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Abstract: Short tau inversion recovery (STIR) sequences are frequently used in magnetic resonance
imaging (MRI) of the spine. However, STIR sequences require a significant amount of scanning time.
The purpose of the present study was to generate virtual STIR (vSTIR) images from non-contrast,
non-fat-suppressed T1- and T2-weighted images using a conditional generative adversarial network
(cGAN). The training dataset comprised 612 studies from 514 patients, and the validation dataset
comprised 141 studies from 133 patients. For validation, 100 original STIR and respective vSTIR series
were presented to six senior radiologists (blinded for the STIR type) in independent A/B-testing
sessions. Additionally, for 141 real or vSTIR sequences, the testers were required to produce a
structured report of 15 different findings. In the A/B-test, most testers could not reliably identify
the real STIR (mean error of tester 1–6: 41%; 44%; 58%; 48%; 39%; 45%). In the evaluation of the
structured reports, vSTIR was equivalent to real STIR in 13 of 15 categories. In the category of the
number of STIR hyperintense vertebral bodies (p = 0.08) and in the diagnosis of bone metastases
(p = 0.055), the vSTIR was only slightly insignificantly equivalent. By virtually generating STIR
images of diagnostic quality from T1- and T2-weighted images using a cGAN, one can shorten
examination times and increase throughput.

Keywords: spine; magnetic resonance imaging; computing; medical informatics; machine learning

1. Introduction

The spine is one of the body regions that is the most frequently examined in MRI.
Reasons for MRI are mainly back pain, sensitivity impairments, and paralysis [1,2]. To
visualize the most common pathologies, short tau inversion recovery images (STIR) are
often used, along with T1- and T2-weighted images. The STIR contrasts are particularly
useful in the diagnosis of acute pathologies, such as inflammation or acute vertebral
fractures. In the example of a vertebral body fracture, STIR is used to detect a vertebral
edema and thus often enables a therapy-relevant differentiation between new and old
fractures. Apart from that, the STIR sequence can lead to the decision of whether a
contrast agent administration is required [3]. This is especially important considering
the continuously increasing number of MRI examinations worldwide [4]. However, the
acquisition of STIR sequences requires a significant amount of scanning time of three
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minutes [5] and is therefore susceptible to motion artifacts. In recent years, the introduction
of new techniques based on deep learning has enabled advances in image processing that
were previously widely considered impossible. For image processing, the use of generative
adversarial networks (GAN) has become the predominant approach. As a result, it could
be demonstrated that GANs are highly effective in CT denoising [6] and in inserting virtual
contrast media in non-contrast MRI [7].

The aim of the present study was to generate virtual STIR (vSTIR) sequences from
non-contrast non-fat-suppressed sagittal T1- and T2-weighted sequences using a cGAN
and to validate these synthetic images in blinded A/B-tests on clinical MR examinations of
the spine against experienced radiologists.

2. Material and Methods
2.1. Network Architecture and Preprocessing

Each scan was preprocessed by converting it into a 16-bit PNG image. The size of each
slice was, in general, 512 × 512 px; in the few cases where the slice was larger, a central
crop was performed across the entire scan. If the slices were smaller, the images were either
padded with black to the required size of 512 × 512 px or, if the height was smaller than
256 px, dropped from the training set.

The T1, T2 images were used as input images. Additionally, a contrast limited adaptive
histogram equalized filter [8] (size 32 × 32, clip limit 1.0) was applied to the T2 image
and added as another channel of the input image. The intensities of all input images were
rescaled to −1.1.

The Pix2PixHD framework was employed, as it has exhibited excellent performance
in image-to-image tasks [9]. It is a conditional generative adversarial network using a
combination of two residual networks, which are called local and global generators. The
global generator produces lower-resolution images that are enhanced by a local generator.
The architecture Pix2PixHD network was not changed for this study. As the output images
were single-channel 16-bit vSTIR, the last layer of the network was modified to produce
such output. The feature matching (VGG) part of the loss function was adapted by simple
averaging to work with gray-scale images, as this loss is defined on RGB images only. The
network was trained for 300 epochs, and all other parameters were left at their default
(learning rate 0.0002, Adam optimizer with momentum 0.5).

2.2. MRI

The MRIs were performed on 1.5T and 3T MRI machines (MAGNETOM Symphony,
MAGNETOM Sonata, MAGNETOM Avanto, MAGNETOM Aera, MAGNETOM Skyra)
from a single vendor (Siemens Healthineers AG, Erlangen, Germany) between 2007 and
2019 at a single center (Table 1). All MRI examinations contained a sagittal non-contrast,
non-fat-suppressed T1 and T2 as well as a STIR sequence with a matching field of view.
The MRI scan parameters are illustrated in the supplementary material Supplementary
Tables S1–S3.

Table 1. Distribution of the examinations to the different MR scanners.

Scanner Aera Avanto Sonata Symphony Skyra

n 521 188 7 16 21

Field
strength 1.5T 1.5T 1.5T 1.5T 3T

2.3. Dataset

Using our clinical PACS, a set of 980 MRI examinations of the spine from the years
2007–2019 were identified for this study. All scans were curated by removing scans with
incomplete series, non-matching T1, T2, and STIR sequences (e.g., STIR was not sagittal).
The scans were then visually inspected by an experienced radiologist to ensure that no
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misalignment between the scans was present, resulting in 753 scans with T1/T2 and STIR
images of 637 patients that were finally selected for training. For validation, two datasets
were assembled, whose minimum size was previously calculated with a power analysis.
For the power analysis, a two-sided equivalence test was performed with a statistical
significance alpha of 0.05. A power calculation [10] with a power of 0.8, an accepted
equivalence limit of the difference between the two procedures with a delta of 0.1 and
expected confusions of p01 and p10 of 0.05, resulting in a minimum sample size of n = 86.
For the first cohort, which should be evaluated in an A/B-test to verify whether the vSTIR
is identifiable by a radiologist, 100 studies were randomly selected that were not part of
the training cohort.

However, with this sample size, it is possible that certain pathologies are not suf-
ficiently represented. Therefore, the second validation cohort was designed so that at
least 20 studies with the most important pathologies (bone metastases, myelopathy, acute
vertebral fractures, spondylodiscitis, epidural abscess, intraspinal masses, and muscular
lesions) were represented. Furthermore, at least 20 healthy patients were included to check
whether pathologies were inserted by our GAN [11]. In total, the cohort, which met all of
the above-mentioned requirements, comprised 141 studies (Table 2). None of these studies
were part of the training cohort. The distribution of the pathologies among the validation
cohort is illustrated in Table 3.

Table 2. Baseline characteristics of the Train and Test set.

Set Studies Patients Sex
(Male/Female) Mean Age

Train 612 514 284/328 60.3

Test 141 133 78/63 60.1

Table 3. Distribution of pathologies across the validation cohort. Each scan in which a pathology occurs once or several
times was counted as 1.

Pathology Bone
Metastases Myelopathy Acute Vertebral

Fracture Spondylodiscitis Epidural
Abscess

Intraspinal
Mass

Muscular
Lesion

n 41 24 39 42 24 33 26

2.4. Validation

Two different validations were used. First, to determine whether the vSTIR was
visually distinguishable from the real STIR (rSTIR), 100 MRI series from 100 distinct
patients were presented to six senior radiologists in independent A/B-testing sessions. In
each case, both STIR and vSTIR series were randomly demonstrated (Figure 1), and the
radiologist was asked to identify the rSTIR sequence.

Second, to validate whether pathologies were represented qualitatively and quantita-
tively correct by vSTIR images, the validation dataset comprising 141 STIR sequences from
131 distinct patients was presented. Without knowing which series was presented to them,
the radiologists were asked to perform a structured assessment of the pathological findings
(Figure 2). The readers did not get any information about the STIR sequence (virtual/real)
and no clinical information about the patient. Eventually, each vSTIR and rSTIR sequence
was assessed by three different senior radiologists. This number of readers was chosen in
order to calculate the mean and standard deviation for all quantitative findings for both
the virtual STIR and the real STIR. The structured reports were compared independently
for each pathology to determine whether the vSTIR was diagnostically equivalent to rSTIR.
For this purpose, the number of collapsed vertebral bodies, the number of vertebral bodies
with edema, and the number of STIR hyperintense discs were reported as ordinal values.
Additionally, the testers were asked to determine whether it was a rSTIR and whether the
following pathologies and findings were present: intraspinal mass, myelopathy, muscular
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edema, muscular abscess, epidural abscess, spondylodiscitis, bone metastases, intraspinal
neoplasia, acute traumatic fracture, pathological fracture, or benign bone neoplasia. Finally,
the testers were asked to determine whether the case was normal.

Figure 1. A/B-test to identify the real STIR sequence.

Figure 2. Structured reporting using our web tool developed in-house.
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Both validation steps were performed using a generic framework for A/B-testing
developed in-house (Figures 1 and 2). The validation images were processed the same way
as the training data. For display purposes, all images were rescaled to the intensity values
0–65,535.

2.5. Statistical Analysis

The ordinal values were converted to three categories: none, low (1–2), or high (>2).
Ground truth for the rSTIR ratings was determined as the median of the three ratings.

Similarly, the vSTIR ratings were gathered. An equivalence test for categorical data was
used to compare the ratings [12], while an equivalence test of proportions was used
for binary outcomes, where the procedure of Liu 2002 [10] was employed. Inter-rater
agreements, following Cohn, were computed.

A one-sided Fisher test was employed to determine whether each rater was able to
distinguish the real and virtual images. Fleiss’ kappa was used to determine the inter-rater
agreement.

All statistical tests were computed using R 3.6 and the irr library.

3. Results

For the A/B-test only, two of the six raters showed a statistically significant tendency
to be able to distinguish virtual from real images. However, the error rate was rather high
in both cases (39% and 41%) and the inter-rater agreement was quite low = −0.03 (p = 0.25).
In 34% of the cases, the raters disagreed (i.e., three raters chose the rSTIR while the other
three raters chose the vSTIR), while in 41% of the cases, a majority (i.e., five or six raters)
chose the rSTIR, but in 25% of the cases, they chose the vSTIR. Overall, the testers were
only marginally better than a coin toss, and a single tester was even worse than an average
coin toss. The results of the individual testers are indicated in Table 4. Several examples of
the validation cohort are shown in Figure 3.

The analysis of the structured reports revealed that the vSTIR is equivalent to the rSTIR
in 13 of 15 categories (Table 5). The two categories where the vSTIR was not equivalent
to the rSTIR were the number of STIR hypertense vertebral bodies and the diagnosis of
bone metastases. With a p-value of 0.08 for the number of STIR hyperintense vertebral
bodies and 0.055 for the diagnosis of bone metastases, both categories were only slightly
not significantly equivalent. In the category of detecting the true STIR, an average detection
rate of only 57% was found with a very low inter-rater agreement of 0.01–0.02, consistent
with the previous A/B-test.

Table 4. Mean error and the statistical significance for each rater.

Rater Mean Error (in %) p-Value (Fisher Test)

1 41 % 0.008

2 44 % 0.06

3 58 % 0.992

4 48 % 0.336

5 39 % 0.001

6 45 % 0.101
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Figure 3. Examples of the validation cohort.

Mean STIR/vSTIR represents how often the pathology was identified, on average, in
the images. The inter-rater agreements describe how often the raters were in agreement for
a given pathology, and the p-value measures whether the value was significantly different
from 0 (i.e., no agreement at all). The significance for the difference tests whether both inter-
rater agreements were significantly different. For the equivalence tests, the null hypothesis
is that there is a difference between STIR and vSTIR, while the alternative hypothesis is
that of their equivalence.

To calculate the time saved by generating the vSTIR sequence, the acquisition time of
the T1, T2, and STIR sequences was extracted from the DICOM header. The acquisition of
the STIR sequence took 188.5 ± 46.7 s, on average, in comparison to 164.6 ± 48.1 s of T1
scan time and 132.2 ± 40.3 s of T2 scan time (Figures 4 and 5).
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Table 5. Results of all equivalence tests.

Mean STIR Mean vSTIR
Interrater

Agreement
STIR

Interrater
Agreement

vSTIR

Significance
(p-Value) for
Difference
between
Interrater

Agreements

Significance
(p-Value) for
Equivalence

(δ = 0.10)

Statistical
Equivalent
(δ = 0.10)?

Hyperintense
Vertebral

Body

32% (none)
39% (low)
29% (high)

37% (none)
39% (low)
24% (high)

0.61 (p < 0.01) 0.59 (p < 0.01) 0.37 0.08 No

Vertebral
Bone

Fractures

69% (none)
27% (low)
4% (high)

66% (none)
30% (low)
4% (high)

0.54 (p < 0.01) 0.60 (p < 0.01) 0.32 0.01 Yes

Hyperintense
Discs

67% (none)
24% (low)
9% (high)

71% (none)
20% (low)
9% (high)

0.39 (p < 0.01) 0.35 (p < 0.01) 0.23 0.01 Yes

Real STIR 57% 51% 0.02
(p = 0.70)

<0.01
(p = 0.96) 0.66 0.42 No

Intraspinal
Mass 17% 12% 0.34 (p < 0.01) 0.24 (p < 0.01) 0.03 0.038 Yes

Myelopathy 19% 17% 0.63 (p < 0.01) 0.66 (p < 0.01) 0.57 0.001 Yes

Muscular
Edema 26% 26% 0.52 (p < 0.01) 0.43 (p < 0.01) 0.07 0.001 Yes

Spondylodiscitis 21% 22% 0.66 (p < 0.01) 0.59 (p < 0.01) 0.13 0.003 Yes

Epidural
Abscess 12% 9% 0.54 (p < 0.01) 0.41 (p < 0.01) <0.01 0.003 Yes

Muscular
Abscess 8% 7% 0.31 (p < 0.01) 0.39 (p < 0.01) 0.13 0.004 Yes

Bone
Metastases 22% 17% 0.64 (p < 0.01) 0.56 (p < 0.01) 0.07 0.055 No

Intraspinal
Neoplasia 9% 6% 0.45 (p < 0.01) 0.45 (p < 0.01) 0.93 <0.001 Yes

Acute
Traumatic
Fracture

13% 13% 0.79 (p < 0.01) 0.58 (p < 0.01) <0.01 <0.001 Yes

Pathological
Fracture 8% 7% 0.46 (p < 0.01) 0.19 (p < 0.01) <0.01 <0.001 Yes

Benign Bone
Neoplasia 2% 2% 0.12 (p < 0.01) 0.43 (p < 0.01) <0.01 <0.001 Yes

Normal 16% 17% 0.70 (p < 0.01) 0.60 (p < 0.01) 0.03 0.004 Yes
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Figure 4. Diagram of the mean acquisition times with (left) and without STIR sequence.

Figure 5. Acquisition of the virtual STIR image from the merged T1 and T2 image compared to the
real STIR sequence.

4. Discussion

The aim of the present study was to generate virtual STIR (vSTIR) sequences from
non-contrast non-fat-suppressed sagittal T1- and T2-weighted sequences using a cGAN
and to validate these synthetic images in blinded A/B-tests on clinical MR examinations of
the spine against experienced radiologists. With this approach, we were able to generate
high quality synthetic STIR images that could not be distinguished from the real images
even by experienced radiologists in a blinded A/B-test. In addition, a qualitative and
quantitative evaluation of the pathologies depicted on the sequences showed no relevant
difference between synthetic and real images, although there was a relatively high inter-
rater variability.

Applications based on artificial intelligence have demonstrated a high potential in a
variety of medical applications, such as the prediction of tumor histology [13], the detection
of lung nodules [14], or the artifact reduction in PET imaging [15]. At the same time, there
are few applications that increase time efficiency in the daily business of radiological image
acquisition even though this is in great demand, considering the continuously increasing
numbers of MRI examinations worldwide [16].

In this study, we developed a method to generate STIR images from non-fat-suppressed
T1 and T2 images using a cGAN to reduce the scan time and the recall rate for a spinal
MRI. For this purpose, a paired image-to-image translation was used [9], as this offers, on
the one hand, a higher accuracy in comparison to an unpaired approach [17], and, on the
other hand, the more efficient monitoring of the training cohort.

This is especially important when considering the possible dangers of a completely
unsupervised cohort. In this context, Cohen et al. were able to demonstrate that pathologies
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can be artificially inserted or removed by using an unpaired image-to-image conversion by
training the network with an imbalanced cohort [11]. However, the use of a system based
on image pairs also offers uncertain risks, as it is known that GANs can produce their own
artifacts, such as checkerboard artifacts [18].

Therefore, we qualitatively and quantitatively evaluated the similarity of the vSTIR
images to rSTIR images. When vSTIR and rSTIR images were directly compared in an
A/B-test, six consultant radiologists—each with at least seven years’ experience in muscu-
loskeletal imaging—were not able to predict the rSTIR images.

At the same time, several studies have already indicated that image data generated by
GANs can look deceptively real without representing reality [19,20]. After demonstrating
that the generated STIR sequence looks real, it was therefore important to reveal that the
sequence also reflects reality.

For this reason, we have had the examinations assessed by experienced radiologists in
blinded A/B-tests with regard to the pathologies depicted. In this analysis, the vSTIR was
equivalent to the rSTIR in 13 of 15 categories. Very similar values were indicated in two
other categories—number of STIR hyperintense vertebral bodies and diagnosis of bone
metastases—with the values rated statistically only slightly not significantly equivalent.
On the one hand, the lack of significance could be a product of chance due to the variance
between the evaluators. Alternatively, in a few cases, the vSTIR may not equivalently
correspond to the rSTIR in these two categories. In the end, this should be tested in a
prospective trial with a larger number of patients.

To evaluate how much time is saved by the vSTIR, the average acquisition times of
T1, T2, and STIR images were compared. For an average spine MRI—which consists of a
sagittal T1, T2, and STIR—about three of eight minutes of scan time could be saved. This
time saving can increase the number of patients that can be scanned with one device by
about one third, which significantly improves the cost efficiency of the system. In the future,
this method could be combined with GAN-based compressed sensing [21] to further speed
up the MRI to cope with the increasing MRI demand.

A similar model for converting a T1 or T2 sequence into a STIR sequence has been
developed by Galbusera et al. [22]. In comparison, they archived very mixed results for
different pathologies. This may be based on the fact that both T1 and T2 images contain
independent information [23]; combining those naturally leads to an increase in information
for different pathologies. To date, the only publication that combines T1 and T2 to generate
a STIR sequence using deep learning was recently published by Kim et al. [24]. With only
12 healthy volunteers, this study demonstrated that deep learning can be used to generate
real-looking STIR images of a knee MRI. However, it could not be demonstrated whether
this virtual STIR sequence also depicts clinical reality and correctly represents pathologies.
Therefore, our study is the first to generate a virtual STIR sequence with a large cohort of
657 patients, which is significantly equivalent to a rSTIR in 13 of 15 categories. By means of
this method, it is not only possible to generate real-looking STIR images but, above all, to
generate images that depict reality.

For limitations, the datasets contained only MRI examination from a single vendor,
therefore, the network may not be generalizable to other MRI vendors [25,26]. Furthermore,
our method was validated for only 15 different categories of pathologies / findings; it is
still uncertain whether the vSTIR is equal to rSTIR in demonstrating other pathologies. A
true 3D or 2.5D network may be able to employ more local information into the generation
of the vSTIRs, thereby increasing the output quality.

5. Conclusions

In conclusion, our study underlines the potential of a cGAN for generating STIR
images from T1 and T2 images. Overall, we had very good results in the similarity of
the vSTIR to rSTIR images and in displaying the most important pathologies. This may
lead to reduced MR scanning time and to a reduced re-scan rate. In the next step, our
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database must be increased and validated on a multi-center basis to avoid overfitting to a
single vendor.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11091542/s1, Table S1. TE and TR relaxation times in ms (mean ± standard
deviation), Table S2. Slice thickness in mm (mean ± standard deviation), Table S3. Pixel spacing in
mm (mean ± standard deviation).
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