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Abstract: Reactive oxygen species (ROS) are considered to be responsible for the high catalytic
activity of transition metal oxides like Co3-xFexO4 in oxidation reactions, but the detailed influences
of catalyst composition and morphology on the formation of these reactive oxygen species are not
fully understood. In the presented study, Co3O4 spinels of different mesostructures, i.e., particle
size, crystallinity, and specific surface area, are characterized by powder X-ray diffraction, scanning
electron microscopy, and physisorption. The materials were tested in CO oxidation performed in
consecutive runs and compared to a Co3-xFexO4 composition series with a similar mesostructure to
study the effects of catalyst morphology and composition on ROS formation. In the first run, the
CO conversion was observed to be dominated by the exposed surface area for the pure Co-spinels,
while a negative effect of Fe content in the spinels was seen. In the following oxidation run, a
U-shaped conversion curve was observed for materials with high surface area, which indicated
the in situ formation of ROS on those materials that were responsible for the new activity at low
temperature. This activation was not stable at the higher reaction temperature but was confirmed after
temperature-programmed oxidation (TPO). However, no activation after the first run was observed
for low-surface-area and highly crystalline materials, and the lowest surface-area material was not
even activated after TPO. Among the catalyst series studied here, a correlation of small particle size
and large surface area with the ability for ROS formation is presented, and the benefit of a nanoscaled
catalyst is discussed. Despite the generally negative effect of Fe, the highest relative activation was
observed at intermediate Fe contents suggesting that Fe may be involved in ROS formation.

Keywords: CO oxidation; spinel; Co3O4; Co3-xFexO4; oxygen activation; reactive oxygen species

1. Introduction

The oxidation of CO is an important model and probe reaction used to investigate
oxidation catalysis, particularly for exhaust treatments. For this reaction, Co-based spinel
catalysts like Co3O4 and CoFe2O4 have shown high activity even at temperatures as low
as −80 ◦C [1–5]. The oxidation reaction on Co3O4 catalysts has been extensively studied,
and several possible reasons for the high activity of this specific spinel-based catalyst are
mentioned in the literature.

There are reports on the importance of reactive oxygen species (ROS) and on an
important role of vacancies on the surface of catalysts [3]. However, the generation and
role of ROS are not fully understood yet, especially for mixed oxides containing more than
one metal cation, such as Co and Fe. Several studies have been performed attempting
to unravel the role of ROS in oxidation reactions on Co containing catalysts. In studies
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from the 1990s, oxidized Co3O4 is labeled as Co3O4+x containing excess oxygen as oxide
species (O2−) and excluding adsorbed species such as dioxygen (O2), superoxo (O2

−),
and peroxide (O2

2−) [6–9]. The activity was explained by nucleophilic lattice oxygen and
activity loss over time by surface reduction from Co3+ to Co2+ [6–9]. Zasada et al. reported
the reactivity of the diatomic superoxo and peroxo ROS on predominantly (100) terminated
Co3O4 below 160 ◦C and monoatomic O− species between 160 ◦C and 300 ◦C by hydrogen
oxidation on Co3O4 [10]. In addition, the involvement of superoxo and peroxo species
on the surface was proposed by density functional theory (DFT) for temperatures below
350 ◦C [10]. Further work by Zasada et al. showed higher activity of adsorbed suprafacial
oxygen atoms than interfacial surface oxygen in methane oxidation [11]. Another study
by Zasada et al. indicated CO being primarily oxidized by suprafacial diatomic oxygen
adsorbed between threefold coordinated Co3+ and threefold coordinated Co2+ and/or
monooxygen adsorbed on a threefold coordinated Co3+ center on Co3O4(111) [12]. A
recent study by Liu et al. on Co3O4(100) thin films in the low-temperature CO oxidation
revealed that the activated oxygen desorbs from oxidized surfaces below 120 K and below
270 K from pre-reduced surfaces, while superoxide/superoxo species do not re-oxidize
the reduced surfaces [13]. In addition, the role of oxygen vacancies was critical, as the
vacancies promote the formation of superoxo (O2

−) species that are highly active in CO
oxidation [13].

Other possible reasons for the high activity of Co3O4 in CO oxidation apart from the
formation of ROS are presented in the literature, such as the exposed planes. In this regard,
contradictory information is given for the active facets. For example, Xie et al. reported
that (110) planes on nanorods, which are rich in Co3+ sites, are the active facets [2]. Teng
et al. showed that the (111) termination, which is rich in Co2+ sites, is more active [14].
Octahedrally coordinated Co2+ can easily be oxidized to Co3+ on the surface, which is
reported for several spinel oxides, and it is considered to be the reason for the catalytic
activity of Co2+ containing materials like CoFe2O4 [15]. For Co3O4 in 2-propanol oxidation,
a correlation of activity loss and reduction from Co3+ to Co2+ was shown by Anke et al.,
which can corroborate the higher activity of Co3+ in CO oxidation [16].

In terms of mechanisms in gas-phase catalysis, mainly the reaction of adsorbed species
in the Langmuir-Hinshelwood (LH) and the Mars-van-Krevelen (MvK) mechanisms involv-
ing oxidation by lattice oxygen and subsequent filling of oxygen vacancies by gas-phase
oxygen are discussed. A recent study by Lukashuk et al. indicated a complex reaction
network consisting of several reaction pathways, including dissociation of CO followed
by carbon oxidation to CO2 [17]. They indicated the presence of the MvK mechanism at
temperatures above 100 ◦C and could not exclude LH at low temperatures [17].

Catalytic oxidation in several temperature cycles is frequently used in the literature to
show catalyst stability [18,19]. However, some studies indicated further effects of either
pretreatment or subsequently performed catalytic runs. After pre-treating Co3O4 and
CoO reductively with H2 prior to CO oxidation, an activity increase was found under
oxidizing conditions (1% CO, 20% O2) for both types of oxides in consecutive runs up
to 200 ◦C, which showed the restorability of Co3+ on the surface at temperatures even
below 200 ◦C [15]. A study on Co3O4/Al2O3 confirmed the results, a beneficial effect of
a consecutive pretreatment with H2 at 300 ◦C and O2 at 250 ◦C has been observed and
correlated to an increasing number of Co3+ on the surface and decreasing crystallite size.
Additionally, an activation for the second of two consecutive runs has been reported [20].
Another paper reported improved catalyst recovery for regeneration in 10% O2 compared
to Ar [21]. It seems likely that the activation behavior is related to ROS formation on the
catalyst surface.

Not solely Co-containing transition metal oxides are interesting for catalytic oxidation
reactions, also mixed Co and Fe transition metal oxides are used either within perovskites
or spinel structures [22–32]. With increasing Fe content in spinels, the reducibility decreased
steadily until inversion of the spinel materials was found experimentally. However, after
inversion was observed, the reducibility behavior was unsteady and not clearly correlated
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with the nominal Fe content anymore [33]. A mesoporous Co3-xFexO4 spinel series was
synthesized via hard-templating using SBA-15 silica as a template, and the catalysts
used for this specific study were previously used in different oxidation reactions. In the
electrochemical oxygen evolution reaction (OER), a beneficial effect of Fe was observed [34].
In liquid-phase 2-propanol oxidation, however, no effect on the activity of the nominal
Co:Fe ratio was detected [35]. Interestingly, if tert-butyl hydroperoxide was used as the
oxidant, a beneficial effect of Fe was observed, which was related to different activation
pathways [36]. The peroxidic oxidant has to be partially decomposed to be activated,
whereas for oxygen activation, a spin transfer is needed [36].

In the presented study, these mesoporous Co3-xFexO4 spinels with high specific surface
area were tested in CO oxidation and compared to two pristine Co3O4 samples with lower
specific surface area obtained commercially and from a template-free precipitation method.
The samples differed in their mesostructure, namely interconnected nanowires, sintered
previously hexagonal particles, and a non-homogeneous sample. Low-surface area Co3O4
samples were characterized by powder X-ray diffraction (XRD), physisorption methods,
and scanning electron microscopy (SEM) and compared to the SBA-15 templated materials,
whose properties were already reported elsewhere [34–36]. All samples were tested in
cyclic CO oxidation in 2% CO and 20% O2 in three consecutive runs, while between the
first and the second run no further pretreatment was performed, while between the second
and the third run an oxidative pretreatment was performed. The goal was to study the
dynamic behavior as a function of the catalyst’s structure and composition and to discuss
the results in the context of the different materials’ ROS formation ability to help design
future experiments to identify the ROS under operando conditions by means of dynamic
experiments.

2. Results and Discussion
2.1. Characterization

Synthesis and characterization of SBA-15 templated Co:Fe nanowire oxides were
reported in a previous publication [34] and the characterization is briefly summarized
in the following paragraph. From XRD analysis, the crystalline spinel structure of all
materials was verified after calcination at 500 ◦C. The materials are labelled by the nominal
composition during the synthesis, which matched the experimental composition well and
was confirmed by bulk energy-dispersive X-ray spectroscopy (EDX) for Co:Fe ratios of 32:1,
16:1, 7:1, 3:1, as well as pure Co3O4 (labeled S500) and CoFe2O4. [34] Furthermore, X-ray
photoelectron spectroscopy (XPS) analyses also confirmed the ratio between Co:Fe, which
suggested a uniform cation distribution in the bulk and at the surface. The Fe species on
the surface were found to be Fe3+ for all catalysts, whereas the Co species were Co3+ and
Co2+ despite only Co2+ containing CoFe2O4, as expected from the stoichiometry [35].

In the transmission electron microscopy (TEM) micrographs, a decrease of the degree
of the ordering of mesoporous structure and nanowire length was observed with the
increasing of Fe content. Furthermore, upon incorporating Fe into the spinel structure,
higher occupancy of Co2+ in tetrahedral sites was reported and correlated with a distortion
of the Co3+-O bonds [34,37]. In another study on the herein presented SBA-15 templated
nanowires, indications for the presence of a Co3O4 secondary phase were reported on
CoFe2O4 based on Rietveld refinements [35].

Nitrogen physisorption isotherms are presented in Figure S1a, and they show a typical
type IV isotherm that is characteristic for mesoporous materials [38,39]. The hysteresis
type of the Co3O4 nanowires can be characterized as a H4 loop, whereas the other SBA-
15 templated materials show a H3 loop [40]. Brunauer–Emmett–Teller (BET) surface
areas of the SBA-15 templated samples are shown in Table 1. For the Co-rich samples,
the BET surface areas scattered between 103 and 125 m2 g−1, while CoFe2O4 shows an
increased BET surface area of 178 m2 g−1 due to the formation of small nanoparticles
rather than nanowire arrays. From the Barrett–Joyner–Halenda (BJH) method, the pore size
distributions were calculated and are shown in Figure S1b. The maximum in the pore-size
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distribution for Co3O4 was in the range of 3 nm, which indicates a perfect replication of
the silica mesostructure since it corresponds to the SBA-15(100) silica wall thickness. Upon
Fe incorporation into the spinel materials, additional pores in the range from 10–20 nm are
observed due to the pores’ alteration.

Table 1. BET surface areas of the catalysts used for catalytic testing.

Sample SABET/m2 g−1

Co3O4 S500 (SBA-15 templated) 107
Co:Fe 32:1 (SBA-15 templated) 118
Co:Fe 16:1 (SBA-15 templated) 103
Co:Fe 7:1 (SBA-15 templated) 113
Co:Fe 3:1 (SBA-15 templated) 125
CoFe2O4 (SBA-15 templated) 178

Co3O4 C600 (commercial) 9
Co3O4 P800 (precipitated) 2

Co3O4 (labeled as P800) was synthesized by precipitation of a Co(OH)2 precursor
at constant temperature and pH, followed by its thermal decomposition at 800 ◦C. The
synthesis and precursor properties were already reported in a previous study [41]. The BET
surface area is very low with 2 m2 g–1 determined by Kr adsorption and might therefore
be attributed with a notable error bar, and the material showed no measurable porosity
with N2 adsorption–desorption experiments. Co3O4 (labeled as C600) was purchased
from Merck and recalcined in synthetic air in a rotating furnace at 600 ◦C and the surface
area of C600 is 9 m2 g–1. The corresponding N2 adsorption–desorption curve is shown in
Figure S1a, the BJH pore size distribution in Figure S1b. The isotherms can be classified
as type IV isotherms with a H3 loop [38–40], and the pore size distribution indicates a
maximum in the range between 2 and 3 nm and another maximum in the range between 20
and 30 nm. The low values of the BET surface areas for P800 and C600 might be associated
with a notable error bar, but we regard the difference between the two samples as reliable.

XRD patterns of C600, P800, and S500 are shown in Figure 1a. All patterns show the
typical cubic spinel structure, as indicated by a literature Co3O4 pattern (ICSD collection
code 9362 [42]) and Rietveld refinement [43]. The refinement did not show any indication
for secondary phases for all samples, and the refined patterns and the fit parameters are
shown in Figure S2 and Table S1. The size of coherently scattering domains was found
to be about 10 nm for S500, 45 nm for C600, and 53 nm for P800, as taken from Rietveld
refinement. These findings agree with the expected increase of domain and particle size
with calcination temperature due to sintering.

An exemplary SEM image of C600 is shown in Figure 1b, which shows a non-
homogeneous particle size and shape distribution. As indicated by red arrows, large
aggregates are present in the sample, which might be attributed to the sintering of smaller
particles upon calcination. Another fraction of particles is exemplarily indicated by a light
blue arrow and shows particles in the range of ~200 nm in diameter. In addition, there are
two smaller particle fractions marked with a yellow and a dark blue arrow, whose particle
sizes seem in a similar range as the average crystallite domain size.
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Figure 1. (a) XRD patterns of C600, P800, and S500. (b) SEM image of C600, different size particles are indicated exemplarily
by the use of red (large particles), light blue (medium size), yellow (small), and dark blue (very small) arrows. (c) SEM
image of P800. (d) TEM micrograph of S500.

An exemplary SEM image of the precipitated Co(OH)2 precursor for P800 was shown
in a previous study and revealed hexagonal platelets, which remained after calcination at
400 ◦C [41]. After calcination at 800 ◦C, the platelet structure in a SEM image of P800 in
Figure 1c can hardly be seen. The platelets sintered together to more roundish particles
with a nonuniform size distribution, whichseems more uniform in comparison to C600.
However, because of the high calcination temperature, no porosity is expected for C800.
From an exemplary TEM image of S500 in Figure 1d, interconnected nanowires with the
average diameter of 8 nm matching the silica template’s pore size can be seen, which
leads to mesoporosity [34]. Altogether, this study comprises three Co3O4 catalysts of the
same composition, but with different mesostructures, i.e., crystallinity, particle size and
morphology, and specific surface area, ranging from a highly crystalline, sintered material
with large particles and low specific surface area (P800), and crystalline particles of non-
uniform size (C600), to a unique nanosized wire structure with high specific surface area
(S500). In addition, the effect of the Fe incorporation into cobalt oxide was investigated by
using a series of well-defined and crystalline cobalt iron oxide that was replicated from the
SBA-15 silica template.

2.2. Catalysis

The results of the transient temperature-programmed CO oxidation of the Fe-incorporated
SBA-templated catalysts are depicted in Figure 2a by showing the CO2 yield. Comparison
of CO conversion and CO2 yield are shown in Figure S3, and both were found to follow
the same trends as expected without indication for CO2 adsorption. It is evident that
by increasing the Fe content incorporated into the spinel structure of the Co3O4, there
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is a dampening effect on the activity. This can be attributed to the replacement of the
highly reducible octahedral Co3+ with the less reducible Fe3+ resulting in a decrease of
highly active sites on the surface [33]. DFT calculations on Co3O4(110)-B-surface show
Co3+ are more active than Co2+ as it binds the CO molecule stronger and features the lower
energy barrier. Furthermore, the reaction which is said to follow the Mars-van-Krevelen
mechanism (MvK) [44], can be inversely affected by the presence of less reducible cations,
in this case Fe. Indeed, the Co3O4 S500 with no Fe content shows significant activity even
close to room temperature, whereby cobalt ferrite spinel shows the lowest activity although
it has the highest surface area among all samples. As already stated in the introduction,
the incorporation of Fe has different effects on the activity for different oxidation reactions.
In the herein investigated CO oxidation, Fe did not have a beneficial effect on the SBA-15
templated catalyst materials, similar to liquid-phase oxidation of 2-propanol with oxygen
as the oxidant [35].

Figure 2. (a) Temperature-programmed CO oxidation activation of the SBA-15 templated pristine
Co3O4, CoFe2O4, and Fe incorporation series in the 1st run. (b) Temperature-programmed CO
oxidation activity of the different Co oxide samples in the 1st run.

The effect of different synthesis routes resulting in different micro- and mesostructures
for S500, C800, and P600 with the same nominal Co3O4 composition is shown in Figure 2b.
Comparison of CO conversion and CO2 yield are shown in Figure S4. The conversion of
S500 was higher, starting already below room temperature, where C600 and P800 hardly
show activity in this temperature regime. This goes in line with our previous finding that
high surface area ordered mesoporous Co3O4 could catalyze CO oxidation even at room
temperature [15,45]. While the onset of the transient activity for C600 and P800 is around
60 ◦C, whereasS500 already showed >20% conversion at this temperature. However, due to
the immense differences in specific surface area, the activity differences cannot be directly
concluded from the conversion curves, and a discussion of the reaction rates is presented
below. Interestingly, the conversion curve shapes showed shoulders at low temperatures for
C600 and P800. This shoulder was more pronounced for P800 leading to higher conversion
at low temperatures, whereas at higher temperatures, the conversion of C600 was slightly
higher. The temperature to reach 50% conversion (T50) was quite similar for both catalysts.
These shoulders indicate changes of the catalyst during heating and may point to active
sites, which are consumed rapidly and have a higher abundance on P800. Interestingly, all
Co3O4 catalysts reached full conversion in the same temperature range of ~180 ◦C despite
their different mesostructure. In the range of full conversion, an intermediate drop for all
catalysts was observed in the temperature range between 160 and 220 ◦C, that might be
explained by reaction dynamics due to the high excess of oxygen in the feed.

Since the exposed BET surface areas of the samples covered a wide range as shown
in Table 1 with two groups: high surface area SBA 15-templated and low surface-area
materials, reaction rates normalized by the BET surface area were determined and are
shown in Figure 3a. Clearly, P800 appeared superior to all catalysts after rate-normalization,
followed by C600. The large extent of these rate differences is caused by the normalization
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as these catalysts exhibit by far the lowest specific surface area and should be treated with
care. Among the SBA-15 substitution series (Figure 3a, inset), the activity trend followed
the amount of Fe incorporated in the samples, as already reported for the conversion
curves. For a better comparison of the activities of the different samples, T50 and CO2
formation rates at 100 ◦C are shown in Figure 3b. Within the SBA-15 substitution series, T50
was increasing, indicating less activity, and the rate at 100 ◦C was decreasing accordingly
with increasing Fe content in the samples. T50 values of P800 and C600 were similar and
shifted to higher temperatures by ~60 ◦C compared to the high-surface-area catalyst S500.
In Figure S5, a plot of the CO2 formation rate against the nominal Co content in the spinels
is shown and indicates a nearly linear behavior for the SBA-15 templated catalysts with
intermediate Fe content excluding the Co3O4 and CoFe2O4 catalysts. The deactivation with
increasing Fe content was previously reported in liquid-phase 2-propanol oxidation, where
ensembles of more than six coordinatively unsaturated Co3+ species were identified as the
active site [35]. The observation is consistent with the proposal that the active sites of CO
oxidation are also Co-centered (see below).

Figure 3. (a) Temperature-programmed CO oxidation rates of the investigated catalysts in the 1st
run. SBA-15-templated Fe incorporation series is shown as a zoom-in insert for better visibility.
(b) Temperature-programmed CO oxidation activity of the different Co oxide samples in the 1st run.

Directly after performing the first run and cooling down to room temperature, a
second transient activity test was performed for all catalysts at the same heating rate and
gas composition. The activities of the Fe-incorporation series SBA-15 catalysts during
the second consecutive run are shown in Figure 4a. Comparisons between all three CO
oxidation runs are shown in the Supplementary Material in Figures S6–S13 for each specific
catalyst compared to the first run. All samples showed a significantly higher activity
already in the lower temperature range. However, the conversion was initially decreasing
with temperature for most catalysts before rising again in the high-temperature range of the
experiment showing a U-shaped conversion curve. The first run has acted as an activating
pretreatment for the second run on all SBA-15 templated catalysts, including the ones with
a high Fe content, but the creation of the new activity at low temperature was not stable
and could not be maintained during the heating experiment. The temperature to reach
full conversion was similar to the first run indicating that the state after deactivation was
similar to the first run. The general trend between composition and activity observed in the
first run remains, with a slight deviation of the 16:1 and 32:1 samples at lower temperatures.
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Figure 4. (a) Temperature-programmed CO oxidation activation of the SBA-15 templated Fe incorpo-
ration series in the 2nd run. (b) Temperature-programmed CO oxidation activity of the different Co
oxide samples in the 2nd run.

Different effects of the pretreatment have been studied, for instance, Yu et al. reported
a volcano-shaped curve between pretreatment temperature and conversion at −80 ◦C for
the temperature range between 25 ◦C and 250 ◦C with a maximum for a pretreatment
temperature at 150 ◦C. The differences between treatments in N2 and dry air were minor [3].
For two consecutive runs on Co3O4, Hu et al. reported stable activity, but no activation of
the samples in 2.5% CO and 20% O2, which is in contradiction to our results but might be
explained by lower BET surface area in the range of 20–25 m2 g−1 [19]. In another study
on Co3O4/Al2O3, a beneficial effect of a consecutive pretreatment with H2 at 300 ◦C and
O2 at 250 ◦C has been observed and correlated to an increasing number of Co3+ on the
surface and decreasing crystallite size. Additionally, an activation for the second of two
consecutive runs has been reported, which is in line with our results [20]. Since the catalysts
in our study have been subjected to a rather oxidizing atmosphere of 2% CO and 20% O2
in the first reaction cycle and the very high initial activity was observed on all SBA-15
templated catalysts, a likely hypothesis for the activity increase at low temperatures is
the formation of reactive oxygen species (ROS) upon performing the reaction at oxygen-
rich conditions at high temperature and full conversion at the end of the first cycle. The
conversion profile of the second cycle with the high initial conversion of CO followed by a
rapid decrease until ~100 ◦C indicates consumption of these previously formed ROS in the
low-temperature range. At higher temperatures, similar conversion profiles are observed
again, as observed in the first run after ROS consumption. Likely, their re-formation
requires higher temperature and/or dwell time at full conversion and cannot be detected
in the reaction profiles. Based on literature reports from Zasada et. al., it is assumed that
two fivefold coordinated Co3+ in octahedral sites (CoO

5c) are responsible for the oxygen
activation by working as a tandem [46]. The nature of the ROS formed and active in the
oxidation of CO at temperatures below 450 ◦C was described as suprafacial µ-superoxo
CoO

3c-O2-CoT
3c and metal-oxo CoO

3c-O species [12]. In both cases, undercoordinated cobalt
sites are active, as was also shown to be the case in gas- and liquid-phase 2-propanol
oxidation on spinel catalysts, where (ensembles of) coordinatively unsaturated (surface)
CoO

5c species were described as the active site [16,35].
A similar U-shaped conversion curve like in the second run was previously reported

on a Co3O4–SiO2 catalyst in CO oxidation in a 3 ppm water-containing feed after air and
nitrogen treatment with 100% conversion at sub-zero temperatures and a minimum in
conversion around 80 ◦C. The shape was attributed to negative apparent activation energies
for certain temperature ranges, including two different oxygen species. However, when
water was frozen out from the reaction mixture, no U-shaped curve was observed, and
indications for the negative impact of water on the catalyst ability to provide active oxygen
species were reported [47]. In another study, after pre-treating Co3O4 and CoO before
reaction with H2, an increase in activity was found under similar reaction conditions (1%
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CO, 20% O2) for both types of oxides in consecutive runs up to 200 ◦C, which showed the
restorability of Co3+ on the surface below 200 ◦C, which is in line with our results [15].

Zasada et al. reported the reactivity of diatomic ROS below 160 ◦C and monoatomic
species between 160 ◦C and 300 ◦C by hydrogen oxidation on Co3O4 [10]. In addition,
below 350 ◦C superoxo and peroxo species on the surface were proposed by density
functional theory (DFT) [10]. The temperature window fits the conditions of the end of
the previously performed first reaction cycle. In a study on Co3O4(100) films, superoxide
species on pre-oxidized surfaces were not active in CO oxidation, whereas superoxides
on reduced surfaces catalyzed the reaction already at 120 K and up to 270 K, from which
the need of a presence of vacancies and superoxide was concluded to be essential for
low-temperature oxidation of CO [13].

Interestingly, in the case of Co3O4 C600 and Co3O4 P800, no significant activation
was observed in contrast to SBA-15 templated Co3O4 S500, as shown in Figure 4b. For
C600 and P800, the low-temperature shoulders in the reaction profile of the first runs
vanished, as shown in Figures S12 and S13. Still, the T50 values are decreased, but the
changes are much smaller than the high-surface-area nanowires. This indicates a lower
ROS generation ability of C600 and P800 compared to S500 during the first run. This less
pronounced formation of ROS is most likely related to the difference in particle size, specific
surface area, and porosity, hence indicating that the higher surface energy of nanoscaled
materials might facilitate effective ROS formation compared to the typically low-indexed
and thermodynamically more stable surface terminations of larger or sintered particles.
It thus seems that the sample preparation history has an effect not only on the starting
surface area but also on intrinsic properties like dynamic ROS formation.

CO oxidation activities in the third run after temperature-programmed oxidation
(TPO) up to 500 ◦C are shown in Figure 5a. The temperature of 500 ◦C was chosen to
mimic the calcination protocol of the SBA-15 templated materials. During TPO between
the second and third run, no CO2 was detected by micro-GC in the outlet stream, which
indicates no or only minor carbon laydown or carbonate formation during the reaction
of the second run, supporting that the loss of ROS can explain the deactivation observed
at medium temperatures. In the third run, the low-temperature activity of the SBA-15
substitution series samples was even more pronounced than during the second run, as
well as the subsequent drop in activity upon further heating. This hints at the formation of
more or more active ROS after TPO up to 500 ◦C compared to reaction up to 250 ◦C, and
again to the consumption of these ROS on the surface during catalysis. Based on work from
Zasada et al. in the higher temperature range, monoatomic metaloxo ROS are formed [10].
The before-mentioned higher activity of the 16:1 sample compared to the 32:1 sample in
the second run is becoming evident over the whole temperature range up to 180 ◦C in the
third run. This suggests that while Fe did not have a beneficial role for the CO oxidation
in the first run, it may contribute to effective ROS formation at a higher temperature for
specific compositions. For all other samples, the trend with respect to the Fe content was
maintained.

As shown in Figure 5b, Co3O4 C600 was activated in the third run like the catalysts
of the SBA-15 series already in the second run, whereas Co3O4 P800 remained inactive
despite a specific surface area of the same order of magnitude, indicating again an effect of
the mesostructure and domain size emerging from synthesis procedure and calcination
temperature on the ROS formation ability and catalyst activity. C600 shows an inhomoge-
neous morphology containing a small fraction of nanoparticles, and P800 features mostly
roundish sintered and exclusively larger particles evolved from hexagonal platelets of the
Co(OH)2 precursor. The decreased ROS formation capability of P800 might be related to
its high calcination temperature and largest domain size in this study, suggesting again
that ROS are preferably formed on small particles. Altogether, it strengthens the argument
of ROS created on the highly reactive surface of the nanoscaled catalyst during reaction
at 100% conversion at net oxidizing conditions or during TPO. In the case of low specific
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surface area catalysts with large particles obtained at high calcination temperatures, the
total number of ROS is lower, and their formation seems hindered.

Figure 5. (a) Temperature-programmed CO oxidation activation of the SBA-15 templated Fe incor-
poration series in the 3rd run. (b) Temperature-programmed CO oxidation activity of the different
Co3O4 samples in the 3rd run.

The previous findings are supported by the extent of catalyst activation at 75 ◦C,
which is assumed to be a measure of ROS formation. It was determined as the difference in
conversion at 75 ◦C between first and second as well as first and third run, ∆Y75◦C, as shown
in Figure 6a. A more negative value indicates a relatively more pronounced activation of
the CO oxidation by ROS formation. As the maximum conversion at 75 ◦C during the
second run was 82% for S500 and thus still below 100%, this evaluation between the first
and second run is valid for all catalysts as their improvement is not limited by approaching
full conversion. Looking at the composition dependency of the SBA-15 series, a volcano-
like behavior with maximal activation at Co:Fe 16:1 was observed when comparing the
first and second runs. This indicates that the ROS formation is favored at this specific
composition and that Fe is involved in forming either a higher number or of intrinsically
more active ROS. It also can be seen that activation by ROS formation for the Fe richer
catalysts requires the more oxidizing conditions of TPO as the most substantial further
activation in the third run was observed for these catalysts, as is also shown in Figure S14
as the difference between the second and the third run, where the peak of the volcano has
shifted to a composition of Co:Fe 3:1. However, this trend has to be taken with care for the
S500 sample since its conversion in the third run was already close to 100%, which limits
the possibility of further improvement in comparison to the other catalysts. A correlation
of Y75◦C in the second run and the improvement in the third run in Figure S15 shows that
higher starting conversions in the second run lead to lower relative improvements in the
third run. It can be again seen for C600 and P800 that there was no activation during the
first run, and only C600 was activated by the TPO.

Since C600 showed one of the clearest responses to the TPO, CO-TPR was performed
before and after a TPO up to 500 ◦C to study the consumption of potential ROS from
the surface. The results are shown in Figure S16. Before the TPO, i.e., in a non-oxygen
treated state of the catalyst comparable to the initial 1st CO oxidation run, no direct
CO2 formation is evident at 40 ◦C temperature in the reactor after switching on the CO-
containing atmosphere mixture. After starting to heat the reactor, only a slight increase
in the concentration of CO2 formed is observed at 79 ◦C. With rising temperature, the
onset of catalyst bulk reduction was detected, and the catalyst was cooled down again.
The CO2 concentration decreased again, and no more CO2 formation was detected from
154 ◦C onward during cooling. However, after the TPO and 15 min of purging in N2,
directly after switching to the 2% CO containing feed gas, a strong formation of CO2 is
seen, which points out to the formation of ROS on the surface during the TPO, which
are consumed over a period of 22 min already close to room temperature and finally in a
small peak at 75 ◦C. The onset of bulk reduction was very similar to the untreated sample,
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and CO2 formation decayed at a similar temperature, indicating that this protocol exerted
no or only a very small effect on the bulk. After the oxidative treatment, the amount of
CO2 formed increased from 0.298 µmol to 0.393 µmol over the whole period. After an
integration starting from 70 ◦C to neglect the amount of highly active ROS in the beginning,
the integral is 0.298 µmol before TPO and 0.286 µmol before TPO, which confirms the
integrity of the bulk. These observations are well in line with the formation of ROS at the
surface of this catalyst, causing the increase in catalytic activity.

Figure 6. (a) Difference in conversion at 75 ◦C between the 1st and 2nd/3rd run (∆Y75◦C) of CO
oxidation for all catalysts. Please note that the conversion of S500 is 90% during the 2nd run, which
is why it cannot be excluded that the improvement of this sample is to some extent limited by
approaching full conversion, and the data point is shown as a hollow symbol. (b) CO oxidation
activity of S500 in all runs for feed compositions 2% CO and 20% O2 and 2% CO and 1% O2.

As discussed above, the comparison between first run activity and second run activity
suggests that the first run acts as an in situ TPO under reactive conditions leading to
increased activity of the samples by creating ROS under the oxygen excess at full conversion.
To support this hypothesis, another cyclic CO oxidation on a fresh batch of the templated
nanowire catalyst S500 was performed with a stochiometric feed containing 2% CO and
only 1% O2. The new runs with decreased oxygen concentration were compared to the
initial runs with 20% O2 and are shown in Figure 6b. The initial activity in the first run
was decreased for the lower oxygen content in the feed, which could indicate a Langmuir–
Hinshelwood (LH) rather than a MvK mechanism due to the large effect of oxygen partial
pressure on the activity. Again, the temperature to reach full conversion is comparable for
both oxygen concentrations. According to Lukashuk et al., the MvK mechanism becomes
dominant above 100 ◦C, which is in line with DFT studies that indicate a preferred MvK
mechanism on Co3O4(110) B-terminated surfaces [17,44].

For the second run, there was still a substantial activity boost observed upon decreased
oxygen concentration, but the magnitude of the activity boost was less pronounced than
the measurement performed in 20% O2. Jansson et al. reported the improved catalyst
recovery for regeneration in 10% O2 compared to using Ar as the atmosphere for catalyst
activity regeneration, so higher oxygen partial pressures are beneficial [21]. As a mini-
mum temperature for catalyst regeneration, a temperature of 250 ◦C was reported, which
indicates that the first run can act as an in situ regeneration of the sample and that the
temperature treatment can be considered an important parameter for sample activation by
ROS formation also in oxygen-leaner conditions at higher temperatures in a stochiometric
feed. The U-shaped curve of the second run in 1% O2 containing feed still indicates the con-
sumption of ROS, but the degree of ROS formation seems to increase with oxygen content
in the feed. However, after the TPO before the third run, the conversion of CO was slightly
higher with 1% O2 in the reaction mixture compared to the 20% O2 containing reaction
mixture, which might be explained by less competitive adsorption of CO and oxygen on
the surface at lower total concentrations of reactive species in the feed gas stream.
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To confirm the effect of the high concentration of O2 on the reactivity of the second
run, a similar experiment as seen in Figure 6b on the catalyst S500 was also performed
on the SBA-15 templated catalyst with a Co:Fe ratio 3:1 to check the effect of Fe. The
mentioned experiment on 3:1 is shown in Figure S17 as an example for mixed Co:Fe
catalysts. It confirmed the basically lower activity in the less oxidizing feed and shows
even a decreased activity of the second run directly after the first run on an Fe-rich catalyst
suggesting that these conditions are unable to cause ROS formation on the less active
Fe-containing catalyst. However, the U-shaped curve and increased low-temperature
activity were observed after TPO, as shown in Figure S17b. The Co3O4 catalysts (S500,
C600, and P800) were characterized by XRD, TEM (S500), and SEM (C600, P800) after the
third run. The mesostructure remains unchanged, as is shown by electron microscopy
images in Figure S18. The nanowire morphology of S500 remains intact as well as C600
shows particles in different shapes and sizes. In addition, the structure of P800 remains
similar as well, but the particles appear more faceted, which might be a result of surface
reconstruction but might also be explained by a better contrast of the image after catalysis.
As seen from XRD after catalysis, also the bulk structure remains unchanged, as is shown
in Figure S19. S500 shows broad reflections due to low domain size as already reported
in the XRD of the as-prepared materials. The integrity of the bulk crystal structure and
the particles support the claim that dynamic changes at the surface related to ROS are
responsible for the observed dynamics in catalysis.

3. Materials and Methods
3.1. Synthesis and Sample Preparation

S500 and further SBA-15 templated catalyst materials: SBA-15 templated Co3O4
(labeled as S500 in this manuscript), CoFe2O4, and cobalt iron oxide series with controlled
mesostructures via nanocasting have been prepared according to our previous report, the
mentioned metal cation ratios have been used for synthesis as described in the previous
work [34]. In brief, cobalt and iron precursors (Co:Fe atomic ratio of 1:0, 32:1, 16:1, 7:1,
3:1, and 1:2) were prepared by dissolving a stoichiometric amount of Co(NO3)2•6H2O
and Fe(NO3)3•9H2O (Merck, Darmstadt, Germany, ACS reagent grade) in pure ethanol.
The calculated concentration of precursor solution was 0.8 M. The precursor solutions
were then impregnated into the pore system of SBA-15(100) template by the two-step wet
impregnation method (15% total pore filling). For the first impregnation step, a mixture of
precursor solution and template was stirred 2 h. Then the composites were dried in the
oven at 50 ◦C overnight. The first calcination was carried out at 250 ◦C for 4 h (ramping rate
2 C min−1). The same impregnation procedure was applied for the second impregnation
step; however, the final calcination was carried out at 500 ◦C for 6 h with the intermediate
dwell at 250 ◦C for 4 h (ramping rate 2 ◦C min−1). As an exception, a slower ramping rate
(1 ◦C min−1) was applied for calcining CoFe2O4. SBA-15(100) template was then leached
out with hot 2 M KOH solution. After four washing cycles and centrifugation in distilled
water, the final product was then dried in the oven at 80 ◦C overnight.

P800: Precursor synthesis was conducted in an automatic lab reactor system (OptiMax
1001, Mettler Toledo), as reported before [41]. The precipitated Co(OH)2 precursor was
calcined at 800 ◦C for 3 h (β = 2 ◦C min−1) in stagnant air in a muffle furnace (B150,
Nabertherm, Lilienthal, Germany) to achieve spinel formation.

C600: Co3O4 was bought from Merck (Darmstadt, Germany). The material was
recalcined in a rotary furnace GVA 12/450 (Carbolite Gero, Hope Valley, England) at 600 ◦C
in synthetic air (99.999%, 20% O2 in N2, 100 sccm) for 4 h.

For catalysis, all calcined samples were characterized as powders and pressed with
a hydraulic press by PerkinElmer (5 t, 2 min, Überlingen, Germany), pestled, and sieved
with stainless steel sieves from ATECHNIK (ISO 3310−1, Leinburg, Germany). A sieve
fraction of 250–355 µm was used for the kinetic analysis with a BELCAT-B (MicrotracBEL
Corp., Haradanaka Toyonaka, Japan) catalyst analyzer.
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3.2. Catalyst Characterization

N2 adsorption-desorption experiment of C600 was performed with a NOVA3000e
setup (Quantachrome Instruments, Boynton Beach, FL, USA) at −196 ◦C after degassing
the samples at 80 ◦C for 2 h in a vacuum. Kr adsorption-desorption experiment of P800
was performed with an ASiQwin setup (Quantachrome Instruments, Boynton Beach,
FL, USA) at −196 ◦C after degassing the samples at 150 ◦C for 24 h in a vacuum. BET
(Brunauer–Emmet–Teller) surface areas were calculated from p/p0 data between 0.05
and 0.3. Total pore volumes were determined at p/p0 = 0.99. Pore size distributions
were determined using the Barrett–Joyner–Halenda (BJH) method during desorption. Kr
adsorption experiment of P800 to determine the BET surface area was performed with a
Belsorp-mini setup (MicrotracBEL Corp., Suminoe-ku, Osaka, Japan) after pretreatment
in a vacuum at 150 ◦C for 24 h. N2 adsorption–desorption experiments of the SBA-15
templated catalyst series were performed by using 3Flex Micromeritics at 77 K. The sample
was degassed in a vacuum at 120 ◦C for 10 h before the measurements. The Brunauer–
Emmett–Teller (BET) surface area was calculated within the 0.06−0.3 relative pressure
range (p/p0). The pore size distribution was calculated with the BJH method from the
desorption branch.

Powder XRD patterns of C600 and P800 were recorded from 5 ◦ to 90 ◦ on a Bruker
D8 Advance diffractometer (Bruker, Billerica, Massachusetts, USA) in Bragg–Brentano
geometry with a position-sensitive LYNXEYE detector (Ni-filtered CuKα radiation Bruker,
Billerica, Massachusetts, USA) applying a counting time of 0.3 s and step size of 0.018 ◦.
Samples were mounted by the use of dispersion in ethanol on a glass disc that was inserted
in a round PMMA holder. The latter was subject to gentle rotation during scanning after
removal of the ethanol by drying.

Scanning electron microscopy (SEM) of C600 and P800 was performed with an Apreo
S LoVac (Thermo Fisher Scientific, Waltham, MA, United States). Before the measurements,
the samples were sputtered with Pt/Au.

Transmission electron microscopy (TEM) of S500 were recorded with aberration (CS)
corrected JEOL 2200FS (Tokyo, Japan) instrument equipped with a 200 kV Field Emission
Gun (FEG). The samples were deposited on a Cu lacey carbon grid.

3.3. Catalytic CO Oxidation at Ambient Pressure

The catalytic experiments were performed in a BELCAT-B catalyst analyzer (Micro-
tracBEL Corp., Suminoe-ku, Osaka, Japan). To this aim, 60 mg (sieve fraction 250–355 µm)
of each calcined catalyst sample diluted with 300 mg of silicon carbide (>355 µm) were
placed inside a U-shaped quartz tube reactor (inner diameter = 8 mm). Each sample was
pre-treated by heating at 3 ◦C min−1 in He (99.9999%, Air Liquide) from room temperature
to 100 ◦C, which was kept constant for 1 h. Thereafter, the sample was cooled down in He
to 45 ◦C.

Before starting the temperature-programmed catalytic experiments, the catalyst/SiC
mixture was purged for 15 min with 2% CO and 20% O2 in He to equilibrate the gas
composition. Thereafter, the temperature was increased to 250 ◦C at a heating rate of
3 ◦C min−1 for the first run. Then, the sample was cooled in 2% CO and 20% O2 to 45 ◦C
with the maximum possible rate using a fan in the heating oven without data collection,
the temperature was equilibrated for 5 min in He.

Afterward, the sample was purged with 2% CO and 20% O2 for 15 min at 45 ◦C, and a
second consecutive run was performed by increasing the temperature to 250 ◦C at a heating
rate of 3 ◦C min−1 and 5 min dwell time at the maximum temperature.

For the preparation of the third run, the sample was again cooled down using the
fan in the reactive atmosphere to 100 ◦C, purged with He for 5 min and then temperature-
programmed oxidation was performed in 20% O2 in He to a maximum temperature of
500 ◦C with a heating rate of 10 ◦C min−1. The temperature of 500 ◦C was chosen to mimic
the calcination protocol of the SBA-15 templated materials. The maximum temperature
was kept constant for 30 min after which the sample was cooled down with the maximum
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rate using the fan to 45 ◦C in 20% O2 balanced with He and kept constant for 15 min in He.
Afterward, the sample was purged with 2% CO and 20% O2 for 15 min at 45 ◦C. The third
run was performed by increasing the temperature to 250 ◦C at a heating rate of 3 ◦C min−1

and a 5 min dwell at the maximum temperature.
An additional experiment on SBA-15 templated Co3O4 was performed under the same

conditions regarding heating ramps and pretreatment with the only difference of changing
the reactive gas mixture composition from 2% CO and 20% O2 to 2% CO and 1% O2.

The total gas flow in all segments of the catalytic experiment was 80 mLn min−1. The
reactor outlet stream was analyzed using a MicroGC (Agilent Technologies 490, Santa
Clara, CA, USA) equipped with a 5-Å molecular sieve and a Pora Plot Q column for the
detection of CO, O2, and CO2.

4. Conclusions

Co3-xFexO4 spinel catalysts synthesized through nanocasting by using SBA-15 silica
as template served as a model system to study the effect of composition in terms of Co:Fe
ratio on cobalt spinel catalyst activity. A second comparison was made among the Co3O4
catalysts from different synthesis procedures or sources (hard templating, precipitation,
and commercial material) to investigate the role of mesostructure for their activity and
formation of ROS during consecutive runs of CO oxidation in the oxidizing atmosphere up
to 250 ◦C. A general negative correlation between increasing Fe content and initial activity
in catalytic CO oxidation was found, suggesting that Fe was not involved directly in the
active site. When comparing the first and the second run, the formation of ROS upon
reaction in a highly oxidizing feed was observed. These ROS were not stable and vanished
during further heating and were observed after TPO shown in an even increased activity.
The relative activation was composition-dependent in a non-linear manner suggesting that
Fe was involved in ROS formation. Comparison of pure Co3O4 samples showed a higher
conversion of the SBA-15 templated nanowire catalyst (S500) compared to materials from
precipitation followed by calcination (P800) and a commercial material, which was recal-
cined (C600). P800 showed the lowest surface area, and larger but more uniform sintered
particles with a roundish shape than C600, consisting of a mixture of morphologies and
sizes. Only for S500, a strong activation in the second run was observed. After TPO, for
C600, a clear activation was seen and ROS formation was confirmed by CO2 formation
observed in CO-TPR. However, for P800, again, no beneficial effect was observed. This
indicates a correlation between particle size and exposed surface area with the capability
of ROS formation induced by sample preparation history. The correlation can be explained
by a hindered ROS formation on the large particle with low-indexed surface facets and
low surface energy. After the three runs of the catalytic reaction, the mesostructure re-
mained unchanged. The reactivity behavior of C600 and its strong dynamics upon TPO is
currently studied in more detail to correlate surface structure and activity after different
pretreatments to gain more insight into ROS nature and their formation and consumption.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11111312/s1, Figure S1: Normalized N2 adsorption–desorption isotherms (a) and
normalized BJH pore size distribution (b). Figure S2: Rietveld refinement plots of C600 (a), P800 (b),
and S500 (c). Table S1. Criteria of fit for the Rietveld Refinements of the x-ray diffraction patterns
of the calcined samples. Figure S3: Comparison of CO conversion and CO2 yield for the SBA-15
templated catalyst series. CO conversion in the 1st run (a). CO2 yield in the 1st run (b). Figure S4:
Comparison of CO conversion and CO2 yield for the different Co3O4 catalysts. CO conversion in
the 1st run (a). CO2 yield in the 1st run (b). CO conversion in the 2nd run (c). CO2 yield in the
2nd run (d). CO conversion in the 3rd run (e). CO2 yield in the 3rd run (f). Figure S5: Correlation
between CO2 formation rate at 100 ◦C and the cobalt content in the spinel materials. The red circle
shows for clarity where a linear correlation between reaction rate and Co content can be observed.
Figure S6: CO oxidation activity in the different runs for S500. Figure S7: CO oxidation activity in the
different runs for SBA-15 templated Co:Fe 32:1. Figure S8: CO oxidation activity in the different runs
for SBA-15 templated Co:Fe 16:1. Figure S9: CO oxidation activity in the different runs for SBA-15
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templated Co:Fe 7:1. Figure S10: CO oxidation activity in the different runs for SBA-15 templated
Co:Fe 3:1. Figure S11: CO oxidation activity in the different runs for SBA-15 templated CoFe2O4.
Figure S12: CO oxidation activity in the different runs for Co3O4 C600. Figure S13: CO oxidation
activity in the different runs for Co3O4 P800. Figure S14: Differences in conversion at 75 ◦C between
the 2nd and the 3rd run of CO oxidation. Figure S15: Conversion at 75 ◦C in the 2nd run compared
to the activation between 2nd and 3rd run for the SBA-15 templated materials. Figure S16: CO
temperature programmed reduction of C600 without TPO and after TPO showing the evolved CO2
concentration (a) and the temperature in the reactor (b). Figure S17: (a) Initial measurement of 3:1 in
the cyclic CO oxidation in 2% CO and 20% O2 in comparison to a new measurement in 2% CO and
1% O2 performed on another setup. Figure S18: (a) SEM image of C600 before catalysis. (b) SEM
image of C600 after catalysis. (c) SEM image of C800 before catalysis. (d) TEM image of C800 after
catalysis. (e) SEM image of S500 before catalysis. (f) TEM image of S500 after catalysis. Figure S19:
XRD patterns of the spent catalysts.
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