimum of three grids was needed to determine the 
unknown coefficients ߶଴, aଵ, and ܽଶ. Following the least-squares minimization approach of 
Eça and Hoekstra [149], it is first obtained the grid-independent solution, ߶଴, and then the 
following first and second order polynomial formulations of ߜ஽:

                                            ܵଵ(߶଴, ܽଵ) = ට∑ (߶଴ − (߶଴ + ௜))ଶ௡೒௜ୀଵߓܽ                                    (70)

                       ܵଶ(߶଴, ܽଵ, ܽଶ) = ට∑ (߶௜ − (߶଴ − (߶଴ + ܽଵߓ௜ + ܽଶߓ௜ଶ))ଶ௡೒௜ୀଵ                           (71)

The order of convergence, p, was obtained from the solution as follows:

݌                                                                    = ௟௡ቀቚഝయషഝమഝమషഝభቚቁ௟௡(௥)                                                      (72)

where ߶ଵ is the solution obtained on the grid with the finest mesh. 

As of now, the unstructured grids are comprised mainly of hexahedral cells, and an automatic 
meshing strategy generated these grids. This technique did not allow systematic refinements in 
a strict sense, due to the unstructured grid point distributions. However, the grid node allocation 
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of the hexahedral cells followed the criterion of systematic refinement. The discretization error 
analysis was carried out with the SST k-ω turbulence model; the refinement factor of ݎ = √2
was uniformly specified for all spatial directions and time steps. Generally, the uncertainty of 
integer quantities, such as the drag coefficient Cd, was smaller less than the uncertainty of local 
quantities.

Table 8 lists the solution’s corresponding results in terms of r.m.s. values of drag coefficient 
Cd, Strouhal number St, and shedding frequency ௦݂, of the shed vortices. The fifth row in Table 
7 lists the comparative values for the extrapolated grid-independent solution (Extrapol.), for 
which ∆x = 0; the sixth row, the comparative values of Khalak and Williamson [115]; and the 
last row, the percentage deviation (Error) of the values obtained on the medium grid (mesh 2) 
from the values of Khalak and Williamson. The drag and lift force coefficients were defined 
using equation 17. Where the drag and lift forces, in the (streamwise) x-direction and transverse 
y-direction respectively, are obtained by integrating pressures and shear stresses acting on the 
cylinder’s surfaces, and ௦݂ is the dominant frequency of the lift force coefficient obtained by 
Fast Fourier Transform (FFT) analysis of lift coefficient time histories.

Table 8 Grid particulars and comparative r.m.s. values of drag coefficient, Strouhal 
number, and shedding frequency, obtained with the SST k-ω turbulence model on different 

grids, and  values of the grid-independent solution, values of [96], and the associated 
errors

Grid ∆x 
[m]

Cells No. 
x106

∆t [s] Cd St ࢙ࢌ [Hz]

Mesh 1 0.126 2.3 1.26x10-3 0.6898 0.26 1.3

Mesh 2 0.1 4.6 0.001 0.8409 0.26 1.3

Mesh 3 0.08 8.9 8x10-4 0.7721 0.23 1.2

Mesh 4 0.063 17.4 6.3x10-4 0.7710 0.23 1.2

Extrapol. 0 ─ ─ 0.8610 ─ ─

[115] ─ ─ ─ 0.9 0.21 1.05-0.4

Error % ─ ─ ─ 4.3% 9.5% 14.0%

Turbulent modeling errors have been quantified by comparing the drag and lift force
coefficients obtained on the fine mesh as shown in Fig. 54. It is known that the drag coefficient 
is considered to be the least demanding coefficient to assess the discretization error in 
comparison with the exact solution. Furthermore, the drag coefficient gave a consistent constant 
value in the range of subcritical Re [105].
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Figure 54 Time histories of the drag force coefficients calculated from different grids

Nevertheless, the computational grids had to provide asymptotically converging discrete 
solutions and, by definition, these solutions were dominated by truncation errors. As the
residual level of the order of 10-1 was relatively high, it has been decided to decrease the time 
step. It is adopted the same refinement factor between grids for the time step study. Table 9 lists 
the resulting r.m.s. values of drag coefficient Cd, lift coefficient Cl, and shedding frequency ௦݂, 
obtained from simulations of 10s duration performed on the medium mesh grid (mesh 2). The 
last row in table 9 lists the comparative values of Khalak and Williamson [115].  

Table 9 Drag coefficient, lift coefficient, and shedding frequency, obtained with the SST k-ω 
turbulence model on the medium grid (mesh 2) for successively decreasing time steps and 

comparative values of [96]

Grid ∆t Cd Cl
  ࢙ࢌ

[Hz]

Mesh 1 0.0010 0.8409 0.0969 1.27

Mesh 2 8.0x10-4 0.7998 0.0502 1.30

Mesh 3 6.3x10-4 0.8048 0.1679 1.20

[115] ─ 0.9000 0.0580 1.05
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The results listed in Table 8 indicate that the time step did not significantly affect the solutions
i.e. the problem is less time-dependent. Recall that the CFL number was always less than 0.2 
and, therefore, it has been performed subsequent simulations on the medium grid. Furthermore, 
decreasing the time step is another way to decrease the iterative errors while the other way is to 
increase the number of iteration.

Rosetti et al. [145] defined limiting convergence criteria at infinity for iterative residual errors 
of ܮஶ ≤ 10ିଵଶ for steady simulations and ܮஶ ≤ 10ି଺ for unsteady simulations. However, 
they considered only the two-dimensional flow around a single circular cylinder. 

Nevertheless, the plotted in Fig. 55 is presented the residuals obtained versus the number of 
iterations. These residuals were generated when solving the continuity equation (Continuity) 
and when computing the horizontal momentum (X-momentum), the transverse momentum (Y-
momentum), the vertical momentum (Z-momentum), the Specific dissipation rate (Sdr), and 
the turbulent kinetic energy (Tke). As seen, the simulations associated with these plots were 
started at the same order of residuals, which indicated that iterative errors (residuals) did not 
depend on the number of iterations. Moreover, the variation of the residuals was not large 
enough to justify differentiating between discretization errors, which meant that the current
numerical results may have been subject to modeling errors.

(a)
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(b)

Figure 55 Residuals of computed flow quantities vs. number of iterations; full-time calculations (a), 
zoom in (b)

6.1.4 The DES turbulence model

To compare the use of the DES turbulence model, the same numerical parameters as for the 
SST k-ω turbulence model have been used. Even so, it was important to ensure that the grid’s 
mesh was adequate for DES solutions. For efficient DES calculations, this meant that the grid 
spacing should be kept between the Kolmogorov and the Taylor scale. The Taylor micro-scale, ߣ , defined as the intermediate length scale at which fluid viscosity significantly affects 
the dynamics of   turbulent eddies in the flow, is expressed as follows:

ߣ                                                                          = ቀ ఔయ
ఉ∗ఠ௞ቁ

భర
                                                   (73)

where ݇ is the turbulent kinetic energy, and ω is a specific dissipation rate. Larger lengths than 
the Taylor length are not strongly affected by viscosity. However, with lesser lengths, the 
turbulent motions are subject to strong viscous forces, and the dissipation of kinetic energy is 
then governed by the energy cascaded theory and converted to heat [126]. However, at the 
Kolmogorov scale, ߟ, the smallest turbulence flow scale, viscosity dominates and the turbulent 
kinetic energy is dissipated into heat. This flow scale is expressed as follows:

ߟ                                                                        = ට10ߥ ଵ
ఉ∗ఠ                                                 (74)

For the DES turbulence model, the turbulent modeling error on the fine grid (mesh 3) was
quantified by determining the lift and drag coefficients, the boundary-layer separation location, 
and the Strouhal number. Generally, the lift coefficient for flow around a cylinder is the most 
troublesome quantity to obtain, yielding the largest errors and uncertainties, even for two-
dimensional simulations. In contrast, the drag coefficient is considered the least demanding one 
in terms of discretization errors to generate the “exact” numerical solution. 
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Table 9 lists not only the integral flow quantities the results of the verification and validation 
exercise achieved with the DES turbulence model but also those currently available from the 
literature. Specifically, this table lists the r.m.s. values of drag coefficient Cd, lift coefficient Cl, 
Stouhal number St, and frequency ௦݂ obtained on the coarse grid (mesh 1), the medium grid 
(mesh 2), and the fine grid (mesh 3). Table 10 lists also the comparative values of Khalak and 
Williamson [115], Lysenko et al. [150], and Norberg [151]. As seen, with increasing grid 
fineness, the lift coefficient determined with the DES turbulence model converged 
monotonously towards the experimental lift coefficient of [115], which was not the case with 
the SST k-ω (see Table 8).

Table 10 Drag coefficient, lift coefficient, Strouhal number, and shedding frequency 
obtained with the DES turbulence model and comparative values of [115], [145], and [144]

Grid Cd Cl St [Hz]  ࢙ࢌ

Mesh 1 0.7747 0.0407 0.26 1.3-0.79

Mesh 2 0.7869 0.0461 0.23 1.2-0.69

Mesh 3 0.8002 0.0562 0.23 1.2-0.72

[115] 0.90 0.058 0.21 1.05-0.4

[151] 0.98 ─ ─ ─

[150] 1.18 0.44 0.19 ─

As seen, the drag and lift coefficients obtained with the DES model underestimated the 
experimental values, even the ones determined on the fine grid (mesh 3). These results were 
inconsistent with those of D’ Alessandro et al. [152] as they associated this behavior with the 
nature of the DES model for near-wall URANS flow simulations. Recall that conditions near 
the cylinder’s surface corresponded closely to subcritical flow conditions [105].  

6.1.5 Comparative flow characteristics  

Employing the two turbulence models resulted in different flow characteristics. This is best 
seen in Figs. 56 and 57, depicting, respectively, time series of lift force coefficient and time-
averaged streamlines of flow on the cylinder’s horizontal mid-span plane obtained with the SST 
k-ω turbulence model and the DES turbulence model and the corresponding frequencies. 



95

Figure 56 Time series of lift coefficient obtained with the SST k-ω (top) and the DES (bottom) 
turbulence model

With the SST k-ω turbulence model, the flow past the cylinder was characterized by parallel 
shed vortices; with the DES model, the more complex flow was characterized by obliquely shed 
vortices. The simpler frequency content of the parallel shed vortices obtained with the SST k-
ω turbulence model was dominated by a single peak, whereas the obliquely shed vortices 
obtained with the DES turbulence model consisted of two dominant peaks, as shown by the lift 
coefficient’s power spectral density obtained with the DES turbulence model presented in Fig. 
56. This two-peaked power spectral density was similar to the comparative experimentally 
determined spectral density of Khalak & Williamson [115].  
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RANS

DES

Figure 57 Time-averaged streamlines on the horizontal mid-span plane of the cylinder obtained with 
the SST k-ω (top) and the DES (bottom) turbulence models

Although the gap between the cylinder’s end and the bottom of the computational domain was 
small, it caused a slight downwash flow that led to obliquely shed vortices with more than one 
single frequency, which were captured obviously with the DES model. Overall, the DES model 
was found to be more successful in terms of detecting small-scale vortex shedding eddies in the 
near wake region. This became more evident when examining the asymmetric vortex 
distributions shown by the time-averaged streamlines on the cylinder’s vertical symmetry plane 
shown in Fig. 58.
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Figure 58 Time-averaged streamlines on the cylinder’s vertical symmetry plane obtained with the SST 
k-ω (top) and the DES (bottom) turbulence model

Figure 59 plots the associated average pressure coefficient, ܥ௣, versus angular position around 
the cylinder’s circumference. For the sake of comparison, only the pressures computed on the 
fine grid (mesh 3) were considered. The predictions show a similar shape of the Cp obtained 
with SST k-ω and the DES turbulence models. However, the value of ܥ௣,௕ obtained with the 
DES model were underestimated to the experimental pressures of Lysenko et al. [150] and 
Norberg [151]. These results correlate with the nature of the DES approach, in that using the 
RANS technique in the near-wall region may give rise to inaccurate wall data a priori.
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DES

RANS

Figure 59 Mean pressure coefficient vs. angular position around the cylinder’s circumference obtained 
with the SST k-ω (top) and the DES (bottom) turbulence models

To determine the flow separation point, the plotted in Fig. 60 illustrated the shear stress 
distributions on the cylinder obtained with the SST k-ω and the DES turbulence models. As
known that in the subcritical range of Reynolds numbers the boundary layer’s separation point 
oscillates between 80 and 90deg from the cylinder’s front stagnation point [101]. Based on 
these plotted stress distributions, the flow separation occurred at an angle of ߠ௦௘௣ = 87.4deg, a 
result that correlated favorably with DES calculations of Luo et al. (86.4deg) [153] and LES 
investigations of Kravchenko and Moin (88.0deg).
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Figure 60 Shear stress distribution on the cylinder wall obtained with the SST k-ω (top) and the DES 
(bottom) turbulence models

It is noted that the level of residuals with both turbulence models remained nearly the same, 
even when refining the grid size, whereby the Courant number for all the calculations was kept 
constant.

6.2 Suppressing Using Attached Structures

There are very few studies that demonstrated the various method for VIV suppressing. 
Especially, there is rarely numerical investigation represented the effects and flow features for 
different suppressing tools, for example, M. Springer et al. [144] and Ranjith et al. [55].  
However, Computational Fluid Dynamics (CFD) has gained momentum and its value in cost-
effectiveness could include CFD results enabling the design of smaller and lighter equipment 
or enabling simpler and cheaper examinations before practical installations.
In this second part, the newly developed various fin configurations attached to the plain cylinder 
surface have been employed to investigate numerically the flow characteristics behind a 
stationary circular cylinder using a detached eddy simulation turbulent approach. For 
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comparing the various attached structure features, the focus only on the turbulent flow, the 
Reynolds number, based on the free stream velocity and the diameter of the cylinder, was fixed 
at Re =5.3x103. In the following, the problem definition and numerical validation were
presented at first. a brief description of the tested models is followed. After that, a detailed 
numerical study of flow over a stationary circular cylinder with fin plates was given. 
From the comparison results, The mean drag coefficients and the root mean square (r. m. s.) 
values of lift coefficient for a plain cylinder were compared with the same range of data results 
reported from previous Khalak and Williamson research in Fig. 61. It can be seen that the 
present smooth cylinder data fairly agree well. It is illustrated that the model established in the 
present study can be used to investigate different VIV suppressing tools attached to the smooth 
circular cylinder.

Figure 61 Drag coefficients for the bare cylinder compared with data from published work by Khalak 
and Williamson 1996.

Figure 62 presents time-averaged streamlines and pressure contours on the midspan plane for 
the rigid cylinder. As seen, the flow pattern behind the rigid cylinder generated an asymmetrical 
vortex pair, an asymmetrical von Kármán vortex, and strong negative pressure behind the 
cylinder has been observed. Next, the influence of the attached fins on the velocity and pressure 
contours will be examined at the same time step.

Figure 62 Time-averaged streamlines and pressure contours on the horizontal midspan plane for the 
plain cylinder
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6.2.1 Models description

Gartshore et al. [59],  placed straight fins on the sides of the cylinder, rather than at the front 
and back of a smooth cylinder. Their effect was to increase the maximum amplitudes of 
response in a smooth and turbulent flow. This may be due to sharp edges near the top and/or 
bottom of the cylinder causing galloping which means, this increase is due to a combination of 
galloping and vortex excitation.
Instead of straight fins tested by Gartshore et al. [59], thought of equal distances discrete straight 
fins along the cylinder span with equal spaces in between along the cylinder model as shown in 
Fig. 63. Various straight fin lengths have been examined for the shown model A in Fig. 63. As 
shown in Fig. 63, at the bottom boundary layer, a double space distance has been chosen as two 
different boundary layers from the two opposite directions of the bottom surface boundary 
condition, and the last fins’ end is supposed to be performed. Besides, due to the tip vortex at 
the top of the cylinder which attenuates the ordinary vortex strength, the fins location has been 
shifted from the top location to the lower one. In order to decrease the effect of straight fins 
sectional area on the drag, a 450 inclination angle of the fins has been tested in models shown 
in Fig. 63 B and C. 

Figure 63 Schematics of the cylinder with attached fin plates in frontal view; and the cross-sectional 
view of different tested model; (A) straight fin plates, (B) 90 deg fin plates, (C) 80 deg fin plates, and 

(D) asymmetric straight fin plates model

Furthermore, It was reported in pieces of literature that the cause of VIV was thought to be; the 
presence of a bluff body, symmetric cross-section, and separation angle [30], [154], however, 
Bearman explained that primarily responsible for vortex shedding is the presence of two shear 
layers rather than the bluff body itself  [6]. In the present study, the factors of symmetry cross-
section and separation angle have been examined. It is well-known that in the subcritical range 
of Reynolds number, the boundary layer's separation point oscillates between 800 and 900 from 
the front stagnation point [101]. Thus it is very likely that in the 900 positions the fin plates had 
a particularly disturbing effect on the flow (Fig. 63 B). Furthermore, another model (Fig. 63 C) 
has been tested to demonstrate the effect of disturbing the range of the separation angle on VIV. 
In addition, model 6 (Fig. 63 D) has been used to test the effect of asymmetry cross-section on 
VIV. Two non-dimensional parameters are used to describe the fin plates. 
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The ratio between the length of the fin plate in the radial direction and the diameter of the 

cylinder is defined as ܴ = ஽೑஽ , where Df is the length of the fin plate in the radial direction of 

the cylinder. The fin plate aspect ratio which could be defined as ܣ௙ = ஽೑௅೑ , where Lf is the 

height of the fin plate in the vertical direction. In the case study, R = 0.05, 0.1, and 0.2 have 
been used with ܣ௙ = 0.1 for all the models with thickness 1 mm to avoid the effect of galloping 
which is expected to happen with thick plates as observed by A. Vinod et al. when using thick 
strips attached to the cylinder surface [155]. The models description has been represented in 
table 11.

Table 11 Specification of different tested models

Model Description location R

Model 1 Cylinder with straight fins located at 900

from the stagnation point
Two sides 
symmetry

0.05

Model 2 Cylinder with straight fins located at 900

from the stagnation point
Two sides 
symmetry

0.1

Model 3 Cylinder with straight fins located at 900

from the stagnation point
Two sides 
symmetry

0.2

Model 4 Cylinder with 450 inclined fins located at 
900 from the stagnation point 

Two sides 
symmetry

0.1

Model 5 Cylinder with 450 inclined fins located at 
800 from the stagnation point

Two sides 
symmetry

0.1

Model 6 Cylinder with straight fins located at 900

from the stagnation point
one sides 

asymmetry
0.05

The same mesh configuration parameters have been used for numerical solutions for each tested 
model. The only difference was the change in the number of prism layers to enhancements the 
sharp changes in the circular geometry. The first layer thickness has been kept with the same 
value to ensure the y+ criteria for all the numerical models. Figure 64 presents examples of the 
mesh patterns used for different models.
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                                            a)                                                                                           b)

                                             c)                                                                                          d)
Figure 64 Top view of the computational meshes for each study case; a) total computational domain, 

b) 80 deg fins, c) straight fins, d) 90 deg fins

6.2.2 Attached structures results

Analysis of wake flow

Before going through the results of the suppressing tool, it is needed to figure out some features 
of the wake flow to understand how these tools are supposed to work. The mechanism of the 
vortex formation region is with the growing vortex continues to be fed by circulation from the 
shear layer until the vortex becomes strong enough to draw the other shear layer across the 
wake. The fluid is drawn across the wake by the action of the growing vortex on the other side. 
when the irrotational flow is beginning to cross the wake axis, the flow is separated into three 
different paths [156], [157]. It is partly entrained by the growing vortex and partly by the shear 
layer upstream of the vortex. Some of this fluid will also find its way into the interior of the 
formation region. The size of the formation region could be determined by the balance between 
entrainment into the shear layer and the replenishing of fluid by the induced reversed flow 
described above. As the Re number increases, the turbulence of the shear layer increased. there 
will be more diffuse in the region of interaction [158]. When the layer is diffused it will take 
longer for a sufficient concentration of vorticity to be carried across the wake and initiate 
shedding. On the same reasoning, the greater diffusion of the vorticity would result in less 
entrainment into the growing vortex, hence a higher value of the vortex strength at a high 
Reynolds number. In this case, there would be an effective cancellation of circulation in the 
interior of the formation region. 

So, the idea here of using the straight fins is to increase the thickness of the shear layer by 
making the shedding vortices unable to roll from one side to the other side along the cylinder’s 
rear surface easily due to the fin plate’s prevention. Thus they are forced to process downstream. 
Therefore, with the existence of the fin plate, the shear layer is greatly influenced and extended. 
Figure 65 represents the flow pattern behind the stationary cylinder generated vortices for each 
model case at approximately the same time step.
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Figure 65 Time-averaged streamlines on the horizontal midspan plane presented the variation of the 
vortex formation length and vortex thickness  for each case at the same time step; model 1 (a), model 

2 (b), model 3 (c), model 4 (d), model 5 (e), model 6 (f)

Due to the existence of the fin plates, it can be found that the separation bubble size becomes 
larger as compared to the case of the plain cylinder, as they make the vortex shedding slower. 
To be explained, the entrainment fluid by the growing vortex increased and the diffusion part 
becomes very weak and the vortex strength decreased. This is obvious as the length of the fin 
plates increased from 0.05, 0.1, and 0.2 (see Fig. 65 a), b), and c) respectively. Such stream 
flow pattern is similar to that could be seen in the inclined fins 80 deg (Fig. 65d)), and 90 deg 
(Fig. 65 e). In contrast, in the asymmetric cylinder, the shrinking of the separation bubble is 
observed, increasing the vortex strength. 
In order to show the variation of the wake structure at different design parameters, pressure 
contours on the horizontal midspan plane are presented in Fig. 66 in comparison to each 
simulated case. The maximum negative pressure is obviously greater for the case of the 
asymmetric model than that shown in other simulation cases, resulting in higher difference 
pressure zones and higher vortex strength and lift force affecting the cylinder as well. In that 
case, during the flow oscillation, the vortex remains close to the cylinder as it forms and grows, 
even closer in fact than the smooth surface cylinder model even the different cells performed 
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along with the cylinder due to the separate spaces between the fins did not play a significant 
role in suppressing VIV for such case. 

Figure 66 pressure contours on the horizontal midspan plane variation  for each case at the same 
time step; model 1 (a), model 2 (b), model 3 (c), model 4 (d), model 5 (e), model 6 (f)

Except for the asymmetry case, all other tested models have approximately the same pressure 
variations. The pressure contours distributions also illustrate the different categories of eddies 
that correspond to the vortex-shedding phenomenon. The pressure contours also show that the 
development of the streamwise interval of the vortex shedding is clearly becoming large as a 
result of the attached structures. It has been seen that for the 80 deg fins model and 0.2 straight 
fin two sides plates, forming a vortex seemed difficult as illustrated in Fig. 66. 
Besides, it can be found that the variation of the average base pressure coefficient distribution, ܥ௣ , is obtained for the asymmetric model has a larger value, about 1.1, however, the mean and 

variations of pressure distributions become relatively stable for all the tested cases and the 
lowest value can be found in the 900 two sides case for about 0.4.
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It is worth noting here that, one of the negative effects of the splitter plate is that the shedding 
vortices cannot attach to the plate for L ≤ 1D. Additionally, the reattachment of shedding 
vortices on the longer splitter leads to a counterflow along its surfaces, which also contributes 
to a larger negative-pressure region and the higher pressure difference between two surfaces 
[159]. In this suppressing method, this behavior does not exist.
Another remarkable influence where the fin plate locations are supposed to play a role is during 
the vortex formation along with the cylinder length. The plats pattern of the projecting fin 
induces a spanwise motion for the fluid while it flows around the fined attached cylinder. This 
will produce a swirling motion in the wake region and disrupt the spanwise vortex formation. 

a) b)                                      

c) d)

e)
f)

Figure 67 Time-averaged streamlines on the vertical symmetry plane and the skin friction coefficients 
for different cases; bare cylinder (top), mode 2 (a), model 3 (b), model 1 (c), model 5 (d), model 4 (e), 

model 6 (f)

Also, the flow motion in the vertical direction along the cylinder would be disturbed as well 
because of the difference in the shear layer existence between the fined surface and unfined 
beneath one, causing the vortex shedding does not occur uniformly along the length of the 
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cylinder, but rather in cells similar to the effect of tip vortex for the finite cylinder [160].  These 
cells have a remarkable effect on the shedding vortices' synchronization behavior. As a result, 
the applied force will not be uniformly distributed along with the cylinder as represented in Fig.
67 where the dashed lines indicated examples to identify the different cells along with the 
cylinders. As explained by Mukundan [161], for a flexible structure to be excited, it is not 
sufficient to simply excite a natural frequency; the force must have a spatial distribution in 
sympathy with the associated mode. The corresponding streamlines on the symmetry plane 
(Y=0) for each model along the cylinder have been illustrated in Fig. 67. Besides, The 
predictions of the skin friction coefficient, ܥ௙ = ఛ

଴.ହఘ௎మ, where ߬ is the tangential wall shear 

stress, are shown in Fig. 67 for Re= 5.3x103. 

Drag and lift forces due to fin plates

The mean drag of the smooth cylinder and each model case are compared. As expected, the 
main drawback of using straight fins 0.05, 0.1, and 0.2 is the increase of the drag coefficient 
with the addition of the fins, however, there was no significant change for fin plates with R=0.05. 
In contrast, by using one side fins with R=0.05, the drag coefficient had a lower value. While 
inclined fins presented a remarkable effect in decreasing the drag coefficient, the fins location 
at 900 from the stagnation point has a better influence. This might be caused due to the flow 
separation that has been performed before 90 deg while at 80 deg, the flow stream kept attached 
to the cylinder surface. The comparisons between the numerical investigation of the drag and 
lift forces coefficient for the flow around a circular cylinder with and without the different 
attached fin plates at Reynolds numbers, Re = 5.3x103 have been presented in table 12.

Table 12  A comparison between the smooth cylinder and fined cylinders

Reynolds 
Number

Parameter
smooth
Cylinder

Fined cylinder

Model 1
Model 

2
Model 

3
Model 

4
Model 

5
Model 

6

5.3x103

Cd
0.9648 0.9643 1.2756 1.5472 1.083 1.126 0.941

Cl
0.0532 0.0287 0.0415 0.0155 0.023 0.0198 0.227

࢙ࢌ
0.078/

0.5468 0.6636 0.5294 0.089

0.6428/

0.1428

0.285/

0.7114 0.7341

On the other hand, the lift coefficient has been decreased for all the tested models except for 
the asymmetric one. For two sides fined cylinder wake, the two shear layers do not interact with 
each other, resulting in the absence of the oscillating wake in the downstream region near the 
cylinder. The choice of test the inclined fin on the parameters of model 2 was to examine how 
much it would be effective. Again, the inclined fins showed a remarkable influence on the lift 
forces as well as they had for the drag forces. Generally, the lowest reduction in the lift forces 
was found in model 2 by approximately 25%, however, by using inclined fins, the reduction 
increased significantly to about 65%. The maximum reduction was at model 3 by nearly 75% 
however highest drag was associated with this model due to the larger frontal area.
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Figure 68 Time series and frequency plots for for different tested cases; bare cylinder (top), mode 1 
(a), model 2 (b), model 3 (c), model 4 (d), model 5 (e), model 6 (f)

As indicated, this high reduction is owing to the separation size which becomes the largest 
among the other models (R=0.2D two sides) as compared to the case of the plain cylinder, 
which makes the vortex shedding formation slower. Besides, the power spectrum shows great 
attenuation and presents the lowest value. As a result, a high reduction in the vortices' strength 
and the values of the lift forces have been remarkably obtained. we could see from Fig. 68, the 
frequency content of the smooth cylinder has two dominant peaks similar to the reported from 
literature, as a result of the oblique shedding from the free end condition. This leads to a more 
complicated time trace as shown in Fig.68. For the 80 deg attached fins (model 5), the frequency 
content shows two dominant peaks while for the 90 deg attached fins (model 4) the second 
frequency has a much lower value than the dominant one. Except for models 4 and model 5, it 
seems that the second frequency has been attenuated. The power spectrum densities have 
approximately the same range except for the asymmetric case in model 6 in which the value 
has been nearly a ten-fold rise corresponding to 0.7341 Hz frequency. Due to increasing in 
shedding frequency (fs), the change of vortex strength is significant, and enhanced strength has 
been obtained. A very periodic lift force has been represented with this model, however, this 
behavior is normally indicated for that the parallel-shedding (2D cylinder), while the oblique-
shedding case time traces is not so simple [109]. This confirms the negative effect of a certain 
small asymmetric shape on the VIV suppressing. 

6.2.3 Case study -model 5

The case study of model 5 has been selected for further investigation to examine the results 
over the range of Re similar to [115].  For the particular case study, drag and lift coefficients 
have been plotted, to illustrate the change with the Reynolds number, against the experimental 
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and numerical results for the smooth cylinder as shown in Fig. 69. Along with the increase in 
Reynolds number, it has been found that the lift forces decrease. The same behavior has been 
observed to the drag force with the increasing flow stream velocity with the consideration that 
the value of the drag force is higher than the bare cylinder case due to the cross-section influence. 
Furthermore, an increase in the forces was accompanied by a  further increase in the flow stream 
velocity. The reduction of the lift forces by about 70% has been achieved with the maximum 
Reynolds no in the specific range of the experiment conducted in his study. More experiments
are needed for further studies and illustrating the behavior with a higher Reynolds number range.

Figure 69 The mean Drag coefficients and r.m.s. Lift Coefficient for the case study of model 6 in comparison with 
numerical and experimental results for the bare  cylinder 

To demonstrate this behavior, as mentioned in chapter 5.1 that the flow-induced forces could
be split into two components: pressure force acting normal to the wall surface (ܨ௪௣), and shear 
force, caused by a wall-normal gradient of wall parallel velocity components, acting tangential 
to the wall surface (ܨ௪் ) as illustrated in equation 18. The force in the flow direction is the drag 
force however the lift force represents the upward forces [162].

Due to the water viscosity, the shear stress components have a small influence and could be 
negligible compared with the pressure force, furthermore, with Re increases, the viscous effect 
decreases. These results confirm that the pressure variations and wake vortex strength keep 
decreasing with increasing Re as a result of using this fin configuration; at least until the 
limitation of the experimental data is reported.

Bloor & Girrard in 1966 [157]  found that the proportionality does approximately exist between 
the rate of turbulent entrainment and the change in vortex strength. Thus it is shown that the 
changes in the strength of the vortices with Reynolds number can be attributed to the variation 
of entrainment of vorticity bearing fluid by the turbulent part of the shear layer. As shown in 
Fig.70, there are insignificant changes that take place in the formation region than shown in Fig. 
65d as the Reynolds number is increased. 
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Figure 70 Time-averaged streamlines on the horizontal midspan plane of model 6 at Re = 104

In this case, the entrainment of fluid bearing vorticity from the other shear layer decreased with 
the Reynolds number. The formation region is maintained in large length which is consistent 
with the reduction in the strength of the vortices as indicated in the lift and drag forces behavior 
seen in Fig.69. Another important characteristic is the frequency variations. It has been reported 
that the frequency increases if the scale of the formation region is reduced[163], however, two 
major factors determine the frequency of vortex shedding that has been postulated by J. Gerrard 
[158]. 

Figure 71 Dominant frequencies from lift force (FFT), nondimensionalized by flow speed, U, and 
diameter, d for bare and case study numerical data

These factors are the scale of the formation region, where the frequency increases when the 
scale of the formation region is reduced, and the other is the thickness of the shear layer. It
could be seen from Fig. 68, the frequency content of this case is found to have two dominant 
peaks that nearly have the same power density at frequencies of  0.285 Hz and 0.7114 Hz.  
However, this frequency behavior did not change by increasing Re where the two dominants, 
nearly the same intensity, with values 0.228 Hz and 0.9131 Hz keep existing. It seems that the 
lower frequency does not change with Re. More detailed experimental measurements are 
needed to illustrate this behavior. 



111

The relative constancy of the Strouhal number over the whole experimental Reynolds number
range has been illustrated in Fig. 71 Similar behavior to that found by A. Khalak and 
Williamson [115], who reported that the frequency characteristics do not depend upon Reynolds 
number when nondimensionalized by the flow stream velocity and the cylinder diameter.
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6.3 Numerical Validation of FSI Test

Although a CFD analysis is subject to certain limitations, such as complex flow dynamics, the 
high computational cost to simulate practical three-dimensional flows still relies on the 
selection of a proper turbulent model, and adding FSI requires more computing resources and 
time. However, continued advances in computational capabilities, proper simplification 
techniques, and the availability of comparatively inexpensive turbulent models increase the 
reliability and accuracy of numerical simulation tools. To date, limited numerical simulations 
have been performed to predict VIV characteristics especially for cylindrical structures at high 
Reynolds number flows such as M. Ong et. al [164] and Fluid-structure coupling between the 
flow and the bluff body.
In several fields, such as aerodynamics, hydrodynamics, biomechanics, and flow control, FSI 
is considered a vital issue. Despite FSI manifold forms of appearance, it is a topic of major 
interest in many fields of engineering. Tight coupled FSI approach where a simultaneous 
solving and satisfaction between fluid and structure governing equations is one of the 
challenges that need to be accomplished. Moreover, the flexible cylinder supporting is another 
important factor that affects coupled flow-structural characteristics, for example, For a flexible 
cylinder VIV, the cable like and beam-like structures are two generally accepted structural 
systems. If the tension dominates, it is termed a cable, while if the bending rigidity dominates, 
it is termed a beam [165].
Based on enhanced numerical algorithms and increased computational resources, numerical 
simulations have become a valuable and important tool for solving this kind of problem within 
the last decade. As reviewed above, few studies have been conducted to explore the flow 
mechanism associated with 3D flexible cylinder VIV. Limited studies on flexible cylinders are 
focused on the vibrating response rather than the flow characteristic in the oscillating cylinder

The overall aim of the present subsection is to provide one of the first comparisons of 
computational and experimental results for a high- Reynolds number, three-dimensional FSI 
case. A new turbulent FSI validation test case is defined based on detailed measurements and
the experimental results for the smooth cylinder in the circulating water tank have been used to 
validate

6.3.1 Problem description

The fluid flow is predicted by a detached-eddy scheme simulation technique. The numerical 
simulations were conducted for an elastically mounted circular cylinder with the same 
parameters tested in the experimental investigation in chapter 3. The computational model was 
based on the geometric configuration of the circulating water tank. The (streamwise) length and 
(spanwise) height of the computational domain were, respectively, LD = 35 D, and H = water 
tank height (0.7 m). It should be noted that a distance of 5 D between the cylinder surface and 
the inflow boundary was used for all the grids; in the wake region the domain develops for 30 
D behind the cylinder’s surface while the concern was with the wake region near the cylinder 
and the generating hydrodynamic forces applied on the cylinder, domain width has been set to 
5D. The junction section between the center of the smooth cylinder and the bottom wall was 
centered at the origin of the coordinate system within the domain. To adequately capture the 
high-velocity gradients near the cylinder, the same refinement blocks used in section 5.2
surrounded the wake region as shown in Fig. 72. To improve computational efficiency, a 
coarser grid idealized the region far away from the cylinder.
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Before VIV simulations are conducted, it is important to ensure that the mesh, initial and
boundary conditions used to produce accurate results. The outlet was located at the right 
boundary, the gradients of the outflow velocity in the streamwise direction were set to zero, and 
the pressures were assigned a reference value of zero. On the top and bottom boundaries, a slip 
condition was assumed; on the side boundaries, a non-slip condition. A non-slip boundary 
condition was assumed also on the cylinder surface. In order to quantify the dependence of the
numerical results on mesh density, again the approach of Oberhagemann and el Moctar has 
been employed. The numerical simulations were performed on three different grids 
characterized by successively finer meshes with a refinement factor of ܿ = 1.25 uniformly 
specified for all spatial directions and time steps. Mesh 1 described the coarsest grid; mesh 2, 
the medium grid; and mesh 3, the fine grid was well-matched with the factor. Table 12 lists, 
among other things, the number of cells, the spacing Δx in the flow direction, and the time step 
size Δt of these three grids, and Fig. 72 exemplarily depicts top and side views of the medium 
grid (mesh 2). and side views of the medium grid (mesh 2) with a total of 120 grid nodes situated 
along its circumference.

Figure 72 Top view (top) and side view (bottom) of the computational mesh 2 on the fine grid
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Moreover, in Starccm+, the SIMPLE algorithm has been applied and used the second-order 
time discretization. A higher-order relaxation term was used to simultaneously solve the 
momentum and pressure-based continuity equations. The convection terms were determined
using a second-order upwind scheme. However, due to the limitation of using an upwind 
scheme when performing DES simulations [104], a hybrid second-order upwind/central scheme
has been used, where the blending factor was computed to comply with the flow features. To 
improve temporal accuracy and to ensure numerical stability for all cases, the y+ value equaled 
unity, and the Courant-Friedricks-Lewey (CFL) number was always less than 0.2.

Table 13 shows the results for the verifications exercise concerning the drag and lift coefficients 
besides the shedding frequency and corresponding Strouhal number calculations achieved by 
the DES model for a stationary cylinder at a Reynolds number of about 5.1x104.

Figure 73 Time histories of the force coefficients on a stationary cylinder calculated from the different 
grid meshes

Table 13 Verification and grid convergence for a stationary cylinder obtained from
different grids

Element ∆x [m]
No. of 

cell x106 ∆t [sec] Cd Cl fs [Hz] St

Coarse 0.1 7.882 1.0x10-3 0.7169 0.037 3.2/17.3 0.13

Medium 0.08 15.269 8.0x10-4 0.6996 0.028 2.6/19.5 0.16

Fine 0.063 30.563 6.3x10-4 0.6929 0.035 2.3/16.7 0.15

extrapolate ----- 0.7322 0.0296
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For the sake of saving computational cost, simulations with the medium grid were carried out
for further validation in this work with an estimated error of about 4.4% as indicated from table 
12. In this section, computational simulations were carried out for the flexible vertical 
cylindrical cantilever. Three values of free stream velocities have been considered for the 
validation test. The velocities of 0.85, 1.6, and 1.8 m/s have been selected for the mentioned 
smooth cylinder case experiment.

6.3.2 Fluid and structure properties

The values and geometry have been determined depending on the experimental data described 
in detail in chapter 3.1. the commercial density for the used flexible PVC material is ߩ௦ =1380 ݇݃/݉ଷ , the young modulus E =1200 GPa and the Poisson ratio ௦ߥ = 0.34 . Three 
different structural meshes have been created with the natural frequency response to investigate 
element types and grid size as illustrated in table 14. the cylinder has meshed with 3D quadratic
hexahedral elements. The difference can be expected to be small due to less sensitivity to grids 
for FEM.

Table 14 The cylinder natural frequency, for the different FE meshes

FE Grid No. of elements Natural Frequency

Coarse 6750 20.253

Medium 18000 19.802

Fine 27000 19.647

Experiment 20.01

6.3.3 Results and discussion

Flow around circular cylinders at high Reynolds number is quite well documented and results
from the experimental investigation are compared with results from 3D numerical analysis.

Amplitude response, and motion trajectory

The experimental results testified the validity of the numerical model used in this study in the 
simulation of VIV of a circular cylinder in a steady flow. In this section, the variation of the 
response amplitudes with the reduced velocity is explicated as presented in table 15. The 
calculated amplitudes and frequencies of the response showed a good agreement with the 
measured data. In Figure 71 the numerically calculated data points are overlaid by the shapes 
of the response curves in the present experimental study, indicating that the data that achieved 
are qualitatively similar. Here, it is worth reminding that at the free stream velocity of U=1.8 
m/s, the smooth cylinder could not withstand the fatigue stresses acted upon and it cracked.
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Table 15 The present results of inline response, transverse response, and the dominant 
oscillating frequency in the transverse direction compared to the experimental result

Flow velocity (m/s)

x-displ. (mm) y-displ. (mm) Oscillation frequency 
in y-dir

CFD Exp. CFD Exp. CFD Exp.

0.85 4.80 3.82 1.92 1.58 3.73 16.63

1.6 11.09 10.16 19.47 21.50 7.02 7.32

1.8 14.43 13.47 28.79 23.93 7.49 8.14

In addition, the time series at this specific speed showed the maximum measuring level of the 
accelerometer sensor (20 g) in the transverse direction. This could explain the overestimated 
variation of the cylinder transverse response obtained from CFD  than that from the 
experimental data at this velocity. This test case demonstrates that the present numerical 
methods are capable of accurately predicting 2 dof VIV response of an elastically mounted 
circular cylinder at early subcritical Reynolds numbers.

Figure 74 Comparison of amplitude response curves between the present simulation and the 
experimental data measurements

Figures 75 -77 show the XY-trajectories of the displacement of the smooth cantilever cylinder,
normalized by the cylinder diameter, compared with the experimental measuring data obtained 
for Ur = 2.27, 4.27, and 4.81 respectively. The 8 figure-mode was observed at high reduced 
velocities (4.27 and 4.81) as well as occurred in the experimental tests. However similar 
trajectory mode shape could be seen between the numerical and experimental results, there are 
some differences in the shape behavior. This also could be seen from the response time series 
small differences.  
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The cause of that could be illustrated by the aid of the PSD distributions of displacement
components measured and calculated from experimental and numerical investigations 
respectively. As shown from figures 75 -77, although the dominant frequency was 
approximately the same for the case of reduced velocities 4.27 and 4.81, the other frequencies 
associated with the dominant one do not appear in the numerical results. This was due to the 
difference between the experimental setup condition and the numerical one. As mentioned, 
some attached tools have been used to set up the smooth cylinder vertically which did not need 
to be represented in the numerical approach. More detail about the experimental setup had been 
illustrated in chapter 5.1.  

Figure 75 Comparison of amplitude response curves between the experimental data measurements 
(top) and the present simulation (bottom) at Ur = 2.27
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Figure 76 Comparison of amplitude response curves between the experimental data measurements 
(top) and the present simulation (bottom) at Ur = 4.27

Figure 77 Comparison of amplitude response curves between the experimental data measurements 
(top) and the present simulation (bottom) at Ur = 4.81

Frequency response

Another remarkable feature was the variation between the value of the dominant oscillating 
frequency of the numerical calculations from that obtained from experimental measurements at 
a lower reduced velocity value of about Ur = 2.27 as presented in Fig. 75. This was a very 
interesting point. It was found that the dominant oscillating frequency in the transverse direction 
obtained from the numerical calculation is quite similar to the frequency obtained from FFT of 
LDV measured data from the cross-stream velocity (see Fig. 78) which represented the 
shedding frequency. 
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As shown in Fig. 75, the shedding frequency value has approximately the same value as the 
numerical one tabulated in table 14. This confirms that the shedding frequency is equal to the 
structure transverse oscillating frequency calculated from the numerical calculation even at 
lower velocities, however, this is not the case in the experimental tests. This could be illustrated 
with the aid of the power spectral density function which is a very useful tool that tells us at 
which frequency ranges variations are strong. At lower velocities, the shedding frequency has 
lower power as shown in the power spectrum density figures 75 and 77. The shedding frequency 
has a lower strength and influence at lower velocities and due to the experimental setup 
components and other components such as sensors, the shedding frequency would not be the 
dominant one. In the numerical investigation, only the effect of the shedding acted on the 
cylinder was presented despite its lower strength as shown in Fig. 75. Therefore, the following 
conclusion may be drawn, The shedding frequency could be obtained from the numerical 
calculations of the oscillating transverse frequency for all the range of velocities, however, this 
is not valid for the experimental measurements unless the shedding frequency is strong enough 
to control the motion of the cylinder. This could take place when the flow frequency approaches
the structures’ natural frequency. Then, most other studies assumed that transverse oscillating 
frequency was equal to shedding frequency [24] at lower velocities was not accurate.

Figure 78 Power Spectrum Density (PSD) for the flow velocity transverse flow velocity at Ur =2.27 
measured by LDV.

It might be expected now that the Strouhal number be the same as measured from the flow 
velocity. Figure 79 presented the calculated points from the numerical investigation overlaid by 
the LDV measuring data. The Figure indicated that the achieved data agreed well with the past 
results.
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Figure 79 Shedding frequency normalized by natural frequency against reduced velocity

Furthermore, a comparison between the values of drag and lift forces calculated from the 
numerical and experimental investigations respectively has been presented in table 16.  

Table 16 The present results of the drag forces, and the lift forces compared to the 
experimental result

Item
CFD Exp.

Fx Fy Fx Fy

U=0.85 m/s 8.64 3.63 8.72 3.96
U=1.6 m/s 21.5 15.34 40.66 21.09
U=1.8 m/s 28.03 17.66 57.11 26.04
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Figure 80  Forces time histories ( medium grids) at U=1.6 m/s; drag force, top; lift force, bottom

Figure 80 provided a sample of the time series histories for both the drag and lift forces of a 
flexible cylinder. It is worth noting here that similar characteristics corresponding to 
experimental forces responses have been presented in the numerical results. Although the lift 
forces have lower values than observed for the drag forces in both cases, however, the responses 
in the transverse direction were larger. Thus due to that, the lift forces were applied on an 
approximately quarter-elliptic shape beam tends to a straight cantilever beam as a result of the 
applied drag forces and the mechanical characteristics of the light cylindrical model. Studying 
the bending of beams, the deflection for this standard case founded much larger than a straight 
cantilever beam loaded by the same force [166]. 

In the present section comparison of before and after structure interaction has been illustrated. 
Figure 81 presented the time-averaged velocity streamlines on the x-y plane (Fig. 81 top), and 
on the x-z plane (Fig.81 bottom) at a symmetry plane (Y = 0) for the flexible and rigid cases at 



122

flow velocity 1.6 m/s. The vibrating movements decreased the vortex formation length near the 
cylinder wake region. As shown in Fig. 81 top, a non-symmetry two distinct spiral nodes are 
being observed in the rigid case (left) however, the flexible case shows two distinct non-
symmetrical spiral nodes but near the wake, region than found in the rigid case. The dominant 
spiral nodes that exist in the flexible case are caused by dominant Von Kármán vortex sheets 
that are shed from the cylinder. It appears that the flow has wrapped around onto the back of 
the cylinder before separating and moving downstream.

It is noted that the high Re number leads to a stronger negative pressure behind the cylinder.
Besides, the recirculation region downstream from the tip of the cylinder and the corresponding 
downwash was created due to the turning of flow towards the bottom wall. 

Figure 81 Direct comparison between the stream-lines of the mean velocity, at the midspan, between 
the and rigid cylinder (left) and the flexible cylinder (right), in an x-y plane(top), and, in an x-z plane 

(bottom)

Due to the high strength of this tip vortex, the downwash flow from the tip reaches the ground. 
On the contrary, the vertical dimension of the upwash recirculation region has been observed 
and monotonically decreased for the flexible case as shown in Fig.81 bottom. Moreover, the 
curvature of the cylinder, caused by the flexible case, results in a marginal shift in the downwash 
recirculation region center and the impingement point where the upwash and downwash meet. 
The differences between the mean flow for the rigid and flexible case have a significant effect
on the mean drag over the cylinder. The value of the mean drag has been increased from a value 
of 0.688 to a value of 1.0313. The increase of the drag was probably due to the increase of the 
projected area of the flexible cylinder in one vibrating period.
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In order to understand well the dynamic response of a flexible cylinder, 3D simulations of the 
flow past a flexible circular cylinder at the three tested flow velocities were carried out for 
comparison. 

Compared to the rigid case, the flexible cylinder shows its shape deformation due to the 
unsteady forces related to vortex shedding. With closer observation, three sections of the 
cylinder along the spanwise direction were picked out for comparison. They are z/L = 0.2, 0.5 
and 0.8 as shown in Fig. 82. While the wake of the rigid cylinder maintained the ordinary
Kármán vortex and a small quantity of stream-wise vortex pairs, the wake along the span-wise 
direction of the flexible cylinder was disordered. The vortex structure exhibited much more 3D 
instability. 

This 3D instability was due to two main reasons. The first reason, the vibrating movements of 
the flexible cylinder, therefore, the wake patterns were expected to vary in different sections 
along the cylinder length as presented for each flow velocity in Fig. 82. The same characteristic 
has been observed by Flemming and Williamson (2005) [90] and J. Huera Huarte [167]. They 
also showed a 2P mode with two vortex pairs per cycle in the wake of the vibrating flexible 
cylinder especially at the middle section and down to the cylinder end support, the 2P mode 
changed into a 2S mode with a single vortex per cycle. These characteristics were not very clear 
in the test cases due to the light structure parameters of the cylinder and the effect of the free 
end condition. Three vortex pairs per cycle could be seen especially at the mid-span section for 
the tested case which increased with the flow velocity. The second reason was the influence of 
the free end condition of the cantilever cylinder model. The strength of the downwash flow 
from the cylinder tip increased with the flow velocity. This could be seen in the mid-span 
section at z/D = 0.8 for each flow velocity case. These end vortex cells distorted the ordinary 
vortex shedding patterns along the vertical length of the cylinder. They normally attenuate the 
vortex pairs per cycle near the top and down corresponding to their strength.

a)
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b)

c)

Figure 82 Instantaneous mean velocity at different z-position: a) at U=0.85 m/s, b) at U=1.6 m/s, and 
c) at U=1.8 m/s.
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Figure 83 Average Courant- Friedricks-Lewey (CFL) number for numerical calculations at U=0.85

During the flexible cylinder numerical calculations, the Courant- Friedricks-Lewey (CFL) 
number with lower values was maintained. Besides, y+ value was equal approximately to unity 
to improve both the temporal accuracy and the numerical scheme stability, in all case studies. 

Figure 84 y+ ranges on the cylinder for the numerical calculations at U= 1.6

Furthermore, The level of residuals has shown the same criteria, as observed in Fig. 55,  through 
all of the flexible numerical cases in the present study. This confirms that the high level of 
residuals indicates that the 10-6 limits as an acceptable level of residuals, for the case of unsteady 
flow a round cylinder, does not more valid and needs further review for the case of the high 
level of turbulence in case of three-dimensional calculations. Further investigations are needed 
for detailed study of such types of problems.
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7. Conclusions

Based on the experimental and numerical results, the present study has introduced a novel 
technique that could be used to conservatively suppress VIV for a circular cylinder of at least 
the subcritical Re ranges. Besides, throughout this thesis, the fundamentals of VIV were 
investigated through a model test experimental study and numerical simulations of FSI 
problems to verify and validate a commercially available FSI numerical code with the
experimental data.

In the experiments, each model case was tested for comparison to the response amplitudes, 
frequency response, and acting forces by an accelerometer, and 6DOF loadcell. In the numerical 
investigation, 3D simulations of the flow around a circular cylinder with and without different 
attached fin plate locations were presented. In addition, the mutual effect of the hydrodynamic 
loads acting on the structure and the effect of the displacement response on the fluid was 
presented, and 3D simulations were developed into a self-consistent experimental-numerical 
investigation. The following conclusions may be drawn

Experimental Work 

Although it is difficult to achieve a fully suppressed VIV response below the critical mass ratio, 
in the present investigation, strong suppression was obtained. No clear jump in response 
amplitudes occurred; however, a delay in the onset of the abrupt change in the slope of response 
behavior was observed for all the tested models at different velocities. 

The cylinder model with fin plates located at 110° from the front stagnation point showed a 
strong VIV suppression reduction percentage in both in-line and transverse response amplitudes 
by 82% and 75%, respectively. It appears that 110° fin plates have a profound effect on the VIV 
characteristics even during synchronization, which was reached at a reduced velocity of 
approximately 5 for this 1100 attached fin plate model without any remarkable influence. The 
110 deg. location may cause out-of-phase vortices, leading to weakness of the shedding vortex 
with a negligible effect on the structure. Further studies are planned using DPIV to consider the 
effects on vortex formations and modes.

Furthermore, the 800 and 900 attached fin plates showed a similar reduction effect, with 
approximately 32.4% in the transverse direction and about 67% for the in-line direction. At a 
reduced velocity of Ur = 3, significant features took place, causing the drag forces and lift forces 
to change their slope abruptly for all the models, although no remarkable change could be 
observed in the response behavior. Further investigations with special visualization tools are 
needed to study this behavior.

Besides, the use of this fin plate configuration that reduced the response amplitudes also limited 
the range of these oscillations, which is of considerable practical significance in that large 
oscillation itself may damage a structure rather than fatigue related frequencies, particularly for 
light-weight cylindrical structures

In summary, these fin plate arrangements may result in different vortex shedding modes along 
the span of the cylinder, resulting in strong VIV suppression, at least for the subcritical range 
that was tested in this study (Reynolds numbers ranged between 1.4x104 and 8.0x104).

Apart from the structural parameters, the influence of tip vortex frequency on VIV and its 
correlation with vortex shedding requires further investigation. Results, presented in chapter 
5.2, revealed that the root mean squares displacement at the cylinder top increased with higher 
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values of the reduced velocity. However, a distinct peak appeared at a frequency ratio equal to 
unity, demonstrating the effect of the tip vortex in reducing the synchronization range 
frequencies. 

The further increase in displacement at higher frequencies is thought to be due to the free end 
flow conditions, represented ECIV, which confirmed the independence of the cylinder damping 
characteristic. Furthermore, measurements of the oscillating frequency in the transverse 
direction of the cylinder showed that various frequencies depended on the reduced velocity. 
This could have been caused by end effects at higher Re values and the associated tip vortices. 
The axial frequency seemed to coincide with its natural frequency in all the test domains, which 
meant that in the streamline direction, the cylinder was in the lock-in region. 

The discrepancy of the lift coefficient and the discontinuous jumps at phase changes between 
vibration oscillations in the streamline and transverse directions and the associated aerodynamic 
forces represented the nonlinearity in the FSI process. The flow visualizations confirmed these 
features and showed the generation of different vortex wake modes. These results are caused 
by the integration of large damping ratios, higher Re values, and free end flow conditions.

Numerical Work

First, 3D URANS numerical flow simulations of a fixed circular cylinder subject to VIV were 
performed to assess the capability of the SST k-ω and DES turbulence models. The simulations 
were performed for different grid sizes of uniform refinements in all directions (space and time) 
at a constant Courant number and then compared with the experimental results of Khalak and 
Williamson [1].

Obtained r.m.s. values of drag and lift coefficients, St values, the boundary-layer separation 
angle, and field plots. These results were compared with experimental and numerical results 
from the literature. The objective was to demonstrate, in some detail, the capabilities and flaws 
of these two turbulence models. The results indicated that although the numerical solutions with 
the SST k-ω model provided fairly good results, simulations with the DES turbulence model 
correlated more closely to experimental measurements. However, neither space nor the time 
step sizes were thought to be fine enough for an accurate DES-based prediction of this flow. 
Nevertheless, the results from the DES model were consistent and compared favorably to those 
documented in the literature as they captured the alternating shedding frequencies, which were 
not predicted with the SST k-ω model.

Furthermore, the residual levels, calculated to evaluate iterative errors, were affected neither by
the variation of the different grid and time step sizes nor by the turbulence models. The level of 
residuals was nearly the same throughout all of the numerical calculations conducted here. 
Indeed, the residuals were acceptable for URANS simulations of the flow around the cylinder. 

Second, a numerical analysis of the 3D flow simulations of a stationary circular cylinder subject
to VIV was performed using DES turbulence models. The results were compared with 
experimental and numerical results from the literature. The results show that for engineering 
design purposes, They presented a satisfactory qualitative agreement with the published 
experimental data and numerical results in the supercritical flow regimes for Re 2,000–14,000. 
The detailed numerical study of flow over a stationary circular cylinder with six newly 
developed VIV suppression methods was then tested. Several conclusions can already be drawn. 
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Except for the asymmetric case (model 6), the remarkable features were as follows:

-  The shedding vortices cannot roll from one side to the other side along the cylinder’s rear 
surface due to prevention by the fin plate, and thus they are forced to process along the path 
downstream. Therefore, with the fin plate, the shear layer is greatly influenced and extended.

-  If the cylinder is provided with the straight attached fin plates, then the plate height will 
control the shear layer separation, and the vortices will interact at a greater distance from the 
cylinder body than the smooth cylinder. However, greater drag will occur as a result of the 
larger cross-section.

-  Using inclined fins has a remarkable effect than the larger frontal area on decreasing the drag 
force when compared with the same plate length. Furthermore, suppressing lift force was 
observed to have a profound effect.

-  It was of interest to investigate the influence of the separated equidistance spaces between 
the fin plates along with the cylinder. The vortex shedding does not occur uniformly along the 
length of the cylinder, but rather in cells, and the resultant force acting on the cylinder over its 
total length would not be uniformly distributed.

- Furthermore, the computed drag and lift coefficients decreased slightly as Re increased 
throughout the case study range. This behavior is due to the presence of fin plate specifications 
and their effect on the vortex formation mechanism as Re increases. Further experimentation is 
needed for the higher range.

For the asymmetric model, although the plate length was very small, a significant increase in 
pressure and lift force coefficient associated with higher frequency intensity was been observed.

The present results presented a reliable and useful engineering assessment tool for the design 
of VIV for a flexible cylinder using such models. These models are expected to influence the 
vortex formation mechanism and loads on the cylindrical structure; at the least, it will result in 
a delay of the onset of the vibration due to the decrease in vortex strength. 

Finally, one of the most important areas for future research is dynamic validation. In the present 
work, a new turbulent FSI validation test case was presented. A detailed analysis of the FSI for
a 3D finite smooth cylinder, based on experimental data, was performed by treating the structure 
as a flexible, continuous object. Results of the investigation agreed with experiments, both 
qualitatively and quantitatively. Numerical results were able to predict the hydrodynamic forces 
and the corresponding structure responses in both directions. Furthermore, to visually present 
details of VIV features and flow patterns. FSI numerical investigation also provides the 
capabilities and flaws of these features of vortex shedding from a fixed rigid and flexible 
cylinder. One key point is to distinguish between shedding and oscillating frequency. Based on 
numerical and experimental investigation, the shedding frequency could be obtained from the 
numerical calculations of the oscillating transverse frequency for the full range of velocities. 
However, this is not valid for the experimental measurements unless the shedding frequency is 
strong enough to control the motion of the cylinder. This can take place when the flow 
frequency approaches the structure’s natural frequency.

Outlook and Recommendations

Based on the present study and literature review done on the VIV for different aspect ratios, 
several recommendations for future work can be drawn as below: 

1. Demonstrating alternative geometrical parameters would have much interest in recent times.

2. Further investigations with special visualization tools are needed to study this behavior.
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3. Further experimental studies have been planned to consider the effects of using these models 
in a wide range of Reynolds numbers.

4. Furthermore, a numerical validation for the introduced VIV suppression device is highly 
recommended. Such validation will play two main roles in terms of validation of the presented 
solver as well as developing tests for new VIV suppression devices.
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