
Problem-Based Project Planning
in Postmodern So�ware Engineering

Dissertation by

Ina Wentzla�

Book cover artwork by Niki van Diyzburg – fireworks . All rights reserved.

ACKNOWLEDGEMENTS

To get started, I want to thank all participants of the Promi-Workshop series at
theWorking Group So�ware Engineeringwhomhave spent their valueable time for reviewing reams
of research work including mine.

Special thanks goes to my Doktormutter Prof. Dr. rer. nat. Maritta Heisel for her continued support
and patience throughout this dissertation project. Per aspera ad astra!

Thanks a lot to Prof. Dr.-Ing. Axel Hunger for establishing the International Studies in Engineering
program at the University of Duisburg-Essen, home ground of my past scholarly activities.

And last but not least, thanks to Prof. Dr. rer. nat. Michael Goedicke for joining this dissertation
project to get it done.

It has been a great pleasure to do research and teaching at this inspiring and open-minded place,
and a honor to have worked with you all!

Rating by donating! Please provide feedback on this dissertation by contributing
one of the following sums of money towards a charity organization of your choice:
PHHHH= ¤ 6.40 PPPHH= ¤ 08.15 PPPPP= ¤ 4.2 Purpose: #dankeDU

http://swe.uni-due.de
https://www.kindernothilfe.de/spendenaktionen.html?cfd=869jz

Dissertation
Problem-Based Project Planning in Postmodern So�ware Engineering

Von der Fakultät für Ingenieurwissenscha�en,
Abteilung Informatik und Angewandte Kognitionswissenscha� der

Universität Duisburg-Essen

zur Erlangung des akademischen Grades
Doktor der Naturwissenscha�en (Dr. rer. nat.)

genehmigte Dissertation
von

Ina Wentzla�
aus

Verden an der Aller

1. Gutachterin: Prof. Dr. Maritta Heisel
2. Gutachter: Prof. Dr. Michael Goedicke

Tag der mündlichen Prüfung: 12. November 2021

mailto:ina.wentzlaff@uni-duisburg-essen.de
https://www.uni-due.de/swe/marittaheisel.php
https://s3.paluno.uni-due.de/team/michael-goedicke

Tomy soul mates – Markus & Isabelle

Tomy dear kids – Wim & Niki

Tomy amigos – Uschi, Johannes & Dirk

In return for keeping me running on
at a sustainable pace.

I love you!

i

Abstract

Embracing change is in these days the preferredmode of operating so�ware development projects
as to meet the pressure of time-to-market. In order to stick to deadline, agile project practices have
become themeans of first choice, because they implement a time-boxed so�ware delivery process,
which anticipates the emergence of requirements. The team is at the heart of each successful agile
so�ware project, equipped with all encompassing authority to decide on the scope of requirements
to be done within the time available. When it comes to planning the delivery of working so�ware on
deadline, agile so�ware development culture demands toTrust the team .

Coincidentally or not, this agilist credo ignores the emergence of teams. It conceals the need
for the team to know its speed in order to reach consensus on a sound work plan, one which satis-
fies the so�ware product requirements in the time frame set for the project. Speed is team-unique,
since it depends on the team members perception of the work volume they can accomplish within
a given project timebox. Since di�erent teams have di�erentmethods and experiences for justifying
their work volume, speed is not comparable among them. This becomes a dilemmaon projects with
frequent membership turnover and projects at scale calling for a team of teams.

The e�icacious planning of time-boxed so�ware projects depends on the team members way
to share the knowledge of establishing consistent size estimates for a recognizable scope of soft-
ware product requirements that they use as the basis for measuring speed. The principle idea fol-
lowed in this dissertation is to make use of patterns as a common point of reference reusable by
individuals and teams for adjusting their know-how and comparing their achievements. On these
grounds, it introduces pre-defined units for reproducibly determining the scope and speed of soft-
ware projects. It leverages the intertwining of patterns from problem analysis and solution design,
for controlling project progress with respect to satisfied so�ware product requirements. The result-
ingpattern-basedunits for requirements sizeestimatingandworkplanningare integrated toanagile
project process framework to bring them into action.

This work contributes to the predictability of so�ware project plans, and thus the planning for
value delivery, from both the perspective of project management and so�ware engineering.
It introduces a shareable, problem-based instrument that operates on reusable pattern practices,
for empowering project teams to enforce change control in the presence of emerging product re-
quirements or teammemberships, and to trust their e�icacy by a problem-based speed benchmark.
In this context, the proposed approach sustains the project team in justifying their prioritization of
the project plan, made possible by traceable requirements dependencies, which reflect the so�ware
product life-cycle, and thus are eminent to stabilize the leeway in decision making for managing
the so�ware project. In addition, it provides the project team with exploratory design alternatives,
using instant models for recognizable so�ware product requirements, which enable them to fast-
track development of the so�ware product.

iii

Zusammenfassung

Agile So�wareentwicklung verspricht, den heutigen Markterfordernissen von sich stetig ändernden
Produktanforderungen und dem daraus resultierenden Druck immer kürzer werdender Produkt-
einführungszeiten geeignet Rechnung zu tragen. Erwarte Veränderungen lautet eine Maxime
agilerProjektmanagementpraxis,Vertraue dem Team eineandere. ImVordergrundstehtdie termin-
gerechte, in der Regel nurwenige Arbeitstage umfassende Lieferung einsatzbereiter So�ware. Dabei
obliegt es demProjektteam zu entscheiden, welche Produktanforderungen es innerhalb des zur Ver-
fügung stehenden Projektzeitfensters realisieren wird.

UmeinenmachbarenProjektplanzuerstellen, derdie termingerechteBereitstellungeinesgewis-
senUmfangs gewünschter So�warefunktionalität zusichert,muss das bewältigbare Arbeitsvolumen
eines Projektteams für ein gegebenes Projektzeitfenster bekannt bzw. die erwartbareGeschwindig-
keit der Projektdurchführung geeignet abzuschätzen sein. In kleinen, eingespielten Teams, wie sie
für agile So�wareentwicklungsprojekte typisch sind, lässt sich ein solches Geschwindigkeitsmaß in
derRegelhändisch, aber zweckerfüllenderzeugen. Mit zunehmenderProjektgrößeoderbei volatilen
Projektmitgliederkonstellationen, sind diese teambestimmten Leistungswerte jedoch nicht mehr
anwendbar sprich vergleichbar, was eine informierte undkoordinierendeProjektplanungerschwert.

DiewirksamePlanung zeitgesteuerter So�wareprojekte hängt entscheidend von dem geteiltem
Wissen ab, das unterschiedliche Projektteams gleichermaßen dazu nutzen, um die zu realisieren-
den Softwareanforderungen einheitlich zu kategorisieren und deren funktionalen Umfang mittels
vergleichbaren Maßzahlen konsistent zu beurteilen. Deshalb verfolgt diese Dissertation die Idee,
Muster zurScha�ungkombinierter So�wareentwicklungs- undSo�warebewertungs-Einheitenein-
zusetzen, die von Einzelpersonen und Teams als gemeinsamer Bezugspunkt wiederverwendet wer-
den können, um den Umfang und die Geschwindigkeit von So�wareprojekten reproduzierbar zu
bestimmen. Um diese musterbasierten Projektplanungseinheiten herzustellen, wird die Verknüp-
fung von Problemanalyse und Lösungsentwurf auf Basis von Mustern innerhalb früher Phasen des
So�wareprojektmanagements weiterentwickelt, und durch die Funktionspunktanalyse als Metrik
für eine standardbezogene Bestimmung von So�wareprodukt- und damit assoziierbarer Projekt-
kennzahlen erweitert.
Wiederverwendbare Projektplanungseinheiten, wie sie diese Dissertation einführt undwelche die

So�waretechnik- und Projektmanagement-Sicht auf wiederkehrende So�wareprobleme und deren
mögliche Lösungen in sich vereinen, dienen der Anpassbarkeit und Prognosefähigkeit von So�ware-
projektplänen sowie der damit zusammenhängendenObjektivierung erreichbarer Wertschöpfung.
Hierfür wird ein musterbasierter Projektplanungsprozess, mit dessen Hilfe sich ein vordefinierter
UmfanggewünschterSo�warefunktionalitätnachvollziehbar spezifizieren lässt, ineinagilesProjekt-
prozessrahmenwerk integriert und seineAnwendungund seinBeitrag zur StabilisierungderPlanung
von So�wareentwicklungsprojekten anhand mehrer Fallstudien vorgestellt. Projektteams werden
aufdieseWeise indie Lageversetzt,flexibel auf Veränderungen zu reagierenundsozusagenaus dem
Stand heraus Varianten eines realisierbaren Projektplans zu erzeugen. DieWirksamkeit gewählter
Planungsalternativen wird mittels Funktionspunkten als ein teamübergreifendes da problem-
bezogenes Geschwindigkeitsmaß bemessbar und vergleichbar. Der So�warelebenszyklus wird zum
Aufbau nachvollziehbarer Anforderungsabhängigkeiten zwischen den einzelnen Planungseinheiten
verwendet. Damit werden diese für die bedarfsorientierte Priorisierung des Projektplans systema-
tisch berücksichtigbar und tragen somit zu dem Erfordernis beschleunigter Softwarelieferung bei.

v

Introduction

In the beginning was the crisis

The problem given the name “so�ware crisis” was that improvements in computer hardware out-
paced the ability of computer so�ware to make use of it. At this juncture the crisis manifested itself
in failed projects that, if at all, delivered a poor quality product. Dijkstra described this situation in
his Turing Award lecture 1972 as follows “To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming became a
mild problem, and nowwe have gigantic computers, programming had become an equally gigantic
problem.” [78, page 3] The increasing complexity of so�ware development made it more and more
di�icult to deliver a project product that meets its requirements within the planned cost and time.
In response, the so�ware crisis was discussed at the NATO So�ware Engineering Conferences [181]
in 1968 and 1969, which promoted the application of well-defined engineering approaches for the
development of so�ware. The so�ware engineering discipline was born to solve the crisis. The
progress of this new discipline in the following decades can be divided into eras.

The Pre-Modern Era

From the project point of view, the driving question for success in this era is directed to the so�-
ware production skills: Does the so�warework to be used? The authority to answer for this question
is assigned to the field of so�ware development. It takes responsibility for managing the “typically
[. . .] error-prone and tedious process” [134, page 18] of translating project expectations from require-
ments specifications into working so�ware. Developers structure and document their know-how,
problem-solving rationale, and decision making that are applied during this process in their pro-
grams. But their individual engineering e�orts is also hidden in these modules. In this upstream
so�ware process, which aims to close the semantic gap between requirements specifications and
their su�icient implementation, so�ware development excellence determines project progress. In
focusofdiscipline in this era is theprogram, andhowtobuild it right. This era canbecharacterizedby
engineering approaches that apply a sequenced so�ware process, modular programs, “structured
methods and functional decomposition” [134, page 16].

The Modern Era

From the project point of view, the driving question for success in this era is directed to the so�-
ware production scope: Does the so�ware work for its use? The authority to answer for this ques-
tion is separated into di�erent perspectives: the one dealing with the formulation of the problem,
and assuring that it should be addressed, and the one dealing with the integration of its solution
to be delivered. Respectively, the fields of so�ware analysis and so�ware design own specific re-
sponsibilities to set up and document a problem-solving plan. It has to be done before handover to
subsequent so�ware development activities take place. Analyst and designer hold the interpreta-
tive sovereignty over what it takes to build the right so�ware. In this downstream so�ware process,

vi

their understandinganddecisionmakingdetermineproject progress,which is dependentona struc-
ture of structures. It has to be documented by several, related models, those for the requirements,
and those for the computational components of a so�ware architecture, which is planned for sat-
isfying these. In focus of discipline in this era is the plan, the upfront “big picture” of the project
product or “blueprint” of the so�ware to be built. It has to be accepted and approved before the
start of development. Model- and component-based view points have introduced additional mean-
ing into the so�ware process, and enable automated, reuse-driven so�ware development. But their
claim for “universalism requires uniformity” [184, page 366] and its “ideals of perfection” [184, page
364] have become a bottleneck in their application. This era can be characterized by engineering
approaches that apply encapsulation, object-orientation, and a so�ware process through a series
of model transformations. These allow for traceability of design rationale and accordant decision
making, and enable systematic so�ware maintenance. In addition, it opens up the possibility of an
incremental so�ware process, in which the so�ware product is evolved over several project itera-
tions.

The Post-Modern Era

From a project point of view, the driving question for success in the post-modern era is directed to
the so�ware production schedule: Does the so�ware be used for work? The authority to answer for
this questionunites all fields of so�ware engineering, and it is embodied in thedi�erent perspectives
present to one project team. Each teammember is equally responsible for contributing knowledge
from their field of expertise in order to reach a mutual agreement on the priority of needs and the
provision of so�ware services, which should be made available within a defined, short-term time
frame. The team consensus on the value of a problem-solving approach to be implemented, i.e. the
prospect that it will actually be used for work, is “built up, following practice [. . .] on a case-by-case
basis” [159, page 11], rather than following a comprehensive plan. “The details in the plan provide a
sense of security in the future and a foundation of knowledge to build from, even if the details are
nothing more than a comforting illusion. [Expectation management, which is] closer to reality [. . .]
allow a team to adapt as needed.” [86] In this meet-in-the-middle so�ware process, case-based rea-
soning is essential for thedelivery of so�ware. This groupdecisionmaking is just as team-dependent
as it determines the progress of the project. But in focus of discipline in the post-modern era is the
timingof the so�wareprocess, andwhen theproduct is in operational use. This era canbe character-
ized by engineering approaches that apply short-cycled, on-demand so�ware development, which
aims the continuous delivery of valuable so�ware [30] at a constant pace.

The crisis continues – what’s next?

The so�ware crisis is not passed, and will properly never do. Today, we have arrived in the post-
modern era, where “it seems that everything matters a bit yet not much really matters” [134, page
17]. Does history repeats itself? Now, the improvements in so�ware development practice seem to
outpace the achievements in discipline. Dijkstra has criticized so�ware engineering for not provid-
ing the promised answer to the crisis, and that it will stay that way for as long as “so�ware engi-
neering has accepted as its charter "How to program if you cannot."” [79] Is this criticism justified,
when “The other engineering disciplines haven’t found a silver bullet, either.” [134, page 18], and
today’s approaches to so�ware development such as visual programming by “No-code allows peo-
ple who don’t know how to write code to develop the same applications that a so�ware engineer
would” [47] realize the pre-modern idea of Application Development without Programmers [150]?

vii

A true so�ware engineering discipline should empower its devotees to “make decisions [through-
out the so�ware process] systematically and document them in a useful way” [134, page 18], such
that these becomes available to others. The speed focus in postmodern so�ware development is fu-
tile, as long as the knowledge about speed improvement practices and their successful application
is dependent on a team. Under this condition, achieving accelerated so�ware development remains
a one hit wonder. At least it cannot be reproduced by other teams.

In a postmodern so�ware process, the scope of theory is limited to “conditions where that the-
ory is applicable, or is generated by the practice” [159, page 11]. The postmodern project team limits
their decisionmaking, onwhat requirements shouldbedone in the timeboxavailable for theproject,
to “little narratives” [159, page 11] known as user stories, and ’triangulate’ these “by their di�erent
viewpoints of the requirements” [184, page 370]. That is why the requirements given as user stories
must bemeaningful tomostmembers of the team, not only to the so�ware analyst, in order to serve
them as a point of reference for anchoring their experiences, and to allow them to justify their point
of view. The team’s ability to anticipate the size of user stories and the scope they can do in a project
timebox, determines the progress of the project and sets their pace.

As the “post-modern trait [. . . is] absorbing technology from modernism while putting it to a
rather di�erent use” [159, page 13], this dissertation proposes the use of patterns to sustain the
decision-making in the planning of postmodern so�ware projects, and empowering project teams
to continuously improve their know-how by sharing their experiences and achievements with one
another. Patterns have their roots in the modern era and have become commonly known as mean
for describing recurring so�ware architectures and designs [46, 90, 91]. But patterns also belong to
the post-modern era, as they “are small independent narratives, supported by arguments made on
a case-by-case basis in favour of certain [problem-solving] designs” [159, page 18]. They represent
a meta-structure for shareable best practices knowledge, which relates the models of the discipline
with the modules built by so�ware practices.

Patterns not only help to “bridge any gaps in understanding” [73, page 1343], they also “treat
[the problem-solving] design decisions as first class entities” [134, page 18]. These properties of pat-
terns deserves more attention as they are essential to a key feature in the post-modern so�ware
process: the project team. “Managing [. . . its decision making by means of patterns] might be the
key to end-to-end [requirements] traceability – the solution to capture design rationale, and analyz-
ing the impact of projected changes [on project progress], or harvesting reusable know-how when
simply reusing the code isn’t feasible [or intended].” [134, page 18].

There is a way Out of the Crisis for the so�ware engineering discipline that is best described by
the words of Max Frisch “A crisis is a productive state. You simply have to get rid of its a�ertaste of
catastrophe.” Let’s have a try!

A tribute to Michael Jackson

Not the singer. To the so�ware engineer.
Jackson’sapproach to “separationof concerns”provides thebasis for thisdissertation. Hispoint

of view in distinguishing problems and solutions, and to make use of problems for the projection
of requirements through patterns called problem frames are key concepts in the field of problem-
oriented so�ware engineering. Along theway, hemade important contributions to eachof the afore-
mentioned so�ware engineering eras.

During thepre-modernera in 1983, he introduced theJacksonSystem Developmentmethod [125].
It takes into account that so�ware development is not just about structured programming. It follows
a staged transformation process, which begins with the modeling of the realworld and ends in the

viii

implementation of a specification in several steps.
During the modern era in 1995, his joint research with Pamela Zave on the relation of Software

Requirements & Specifications [126] realizes that so�ware development serves the satisfaction of
requirements, but therefore a correctly implemented specification is necessary but not su�icient.
Specificationsmust be derived by taking the environmental conditions of the realword into system-
atic account. Only then, (when the machine as) the so�ware built upon these specifications (is in
operation, it) can establish desired system properties, those as described by the requirements.

During the post-modern era in 2001, Jackson developed the Problem Frames approach [128],
which addresses the issue that so�ware development by reuse improves the fulfillment of specifica-
tions. On the one hand, specifications must represent implementable requirements. On the other
hand, specifications must be implementable. Both cases represent recurring situations in so�ware
development, for which solutions and know-how exist.

Patternsmake these “bestpractices” thathavebeen founde�ective in their application reusable
and available to others. So, as architecture design patterns serves the description and recogni-
tion of recurring solution approaches to build a so�ware, problem frames are patterns applicable
in so�ware analysis to classify requirements into recurring problem descriptions for deriving so�-
ware specifications that represent implementable requirements.

A problem-based decomposition separates requirements into independent problems through
projection. When analyzing one problem, the others are considered as solved. What is outside the
considerations of the problem frames approach is that the relationship of all projections also needs
to be addressed. For example, their dependency on a timely order can be maintained, or their de-
pendency or overlaps on a common solution (design) can be used to put the parts together into a
coherent whole.

At this point it should only be mentioned, that using problem frames in requirements analysis
establishes a separation of concerns, which is no hierarchical one like in a functional decomposi-
tion. It requires separate consideration. Jackson and other fellow frame-artisans have developed
approaches to address this need. This dissertation contributes to it either.

A short reading guide

As the postmodern so�ware process also referred to as agile so�ware development in the following
favours fast-paceddelivery ofworking so�ware over following a documented so�ware development
plan [31], the members in a project team “derive much of their agility by relying on the tacit knowl-
edge [and respective gutfeel estimates of progress] embodied in the team, rather than writing the
knowledge down in plans” [35, page 66].

The aim of problem-based project planning is to make this tacit knowledge tangible, and thus
reusable in other project and by di�erent teams. Therefore, it integrates patterns from the discipline
as a shareable, light-weight documentation of a problem-solving plan and its involved argumenta-
tion into agile so�ware development practices.

As table 0.1 shows, on these grounds the research questions

RQ 1 How does the project team determine speed?
RQ 2 How does the project team adjust speed?
RQ 3 How does the project team compare speed?

are investigated and give structure to this dissertation.
The intent of this synergy between agility and patterns is to achieve a win:win situation.

To the practice. To the discipline. Both should be able to understand what speed needs.

Dissertation Research Question and Contributions Models and Patterns
from the discipline to. . .

. . . sustain
Agile Practices

Part I Motivation, Background, Overview introduction to software projects, their planning and performance challenges

Part II Problem-Based Project Estimating RQ 1 How to determine speed?

Chapter 5 Problem-Based Units of Measure · Problem-Based FSM Patterns problem frames user stories

Chapter 6 Problem-Based Estimating Method · Frame Counting Agenda IFPUG functional size measurement planning poker

Part III Problem-Based Project Adaptation RQ 2 How to adjust speed?

Chapter 7 Problem-Based Units of Work · Transition Templates transformation schemas,
architecture design patterns

so�ware increment

Chapter 8 Problem-Based Adaptation Framework · One4All View Model state transition diagrams,
UML sequence diagrams

prioritization, amigos,
story board

Part IV Problem-Based Project Benchmarking RQ 3 How to compare speed?

Chapter 9 Problem-Based Project Baseline
and Speed Benchmark

· Requirements Work Packages measurable problems work items, time-box,
product backlog

· A S.M.A.R.T. Scrum-Agenda IFPUG function points,
agenda concept

story points, Scrum,
sprint backlog

Part V Case Studies
Chapter 10 Vacation Rentals Web Application exemplary application and extension of contributions
Chapter 11 Student Recruitment Web Portal

Part VI Conclusion, Future Prospect, Appendices pro- and retrospective of the further development of contributions

TABLE 0.1 Structure of dissertation, its research questions, contributions, and intension

Contents xi

Contents

Abstract i

Zusammenfassung iii

Introduction v

I. So�ware Projects – Perspectives on a Managed Engineering Discipline 1

1. Motivation – Empowering so�ware project teams to move faster 2
1.1. The Need for Speed . 2
1.2. Research Questions . 4

RQ 1 How to determine speed of so�ware project teams that is comparable? . . . 4
RQ 1.a How to establish pre-defined units of scope? 4
RQ 1.b How to estimate scope size? . 4

RQ 2 How do so�ware project teams get at speed? How do they adjust it? 5
RQ 2.a How to establish pre-defined units of work? 5
RQ 2.b How to plan worthwhile work volume? 6

RQ 3 How to compare speed of so�ware project teams? 6
RQ 3.a How to baseline project plans? . 6
RQ 3.b How to benchmark the progress of projects? 7

2. Background – On the emergence of product requirements and project teams 8
2.1. The So�ware Project Triad . 8
2.2. The Four Dimensions of So�ware Project Speed . 9
2.3. The Fuzzy Front End of So�ware Projects . 12

3. Research Objective – Sustaining decision making and development by pattern practices 15
3.1. Balancing Project Trade-O�s . 15
3.2. Designing for Change . 17
3.3. Planning for Value . 19

4. Overview– Introducingpre-definedunits forplanningscopeandspeedof so�wareprojects 23
4.1. Contributions . 23

C 01 Problem-Based Functional Size Measurement Patterns 24
C 02 Problem-Based Functional Size Measurement Method 24
C 03 Transition Templates . 25
C 04 "One4All" View Model on So�ware Architecture 25
C 05 Problem-Based Project Baseline . 26
C 06 Problem-Based Speed Benchmark . 26

4.2. Publications . 27
4.3. Limitation . 31
4.4. Structure . 32

xii Contents

II. Problem-Based Project Estimating 35

5. Problem-Based Units of Measure 36
5.1. Introduction . 36
5.2. Background . 37

5.2.1. Problem-Orientation and Requirements Engineering 38
5.2.2. Early So�ware Measurement . 42
5.2.3. IFPUG FSMMethod ISO/IEC 20926:2009 – Terms and Definitions 43
5.2.4. Categories of Functional Size Measurement Patterns 45

5.3. Problem Unit – Requirements Work Package . 46
5.3.1. Self-Contained Functionality . 46
5.3.2. Measurable Functionality . 46

5.4. Problem Class – Kind of Functionality . 49
5.4.1. Frame Concern of Problem Frames . 50
5.4.2. Primary Intent of Elementary Processes . 51
5.4.3. Mapping Patterns to Processes by Types of Functionality 52

TOFF-i. processing received information 53
TOFF-ii. processing retrieved information 53
TOFF-iii. processing derived information . 53

5.5. Problem Scope – Amount of Functionality . 54
5.5.1. Hierarchical Levels of Detail . 55

Level I. micro problems . 56
Level II. basic problems . 57
Level III. composite problems . 58
Level IV. multi-composite problems . 64

5.5.2. Tailoring Measurable Problems – Pack the package 65
5.6. Problem Pattern – Frames Revisited . 69

5.6.1. Integrity Conditions . 71
5.6.2. Merge Rules . 71
5.6.3. Problem-Based Functional Size Measurement Patterns 71

5.7. Discussion & Related Work . 73
5.8. Summary . 74

6. Problem-Based Estimating Method 75
6.1. Introduction . 75
6.2. Background . 76

6.2.1. Proxy-Based Estimation – The PROBE Method 76
6.2.2. IFPUG FSMMethod ISO/IEC 20926:2009 – Measurement Process 78

6.3. Requirements Sizing Method . 81
6.3.1. Counting Process . 81
6.3.2. Validation Conditions . 83

6.4. Step-By-Step Guide to the Requirements Sizing Method 87
Activity 1. Classify FUR by Functional Size Measurement Patterns 88

Contents xiii

Activity 2. Determine Data Functions . 89
2.a Identify problem domains as data functions 89
2.b Classify data functions into ILF or EIF 90
2.c Count DET for each data function . 91
2.d Count RET for each data function . 91
2.e Determine functional complexity for data functions 92
2.f Determine functional size for data functions 94

Activity 3. Determine Transactional Function . 95
3.a Identify machine domain as transactional function 96
3.b Classify transactional function as either EI, EQ, or EO 97
3.c Count FTR for transactional function 98
3.d Count DET for transactional function 99
3.e Determine functional complexity for transactional function 100
3.f Determine functional size for transactional function 101

Activity 4. Report Functional Size for FUR . 102
6.5. Sample Application to Jackson’s Basic Frames . 103

6.5.1. Counting a Simple Workpieces Problem: Party Plan Editing 103
6.5.2. Counting an Information Display Problem: Local Tra�ic Monitoring 104
6.5.3. Counting a Commanded Behaviour Problem: Occasional Sluice Gate 106

6.6. Discussion & Related Work . 108
6.7. Summary . 109

III. Problem-Based Project Adaptation 111

7. Problem-Based Units of Work 112
7.1. Introduction . 112
7.2. Background . 113

7.2.1. Architectural Blueprints and Pattern-Oriented Analysis and Design 114
7.2.2. Transformation Schemas . 115

7.3. Transition Templates – Making problems absorb into platform 117
7.4. Problem templates . 119

7.4.1. Set-Up Problem Templates . 120
About problems, and their type and flow inside of involved processes 121
Mapping problems, tasks, and scenarios . 123

7.4.2. Problem Template for TOFF-i. 125
7.4.3. Problem Template for TOFF-ii. 128
7.4.4. Problem Template for TOFF-iii. 131

7.5. Solution templates . 134
7.5.1. Set-Up Solution Templates . 134

About solutions, and their types and flow inbetween of involved processors 136
7.5.2. Solution Templates for Client–Server . 139
7.5.3. Solution Templates for Forwarder–Receiver 141
7.5.4. Solution Templates for Observer/Publisher–Subscriber 143
7.5.5. Solution Template for Model–View–Controller 145

7.6. Discussion & Related Work . 149
7.7. Summary . 151

xiv Contents

8. Problem-Based Adaptation Framework 152
8.1. Introduction . 152
8.2. Background . 153

8.2.1. The 4+1 View Model on so�ware architecture 154
8.2.2. Dependency Management for Problem-Based Units of Work 156

8.3. All for One and "One4All" – An architectural viewmodel for the three amigos 160
View 1. Problems . 162
View 2. Processes . 162
View 3. Plans . 162
View 4. Platforms . 162
View 5. Patterns . 163

8.4. Problem-Based Project Adaptation by the One4All View Model 164
8.5. Synchronizing Requirements by a State Transition Diagram 165
8.6. Sample Application to Use Case Decomposition . 168
8.7. Discussion & Related Work . 171
8.8. Summary . 172

IV. Problem-Based Project Benchmarking 173

9. Problem-Based Project Baseline and Speed Benchmark 174
9.1. Introduction . 174
9.2. Background . 175

9.2.1. Benchmarking . 175
9.2.2. Scrum . 176

9.3. Make the Frame(s)work . 176
9.3.1. Project Time-Box . 176
9.3.2. Project Team . 177
9.3.3. Size Matters to Keep the Pace . 178

Product Increment . 178
Product Backlog . 178
Project Backlog . 178

9.3.4. A S.M.A.R.T. Scrum-A·GenEDA . 179
Project Planning – Baseline product scope 180
Project Daily – Work In Progress . 182
Project Review – Benchmark project success 183
Project Retro – Lessons Learned . 185

9.4. Benchmarking a Problem-Based Project Baseline – A sustainable planning game . . 188
P 1. Cra� a Project Goal . 189
P 2. Estimate and decide on Product Backlog items for the Project Time-Box 189
P 3. Plan how to deliver Product Backlog items into a "done" Increment . 189
D 1. Do work on Project Backlog items . 190
D 2. Inspect and adapt for project’s work progress 190
R 1. Inspect Product Increment . 191
R 2. Adapt Product Backlog . 191
R 3. Inspect Team Performance . 192
R 4. Adapt for Team Improvement . 192

9.5. Discussion & Related Work . 193
9.6. Summary . 194

Contents xv

V. Case Studies 195

10. Vacation Rentals Web Application 196
10.1. Requirements Decomposition . 197

10.1.1. Problem description for RWP01: Prepare Holiday O�er 199
10.1.2. Problem description for RWP02: Present Holiday O�ers 200
10.1.3. Problem description for RWP03: Provide Invoice 201

10.2. Requirements Measurement . 202
10.2.1. Problem count for RWP01: Prepare Holiday O�er 202
10.2.2. Problem count for RWP02: Present Holiday O�ers 204
10.2.3. Problem count for RWP03: Provide Invoice 206

10.3. Use Case Decomposition . 208
10.4. Requirements Specification . 210

10.4.1. Task scenarios of RWP01: Prepare Holiday O�er 210
10.4.2. Task scenarios of RWP02: Present Holiday O�ers 211
10.4.3. Task scenarios of RWP03: Provide Invoice 212

10.5. Requirements Dependencies . 213
10.5.1. Life-Cycle Expressions . 213
10.5.2. State Transition Diagram . 215

11. Student Recruitment Web Portal 217
11.1. Requirements Decomposition . 218

11.1.1. Problem description for FUR #01: Grant Access Authorization 219
11.1.2. Problem description for FUR #02: Record Candidate Data 220
11.1.3. Problem description for FUR #03: Review Candidate Data 221
11.1.4. Problem description for FUR #04: Download Candidate Data 222
11.1.5. Problem description for FUR #05: Upload Candidate Files 223
11.1.6. Problem description for FUR #06: Compile Candidate Résumé 225

11.2. Requirements Measurement . 226
11.2.1. Problem count of RWP for FUR #01: Grant Access Authorization 228
11.2.2. Problem count of RWP for FUR #02: Record Candidate Data 230
11.2.3. Problem count of RWP for FUR #03: Review Candidate Data 232
11.2.4. Problem count of RWP for FUR #04: Download Candidate Data 234
11.2.5. Problem count of RWP for FUR #05: Upload Candidate Files 236
11.2.6. Problem count of RWP for FUR #06: Compile Candidate Résumé 238

11.3. Use Case Decomposition . 239
11.4. Requirements Specification . 240

11.4.1. Task scenarios of FUR #01: Grant Access Authorization 240
11.4.2. Task scenarios of FUR #02: Record Candidate Data 240
11.4.3. Task scenarios of FUR #03: Review Candidate Data 241
11.4.4. Task scenarios of FUR #04: Download Candidate Data 241
11.4.5. Task scenarios of FUR #05: Upload Candidate Files 242
11.4.6. Task scenarios of FUR #06: Compile Candidate Résumé 242

11.5. Requirements Dependencies . 243
11.5.1. Life-Cycle Expressions . 243
11.5.2. State Transition Diagram . 243

xvi Contents

VI. Epilogue 245

12. Conclusion 246
12.1. Problem-Based Enablement of Agile So�ware Engineering Projects 246

12.1.1. Transparency . 247
12.1.2. Adaptation . 247
12.1.3. Inspection . 248

13. Future Prospect 249
13.1. How fast can the so�ware project team become? 249
13.2. Future Directions – Towards Sustainable So�ware Engineering Practice 250

13.2.1. Insights from project practice . 251
13.2.2. Tool support . 252
13.2.3. Process management . 254
13.2.4. Data modeling . 256
13.2.5. Quality attributes . 257
13.2.6. Testing . 258

VII. Appendices 261

A. ISO/IEC 20926:2009 Complexity and Size Tables 262
A.1. Data Function Complexity Matrix . 262
A.2. Data Function Size Matrix . 262
A.3. Transactional Function Complexity Matrix . 263
A.4. Transactional Function Size Matrix . 263

B. Sanity Checks 264
B.1. FCA Validation Conditions and the IFPUG Measurement Process 265
B.2. UML4PF and the Criteria for Certification of Function Point So�ware type 2 278

C. Listing of Philosophies 279
C.1. 7 Lean Principles . 279
C.2. 3 Forms of Waste addressed in Lean Production . 279
C.3. 5 CMMI Maturity Levels for services . 279
C.4. 12 Agile So�ware Development Principles behind The Manifesto 280
C.5. 9 Scaled Agile Framework (SAFe) Lean-Agile Principles 280
C.6. 7 Principles of Earned Value Management System 280

D. Overview on Architecture Design Patterns 281
D.1. Architectural Styles . 281
D.2. So�ware Architecture . 282
D.3. Design Patterns . 283
D.4. Cloud Computing Patterns . 284
D.5. Enterprise Integration Patterns . 285

Contents xvii

E. Structures of Architecture Design Patterns 287
E.1. Client–Dispatcher–Server . 287
E.2. Forwarder–Receiver . 288
E.3. Observer/Publisher-Subscriber . 288
E.4. Model–View–Controller . 289

F. For Further Discussion 290
F.1. User Story templates out of problem-based functional size measurement patterns . 291
F.2. Data modeling by problem-based user story templates 293
F.3. Roles and Permissions matrix by problem-based user story templates 294
F.4. Story Mapping by problem-based user story templates – The amigos’ big picture . . 295

Tables 297

Figures 299

Examples 303

Acronyms 305

References 307

Part I.

So�ware Projects – Perspectives on a
Managed Engineering Discipline

Part I introduces the vicious cycle of software projects, which is addressed in this dissertation.
One the one hand, there is the management perspective in each software project, responsible for
establishing a plan for value delivery. On the other hand, there is the engineering perspective
in each software project, responsible for producing a software product, which progresses to plan.
Software projects get into trouble, each time the rate of progress (project speed) is not matched
with the delivery of value (project size) as planned. Project teams which are in the position to
balance these trade-offs are also in control of making their project a success. Chapter 1 Motiva-
tion – Empowering software project teams to move faster, presents what speed means to software
projects, and why it is challenging to software project processes and teams. It derives research
questions to be answered by this dissertation, indicating the gaps to be closed, in order to take
advantage of speed control. Chapter 2 Background – On the emergence of product requirements
and project teams, discusses the factors that impact project success, and its dependence on plans,
which anticipate change. Chapter 3 Research Objective – Sustaining decision making and de-
velopment by pattern practices, gives insights on the bond of project speed and project size with
regard to a defined scope of software product requirements. It proposes the use of pattern prac-
tices to sustain both management and engineering tasks in software projects, and which enforce
a stabilized project scope that is subject to change control. Chapter 4 Overview – Introducing
pre-defined units for planning scope and speed of software projects, summarizes the contributions
made available in this dissertation to provide software project teams with a common basis to plan
for delivering value and its involved development work both by referring a defined project scope.

2 Motivation – Empowering software project teams to move faster

1. Motivation – Empowering so�ware project
teams to move faster

1.1. The Need for Speed

In 1995 Olsen noted, “It is a truism that "so�ware is always late".
This is not only the rueful admission of poor planning, bad process, or poor engineering discipline,
but a profound statement of market dynamics in the Information Age: products should be released
in the moment they are conceived.” [164, page 28]. He allusioned to the pressure of time-to-market
for so�ware products or services as the “primary force behindprofit” [164, page 29]. Another 15 years
later, this situation has become evenmore dramatically present in the so�ware business.

As stated by Andreessen (2011) “So�ware is eating the world.” [16].
“Over the last decades, the value in virtually every industry and very aspect of our lives has shi�ed
from the "atoms" to the "bits" [. . .] so�ware allows for faster innovation” [39, page xxvii] is summa-
rized by Bosch in 2016. And while new technologies and its therewith involved demand for innova-
tion increases, which “are now being adopted by customers enmasse in a periodmeasuringmonths
[or less], not years” [132, page 33], which King (2010) illustrated by a conclusive graph [132, page 33,
and figure 1.4] on how radical these rates for technology mass adoption have changed. Lindegaard
(2014) pointed out “the window of opportunity gets smaller [. . .andmust be hit] more o�en in order
to create strong return on investments”.

Consequently, Bosch [37, slide45, published in [22]] demands for “IncreasingSPEED [of so�ware
delivery, which] trumps ANY other improvement R&D can provide to the company – it is the founda-
tion for everything else. As a process, methods or tools professional, there is only ONEmeasure that
justifies your existence: how have you helped teamsmove faster?”

Speed-upso�wareprojectsmeansaccording toBosch (2016) to shorten“the time from identified
customer need to the delivered solution in the hands of the customer” [39, page 6], which implies
the accelerated responsiveness to emerging user requirements as well as the rapid delivery of the
so�ware product, which both make the business value.

This is the field where agile project practices promise to perform best, since they implement
a time-boxed so�ware development process of frequent, incremental value delivery, which allows
for immediate so�ware adaption to changed user needs. The fast-tracked delivery of “Working so�-
ware”and“Responding tochange”are twokeyvalues inagile so�waredevelopment, asdocumented
in the Agile Manifesto [31].

In this context, agile projects are advertised for executing projects in a state of hyper-produc-
tivity, which according to Sutherland conforms to “at least the Toyota level of performance, which
is four times the industry average.” [204] A commonly perceived, but o�en neglected issue involved
with this promise of reaching accelerated so�ware production due to agile project practice is, that
“We know they exist, [. . .] the increases in productivity we see through the course of an Agile project
[. . . ,] but we lack any defined way to measure them.” [105]

The challenge of measuring productivity is not specific to agile so�ware delivery. It is a gen-
eral concern to each projectmanagement and organization, which implements data-driven decision
making for planning, monitoring, and controlling projects.

The Need for Speed 3

In particular, performance data are essential for quantifying supposed project speed (improve-
ments), but these become unattainable, “If you do not intend to gather data carefully enough to be
useful for later analysis [in that case] you should not bother to gather it at all.” [114, page 50]. How-
ever, “leaders o�en struggle is in setting the right pace for their digital journey: fast enough to build
the business of the future, but not so furious that they lose control.” [24] So, suitable performance
data are urgently needed to pass this challenge. In this context, Ebert and Dumke (2007) noted that,
we must overcome “the di�iculty in IT services and so�ware development [, which] is still that pro-
ductivity is not measured consistently – if at all.” [83, page 441], which is a prerequisite for providing
evidence, and for taking proper action, such that the project team is moving fast(er).

Humphrey (1995) complemented to theuseof data-drivendecision-making in so�wareprojects,
that “Once you know your performance rate, you can plan your work more accurately, make com-
mitments more realistically, and meet those commitments more consistently.” [114, page 12] Agile
project practice provides an answer to this by “The term "velocity" [which] is, in ordinary language,
just a synonym for speed. [. . . It] denotes the number of story points achieved in the current project
iteration. Velocity thus defined is a measure of work accomplished .” [156, page 124] as defined by
Meyer (2014), who emphasized in addition, that “ Once the user stories [aka so�ware product re-
quirements] have been given individual [. . .story points] and an iteration starts, the same measure
can serve to assess progress. This is where velocity becomes useful.
This notion addresses a crucial need which, surprisingly, has been o�en ignored in pre-agile so�-
ware development: to provide a clear, measurable, continuous estimate of the speed at which the
project is progressing.” [156, page 123]

Unfortunately, story points are “an arbitrarymeasure that varies wildly between teams. There’s
no crediblemeans of translating it into a normalised figure that can be used formeaningful compari-
son.” [158], and “since there is no standardway of gathering numbers [. . .] comparing thembecomes
a futile excercise.” [105]. Ambler (2016) commented on this trouble, “It generally isn’t possible to use
velocity as ameasure of productivity. [Due to the fact, that] You can’t compare the velocity of the two
teams because they’re measuring in di�erent units.” [13], which Alleman (2014) resumed by propos-
ing to establish the “assessment of progress to plan based on pre-defined units of measure. This
avoids the opinion of progress” [8], and thus team-unique performance data. Establishing proper
units of measure, which are reusable in di�erent projects and teams, would enable comparison of
their productivity and provide data for analyzing speed trade-o�s.

In summary, “to make [performance] improvement the team should know their velocity.” [204,
page 144] One the one hand “to see if a state of hyper-productivity has been reached [and on the
otherhand, the teamshouldknow .. .] Arewespendinge�ort inamannerwhich is sustainable?” [105].
Agile so�ware projects follow an evolutionary approach to so�ware development. Consequently,
“"It ain’t just about being fast." Sacrificing quality for speed will only slow you down later. Choose
a development toolset that helps produce excellent code in record time.” [176] Accordingly, fast-
tracked quality so�ware development is only possible by an intertwined discipline for project man-
agement and so�ware engineering, which incorporates best practices. Then, “instead of trying to
achieve the measurement part [solely], teams [. . .can] focus on delivering useful, working
so�ware” [105], which is a key to value-driven so�ware delivery, by “look[ing] for solutions that rev
up productivity.” [176] This paves the way for empowering project teams to move faster.

Or as Putnam andMyers (1992) explained “there is evidence that so�ware reliability (or number
of errors) is related to productivity. When productivity improves, errors seem to decline, or, as others
put it, whenmore emphasis is put on quality, productivity increases.” [178, page 2]

It has only been twenty years since, Coplien et al. (1998) have formulated another truism,
describing best what this dissertation is about: “So�ware engineers must produce systems rapidly,
but also be sure they are carefully engineered. This is the so�ware engineer’s dilemma.” [64, p. 45]

4 Motivation – Empowering software project teams to move faster

1.2. Research Questions

The previous section 1.1motivates the need for speed to the delivery of so�ware that adds value, and
gives reason for investigating the following main research questions RQ 1 to RQ 3:

RQ 1 How to determine speed of so�ware project teams that is comparable?

Research question RQ 1 is refined into the following research questions RQ 1.a and RQ 1.b, which are
going to be answered by the research work contributed through this dissertation.

RQ 1.a How to establish pre-defined units of scope?

“Before you can estimate job size, you need a consistent and repeatable way to describe a product’s
size .” [114, page69]That is, before the teamcandecideon items tobe included in theprojectbacklog,
it requires a commonunderstanding [59] about thoseproduct(ion) units. Otherwise, they suffer from
a bootstrapping problem [56] each time they set up a project plan: what is the baseline they will
compare new items to, which accounts for keeping their project planning consistent.

In case the project team refers items back to a recognizable scope of product requirements,
planning and involved estimating “becomes a matter of looking at the previously estimated items
and finding something requiring a similar amount of work.” [58] It is the team approach to repro-
ducibly pack so�ware product requirements into product(ion) units, applicable as backlog items,
which drives the predictability of their project plans.

It is common practice in agile projects to make use of user stories as backlog items. These are
structured requirements statements that “typically follow a simple template ” [60], but whose story
sizes [54, page 6] are not “within one order of magnitude” [55, page 53]. That is, the amount of func-
tionality covered by this statement is of variable level of detail, which needs special consideration
within the project planning process. User stories do not support scoping or sizing of requirements
per se.

It depends on the teams’ shared knowledge about particular user stories, usually established by
discussion on these, to reach consensus on what they perceive as a comparable scope and respec-
tive size of requirements. Pre-defined units for establishing defined sets of so�ware requirements,
meaningful to most decision makers in the project, would allow for reuse of their common under-
standing in different teams and projects. These product requirements’ units of pre-defined scope
would assist teams in stabilizing the comparability of their project plans and deliverables, providing
themwith a common point of reference to “bridge any gaps in understanding” [73, page 1343].

RQ 1.b How to estimate scope size?

“The principle reason you estimate the size of a so�ware product is to assist you in planning its de-
velopment. The quality of so�ware development plans, in turn, generally depends on the quality
of the size estimates.” [114, page 141] In agile projects, a gamified decision-making process known
as Planning Poker [54, chapter 6, page 56] serves the project team to establish size estimates for
chunks of so�ware product requirements by reaching consensus on point values for user stories. It
is amodern adaption of theWideband-Delphi estimation technique [34, page 335] used for so�ware
size estimation since the 1980s.

The key benefits of requirements estimating in points are (i.) that theymake “the unit of estima-
tion abstract, which makes it easier to commit to, and easier to adjust your commitments to” [221,
page 161], and (ii.) their self-correcting nature [221, page 160]. It ”does not matter if our estimates

Research Questions 5

are correct [. . .]as long as we are consistent with our estimates, measuring [these point values . . .]
will allow us to hone in on a reliable schedule.” [55, page 63] and “to meet expectations more con-
sistently” [221, page 161].

“Studies have shown that we are best at estimating things that fall into one order of magni-
tude” [55, page 52]. Consistent requirement estimates demand the identifiability of comparable
requirements that require “a similar amount of work” [56], and to join these into groups that are
meaningful for estimating [73, page 1343] to most members of the project team. So�ware project
teams that rely on the Planning Game are even in the presence of these recognizable units of so�-
ware product requirements scope, at risk to an anchoring problem: since the meaning of points as-
signed to requirements or user stories relates to anestimator’s “experienceandgood feel rather than
on formal criteria” [73, page 1343]. “No standard for story points exists. Each development team is
free to define a story point as they wish.” [225, page 40]

Measuring the size [117, 118] of so�wareproduct requirements [2] insteadof guesstimating these,
has not been able to prevail in agile project processes so far [211]. It is supposed to be a worthwhile,
but likewise futile sweeping e�ort [55, page xxiii], which indeed o�ers consistent size estimates, but
which also is substitutional to the ease of the estimatingmethod. “Size is an accurate predictor” [114,
page 99] and “the need to estimate ’size’ [. . .] has not diminished” [55, page xxiii] even in agile so�-
ware projects to form the basis for predictable planning of value delivery. An aspired size measure-
ment method should work on recognizable units of so�ware requirements, such that related mea-
suring results always refer to a defined product scope.

RQ 2 How do so�ware project teams get at speed? How do they adjust it?

Research question RQ 2 is refined into the following research questions RQ 2.a and RQ 2.b, which
are going to be answered by the research work contributed through this dissertation.

RQ 2.a How to establish pre-defined units of work?

There isn’t just onewayofdoing it, but to speedupdevelopment, you should “maximize the reusable
components so you have less to develop” [164, page 33]. Having a “feature that appears in multi-
ple contexts” [226, page 356] o�ers “the greatest opportunities for reusing not just certain require-
ments, but also their downstream work product, including architectural components, design ele-
ments, code, and tests. This is themost powerful form of reuse, but we don’t o�en detect the oppor-
tunity to take advantage of it” [226, page 357]. Hence, these features or groups of unique so�ware
functionality, which represent candidates for reuse, are present in di�erent forms in the so�ware
product and production assets available.

“Reusing [. . .something] that someoneelsehasproduceddoes takeagooddealofwork. [. . .But,]
reuse is the only currently available technology that shows promise of order of magnitude improve-
ments in so�ware development quality and productivity” [114, page 85]. The challenge is to build
and link features in a way, which enables their recognition and instant reuse. The aim is to avoid
doing things twice.

Cohesive components, such as “COTS (commercial o�-the-shelf products) so�ware packages
[. . .] used as a self-contained solution to a problem [. . .] to satisfy user needs” [226, page 598], or
families of functional commonalities, such as applied in so�ware product line development [226,
page 356], have in common that these refer a defined scope of recurring forms of so�ware function-
ality.

Units of work defined on the level of a process asset (as template for so�ware development,
which is “a pattern to be used as guide for producing a work product.” [226, page 531]), that makes

6 Motivation – Empowering software project teams to move faster

allowance for this defined scope, “will help the teammembers perform processes consistently and
e�iciently” [226, page 530], and provision for alternative candidates by making dynamic linkage of
ready-to-use so�ware asset possible.

RQ 2.b How to plan worthwhile work volume?

“First Things First [. . .] The key is to figure out how to deliver the most value the most quickly. [. . .]
you want delivers those 20 percent of features that hold 80 percent of the value” [204, page 188].
Agile project practicesmake use of a prioritized list of so�ware product requirements or user stories
as items of a product backlog, which become allocated to the project plan. Features on top of the
product backlog have the highest priority to the customer (or user of the so�ware), who decides on
these and their order on the list. So, planning the work for the delivery of value is always directed
towards user satisfaction and priority as given by this list [226, page 597]. The teampicks items from
thebacklogandcreatesworkpackages for their delivery. Ifmoredetail regarding thedevelopmentof
suchan item isavailable, thebetterplanningofworkvolume foraproject timeboxbecomespossible.

For instance, taking in addition the so�ware life cycle into account, brings more insights on the
importance of work items for satisfying backbone features of the application. This allows for respec-
tive classification of these into need- and nice-to-have ones, which sustains decision making on the
project plan. Furthermore, knowledge about the time needed to complete comparable (sizes of)
work items provides also for justifying the work volume of the project plan. That is, knowing the
speed at which a project team demonstrated successful value delivery is cruicial.

Making systematic use of traceability between desires and deliverables adds to product-based,
output-driven planning in so�ware projects, which enables to replay or revise respective decision
making and development plans as needed for a doable work volume.

RQ 3 How to compare speed of so�ware project teams?

Research question RQ 3 is refined into the following research questions RQ 3.a to RQ 3.b, which are
going to be answered by the research work contributed through this dissertation.

RQ 3.a How to baseline project plans?

Within an agile project process framework such as Scrum [196], the project plan is represented by
the Sprint Backlog, it is referred to as Project Backlog or Project Baseline in the following. It is an
approved proposal [19, page 307] for achieving a project product plus a plan of work to be done for
its delivery “in order to gain acceptance” [19, page 310].

The project backlog, which reflects the scope of a project plan (project scope), is defined by
its set of backlog items. These are work packages [19, page 314] planned for the upcoming (Sprint)
timebox to fulfill a particular extent of so�ware product requirements. When "done", these units
of work contribute to the project output [19, page 307] (Increment), producing the desired project
product [193, page 16] scope.

Planning reasonable work volume for a timebox requires knowledge of project teams’ past per-
formance, which is based on the point values a team has assigned to each work package. These
points for each unit of work depends on the unit ofmeasure used by the team for estimating desired
product scope, or rather they have used for determining respective so�ware requirements’ size. Ac-
cordingly, work packages, done within the timebox coincide with satisfying desired product scope.
That is, respectively scored points acknowledge the project baseline and its involved team speed
measurement.

Research Questions 7

In order to baseline project progress to plan on pre-defined units of measure for project team
speed, these must be meaningful to both so�ware production (work packages) and the so�ware
product (requirements), to leverage commonalitieswithin their scope for project planning. So�ware
project teams take advantage by building on these commonalities for determining scope size and for
making the product and production view intertwine in a reusable way.

RQ 3.b How to benchmark the progress of projects?

In agile project practice, working so�ware appraised "done" by the team is the primary measure of
project progress [31]. Speed is “The current rate of progress” [21, page 129]. It is “the volume of work
accomplished in a specified period of time by a given team.” [103]

“Velocity in agilemethods is ameasure of the speed the team is delivering at, usually” [221, page
338] determined by “an arbitrary point system that is unique to a given team” [13]. “Ultimately, a
team canwork out howmany points they can do in a timebox and can forecast future work through-
put, although this does need a degree of stability in the working environment so that like is being
compared with like.” [21, page 106]

“But you can’t really use Velocity to compare” [221, page 170] ”two teams because they’re mea-
suring in di�erent units” [13], used for planning the project: the work to be done, the point values
to express the involved volume of work, and the timebox available. It relies upon the teams shared
method and experience to make the approved project plan a project performance measurement
baseline [124, page 82], which serves them as “reference level” [19, page 303] for assessing “actual
progress against expectations” [19, page 309], and for allowing them to measure integrated perfor-
mance in terms of speed consistently.

Sustaining project teams in the “assessment of progress to plan based on pre-defined units of
measure” [8], would be of cross-teamand project benefit. It would have the advantage ofmitigating
the risk ofmanipulated point values due to error or forced inflation [21, page 251], a�ecting the com-
parability of project team speed. Pre-defined units for establishing the so�ware project plan would
provide project teams with a common point of reference for objective measurement and compari-
son of their speed. These need to bemade available through the so�ware process in order for them
to take e�ect for the team.

8 Background – On the emergence of product requirements and project teams

2. Background – On the emergence of product
requirements and project teams

2.1. The So�ware Project Triad

Any “project is a temporary endeavor undertaken to create a unique product” [124, page 5]. Project
management is concernedwith “planning, [. . .] monitoringandcontrolof all aspectsof theproject” [19,
page 4 and 309] to achieve the desired product within the expected project constraints. Figure 2.1
shows the competing project constraints of time, scope, and resources a�ecting one another [124,
pages 6 and 7]. So�ware project management is concerned with balancing these constraints for es-
tablishing a sound project plan, one which ultimately defines project success, since project deliev-
erables are compared to it [124, page 99].

RequirementsUp-Front On-Demand

Fixed

Estimated

Speed �

Plan
Driven

Resources Time

Scope

Value
Driven

Resources Time

Scope

Scope-
oriented

Schedule-
oriented

FIGURE 2.1 The so�ware project triad on its head, adapted from [144, page 68, figure 6-1]

On its le�, figure 2.1 shows the so-called "iron triangle of project management" as been seen in
traditional, plan-driven project management processes. Scope-oriented, waterfall-likemanaging of
so�ware projectsmeans to subordinate the planning of time and resources to a rigor, up-front fixing
of the project scope, which is represented by a plan of the “work that is needed to be accomplished
to deliver a [so�ware] product [. . .]” [124, page 103] and “the extent of [its] requirements” [19, page
312]. On its right, figure 2.1 shows the shi� of the samecompeting project constraints, as been seen in
recent, value-driven so�ware projectmanagement practices. Schedule-oriented, agile project prac-
tices means to plan so�ware product requirements on-demand for the delivery of value on time,
which is the top-priority. The project team "embraces change" by estimating howmuch scope they
can do within a fix project timebox. Therefore, they need to know their speed.

As reported by The Standish Group [208], insu�icient requirements belong to the top three im-
pairments of successful so�ware projects, besides the lack of user involvement and the unability to
cope with change. Scope- and schedule-oriented so�ware project management following di�erent
emphasis in planning projects for mitigating this risk.

Boehm[35, page67]argues, thatplan-drivenmethodshave theirhome-ground inhigh-assurance
so�ware, “investing in lifecycle architecture and plans [. . .] to facilitate external-expert review” [35,
page 66], particularly with regard to any shortcomings in the requirements. In addition, this kind of
documentation allows to coordinate and to scale for projects in complex settings. Scope-oriented

The Four Dimensions of Software Project Speed 9

projectmanagement works best, when requirements can be determined in advance und remain rel-
atively stable [35, page 66], since “rapid change will make the plans obsolete or very expensive to
keep up to date” [35, page 66].

Value-driven methods focus more on “the planning process than the resulting documentation,
so these methods o�en appear less plan oriented as they are” [35, page 64]. They ”derive much of
their agility by relying on the tacit knowledge embodied in the team, rather than writing the knowl-
edge down in plans [. . . , which works fine, when their common understanding of the requirements
is] su�icient for the application’s life-cycle needs” [35, page 66]. This makes agile project practices
preferable for small projects with equally small-sized, stable teams that can handle respective face-
to-face communication. Schedule-oriented approaches work best when “requirements are emer-
gent rather than prespecificable [. . . , but] these methods risk tacit knowledge shortfalls, which the
plan-driven methods reduce via documentation and [. . .] review.” [35, page 66]

Boehm [35, page 69] concludes, “Although information technology trends are moving us closer
to agile method’s emergent requirements and rapid change [. . .], increasing dependability concerns
call for measures best implemented with plan-based solutions. To meet these disparate needs, or-
ganizationsmust carefully evolve towards the best balance of agile and plan-drivenmethods that fit
their situation.” They “don’t need just rapid value or high assurance – they need both.” [35, page 67]

2.2. The Four Dimensions of So�ware Project Speed

According to McConnell [151, pages 3, 4] “Development speed depends on the choice of [e�ective]
schedule-oriented practices [. . .] that enable you to develop faster.” Figure 2.2 shows that so�ware
projects “operate along four important dimensions: people, process, product, and [platform, . . .]
which can be leveraged by practices for maximum development speed.” [151, page 11]

Process Product

Platform

People

Change �Change �

FIGURE 2.2 The four dimensions of so�ware project speed, adapted from [151, p. 11, fig. 2-3]

McConnell [151, pages 3, 4] clarifies also that “When you put e�ective schedule-oriented prac-
tices together with a plan for using them, you’ll find that the whole package provides for dramatic,
real improvements in development speed.” [151, pages 3, 4]

This plan for e�icient so�ware development is onlymade possible by engineering discipline “to
improve overall development capabilities” [151, page 20] of individuals, teams and organizations,
which are involved in so�ware projects. It manifests in the so�ware project management strategy
or respective development lifecycle process, and should aspire to balance plan-driven anticipation
and value-driven adaptability according to Highsmith [111, page 214] for improving the perpetuity of
so�ware projects responsiveness to change. This “is as necessary as it has ever been, especially as

10 Background – On the emergence of product requirements and project teams

so�ware system size and complexity grow” as concluded by Boehm and Turner [36, page 23].
McConnell [151, pages 19, 20] argues further that “For many projects, [this plan] represents a

sensible optimization of [the project constraints, given by resources, time, and scope]. [. . .] Another
reason to focus on [so�ware engineering discipline] first is that for most organizations the paths to
e�icient development and shorter schedules are the same. [. . .] they just need to get organized!
[. . .] most [so�ware projects] would benefit from setting a course of e�icient development first.”

In the following, a brief description of each dimension of so�ware project speed is given, to-
gether with a short explanation of their role and their dues for operating so�ware projects.

Product is the “most tangible dimension [. . .], and a focus on product size and product character-
istics presents enormous opportunities for schedule reduction[, . . .] limited only by your customer’s
product concept and your team’s creativity. ” [151, page 17]

“Because the e�ort required to build so�ware increases disproportionately faster than the size
of the so�ware, a reduction in size will improve development speed disproportionately. [. . .] don’t
shackle your developers by insisting on too many priorities at once. ” [151, page 17] “The product
[should be defined . . .] in a way that stymies the best e�ort of the people who are building it.” [151,
page 11]

People perform “quickly, or they perform slow.” [151, page 11] “The way people are organized has
a great e�ect on how they can work. [So�ware projects] can benefit from tailoring their teams to
match project size” [151, page 13].

We “know with certainty that peopleware issues have more impact on so�ware productivity
and so�ware quality than any other factor. [. . .] study a�er study have found that the productivity
of individual programmers with similar levels of experience does indeed vary by a factor of at least
10 to 1. [. . .] Studies have also found that variations in the performance of entire teams on the order
of 3, 4, or 5 to 1.” [151, page 12]

The “most e�ective practices are those that leverage the human potential [. . .]” [151, page 12]
Any “organization that’s seriously about improving productivity should look first to the peopleware
issues of motivation, teamwork, sta� selection, and training.” [151, page 13] “A signification consid-
eration here is the unavoidable statistic that 49.9999 percent of the world’s so�ware developers are
below average” [35, page 65]. Olsen [164, page 32] adds that “On the long run, you getmore bang for
your buck when you hire top notch programmers.” Chose practices that enable the so�ware project
team to excel.

Process “as it applies to so�waredevelopment, includesbothmanagementand technicalmethod-
ologies. [. . .] Process represents an area of high leverage in improving your development speed –
almost asmuch as people. [. . .] Organizations that have explicitly focused on improving their devel-
opment processes have, over several years, cut their time-to-market by about one-half and reduced
cost and defects by factors of 3 to 10” [151, page 14].

“One of the most straightforward ways to save time on a so�ware project is to orient your pro-
cess so that you avoid doing things twice.” [151, page 15] “Michael Jackson (the singer, not the com-
puter scientist) sang that "One bad apple don’t spoil the whole bunch, baby". That might be true
for apples, but it isn’t true for so�ware. [. . .] To slip into slow development, all you need to do is
make one really big mistake; to achieve rapid development you need to avoid making any big mis-
take.” [151, pages 37, 39] “Do it right the first time. When you make a mistake, fix it right away [. . .]
Fixing it later can take you more than twenty times longer than if you fix it now.” [204, page 109]
“The lessons learned from 20 years of hard knocks can help your project to proceed smoothly. [. . .]

The Four Dimensions of Software Project Speed 11

Half of the challenge is to avoid disaster, and that is an area in which standard so�ware-engineering
principles excel.” [151, page 15]

“Theprocess leveragespeople’s time, or it throwsupone stumbleblocka�er another.” [151, page
11] “targeting resources [in terms of people in the project team [124, page 446] and reusable so�ware
assets] e�ectively [. . . to] get as much work done each day as possible [. . .and therewith] contribute
to the overall productivity.” [151, page 16]

Platform “Technologyassists thedevelopmente�ort, or it thwartsdevelopers’ bestattempts” [151,
page 11]. “Change from less e�ective tools tomore e�ective tools can also be a fast way [. . .] Change
from low-level languages [. . .] to high-level languages [. . .] was one of the most influencial changes
in so�ware-development history. [. . .] move towards componentware [. . .] might eventually pro-
duce similar dramatic results.” [151, page 17] “The system should be first made to run.” [42, page 18]

Each dimension of so�ware project speed provides its own practices to improve the perfor-
mance of so�ware projects. The challenge is to keep an eye on their fruitful synergy in the presence
of change, which in the following is attributed back to a matter of (choosing) proper practices for
project scope control, in regard to the specification and satisfaction of so�ware requirements.

Newormodifiedproduct requirementsmustbeclearlydefined, and their sizeanddependencies
need to be determinable, and scalable in a reproducible way. This is a prerequisite to proper scope
control as needed for iterative, short-cycled projects, which intend to take advantage of incremental
so�ware development. It also makes independent work on respectively synchronized deliverables
possible, such that more people can get more work done, which contributes to the overall project
pace.

User involvement in this connection, not only means to proactively address the customer’s ig-
norance of purpose [42] and priority [227]. It also calls for investing in preparatory training of each
teammember to fast-track their orientationonhow theproduct requirements are (in general) turned
into desired deliverables. Awareness of worst practices and knowledge about best ones contributes
to the raise of quality and the avoidance of disasters, which ultimately pushes a project’s (team) per-
formance. People must be enabled to adapt their actions quickly and thus become responsive to
changed project conditions.

Establishing bidirectional traceability of requirements from their emergence to their implemen-
tation is a key to this challenge. This is where so�ware architecture becomes vital for the decision
making and development as utilized within the project process.

Architecture holds required traceability links, which ease reuse and integration, by describing
(a defined scope of) commonalities between desired product functionality and present technology
(platform). By appropriate application, these (comparably scoped) commonalities are a starting
point for targeting the resources available (in each dimension) e�ectively.

Leveraging these commonalities by means of patterns provide teams with a baseline for their
benchmarking and for exploring (alternative) options of action. They can compare to the perfor-
mances and benefit from experiences, which have been made in problem-solving cases of other
projects. It facilitates doing it right the first time, which increases the overall project quality, and
consequently (and especially in incremental development) speed-up (team) performance.

12 Background – On the emergence of product requirements and project teams

2.3. The Fuzzy Front End of So�ware Projects

Since each so�ware project is an unique endeavor, each step towards delivery of the project prod-
uct is accompanied with uncertainty, indicated by the lack or variability of information available for
proper decision making. To fast-track so�ware projects, these require to start as soon as possible
and to proceed as planned, which is hindered, when project options cannot be fixed su�iciently, to
turn them into action for the project to proceed.

There is the risk of wasted time during the fuzzy front end of so�ware projects, which “is the
time before the project starts” according to McConnell [151, page 44]. This work considers the entire
so�ware project planning horizon from this fuzzy front end, up to the point where so�ware develop-
ment starts. This horizon ends in plan-driven as well as in value-driven so�ware delivery at the time
point, where the requirements are approved complete, and the project scope is documented in the
project plan.

In this context, two forms of variability or fuzziness that yield uncertainty must be controlled or
properly responded: change in early project stages a�ecting its timely initialization, and change that
comes later during the project, a�ecting formerly estimated conditions and the project progression
as planned. In the following, change with regard to product scope and the people dimensions in fig-
ure 2.2 is further detailed, since these have the greatest impact on speed, asmotivated in section 2.2.

The need to anchor the project scope Figure 2.3 shows the so-called Cone of Uncertainty given by
a bold, tapered graph. It shows “ the best-case accuracy that is possible in so�ware estimates [with
regard to theproject scope] atdi�erentpoints in aproject ” [152, page37]. Bothplan-drivenaswell as
value-driven so�ware projects have to execute the steps annotated along the horizontal axis of the
graph from initial concept to final software product , even though in di�erent detail and number of
repetitions. “The vertical axis contains the degree of error that has been found in estimates created
by skilled estimators at various points in the project [. . .] estimates created very early in the project
are subject to a high degree of error [. . .where] The total range from high estimate to low estimate is
4x divided by 0.25x, or 16x!” [152, page 36].

4x

2x

1.5x

1.25x
1.0x
0.8x

0.67x

0.5x

0.25x

Time

Variability in
Project Scope

Initial ConceptInitial Concept

Approved Product DefinitionApproved Product Definition

Requirements CompleteRequirements Complete

Design CompleteDesign Complete

Software CompleteSoftware Complete

FIGURE 2.3 The Cone of Uncertainty, adapted from [152, p. 37, fig. 4-2, and p. 38, fig. 4-3]

The Fuzzy Front End of Software Projects 13

Figure 2.3 shows by the gray shaded area, “what happens when the project doesn’t focus on
reducing variability – the uncertainty isn’t a Cone, but rather a Cloud that persists to the end of the
project. [. . .] You must force the Cone to narrow by [making decisions about what the project will
deliver or not that remove] sources of variability from your project.” [152, page 38] The Cloud of Un-
certainty indicates, that change which comes late to the project, i.e. a�er the project plan is fixed,
expands the agreed project scope, if not controlled or responded properly. In this regard, the Cloud
of Uncertainty marks deviation of the project as planned, which in contrast is represented by the
graph for the Cone of Uncertainty.

Laranjeira [136, page 517, figure 5] has found that the accuracy of the so�ware estimate (consid-
eres as relative size range) and its therewith involved so�ware project planning depends on the level
of refinement of the so�ware product (requirements). “The reason the estimates contain variability
is that the so�ware project itself contains variability. The only way to reduce the variability in the
estimates is to reduce the variability in the project.” [152, page 36]

In contrast, remaining too long in the fuzzy front end, would not provide for more accuracy. As
figure 2.4 shows by the time-accuracy curve, more time spent on requirements specification would
have a reversal e�ect on their accuracy a�er a certain point in time. Value-driven project practices
accept, that the so�ware product requirements cannot be specified in all detail in advance, taking
into account that users are rarely aware of what their needs really are [42, page 17]. Agile require-
ments cope with the fact that so�ware product requirements can only be approximations of the
users needs, so that a bit of vagueness remains, which is seen as chance to do better rather than risk
to fail. Plan-driven project practices stop requirements specification and thus the approved project
baseline at a later point in time,where the risk of deprecated requirements and their possible end-up
in analysis paralysis becomes much closer. That is, plan-driven projects start with a wider cone and
respective project scope size than value-driven ones, which makes themmore sensitive to change.

Time

Accuracy 50

100 just-enoughjust-enough
requirementsrequirements

deprecateddeprecated
requirementsrequirements

analysisanalysis
paralysisparalysis

baselinebaseline

FIGURE 2.4 Time-Accuracy Curve, adapted from [55, page 50, figure 6.1]

14 Background – On the emergence of product requirements and project teams

Theneed tobootstrap theproject team relates toBrook’s LawofAddingmanpower toa lateproject
makes it later, which Brooks [43, page 23�, chapter 2] illustrated by the fact that it takes time to peo-
ple to rampup. Newly formed teamsor assignedmembers require extra-time for coordination, train-
ing, and communication on the work to be done, which slows down the overall performance of the
team, and thus makes an already late project later, when not accounted for wisely.

This is also supported by Tuckman [213]’s 4-stages model of group development, where each
newly formed team develops sequentially through the stages of

1. Forming: teammembers getting to know each other.

2. Storming: teammembers assert their di�erences, which need to be aligned.

3. Norming: teammembers become constructive and learn how to work e�ectively as a team.

4. Performing: teammembers performing to their best.

Teams in stage four have the best collaborativematurity. Their members share lessons learned,
resulting fromexperiencesmadeandassumptionsbuilt on commonprojects, they estalishedmeans
for talking the same language to each other, which finallymakeperformance improvements become
e�ective. It canbe supposed that consensus reached in a stable team is of high reliability [146]. Stage
four is only accessible bymeans of team stabilization, either regarding teammembership, or regard-
ing the conceptual integrity [42, page 11] of a project. It is a prerequisite to speed up development,
and also an indicator for e�ectivemaintainance of a teams’ shared understanding about how to and
what product to build.

It cannot be ignored that project sta�ing is volatile even in agile projects [179]. Notwithstanding,
especially agile projects are “Assuming that there is stability and constancy in the team” [21, page
129], i.e. a stable team [220], for doing justice to the creed to "trust the team", since they are “relying
on the tacit knowledge embodied in the team, rather thanwriting the knowledge down in plans” [35,
page 66]. This makes themmore sensitive to personnel turnover than plan-driven project practices.

Bootstrapping teams means to fast-track their initialization (stage 1. to 3.) when projects start,
and particularily in the presence of change, by empowering their collaboration and knowledge shar-
ing.

15

3. Research Objective – Sustaining decision
making and development by pattern practices

3.1. Balancing Project Trade-O�s

As motivated in section 2.1 The So�ware Project Triad, so�ware project management is about bal-
ancing the constraints of scope, time, and resources for establishing a project plan, and controlling
project progression according to it. Figure 3.1 continues discussion on these project constraints for
schedule-oriented project management practices, as has been started by figure 2.1 on page 8.

The le�hand triangle in figure 3.1 as suggestedbyLe�ingwell [144, page68, figure 6-1], presumes
not only a Fixed project Time box, but also a Fixed commitment to the (speed of the) Resources
available (at which the project will proceed). This coincides with one of the principles behind the
Agile Manifesto [31], which is that the team “should be able tomaintain a constant pace [aka speed]
indefinitely” [30]. That way, delivery of desired project Scope is to be Estimated by its bound to a
Fixed project deadline and pace, and thus can only change accordingly.

The respectiveestimationequation is “Velocity [ofResources] xTime=Delivery [ofScope]. Once
you know how fast you’re going, you’ll know how soon you’ll get there” as proposed by Sutherland
[204, page 144]. In other words, once you know your speed, you know howmuch value you can rea-
sonably plan for delivery by the project, given as a “quantified measure of the project’s scope” [33].

Consequently, “the relevant estimation parameter is [size, e.g.] howmuch functionality of given
quality will fit into that time box.” [225, page 37], which applies to the speed of the resources (how
much functionality is doable?) as well as to the project scope (how much functionality is desired?).
So, “A trade-o� has two sides. [. . .] Changes in one corner always impact at least one other cor-
ner.” [33] This is where the le� hand triangle of schedule-oriented project management is going
round in circles. It conflicts with another agile principle, namely to “Welcome changing require-
ments, even late in development.” [30], by impeding to trade o� change to project scope against
one of the others project constraints, which can only result in cutting o� value fromdelivery, tomeet
Fixed resources and time, when following the le� hand triangle.

That way, this dissertation proposes the right hand triangle in figure 3.1, which gives a more
realistic illustration on schedule-oriented so�ware project management. The only thing that can be
reasonably presumed is the Fixed project Time box or Scheduled project deadline.

Embracing Change

Time-Boxed

Size-Measured

Fixed

Estimated

Speed � Value
Driven

Resources Time

Scope

SizeSize
DrivenDriven

Speed Scope

Schedule

PP

FIGURE 3.1 The project trade-o� triangle, cf. [151, page 126, chapter 6.6, figure 6-10]

16 Research Objective – Sustaining decision making and development by pattern practices

In order to fix the project schedule for value delivery, or as Wiegers noted “To estimate the
[time] e�ort needed to complete a body of work, [. . .] you need some measure of requirements
size [as involved with the project scope], along with knowledge about the development team’s pro-
ductivity [as a measure for the project team speed].” [225, page 37], for which he gives an estimat-
ing equation comparable to that of Sutherland, see page 15. In the following, it is here adapted
from Wiegers [225, page 37] and given as subscripts for taking the project constraints into account:
ResourceProductivity × TimeEffort = ScopeSize, or alternatively as

TimeEffort︸ ︷︷ ︸
schedule

= ScopeSize︸ ︷︷ ︸
scope

÷ResourceProductivity︸ ︷︷ ︸
speed

for highlighting the relation of this equation to the right hand triangle in figure 3.1. As can be seen,
the schedule as one of the project constraints represented in this fundamental estimation equation
as “[Time] E�ort is a function of size.” according to Pfleeger et al. [175], regarding the project scope
and speed.

Resource “Productivity [or speed] indicates what quantity of functionality [, which is repre-
sentable as Size] the team can realistically [. . .do] in a [. . .project timebox].” [225, page 37], and
“[. . .] The size of the product, and hence the Size of the project [scope], depends on the size of the
requirements.” [225, page 37]. So, “Because so�wareSize is usually themost influential factor in de-
termining [the team’sproductivity], goodestimatesof [requirements] sizeare critical togood [speed]
estimation.” [175, page xv], and impact project planning respectively, see figure 3.3 on page 19.

So as to trade o� accelerated project progression within Fixed deadline, you have to balance
project speed against project scope, which requires a proper quantification of a so�ware’s function-
ality. In this context, Size data provides a basis for justification, which is especially valuable in sit-
uations common to project management where “Arguing [. . .] doesn’t work, particularly when they
are your superior or customer. What does work is using decision-making data. That is the benefit of
[quantified] project trade-o�s.” [33]

For instance, it is a fact that “Most so�ware customers initially want more than they can a�ord.
[. . .] that means that they have to bend either their ideas about the product or their ideas about the
resources they are willing to commit. ” [151, page 170, figure 8-3] Good Size data represent “quanti-
fied trade-o�s [. . . , which] gives executives data to evaluate the alternatives for taking advantage of
opportunities and recovering from problems.” [33] So, “If you want to change [or decide on] one of
the corners of the triangle, you have to change [or bend] at least one of the others to keep it in bal-
ance. ” [151, page 126] “If you have a quantified measure of the project’s scope (business value) and
you follow best practices when building the project schedule and [required project speed], you can
represent your sponsor with quantified trade-o�s between the[se three constraints] of the project
plan. This data-based decision making [. . .] is a good platform for approval.” [33]

Designing for Change 17

3.2. Designing for Change

Section 2.2 The Four Dimensions of So�ware Project Speed motivates the use of schedule-oriented
practices along thedimensionsofpeople, product, platformandprocess for improvingdevelopment
speed, but as given by figure 2.2 on page 9 each of these is sensitive to change.

Section 2.3 The Fuzzy Front End of So�ware Projects carries on with discussing the burden of
change for so�ware project planning, illustrating that it most frequently becomes manifest in the
variability and complexity involved with so�ware product requirements.

In order to limit this burden, and to allow for choosing proper practices and assess their e�icacy
both in the presence of change, a means to “Change Control [. . .which] is about providing decision
makers with the information that will let them make timely and appropriate decisions to modify
the planned functionality.” [225, pages 147, 148] must be carefully designed, which is aimed at the
so�ware product requirements.

Product requirements

Platform

People

production Process

Project Management
↪→ Baseline Business Value

Software Engineering
↪→ Instant Software ProductAdaptability

Anticipation

Sizing

SynchronizationScoping

Satisfaction

PP
PatternPattern

PracticesPractices

FIGURE 3.2 The four dark spikes of designing the responsiveness to change

Figure 3.2 advances accordingly. It introduces four contributors to data-based decision-making
in so�ware project planning respecting the sizing, synchronization, scoping and satisfaction of so�-
ware product requirements.

Sizing of the so�ware Product provides for a quantification, which allows for determining the
number of People required to complete the project on deadline. Satisfaction of some requirements
is acknowledged by the Peoplemaking a value-driven project team, and follows the approval proce-
dures as defined by the project Process. So�ware project management relates requirements sizing
and their satisfaction for obtaining important insights to adapt the business value of a project plan.

The relevance of Synchronization is twofold: first, it means to make Product requirements de-
pendencies tangible. Second, synchronization is also about seamlessly integrating desired so�ware
functionality to the technology Platform of intended use. Scoping serves the recognition of chunks
of requirements and their accordant assets within the used so�ware Platform and the project Pro-
cess, both as applied for assembling the product. Within the software engineering tasks of so�ware
projects, requirements synchronization and their scoping determine the capability to anticipate ac-
celerated software production, by planning for quality, in terms of satisfied user expectations, and
reuse of so�ware product(ion) assets.

Consequently, designing responsiveness to change requires means to sustain the stability and
separation of requirements. Therefore, patterns are applied to spot so�ware product requirements
and to ensure reproducibility of their scoping, sizing, synchronization, and satisfaction. This estab-
lishes pre-defined pattern-based units applicable in so�ware project planning, which are useful for
anchoring change control to planned so�ware functionality and a qualified selection of speed im-
provement practices.

18 Research Objective – Sustaining decision making and development by pattern practices

Table 3.1 exemplifies the relation of speed improvement strategies and their implementation by
project management and so�ware engineering means for enabling responsiveness to change. In its
le� column, table 3.1 gives three speed improvement strategies as suggested by Olsen [164, page
33]. The other columns arrange the parameters usable for controlling change to so�ware product
requirements as introduced in figure 3.2, respectively.

Speed
Improvement Strategies

Project Management
Techniques. . .

So�ware Engineering
Techniques. . .

according to Olsen [164, page 33] . . . are aimed atP so�ware product requirements, cf. figure 3.2

Start sooner. Adaptability
to business value

Anticipation
of so�ware product(ion)

Reduce work volume. Satisfaction Synchronization

Work more quickly. Sizing Scoping

TABLE 3.1 Speed improvement through responsiveness to change

Table 3.1 shows how “Good practices tend to support one another.” following McConnell [151,
page 18]. Speed improvement strategies become achievable through projectmanagement and so�-
ware engineering techniques synergy.

Balancing value-driven adaptability and plan-driven anticipation of so�ware product require-
ments as postulated by Highsmith [111, page 214] and already discussed in section 2.2, enables to
start sooner due to a(n en)light(ened) and weighted project plan. In this context, patterns serve
to spot requirements in a reusable way, which eases their classification into assets that make the
business value and that are likewise relevant to so�ware production.

In order to reduce work volume, (re)considering the satisfaction and synchronization of planned
so�ware functionality provides for coping with involved complexity. Limiting the work to be done
coincides with requirements prioritization, deciding which are the need- and nice-to-have ones for
satisfying user expectations. Requirements depend on each other. Separating these into recogniz-
able groups or families, which can be best done on by use of patterns, and making their relation
tangible, not only allows for selecting the essential ones to be planned first, but also it helps avoid-
ing duplicated work.

Stabilizing the common understanding of planned functionality in so�ware project teams, lets
them work more quickly. Sizing and scoping of so�ware product requirements must therefore go
hand in hand, for sustaining lessons learned and for providing continuity to the teams’ view on re-
quirements, since these involve practices and benchmarks applicable to any next project plan.

Designing for change in so�ware project planning is about establishingmeans that provide decision
makers with instant options for action. This is achievable through the use of Pattern Practices for
so�ware project planning.

Planning for Value 19

3.3. Planning for Value

“Value is subjective” [95, chapter 4.1], it is in the eye of the beholder. So, which view on value should
be reasonably planned with before starting a project? From a business perspective, this value may
be the speed of launching new so�ware and the monetary gain expected from it. From a user per-
spective the valuemay dependon satisfied expectations and the attractivessness of their realization
as experienced by the user. Fromadevelopment perspective the value involvedwith producing so�-
ware may relate to the ease of mastering quality and involved delivery andmaintainance concerns.
These di�erent perspectives on value melt into objectives for so�ware projects and their respective
teams, namely the project plan, which is based on so�ware requirements. These have to be negoti-
ated and finally be formed to a mutual agreement.

In accordancewithDoran (1981), for dicussing so�ware functionality, it should represent “mean-
ingful objectives [. . . , which] frame a statement of results to be achieved” [82, page 36], and which
“give quantitative support and expression to [. . .] beliefs.” [82, page 35] For externalizing the value
adhere to those statements of desired so�ware features, determining their (functional) size provides
for quantification as instrumental in the project planning process.

software
requirements

requirements
size

team velocity
(performance)

�

project
plan

Desired feature Estimate size Derive duration Schedule

FIGURE 3.3 Estimating provides input to project planning, adapted from [55, p. 34, fig. II.1]

Figure 3.3 shows the use of Estimating size for deriving the duration of a project, which accord-
ing to Cohn (2005) is a “key tenet of agile estimating and planning” [55, page 39]. The only catch is in
order to derive duration, “we [need to] know the team’s velocity [. . . to] divide [requirements] size by
velocity to arrive at an estimated number of iterations. [. . .This derived duration can be turned] into
a schedule bymapping it onto a calendar.” [55, pages 38 and 39]. Hence, the relation of planned fea-
ture sizeanddoable feature size is crucial toagileprojectplanningand toestablishmeaningful plans.
Otherwise andasmadeobviousby figure 3.3, it canbeexpected, that “errors in judgement [. . .of size]
will compound themselves throughout the entire [. . .project planning]” [82, page 35] yieldingproject
plans which are hard to fulfill.

On its bottom, figure 3.4 shows the dependence of the three project constraints of scope, speed,
and schedule, in order to take advantage of size for indicating the value involvedwith a project plan.
It maps the project planning framework as illustrated in figure 3.3 to the use of size for quantifying
value, which is introduced by the right project trade-o� triangle in figure 3.1 on page 15.

To continue discussion of figure 3.4, size-driven project planning starts with a particular scope
of so�ware requirements and a size estimate of these. For example, let’s assume the estimated size
of a set of requirements is 42 points. This first project constraint makes use of size for quantifying
the value of a desired product based on the scope of its so�ware functionality.

In the following, this requirements estimatedetermines the speedor rate of progressionneeded
for delivering desired so�ware functionality. That is, requirements size becomes ameasure for plan-
ning the teamperformance, aka velocity required to complete the project. In this example, the team
must be capable to deliver 42 points in a project (iteration). To this second project constraint, size
quantifies speed as a value regarding required productivity in a project.

Finally, the two aforementioned project constraints of scope and speed must be balanced to

20 Research Objective – Sustaining decision making and development by pattern practices

fit into a schedule or the time available for the project. The ratio between desired feature size and
doable feature sizebecomesof importance todecideon theplannedvalue, e.g. the sizeof theproject
plan. To conclude the example, it may be the case that there are no resources available or teams
capable for establishing a project, which delivers 42 points. So, the so�ware requirements must be
reconsidered to decide, which of these are ofmost value and thus of highest priority to be scheduled
in the project plan. The third project constraint applies size for quantifying the limits within the
prioritization of planned value can reasonably take place, which is output as a sized-project plan.

P Scope Speed
�

Schedule Sized-. . .

Product Productivity Prioritization . . . Plan

S.M. A. R.T. Objective(s)

Size-Driven

MeasuringEstimating Planning Baseline

Benchmarking

�
1.

3.4.

2.

FIGURE 3.4 Size-Driven Project Planning is S.M.A.R.T. (cf. tab. 3.2)

Size-Driven So�ware Project Planning

On its top, figure 3.4 shows that size-driven project planning must aim at 1. “Establishing a base-
line [. . .one, which represents] a mutual agreement and expectations among the project [team .. .]
regarding the product they’re going to have when they’re done.” [225, page 151].
The gray-shaded elements in figure 3.3 and 3.4 highlight the gap to be closed for establishing such
“a specified reference point [. . .by] stable well-defined units for [. . .so�ware requirements and ac-
cordant size-data] that serve as a comparison for [. . .project plans]” [93].

Therefore, 2. requirements estimating as applicable for decision making in so�ware projects
is developed further to ameasurement approach of these. In order to care for reproducibility of size-
data regarding their consistency and comprehensibility, defined units for S.M.A.R.T. objectives (cf.
table 3.2) are established to guide and thus stabilize the project planning, and to result a product-
basedprojectbaseline,which is of combineduse formanagement [19, page307] andengineering [19,
page 313].
Due to these S.M.A.R.T. project planning units, amulti-purpose project baseline ready to benchmark
becomes available, which 3. enables the recognition of available resources, and to classify adher-
ent performance data. This not only 4. helps to set up doable plans, but also provides for planning
options. As illustrated by table 3.2 and discussed in the following section on page 21, building these
units on the basis of patterns, assists to “Establish more teamwork” [82, page 36], one which can
strive for value delivery.

Following Doran [82, page 35], planning means to define “The establishment of [meaningful]
objectives and the development of their respective action plans [,which] are the most critical steps
in a company’s [project] management process.”

Planning for Value 21

size-driven project planning takes advantage of pattern-based units

scope S. specific “target[ing] specific area
of improvement”

problem functionality objective

M. measurable “quantify[ing] or at least
an indicator of progress”

functional size

speed A. achievable specifying how to do it solution alternatives action

schedule R. realistic “stat[ing] what re-
sult can reasonably
be achieved, given
available resources”

speed benchmarks plan

T. time-bound “specifying when the re-
sult(s) can be achieved”

project iteration

TABLE 3.2 S.M.A.R.T. criteria for project planning units, adapted from [82, page 36]

Table 3.2 illustrates, how patterns can be applied for creating desired planning units. For cap-
turingmeaningful objectives, patterns used in so�ware requirements analysis can guide the framing
of meaningful objectives, which are quantified according to their functional size. For developing re-
spective action plans, patterns known from so�ware architecture and design can become e�ective.
The ones that have demonstrated to match some problem functionality, which is indicated by the
availability of respective speed benchmarks that are given as functional size delivered per project it-
eration, provide for fast-tracked access to potential development assets. In any case, patternsmake
both revision and replay of the decision making as well as of the development in so�ware projects
possible. They are a first-class point-of-reference within diverse so�ware projects and teams for es-
tablishing communication and collaboration among them.

Pattern Practices

Patterns represent a ’storage of wisdom’ [94, page 23 and 24] of the good and ugly lessons learned.
They encourage learning from the best or worst practices (anti-patterns), and record the knowledge
and experiences made owing to recurring problem solving cases in a generic o�en templated way.
The use andmaintainance of patterns in so�ware development projects complies to the application
of standards. In this regard, “measuring conformance to them and continually trying to improve
them [implements a long-term improvement strategy (based on reuse, which)] is necessary if you
are to compete well” [94, page 5]. If lessons learned get lost or are hard to access, a (project and its)
team is not in the position to accelerate its performance.

Knowledge Sharing

Patterns provide a structured way to capture and share lessons learned [151, page 50]. They intro-
duce a common vocabulary that facilitates communication and mutual understanding. Due to its
generic style, a pattern can be applied in many problem solving cases. In this way, patterns capture
wisdom, which becomes practicable in manifold domains.

22 Research Objective – Sustaining decision making and development by pattern practices

Power Building

Patterns assist not only in the continuous improvement of processes and products, but also in the
personal development of people, or in (project) organization’s sta� development. ’Brain drain’ is
present at any scale. So, “If your people are not all experienced or geniuses, [or respective resources
are at risk (to lack required maturity)] You need to store their hard-earned wisdom in your defined
process.” [94, page 23 and 24], which is achievable on the basis of patterns. Novice team members
benefit from pattern usage taking them as sparring partner for their training. The experienced team
members also benefit from patterns which represent the common practices of an (project) organi-
zation, to assess and classify their performance. Patterns provide a means to speed-up adaption.

Quality Assurance

Patterns enhance the technical review(ability) [151, page 69] of (project team) work, since their use
creates a sca�olding of conceptions, which the team is familiar with, and which they are able to uti-
lize as a starting point or reference for sustaining their project (and team play). Patterns support the
identification of reusable resources, but also sources of known errors. In this sense, patterns are a
means to reduce the risk of replicated work and the additional cost [151, page 15]. Since, “the low-
est defect rate also archieves the shortest schedule” [151, page 69], its worthwhile to build so�ware
projects on the basis of patterns. They help to anticipate emerging maintenance e�ort and imple-
ment a strategy to build-in-quality, bothwhich are costly to handle if not considered from the begin-
ning of a project. Patterns of so�ware development make a team live happily in and a�er projects.
They work like a safety net for the project team. Through their use, the team ensures a minimum
level of quality that protects the product and thus the project’s success from major harm. Ideally,
they speed up collaboration in so�ware projects.

23

4. Overview – Introducing pre-defined units for
planning scope and speed of so�ware projects

4.1. Contributions

Table 4.1 organizes the research objective of this dissertation, which is about empowering soft-
ware project teams to move faster by sustaining their decision making and development prac-
tices on the basis of patterns, along three strands, each of which constitutes an own part in this
work: Problem-Based Project Estimating, Problem-Based Project Adaptation, and Problem-Based
Project Benchmarking. It classifies research questions, contributions, and relevant publications co-
authored by Ina Wentzla� accordingly, and gives an overview on the contributions C 01 to C 06
worked on in this dissertation to respond the research questions involved with RQ 1 to RQ 3 in sec-
tion 1.2.

Part Research
Objectives

Research Questions Contributions Publications

II Project
Estimating

RQ1How to determine speed? · Côté et al. [68]
·Wentzla� [223]

· Schmidt and
Wentzla� [191]
· Côté et al. [69]
· Côté et al. [70]
(best paper award)

· Section 13 Future
Prospect reports on
exemplary results
from
project practices

·RQ 1.a How to establish
pre-defined units of scope?

·C 01 Problem-Based Functional
Size Measurement Patterns

·RQ 1.b How to estimate
scope size?

·C 02 Problem-Based Functional
Size Measurement Method

III Project
Adaptation

RQ 2 How to adjust speed?

·RQ 2.a How to establish
pre-defined units of work?

·C 03 Transition Templates

·RQ 2.b How to plan
worthwhile work volume?

·C 04 "One4All" View Model on
So�ware Architecture

IV Project RQ 3 How to compare speed?
Benchmarking

·RQ 3.a How to baseline
project plans?

·C 05 Problem-Based Project
Baseline

·RQ 3.b How to benchmark
the progress of projects?

·C 06 Problem-Based Speed
Benchmark

TABLE 4.1 Overview on research objectives and contributions of this dissertation

The following paragraphs describe in brief the scientific contributions C 01 to C 06 established
in this dissertation to answer the research questions involved with RQ 1 to RQ 3.

24 Overview – Introducing pre-defined units for planning scope and speed of software projects

C 01 Problem-Based Functional Size Measurement Patterns

Problem-Based Functional Size Measurement Patterns serve to establish Requirement Work Pack-
ages, which are equally suitable for classifying andmeasuring a defined scope of recognizable func-
tional user requirements.

Problem-Based Functional Size Measurement Patterns result from combining problem-orien-
ted so�ware engineering based on Jackson’s problem frames [128] with the base functional com-
ponents measurable within function point analysis [92], which has origin in the work of Albrecht
[2]. Theymake "proxy"-based estimating according to Humphrey [114, page 117, chapter 5] available
within early so�ware size measurement for determining the scope of functional user requirements
expressed by a function point value in a reproducible way.

Problem-Based Functional Size Measurement Patterns provide so�ware project teams with a
shareable point of reference, for anchoring their decision making and adjusting their development
activities. This dissertation presents a set of 17 problem frames summarized in table 5.5 on page 72,
that consitute pre-defined units for scoping of so�ware product requirements.

Chapter 5 elaborates this contribution C 01 Problem-Based Functional Size Measurement Pat-
terns, which addresses research question RQ 1.a How to establish pre-defined units of scope?

C 02 Problem-Based Functional Size Measurement Method

The Problem-Based Functional Size Measurement Method executes function point analysis on Re-
quirements Work Packages, which are established by C 01 Problem-Based Functional Size Measure-
mentPatterns. It is an early so�ware sizemeasurement approach for determining functionpoints for
a defined scope of so�ware product requirements. It utilizes Requirement Work Packages as units
of measure for functional size, which are developed in this dissertation.

The Problem-Based Functional Size Measurement Method introduced in this dissertation, is a
requirements sizing method (Frame Counting Agenda) in table 6.2 on page 82, which applies the
functional size measurement process of the International Function Point Users Group standard IF-
PUG [117] to work on C 01 Problem-Based Functional Size Measurement Patterns.

Each stepof theFrameCountingAgenda is equippedwithvalidationconditionsgiven in table6.3
onpage86 to safeguard its accordancewith IFPUG [117], and to ensure that di�erent so�wareproject
teams are enabled to determine consistent sizes given as function points for comparable Require-
ment Work Packages.

Chapter6elaborates this contributionC 02Problem-BasedFunctionalSizeMeasurementMethod,
which addresses research question RQ 1.b How to estimate scope size?

www.ifpug.org

Contributions 25

C 03 Transition Templates

Transition Templates are patterns of patterns, representing those shared configuration properties
which are meaningful to intersect patterns of requirements analysis with those of solution design.
Transition Templates are built on transformation schemas as known from structured analysis and
its use byWard andMellor [217, page 41, section 2], specially tailored for establishing problem-based
units of work.

Transition Templates are synergies of C 01 Problem-Based Functional Size Measurement Pat-
terns andcommonly knownpatternsof so�warearchitecturedesign listed inappendixDonpage281
to determine "architectural blueprints" that fit a Requirements Work Package. These provide the
so�ware project team with a reasonable (so�ware engineering) plan of anticipated work, needed
for accomplishing the desired project product.

This dissertation introduces the concept and use of Transition Templates and provides several
examples for their application in the domain of web engineering.

Chapter 7elaborates this contributionC 03TransitionTemplates,whichaddresses researchques-
tion RQ 2.a How to establish pre-defined units of work?

C 04 "One4All" View Model on So�ware Architecture

The "One4All" View Model on So�ware Architecture paves the way, to make so�ware development
problems absorb into the technology platform intended to use. It refines the "4+1" view model on
so�ware architecture from Kruchten [133] to work on the basis of patterns exclusively, utilizing C 03
Transition Templates at its core.

The "One4All" View Model on So�ware Architecture enables early exploration of engineering
options for action in a technology-independent way. It supplies so�ware project teams with instant
design solution alternatives for recurring so�ware product requirements on the basis of patterns.

In addition, the "One4All" View Model on So�ware Architecture accounts for identifying back-
bone functionality within the so�ware lifecycle, allowing to plan belonging units of work with re-
spective priority in addition to their function points.

Transition Templates make late binding of so�ware development problems to particular solu-
tions available. Within the "One4All" View Model on So�ware Architecture as proposed by this dis-
sertation, they provision maximum flexibility and just-in-time decision making to so�ware project
teams for establishing a prioritized (projectmanagement) plan of work to be done next. This is a key
to change-tolerant design and to fast-track involved so�ware development.

Chapter 8 elaborates this contribution C 04 "One4All" View Model on So�ware Architecture,
which addresses research question RQ 2.b How to plan worthwhile work volume?

26 Overview – Introducing pre-defined units for planning scope and speed of software projects

C 05 Problem-Based Project Baseline

The Problem-Based Project Baseline builds on items, which are in equal measures meaningful to
both the so�ware product and the so�ware production process. These items form "units", which are
established by intertwining C 01 Problem-Based Functional Size Measurement Patterns, for creating
a defined scope of product requirements, and respective C 03 Transition Templates, for suggesting
a plan of work that produces desired project product output.

By means of a Problem-Based Project Baseline which built on requirements as recommended
by Wiegers and Beatty [226, page 366, figure 19-1], this dissertation aims at addressing the essential
complexity of so�ware projects as discussed by Brooks [42] and Wirth [227]. It takes into account
that speed trade-o�swithin time-boxed so�wareprojects, aredecided independence to theproduct
requirement scope, which is to be satisfactorily "done" by the project team. Therefore, it proposes
pattern-based means to rigidly enforce scope control of product requirements in so�ware project
management following McConnell [151, page 319, chapter 14], and to fix project size estimates and
work plans accordingly.

Making reuse of items as defined by Requirements Work Packages in di�erent project baselines
possible, is fundamental to the predictability of value-driven, product-based project planning [19,
21], and its involved performance-based so�ware project management [7, 124]. This is illustrated by
applying the Problem-Based Project Baseline to an agile project process framework [193].

Chapter 9 elaborates this contribution C 05 Problem-Based Project Baseline, which addresses
research question RQ 3.a How to baseline project plans?

C 06 Problem-Based Speed Benchmark

The Problem-Based Speed Benchmark indicates the rate a so�ware project team is delivering value
within the project timebox available. It can be determined by application of A S.M.A.R.T. Scrum-
A·GenEDA as is introduced in this dissertation. It enables benchmarking of the so�ware process
by producing size-driven speed benchmark [48] that represent the pace at which a so�ware project
team satisfies user expectations. Project progress is determined by the scoring of reproducible point
values as established by C 02 Problem-Based Functional Size Measurement Method for the delivery
of desired so�ware products.

This speed measure of delivered value can be traced back to an approved definition of which
product is to be "done", represented in a prioritized backlog, such as represented by C 05 Problem-
BasedProject Baseline. Thismakes it possible, and is assisted byC 04 "One4All" ViewModel on So�-
ware Architecture, to replay or revise respective decisionmaking and development plans as needed,
and thus to take advantage of lessons learned and to benefit from best practices.

The Problem-Based Speed Benchmark as developed in this dissertation is comparable across
projects and teams, since it is normalized on the basis of C 01 Problem-Based Functional Size Mea-
surementPatterns. Theseenable to shareacommonunderstandingabout so�wareproduct require-
ments [226, page 351, chapter 18] and respective performance data gathering, since they provide an
instrument to reproducibly determine point values for a defined scope of product requirements.

The Problem-Based Speed Benchmark substitutes the Planning Game [55, page 56], an agile
project guesstimate practice to judge thework volumeof a so�ware project team, by an approach to
early functional size measurement. This makes it possible to plan for value delivery at a sustainable
pace [214], one within which a project team has demonstrated to be able tomeet user expectations.
Knowing their speedendorses the teamto commit toproject plansonly, whichare ready-to-succeed.

Chapter 9 elaborates this contributionC 06Problem-BasedSpeedBenchmark,whichaddresses
research question RQ 3.b How to benchmark the progress of projects?

Publications 27

4.2. Publications

This dissertation compiles parts of its author’s research in the field of pattern-based so�ware engi-
neering, which is aimed at putting strategic reuse into so�ware project practice. In this context, the
author’s research is concerned with problem analysis and its reasonable intersection with solution
design to provide for accelerated production of quality so�ware.

This section follows the advice from Parnas (2007), who stated that “If you get a letter of recom-
mendation that counts numbers of publications, rather than commenting substantively on a candi-
date’s contributions, ignore it.” [173, page 20], which is why this section discusses the author’s scien-
tific contributions in already published research works summarized in table 4.2. It lists all publica-
tions relevant to this dissertation, which are co-authored by InaWentzla�, andwhich are refined or
newly formed in the context of Problem-Based Project Planning in Postmodern So�ware Engineer-
ing.

Publication Comment on contributions

[68] Isabelle Côté, Denis Hatebur, Maritta Heisel, Holger Schmidt, and InaWentzla�.
A Systematic Account of Problem Frames. In Proceedings of the 12th European
Conference on Pattern Languages of Programs (EuroPLoP 2007), pages 749–767,
Irsee, Germany, July 4-8, 2007. Universitätsverlag Konstanz.
URL http://www.uni-due.de/imperia/md/content/swe/papers/
2007europlop.pdf

This publication comprises the following scientific contributions, which devel-
ops the fundamentals of problem frames further:

[68].i introducing a new domain type,

[68].ii characterizing domain types by their interface behavior,

[68].iii exploring problem frames by permutation of domain types.

Ina Wentzla� raised the idea to contribution [68].iii. Her intent was to under-
stand, why Jackson (2001) in [128] builds his pattern-based approach to require-
ments engineering on five Basic Frames only. Ina Wentzla� has worked with
the other authors of this publication to discuss andwrite the research work pre-
sented. In 2007 she participated in the EuroPLoP Conference in Kloster Irsee,
Germany, on behalf of all authors of this publication.

This publication is fundamental to all scientific contributionsof this dissertation.
It is discussedand refined indepth in chapter 5Problem-BasedUnits ofMeasure,
and especially considered in section 5.6 Problem Pattern – Frames Revisited for
establishing C 01 Problem-Based Functional Size Measurement Patterns.

http://www.uni-due.de/imperia/md/content/swe/papers/2007europlop.pdf
http://www.uni-due.de/imperia/md/content/swe/papers/2007europlop.pdf

28 Overview – Introducing pre-defined units for planning scope and speed of software projects

Publication Comment on contributions

[223] Ina Wentzla�. Establishing a Requirements Baseline by Functional Size
Measurement Patterns. In First International Workshop on Requirements
PrioritizationandEnactment (PrioRE’17), CEURJoint Proceedings of REFSQ2017
Workshops co-locatedwith the 23nd International Conference on Requirements
Engineering: Foundation for So�ware Quality (REFSQ 2017), Essen, Germany,
February 27, 2017.
URL http://ceur-ws.org/Vol-1796/priore-paper-1.pdf

This publication presents the following scientific contributions for stabilizing re-
quirements estimates:

[223].i introducing a set of basic functional-size measurement patterns,

[223].ii presenting a requirements sizing method (Frame Counting Agenda, in
table 6.2 on page 82) based on the aforementioned set of patterns,

[223].iii deducing validation conditions (in table 6.3 on page 86) from IFPUG IF-
PUG [117] to safeguard the requirement estimates obtained by the pro-
posed method.

Ina Wentzla� is the author of each of these contributions [223].i, [223].ii, and
[223].iii, which origin from her independent research activities in this field. She
has participated at the PrioRE 2017Workshop in Essen, Germany, where she pre-
sented this publication.

http://ceur-ws.org/Vol-1796/priore-paper-1.pdf

Publications 29

Publication Comment on contributions

[191] Holger Schmidt and Ina Wentzla�. Preserving So�ware Quality Characteristics
from Requirements Analysis to Architectural Design. In Volker Gruhn and Flávio
Oquendo, editors, Third European Workshop on So�ware Architecture (EWSA
2006), Revised Selected Papers, volume 4344 of Lecture Notes in Computer
Science, pages 189–203, Nantes, France, September 4-5, 2006. Springer.
DOI 10.1007/11966104_14

This publication comprises the following scientific contributions allowing for a
quality-preserving intertwining of so�ware requirements and design:

[191].i illustrating a role-driven mapping of patterns for problem analysis to
those of solution design by the example of a chat application,

[191].ii considering implementation and interaction of quality characteristics at
the level of pattern-based architectural design

[191].ii.a from a security perspective (Security Problem Frames [102,
190]),

[191].ii.b from a usability perspective (HCIFrames [224]).

Ina Wentzla� has created Human-Computer-Interaction patterns (HCIFrames)
out of problem frames based on the idea behind ArchFrames [182], thus estab-
lishing contribution [191].ii.b of this publication. She developed HCIFrames fur-
ther in collaboration with Markus Specker to make them applicable in usability
engineering as presented by Wentzla� and Specker (2006) in [224] and Specker
and Wentzla� (2007) in [203]. Contribution [191].i has also origin in her research
on HCIFrames, regarding the use of roles to map patterns for requirements with
those of architecture design. Ina Wentzla� has worked with Holger Schmidt to
discuss and write this publication. Both authors participated in the European
WorkshoponSo�ware Architecture 2006 inNantes, France, and gave a joint pre-
sentation on this publication.

http://dx.doi.org/10.1007/11966104_14

30 Overview – Introducing pre-defined units for planning scope and speed of software projects

Publication Comment on contributions

[69] Isabelle Côté,MarittaHeisel, and InaWentzla�. Pattern-BasedEvolutionof So�-
ware Architectures. In FlávioOquendo, editor, Proceedings of the First European
Conference on So�ware Architecture (ECSA 2007), volume 4758 of Lecture Notes
in Computer Science, pages 29–43, Aranjuez, Spain, September 24-26, 2007.
Springer.
DOI 10.1007/978-3-540-75132-8_4 . Best Paper Award

This publication comprises the following scientific contributions to intertwine
requirements and design by means of patterns within an evolutionary so�ware
development method:

[69].i evolution operators, guiding rework of requirements and design within a
pattern-based, evolutionary so�ware development method [67],

[69].ii evolution scenarios, illustrating the application of evolution operators by
the example of a chat application.

Ina Wentzla� has been lead author for contribution [69].ii, and expanded the
application of role-drivenmapping between patterns for so�ware requirements
and design, which has been started by Schmidt and Wentzla� (2006) in [191].
She hasworked jointly with Isabelle Côté andMaritta Heisel to discuss andwrite
this publication, and in 2007 she participated in the European Conference on
So�ware Architecture, Aranjuez, Spain, for presenting this publication on behalf
of all its authors.

http://dx.doi.org/10.1007/978-3-540-75132-8_4

Limitation 31

Publication Comment on contributions

[70] Isabelle Côté, Maritta Heisel, and Ina Wentzla�. Pattern-Based Exploration of
Design Alternatives for the Evolution of So�ware Architectures. International
Journal of Cooperative Information Systems (IJCIS), 16(3/4):341–365, Septem-
ber/December 2007.
DOI 10.1142/S0218843007001688
Impact factor (IJCIS): 0.528 (2009)

This publication extends the research of Côté et al. (2007) as presented in [69],
andcomprises the followingnewscientific contributionswith respect topattern-
based, evolutionary so�ware development:

[70].i extending background and detail on evolution operators and their use
within a pattern-based, evolutionary so�ware development method,

[70].ii extending evolution scenarios by presenting more solution design alter-
natives and a greater range of involved patterns,

[70].iii illustrating the use of so�ware life-cycle expressions to generate, trans-
form and choose among design alternatives.

Ina Wentzla� contributed to [70].ii and [70].iii by preparing the ideas and mod-
els for the design alternatives and by synchronizing these with the so�ware life-
cycle expressions. All authors of this publication have collaborated in discussing
and writing the research work presented.
Part III Problem-Based Project Adaptation of this dissertation elaborates on the
scalability of problem frames in connection with its use and contribution to es-
tablish a so�ware architecture design, as hasbeenannounced in the futurework
section of this publication. In addition, this dissertation provides more details
on the relevance of so�ware life-cycle expressions, and a role-driven mapping
for patterns to seamlessly bridge problem analysis and solution design.

TABLE 4.2 Published scientific contributions

4.3. Limitation

The author’s research discussed in scope of this dissertation is directed to functional user require-
ments for so�ware applications in the domain of information systems.

The conceptions used and introduced in this dissertation require adaption to properly address
non-functional requirements or so�ware applications for embedded and real-time systems.

http://dx.doi.org/10.1142/S0218843007001688

32 Overview – Introducing pre-defined units for planning scope and speed of software projects

4.4. Structure

As outlined in table 0.1 on page ix, the following paragraphs give an overview of the structure and
topics discussed in this dissertation to answer the research questions RQ 1 to RQ 3.

Part I. So�ware Projects – Perspectives on a Managed Engineering Discipline

Part I introduces the vicious cycle of so�ware projects, which is addressed in this dissertation.
One the one hand, there is the management perspective in each so�ware project, responsible for
establishing a plan for value delivery. On the other hand, there is the engineering perspective in
each so�ware project, responsible for producing a so�ware product, which progresses to plan. So�-
ware projects get into trouble, each time the rate of progress (project speed) is not matched with
the delivery of value (project size) as planned. Project teams which are in the position to balance
these trade-o�s are also in control ofmaking their project a success. Chapter 1 Motivation – Empow-
ering so�ware project teams to move faster, presents what speed means to so�ware projects, and
why it is challenging to so�ware project processes and teams. It derives research questions to be
answered by this dissertation, indicating the gaps to be closed, in order to take advantage of speed
control. Chapter 2 Background – On the emergence of product requirements and project teams,
discusses the factors that impact project success, and its dependence on plans, which anticipate
change. Chapter 3 Research Objective – Sustaining decision making and development by pattern
practices, gives insights on the bond of project speed and project size with regard to a defined scope
of so�ware product requirements. It proposes the use of pattern practices to sustain both manage-
ment and engineering tasks in so�ware projects, and which enforce a stabilized project scope that
is subject to change control. Chapter 4 Overview – Introducing pre-defined units for planning scope
and speed of so�ware projects, summarizes the contributionsmade available in this dissertation to
provide so�ware project teams with a common basis to plan for delivering value and its involved
development work both by referring a defined project scope.

Part II. Problem-Based Project Estimating

Part II Problem-Based Project Estimating is about answeringRQ 1How to determine speed? It devel-
ops the conceptions andmethods for determining the size of a defined project scope, which is given
by a set of so�ware product requirements, in a reproducible way on the basis of patterns. Problem-
Based Project Estimating streamlines the input to so�ware project planning. Chapter 5 Problem-
Based Units of Measure combines problem-oriented requirements engineering with early so�ware
sizemeasurement known as function point analysis, for designing functional sizemeasurement pat-
terns out of problem frames. The resulting Problem-Based Functional Size Measurement Patterns
are tailored for facilitating the classification of so�ware product requirements into a measurable
problem scope. They serve to establish Requirements Work Packages, which are units of recogniz-
able so�ware product requirements. Chapter 6 Problem-Based Estimating Method elaborates a re-
quirements sizing method following the measurement process given by the International Function
Point Users Group standard ISO/IEC 20926:2009. It makes use of the Problem-Based Units of Mea-
sure as developed in the previous chapter 5, serving as reusable "proxy" for executing the count-
ing process, which is documented as Frame Counting Agenda. The requirements sizing method is
equippedwith validation conditions to safeguard its accordancewith the standard, and to empower
di�erent estimators in determining function points for Requirements Work Packages consistently.

www.ifpug.org
www.ifpug.org

Structure 33

Part III. Problem-Based Project Adaptation

Part III Problem-BasedProject Adaptation is about answeringRQ2How to adjust speed? It develops
the conceptions and methods for determining ’instant options for action’ namely design alterna-
tives, which provide the project teamwith a credible route of developmentwork to be "done"within
theproject timebox, for satisfying adefined scopeof so�wareproduct requirements. SinceProblem-
Based Project Adaptation relies entirely on pattern practices, decisions made and development op-
tions planned for producing desired project deliverables can be replayed and revised by the team as
needed to impact their so�ware project speed. Chapter 7 Problem-Based Units of Work refines the
conceptof transition schemasknown fromstructuredanalysis toTransitionTemplates, for establish-
inga linkbetweenpatternsof so�wareproblemanalysis and thoseof so�ware solutiondesign. Tran-
sitionTemplates assemble instantmodels for exploringdesignalternatives that fit a defined scopeof
so�ware product requirements, such as given by RequirementsWork Packages. Chapter 8 Problem-
Based Adaptation Framework develops the 4+1 view model on so�ware architecture further, such
that it benefits from Transition Templates, as introduced in the previous chapter 7, and operates on
patterns exclusively. The resulting "One4All" viewmodel on so�ware architecture guides the project
team in establishing units of work, which provides themwith a blueprint or plan for the anticipated
delivery of desired working so�ware. On the basis of patterns, the “One4All” view model stabilizes
the leeway for the fulfillment of Requirements Work Packages. It eases the integration of recurring
development problems to predetermined technology platforms, and supports work plan prioritiza-
tion according to the so�ware product life-cycle and its projectable value delivery. The enhanced
anticipation of development plans and the improved adaptability of requirements fulfillment are
two cruicial points of controlling project speed.

Part IV. Problem-Based Project Benchmarking

Part IV Problem-Based Project Benchmarking is about answering RQ 1 How to compare speed?
It integrates Problem-Based Project Estimating and Problem-Based Project Adaptation to an ag-
ile project process framework introduced as A S.M.A.R.T. Scrum-A·GenEDA for taking advantage of
a project plan (project backlog) that builds on point values (product size) as measurement for a de-
fined set of so�ware requirements (product scope). This kind of project plan serves as baseline for
establishing benchmarks (project speed), which are comparable among projects and teams. Chap-
ter 9 Problem-Based Project Baseline and Speed Benchmark details the use of Requirements Work
Packages and the "One4All" View Model on so�ware architecture as developed in this dissertation
to set up units for measuring project work progress. Applying these for establishing a work plan of
so�wareproduct requirementsand its involvedperformancebaseline for aproject, ensures thecom-
parability of speed benchmarks. Benchmarking a Problem-Based Project Baseline – A sustainable
planninggamedemonstrates theuseof theseunits for empowering so�wareproject teams tobench-
mark their project success (points scored) compared to their project plan (points committed), when-
ever a project timebox is completed. Conducting agile projects by A S.M.A.R.T. Scrum-A·GenEDA im-
plements problem-based project planning, which comes with built-in means for requirements pri-
oritization and for exploring alternative solution designs. In addition, it supports so�ware project
teams in adjusting their decisionmaking and development activities as needed, both proactive and
retrospective. Ultimately, it makes sustainable control of so�ware projects possible, for and by a
demonstrable delivery of value.

34 Overview – Introducing pre-defined units for planning scope and speed of software projects

Part V. Case Studies

Part V Case Studies presents two comprehensive application examples for illustrating the use and
importance of the contributions given by this dissertation, to control speed of so�ware projects.
Chapter 10 Vacation Rentals Web Application revisits a didactic play from the lecture So�ware Tech-
nology,which isusedby theWorkingGroupSo�wareEngineeringat theUniversityofDuisburg-Essen
to demonstrate the ADIT procedure, an agenda-driven and pattern-based so�ware development
process. Chapter 11 Student Recruitment Web Portal applies the contributions of this dissertation
to a so�ware application, which has emerged from a student project and is used by the Faculty of
Engineering at the University of Duisburg-Essen in support of their "International Studies in Engi-
neering" program.

Part VI. Epilogue

Part VI Epilogue compiles the findings and implications of taking advantage from pre-defined units
for planning the scope and speed in so�ware projects as investigatedby this dissertation. Chapter 12
Conclusion summarizes the answers to the research questions as detailed in section 1.2. Chapter 13
Future Prospect outlines remaining issues and newly found directions for paving the way for worth-
while research, one which contributes to a sustainably managed so�ware engineering discipline in
so�ware development projects.

Part VII. Appendices

Last but not least, Part VII Appendices provides supplementary materials to this dissertation. Ap-
pendixA ISO/IEC20926:2009ComplexityandSizeTablesbelongs to the inputdocumentsof theFrame
Counting Agenda, specifying the complexity parameters and point values that can be assigned to a
Requirements Work Package. Appendix B Sanity Checks intends to justify the quality and fitness of
the requirements sizing method proposed by the frame counting agenda to the standard ISO/IEC
20926:2009 and to the certification practices of the International Function Point Users Group. Ap-
pendix C Listing of Philosophies represents a loose collection of philosophies around agile project
practices. Appendix D Overview on Architecture Design Patterns enumerates commonly known pat-
terns applicable to so�ware architecture design. Appendix E Structures of Architecture Design Pat-
terns lists the structureof thosearchitecturedesignpatterns,whicharediscussed inchapter7.3Tran-
sitionTemplates –Makingproblemsabsorb intoplatform for thedevelopmentof solution templates.
Appendix F For Further Discussion presents a collection of notes on the further development of the
contributions in this dissertation. A List of Tables, List of Figures, and List of Examples are comple-
mented by an overview of Acronyms frequently applied in this dissertation. Finally, a bibliography
comprising all References used to this dissertation are o�ered to its dear reader.

http://swe.uni-due.de
www.uni-due.de
http://www.way2studying.de/en/application.html
http://www.uni-due.de/ise/
http://www.uni-due.de/ise/
http://www.ifpug.org

Part II.

Problem-Based Project Estimating

Part II Problem-Based Project Estimating is about answering RQ 1 How to determine speed?
It develops the conceptions and methods for determining the size of a defined project scope,
which is given by a set of software product requirements, in a reproducible way on the basis of
patterns. Problem-Based Project Estimating streamlines the input to software project planning.
Chapter 5 Problem-Based Units of Measure combines problem-oriented requirements engineering
with early software size measurement known as function point analysis, for designing functional
size measurement patterns out of problem frames. The resulting Problem-Based Functional Size
Measurement Patterns are tailored for facilitating the classification of software product require-
ments into a measurable problem scope. They serve to establish Requirements Work Packages,
which are units of recognizable software product requirements. Chapter 6 Problem-Based Esti-
mating Method elaborates a requirements sizing method following the measurement process given
by the International Function Point Users Group standard ISO/IEC 20926:2009. It makes
use of the Problem-Based Units of Measure as developed in the previous chapter 5, serving as
reusable "proxy" for executing the counting process, which is documented as Frame Counting
Agenda. The requirements sizing method is equipped with validation conditions to safeguard
its accordance with the standard, and to empower different estimators in determining function
points for Requirements Work Packages consistently.

www.ifpug.org

36 Problem-Based Units of Measure

5. Problem-Based Units of Measure

5.1. Introduction

This chapter is about designing functional size measurement patterns out of problem frames, which
servewithin the requirements gathering or analysis of so�ware projects to establish unified require-
ments work packages. These newly developed patterns are equally suitable for classifying require-
ments into known problem classes and for measuring their functional complexity, which is given as
a point value.

Within the subsequent project planning, the resulting requirements work packages, of which
each is then equipped with a now reproducible point value, represent a work item. It can be sched-
uled to be done in any upcoming project iteration, and paves to way to find candidate solutions for
the problem at hand on the basis of patterns.

To create this joint capability of requirements classification and its combined measurement,
that allows for utilizing a requirements work package as a pre-defined unit of measure for require-
ments, section 5.2 Background gives a brief overview of concepts, which are developed further in
the following.

Section 5.3 Problem Unit – Requirements Work Package identifies the constituent parts of
problem-oriented so�ware engineering and functional size measurement, that are expected to es-
tablish a propermatch of requirements classification andmeasuring conceptions. Their specific use
tobuilddesired requirementsworkpackages,which formreusableproblemunits, is then thoroughly
investigated in subsequent sections of this chapter.

Section 5.4 ProblemClass – Kind of Functionality elaborates the kind of functionality addressed
by a requirements work package. It represents an important parameter that impacts a problem’s
functional complexity, and thus must be addressed by a requirements work package.

The kind of functionality involvedwith some requirements strongly relates to their associatable
problem class. It also determines the rules that apply for estimating the size of a requirements work
package. This parameter is approached by introducing three types of functionality, which equally
matter to requirements classification on the basis of patterns and requirements sizing.

Section 5.5 Problem Scope – Amount of Functionality elaborates the amount of functionality
that is involved with a requirements work package. It represents an another important parameter
that impacts a problem’s functional complexity.

The amount of functionality involved with some requirements strongly relates to the scope of
the requirements’ problem class, i.e. how many requirements are in one package. To properly con-
trol this parameter, a constant level of detail must bemaintained for each problemunder considera-
tion, in order to obtain consistent sizemeasurements for each requirements work package. This pa-
rameter is approached by customizing a given hierarchy for functional size measurement patterns,
and correlating problem patterns with each level of that hierarchy. That way, requirements work
packages with a defined level of detail, i.e. with a known functional scope, are achievable.

Since class and scopeof a problem,which characterize a defined set of requirements, have been
identified as the key parameters for determining their functional complexity, section 5.6 Problem
Pattern – Frames Revisited revisits former research into the fundamentals of problem frames [68].
It examines the commensurability of theproblempatternsdiscussed there to set upunits ofmeasure

Background 37

for requirements. As a conclusion and final contribution of this chapter, section 5.6 presents a set of
problem-based functional size measurement patterns, that provision for unified requirements work
packages. These newly developed conceptions are placed and discussed in the context of related
work in section 5.7 Discussion & Related Work.

Section 5.8 Summary summaries the objectivesmet in this chapter with regard to the need and
contribution of problem patterns to establish measurable units of so�ware requirements.

5.2. Background

This section gives the state-of-the-art literature and concepts used in the following for developing
problem-based functional size measurement patterns.

It starts with an overview of some conceptions for grouping so�ware requirements into mean-
ingfulunits,whichmustbemanagedduringaproject in section5.2.1. It focusesonProblem-Orientation
and Requirements Engineering.

Section 5.2.2 Early So�ware Measurement introduces those approaches to early so�ware size
measurement, which have relevance in ongoing industrial practice, and especially to this work. It
considers the role of point values for estimating the amount of functionality involved with so�ware
requirements in project planning.

Section 5.2.3 presents the IFPUG FSMMethod ISO/IEC 20926:2009 – Terms and Definitions used
by the International Function Point Users Group (IFPUG) in its standard ISO/IEC 20926:2009 [117] for
functional so�ware size measurement. It is the core instrument used in here.

Finally, section 5.2.4 Categories of Functional Size Measurement Patterns refers a hierarchy of
functional sizemeasurementpatterns [212],which is applied toproblem-orientedso�wareengineer-
ing [100, 128] and further refined within a pattern-based approach to early so�ware size measure-
ment as is proposed by this work.

38 Problem-Based Units of Measure

5.2.1. Problem-Orientation and Requirements Engineering

Manifold approaches to requirements engineering suchas goal-, object-, feature-, or aspect-oriented
ones, etc. exist. They have in common, that they are all about requirements identification and rep-
resentation, by grouping these in one way or the other into families [41], which exhibit commonal-
ities and variabilities [64] among the requirements. These approaches di�er in their requirements
(de)composition, e.g. by hierarchy, shared properties, or purpose, for managing involved complex-
ity, and for establishing their refinement to increase requirements understanding.

Compared to later so�ware design or programming, these di�erent approaches share the idea
of modularization [171, 172] by bringing it to the domain of so�ware requirements analysis. Ulti-
mately, all of these approaches aimat relations(, sets or structures, that crystalice inblack-boxes [26,
page 27]) of highly cohesive and low-coupled so�ware requirements, whichmakes their dependence
clear, o�en supported by a semi-formal, graphical notation, and which is to the ease of their man-
agement.

Problem-Orientationmakes allowance for the fact, that not every newdemand requires techno-
logical innovation or original so�ware production. In the broader sense, it enables the requirements
analyst to separate the requirements which demand creativity from those that belong to standard
development procedures. It integrates the consideration of the real problem to be solved, e.g. of
what a user wants, which is stated by requirements, and the potential approaches to its solution,
e.g. ofwhat the so�waredoes,which is stated ina specificationand implementedby so�ware, based
on a requirements reference model [98] and accordant refinement framework, therewith establish-
ing a means for systematic reuse and comparability of so�ware development artifacts and project
endeavours.

In Problem-Oriented So�ware Engineering (POSE) [100], requirements are reduced to classes of
known problems, which “o�en have several possible solutions, of which some could be very hard or
expensive to achieve” [140, page 215]. This process is supported by patterns for representing these
problem classes named Problem Frames [128], which are giving a form to a requirements statement
and thus become utilizable as requirement templates. Di�erent styles and techniques to build tem-
plated requirements statements by following an approach to POSE [138] are available, which have
proven the use and relevance of problem-orientation in practice [139]. In case a recurring problem
has been identified, a former (way and the decisionsmade to produce or dismiss its) solution can be
taken into account. It is expectable to gain e�ort and quality benefits by reuse of respective artifacts,
which already have demonstrated their e�ectiveness.

Background 39

User Stories

In agile so�ware development and in a project planning that makes use of Planning Poker [54], re-
quirements are usually enclosed to user stories. These have origin in extreme programming and
represent a brief, informal description of functional so�ware-user interaction. In this regard, user
stories are comparable to UML use cases [168]. By contrast with use case diagrams, which are not
self-explanatory and thus must be evolved by scenarios, user stories have to be complemented [21,
page 228] by additional information, too, suchas acceptance criteria (definitionof "done") and value
indicators (story points), for only naming a few. Each user story is seen as a token or unit of work for
stimulating conversation in the team to reach consensus onwhat is wanted by the user. Accordingly,
Je�ries [129] defines the three components of a user story as the three C’s: Card, Conversation, and
Confirmation. User stories are documented in a canonical format, i.e. by following a template for
representing a requirements statement. They are usually written on index cards or post-it notes
for use at the kanban/project status board, or respectively, for quickly handing them on among the
members of a project team for working on these. In agile, “what happens around the user story is
far more important than the user story itself” [21, page 231].

Templated Requirement Statements In order to care for well-written user stories, these o�en fol-
low a simple format, such as given by Cohn [60] and in [21, section 25.6.1.2]. For example, the tem-
plate:

“As a <role>, I want <function> so that <benefit/some reason>”

describes the who, what, and why of a so�ware requirement, and helps in creating uniform require-
ment expressions. It leaves open, howmuch detail is appropriate ormust be added to obtainmean-
ingful statements. It does not define the limit for “just enough” requirements. The obtained state-
ments should be likewise small and separated enough to provide for flexibility in their planning and
in executing independent work on these.

Further criteria to decide on good requirements are the INVESTmnemonic of requirement state-
ments developed by Wake [216], which Waters [221, pages 137–147] also references, and in addition,
the SMART citeria as introduced by Doran [82] and discussed by table 3.2 on page 21 are applicable.

What remains, is the level of granularity to be clarified for making a user story a team can work
on [197]. Since initial requirements are o�en vaguely defined, these are handled as a high-level user
story named epic (or just a level further as a so-called theme [57]), which will be broken down over
time [21, page 229]. It is an open issue, whatmeans enable to separate e�ectively an epic froma user
story in regard to their level of detail. Supporting this decisionmaking in a systematicmanner, which
is tried in here by utilizing patterns, would be very welcome to the engineering andmanagement of
so�ware project work.

40 Problem-Based Units of Measure

Problem Frames

ProblemFrames [128] area tool used in so�wareengineering,whichassists the requirements analyst
in classifying functional so�ware requirements into classes of simple, recurring problem situations.
Therefore, each problem frame is given by a templated structure called frame diagram, that is filled
in with the so�ware requirements by the analyst. This results a model of so�ware requirements,
which not only has been formed upon patterns for known problems, but which also supports the
analyst in deriving respective so�ware specifications [128, page 106] in a reproducible way. Its the
objective of the problem frames approach to cope with problem complexity in requirements engi-
neering. This approach has been developed by Jackson [126] since 1995. By its use, the overall prob-
lem to be solved that is given by a set of so�ware requirements, is projected into simple problems,
which can be considered independent of each other. Using frame diagrams for requirements analy-
sis, establishes a problemor respective requirements decomposition by separation of concerns. The
advancedmeaning and value of these (frame) concerns, which are inherent to each problem frame,
is part of the contributions made by this dissertation. It is therefore investigated in detail in the fol-
lowing sections, whereby section 5.4.1 on page 50 and the next paragraph about frame diagrams,
introduce their general use.

Frame Diagrams For each problem frame a diagrammatic notation named frame diagram can be
created. In this regard, the terms problem frame and frame diagram are o�en used interchangeably.
Each represents a unique combination of problem domains and their respective shared phenom-
ena, where both can di�er in type, quantity and correlation. Figure 5.1 outlines a frame diagram
introduced by Jackson [128, page 96, section 4.3.4], which is named “simple workpieces” problem
frame. Its meaning and annotations is described here in brief.

developer view user view

reasonrolefeature

boundary object

Collect DataCollect DataCollect Data
<machine domain>

Candidate Data
<problem domain>

Xdomain type

Candidate
<problem domain>

Bdomain type

FUR02
<requirements>

CD!Y2
CDM!E1

CA!E2interface

Y4
constraints on

E3

Collect Data

Legend of interfaces E1 to E3, Y2, and Y4 and their {shared phenomena}:
E1{store40FormData}, E2{fillIn40FormData,FormData1..40}, E3{collectCandidateData},
Y2{FormData1..40}, Y4{collectCandidateData}

FIGURE 5.1 Annotated “simple workpieces” problem frame, cf. [223, fig. 2]

On the le� hand side of figure 5.1 is themachine domain, which represents a part of the so�ware
application to be built. It is indicated by a box with two vertical bars. In the middle of this figure are
two problemdomains, indicating entities involvedwith the problem to be solved. Each problemdo-
main has a particular domain type, here biddable (B) and lexical (X). Section 5.4.1 on page 50 and

Background 41

table 5.4 on page 70 give more details on which domain types exist, and their definitions. The ma-
chine and the problem domains are connected via interfaces, e.g. E1 to E3, Y2, and Y4. Interfaces
are represented by solid lines between domains and hold so-called shared phenomena. These rep-
resent the information and interaction shared by domains that are interfaced with each other. An
exclamation mark indicates the domain, which has control of what phenomena. On the right hand
side of figure 5.1 are the requirements, which are of relevance to the problemdiscussed by this frame
diagram. The set of respective requirements is addressed by an dashed oval.

The general concern depicted by a framediagram is that the so�ware to be built (on the le�) has
to control a specific part of the problem (in the middle) in a way as the requirement demands [128,
page 107] (on the right). A problem frame indicates this part by a requirement constraint on the
respective problem domain, which is an arrowhead that points to the respective problem domain.
Further problemdomains that contribute (bymeans of shared phenomena) to this problem, i.e. that
belong to the problem context, are connected with the requirements (oval) via dashed lines, that
mark a requirements reference.

The frame diagram in figure 5.1 is an instance of the simple workpieces problem frame for a re-
quirements statement named FUR02. In this example, FUR02 demands to support an application
procedure by a recruitment so�ware (machine) that is to be built. The desired so�ware has to col-
lect data from a candidate (E3) and tomake it accessable for later use (Y4) here by storing these (E1).
This candidate data (Y2) is provided by a candidate via filling out respective forms (E2), which must
be developed for and provided by the recruitment so�ware. It can be said, that the general problem
modeled by usage of a simple workpieces problem frame is always about or concerned with record-
ing and including the alteration of some provided information.

Its the configuration of problem domains in their number, type and (constrained) reference to
requirementswhich characterize aproblem frameandmake their unique frameconcern. If a require-
mentmaps a particular problem frame, it is reasonably supposable that this requirement belongs to
a known problem class. That way grouped requirements are expected to be solvable by comparable
means, which is a chance to reduce development e�ort and to care for quality by reuse of artefacts
that already have demonstrated their value. The contribution of this chapter 5 Problem-BasedUnits
of Measure is to elaborate and discuss how to properly limit the number of configurations (or possi-
ble frame permutations) to a helpful extent.

Inpractice, problemframescanbecomparablyapplied touser storiesas templatesor templated
structures for gathering requirement statements. Figure 5.1 shows how the Connextra format maps
the constituent parts of a frame diagram by a role, feature, and reason part. It is a commonly used
template for user stories and “ highlights the who, the what and the why” [149] of a functional user
requirement. It is an interest of this work to reach synergetic e�ects that enhance requirements
communication between developers and users. The intention is to leverage a teams’ shared require-
ments understanding by merging these two approaches of requirements template use, i.e. stories
and frames, into an unique symbiosis.

However, the acceptability of this procedure is subject to ongoing discussions [9, 149]. Concept
confusion in regard to themeaning of requirements along their spectrumof business goals to techni-
cal specifications [140] must be resolved, and also the di�erent use of requirements documentation
for planning a so�ware development project in either the traditional (plan-driven) or in the agile
(process-driven) sense is the other intrinsic challenge to overcome in this context.

Figure 5.1 on page 40 gives an idea why problem frames are a proper means for serving as a
kind of pattern-enhanced “boundary objects” [26, 145] that bridges the di�erent perspectives on
requirements in a project team. These templated structures allow to join the views of developers
and users on the so�ware requirements into a shared perspective, instead of creating a cascade of
isolated abstractions, that yield unfavorable handovers, and therebywidens involved semantic gaps
on the requirements.

42 Problem-Based Units of Measure

5.2.2. Early So�ware Measurement

Early so�waremeasurement is about estimating so�ware product requirements in the beginning of
a project. It is in contrast to so�ware measurement in later project phases, where some code or a
prototype for a so�ware product is available, which then undergoes the measurement procedure.

Di�erent measurement methods andmetrics exist. For instance, lines of code (LOC) is one pop-
ular metric, which has application in many measurement approaches, although its expressiveness
heavily relates to the employed development environment, regarding the technological platform
and individual developer. This makes a comparison or the conversion a.k.a. backfiring of LOC to
other metrics di�icult, o�en “rarely useful” [114, page 89], and is even seen as “professional mal-
practice” [131].

Technology/ist-agnostic, model-based approaches help to overcome these troubles, by quan-
tifying or counting the conceptualized characteristics of a so�ware, which makes them applicable
in early as well as in late project phases, and thus attractive for benchmarking [192] and accordant
decision-making [166, page 7, section 6.2] in project planning. For instance, function points is amet-
ric used within function point analysis for determining the functional size of a problem, which is
representable by a requirements specification. Function points serve in equalmeasures for express-
ing the functional size of a solution, whichmay exist as a prototype, or is given as concept or by code
of a so�ware product.

Figure 5.2 shows, that transforming requirements to point values requires the application of
a counting regime to the determinants of size, one which provides the models and rules to assess
the relevant so�ware characteristics, for obtaining sizemeasures, or requirement estimates, respec-
tively. If these so�ware characteristics are determined reproducibly and become comparable, so are
the results of the measurement method, when following the same counting regime.

This is the challenge addressed by subsequent chapters.

Specification Measure determinants of size Points

requirements
software product

counting regime size estimate

FIGURE 5.2 Transforming requirements into points, adapted from [175, page 31, figure 3.2]

Function Point Analysis is a functional size measurement method [92] for so�ware, which pro-
vides a product metric in the early phases of so�ware projects for determining the size of a desired
pieceof so�ware. It is a technology-agnosticapproach,whichclassifies functional, user-recognizable
requirements into logical so-called base functional components to be countedwithin the sizing pro-
cess. Function Point Analysis is no Requirements Engineeringmethod, since its prime purpose is not
to result a comprehensive requirements specification. Actually, the quality of Function Point Anal-
ysis depends on a good requirements specification [154]. This is the reason for combining function
point analysis with problem-oriented so�ware engineering [100] in the following. Function Point
Analysis introduces a means for quantifying so�ware product requirements specifications, which
significantly contributes to their comparability, and which is a valuable input to e�ort estimation in
the so�ware project planning process.

Function Point Analysis was originally created by Albrecht (1979) as presented in [2], who sug-
gestedameasure for applicationdevelopmentprojectproductivity. It allows for calculating the func-
tional size of an application as a number given as so-called unadjusted Function Points. This point

Background 43

value represents a size measure, which is solely based on the amount and location of data and the
interaction needed to process it and thus independent of any technology considerations.

System or quality characteristics, which in early versions of Function Point Analysis have been
addressed by a value adjustment factor, are todaymanagable via non-functional sizemeasurement
given for instanceby theSo�wareNon-functional AssessmentProcess, SNAP [119]. It provides a com-
plexity adjustment of an unadjusted function point count, which yields in adjusted function points.
SNAP is not considered further, but it represents the decisive reason for using the IFPUG counting
regime introduced in section 5.2.3 and for applying this specific measurement standard throughout
this work.

PlanningPoker ascoinedbyGrenning (2002) in [97] andpopularizedbyCohn (2005) in [55, chapter
6, page 56] is a consensus-based estimation technique for producing relative size estimates to brief
requirement statements. It has become established in agile project practice, where it is also known
as Scrum Poker or the Planning Game. This collaborative forecast method is a modern adaption of
the Wideband-Delphi estimation technique [34, Page 335�] used for so�ware size estimation since
the 1980s.

The requirements are enclosed in user stories [54], each is to be assigned with a point value by
the members of the project team. By playing Planning Poker, the team justifies the amount of func-
tional scope expected to be required for the delivery of a user story, giving respective point values
to it. To this, Planning Poker makes use of a predefined scale based on a fibonacci sequence. It pro-
vides the team with a standard of assignable numbers, named story points, which serve to express
the size of a user story [55, page 36]. This scale is usually given by a deck of cards to each teammem-
ber. Themembers of the team start estimating each user story individually by arranging these along
the scale. Then the cards are revealed, and the group seeks to reach consensus on these individual
relative size ratings by discussion.

The choice of these "magic (size) numbers" as both magnitude for the scale as well as size for a
particular user story is made arbitrarily. The precision and consistency of estimates resulting from
PlanningPokerand its therewith involved reproducabilityof sizeestimates reliesonawell-rehearsed
team [220], whose consensus reached is supposed to be of higher reliability [146] than that of an
unstable one. This has proven to be a viable approach to small projects, but it is hardly a possible
one for large-scale projects requiring careful coordination.

5.2.3. IFPUG FSMMethod ISO/IEC 20926:2009 – Terms and Definitions

Figure 5.3 gives an overviewof the "determinants of size" inherent to a so�ware (requirements spec-
ification, compare figure 5.2 on page 42), which form the basis for executing Functional Size Mea-
surement (FSM) by the IFPUG standard ISO/IEC 20926:2009 (ISO 20926) [117], and which enable the
assignment of point values to the countable so�ware characteristics.

ILF

application
boundary

EIF

application

other

EI

EIEIEI

EQ / EOEQ / EO
user

FIGURE 5.3 Overview of base functional components measurable by IFPUG [117]

44 Problem-Based Units of Measure

Each FSMdepends on the proper establishment of the application boundary, which decides on
the so�ware characteristics that need to be counted. It is a “conceptual interface between the so�-
ware under study and its users” [117, page 3, section 3.9]. The user is in this connection a “person
or thing that communicates or interacts with the so�ware at any time NOTE ’Things’ include, but
are not limited to, [other] so�ware applications, [. . .], sensors and other hardware” [117, page 7, sec-
tion 3.50]. From the perspective of problem-oriented so�ware engineering, the application bound-
ary conforms to the so�ware requirements specification, describing the interactions between the
so�ware-to-be and its environment. Against this background, it is obvious that functional user re-
quirements (FUR) are in the focus of functional size measurement. They represent a “sub-set of the
user requirements specifying what the so�ware shall do in terms of tasks and services” [117, page
5, section 3.34]. Interactions and involved data that cross the application boundary represent the
determinants of size in Function Point Analysis. As illustrated in figure 5.3, each out of the five base
functional components (ILF, EIF, EI, EQ, EO, which are presented in the next lines of text) is counted
with respect to the application boundary, which makes their determination crucial for the outcome
of a FSM. In order to determine the functional size of some requirements consistently, these need
to be decomposed to fit the base functional components in a reproducible way. A base functional
component (BFC) is definedas an “elementary unit of FURdefinedby andusedbyanFSMMethod for
measurement purposes” [117, page 2, section 3.8]. Sowhat a BFC looks like, depends on the require-
ments specification approach. By the IFPUG standard IFPUG [117], a BFC is either a data function or
a transactional function.

Data Functions represent “functionality provided to the user to meet internal or external
data storage requirementsNOTEAdata function is either an Internal Logical File or an External
Interface File” [117, page 3, section 3.16].

– An Internal Logical File (ILF) is a “user recognizable groupof logically relateddata or con-
trol informationmaintainedwithin theboundaryof theapplicationbeingmeasured” [117,
page 6, section 3.39].

– An External Interface File (EIF) is a “user recognizable group of logically related data or
control information, which is referenced by the application being measured, but which
is maintained within the boundary of another application” [117, page 5, section 3.29].

Transactional Functions describe an “elementary process that provides functionality to
the user to process data” [117, page 7, section 3.49]. Such an elementary process describes
the “smallest unit of activity that is meaningful to the user” [117, page 4, section 3.21], and
it “must be self-contained and leave the business of the application being counted in a consis-
tent state.” [118].

There are three kinds of functional or so-called elementary processes, namely External Input (EI),
External Inquiry (EQ), and External Output (EO), which are discussed in detail in section 5.4.2 Pri-
mary Intent of Elementary Processes on page 51, and again specifies what the so�ware shall do in
terms of di�erent kinds of data processing or so�ware functionality.

To this extent, the application of elementary processes for decomposing FUR is comparable to
the use of problem frames in the requirements engineering. The next chapters detail the mapping
of respective conceptions.

Background 45

5.2.4. Categories of Functional Size Measurement Patterns

Trudel et al. (2016) introduce in [212] “the concepts of functional size measurement (FSM) patterns”,
defining di�erent portions of functional process(es) and involved data groups, as needed for execut-
ing functional sizemeasurement by the COSMIC [66] counting regime. According to this publication,
“A FSM pattern is a predefined generic so�ware model solving a recurring measurement problem in
a specific context”, thereby following pattern usage and description as defined by Alexander et al.
[5], and brought to so�ware design by Gamma et al. [90].

Figure 5.4 gives the proposed hierarchy of FSM patterns, for classifying a number of functional
processe(s) and data groups involved into di�erent levels of granularity [65, page 30, section 2.4].
These four categories of functional size measurement patterns can be seen as partly embedded.

Multi-composite FSM Patterns

Composite FSM Patterns

Basic FSM Patterns

Micro FSM Patterns

FIGURE 5.4 Hierarchical representation of FSM patterns, taken from [212, figure 3]

In COSMIC [65, page 32, definition], a functional process is a “single event [the so�ware] must
respond to”, which is triggered by an “individual [. . .] functional user”. On this basis, a functional
process in COSMIC is comparable to an elementary process of IFPUG functional size measurement,
as discussed in section 5.4.2 in detail.

The following paragraphs recapitulate the definition of each FSM pattern given by Trudel et al.
[212]. These definitions of micro, basic, composite, and multi-composite FSM patterns are used in
table 5.3 on page 55 for leveling problem frames into this hierarchy. This results a means to specify
recurring problems in a specific context, accordingly. Section 5.5.1 exemplifies, why Basic FSM pat-
terns become the established standard level of granularity [65, page 32, paragraph 2.4.3] for classify-
ing andmeasuring requirements. Section 5.6.3 derives problem-based functional sizemeasurement
patterns based on the definitions of FSM patterns given here, that belong to exactly one, namely the
level of Basic FSM patterns, for satisfying the need for a standard level of granularity [65, page 30,
paragraph 2.4.1], in order to identify andmeasure a defined scope of so�ware product requirements.

Micro FSM Patterns “applies to a fragment of a functional process, involving one or several data
groups.”

Basic FSM Patterns “applies a complete yet single functional process [. . .which] can also handle
multiple data groups. [. . .] a basic FSM pattern is related to a whole functional process.”

Composite FSM Patterns “applies to a set of basic FSM patterns having a high level functional
meaning together. Instead of being restricted to a single functional process (the particularity of a
basic FSM pattern), a composite FSM combines several functional processes. These functional pro-
cesses have the characteristic of sharing the same primary data group [. . .]”

Multi-Composite FSMPatterns “applies to a set of composite andbasic patterns having functional
relationships among them. A multi-composite FSM pattern combines multiple functional processes
handling several data groups within the so�ware being measured.”

46 Problem-Based Units of Measure

5.3. Problem Unit – Requirements Work Package

Achallengewithinprojectplanning is to setupcommensurableunitsof requirements, thataremean-
ingful to most members of a project team. Information about desired so�ware functionality, i.e. the
requirements, need to be reasonably grouped in awork package, such that it provides the teamwith
a common point of reference in decision making as well as in executing the project process activi-
ties [7, page 47]. Establishing units of comparable so�ware development problems, that are rec-
ognizable to the team, is expected to provide for consistent requirements estimates and accordant
work plans of increased predictive value.

Problem-orientedso�wareengineeringand functional sizemeasurementprovide reusablemeans
to categorize requirements for classifying their involved functionality and for their measurement.
These means, i.e. problem frames as introduced in brief on page 40 and elementary processes as
briefly presented on page 43, are synergized to problem-based functional size measurement pat-
terns in the following. They are designed to establish requirements work packages (RWP) as intro-
duced next, that exhibit the joint capability of recognizing and estimating so�ware requirements in
a reproducible way. These RWP become meaningful to any member of a project team in the sense
of a pattern-enchanced boundary object (PEBO) [26, 145], which supports their collaboration.

DEFINITION 5.1 Requirements Work Package

constitutes a meaningful unit of desired so�ware functionality, which is

self-contained and

measurable.

5.3.1. Self-Contained Functionality

As illustrated in figure 5.5, problem frames serve to classify a set of requirements into a complete, i.e.
self-contained (sub)problem, representing “A task tobeaccomplishedbyso�waredevelopment.” [127,
page 368]. When analyzing a “subproblem, assume that the other subproblems are solved. [which
is . . .] the essential basis of any e�ective separation of concerns” [127, page 60]. Consequently, each
subproblem is “having its own requirements and its own problem context.” [127, page 371] which
forms a defined level of requirements granularity. Thus, a subproblem is a unit of independent and
small(-enough to proceed with these in project planning and development) so�ware requirements,
documenting what a user wants in terms of changes to the given problem context (conditions) [127,
page 369], which are to be achieved by some functionality of the so�ware to be built.

A requirementswork package canbe considered as unit for classifying requirements and thus as
a subproblem,which is created bymeans of problem frames. It provides a consistent representation
for recognizable requirements, which are given by domains and their shared phenomena.

5.3.2. Measurable Functionality

As illustrated in figure5.5, elementaryprocesses serve todetermine thebase functional components,
which in accordancewith ISO20926 [117] represent themeasurable interactions and informationof a
defined set of requirements. Therefore, so-called transactional and related data functions involved
with eachelementaryprocess,whicharebriefly introducedonpage43�,mustbe identified for deter-
mining the requirements’ functional size using the ISO/IEC 20926:2009 Complexity and Size Tables
as given in appendix A.

Problem Unit – Requirements Work Package 47

From this perspective, a requirements work package can be considered as a unit for measuring
requirements. Within a functional size measurement method, it makes a grouping of requirements
in relation to an elementary process possible. It exhibits allmeasurable base functional components
that are of relevance for estimating the functional size of some desired so�ware functionality.

Thus, a requirements work package embodies a known so�ware development problem, whose
functional complexity, that is expressible in function points, can be determined in a consistent and
reproducibleway. Thismakes a requirementswork package a key instrument to benchmarkproduct
size and project performance. Part IV of this dissertation looks into this subject.

�Requirements Work Package�
Desired Functionality

self-contained
Subproblem

25xxxxxxxxxxxxxxxxxxxxxxxxxxxSet of
Requirements

measurable
Base Functional
Component

Problem Frame Elementary Process

«Problem-Based Functional Size Measurement Pattern» Meta-Model

«machine» Transactional Function

+ primary intent : {EI, EQ, EO}

«problemDomain» Data Function ILF

+ constrained domain type : {X, D, C}

«problemDomain» Data Function EIF

+ referenced domain type : {B, C, X}

«requirements» FUR

«connection»

EIF!{Information}

«connection»

ILF!{Information}
TF!{Information}

«refersTo»

EIF!{Information}

«constrains»

ILF!{Information}

FIGURE 5.5 Conceptualization of a Requirements Work Package

Thequality of this instrument relies onapropermatchbetweenproblem framesandelementary
processes, which is summarized in table 5.1 and illustrated by the meta-model in figure 5.5.

In its upper half, figure 5.5 shows that thismatch of conceptions is achievable by a requirements
work package, which groups desired so�ware functionality to a self-contained subproblem, that on
the one hand fits into a recognizable problem class, and on the other hand represents in equal mea-
sures the base functional components for this set of requirements, which are of importance to func-
tional size measurement.

In its lower half, figure 5.5 depicts a join of the constituent parts of problem frames and elemen-
tary processes that underlie a requirements work package, ormore specifically its realized problem-
based functional size measurement pattern. The representation of the meta-model makes use of a
stereotype notation as applied in the UML4PF eclipse plugin [107] for modeling problem frames.

48 Problem-Based Units of Measure

Table 5.1 contains a legend for themeta-model in figure 5.5 and can be understood as a preview
on subsequent sections that explain in detail the constraints on theuseof a requirementsworkpack-
age as a problem-based unit of measure for requirements.

Requirements Work Package Problem Size
(Chapter 6)

Problem Frame as unit Elementary Process as unit Problem Class
for classifying requirements for measuring requirements (Section 5.4)
· frame concern · primary intent

Domain Types Base Functional Components
· Problem Domain · Data Function (ILF, EIF)
·Machine Domain · Transactional Function (EI, EQ, EO)

Machine Interface involves Application Boundary involves Problem Scope
Shared phenomena Information: Data Element Types (DET) (Section 5.5)
· causal shared phenomena · control information
· symbolic shared phenomena · data information

Basic FSM Pattern1 Single Elementary Process2

1 cf. Table 5.3 level II. Basic and Table 5.5
2 cf. Table 5.2

TABLE 5.1 Constraints on a problem-based unit of measure for requirements

For developing a joint understanding of what a problem class is about, section 5.4 Problem Class –
Kind of Functionality establishes a correspondence between problem frames and elementary pro-
cesses by mapping the conception of frame concern to that of primary intent. It justifies the appro-
priateness of equating problem domains with data functions, and the machine domain with trans-
actional functions. That way, the same kind of desired so�ware functionality becomes consistently
measurable as demanded by section 5.3.2.

Section5.5ProblemScope–Amountof Functionality establishesacorrespondencebetween the
concepts ofmachine interface from the problem frames, and the application boundary as defined in
functional sizemeasurement to elaborate amutuallymeaningful definition of problem scope, which
is of use to problem recognition andproblemmeasurement. First, it elaborates themeaning of inter-
action and information by creating a relationship between the shared phenomena at the machine
interface and the data element types, which can undergo function point counting. Second, it clari-
fies what a basic level for functional size measurement pattern is, and how tomake use of it for pro-
ducing a set of requirements that possess a defined level of granularity, one which comprises and
is tailored to a single elementary process only. That way, desired so�ware functionality becomes
not only packaged into a self-contained unit of work, namely a RWP as demanded by section 5.3.1,
but also its amount and dependence compared to other requirements is made transparent, which
increases its objective consideration.

Chapter 6 Problem-Based Estimating Method provides a method, which is based on the con-
ceptualization of a requirements work package as outlined in figure 5.5. It takes the problem-based
functional size measurement patterns as listed by table 5.5 on page 72 which result from the meta-
model for determining problem size in a systematic and deterministic way.

Problem Class – Kind of Functionality 49

5.4. Problem Class – Kind of Functionality

A requirements work package is a self-contained andmeasurable set of requirementsmeaningful to
the project team. Comparably to components of so�ware design, which encompass deliverable so�-
ware functionality, a requirements work package is a component of so�ware analysis, which com-
prises a group of desired so�ware functionality. In each case, these components whether represent-
ing desired or deliverable functionality are categorizable into recurring “classes of functionality and
forms of interaction they provide” [198, page 149].

Consequently and even though with little surprise due to the involvement of problem frames,
a requirements work package implements a set of requirements that is concerned with a particular
class or kind of functionality.

Knowledge about the kind of functionality is relevant to classify and measure requirements
properly. It is likewise a recognition feature of problems and of base functional components, which
determines comparability of requirements and the rules that apply for estimating them. It is a fun-
damental property of a requirements work package, which impacts establishing consistent and re-
producible point values for requirements.

DEFINITION 5.2 Kind of Functionality

is a recognition feature of a requirements work package, that determines

comparability of problems and

the rules to apply for estimating these.

In order to care for this important characteristic of a requirementswork package, which likewise
represents an important parameter to a problem’s functional complexity, section 5.4.1 investigates
how problem frames and section 5.4.2 investigates how elementary processes are concerned with
this issue.

Section 5.4.3 makes use of the findings to combine the constituent parts of problem-oriented
requirements engineering and functional size measurement with regard to their involved kind of
functionality. Therefore, three types of functionality (TOFF) are introduced to permit a proper cate-
gorization and respective combination of conceptions.

50 Problem-Based Units of Measure

5.4.1. Frame Concern of Problem Frames

Problemframesareconcernedwithdi�erentkindsof functionality. In this context, the frameconcern
as “central concern for problems of a class defined by a problem frame” [128, page 365] is of special
interest. When using problem frames to classify requirements, the frame concern helps to identify
the kind of functionality that is of relevance to the problem. It determineswhether a requirement fits
a problem class or not. In case of amatch, themachine to be built, i.e. the so�ware application, has
to control a specific part of the environment in a way as the requirement demands [128, Page 107].

A problem frame indicates this part by a requirement constraint on the respective problem do-
main. The frame concern is related to this constrained problem domain, which can be of a le(x)ical,
(d)isplay, or (c)ausal domain type, cf. themeta-model in figure 5.5 on page 47. The functionality of a
so�ware as describable by problem frames establishes one of the following three types of machine
control: a constrained

X L99 lexical domain “is a physical representation of data” [128].
The machine controls the read or write operations to these data.

D L99 display domain is “an output device for the machine” [68].
On behalf of the machine, it provides “information to other problem domains” [68].

C L99 causal domain is provided with information controlled by the machine to invoke specific
behavior of this problem domain.

These three types of functionality or respective types of machine control are inherent to each
problem frame. They characterize di�erent kinds of processing data or signals in connection with a
constrained problem domain, i.e. so�ware functionality, which is needed to fulfill the requirements.
These findings are resumed in section 5.4.3 to combine problem frames with elementary processes.

Problem Class – Kind of Functionality 51

5.4.2. Primary Intent of Elementary Processes

In functional size measurement according to ISO 20926, elementary processes are concerned with
di�erent kinds of functionality. In this context, their primary intent is of special interest, which is
the “intent that is first in importance” [117, page 6, section 3.43] to each elementary process. The
primary intent is related to the kind of processing data or signals, which is visible at the application
boundary.

Each elementary process can be distinguished by its primary intent, that characterizes the pro-
cessing objective or the lead purpose of established functionalitywith regard to some requirements.
There are three types of transactional functions, also known as elementary processes, that allow to
classify requirements and serve as base functional components for functional size measurement:

EI← External Input (EI) is an “elementary process that processes [. . .] information sent fromout-
side the boundary” [117, page 4, section 3.27], its primary intent is to “maintain an Internal
Logical File (ILF) [. . .]” [118].

EQ ! External Inquiry (EQ) is an “elementary process that sends [. . .] information outside the
boundary” [117, page 5, section 3.28], its primary intent is to “present information to a user.
It presents only data that is retrieved [. . .]” [118].

EO→ External Output (EO) is an “elementary process that sends [. . .] information outside the
boundary and includes additional processing logic beyond that of an external inquiry” [117,
page 5, section 3.30], its primary intent is to “present information to a user. It presents data
that is calculated or derived [. . .]” [118].

The functionality of a so�ware application as describable by elementary processes serves one
of these three primary intents. They characterize di�erent kinds of processing data or signals in con-
nectionwith a set of requirements, that relate to somebase functional components. Eachprovisions
for corresponding rules and size values as in ISO/IEC 20926:2009 Complexity and Size Tables in ap-
pendix A to measure the functional size of the respective requirements set.

These findings are resumed in the following section 5.4.3 to combine problem frames with ele-
mentary processes.

52 Problem-Based Units of Measure

5.4.3. Mapping Patterns to Processes by Types of Functionality

This section combines problem frames and elementary processes with regard to their involved kind
of functionality as defined on page 49. Table 5.2 gives an overview of the relationship between
these concepts. It shows that problem frames and elementary processes are comparable classes or
components for requirements. Both characterize units of so�ware functionality, that exhibit unique
kinds of processing some information. These kinds of information processing are distinguishable
into categories. In the following, three unique types of functionality (TOFF) are introduced, that al-
low for comparing problem frameswith elementary processes and provide the basis for their proper
match.

unit for requirements kind of functionality or processing information relates to

Problem Frame (PF) problem class frame concern X L99 D L99 C L99

Elementary Process (EP) size class primary intent EI← EQ! EO→

PF and EP coincide with regard to their type of functionality (TOFF): TOFF-i. TOFF-ii. TOFF-iii.

TABLE 5.2 Mapping problem frames to elementary processes by types of functionality

DEFINITION 5.3 Type of Functionality

provides a classification of requirements with respect to their involved kind of functionality.
It characterizes so�ware functionality that

TOFF-i. processes information, which is received.

TOFF-ii. provides information, which is retrieved.

TOFF-iii. provides information, which is derived.

Types of functionality provide a classification, which ensures that a knownproblem ismeasured
consistently. As designed here, they provide a bridge between problem and size units for require-
ments, namely problem frames and elementary processes, with regard to their involved kind of in-
formation processing. With respect to the meta-model in figure 5.5 on page 47, TOFF-i. to TOFF-iii.
allow for classifying a set of requirements by problem frames that coincides with determining the
applicable elementary process. This in turn drives the choice of rules that apply, i.e. the base func-
tional components together with their respective complexity and size matrices, for measuring the
problem’s functional size. This finding is resumed and central to section 5.6.3, when types of func-
tionality are applied to set up problem-based functional size measurement patterns. In the follow-
ing, each type of functionality is explained in detail, for providing background to their appearance
within the three, right-hand columns in table 5.2 above.

Problem Class – Kind of Functionality 53

TOFF-i. processing received information

Requirementswhich belong to TOFF-i. fit to a problem classwith a constrained lexical domain. They
demand so�ware functionality, that processes some information, which is received and thus not
createdby the so�ware itself. This type of functionality coincideswith an external input in functional
size measurement, where information received from outside the application boundary is processed
by means of an internal logical file.

For example, reads or writes of a lexical domainParty plan are required, in order to process the
Editing commands received from the users John and Lucy in Jackson’s Party Plan problem, see
section 6.5.1.

TOFF-ii. processing retrieved information

Requirements which belong to TOFF-ii. fit to a problem class with a constrained display domain1.
They demand so�ware functionality, that provides information, which is retrieved. This type of func-
tionality coincides with an external inquiry in functional size measurement, where information is
simply retrieved frommaybemultiple sources before it is sent outside the application boundary for
information purposes.

In contrast to TOFF-iii, requirements which belong to TOFF-ii. are concerned with providing
some information to a user or another so�ware application, which are not subject to significant cal-
culations. There is no mentionable data transformation. Retrieved information is taken ’as-is’ and
more or less forwarded without additional computational e�ort.

For example, the printout of sensor information in Jackson’s Local Tra�ic Monitoring problem
is such an ’as-is’ representation of data, which is retrieved from the Vehicles that pass sensors on
the street, see section 6.5.2.

TOFF-iii. processing derived information

Requirements which belong to TOFF-iii. fit to a problem class with a constrained causal domain2.
They demand so�ware functionality, that provides some information, which is derived. This type
of functionality coincides with an external output in functional size measurement, where informa-
tion is derived to some distinguishable computational extent, and then sent outside the application
boundary for providing information and generating respective control.

In contrast to TOFF-ii, requirements which belong to TOFF-iii. provides information to an other
so�ware application, which invokes some control e�ort to it.

For example, in Jackson’s Occasional Sluice Gate problem, Gate status and Sluice operator
commandsmustbeconsidered toderivepropermachinecontrolof the sluicegatemotor, e.g.On,Off ,
Clockwise, Anticlockwise , which requires a status-dependent decisioning of the Sluice controller
machine, that is to be implemented by respective so�ware, see section 6.5.3.

1Note: The fact that a display domain, which has been introduced by Côté et al. [68], indicates one out of three possible
problem classes for requirements counting and composition, reassures the relevance of this newly identified domain
type in the problem frames theory for analyzing requirements and in requirements measurement practice. This has
been hardly demonstrated in literature or research until now.

2Note: As already mentioned in section Limitation on page 31 this work focuses on information systems. Due to this
reason, a causal domain is seen as another, independent so�ware application, from which the currently considered
so�ware (machine) to be built receives some data (symbolic phenomena) or control (causal phenomena) information
and vice versa.

54 Problem-Based Units of Measure

5.5. Problem Scope – Amount of Functionality

A functional size measurement pattern as defined by Trudel et al. [212] is “a predefined generic so�-
waremodel solving a recurringmeasurement problem in a specific context”, which is also presented
in section 5.2.4 Categories of Functional Size Measurement Patterns. Problem Framesmeet this def-
inition to the extent of being similarly capable to frameaunit of requirements to a recurring problem
class in a specific problem context.

As elaborated in the previous sections, a known measurement problem is characterized by the
kindof functionality, that it poses. It canbecategorizedby typesof functionality (TOFF-i. toTOFF-iii.),
which represent typicalwaysofprocessing some information, andwhicharemeasurable inadefined
way. That is, a recurring problem, which is of a known class, is always measured according to the
same rules.

This section addresses the specific context of a problem, which is characterized3 by the amount
of functionality, e.g. the number of distinct data and control information to bemanaged by the so�-
ware (machine) to be. This quantity of information essential to understand the problem at hand
should bemeasured in the following. Its size depends on the scope of a problem, and varies with the
level of detail applied to the requirements for their analysis or measurement. Stabilizing the scope
of requirements or their problem context respectively is advantageous to yield consistent results.
Gauging requirements work packages to a comparable level of detail is in the focus of investigations
in the following.

DEFINITION 5.4 Amount of Functionality

is all the information that make up the functional scope of a requirements work package. It

determines the size of problems, and

depends on a requirements decomposition that frames a problem context in a defined way.

For problem frames, the amount of functionality relates to the number of involved problem do-
mains and their respective sharedphenomena. For elementary processes, the amount of functional-
ity relates to thenumberof involvedbase functional components and their respectivedataor control
information, i.e. data element types, see also table 5.1 on page 48 and figure 5.5 on page 47.

In order to guarantee for equally sized problems, namely those which are of a comparable de-
greeof requirementsdecomposition, requirementsworkpackages require tobuildon functional size
measurement patterns, that comprise a comparable functional scope for a unit of requirements. The
following sections investigate proper intra- and inter-problem decomposition of requirements, re-
spectively, for defining functional sizemeasurement patterns that are of practical use. The hierarchi-
cal levels of detail as introduced in the following table 5.3 illustrate howmuch context specific to the
measurement problem can be covered by a functional sizemeasurement pattern, and it categorizes
elementary processes and problem frames respectively.

3amongst other aspects, such as quality attributes, etc., which are not in the scope of considerations here

Problem Scope – Amount of Functionality 55

5.5.1. Hierarchical Levels of Detail

In its le� column, table 5.3 makes use of a four-level pattern hierarchy for functional size measure-
ment (FSM) patterns as developed by Trudel et al. [212], cf. section 5.2.4 Categories of Functional
Size Measurement Patterns. The concepts of elementary processes as given by Trudel et al. as well
as ISO 20926 in [117], and the problem frames as defined by Jackson [128] are arranged in this hi-
erarchy, cf. section 5.2 for a brief Background on these. As a result of this arrangement, table 5.3
provides criteria in its columns two and three that allow to distinguish the respective levels. Conse-
quently, it enables the identification of measurable problems, which share a comparable degree of
requirements decomposition.

Hierarchy of Elementary Processes Problem Frames
FSM Patterns

I. Micro · fragment of a transactional function
· data functions are considered in isolation

Frame
· no referenced domains

br
oa
d
←
−−
−−
−−
−−
−−
−−
−−
−−

Fu
nc
tio
na
lS
co
pe
−−
→
lim

ite
d

II. Basic · self-contained yet single transactional fct.
· data functions are considered in a unit(y)
to one transactional function

Basic Problem Frame
· at least one referenced domain
· exactly one constrained domain

III. Composite · set of transactional functions that
belong to level II. Basic
· each features a similar type of functionality
· · · relation of data functions involved
is made obvious

Composite Problem Frame
· sharing one constrained domain
· assembled by several frames
· joined in one diagram

· · · relation of data functions involved
is not directly obvious

· joined by life-cycle-expressions
for separate diagrams

IV. Multi-Composite · set of transactional functions that
belong to level II. Basic
· each features di�erent types of functionality
· transactional functions
are considered in relation to each other
· · · relation of data functions involved
is not in focus

Frame
·more than one constrained domain
· assembled by several frames
· joined in one diagram possible

TABLE 5.3 Hierarchical levels of detail for functional size measurement patterns

The next paragraphs starting from page 56� explain this hierarchy in detail.
An exemplary classification of some requirements, which demand a “write of a log file” (FUR

wolf), illustrate the use and meaning of each level (I. Micro to IV. Multi-Composite) to the functional
scope and respective size of a problem. Each of the four subsequent examples discuss the same
requirement (FURwolf) with increasing levels of problem context, e.g. di�erent functional scopes or
degree of detail, which are classifyable according to table 5.3 above.

Accordingly, section 5.6 Problem Pattern – Frames Revisited builds on this hierarchy to chose
those patterns out of a set of problem frames, which fit to the level II. of basic functional size mea-
surement patterns as covered by the gray-shaded area in table 5.3 above. This level and its respec-
tive patterns allow toestablish sets of just – small and independent – enough so�ware requirements.
It enables the requirements analyst and estimator to build a requirements work package, which is
comparable to others in regard to the problem to be solved and its functional size measurement.

56 Problem-Based Units of Measure

Level I. micro problems

As illustratedby table 5.3 onpage55 in its first row, functional sizemeasurementpatterns at this hier-
archical level of detail serve to classify requirements that describe a “fragment of an [. . .elementary]
process” according to Trudel et al. [212].

An elementary process belongs to one type of functionality as introduced in section 5.4.3 by
table 5.2, and thus relates to one transactional function (EI, EQ, EO) and at least one additional data
function (ILF, EIF), cf. also themeta-model in table 5.5 on page 47. So, it usually requires several base
functional components out of ILF, EIF, EI, EQ, andEO tomake anelementary process. Together, these
form a unity of transactional and data functions, which jointly process information that crosses the
application boundary.

For instance, receiving data from another so�ware, which is seen as an EIF by ISO 20926, and
processing this received data in a data base, which represents an EI operation (of TOFF-i.) on an
ILF in ISO 20926, makes such a unit(y) of base functional components that finally consititutes one
elementary process.

For the level I ofmicroproblems, consideringdata functions in isolation is takenas characteristic
for what a fragment of an elementary process is in functional size measurement.

In table 5.3, this fragment of a transactional function is put on a level with problem frames, that
provide little context to the measurement problem, i.e. that have no referenced problem domains.
This proposal for a mapping of elementary processes and problem frames to the level I of micro
problems makes sense, since problems without referenced domains are usually integrated as part
to other problems, that have referenced domains.

EXAMPLE 5.1 Level I. micro problem – write of a log file

«Requirements Work Package» Write of a Log File

x

Write LogWrite LogWrite Log Log File
X

FUR wolf

WL!{storeTimestamp}
LF!{LatestTimestamp} {writeFile}

EI ILF

For example, a requirement that demands a “write of a log file” (FURwolf) can be classified asmicro
problem, which fits to level I of the FSM pattern hierarchy in table 5.3. It represents an instance of a
simple transformation problem class namely PF1.4 according to table 5.4 on page 70, that consists
of only one constrained problem domain, which is in this example of a lexical type (X). FUR wolf is
satisfied by the machine domainWrite Log , which stores a timestamp to the Log File , such that it
always contains the lastest timestamp.
From the perspective of functional size measurement, this problem compares to the consideration
of a data function Log File , which is of type Internal Logical File (ILF), and which is processed by a
transactional function that represents an External Input (EI), see also themeta-model in figure 5.5.
By chosing theproblemclassof simple transformation , it remainsunclear, inwhichproblemcontext
this data function is used, since only a part or excerpt of an elementary process is represented in this
requirements work package. It shows only the data-related aspect of the measurement problem,
but not its circumstances or trigger. In this case, there is not even a crossing of information along
the application boundary, since an ILF remains inside the so�ware under consideration, but only
interaction and information between the so�ware and its environment is of relevance to functional
sizemeasurement. That is why FURwolf represents only a fragment of an elementary process in this
example.

Problem Scope – Amount of Functionality 57

Functional size measurement patterns at themicro level I represent valid problem classes from
the perspective of problem frames, but patterns at this level are too limited in their functional scope
in order to provide for stand-alone problems that are of relevance for measuring purposes.

Level II. basic problems

As illustrated by table 5.3 on page 55 in its second row, functional size measurement patterns at
this hierarchical level of detail serve to classify requirements that describe “a complete, yet single
[. . .elementary] process” according to Trudel et al. [212].

Considering meaningful combinations of base functional components, i.e. data functions (ILF,
EIF) in the context of a transactional function (EI, EQ, EO), at level II. of basic problems, conformsbest
to the definition of an elementary process in functional size measurement. It is defined as “small-
est unit of activity that is meaningful to the user” [117, page 4, section 3.21], and it “must be self-
contained and leave the business of the application being counted in a consistent state.” [118] by ISO
20926.

In table 5.3, this self-contained, yet single process is put on a level with problem frames, that
represent a basic problem “with the smallest number of domains” [128, page 361], i.e. one that has
exactly one constrained and at least one referenced problem domain.

EXAMPLE 5.2 Level II. basic problem – write of a log file

«Requirements Work Package» Write of a Log File

x

Write LogWrite LogWrite Log

Log File
X

User
B

FUR wolf

WL!{storeTimestamp}
LF!{LatestTimestamp}

UR!{sign_in}

{writeFile}

{logUserActivity}
EI

EIF

ILF

For example, a requirement that demands a “write of a log file” (FUR wolf) can be classified as ba-
sic problem, which fits to level II of the FSM pattern hierarchy given in table 5.3. This requirement
represents an instance of the simple workpieces problem class namely PF2.7 according to table 5.4,
that consists of only one constrained problem domain Log File , which is of a lexical type (X), and
one referenced, biddable (B) domainUser . FURwolf is satisfied by themachine domainWrite Log ,
which stores a timestamp to the Log File , such that it always contains the lastest timestamp. This
machine control is invoked by aUser as part of a sign-on procedure via initiating the sign_in .
From theperspectiveof functional sizemeasurement, this problemcompares to the considerationof
a data function Log File which is processed by a transactional function of type external input (EI),
and which in turn acts on specific conditions of the problem context, here on the User ’s sign_in .
Compared to the example for the level I of micro problems on page 56, the problem class or respec-
tively the kind of functionality for FUR wolf remains the same. Both examples di�ering in the fact,
that this time more problem context than only the data fragment, i.e. the Log File is shown. In this
example, the functional scope of FUR wolf is now expanded to a level of detail, which reveals the
User , who takes the role of an external interface file (EIF), as the trigger for this problem situation.
In addition, all aspects of the measurement problem, the data (ILF andEIF) and the related trans-
actional aspect (EI) which represent FURwolf, are shown here in onemeaningful combination, that
is covered by a defined problem pattern, and thus representable by a requirements work package.

58 Problem-Based Units of Measure

Functional size measurement patterns at the basic level II. represent the preferred mode of re-
quirements decomposition for the sake of size measurement, and are thus objects worth of further
investigations by this dissertation. At this level, problem frames and elementary processes estab-
lish units for requirements which share a comparable understanding of what makes a meaningful
functional scope.

That is why the second row in table 5.3, namely level II. basic problems is highlighted in gray. It
represents the level of detail for requirements classification and measurement for which functional
size measurement patterns and a corresponding measurement method are designed in the follow-
ing.

A subset of Jackson’s composite problem frames does also belong to level II. basic problems,
which is the reason for highlighting these in gray in table 5.3, too. Details on this fact are presented
in the subsequent discussion of composite problems at level III.

Level III. composite problems

As illustrated by table 5.3 on page 55 in its third row, functional size measurement patterns at this
hierarchical level of detail serve to classify requirements that describe “a set of [. . .self-contained,
yet single processes] Instead of being restricted to a single [. . .one. These processes have] a high
level functional meaning together [. . .and they] have the characteristic of sharing the same primary
[. . .purpose]” according to Trudel et al. [212].

That is, data functions involvedwith this setof equally typed transactional functionsarebrought
into one, shared relation. Means and reasons that make up this relation must be made explicit, in
order to keep track of the number of processes that belong to a requirements set. Otherwise, func-
tional size measurement would be futile, since it could not result in a comparable, and consistent
number of function points.

In table 5.3, level III of the FSM pattern hierarchy relates to problem frames, that provide an
extended context for a single measurement problem, i.e. it comprises those frames, which have ex-
actly one constrained and several referenced problemdomains, and in addition can represent a join
of many problems into one (diagram) that share the same type of functionality. Section 5.5.2 Tailor-
ing Measurable Problems – Pack the package provides further insights and approaches to this topic.
The following example on page 60 gives more detail on what it looks like, when several elemen-
tary processes of the same type of functionality are joined into one diagrammor requirements work
package, respectively.

In contrast to level II of basic problems, which consider single processes only, units for require-
ments at level III share the same type of functionality for several transactional functions, which of
course “have overlapping scopes” [128, page 307] in regard to their data functions. On the one hand,
these overlaps allow for a reasonable composition of requirements, but on the other hand, they are
also a source of inconsistencies, particularily with regard to the problem size, if these overlaps are
not revealed.

The relation ofmeasurable problems that have overlapping functional scopes can be addressed
in two, distinctways, which yield di�erent degrees of requirements decomposition. Either by the use
of a composite problem (frame), or by the use of a composition of problem (frame)s.

The first joins elementary processes by means of one frame diagram to a common instance of
a measurable problem. This use and understanding of a composite problem frame is exemplified in
the following on page 60. A composite problem frame at level III shares the same degree of require-
ments decomposition as problem frames of level II for basic problems. That is why the first row for
composite problem frames in table 5.3 is also highlighted in gray andobject to further investigations.

Problem Scope – Amount of Functionality 59

The second approach to address overlapping functional scopes joins elementary processes by
means of life-cycle-expressions for composing several frame instances into one (measurable) prob-
lem. The use and understanding of a composition of problem frames is exemplified on page 62.
Such a composition of problem frames represents a degree of requirements decomposition that is
characteristic for FSM patterns at level III. The functional scope of this problem level is too broad for
considering it within functional size measurement. Due to this reason, a composition of frame in-
stances i.e. by life-cycle-expressions is not viewed as belonging to level II basic problems, and thus
not included in the gray-highlighted cells of table 5.3. Nethertheless, knowing level III of composite
problems, becomes of importance to manage requirements and related work package dependen-
cies, which is a critical issue and contributes to project planning as is elaborated in part III of this
dissertation.

The challenge is tomake clear that the level III. composite problems as known from the hierar-
chy for functional size measurement patterns is not the same as composite problem frames as used
by Jackson, even if the same wording may imply an equivalence. In the hierarchical levels of de-
tail as discussed in this section, a subset of Jackson’s composite problems frames belongs to level II
of basic problems and another subset belongs to level III of composite problems, where only those
at level II are of use in functional size measurement. The following examples apply the respective
definitions given in table 5.3 to make the important di�erences clear.

60 Problem-Based Units of Measure

EXAMPLE 5.3 Level III. composite problem – write of a log file

«Requirements Work Package» Write of a Log File

x

Write LogWrite LogWrite Log

Log File
X

User
B

Reference
Account
C

FUR wolf

WL!{storeTimestamp}
LF!{LatestTimestamp}

UR!{sign_in}

{writeFile}

RA!{SignInOK}

{logUserActivity}

{check-
Activity}

EI

ILF

EIF

EIF

For example, a requirement that demands a “write of a log file” (FUR wolf) can be classified by a
composite problem (frame), such as the commanded model building problem class, see also PF3.11
in table 5.4, which is a composite of simple workpieces with amodel building problem into one com-
mon diagram. Their overlapping scopes relate to the storing of the timestamp in the constrained,
lexical (X)Log File problem domain. This composite problem constitutes onemeasurable problem,
which belongs to level II basic problems of the functional sizemeasurement pattern hierarchy given
in table 5.3 (highlighted in gray), and which is of use by requirements work packages as defined on
page 46. FUR wolf is satisfied by the machine domain Write Log , which stores a timestamp to the
Log File , such that the log file always contains the latest timestamp. This machine control is in-
voked by aUser as part of a (single-)sign-on procedure, and accompanied by a credentials check at
aReference Account , which is an other so�ware application that holds own dataa.
From the perspective of functional size measurement, the transactional function Write Log can
be regarded as a composition of two elementary processes, which share one type of functionality
(TOFF-i. see table 5.2). Both, the simple workpieces as well as model building problem (processes)
are instances of an external input (EI). Their particular, unique data functions, namely User and
Reference Acount , are shown in onemeaningful unit(y) as ameasurable problem. The choice of the
commanded model building problem class establishes a requirements work package, which takes
their overlapping requirements constrainton thesameproblemdomainLog File intoaccount. Com-
pared to the level I of micro problems on page 56, and the level II of basic problems on page 57, the
problem class for the example to level III of composite functional size measurement problems re-
mains the same again, namely an external input (EI). Only the number of data functions and thus
the scope of the problem context evolves.
aNote: In this example, Reference Account is another so�ware application classified as a causal (C) problem domain,
which takes the role of an external interface file (EIF , cf. figure 5.3 on page 43 and its respective explanation) to the
so�ware machine under consideration, here the Write Log . Reference Account is in control of the symbolic phe-
nomenon SignInOK , which it makes available toWrite Log for further processing. As introduced in section 4.3, this
work focuses on developing so�ware to build information systems. That is why causal domains are used to mark
so�ware application (part)s other than the one(s) to be built. The importance and use of this is detailed further in
respective sections.

Problem Scope – Amount of Functionality 61

Functional size measurement patterns at the composite level III that relate a set of elementary
processes by one common composite problem frame such as given in the example above equal in
their functional scope to patterns of basic problems at level II of the functional size measurement
hierarchy given in table 5.3.

Thus, even if level III is about composite FSM patterns, composite problem frames as known
from Jackson [128] have only the name in common with this level, but they do not coincide with
the respective functional scope at this level of requirements decomposition. Jackson’s composite
frames do not su�ice to make the composition of elementary processes (or the respective existence
of a set of elementary processes by one diagram) explicit as is needed for determining reproducible
and thus comparable function point counts.

In contrast to level I and level II of the FSM pattern hierarchy and as a result found by the exam-
ple above, functional size measurement patterns at the composite level III are not representable by
one defined frame diagram. In order to be in the position to represent measurable problems and to
classify their respective functional scope to level III of the pattern hierarchy, life-cycle-expressions
are applied to reveal the problem composition as is shown next.

62 Problem-Based Units of Measure

EXAMPLE 5.4 Level III. composite problem, continued – write of a log file

«Requirements Work Package» Write of a Log File

x

Check AccountCheck AccountCheck Account

Log File
X

Reference
Account
C

FUR wolf

WL!{storeTimestamp}
LF!{LatestTimestamp} {writeFile}

RA!{SignInOK} {checkActivity}
EI

ILF

EIF

«Requirements Work Package» Write of a Log File

x

Log UserLog UserLog User

Log File
X

User
B

FUR wolf

WL!{storeTimestamp}
LF!{LatestTimestamp}

UR!{sign_in}

{writeFile}

{logUserActivity}
EI

ILF

EIF

problem composition of FUR wolf ::= {CheckAccount || LogUser}

For example, a requirement that demands a “write of a log file” (FUR wolf) can fit to a composition
of problem (frame)s as mentioned on page 58 to build a level III composite problem as defined by
the pattern hierarchy given in table 5.3. For instance, the consideration of FUR wolf at level III yields
a set of two elementary processes or respective requirements work packages, of which each fea-
tures a similar type of functionality (EI). Both requirements work packages have a requirements
constraint on the same problem domain Log File in common.
Theupper requirementsworkpackage forCheck Account is an instanceof amodel building problem
pattern, which considers FUR wolf in a di�erent context than the lower requirements work package
for Log User , which is an instance of a simple workpieces frame. FUR wolf is satisfied by a (parallel)
composition of both, represented as FUR wolf ::= {CheckAccount || LogUser}.
From the perspective of functional size measurement, it can be said, that each of these problems
represents the same elementary process, which is integrated to di�erent aspects (in one case to the
Reference Account in the other to theUser) of a common problem scope (both overlap in regard to
the storage of a timestamp inLog File). In otherwords, both requirementswork packages represent
variations of finally the same functional sizemeasurement problem, which is why it is reasonable to
consider these in combination.

Problem Scope – Amount of Functionality 63

At level III of the FSM pattern hierarchy, life-cycle expressions are applied to glue measurable
problems together, which feature similar types of functionality in regard to a common requirements
constraint.

It remains to decide, if Check Account and Log User represent one measurable problem as il-
lustrated on page 60, or if these constitute two requirements work packages as given here. Since
this decision impacts their functional size, this issue is elaborated in detail in section 5.5.2 Tailoring
Measurable Problems – Pack the package.

In summary, composite functional sizemeasurementproblemsat level III aredescribedbymeans
of life-cycle-expressions that compose level II basic problems. There are no functional sizemeasure-
ment patterns or problem frames, which represent this level of the FSM pattern hierarchy by them-
selves. Thatway, formerly tacit problemrelationsbecomerevealed,whichserves the (de)composition
of requirements (to) work packages and their consistent size estimation.

64 Problem-Based Units of Measure

Level IV. multi-composite problems

As illustratedby table5.3onpage55 in its fourth row, functional sizemeasurementpatternsat this hi-
erarchical level of detail serve to classify requirements that describe “a set of composite and [. . .and
basic problems] having functional relationships among them. [. . . It] combines multiple [. . .] pro-
cesses handling several [. . .purposes]” [212].

In table 5.3, this set ofmultiple processes is put on a level with problem frames, that represent a
composition of basic problems that feature di�erent types of functionality, i.e. those that havemore
than one constrained and several, referenced problem domains.

EXAMPLE 5.5 Level IV. multi-composite problem – write of a log file

«Requirements Work Package» Write of a Log File

x

Write LogWrite LogWrite Log

Log File
X

User
B

FUR wolf

WL!{storeTimestamp}
LF!{LatestTimestamp}

UR!{sign_in, register }

{writeFile}

RA!{SignInOK}

WL!{joinUser} Reference
Account

C

{logUserActivity}

{check-
Activity,
-Account }EI/EO

ILF

EIF

EIF

For example, a requirement that demands a “write of a log file” (FUR wolf) can be classified as a
multi-composite problem, which fits to level IV of the pattern hierarchy.
It represents an instance of an update problem class according to [49], which is a composite of a
simple workpieces with a commanded behavior problem. The two constrained problem domains
Log File andReference Acount indicate a composition of processes that belong to di�erent types of
functionality. In this case, the simple workpieces process (part of themachine) is of a TOFF-i. accord-
ing to table 5.2, which relates to an external input (EI) in ISO 20926, and the commanded behavior
process is of a ToFF-iii., which relates to an external output (EO) in functional size measurement
according to ISO 20926.
From the perspective of functional size measurement, this update of a log file on a user sign_in
represents twomeasurable problems at once that require individual consideration.

Functional size measurement patterns at the multi-composite level IV represent a degree of re-
quirements decomposition, which are supported by some problem frames like the update one, but
they represent problems, which are of no proper functional scope for the sake of measuring their
functional size by ISO 20926 [117].

Unique problems require unique measurement. Otherwise, consistency of measurements can-
not be guaranteed. That is, only processes that are concerned with the same type of functionality
need to be jointly considered in one requirements work package. The composite level III of the pat-
tern hierarchy o�ers by means of basic problem patterns and life-cycle-expressions an alternative
way to cope with multi-composite problems.

Finally, only patterns at the level II basic problems represent a level of detail and respective
requirements decomposition, which is reasonably applicable for functional size measurement. The
patterns in table 5.5 are chosen accordingly. These ensure the development of self-contained and
measurable requirements work packages as demanded by section 5.3 using patterns, which enable
reproducible requirement estimates.

Problem Scope – Amount of Functionality 65

5.5.2. Tailoring Measurable Problems – Pack the package

In order to care for consistent requirement estimates, it is not solely important to decide “what can
be counted and what cannot be counted we always have to determine whether the ‘variation’ is a
separate and unique functional requirement of the user.” [209, page 1], which is assisted by patterns
as developed in this dissertation. It is also mandatory to mitigate the risk of double counted prob-
lems, and thus of accidently inducing wrong numbers of function points for requirements to their
subsequent prioritization and planning in a so�ware project.

Hitherto exisiting approaches rely on the use of criteria such as given by Total Metrics [209] and
IFPUG [117, page 14, section 5.5.2.2] to clarify for each emerging requirement, if it belongs to an al-
ready exisiting requirements set. That is, these criteria allow to set up groups, families or any other
arbitrarily chosen form of work packages for requirements in relation to their underlying functional
process. This manual check can not only become a very exhaustive one, but also a defective proce-
dure in itself.

By use of problem frames that belong to the level of basic functional sizemeasurement patterns
as in table 5.5 on page 72, this situation becomes much more comfortable, since these problem-
based functional sizemeasurement patterns provide for a structuring, which deliberately constrains
the class and scope of requirements to that of a single elementary process. This is very beneficial for
creating requirements work packages that implement a coherent set of so�ware functionality with
regard to their size.

«RWP» EI «RWP» EO «RWP» EI «RWP» EQ «RWP» EO

«RWP» EI «RWP» EO «RWP» EQ «RWP» EO

«RWP» EI

1.

2.

3.

R1, R3 R2 R4 R5 R6 R7

P13P13P13 P2P2P2 P4P4P4 P5P5P5 P6P6P6

P13P13P13
P4P4P4

P2P2P2
P5P5P5
P7P7P7

P6P6P6

P134P134P134

Legend:

R1 to R7 requirement statements

«RWP» {EI|EQ|EO} requirements work packages implementing a particular elementary process

P1 . . .7 machine icons for representing (joint) measurable problems

FIGURE 5.6 Cases for unique functionality within requirements work packages

66 Problem-Based Units of Measure

Nevertheless, instantiating several, but di�erently framed instances of finally the samemeasur-
able problemmust be avoided for ensuring consistent requirement estimates. As introduced by Ex-
ample EXAMPLE 5.4 on page 62, for each measurable problem it must be checked, if it is a unique,
stand-alone one or a variant of an other, already identified, measurable problem, and thus capable
of being integrated to a joint requirements work package.

Figure 5.6 illustrates several cases of how to establish those requirements units, which each for
themselves exhibit unique so�ware functionality. These units are identified and managed through
a requirements decomposition, that takes requirements dependencies into systematic account.

As designed by this work, Definition DEFINITION 5.5 in synergy with problem-based functional
size measurement patterns as in table 5.5 on page 72, assists this requirements decomposition by
framingunits of unique so�ware functionality, whosedependencies aremade transparent. Knowing
these units and their dependencies is a prerequisite to achieve consistent requirements estimates.

DEFINITION 5.5 Unique Set of Functionality (UF)

can be determined by the following criteria UF.C1 and UF.C2. Accordingly, measurable problems
involved with two RWPs are joined into one RWP and counted as the same,

UF.C1 if these fit to the same problem class (EI, EQ, EO)

· with respect to their requirements constraint for a shared problem domain. And

UF.C2 if these, in addition to UF.C1, have overlaps in their problem scope (DET)

· with respect to some of their shared phenomena,

· which do not change independently of each othera.
Problems within one RWP that fulfill UF.C2 are combined into one new, measurable
problem, which has merged respective overlapping phenomena.

aNote: If two problems are meaningful in a parallel composition, such as in Example EXAMPLE 5.4 on page 62, their
common phenomena provide an anchor point for combining these problems into one, as WL!{storeTimestamp}
and LF !{LatestTimestamp} at the machine interface to Log File in both problems CheckAccount and LogUser .
These anchor points or problem overlaps indicate why the other phenomena do not change independently of each
other. In case of the chosen example, this means that the change to Log File depends on both US !{sign_in} and
RA!{SignInOK}. The RWP in Example EXAMPLE 5.3 on page 60 would be one possible resulting merger for this
example.

An explanation of figure 5.6, which illustrates this pattern-supported requirements decomposi-
tion into measurable units of unique so�ware functionality follows.

1. The initial situation is marked by a gray-colored ellipse, which consists of a set of require-
ment statementsR1 toR5. These requirements are grouped bymeans of problem-based functional
size measurement patterns into four requirements work packages, which represent themeasurable
problems P13, P2, P4 and P5. Each of these implements a particular elementary process, which
can be an external input (EI), external inquiry (EQ), or external output (EO).

As illustrated here, executing requirements decomposition may in a worst case result in one in-
dividual requirements work package for each requirements statement, which comes naturally but is
hardly likely desired. Theunsurpassable advantageof usingpatterns, is the gainedknowledgeabout
the problem class, which speeds up subsequent requirements analysis and respective decomposi-
tion tremendously, as shown next.

Problem Scope – Amount of Functionality 67

In casenewrequirementsemergeand thesedonot fulfill DefinitionDEFINITION5.5criteriaUF.C1,
they result a new requirements work package, such as R6. For this example it is assumed that P2
andP6 place a requirements constraint on di�erent problemdomains, which prohibits theirmerger
into one requirements work package, even if these are instances of the same type of functionality
or elementary process EO. If a new requirement fulfills Definition DEFINITION 5.5 criteria UF.C1,
it is integrated to an exisiting requirements work package, such as in case of R7, which becomes
integrated to the requirements work package «RWP» EQ of P5.

In any case, due to the structuring provided by the patterns, it becomes much easier to clarify
requirementsdependenciesand todecide, if a supposednewproblem is (part of) analreadyexisiting
one.

2. Consequently, there are up to three cases of requirements decomposition or ways to form
unique functionality, whose identification is enabled by problem-based functional size measure-
ment patterns and which are managable through the

criterion UF.C1 given in Definition DEFINITION 5.5. This criterion allows for maintaining inter-
work package dependencies of requirements. It enables the

– Integration of a new requirement to an already exisiting requirementswork package, e.g.
R7 becomes part of «RWP» EQ for P5.

– Integration of exisiting requirements work packages to one, e.g. the two stand-alone re-
quirements work packages «RWP» EI for P13 and P4 become members of one RWP.
Both share the same problem class and requirements constraint on the same problem
domain as assumed in this example. Thismakes them instances of the samemeasurable
problem. In contrast, the two «RWP» EO for P2 and for P6 remain as-is, since these
are instances of di�erent problems as is indicated by di�erent, constrained problem do-
mains.

That way, criterion UF.C1 ensures that each requirements work package implements a com-
plete problem in itself.

criterionUF.C2 given in Definition DEFINITION 5.5. This criterion allows for maintaining intra-
work package dependencies of requirements. It enables the

– Merge of two problems within one requirements work package, e.g. as for P13 and P4,
which become one P134.

Due to this criterionUF.C2, it is ensured that each requirementswork package implements just
small enough problems.

3. Due to the fulfillment of criteria UF.C2, the requirements work package «RWP» EI for P13
and P4 must be further consolidated to care for consistency. The two problems must be merged
into one problem as is illustrated in more detail by Example EXAMPLE 5.4, which also illustrates the
importance of the criteria given in DefinitionDEFINITION 5.5. Finally, seven requirement statements
R1..R7 are grouped into fivemeasurable problemsP134, P2, P5, P7, P6, which are representedby
four requirement work packages only, each containing a unique set of cohesive so�ware functional-
ity.

Tailoring measurable problems in this way extents the use of problem patterns in early func-
tional sizemeasurement beyond the scope of requirement estimating. Such a packaging of require-
ment statements isnotonlybeneficial for establishingconsistent estimatesbutalso formanaging re-
quirements complexity by making their composition and involved dependencies transparent. More
details on this issue are presented in the Case Studies.

68 Problem-Based Units of Measure

EXAMPLE 5.6 Determine a unique set of functionality – Pack the package for FUR wolf

Example EXAMPLE 5.4 on page 62 presents two stand-alone requirements work packages named
Check Account andLog User , whichconstituteonecompositeproblemthat ismaintainedbymeans
of a life-cycle expression FUR wolf ::= {CheckAccount || LogUser}.
It leaves the decision open, if joining these two requirements work packages into one is desirable,
such that a requirements work package as in Example EXAMPLE 5.3 on page 60 is obtained, which
would make maintaining an additional life-cycle expression, and thus a potential source of incon-
sistencies obsolete. That is why the criteria for determining a unique set of functionality as given by
the Definition DEFINITION 5.5 on page 66 are used to resolve this issue.
This example conforms to the integration andmerger of P13 and P4 in figure 5.6.

2� Criterion UF.C1 The two RWPsCheck Account and Log User fit to the same problem class with
respect to a common constrained problem domain (EI,EQ,EO).

Even though both RWPs are instances of di�erent problem patterns, namely
model building and simple workpieces as given by table 5.5, these represent the same
problem class, which is an external input (EI) or TOFF-i. according to table 5.2. Both
RWPs share a requirement constraint on a common problem domain, which is placed on
Log File .

That way, criterion UF.C1 implies that both RWPs represent at least variants of finally the
same measurable problem and thus must become members of one requirements work
package.

Compared to figure 5.6, this conforms to the integrationofP13andP4 toone requirements
work package.

2� Criterion UF.C2 The two RWPs Check Account and Log User have overlaps in their problem
scope.

static overlap: Both RWPs have some shared phenomena within their problem context
in common.

Shared phenomena common to di�erent RWPs, which are in this example
LF !{LatestTimestamp} and WL!{StoreTimestamp}, represent a potential
risk for double counts, which must be mitigated. That way, this first indica-
tion of criterion UF.C2 further strengthens the need to join these two RWPs
Check Account and Log User into one, such that LF !{LatestTimestamp}
andWL!{StoreTimestamp} are only considered and counted once.

dynamic overlap: BothRWPshave sharedphenomena in common,whichdonot change
independently from each other.

This second indication of criterionUF.C2 is confirmedby the parallel composi-
tion of these two RWPs in the life-cycle expression FURwolf ::= {CheckAccount
|| LogUser}, which indicates that these are intertwined in such away that they
do not change the Log File independently from each othera. In this context,
the problem ofLog User can be understood as the triggering for or a problem
that involves the functionality ofCheck Account . Themultiple appearance of
the sharedphenomenaLF !{LatestTimestamp}andWL!{StoreTimestamp}
in both RWPs can be resolved by merging these into one combined problem,
such as given by example Example EXAMPLE 5.4, without loss in expressive-
ness and for the advantage of consistent requirements estimates.

Compared to figure 5.6, this conforms to themerger ofP13 andP4 to one combined prob-
lem P134.

aNote: Only the parallel dependence of requirements is of importance here. Any other relation, e.g. sequential or alter-
native, already implies that the requirements address di�erent purposes even in the presence of problem overlaps.

Problem Pattern – Frames Revisited 69

5.6. Problem Pattern – Frames Revisited

As elaborated in the previous sections, problem frames and elementary processes have compara-
ble conceptions to consider units of requirements. Both comprise a set of so�ware functionality,
which exhibits a specific type of functionality and level of detail. That way, self-contained units of
requirements can be established and associated with a functional size.

This section revisits some former work [68], where all possible problem frames have been cre-
ated by permutation and compiled to a comprehensive list, which is given in table 5.4 on page 70. It
makes use of an alternative, short-cut representation of problem frames in a tabular form, instead
of using frame diagrams. Based on the findings from the previous sections, this work proposes to
choose problem frames that belong to the second, basic level II of the functional size measurement
pattern hierarchy as given in table 5.3 on page 55 to set up measurable problems.

DEFINITION 5.6 Measurable Problem

is a unit of so�ware functionality, which fits to a

basic functional size measurement pattern.

Level II. of basic problems and respective functional size measurement patterns frame a self-
contained unit of so�ware functionality in a way that it comprises one, independent elementary
process. In addition, these patterns can be used for integrating process fragments from the level I
of micro problems and for expressing (multi-)composite processes, which are level III and level IV
problems.

Table 5.4 on page 70 summarizes the frame permutations as given by Côté et al. [68, tables 2, 3,
and 4]. Table coloring indicates changed annotations, and the right column level is an extension of
the original publication, which are explained in the following.

The right column level gives the classification of each problem frame to its level of detail ac-
cording to table 5.3 on page 55. There is no classification of problem frames to the composite or
multi-composite level in this table, since only single frames are considered (no grouping of these),
which hold only one constrained problem domain (no multiple requirement constraints per frame
diagram), just as done in the respective publication [68].

PF 1.2 to PF 1.4 are no Basic FSM patterns. They belong to the first level in the hierarchy repre-
senting micro problems, since they have no referenced problem domain. Requirements that fit to
these problems should be combined with other, basic problems in order to maintain a consistent
level of problem decomposition.

PF 2.1 is no Basic FSM pattern, since it does not represent a self-contained yet single elementary
process, i.e. PF 2.1 is not an external input, see discussion in section 5.4.2. Accordingly, information
received from and sent back to a lexical (X) domain resides within the application boundary. Since
only data and control information that crosses the boundary counts in functional sizemeasurement,
problems that fit PF 2.1 should be addressed by another pattern or decomposed di�erently, cf. the
previous section 5.5.2.

All other problem frames in table 5.4, which are noBasic FSMpattern, represent either an invalid
framepermutation,whichcontradictsoneof the integrity conditions, or the frame is interchangeable
with an already considered frame permutation, or its domains can bemerged according to the rules
given below, which results again a problem frame, that is already amember of the permutation list.

The followingsection5.6.1 IntegrityConditionsandsection5.6.2MergeRules summarizechanges
made to the integrity conditions and merge rules as applied to table 5.4 in this work. This is im-
portant, since integrity conditions and merge rules define the validity of a problem frame. Sec-
tion 5.6.3 Problem-Based Functional Size Measurement Patterns presents and discusses the final
choice of frames, which are applicable as problem-based functional size measurement patterns.

70 Problem-Based Units of Measure

Problem
Frame
No.

constrained
problem
domain

1st
referenced
domain

2nd
referenced
domain

comment Level,
acc. to
tab. 5.3

PF 1.1 B - - n/a: a biddable domain cannot be constrained (�IC02) n/a
PF 1.2 C - - Jackson [128, page 85]: required behaviour I. Micro
PF 1.3 D - - new: generated information I. Micro
PF 1.4 X - - new: simple transformation I. Micro

PF 2.1 X X - Jackson [128, page 99]: transformation I. Micro
PF 2.2 C X - new: data-based control II. Basic
PF 2.3 D X - Jackson [128, page 194]: model display II. Basic
PF 2.4 X C - Jackson [128, page 198]: model building II. Basic
PF 2.5 C C - NOTmerged frame: PF 1.2, (MR***)→new: requiredbehavior (variant) II. Basic
PF 2.6 D C - Jackson [128, page 93]: information display II. Basic
PF 2.7 X B - Jackson [128, page 96]: simple workpieces II. Basic
PF 2.8 C B - Jackson [128, page 89]: commanded behaviour II. Basic
PF 2.9 D B - new: commanded display II. Basic
PF 2.10 B ? - n/a: a biddable domain cannot be constrained (�IC02) n/a
PF 2.11 ? D - n/a: a display domain must be constrained (�IC01) n/a

PF 3.1 X X X merged frame: PF 2.1 cf. PF 2.1
PF 3.2 X X C NOTmerged frame PF 2.4→ new: triggered transformation II. Basic
PF 3.3 X X B Wentzla�&Specker [224, 228]: commanded transformation II. Basic
PF 3.4 ? ? D n/a: a display domain must be constrained (�IC01) n/a
PF 3.5 C X X merged frame: PF 2.2 cf. PF 2.2
PF 3.6 C X C interchangeable with PF 3.12 cf. PF 3.12
PF 3.7 C X B new: commanded data-based control II. Basic
PF 3.8 D X B Choppy&Heisel [49]: query II. Basic
PF 3.9 X C X interchangeable with PF 3.2 cf. PF 3.2
PF 3.10 X C C merged frame: PF 2.4 cf. PF 2.4
PF 3.11 X C B new: commandedmodel building II. Basic
PF 3.12 C C X NOTmerged frame: PF 2.2→ new: triggered data-based control II. Basic
PF 3.13 C C C merged frame: PF 1.2 cf. PF 1.2
PF 3.14 C C B NOTmerged frame: PF 2.8→ new: commanded behaviour (variant) II. Basic
PF 3.15 D C B Jackson [128, page 215]: commanded information II. Basic
PF 3.16 X B X interchangeable with PF 3.3 cf. PF 3.3
PF 3.17 X B C interchangeable with PF 3.11 cf. PF 3.11
PF 3.18 X B B NOT new: multi-user simple workpieces→merged frame: PF 2.7 cf. PF 2.7
PF 3.19 C B X interchangeable with PF 3.7 cf. PF 3.7
PF 3.20 C B C interchangeable with PF 3.14 cf. PF3.14
PF 3.21 C B B NOT new: multi-user commanded behavior→merged frame: PF 2.8 cf. PF 2.8
PF 3.22 B ? ? n/a: a biddable domain cannot be constrained (�IC02) n/a
PF 3.23 ? D ? n/a: a display domain must be constrained (�IC01) n/a

PF 3.24 D C X new: triggered information II. Basic

Color code:

light gray Basic functional size measurement patterns according to
table 5.3 Hierarchical levels of detail for functional size measurement patterns

dark gray new frame or altered rationale compared to Côté et al. [68]

Legend:

Domain type: Le(X)ical, (D)isplay, (C)ausal, (B)iddable

? any arbitrary domain type possible

– no domain at all

TABLE 5.4 Problem Frame permutations as published in [68], revisited

Problem Pattern – Frames Revisited 71

5.6.1. Integrity Conditions

Integrity Conditions IC01 to IC02 have been proposed by Côté et al. [68] tomaintain consistency and
validity of considered frames in table 5.4 on page 70. They are not changed in this work.

IC01 A domain of type display is always constrained in a problem frame.

IC02 A biddable domain is never constrained in a problem frame.

5.6.2. Merge Rules

Merge rulesMR01 toMR03 have been proposed by Côté et al. [68]. They are revised and entirely sub-
stituted byMR*** in this work to set up table 5.4 on page 70 due to the following reasons: MR03 and
MR02 argue at the level of problem diagrams (instances) and not at the level of frames (patterns).
MR01 ignores the di�erence between a requirements reference and a requirements constraint on a
problemdomain,which justifies its alteration toMR***. Allmergedproblem frames in table 5.4Prob-
lem Frame permutations as published in [68], revisited have been reworked according to this new
merge rule.

MR*** Two domains of the same type can be merged,
if they are not referenced and constrained at the same time.

MR01 Two domains can be merged, if they share the same domain type.

MR02 Two domains can be merged, if a good name representing both domains can be found.

MR03 Two domains can be merged, if one domain is related to the other domain by aggregation.

5.6.3. Problem-Based Functional Size Measurement Patterns

In the previous section, table 5.4 identifies a choice of frames as basic functional size measurement
patterns, which are all capable to describe the information involved with a measurable problem at
a comparable level of detail (cf. problem scope in section 5.5).

In this section, the review of table 5.4 is resumed by consolidating its choice of frames with re-
gard to their type of functionality (cf. problem class in section 5.4). It determines the rules that apply
for measuring the functional size of a problem that is represented by some requirements.

In this way, the revised set of patterns given in table 5.5 are applicable to scale the problem
description for a requirements set, such that each maintains the same level of decomposition, and
each is measured according to the same rules.

By comparison with the size and complexity tables used in functional size measurement, which
are given in the appendix A on page 262, it becomes clear that the number of data element types
(DET) and knowledge about the base functional components (ILF, EIF, EI, EO, EQ), which coincides
with the amount and kind of functionality addressed by a set of requirements, are the key to a re-
quirements’ sizemeasure. Themeta-model Conceptualization of a Requirements Work Package de-
veloped in figure 5.5 on page 47 meets this concern.

Thus, problem-based functional sizemeasurementpatterns comeupwithbuilt-inmeans to con-
trol these two most critical parameter to a measurable problem’s functional size. Each pattern in
table 5.5 is a smart tool to reproducibly set up requirements work packages (cf. problem unit in sec-
tion 5.3), which comprises measurable problems that are comparable in their functional sizes.

72 Problem-Based Units of Measure

The following explanationsmotivate the final set of frame permutations in table 5.5 that is con-
sidered as su�icient for problem-based functional size measurement.

Problem Frame Referenced Referenced Constrained Basic Problem Elementary Process
No. Domain I Domain II Domain L99 Frame Name EI← EQ! EO→

01 PF 2.4 C X model building TOFF-i.
02 PF 2.7 B X simple workpieces TOFF-i.
03 PF 3.2 C X X triggered transformation TOFF-i.
04 PF 3.3 B X X commanded transformation TOFF-i.
05 PF 3.11 B C X commandedmodel building TOFF-i.

06 PF 2.3 X D model display TOFF-ii.
07 PF 2.6 C D information display TOFF-ii.
08 PF 2.9 B D commanded display TOFF-ii.
09 PF 3.8 B X D query TOFF-ii.
10 PF 3.15 B C D commanded information TOFF-ii.
11 PF 3.24 C X D triggered information TOFF-ii.

12 PF 2.2 X C data-based control TOFF-iii.
13 PF 2.5 C C required behavior (variant) TOFF-iii.
14 PF 2.8 B C commanded behavior TOFF-iii.
15 PF 3.7 B X C commanded data-based control TOFF-iii.
16 PF 3.12 X C C triggered data-based control TOFF-iii.
17 PF 3.14 B C C commanded behavior (variant) TOFF-iii.

Legend:

Elementary process: External Input (EI), External Inquiry (EQ), External Output (EO)

Domain type: Le(X)ical, (D)isplay, (C)ausal, (B)iddable

TOFF-i. to TOFF-iii.: Problem frame relates to elementary process
with regard to their jointly considered type of functionality
(cf. table 5.2 Mapping problem frames to elementary processes by types of functionality)

TABLE 5.5 Basic Problem Frames with relevance in Functional Size Measurement

In contrast to Côté et al. [68], several frame permutations in table 5.4 are not merged due to
a new merge rule that applies: MR***, see section 5.6.2. Therefore, a new frame is created for PF
2.5 named: Required Behavior (variant). The PF 3.2 becomes a new frame named: Triggered Trans-
formation, PF 3.12 becomes a new frame named: Triggered Data-based Control, PF 3.14 becomes
a new frame named: Commanded Behavior (variant), and PF 3.24 is newly formed in this work, it
becomes a new frame named: Triggered Information. PF 3.18 and PF 3.21 can be ignored, since they
are covered by PF 2.7 and PF 2.8.

As a result, table 5.5 presents 17 problem frames that allow for classifying requirements to basic
measurable problems. Within requirements engineering this set of patterns represent reusable units
of measure for requirements, which serve to set up comparable units of so�ware functionality and
enable to determine the functional size of a so�ware development problem in a reproducible way.

Basic Problem Frames with relevance in Functional Size Measurement are fundamental to the
frame counting procedure, which implements a customized functional size measurement process
according to ISO/IEC 20926:2009 and that is developed and discussed in chapter 6 Problem-Based
Estimating Method.

Discussion & Related Work 73

5.7. Discussion & Related Work

Problem-based units of measure as developed in this chapter are in first instance an instrument for
scoping so�ware product requirements in a defined way, which is to the advantage of consistent
requirement estimates. This is made possible bymeans of patterns, that account for a reproducible
requirements decomposition and which explicitly utilizes requirements dependencies.

Therefore, problem-based functional sizemeasurementpatterns serveas reusableproblemtem-
plates for structuring requirements, which allow to fill a coherent set of desired so�ware function-
ality in equally sized problem containers. These problem containers or problem-based units for re-
quirements definition and measurement are designed and referred to as requirements work pack-
ages in here.

Consistent requirement estimates demand the identifiability of comparable requirements that
require “a similar amount of work” [58] according to Cohn, and to join these into groups that are
meaningful for estimating to most members of the project team, as noted by Daneva et al. in [73,
page 1343]. Palomareset al. (2016) suggest, that this is preferablybedonebymeansof “requirements
patterns as a particular strategy to reuse” [169, pages 1 – 2], which provides the project team with a
common point of reference regarding the recognition of recurring classes of measurable problems.
According toWiegers and Beatty [226, chapter 18], this form of requirements reuse also reveals their
shared understanding of the requirements and it also provides an opportunity to identify emerging
as well as applicable best practices.

Implementing a pattern-guided strategy to requirements reuse as a basis for determining con-
sistent point values for these is addressed in this work by combining problem-oriented so�ware en-
gineering and in particular its problem patterns with the concepts used for functional size measure-
ment. Such a combination is presented for the first time by Lavazza and del Bianco [141] in 2008,
wherean“initial investigation”on thegeneral applicabilityofproblemframes to functional sizemea-
surement appears to be promising. That work is resumed by them [32], where problem frames are
used to setupUMLsequencediagrams for functionaluser requirementsasameans that is “fairly easy
tomeasure” following theCOSMICcounting regime for functional sizemeasurement. Already in 1999,
Uemura et al. [215, figures 3 – 7] described five patterns, that indicatemeasurable components in se-
quence diagrams of UML design specifications. Making use of design patterns and components as a
means for estimating so�ware size is illustrated by Troche (2004) using a sample application. None
of these available works make use of requirement patterns as the first class means to operate the
functional size measurement process, which is one important concern of this dissertation.

In addition, integrating requirements pattern with functional size measurement is not only ad-
vantageous for consistentproblemcounting, i.e. requirements estimating, but also formaintaininga
consistent problem composition. This is of high relevance to subsequent prioritization and planning
of requirements in a project, since their number und involved dependencies (will) scale up. There-
fore, it is argued by this dissertation to enforce control on the requirement’s complexity by tailoring
the problem scope to a basic (level II., see table 5.3) degree of requirements decomposition.

A respective choice of problem frames in table 5.5 on page 72, and criteria on page 66 to set up
setsofunique so�ware functionality areprovided, thatallow to systematically address requirements
dependencies and thereby eases to maintain the aspired degree of separation of concerns for each
measurable problem. Working with this limited set of problem-based functional size measurement
patterns is reasonable, since it allows for establishing highly flexible and expressive requirements
work packages. These are capable ofmounting (level I.) micro problems such that involved assump-
tions on their problem context, which are represent through problem domains, become apparent,
and toassemble (level III. and level IV.multi-)compositeproblemsby theuseof life-cycleexpressions.
The e�ectiveness and su�iciency of this chosen set of problem frames is demonstrated in the Case
Studies part.

74 Problem-Based Units of Measure

5.8. Summary

This chapter elaborates on the design of seventeen problem-based functional size measurement
patterns given in table 5.5 Basic Problem Frameswith relevance in Functional Size Measurement on
page 72, that are applicable for decomposing requirements intomeasurable problems. Thesemake
determining of consistent function point values for comparable requirements possible.

Each measurable problem is represented by a requirements work package. It unites require-
ments with special attention to their involved kind and amount of functionality, which are investi-
gated in detail in section 5.4 Problem Class – Kind of Functionality and section 5.5 Problem Scope
– Amount of Functionality. These are the two key parameters to a problem’s functional size as de-
fined by ISO/IEC 20926:2009 size and complexity tables A.1 to A.5 and given in the appendix A on
page 262� in thiswork. Problem-based functional sizemeasurement patterns reconcile desired so�-
ware functionality with these parameters. That is why each requirements work package constitutes
a coherent set of desired so�ware functionality that exhibits threebuilt-in properties: first, it belongs
to ameasurable problem class, which relates to one out of three types of functionality as developed
in table 5.2 Mapping problem frames to elementary processes by types of functionality on page 52.
Second, it comprises a self-contained problem scope, which relates to a basic level of detail as elab-
orated in table 5.3 Hierarchical levels of detail for functional size measurement patterns on page 55
And third, it can be tailored according to the criteria given by Definition DEFINITION 5.5 on page 66
to finally ensure that it represents a unique and thereby independent set of so�ware functionality.

Problem-based functional sizemeasurement patterns represent themissing link that integrates
functional size measurement and so�ware requirements engineering [154] based on patterns. They
provide for a consistent problem description, which identifies the constituent parts of a require-
ments statement that are relevant for determining its functional size [104]. In addition, they pro-
vide a strategy to reuse, which mitigates quality issues related to a requirements specification [169,
page 1]. Thus, these patterns for measurable problems ultimately improve the quality of the size
estimates [154] for requirements.

75

6. Problem-Based Estimating Method

6.1. Introduction

This chapterdesignsamethod fordetermining the functional sizeofmeasurableproblems. It applies
functional size measurement patterns as developed in the previous chapter 5 Problem-Based Units
of Measure to fit desired so�ware functionality with requirements work packages. These undergo a
counting process, to obtain a function point value for a set of requirements.

Section 6.2 Background gives in a nutshell the concepts not previously presented but worked
with in the following.

Section 6.3 Requirements SizingMethod gives themethod for problem-based estimating, which
is named Frame Counting Agenda. Its projected application is to become a substitute for the plan-
ning poker game as ameans to estimate requirements by using point values. It introduces a pattern-
based counting process, which makes use of the (frame diagram) structuring that underlies a re-
quirements work package, cf. figure 5.5 on page 47. In addition, it comes with important validation
conditions, that safeguard a consistent functional size measurement procedure for requirements,
which is in accordance with ISO/IEC 20926:2009.

Section 6.4 Step-By-Step Guide to the Requirements Sizing Method executes the method for
measuring a problem’s functional complexity step-by-step. It provides by use of a running example
further insights to the proposed approach.

In order to recapitulate the key principles behind the counting process and to provide a kind of
evaluation for the newly created pattern-led, problem-based functional size measurement method,
section 6.5 Sample Application to Jackson’s Basic Frames illustrates the method in brief for some
well-established problem patterns from Jackson [128].

Section 6.6 Discussion & Related Work places the newly developed method for problem-based
estimating in the context of related work. It discusses the pros and cons of embedding problem
patterns into a standardprocedure for functional sizemeasurement in order to stabilize requirement
estimates.

Section 6.7 Summary summarizes the added-value created by this problem-based estimating
method to obtain reproducible size measures for comparable requirement units.

76 Problem-Based Estimating Method

6.2. Background

This sectiongives thescientificbackground fordevelopingaproblem-based functional sizemeasure-
mentmethod,whichbuildsonpatterns for requirementsestimatingasdesigned inchapter II Problem-
Based Project Estimating.

It motivates the use of these patterns for creating a requirementsmodel, which takes the role of
a “proxy” when determining the requirement’s functional size in section 6.2.1. Then in section 6.2.2,
it illustrates the necessary customizations to a functional sizemeasurement approach, that promise
for ensuring consistent functionpoint countingbasedon thedevelopedpattern-based requirements
model.

Section 6.2.1 presents the core ideas behind the Proxy-Based Estimating method (PROBE) as
developed by Humphrey [114, chapter 5]. It arose at the same time as Jackson’s problem frames ap-
proach [128], but it is to date not linkedwith patterns to form an early so�ware estimation approach
in problem-oriented so�ware engineering.

Section 6.2.2 gives the activities and steps of the IFPUG FSMMethod ISO/IEC 20926:2009 –Mea-
surementProcess [117, chapter 5], whichdescribes amethod for executing functionpoint analysis. In
addition, it outlines the adaptionof this international standard to create aproblem-based functional
size measurement approach, which makes use of patterns as proxies for estimating the functional
size of requirements.

6.2.1. Proxy-Based Estimation – The PROBE Method

Estimating of so�ware requirements as discussed in section 5.2.2 Early So�ware Measurement
provides for an early quantification of these, which is needed for and whose quality is of high im-
portance to their planning in so�ware projects. “Most size measures [. . .] are not available during
planning[. This motivates the use of] a proxy[, which] is a stand-inmeasure that relates product size
to planned functionality and provides a means in the planning phase for judging (and therefore, for
estimating) a product’s likely size.” [177, page 33, section 3.4.1]

Following McConnell [152, Page 135�], proxy-based estimation can make respective data avail-
able. It is characterized by:

1. Identifying and counting a proxy that correlates with what you really want to estimate1.
2. Estimate the quantity of what you are ultimately interested in on the basis of historical data
available to you from counted proxies.

As presented by table 6.1, a good proxy is the key. It not only enables the gathering of data, but it also
improves the quality of these data and therefore ensures amore consistent estimating and planning
processes.

Problem-based functional sizemeasurementutilizes requirementsworkpackagesasproxy,which
are built on patterns, and whose size measurement is guided by validation conditions to guarantee
consistent counts. These patterns create requirement proxies, which procure a “form [. . .] for gath-
ering and retaining [size] data” [177, page 14, section 1.2.3].

Within the Personal So�ware Process (PSP) framework [177, page 34, Knowledge Area 3.5],
Humphrey developed a Proxy-Based Estimating method (PROBE) [114, chapter 5], which enables
so�ware engineers in a disciplined way [115] to estimate size and e�ort of their work based on his-
torical data from the proxies.

PSP is a step-by-step self-improvement approach, which enables the gathering of performance
data needed for understanding and enhancing the individual’s productivity. PROBE makes use of
1Note: In this work this quantity relates to functional requirements.

Background 77

these “personal data to judge a new program’s size and required development time” [115, page 81],
and to feature statistical estimating and planning methods.

V Proxy size measurement should closely relate to product development effort

V Proxy content of a product should be automatically countable

V Proxy should be easy to visualize at the beginning of the project

V Proxy should be customizable to the special needs of its using organization

V Proxy should be sensitive to any implementation variations that impact development
e�ort

2 Proxy prediction quality should be determined by use of correlation method

Legend: V= the patterns provided here meet this criterion for a good proxy

TABLE 6.1 Criteria for selecting a good proxy, adapted from [114, p. 111] and [177, p. 33]

The use of a proxy in PROBE accounts for the idea, that developing so�ware functionality, which
is (of) similar (size) compared to one developed in the past, will require the same e�ort. It applies
program objects as proxies that reflect real-world entities, but their size measurement is executed
on development artifacts, i.e. program parts, which become available late in a project.

Size data in PROBE relates to “developed product size in LOC” [115, page 81]. E�ort refers in
PROBE to the time needed for delivering the respective LOC, i.e. for completing the development of
a defined so�ware part.

“Other proxies [. . .] are possible” [115, page 81], of which “The function-point method is obvi-
ously a candidate” to Humphrey [114, page 113]. This is approached in here for providing a means
to early so�ware size measurement, which is designed to operate even in the absense of historical
data.

78 Problem-Based Estimating Method

6.2.2. IFPUG FSMMethod ISO/IEC 20926:2009 – Measurement Process

The International Function Point Users Group (IFPUG) standard [117, chapter 5] describes a func-
tional size measurement method, which is not limited to but applicable in the early phases of so�-
ware projects. It comprises a stepwise process with related counting rules, which allow for mea-
suring the “determinants of size” as given in a requirements specification and introduced in sec-
tion 5.2.3 IFPUG FSM Method ISO/IEC 20926:2009 – Terms and Definitions. The measurement result
is represented by a numerical value given in so-called function points (FP), which represents the
amount of functionality involved with the requirements under consideration.

Figure6.1 illustrates theprocessof functional sizemeasurement as givenby IFPUGstandard [117,
chapter 5], and its customization by the pattern-based Requirements Sizing Method as introduced
in section 6.3 Requirements Sizing Method.

On its le� side, it shows the ten activities of the functional sizemeasurement process as given in
chapter 5 of the IFPUG standard IFPUG [117]. The flow diagram is taken from IFPUG [117, figure 1] for
illustrating the initial IFPUGmeasurement method, and what has been economized for its adaption
to a problem-based functional size measurement approach.

In themiddle, figure 6.1 givesmore detail on the activities and thus the structuring of the IFPUG
functional size measurement process. Every modification to this measurement method is empha-
sized through a coloring in gray.

On its right side, figure 6.1 shows the coverage of activities for the IFPUGmethod and the Frame
Counting Agenda (FCA). This problem-based functional size measurement method takes a require-
mentsworkpackage (RWP) as input, andassists the requirements estimator indetermining the func-
tional size of its involved functional user requirements (FUR). The output of the FCA is a numerical
value, which answers the functional size question by a number giving the function points for the FUR
of the respective requirements work package, and thus is attached to it.

As can be seen, the entire measurement process is supported by problem-based functional size
measurement patterns as designed in section 5.6 of this work and summarized in table 5.5. That
is, these patterns for classifying requirements are independent of the requirements sizing method,
but functional size measurement according to the FCA depends on their application. This is due to
the fact, that each measurement step within the FCA is accompanied by validation conditions as
introduced in table 6.3, which safeguard the consistency of the counting process and operate on
the pattern that underlies a requirements work package. Each validation condition represents an
interpretation of the function point counting rules as given in the IFPUG standard ISO 20926, such
that these rules become applicable in problem-based functional size measurement.

In detail. . .

Theactivities5.1, 5.4.1, and5.5.1of the IFPUGFSMmethodpresent only anoverviewof their respec-
tive subactivities, which iswhy these aremarked in gray andmentioned for the sakeof completeness
only in figure 6.1.

Activity 5.10.2 considers the fact, that the FCA is a customization of the IFPUG method. In con-
sequence activity 5.10.1, which cares about application of the original IFPUGmethod, is not of rele-
vance in here and thus marked in gray, too.

Problem-based functional size measurement patterns form the basis for requirements work
packages, cf. figure 5.5 Conceptualization of a Requirements Work Package. Their use is not lim-
ited to requirements estimating, they are also advantageous to the project planning. So, creating
measurable problems and packing these into a requirements work package is on the one side a
prerequisite for utilizing the FCA, but on the other side this activity of grouping requirements into

Background 79

measurable units is not necessarily part of a requirements estimating method. This means, activity
5.2 Gathering available documentation has become an obsolete one for the FCA, which is why it
is grayed-out. Requirements work packages as applicable in the proposed problem-based require-
ments sizing approach bymeans of patterns include all information that is of relevance for executing
their functional size measurement. Accordingly, a requirements work package is an input to FCA.

Activities 5.6 and 5.7 are repeated ones within 5.4 Measure data functions and 5.5 Measure
transactional functions, where these activities serve as preparation for activity 5.8 Calculate func-
tional size. These three activities 5.6, 5.7, and 5.8 of IFPUG FSM have become obsolete within the
frame counting agenda and consequently are marked in gray. The reason behind this circumstance
is, that IFPUG FSM activity 5.8 provides several formulas to calculate the functional size for require-
ments, based on the purpose of the count, its type and scope, which have been determined in ac-
tivity 5.3.a), 5.3.b), and 5.3.c). These di�erent formulas address the fact, that the functional size of
requirements is intented for di�erent uses. For instance, in development projects it indicates added
so�ware functionality, in enhancement projects it indicates only modified so�ware functionality.
This is of no relevance to the frame counting agenda. It is applied for determining the functional size
implemented by one requirements work package. How the resulting function points are used is not
in the responsibility of the requirements sizing method. Consequently, activities 5.8 of IFPUG FSM
method, and its related activities 5.6 and 5.7, as well as 5.3.2a) to 5.3.2c) become obsolete2 in the
FCA, and are marked by a gray-shaded box in figure 6.1.

It is the use of problem-based functional size measurement patterns for structuring require-
mentswork packages, which entail that IFPUGFSMactivities 5.2 and 5.6, 5.7, and 5.8 canbe skipped
in the FCA, andwhy activity 5.4.2, 5.4.5a), 5.5.2, and 5.5.3 benefits from their presence as discussed
in appendix B.1.

In summary, the frame counting agenda focuses on IFPUG FSM activities 5.3, 5.4, 5.5, 5.9,
and 5.10 for implementing a problem-based requirements sizing method. It provides an approach
to estimate requirements reproducibly, and it allows for determining consistent function points for
a requirements work package, which are in accordance with the IFPUG counting regime.

Details on the interpretation of the IFPUG standard for problem-based functional sizemeasure-
ment are given in the appendix B.1. It presents a brief justification of how the Validation Conditions
that safeguard the function point counting have been deduced for becoming applicable to so�ware
requirement patterns.

2Note: This leaving out of activities should not be confused with an ignorance of these. Problem-based functional size
measurement patterns allow for an optimization of the IFPUG FSM process, taking lean principles as listed in ap-
pendix C into account. These principles value the elimination of waste, e.g. by removing unproductive repetitions,
or by improving the quality of a process through standardization, which in this case is enabled by means of patterns
for so�ware requirements. These functional size measurement patterns make the repetitive processing of activities
5.4 and 5.5much more controllable and straightforward, since their use prevents the arbitrary picking of any “deter-
minant of size” in the available requirements documentation.

80
P
roblem

-B
ased

E
stim

ating
M
ethod

�RWP�
Problem

�RWP�
Problem

5.2 Gather available documentation

5.3 Determine counting scope & boundaries,
and identify functional user requirements

5.4 , 5.6, 5.7 Measure data functions

5.5 , 5.6, 5.7 Measure transactional functions

5.8 Calculate functional size

5.9, 5.10 Document & report

5.2

5.1

FCA 1. Classify FUR

FCA 2. Measure data

FCA 3. Measure trans.

FCA 4. Report FUR Size

P
roblem

-B
ased

Functional
Size

M
easurem

ent
P
atterns

V
alidation

C
on

dition
s

(V
C
)

F
ram

e
C
oun

tin
g

A
gen

da
(F
C
A
)

5.3

a) b) c) d) e)

5.4.2

5.4.1

a) b) c) d) e) f)

5.4.3

a) b)

5.4.4

a) b) c) d)

5.4.5

a) b)

5.4.6 5.4.7 5.6 5.7

a) b) c) d)

5.5.2

5.5.1

1 2 3

5.5.3

1 2

5.5.4 5.5.5

a) b) c) d) e)

5.5.6 5.5.7 5.6 5.7

a) b) c) d)

5.8

5.9 5.10.1 5.10.2

FUR size?

FUR FP-FCA!

in

out

Legend:
N.N gray-shaded box marks an activity, whose use is obsolete within the frame counting agenda

N.N gray-colored box or text marks an activity, which is mentioned only for the sake of completeness

FIGURE 6.1 Towards a more lean function point counting process, cf. [117, p. 9, fig. 1]

Requirements Sizing Method 81

6.3. Requirements Sizing Method

Problem-based units of measure as introduced in the previous chapter 5 Problem-Based Units of
Measure are a means to establish a uniform problem description for a measurable set of require-
ments. This chapter gives amethod that allows for determining the functional size of a requirements
unit in a reproducible way.

In the focus of considerations is a customized function point counting process as described in
section 6.3.1 Counting Process that is enrichedwith validation conditions as detailed in section 6.3.2
Validation Conditions. These safeguard the proper interpretation of the Base Functional Compo-
nents (BFCs) involved with a measurable problem, and thereby care for consistent application of
associated counting rules in accordance with ISO/IEC 20926:2009.

Since the requirements sizingmethodoperateson theconstituentparts of a functional sizemea-
surement pattern, i.e. the structuring given by one of the problem frames in table 5.5 used for instan-
tiating a requirements work package, its process description as given in table 6.2 is called Frame
Counting Agenda.

6.3.1. Counting Process

Table6.2gives the framecountingproceduredeveloped in thiswork. It takes theagendaconcept [106]
toadopt each stepof themeasurementprocess [117, section5, pages8–19, and21] definedby ISO/IEC
20926:2009 to a pattern-based functional size measurement method for requirements as follows.

The process description of the counting procedure is structured according to the agenda con-
cept into input, activities, output, and validation conditions. The input lists all the information,
which undergo a change by the enumerated activities. The validation conditions place constraints
on the activities, such that the change of information results in an output, which features these con-
ditions. That is, the quality of the counting procedure does not solely rely on a correct execution of
the measurement activities, it also depends on the observance of the validation conditions, which
define the rules of the counting game.

The requirements get classified by functional size measurement patterns, each of which sup-
ports the identification of all the base functional components involved in this set of so�ware func-
tionality, and which can bemeasured, respectively. Step-by-Step and bymeans of validation condi-
tions and ISO/IEC 20926:2009 complexity and size tables, each constituent part of this measurable
problem is assigned a point value, which cumulates to a functional size measure for the entire re-
quirements work package.

82 Problem-Based Estimating Method

Name: Counting Procedure

Input: · FUR::={requirement statement(s)}
· Functional size measurement patterns,
such as problem frames in table 5.5 on page 72
· Data function complexity and size tables,
in ISO/IEC 20926:2009 [117, A.1 and A.2, page 23]
· Transactional function complexity and size tables,
in ISO/IEC 20926:2009 [117, A.3–A.5, page 23]

Activities: 1. Classify FUR by Functional Size Measurement Patterns.
2. Determine Data Functions.
2.a Identify problem domains as data functions.
2.b Classify data functions into ILF or EIF.
2.c Count DET for each data function.
2.d Count RET for each data function.
2.e Determine functional complexity for data functions.
2.f Determine functional size for data functions.

3. Determine Transactional Function.
3.a Identify machine domain as transactional function.
3.b Classify transactional function as either EI, EQ, or EO.
3.c Count FTR for transactional function.
3.d Count DET for transactional function.
3.e Determine functional complexity for transactional function.
3.f Determine functional size for transactional function.

4. Report Functional Size for FUR.

Output: · Requirements work package and its size in function points

Validation: · continued in section 6.3.2 on page 83

TABLE 6.2 Frame Counting Agenda

Requirements Sizing Method 83

6.3.2. Validation Conditions

Table 6.3 enumerates all validation conditionsneededwithin the framecounting agenda toestablish
a consistent measurement process.

It takes the rules for functional size measurement included in ISO 20926 [117] and adapts these
to work with functional size measurement patterns as developed in chapter 5. Hence, these vali-
dation conditions are subject to interpretation of the ISO standard and the conception of problem
frames. Thepreceding chapters and sectionsdeduceanddiscuss the interpretationused in thiswork
in detail. Table 6.3 gives the result of this interpretation, which is executable on problem frames, cf.
figure 5.5 on page 47. The appendix B Sanity Checks gives the reasoning behind this interpretation
of the ISO 20926measurement process.

The validation conditions in table 6.3 are sorted with respect to their use within the di�erent
activities of the requirements sizing method. Nevertheless, they hold for the entire measurement
process, i.e. their e�ect is beyond the activity they are used in.

Validation:

Activity 1. Classify FUR by Functional Size Measurement Patterns.

V.i These validation conditions apply to the consideration of one measurable
problem, i.e. problem diagram.

V.ii A problem frame with only one constrained problem domain and at least one
referenced problem domain has been applied to set up the problem diagram.

V.iii Only shared phenomena at themachine interface of the problem diagram are
considered.

Activity 2.a Identify problem domains as data functions.

V.iv A problem domain with symbolic phenomena can take the role of a data func-
tion, i.e. an ILF or an EIF.

V.v Aproblemdomainwith no symbolic phenomena cannot take the role of a data
function, i.e. an ILF or an EIF.

Activity 2.b Classify data functions into ILF or EIF.

V.vi A constrained domain can only take the role of an ILF.

V.vii A referenced domain can either take the role of an ILF or an EIF.

V.viii A causal domain can either take the role of an ILF or an EIF.

V.ix A biddable domain can only take the role of an EIF.

V.x A lexical or a display domain can only take the role of an ILF.

84 Problem-Based Estimating Method

Validation:

Activity 2.c Count DET for each data function.

V.xi Thenumber of DET counted for aDF corresponds to thenumber of its symbolic
phenomena.

Activity 2.d Count RET for each data function.

V.xii The number of RET counted for a DF is one (1).

Activity 2.e Determine functional complexity for data functions.

V.xiii The DET for all n data functions classified as ILF in this measurable problem is
cumulated to ILFDET =

∑n
i=1 DETILF i

.

V.xiv The DET for allm data functions classified as EIF in this measurable problem
is cumulated toEIFDET =

∑m
i=1 DETEIF i

.

V.xv If two problem domains, one is an ILF and the other an EIF, share the same k
symbolic phenomena, then the respective k DET are only counted for the ILF.
TheEIFDET is decrementedby the respective number of DET, i.e.EIFDET−
k.

V.xvi If two problem domains, both ILF, share the same l symbolic phenomena,
then the respective l DET are only counted for the ILF that corresponds to a
constrained problem domain. The ILFDET is decremented by the respective
number of DET, i.e. ILFDET − l.

V.xvii The RET for all n data functions classified as ILF in this measurable problem is
cumulated to ILFRET =

∑n
i=1 RETILF i .

V.xviii The RET for allm data functions classified as EIF in this measurable problem
is cumulated toEIFRET =

∑m
i=1 RETEIF i

.

V.xix If ILFRET , ILFDET ,EIFRET , orEIFDET is zero (0), associating a DF func-
tional complexity level is not applicable. In this case, the respective ILF or EIF
complexity level becomes ILF |EIFComplexity ::={n/a}.

V.xx The DF functional complexity for all ILF in this measurable problem is de-
termined by ILFComplexity(ILFRET ,ILFDET)::={low|average|high} accord-
ing to Table A.1 in ISO 20926.

V.xxi The DF functional complexity for all EIF in this measurable problem is deter-
mined by EIFComplexity(EIFRET ,EIFDET)::={low|average|high} according
to Table A.1 in ISO 20926.

Requirements Sizing Method 85

Validation:

Activity 2.f Determine functional size for data functions.

V.xxii If no DF functional complexity ILF/EIFComplexity={n/a} is applied, the re-
spective DF functional size ILF/EIFSize is considered as zero (0) function
points.

V.xxiii The DF functional size for all ILF in this measurable problem is given in func-
tion points and determined by ILFSize(ILFComplexity, ILF) according to
Table A.2 in ISO 20926.

V.xxiv The DF functional size for all EIF in this measurable problem is given in func-
tion points and determined by EIFSize(EIFComplexity, EIF) according to
Table A.2 in ISO 20926.

Activity 3.b Classify transactional function as either EI, EQ, or EO.

V.xxv The classification of the transactional function TFType::={EI|EQ|EO} is justified
by the applied problem frame, and alignedwith Activity 1., validation condition
V.ii.

Activity 3.c Count FTR for transactional function.

V.xxvi The number of FTR counted for a TF corresponds to the number of DFs in this
measurable problem: TFFTR = n ILF +m EIF.

Activity 3.d Count DET for transactional function.

V.xxvii The number of DET counted for a TF corresponds to its shared, symbolic as
well as causal phenomena.

V.xxviii Shared phenomenawith a lexical domain do not cross the application bound-
ary. They do not count in TFDET .

V.xxix Shared phenomena with a causal, biddable or display domain do cross the
application boundary. They count in TFDET .

V.xxx Each causal phenomenon that crosses the application boundary adds one (1)
DET for the data element types of a transactional function TFDET .

V.xxxi Each symbolic phenomenon that crosses the application boundary adds one
(1) DET for the data element types of a transactional function TFDET .

86 Problem-Based Estimating Method

Validation:

Activity 3.e Determine functional complexity for transactional function.

V.xxxii The TF functional complexity in this measurable problem is determined
by TFComplexity(TFType, TFFTR, TFDET)::={low|average|high} according
to the Table A.3 for EI, or Table A.4 for EO and EQ in ISO 20926.

Activity 3.f Determine functional size for transactional function.

V.xxxiii The TF functional size in this measurable problem is given in function points
and determined by TFSize(TFComplexity, TFType) according to Table A.5 in
ISO 20926.

Activity 4. Report Functional Size for FUR.

V.xxxiv The functional size for a measurable problem is reported in function points
(FP), following the format: <Measurable Problemsize> FP (IFPUG-ISO/IEC
20926:2009-FCA), which indicates by the postfix of –FCA (for Frame Count-
ing Agenda) a customization of the IFPUG standard. The functional size of a
measurable problem is a cumulated value of DF and TF sizes given in function
points:
Measurable Problemsize = ILFSize + EIFSize + TFSize.

TABLE 6.3 Frame Counting Agenda, Validation Conditions

Step-By-Step Guide to the Requirements Sizing Method 87

6.4. Step-By-Step Guide to the Requirements Sizing Method

This section illustrates how to execute the frame counting agenda as given in table 6.2 on page 82
in detail. It makes use of Jackson’s Party Plan Editing problem [128, page 98] as a running example.
Supplemental comments, which are given in black boxes, and validation conditions relevant to each
activity of the counting process are added by way of explanation.

EXAMPLE 6.1 Frame Counting Agenda – Introduction to Jackson’s Party Plan Editing problem

This problem diagram gives Jackson’s Party Plan Editing problem in a UML stereotype nota-
tion as applied in the UML4PF tool [107]. As can be seen by the requirements constraint and
the involved domain types, this problem fits to the “simple workpieces” problem frame, which
belongs to the set of functional size measurement patterns as defined in table 5.5 on page 72.

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

machine interface

requirements constraint

The shared phenomena at the machine interface require more detail than provided by Jackson’s
original problem diagram, such that the requirements sizing method can become e�ective.
That is, causal and symbolic phenomena should be distinguishable, such as PlanStates and
PlanOperations , and grouped phenomena should be indicated in such a way that they become
countable, such as Commands . Therefore, the requirement Correct editing is refined, before the
counting procedure starts, and the problem diagram is updated, respectively.

The following requirement CE_FUR 01 as instance of Correct editing is created based on the
discussion in Jackson [128, pages 125–129].

CE_FUR 01 John and Lucy plan a party to which they want to invite some guests.

This FUR allows for deriving a specification at themachine interface of the domainParty editor
that is as follows:

CE_Spec 01.1 If John and Lucy plan a party, a party plan is created, which has a specific partymotto.

CE_Spec 01.2 If John and Lucy plan to invite some guests to a party, theses guests are registered to
the specific party plan.

CE_FUR 01, CE_Spec 01.1, and CE_Spec 01.2 are used to detail the shared phenomena for user
commands as well as plan operations , states, and effects in the following problem description for
Jackson’s Party Plan Editing.

88 Problem-Based Estimating Method

Activity 1. Classify FUR by Functional Size Measurement Patterns

This activity serves to set up requirements work packages as defined on page 46 by making use of
the functional size measurement patterns as given in table 5.5 on page 72. These patterns, i.e. a set
of selected problem frames, allow for a grouping of requirements to ameasurable problem given by
a respective problemdiagram, which is also appropriate formeasuring the requirements’ functional
size.

The following validation conditions safeguard this activity:

V.i These validation conditions apply to the consideration of one measurable problem, i.e.
problem diagram.

V.ii A problem frame with only one constrained problem domain and at least one referenced
problem domain has been applied to set up the problem diagram.

V.iii Only shared phenomena at the machine interface of the problem diagram are considered.

Validation conditionsV.i andV.ii ensure theuse of Basic ProblemFrames for this countingproce-
dure. This is fulfilled, if only functional sizemeasurement patterns as defined in table 5.5 are applied.
Validation condition V.iii serves as a reminder for the requirements measurer to care for the shared
phenomena at the machine interface in order to execute the counting procedure.

EXAMPLE 6.2 Frame Counting Agenda – Activity 1. Classify requirements by patterns

This problem diagram shows Jackson’s Party Plan Editing problem, which incorporates CE_FUR 01,
CE_Spec 01.1, and CE_Spec 01.2 by means of a “simple workpieces” frame to a requirements work
package.

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

JL!{plan, Partymotto, Guest} {plan a party }

{guests invited to party}
PE!{createPlan, registerGuest}

PP!{Partymotto, Guest}

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

The black boxes indicate the alterations done for advancing the diagram for the requirements set
of Correct editing by CE_FUR 01, CE_Spec 01.1, and CE_Spec 01.2 to a measurable problem, i.e.
a requirements work package, which allows for distinguishing the types of domains and shared
phenomena that are in the counting scope. The validation conditions V.i to V.iii for this counting
process activity 1. hold.

Step-By-Step Guide to the Requirements Sizing Method 89

Activity 2. Determine Data Functions

This activity serves to determine the amount of data involved in the requirements work package.
The input to this activity requires a framed set of requirements, such as given by the requirements
work package for “Party Plan Editing” and the data function complexity and sizes tables as defined
in ISO 20926 and arranged on pages 262� in the appendix of this work. Then, six steps 2.a to 2.f have
to be executed in order to identify and count relevant data information. At the end of this activity 2.,
the functional size for the data functions within this requirements work package is calculated and
given in function points.

2.a Identify problem domains as data functions

This step serves to locate thedata thatmustbecounted. Itmustbedecided,whichproblemdomains
are considered as data functions within this requirements work package.

The following validation conditions safeguard this activity:

V.iv A problem domain with symbolic phenomena can take the role of a data function, i.e. an
ILF or an EIF.

V.v A problem domain with no symbolic phenomena cannot take the role of a data function,
i.e. an ILF or an EIF.

EXAMPLE 6.3 Frame Counting Agenda – Activity 2./Step 2.a Determine data functions

Both problem domains in this requirements work package are associated with some symbolic phe-
nomena at their machine interface. Party Plan and John and Lucy are equally concerned with
Partymotto and Guest . These shared phenomena represent data information to be gathered and
processed by theParty editor machine.
According to table 5.1 on page 48, the shared phenomena plan and createPlan are causal phenom-
ena, which represent some control mechanism on the symbolic phenomena. They constitute com-
mands for triggeringdata transformationandmanipulation. Causal phenomenaarenotof relevance
at the moment.

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

JL!{plan, Partymotto,Guest} {plan a party }

{guests invited to party}
PE!{createPlan, registerGuest}

PP!{Partymotto, Guest}

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

data function

That is why this requirements work package has two data functions, namely the problem domains
Party Plan and John and Lucy . The validation conditions V.iv to V.v for this counting process activ-
ity hold.

90 Problem-Based Estimating Method

2.b Classify data functions into ILF or EIF

This steps serves to classify the data involved with this requirements work package with respect
to the application boundary. It must be decided, if a data function resides within the application
boundary, such as an internal logical file (ILF), or if it resides outside the application boundary, such
as an external interface file (EIF), cf. figure 5.3 on page 43.

The following validation conditions safeguard this activity:

V.vi A constrained domain can only take the role of an ILF.

V.vii A referenced domain can either take the role of an ILF or an EIF.

V.viii A causal domain can either take the role of an ILF or an EIF.

V.ix A biddable domain can only take the role of an EIF.

V.x A lexical or a display domain can only take the role of an ILF.

EXAMPLE 6.4 Frame Counting Agenda – Step 2.b Classify data functions

There are two data functions in this requirements work package, namely Party Plan and
John and Lucy .

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

JL!{plan, Partymotto,Guest} {plan a party }

{guests invited to party}
PE!{createPlan, registerGuest}

PP!{Partymotto, Guest}

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

ILF

EIF

data function

Party Plan is a constrained, lexical problem domain. According to validation conditions V.vi and
V.x it can only take the role of an internal logical file (ILF). John and Lucy is a referenced, biddable
problem domain. According to validation conditions V.vii and V.ix it can only take the role of an
external interface file (EIF). The validation conditions for this counting process activity hold.

Step-By-Step Guide to the Requirements Sizing Method 91

2.c Count DET for each data function

This step serves to identify the data information or data element types (DET) respectively, which are
involved with a data function. In case of recurring information in one requirements work package, it
must be decided, whether or not to count these, in order to avoid miscounts. Respective validation
conditions are provided in step 2.e to prevent redundant DET counts.

The following validation condition safeguards this activity:

V.xi The number of DET counted for a DF corresponds to the number of its symbolic phenom-
ena.

The respective example is included to the following counting process step 2.d.

2.d Count RET for each data function

This step serves to identify the number of data sources or respective record element types (RET)
withina requirementsworkpackage. Itmustbedecided, howmany interfacesneed tobeconsidered
by the machine in order to establish desired control, i.e. so�ware functionality.

The following validation condition safeguards this activity:

V.xii The number of RET counted for a DF is one (1).

EXAMPLE 6.5 Frame Counting Agenda – Step 2.c and 2.d Count data and record element types

There are two data functions in this requirements work package, namely Party Plan and
John and Lucy . With respect to step 2.c, both hold the same symbolic phenomena at the machine
interface, namelyPartymotto (1 DET) andGuest (1 DET). Accordingly, the data functionParty Plan
has 2 DET, and the data function John and Lucy has also 2 DET at their machine interface.
Since only problemdomains that are involvedwith some symbolic phenomenaat themachine inter-
face can take the role of a data function (see V.iv), each of these is associatedwith a RET.Party Plan
and John and Lucy are two DF, such that this requirements work package has in sum two (2) RET.

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

JL!{plan,
︷ ︸︸ ︷
Partymotto, Guest }

{plan a party }

{guests invited to party}
PP!{Partymotto, Guest︸ ︷︷ ︸}

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

ILF ≡ 1 RET

EIF ≡ 1 RET

symbolic phenomena

PE!{createPlan, registerGuest}

1 DET 1 DET

The validation conditions V.xi and V.xii for the counting process activities 2.c and 2.d hold.

92 Problem-Based Estimating Method

2.e Determine functional complexity for data functions

This step serves to determine the functional complexity of a requirements work package related to
its data functions. Their number of DET and the RET is used as parameter to the ISO 20926 data
function complexity tables and results in a measure of functional complexity, which is either low,
average, or high.

The following validation conditions safeguard this activity:

V.xiii The DET for all n data functions classified as ILF in this measurable problem is cumulated
to ILFDET =

∑n
i=1DETILF i .

V.xiv The DET for allm data functions classified as EIF in this measurable problem is cumulated
toEIFDET =

∑m
i=1DETEIF i .

V.xv If two problem domains, one is an ILF and the other an EIF, share the same set of k sym-
bolic phenomena, then the respective k DET are only counted for the ILF. The EIFDET is
decremented by the respective number of DET, i.e. EIFDET − k.

V.xvi If two problem domains, both ILF, share the same set of l symbolic phenomena, then the
respective l DET are only counted for the ILF that corresponds to a constrained problem
domain. The ILFDET is decremented by the respective number of DET, i.e. ILFDET − l.

V.xvii The RET for all n data functions classified as ILF in this measurable problem is cumulated
to ILFRET =

∑n
i=1RETILF i .

V.xviii The RET for allm data functions classified as EIF in this measurable problem is cumulated
toEIFRET =

∑m
i=1RETEIF i .

V.xix If ILFRET , ILFDET ,EIFRET , orEIFDET is zero (0), associatingaDF functional complex-
ity level is not applicable. In this case, the respective ILF or EIF complexity level becomes
ILF |EIFComplexity::={n/a}.

V.xx The DF functional complexity for all ILF in this measurable problem is determined by
ILFComplexity(ILFRET ,ILFDET)::={low|average|high} according toTableA.1 in ISO20926.

V.xxi The DF functional complexity for all EIF in this measurable problem is determined by
EIFComplexity(EIFRET ,EIFDET)::={low|average|high}according toTableA.1 in ISO20926.

Step-By-Step Guide to the Requirements Sizing Method 93

EXAMPLE 6.6 Frame Counting Agenda – Step 2.e Determine data function complexity

Party Plan is the only data function in this requirements work package, which takes the role of an
ILF. According to V.xiii, the symbolic phenomena Partymotto and Guest at the machine interface
ofParty Plan :DETILF = 1 + 1 = ILFDET = 2 .
Since Party Plan is the only ILF in this requirements work package, RETILF = ILFRET = 1 ac-
cording to V.xvii.
John and Lucy is the only data function in this requirements work package, which takes the role of
an EIF. According to V.xiv, its symbolic phenomenaPartymotto andGuest at themachine interface
count as follows John and Lucy :DETEIF = 1 + 1 =EIFDET = 2.
Since John and Lucy is the only EIF in this requirements work package, RETEIF = EIFRET = 1
according to V.xviii.

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

JL!{plan,
︷ ︸︸ ︷
Partymotto, Guest }

{plan a party }

{guests invited to party}
PP!{Partymotto, Guest︸ ︷︷ ︸}

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

ILF ≡ 1 RET

EIF ≡ 1 RET

symbolic phenomena

PE!{createPlan, registerGuest}

1 DET 1 DET

Since theproblemdomainsParty Plan andJohn and Lucy are concernedwith the sameset of sym-
bolic phenomena, validation condition V.xv comes into play. Having inmind that activity 2. is about
determining internal data storage requirements, the recurring k = 2 = DETEIF phenomena are
only considered for the ILF Party Plan , but not for the EIF John and Lucy . According to V.xv, the
DET value counted for the EIF changes toEIFDET = 0 a�er this step 2.e, ILFDET = 2 remains.
Due to validation conditions V.xix, and V.xxi, the functional complexity for the EIF John and Lucy
cannot be determined, it becomesEIFComplexity(EIFRET , EIFDET) = (1, 0) = {n/a}.
Due to validation condition V.xx the functional complexity for the ILF Party Plan becomes
ILFComplexity(ILFRET , ILFDET) = (1, 1) = {low} according to the data function complexityma-
trix in ISO 20926 [117, Table A.1, page 23] as on page 262 in the appendix. The validation conditions
for this counting process activity are meet.

94 Problem-Based Estimating Method

2.f Determine functional size for data functions

This step serves to determine the functional size of a requirements work package related to its data
functions. Its functional complexity for each data function as determined in step 2.e is used as pa-
rameter to the ISO 20926 data function size tables and results in a measure given in function points
between 5 and 15.

The following validation conditions safeguard this activity:

V.xxii If noDF functional complexity ILF/EIFComplexity={n/a} is applied, the respectiveDF func-
tional size ILF/EIFSize is considered as zero (0) function points.

V.xxiii The DF functional size for all ILF in this measurable problem is given in function points and
determined by ILFSize(ILFComplexity, ILF) according to Table A.2 in ISO 20926.

V.xxiv The DF functional size for all EIF in this measurable problem is given in function points and
determined byEIFSize(EIFComplexity, EIF) according to Table A.2 in ISO 20926.

EXAMPLE 6.7 Frame Counting Agenda – Step 2.f Determine data function size

The requirements work package “Party Plan Editing” comprises two data functions, namely
Party Plan , which is an ILF having a low functional complexity, and John and Lucy , which is an
EIF with a not determinable functional complexity.
According tovalidationconditionV.xxiiiand the respectivedata function size tables in ISO20926 [117,
Table A.2, page 23] as on page 262 in the appendix, Party Plan contributes with 7 function points
to the data function size of this requirements work package, i.e. ILFsize(ILFcomplexity, ILF) =
(low, ILF) = 7 function points .
According to validation conditionV.xxii and the respective data function size tables in ISO20926 [117,
TableA.2, page23] asonpage262 in theappendix,John and Lucy contributeswith0 functionpoints
to the data function size of this requirements work package, i.e. EIFsize = 0 function points .

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

JL!{plan, Partymotto,Guest} {plan a party }

{guests invited to party}
PE!{createPlan, registerGuest}

PP!{Partymotto, Guest}

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

ILFComplexity = {low}

EIFComplexity = {n/a}

data function

The validation conditions for this counting process activity are meet.

Step-By-Step Guide to the Requirements Sizing Method 95

Activity 3. Determine Transactional Function

This activity serves to determine the amount of data movement, which is involved in the require-
ments work package.

The input to this activity requires a framed set of requirements, such as given by the require-
ments work package for “Party Plan Editing” and the transactional function complexity and sizes
tables as defined in ISO 20926 and arranged on pages 262� in the appendix of this work.

In contrast to the previous activities 1. to 2., which are concerned with determining the amount
of data for the requirements work package in itself, the activity 3. allows for determining respective
movements of this data that cross the application boundary, cf. figure 5.3 on page 43. It is about the
interactions of the so�ware with its environment, which is evaluated with regard to certain kinds of
functionality, i.e. external input (EI), external inquiry (EQ), or external output (EO), which belong to
the base functional components that are measurable according to ISO 20926 functional size mea-
surement.

Six steps 3.a to 3.f have to be executed in order to identify and count relevant data movement
at the application boundary.

At theendof this activity 3., the functional size for the transactional functionof this requirements
work package is calculated and given in function points.

96 Problem-Based Estimating Method

3.a Identify machine domain as transactional function

This step serves to locate the transactional function that manages data and control information,
which crosses the application boundary. In accordance with step 2.b as discussed on page 90�,it
is already clear, which data is internal or external to the count, i.e. that problem domains serve as
either an ILF or an EIF. Consequently, the machine domain with its interfaces to some ILF and EIF is
evaluated as transactional function within a requirements work package.

There are no explicit validation conditions for this activity of the counting process.

EXAMPLE 6.8 Frame Counting Agenda – Activity 3./Step 3.a Determine transactional function

In the requirements work package for “Party Plan Editing” the problem domainParty Plan is an ILF
and John and Lucy is an EIF.

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

JL!{plan, Partymotto,Guest } {plan a party }

{guests invited to party}
PE!{createPlan, registerGuest}

PP!{ Partymotto, Guest }

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

transactional function

Due to the use of functional sizemeasurement patterns to set up a requirementswork package, each
describes a problem at a basic level of detail, cf. table 5.3 on page 55, which maintains exactly one
elementary process also known as transactional function that is to consider. In this example, it is the
machine domainParty editor , which represents such a transactional function.

Step-By-Step Guide to the Requirements Sizing Method 97

3.b Classify transactional function as either EI, EQ, or EO

This step serves to decide on the counting rules and consequently the complexity and size tables
that apply to evaluate a transactional function. It is determined by the type of functionality, i.e. the
elementary process involved with a requirements work package and impacts the resulting function
point value for its transactional function.

The following validation conditions safeguard this activity:

V.xxv The classification of the transactional function TFType::={EI|EQ|EO} is justified by the ap-
plied problem frame, and aligned with Activity 1., validation condition V.ii.

EXAMPLE 6.9 Frame Counting Agenda – Step 3.b Classify transactional function

The requirementsworkpackage for “PartyPlanEditing” fits to the simple workpieces problemframe.

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

JL!{plan, Partymotto,Guest } {plan a party }

{guests invited to party}
PE!{createPlan, registerGuest}

PP!{ Partymotto, Guest }

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

transactional functionEI

According to the used functional size measurement pattern no. #02, PF 2.7 taken from table 5.5 on
page 72, the transactional function of this requirements work package belongs to an external input
(EI) problem, such that TFType = {EI}. The validation condition V.xxv for this counting process
activity holds.

98 Problem-Based Estimating Method

3.c Count FTR for transactional function

This step serves to identify the number of data functions or respective file types referenced (FTR),
which are operated by the transactional functional within a requirements work package. It is to de-
cide, how many interfaces need to be considered by the machine in order to establish the desired
control, i.e. so�ware functionality.

The following validation condition safeguards this activity:

V.xxvi The number of FTR counted for a TF corresponds to the number of DFs in this measurable
problem: TFFTR = n ILF +m EIF.

EXAMPLE 6.10 Frame Counting Agenda – Step 3.c Count file types referenced

There are two data functions in this requirements work package, namely Party Plan and
John and Lucy , which conforms to step 2.a, with the result of TFFTR = 1 ILF +1EIF = 2FTR.

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

JL!{plan, Partymotto,Guest } {plan a party }

{guests invited to party}
PE!{createPlan, registerGuest}

PP!{ Partymotto, Guest }

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

ILF ≡ 1FTR

EIF ≡ 1FTR

data function
EI

The number of FTR counted for the TF of this requirements work package is two (2). Datamovement
at the machine interface to these FTR is of interest in the following. The validation condition V.xxvi
for this counting process activity holds.

Step-By-Step Guide to the Requirements Sizing Method 99

3.d Count DET for transactional function

This step serves to identify the number of data element types (DET) associated with a file type ref-
erenced (FTR) that cross the application boundary, i.e. information at the machine interface that is
participating in a transactional function.

The following validation conditions safeguard this activity:

V.xxvii The number of DET counted for a TF corresponds to its shared, symbolic as well as causal
phenomena.

V.xxviii Shared phenomena with a lexical domain do not cross the application boundary. They do
not count in TFDET .

V.xxix Shared phenomena with a causal, biddable or display domain do cross the application
boundary. They count in TFDET .

V.xxx Each causal phenomenon that crosses the application boundary adds one (1) DET for the
data element types of a transactional function TFDET .

V.xxxi Each symbolic phenomenon that crosses the applicationboundary adds one (1) DET for the
data element types of a transactional function TFDET .

EXAMPLE 6.11 Frame Counting Agenda – Step 3.d Count data element types

According to validation condition V.xxvii the machine interface to Party Plan and John and Lucy
must be taken into account. Since Party Plan is a data function (ILF), which is of a lexical domain
type (X), validation condition V.xxviii excludes its shared phenomena at the machine interface from
the count. This kind of phenomena resides inside the application boundary and thus does not count
for a transactional function. Following validation condition V.xxix to V.xxxi, the causal phenomenon
planadds 1DET to the transactional function, and the symbolic phenomenaPartyMottoandGuest
add together 2 DET.

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

{plan a party }

{guests invited to party}PP!{Partymotto, Guest}

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

ILF ≡ 1 FTR

EIF ≡ 1 FTR

PE!{createPlan, registerGuest︸ ︷︷ ︸}
causal phenomena

JL!{
︷︸︸︷
plan,Partymotto, Guest}

EI

1 DET 1 DET

1 DET 1 DET 1 DET

The overallTFDET = 3DET for this requirementswork package. The validation conditions for this
counting process activity are meet.

100 Problem-Based Estimating Method

3.e Determine functional complexity for transactional function

This step serves to determine the functional complexity of a requirements work package related to
its transactional function. Its number of DET and related FTR is used as parameter to the ISO 20926
transactional function complexity tables Table A.3 and Table A.4 and results in a measure of the re-
quirements complexity, which is either low, average, or high.

The following validation conditions safeguard this activity:

V.xxxii The TF functional complexity in this measurable problem is determined by
TFComplexity(TFType, TFFTR, TFDET)::={low|average|high}according to theTableA.3 for
EI, or Table A.4 for EO and EQ in ISO 20926.

EXAMPLE 6.12 Frame Counting Agenda – Step 3.e Determine transactional function complexity

In step 3.b the transactional function is classified with regard to its involved elementary process or
with respect to its exhibited type of functionality, which is an external inputTFtype = {EI}. Accord-
ing to step 3.c the number of file types referenced in this requirement work package is TFFTR =
2 FTR, which takes the problem domain Party Plan and John and Lucy into account. In step 3.d
the number of data element types relevant to the transactional function is TFDET = 3DET , since
only the shared phenomena at the machine interface with John and Lucy are to consider. Conse-
quently, the functional complexity for the transactional function in this requirements work package
is TFComplexity(TFType, TFFTR, TFDET)= TFComplexity(EI, 2, 3) = {low} following the respec-
tive tables in ISO 20926.

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

JL!{plan,Partymotto, Guest}
{plan a party }

{guests invited to party}PP!{Partymotto, Guest}

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

ILF ≡ 1 FTR

EIF ≡ 1 FTR

PE!{createPlan, registerGuest}

transactional functionTF

moinmoinmoinmoinmoinmoin1 DET 1 DET 1 DET

The validation condition V.xxxii for this counting process activity is met.

Step-By-Step Guide to the Requirements Sizing Method 101

3.f Determine functional size for transactional function

This step serves to determine the functional size of a requirementswork package related to its trans-
actional function. Its functional complexity is used as parameter to the ISO20926 transactional func-
tion size table and results in a measure given in function points between 3 and 7.

The following validation conditions safeguard this activity:

V.xxxiii The TF functional size in this measurable problem is given in function points and deter-
mined by TFSize(TFComplexity, TFType) according to Table A.5 in ISO 20926.

EXAMPLE 6.13 Frame Counting Agenda – Step 3.f Determine transactional function size

The transactional function Party editor , which is according to the previous step 3.c an
external input of low complexity, has a functional size of TFSize(TFComplexity, TFType) =
(low,EI) = 3 function points .

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

JL!{plan,Partymotto, Guest}
{plan a party }

{guests invited to party}PP!{Partymotto, Guest}

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

PE!{createPlan, registerGuest}

TFcomplexity = lowEI

The validation condition V.xxxiii for this counting process activity is met.

102 Problem-Based Estimating Method

Activity 4. Report Functional Size for FUR

This activity serves to conclude the requirements sizing method for a requirements work package.
So far, bymeansof functional sizemeasurement patterns, a set of requirements is fit to ameasurable
problem. Its involvedbase functional components, namely its data and transactional functions, pro-
vides for determining respective function point values. Now, The functional size of this requirements
work package is compiled by these point values.

The following validation condition safeguards this activity:

V.xxxiv The functional size for a measurable problem is reported in function points (FP), follow-
ing the format: <Measurable Problemsize> FP (IFPUG-ISO/IEC 20926:2009-FCA), which in-
dicates by the postfix of –FCA (for Frame Counting Agenda) a customization of the IFPUG
standard. The functional size of a measurable problem is a cumulated value of DF and TF
sizes given in function points:
Measurable Problemsize = ILFSize + EIFSize + TFSize.

EXAMPLE 6.14 Frame Counting Agenda – Activity 4. Report the requirement’s functional size

The requirements work package “Party Plan Editing” implements the requirement CE_FUR 01. It fits
to the simple workpieces problem class, which is a functional size measurement pattern and thus
a measurable problem. There are two data functions and one transactional function that can be
measured for this requirements set. According to step 2.f there is only one ILF Party Plan which
yields ILFsize = 7 function points . In addition, there is only one EIF John and Lucy , which due to
somemeasurement rules yieldsEIFsize = 0 function points . According to step 3.f the transactional
functionParty editor , which is an external input (EI) yields TFsize = 3 function points .

«problemDiagram» Party Plan Editing

«machine» Party editor

«lexicalDomain» Party Plan

«biddableDomain» John and Lucy

«requirements» Correct editing

JL!{Commands}

PE!{PlanOperations}
PP!{PlanStates}

JL!{Commands}

PP!{PlanE�ects}

JL!{plan, Partymotto,Guest} {plan a party }

{guests invited to party}
PE!{createPlan, registerGuest}

PP!{Partymotto, Guest}

«requirements» CE_FUR 01

«Requirements Work Package» Party Plan Editing

10 FP
RWPsize

The overall functional size for this requirements work package is Measurable Problemsize =
ILFSize + EIFSize + TFSize = 7 + 0 + 3 = 10 FP (IFPUG-ISO/IEC 20926:2009-FCA).
The validation condition V.xxxiv for this counting process activity is met.

Completing activity 4 of the frame counting agenda, produces the final output of the require-
ments sizing method:

a set of requirements grouped to a requirements work package
bymeans of functional sizemeasurement patterns. These patterns have helped to identify the
relevant base functional components that undergo the counting process, and
whose functional size is determined consistently
safeguardedbyvalidation conditions,whichare integrated to the requirements sizingmethod.
These validation conditions maintain the rules of the counting game and thus care for repro-
ducible requirements’ size measures.

The frame counting procedure is repeated for remaining requirement statements (FUR), respec-
tively.

Sample Application to Jackson’s Basic Frames 103

6.5. Sample Application to Jackson’s Basic Frames

In this section 6.5, the Frame Counting Agenda as introduced in section 6.3.1 is demonstrated by
making use of some problems that base on well-established frames from Jackson [128]. Other case
examples, such as for a well-elaborated Vacation Rentals Web Application in chapter 10, are part of
considerations in Part V, which presents di�erent Case Studies. These sample applications recapitu-
late each activity of the requirements sizing method. They illustrate how a functional size measure-
ment pattern determines problem count and composition for a set of requirements, and with it the
problem’s functional size measure.

The choice of sample applications to the requirements sizing method discussed in this section
is done in relation to their involved type of functionality, which distinguishes di�erent classes of
measurable problems as summarized in table 5.5 on page 72.

The Party Plan Editing problem in section 6.5.1 is an instance of the simple workpieces frame. It
is measured according to the rules of an external input, since it is concerned with processing some
information that is received (TOFF-i).

The Local Tra�ic Monitoring problem in section 6.5.2 is an instance of the information display
frame. It ismeasured according to the rules of an external inquiry, since it is concernedwith process-
ing some information that is retrieved (TOFF-ii).

The Occasional sluice gate in section 6.5.3 is an instance of the commanded behaviour frame in
section 6.5.3. It is measured according to the rules of an external output, since it is concerned with
processing some information that is derived (TOFF-iii).

For each of these di�erent measurement problems it is discussed, how the problem count is
executed, i.e. how the problem’s functional size is determined based on the respective functional
size measurement patterns.

6.5.1. Counting a Simple Workpieces Problem: Party Plan Editing

All the details, regarding the execution of the counting procedure by means of Jackson [128, pages
125–129] “simple workpieces” frame used as functional size measurement pattern, are discussed in
section 6.4 Step-By-Step Guide to the Requirements Sizing Method.

104 Problem-Based Estimating Method

6.5.2. Counting an Information Display Problem: Local Tra�ic Monitoring

The problem diagram for local tra�ic monitoring [128, Page 95] is an instance of the problem frame
“information display” [128, Page 93]. Table 5.5 lists this frame by #07 PF 2.6 as a functional size
measurement pattern.

Themonitoring computer retrieves information from some sensors, that indicate vehicles pass-
ing the street. To satisfy the requirements statement, this information is processed toa report, which
is written as output to a strip printer.

«problemDiagram» Local tra�ic monitoring

«machine» Monitoring computer

«displayDomain» Strip printer

«causalDomain» Vehicles and sensors

«requirements» Printout / Vehicles

VS!{SensorOn[1. . .4] }

MC!{WtVehLine, WtTotLine}

VS!{Bike, Car, Comm}

SP!{InformationPrinted}

TABLE 6.4 Local tra�ic monitoring is a measurable information display problem

Comments on counting process activity Results of activity
1. Classify FUR by Functional Size Measurement Patterns.
Local Tra�ic Monitoring is a measurable problem, because it fits the
information display FSM pattern #07 in table 5.5.

information display problem

Applied validation conditions: V.i - V.iii
2. Determine Data Functions.
Local Tra�ic Monitoring has two problem domains, namely the causal do-
mainVehicles and sensors and the display domain Strip printer .
2.a Identify problem domains as data functions.
The domain Vehicles and sensors shares only causal phenomena (events)
at the machine interface, it is no data function. The domain Strip printer
shares symbolic phenomena at the machine interface. It is a data function.

1 data function: strip printer

Applied validation conditions: V.iv, V.v
2.b Classify data functions into ILF or EIF.
The only data function in this measurable problem Strip printer is an inter-
nal logical file, because it is constrained.

1 ILF: strip printer

Applied validation conditions: V.vi, V.x
2.c Count DET for each data function.
The data function Strip printer shares two symbolic phenomena at the ma-
chine interface, namely WtVehLine and WtTotLine , which represent the
data element types of this data function.

DETstrip printer = 2

Applied validation conditions: V.xi
2.d Count RET for each data function.
There is only one data function Strip printer , which corresponds to 1 RET. RETstrip printer = 1
Applied validation conditions: V.xii
2.e Determine functional complexity for data functions.
Strip printer is the only data function, i.e. an ILF in this measurable prob-
lem, which has 2 DET according to step 2.c and represents 1 RET according to
step 2.d. Respectively, ILFDET =

∑n
i=1 DETILF i

= DETstrip printer and
ILFRET =

∑n
i=1 RETILF i = RETstrip printer.

ILFDET = 2
ILFRET = 1

Sample Application to Jackson’s Basic Frames 105

Comments on counting process activity Results of activity
Table A.1 of ISO20926given in the appendix onpage 262 is used todetermine
the respective data function complexity ILFComplexity(ILFRET , ILFDET)
by means of these RET and DET values, that is ILFComplexity(1, 2) = low.

ILFComplexity = low

Applied validation conditions: V.xiii, V.xvii, V.xx
2.f Determine functional size for data functions.
Table A.2 of ISO 20926 given in the appendix on page 262 is applied to de-
termine the respective data function size ILFSize(ILFComplexity, ILF) us-
ing its data function complexity determined in the previous step 2.e., that is
ILFSize(low, ILF) = 7.

ILFSize = 7 function points

Applied validation conditions: V.xxiii
3. Determine Transactional Function.
Local tra�ic monitoring has one machine domainMonitoring computer .
3.a Identify machine domain as transactional function.
The machine domain Monitoring computer represents the transactional
function in this measurable problem.

1 transactional function:
monitoring computer

3.b Classify transactional function as either EI, EQ, or EO.
In accordance with activity 1., this measurable problem fits an information
display frame, which is a functional size measurement pattern as defined in
table 5.5 for determining the functional size of an external inquiry (EQ).

TFtype = EQ

Applied validation conditions: V.xxv
3.c Count FTR for transactional function.
Monitoring computer involves only onemachine interface to adata function
as defined in step 2.a, which is the file type referenced to consider in this step.
One data function and no external interface file results in n = 1 andm = 0
for TFFTR = n ILF +m EIF = 1 + 0 = 1.

TFFTR = 1

Applied validation conditions: V.xxvi
3.d Count DET for transactional function.
At the machine interface of Monitoring computer are two symbolic phe-
nomena shared with Strip printer and four causal phenomena shared with
Vehicles and sensors . Each of these six phenomena crosses the application
boundary and thus counts in the transactional function as DET.

TFDET = 6

Applied validation conditions: V.xxvii, V.xxx, V.xxxi
3.e Determine functional complexity for transactional function.
Table A.4 for EQ of ISO 20926 given in the appendix on page 262
is used to determine the transactional function complexity
TFComplexity(TFType, TFFTR, TFDET) = TFComplexity(EQ, 1, 6) of
Monitoring computer by means of the FTR and DET values from step 3.c
and 3.d.

TFComplexity = low

Applied validation conditions: V.xxxii
3.f Determine functional size for transactional function.
Table A.5 of ISO 20926 given in the appendix on page 262 is applied to de-
termine the respective transactional function size of Monitoring computer
TFSize(TFComplexity, TFType) = TFSize(low,EQ) by using its transac-
tional function complexity determined in the previous step 3.e.

TFSize = 3 function points

Applied validation conditions: V.xxxiii
4. Report Functional Size for FUR.
Data and transactional function size for this measurable problem are deter-
mined byMeasurableProblemsize = ILFSize + EIFSize + TFSize= 7 +
0 + 3 = 10. Applied validation conditions: V.xxxiv

LocalTraffic−
Monitoringsize =
10 function points
(IFPUG-ISO/IEC 20926:2009-FCA)

106 Problem-Based Estimating Method

6.5.3. Counting a Commanded Behaviour Problem: Occasional Sluice Gate

The problemdiagram for an occasional sluice gate [128, Page 91] is an instance of the problem frame
“commanded behaviour” [128, Page 89]. Table 5.5 lists this frame by #14 PF 2.8 as a functional size
measurement pattern.

To satisfy the requirements statement, the sluice controller derives out of varying information
from the gate state and operator commands, how to control the gate motor.

«problemDiagram» Occasional Sluice Gate

«machine» Sluice controller

«causalDomain» Gate andmotor

«biddableDomain» Sluice operator

«requirements» Raise and lower gate

SO!{Raise, Lower, Stop}

SC!{Clockwise, Anti, On, O�}

GM!{Top, Bottom}

SO!{Raise, Lower, Stop}

GM!{Open, Shut, Rising, Falling}

TABLE 6.6 Occasional sluice gate is a measurable commanded behaviour problem
Comments on counting process activity Results of activity
1. Classify FUR by Functional Size Measurement Patterns.
Occasional Sluice Gate is a measurable problem, because it fits the
commanded behavior FSM pattern #14 in table 5.5.

commanded behavior problem

Applied validation conditions: V.i - V.iii
2. Determine Data Functions.
Occasional SluiceGate has twoproblemdomains, namely the causal domain
Gate and motor and the biddable domain Sluice operator .
2.a Identify problem domains as data functions.
The domain Gate and motor shares state information , which can be inter-
preted as symbolic phenomena, at themachine interface. It can be classified
as data function, when following the discussion in Jackson [128, pages 83,
84]. The domain Sluice operator shares no symbolic phenomena at the ma-
chine interface. It is no data function, respectively.

1 data function: gate andmotor

Applied validation conditions: V.iv, V.v
2.b Classify data functions into ILF or EIF.
The only data function in this measurable problemGate and motor is an in-
ternal logical file.

1 ILF: gate andmotor

Applied validation conditions: V.vi, V.viii
2.c Count DET for each data function.
The data function Gate and motor shares two symbolic phenomena at the
machine interface, namely Top and Bottom , which represent the data ele-
ment types of this data function.

DETgate and motor = 2

Applied validation conditions: V.xi
2.d Count RET for each data function.
There is only onedata functionGate and motor , which corresponds to 1 RET. RETgate and motor = 1
Applied validation conditions: V.xii
2.e Determine functional complexity for data functions.
Gate and motor is the only data function, i.e. an ILF in thismeasurable prob-
lem, which has 2 DET according to step 2.c and represents 1 RET according to
step 2.d. Respectively, ILFDET =

∑n
i=1 DETILF i

= DETgate and motor

and ILFRET =
∑n

i=1 RETILF i
= RETgate and motor.

ILFDET = 2
ILFRET = 1

Sample Application to Jackson’s Basic Frames 107

Comments on counting process activity Results of activity
Table A.1 of ISO20926given in the appendix onpage 262 is used todetermine
the respective data function complexity ILFComplexity(ILFRET , ILFDET)
by means of these RET and DET values, that is ILFComplexity(1, 2) = low.

ILFComplexity = low

Applied validation conditions: V.xiii, V.xvii, V.xx
2.f Determine functional size for data functions.
Table A.2 of ISO 20926 given in the appendix on page 262 is applied to de-
termine the respective data function size ILFSize(ILFComplexity, ILF) us-
ing its data function complexity determined in the previous step 2.e., that is
ILFSize(low, ILF) = 7.

ILFSize = 7 function points

Applied validation conditions: V.xxiii
3. Determine Transactional Function.
Occasional Sluice Gate has one machine domain Sluice controller .
3.a Identify machine domain as transactional function.
Themachine domain Sluice controller represents the transactional function
in this measurable problem.

1 transactional function:
sluice controller

3.b Classify transactional function as either EI, EQ, or EO.
In accordance with activity 1., this measurable problem fits a commanded
behavior frame, which is a functional size measurement pattern as defined
in table 5.5 for determining the functional size of an external output (EO).

TFtype = EO

Applied validation conditions: V.xxv
3.c Count FTR for transactional function.
Sluice controller involves only one machine interface to a data function as
defined in step 2.a, which is the file type referenced to consider in this step.
One data function and no external interface file results in n = 1 andm = 0
for TFFTR = n ILF +m EIF = 1 + 0 = 1.

TFFTR = 1

Applied validation conditions: V.xxvi
3.d Count DET for transactional function.
At the machine interface of Sluice controller are two symbolic phenomena
and four causal shared withGate and motor , and the machine shares three
causal phenomena with the Sluice operator . Each of these nine phenomena
crosses the application boundary and thus counts in the transactional func-
tion as DET.

TFDET = 9

Applied validation conditions: V.xxvii, V.xxix, V.xxx, V.xxxi
3.e Determine functional complexity for transactional function.
Table A.4 for EO of ISO 20926 given in the appendix on page 262
is used to determine the transactional function complexity
TFComplexity(TFType, TFFTR, TFDET) = TFComplexity(EO, 1, 9) of
Sluice operator by means of the FTR and DET values from step 3.c and 3.d.

TFComplexity = low

Applied validation conditions: V.xxxii
3.f Determine functional size for transactional function.
Table A.5 of ISO 20926 given in the appendix on page 262 is applied
to determine the respective transactional function size of Sluice operator
TFSize(TFComplexity, TFType) = TFSize(low,EO) by using its transac-
tional function complexity determined in the previous step 3.e.

TFSize = 4 function points

Applied validation conditions: V.xxxiii
4. Report Functional Size for FUR.
The size for this measurable problem is determined by
MeasurableProblemsize = ILFSize + EIFSize + TFSize= 7 + 0 + 4.
Applied validation conditions: V.xxxiv

Occasional−
SluiceGatesize =
11 function points
(IFPUG-ISO/IEC 20926:2009-FCA)

108 Problem-Based Estimating Method

6.6. Discussion & Related Work

The problem-based estimating method presented in this chapter relies on the use of requirement
patterns to keep the counting procedure synchronized with the requirements model that is rep-
resented by problem diagrams. This is very beneficial in the context of unavoidable requirements
change.

It allows for monitoring changes to size estimates on-the-fly [28, page 5] in the presence of tool
support, which also contributes to requirements understanding and negotiation.

Such a kind of tool support is within reach. Problem-based estimating as introduced here is
realizable as an extension of the UML4PF eclipse plugin [107], which assists requirements modeling
that builds on problem frames and that couldmake automating early-phase sizemeasures possible.

The International Function Point Users Group (IFPUG), whomaintains ISO/IEC 20926:2009 func-
tional size measurement standard, o�ers certification of so�ware that provides for function point
counting. In order to evaluate, if an extension of the UML4PF plugin by the pattern-led, problem-
based functional size measurement method as proposed in this dissertation is reasonably possible,
the respective criteria for Certification of Function Point So�ware type 2 [121] have been considered
for reviewing the interpretation of ISO 20926 as defined in the frame counting agenda and its valida-
tion conditions given in this chapter.

The result of this review is promising. All certification criteria that require automated identifi-
cation by the so�ware are fulfilled by the proposed requirements sizing method. Even though two
issues arise, which are resolvable as discussed in appendix B.2.

Functional size measurement in the context of embedded and real-time systems lead to spe-
cialized counting regimes such as Full Function Points [1] that belong to the COSMIC universe [142].
These systems are not objects of investigation in this work.

Functional size measurement according to the IFPUG standard given in ISO 20926 is more
adapted for information systems. This becomes obvious with regard to the focus on functional user
requirements (FUR) that are considered by the IFPUG standard, and the comparatively low function
point values that can be obtained by measurable problems with a high amount of control informa-
tion, which becomes apparent by the sample measurement of Jackson’s occasional sluice gate in
section 6.5.3.

This work does not challenge the suitability of any point value that is determined for a measur-
able problem. For instance, it does not question if 11 function points represents a proper size for
Jackson’s occasional sluice gate problem or not. It does not strive towards improving anymeasure-
ment standard in itself. It strives towards improving the applicability of functional sizemeasurement
by integrating it to a requirements engineering approach.

Thecontributionasproposed in this chapter is a reproducible requirements estimate, onewhich
is represented by consistent point values. This is the intended use of problem-based estimating
within an agile project management process and beyond. It establishes a key “tomeet expectations
more consistently” [221, page 161], i.e. by qualifying teams for taking credible decisions at an early
stage in the so�ware project.

Summary 109

6.7. Summary

This chapter gives the details on a method for determining function points for requirements in a
reproducible way: its procedure, its step-by-step execution, and its application to several examples.

This requirements sizingmethod is documented in the frame counting agenda given in table 6.2
on page 82, and builds on problem-based functional size measurement patterns. It makes repro-
ducible size measures for requirements possible, since each step of the counting procedure follows
themeasurement process defined in ISO/IEC 20926:2009 [117, section 5, pages 8-19, and 21] and each
step is customized to work on the constituent parts of measurable problems.

Validation conditions given in table 6.3 on page 86 accompany each step during the counting
procedure. They are at the heart of the measurement process and provide interpretations of the
counting rules expressed in ISO 20926. They care for a transparent requirements sizing process and
thereby safeguard the function points that apply to a requirements work package against inconsis-
tency.

The problem-based functional size measurement approach as introduced in this chapter miti-
gates major sources of di�iculties that are the root cause of wrong counts, and which are involved
in the fact that function point “counting requires a considerable amount of interpretation [. . .which]
usually fail to keep synchronized with the requirements” [28, page 1].

Problem-based functional size measurement patterns establish a proxy [114] that meets this
concern. They serve thedecompositionof requirements tomeasurableproblems,whoseconstituent
parts relevant for the counting process are recognizable and during the measurement process sub-
ject to interpretation by defined validation conditions.

Omissionandduplicationare frequent errors in requirements estimating,whicho�enoriginates
from amalpositioned application boundary [155], one that neglects to feature requirements depen-
dencies [28, page 4]. This gives reason for the observation that determining the respective measur-
able components of requirements is observed as the most critical and error-prone step at the same
time [104, page 205] in industrial practice [120]. The proposed requirements sizing method explic-
itly addresses this issue. Each requirements work package represents a unit of measure for require-
ments, whichmakes explicit allowance for requirements dependencies. They unite desired so�ware
functionality, such that it is coherent inside and among measurable problems. As introduced and
demonstrated by this work, this adds a new perspective on problem count and composition, which
contributes to stabilized requirements estimates.

Part III.

Problem-Based Project Adaptation

Part III Problem-Based Project Adaptation is about answering RQ 2 How to adjust speed?
It develops the conceptions and methods for determining ’instant options for action’ namely de-
sign alternatives, which provide the project team with a credible route of development work to
be "done" within the project timebox, for satisfying a defined scope of software product require-
ments. Since Problem-Based Project Adaptation relies entirely on pattern practices, decisions
made and development options planned for producing desired project deliverables can be replayed
and revised by the team as needed to impact their software project speed. Chapter 7 Problem-
Based Units of Work refines the concept of transition schemas known from structured analysis to
Transition Templates, for establishing a link between patterns of software problem analysis and
those of software solution design. Transition Templates assemble instant models for exploring
design alternatives that fit a defined scope of software product requirements, such as given by Re-
quirements Work Packages. Chapter 8 Problem-Based Adaptation Framework develops the 4+1
view model on software architecture further, such that it benefits from Transition Templates,
as introduced in the previous chapter 7, and operates on patterns exclusively. The resulting
"One4All" view model on software architecture guides the project team in establishing units of
work, which provides them with a blueprint or plan for the anticipated delivery of desired work-
ing software. On the basis of patterns, the “One4All” view model stabilizes the leeway for the
fulfillment of Requirements Work Packages. It eases the integration of recurring development
problems to predetermined technology platforms, and supports work plan prioritization according
to the software product life-cycle and its projectable value delivery. The enhanced anticipation
of development plans and the improved adaptability of requirements fulfillment are two cruicial
points of controlling project speed.

112 Problem-Based Units of Work

7. Problem-Based Units of Work

7.1. Introduction

This chapter is about identifyingbest practices for a requirementsworkpackage, that guide the team
on its way to develop desired outcome.

A meet-in-the-middle approach between emerging so�ware problems on the one hand and an
enduring solution design on the other hand, which is ultimately determined by the (intended) so�-
ware platform in-use, is elaborated for establishing reasonable foresight. This approach results in
a problem-based unit of work, which constitutes an Architectural Blueprint (ABP) of what "done"
looks like, i.e. a plan to satisfy user expectations, and how to work it out.

Section 7.2 Background gives a brief introduction towhat transition schemas are, andmotivates
the use of patterns in so�ware architecture design. These concepts are combined in this chapter for
creating on the fly documentation, which enables a smooth and traceable hand-over of user require-
ments to so�ware development.

Section 7.3 Transition Templates –Making problems absorb into platform introduces a newkind
of patterns named "transition templates", that pave the way for creating any architectural blueprint
for a given requirements work package, since problem and solution model can now be ascribed
to a common pattern base of best practices. In addition, these templates help to maintain a con-
stant level of detail for describing problem scenarios and accordant problem compositions involved
with requirements work packages. This property of transition templates is of great use for keep-
ing track on requirement dependencies, and which is taken advantage of in the subsequent chap-
ter 8 Problem-Based Adaptation Framework for arranging the so�ware life cycle and for the prioriti-
zation of requirements.

Section 7.4 Problem templates applies the newly formed concept of a transition template to the
domain of so�ware analysis, i.e. to problem-based functional sizemeasurement patterns. This adds
a dynamic perspective on a problem covered by a requirements work package.

Section7.5 Solution templates exemplifies theapplicationof transition templates to thedomain
of so�waredesign. It notonly elaboratesaprocedure for turningdesignpatterns common in the field
of so�ware architecture into solution templates, it also develops a classification for separating pat-
terns of fine-grained so�ware design from those which have significance in coarse-grained so�ware
architectures.

Section 7.6 Discussion & RelatedWork discusses the findings of this chapter in the light of a size-
driven andpattern-based so�ware project process. It considers relevant relatedwork and addresses
thequestionof howmuchplanning is enough. It argues that setting upaproblem-basedunit ofwork
by means of transition templates is one possible answer to it.

Section 7.7 Summary summaries the need and contribution of an integrated view to problem
and respective solution models as provided by a problem-based unit of work. This integrated view
does not only motivate planned functionality by making its architectural blueprint and respective
decision-making explicit. It also allows for establishing and comparing alternative plans for the de-
velopment of desired outcome, which is guided by transition templates.

Background 113

7.2. Background

This section presents state-of-the-art literature and concepts used in the following for developing
problem-based units of work. These are for describing an engineering plan (architectural blueprint)
for the development of a so�ware design created bymeans of patterns, which is applicable for solv-
ing the problem covered in a requirements work package.

Thatway, project teamsget in theposition toearly anticipateandorganize their upcomingwork,
and at the same time taking advantage of reusing commonly known best practices, which have al-
ready demonstrated their e�ectiveness.

This section focuses on the patterns of solution design, their composition, and dependency to
problem analysis, formaking a smooth, pattern-guided, andmodel-based transition between these
two domains possible.

Section7.2.1ArchitecturalBlueprintsandPattern-OrientedAnalysis andDesigngivesanoverview
of what is considered a pattern in so�ware design, the challenges involved with their application,
and how Yacoub and Ammar [230] master these by POAD in a model-driven way.

Section 7.2.2 Transformation Schemas explains how Ward and Mellor approach the allocation
of problems to a candidate solution (architecture), i.e. how to map desired so�ware functionality
(tasks) to those computational components (processors), which can process and thus fulfill these.

Their concept of transformation schemata is adapted in this chapter to establish a constant
level of abstraction for the application of commonly known patterns, which helps themembers of a
project team in bridging the semantic gap, that distracts them from a shared understanding of the
problem, and from their operative collaboration in finding its practicable solution.

114 Problem-Based Units of Work

7.2.1. Architectural Blueprints and Pattern-Oriented Analysis and Design

As research1 by Bosch confirms, “80-90% of all R&D e�ort [and so its related so�ware development
projects] is allocated to commodity functionality[, . . .] this functionality needs towork, but does not
help the company distinguishing itself from its competitors and through that drive sales. [. . . It is]
functionality that no customer cares about. It just has to work and, if it does, nobody cares.” [40].
Consequently, Ambler stated that project planning has to “accept that some architectural decisions
[especially against the background of commodity functionality] are already made” [12, page 281].

Corresponding to that, Yacoub and Ammar’s summary is not suprising, that “To improve so�-
ware productivity, we have to stop developing applications from scratch and make use of existing
solutions that have been applied, tested and proven useful in successful projects. Patterns2 promise
new design reuse benefits early in the development lifecycle.” [229] To this end, they propose a
pattern-oriented analysis and design approach (POAD), which operates on UMLmodels, to ease the
integration of exisiting design patterns into a combined solution.

Patterns of so�ware design are “descriptions of and solutions to recurring problems” [137, page
39]. They have become popular by the work of Gamma et al. [90] (1995) know as the “Gang of Four”,
who took the idea of a pattern language for the development of "architectural blueprints" from the
architect Alexander et al. [5] (1978) to the domain of so�ware engineering, for describing recurring
forms of solving complex engineering tasks in a structured and reusable, since model-based way.
Since then, many pattern catalogues have evolved, of which chapter D in the appendix VII provides
a brief list.

As Yacoub and Ammar rightly recognize, “Much work is expended in discovering patterns in var-
ious domains. Techniques[, which define a pattern composition approach] to deploy these proven
design solutions are still lacking systematic support. [Developing these] to glue patterns, facilitate
design learning as composition of patterns, maintain pattern level review of design, and solve trace-
ability problems.” [229], their POAD approach is entirely dedicated to patterns of early so�ware de-
sign. It does not include patterns of problem analysis.

The challenge addressed in the following is to establish a pattern composition approach, which
allows for the co-development of requirements and so�ware architecture; one which enables inte-
grated requirementsengineeringas formulatedbySommerville [201, 202], and thus tobridge thegap
between requirementsandso�warearchitectureas illustratedbyNuseibeh’s twinpeaksmodel [162].

As Larsen stated, “Designing systems using components and proven solutions [(patterns)] ele-
vates the abstraction at which engineers work[, . . .] communicate and produce solutions. Produc-
tivity [due to larger abstractions] and quality [due to component reuse] are the two main drivers
this approach brings.” [137, pages 38 and 39]. Identifying a proper level of abstraction, one which
accounts for “the packaging [. . .and thus] the pathways for making reuse possible” [137, page 39],
is a key [156, page 112] to benefit from pattern practices, and to make the allocation of problems to
suitable solutions possible through these.

1The three-layer product model as developed by Bosch classifies so�ware functionality into either innovative, di�eren-
tiating or commodity [38, page 37, figure 1]

2as well as frameworks [130], which “help to create reusable, approachable so�ware architectures” [137, page 38]

Background 115

7.2.2. Transformation Schemas

Ward and Mellor (1985) developed transformation schemas, whichmodel “a system as an active en-
tity –asanetworkof activities that accept andproducedataandcontrolmessages [. This concept . . .]
is based on the notation for data flow diagrams proposed by DeMarco [74]” [217, page 41] for struc-
tured analysis [231], and extend this notation bymeans for modeling and executing the timely order
of activities with improved rigour. That way, Ward and Mellor contribute to the domain of real-time
systems engineering.

As illustrated on the le� side in figure 7.1, a transformation schema represents a “cluster of trans-
formations” [217, page 43], which captures a combination of related data transformations (solid cir-
cle) and control transformations (dashed circle), and gives a name to these grouped activities. The
number of transformations covered by one schema is not limited per definition, that is, the respec-
tive complexity regarding instances and interfaces of transformations in a transformation schema
depends on the experience andpractices used by themodeler. Ward andMellor [219] provide heuris-
tics for structuring the modeling process, e.g. they give rules for enumerating transformations, and
a leveling strategy (top-down approach) for cascading the details of each.

A transformation schema accepts control (events) and information (data), which are processed
by respective control and data transformations. Within a transformation schema a control trans-
formation triggers data transformations and vice versa. Storage capabilities (boxes) exists for both,
events and data, which enables persistence and synchronization of these.

Each control transformation “maps input event flows to output event flows” [217, page 64].
Its behaviour is describeable by state-transition diagrams [217, page 65], which represent a finite
automaton with output [. . .such as organized by] a Mealy machine [, and which] associates each
transition (that is, each combination of state and input) with an output symbol” [217, pages 67, 68].

A data transformation “represents the work done to produce the outputs” [217, page 41]. There
“is a continuum of possible specification techniques” [217, page 82] for it, where a procedural de-
scription, which produces “problem-oriented[, . . .] sets of rules for calculating the values of the out-
puts of a transformation if the values of the inputs is provided.” [217, page 82] “The precondition for
creating a specification for a data transformation is that the data used[, stored] and produced by the
transformation be completely specified”, too [217, page 81].

Transformation SchemaLabeling

ctrl
trans.

data
trans.

eventx

eventy

eventz

data storage

datain dataout

Decrypt Message Schema

trigger
decrypt

decode
message

DecodeMsg

init complete

MsgDecoded

code

encodedmsg decodedmsg

FIGURE 7.1 Transformation Schema, decryption example adapted from [217, p. 41, fig. 6.1]

116 Problem-Based Units of Work

The right, gray-colored side in figure 7.1 gives an examples for modeling the decoding of a mes-
sage by means of a transformation schema. The data transformation decode message is taken from
an example given byWard andMellor [217, page 41, figure 6.1] and put into a transformation schema
namedDecrypt Message Schema, which is executed as follows:

1. On appearance of eventDecodeMsg the control transformation trigger decrypt starts its event
processing. It creates event init, which activates the data transformation decode message.

2. This data transformation requires the encoded msg as input data, as well as the code used for
decoding amessage, which is available to the data transformation from the data storage code.

3. A�er the data transformation has decrypted the encoded message by use of the code, it pro-
vides the decoded msg as output data to other processes, which are described by respective
transformation schemas.

4. Then, the data transformation decode message informs the control transformation trigger de-
crypt via event complete that processing of the encoded message is finished and desired out-
put data is made available.

5. The control transformation trigger decrypt creates hereuponanotificationeventMsgDecoded,
which indicates the availability of the decodedmessage.

At first glance, it may feel strange to care about an apparently oldfashionedmodeling approach
to early so�ware development artifacts, one which obviously struggles with the same complexity
issues as nowadays requirements analysis still does, such as caused by undefined granularity, com-
binatorial explosion, ambiguity due to missed commonalities, etc. as motivated in Part I So�ware
Projects – Perspectives on aManaged Engineering Discipline and challenged in part Part II Problem-
Based Project Estimating by introducing functional size measurement patterns and requirements
work packages.

Combining transformation schemas with patterns for so�ware analysis and so�ware design
helps to overcome the burden of uncontrolled complexity. This approach has not been tried out
in literature and research so far as to my knowledge.

Subsequent sections prepare Transition templates, which represent the result of such a com-
bination of schemas and patterns. These templates provide a means for coping with complexity,
dependency, and variability related to functional so�ware requirements throughout the so�ware
development project.

Transition Templates – Making problems absorb into platform 117

7.3. Transition Templates – Making problems absorb into platform

Transition templates form a new kind of pattern, which slices the twin peaks model [162] of inter-
twined problem analysis and solution design at a defined level of detail. They represent “patterns of
patterns” that pave the way for creating any architectural blueprint for a given requirements work
package.

Inorder toestablish this capabilityof transition templates, theessential-model/implementation-
model approach from Ward and Mellor [217, page 30, figure 4.1] – the precursor of the twin peaks
model – is developed further.

For this purpose, the processor and taskmodeling, which belongs to the implementation-model
(solution peak), and which serves the identification of “the processors that will carry out the [trans-
formation] work” [219, page 19], are weaved into the concept of Ward and Mellor’s Transformation
Schemasasbriefly introduced in section7.2.2. Transformationschemas represent the“features” [219,
page 20] or “a portion of thework [to be] done” [219, page 19] in the essential-model (problempeak).

Thatway tailored transformationschemasbuild transition templates,whichguide“thedecision-
making processes that lead to allocation” [219, page 24] of desired so�ware functionality to a so�-
ware platform to-be. They help in “reorganizing the content of the essential model[, which is re-
latable to a functional requirements specification] to reflect the choice of a [candidate] processor
configuration[, such as given by a blueprint of a so�ware architecture].” [219, page 36].

Commonly known patterns for problem analysis and solution design are generalizable to this
newly formed concept of transition templates. In doing so, transition templates provide for bridging
the problem-solution peaks, which is illustrated by means of problem-based functional size mea-
surement patterns as well as a set of pre-selected architectural design patterns in the following.

Table 7.1 establishes the context for a seamless handover, i.e. an allocation process, of problems
identified in so�ware analysis to candidate solutions developed in so�ware design.

problem peak – bridge – solution peak

Requirements Work Package essential model transition template implementation model Architectural Blueprint

st
yl
es
&
de
si
gn

pa
tt
er
ns

FS
M

pa
tt
er
ns machine one processor processor multiple processors configuration (roles)

problem processes multiple tasks task one task solution candidate (type)

requirements transformations computational components

problem template, detailed in section 7.4 “basic unit of activities” solution template, detailed in section 7.5

TABLE 7.1 Bridging the problem-solution gap by transition templates

At the core of this approach and in the center of table 7.1 are transition templates, which build
on the definitions of processor, task, and transformation as introduced byWard andMellor [217], and
which merge into the idea of a “basic unit of activities”, which is present in problem analysis as well
as in solution design, and recognizable in connection with the use of patterns.

Section 7.4 designs transition templates for problems, such that the resulting problem tem-
plates represent “basic units of activities”, which become tangible within requirements work pack-
ages. It details the first and second column of table 7.1.

Section 7.5 designs transition templates for solutions, such that solution templates represent
those“basic units of activities”, which are evident to architectural blueprints, and such that these
units become identifiable. It provides more insights to the fourth and fi�h column of table 7.1.

On thesegrounds, transition templatesmaintainastrong relationshipbetweenpatterns inprob-
lem analysis and solution design, and thereby facilitate the allocation of desired so�ware function-
ality as specified by the requirements to the computational components that configure the design
of a candidate so�ware architecture.

118 Problem-Based Units of Work

{basic unit}

activities *

process
*

configuration

computational component

{type} {role}

problem processor

J processes
1..*

«instantiate»

solution processor

«instantiate»

Control Transformation

-synchronize: Event[]

+controltransformation(in:Event): Event

Data Transformation

-persist: Data[]

+datatransformation(in:Data): Data

Transformation

Task Transformation Schema

Transition Template problem-solution bridge
by unification of units
problem-solution bridge
by unification of units

Problem Template Solution Template

Type of Functionality

Problem Pattern Solution Pattern

Processor

Allocation

design: Processor[]
transformationSchema: Task[]

assigne(p: Processor, t: Task)

Requirements Work Package So�ware Architecture Design

FIGURE 7.2 Transformation Schemas and their adaptation to Transition Templates

Figure 7.2 represents the use of concepts in this section bymeans of a UML class diagram, which
starts in its le� upper corner by the description of what is a transformation.

As introduced in section 7.2.2, according to Ward and Mellor’s understanding, a transformation
is classifiable into either a control transformation, which describes the processing of events, or a
data transformation, which describes the processing of data.

Theseare combinedwithina transformation schema for expressing somedesired so�ware func-
tionality. The kind and number of transformations combined to a transformation schema is at will
of a modeler. This gives reasons for using an asterisk * as multiplicity in this aggregation relation of
transformations and transformation schema.

Ward and Mellor define a task as a “set of instructions that is manipulated [. . .] as a unit by the
[. . .] processor” [219, page 6]. It represents “any named, independently scheduable piece of so�ware
that implements some portion of the transformation work assigned to a processor. ” [219, page 37].
This set of instructions or portion of transformation work is put on a level with the transformations
that are combined to transformation schemata. Respectively, transformations take the role of ac-
tivities that are united by a task. That is the reason for making the class task an intermediary one
between the classes transformation and transformation schema. It represents an atomic or “basic
unit of activity” [219, page 37] or process, which builds on transformations.

It is thedefinitionof “basic unit”, which is challenged in this dissertation. This pre-definedunit of
so�ware functionality must be comparably meaningful in so�ware analysis and so�ware design for
bridging the problem-solution peaks, respectively. This provides for establishing an allocation pro-
cess, that assignes each task toaproperprocessor, which is “apersonor amachine that can carry out
instructions and store data” [219, page 6]. In the following, this allocation process is implemented
by the use of patterns for mapping a problem process as given by desired so�ware functionality
(requirements specification) to a proper solution processor out of the computational components
available in the (architectural design of a) so�ware to-be.

The lower parts of figure 7.2 are detailed by section 7.4 Problem templates and section 7.5 Solu-
tion templates.

Problem templates 119

7.4. Problem templates

Figure 7.2 Transformation Schemas and their adaptation to Transition Templates on page 118 shows
in its lower le�, that a problem template as developednext is a pattern, which exhibits selected prop-
erties of a transformation schema. That way, problem templates structure so�ware functionality
into a recognizable problem process or task respectively, which relates to a defined type of function-
ality.

To this extent, problem templates conform to problem patterns, such as problem-based func-
tional size measurement patterns. Both apply to so�ware analysis for the grouping of desired so�-
ware functionality as is available in a requirements work package.

In contrast to problem patterns, problem templates add further constraints to the grouping of
interactions, i.e. the di�erent tasks involved with a problem at hand. As is elaborated in chapter 8
Problem-Based Adaptation Framework, this makes problem processes and their related require-
ments dependencies better tangible.

As shown by figure 7.3, problem templates limit the number and ordering of interactions, which
is achieved by restricting themodeling of tasks as representable by a transformation schema to par-
ticular uses of notational elements. A problem template consists of exactly one control transforma-
tion (dashed circle) and one data transformation (solid circle).

The control transformation accepts exactly one triggering input event, and produces at maxi-
mum one action event, which is made available to other tasks. The data transformation reads input
data and can produce data as a result, which is made available to other tasks. It can also store and
access data from a storage, which exhibits the state of the task. Control and data transformations
of one problem template send events among one another. These events internal to a task must be
relatable to its input trigger and output action event.

In contrast to a transformation schema, a problem template does not make use of storages for
events. In thiswork, the synchronization of events is shi�ed to the consideration andmeans used for
expressing the so�ware life cycle. It thus happens at a higher level than that of one task. For estab-
lishing the so�ware life cycle, events are synchronized for modeling a (temporal) ordering relation
among tasks. This topic belongs to chapter 8 Problem-Based Adaptation Framework.

As a result, problem templates ensure a grouping of so�ware functionality and therewith re-
lated requirements into meaningful, and independent tasks on a pattern basis. They represent the
smallest possible unit of transformation work, which is in conformance with Ward and Mellor.

Task Pattern

trigger’ action’

trigger action

state

data result

FIGURE 7.3 Problem template structure

120 Problem-Based Units of Work

7.4.1. Set-Up Problem Templates

Problem patterns help to classify some so�ware functionality, such as involvedwith a requirements
work package (RWP), at the level of recognizable problems by taking primarily their static proper-
ties3 into account. At the heart of each problem is the machine, which takes the role of a problem
processor that is capable of operating a particular type of so�ware functionality.

Problem templates represent task patterns, which likewise help to structure the requirements
thatbelong toaknownproblemfurther. Thesepatterns focuson thedynamicproperties4 (flow logic)
involved with some so�ware functionality (task), and constrain its sequence of actions. Each forms
a usage scenario [14] at the level of recognizable problem processes, which specifies a “basic course
of action” [12, page 321] of how to satisfy desired so�ware functionality.

«instantiate»

{type}{flow}

Joperates
machinescenario

Jgroups
RWPspecification

«instantiate» «instantiate»

Problem Template
{task pattern}

Task
{basic unit of actions}

Type of Functionality
{TOFF-i.|TOFF-ii.|TOFF-iii.}

ProcessorProcess

ProblemRequirement Machine

Problem PatternTask Pattern

FIGURE 7.4 Problem templates are task patterns

Consequently and as figure 7.4 shows, problem templates bring the concepts of structured anal-
ysis together with those of problem-oriented so�ware engineering. Task patterns map Ward and
Mellor’s understanding of a processor, which is in the position to operate processes, and their shared
relation to andmeaning in the context of tasks to the concepts as defined by Jackson. Themeaning
of themachine5 for deriving specifications, and for classifying and thus for establishing a(n indepen-
dent) grouping of requirements is thereby further analysed, i.e. how satisfiable, desired so�ware
functionality is representable by basic units of machine interface specifications is defined.

In the following a three-step procedure is described and executed, which explains the methods
andmodels used for establishing problem templates.

3The what? regarding the kind and number of elements that belong to one problem
4The how? regarding the relationships of elements, which belong to one problem, i.e. their temporal dependencies
5Themachine interface of a problemoutlines a plan (specification) for satisfying the requirements; it exhibits a particular
type of functionality

Problem templates 121

About problems, and their type and flow inside of involved processes

Problem templates are task patterns, which characterize an independent, problem-based unit of
activities, whose execution serves to fulfill a defined set of requirements. Each of these pattern re-
stricts the flow of activities involved with the problem unit, i.e. its tasks, in regard to the type of
functionality, which is specific to the problem at hand and already designed in section 5.4.3.

The use of these task patterns is twofold: first, they set up recognizable units of activities, which
are meaningful for constituting problems as well as solutions. That way, they provide for bridging
the gap between these di�erent perspectives in so�ware developmentworks, as is illustrated in sec-
tion 7.5 Solution templates of this chapter.

Second, they set up independent units of activities, which are meaningful for modeling equally
formed usage scenarios. These represent pre-defined units for deriving uniform requirements spec-
ifications, which help to keep the level of detail for expressing these consistent.

Considering problems and consequently their covered requirements at the task level, eases the
sequencing of related so�ware functionality. Respectively, modeling their dependencies and de-
ciding on their composition as is done and documented by the so�ware life cycle, which is topic to
chapter 8, becomes muchmore manageable.

According toMappingPatterns toProcessesbyTypesof Functionality onpage52, there are three
types of functionality (TOFF-i. to -iii.), which are characteristic to problems and their involved re-
quirements that are produced by means of problem frames or problem-based functional size mea-
surement patterns.

Section 7.4.2 presents the Problem Template for TOFF-i problem processes. It elaborates the
task pattern, which underlies problems, whose primary concern is to process information, which is
received. Section 7.4.3 presents the Problem Template for TOFF-ii problem processes. It elaborates
the task pattern for problems, whose primary concern is to provide information, which is retrieved.
Section 7.4.4 presents the Problem Template for TOFF-iii problem processes. It elaborates the task
pattern for modeling problem processes, whose primary concern is to provide information, which is
derived.

These three problem templates are developed by the following procedure andmodels:

1. Account for the problem.

The general structure of (Jackson’s frame diagrams that underlies) a requirements work pack-
age is of first interest. This is why each discussion of a problem template involves a respective
diagram, such as given by figure 7.6 TOFF-i. problem (general structure) on page 127, which
identifies relevant domains and their interactions.

This structure is responsible formapping a set of requirements into a (static) problemdescrip-
tion, one which fits a known type of functionality6, e.g. TOFF-i., TOFF-ii., or TOFF-iii.

In this context, the machine domain is of special interest. It takes the role of a problem pro-
cessor, which is in the position to operate units of activities (problem processes) as defined at
the machine’s interfaces, and that possess a particular type of functionality.

Thus, the machine processes an ordered sets of desired so�ware functionality (tasks) respec-
tively to satisfy the requirements. “Themachine is whatmust eventually be built and installed
to solve the problem.” [128, page 15]

6a problem’s type of functionality is apparent by use of problem(-based functional size measurement) patterns

122 Problem-Based Units of Work

2. Account for the type of a problem process.

The type of functionality that characterizes a problem determines the structure of a problem
template. For instance, the primary intent of a TOFF-i. problem is to store some received data,
cf. figure 7.7 TOFF-i. processor (task pattern) – Template for operating TOFF-i. processes on
page 127. Accordant notational elements of a transition template as designed in section 7.3,
which represent a customization ofWard andMellor’s transformation schemata as introduced
in section 7.2.2, are chosen to set up a respective problem template. It models this problem
concern as a task pattern.

A problem template describes the standard way (specification) of how a machine (problem
processor) executes a task (problemprocess), that belongs to a particular type of functionality
(problem).

It defines a unification for those units of computation, which are inherent to patterns of so�-
ware analysis as well as those of so�ware design. That way, the structuring of problems into
processes by problem templates is of twofold use:
First, it enables the identification of corresponding processors in any architectural blueprint
and thus the exploration of solution alternatives, and it also guides the mapping of desired
so�ware functionality to the computational components of a candidate so�ware (architec-
ture) design. This advantage of problem templates is detailed further in section 7.5 Solution
templates.
Second, considering problems at the level of their processes or tasks enables better control of
involved dependencies. This is of great importance formanaging the so�ware life cycle, which
provides the basis for the decision making on project plans, and which is elaborated in depth
in chapter 8 Problem-Based Adaptation Framework.

3. Account for the flow inside of a problem process

In addition to each problem template, there is a task scenario available, cf. figure 7.8 TOFF-i.
process (general structure) on page 127. It models the temporal order of transformation work
that is covered by a task pattern using OMG’s UML sequence diagrams.

Each problem process binds domains and requirements of a problem unit, which are involved
with a task, to one alt-fragment. Each of these defines a sequence of how the machine (prob-
lemprocessor) operates the di�erent activities of a task (problemprocess) to satisfy the (prob-
lem unit of) requirements.

Alt-fragements are used in here for representing a basic unit of activities that make one in-
dependent and complete task. To emphasize this fact, only synchronous communication is
used at themachine life line. Chapter 8 Problem-Based Adaptation Framework elaborates the
method and benefits from this practice for establishing the project plan. Knowing the flow in-
side of a problem process helps to create uniform task descriptions and to derive respective
specifications consistently.

Problem templates 123

Mapping problems, tasks, and scenarios

Table 7.2 represents a mapping of conceptions from problem-oriented so�ware engineering based
on Jackson’s problem frames approach [128] to those models used by Ward and Mellor in struc-
tured analysis (transformation schemata) [218], as well as OMG [168]’s tools (sequence diagrams)
for object-oriented so�ware analysis [168].

Thismapping allows for a consistent transformation ofmodels between these three disciplines,
which establishes traceability between requirements and specifications. On the one hand, table 7.2
summarizes the findings of subsequent sections, and thus anticipates important contributions as
actually developed next. On the other hand, it provides information, whose application is of more
general use, than only for producing problem templates. For instance, it can be used for modeling
tasks and scenarios basedonanyknownproblem frame. It is not limited to theuseof problem-based
functional size measurement patterns, or applicable only for building task descriptions that reflect
one specific type of so�ware functionality.

machine interfaces with
type of problem domain

machine observes
type of phenomenon

machine interface as given by
problem templates, cf. figure 7.4

machine lifeline in
UML sequence diagram
receivesmessage

details
cf.
fig. 7.5

biddable domain (B) causal input event trigger call msg::= trigger(data) 1.
symbolic input data

causal domain (C) causal input event trigger call msg::= trigger(data) 1.
symbolic input data

display domain (D) causal n/a
n/a

symbolic n/a

lexical domain (X) causal n/a

symbolic state’ storage box
reply msg::= state’
= action(data):result

2.

machine interfaces with
type of problem domain

machine controls
type of phenomenon

machine interface as given by
problem templates, cf. figure 7.4

machine lifeline in
UML sequence diagram
sendsmessage

details
cf.
fig. 7.5

biddable domain (B) causal n/a via connection domain
display (D)symbolic n/a

causal domain (C) causal output event action call msg::= action(result)
= trigger(data):action(result)

4.
symbolic output result

display domain (D) causal action event reply msg::= result
= action(data):result

3.
symbolic output result

lexical domain (X) causal action event call msg::=
action(data):result

2.
symbolic input data

TABLE 7.2 Basic activities at the machine interface

Table 7.2 presents four basic activities that occur at the machine interface, for specifying satis-
fiable, desired so�ware functionality. Utilizing these results in reproducible requirements specifica-
tions, which aremodeled in a transformation schema style, or bymeans of UML sequence diagrams.

124 Problem-Based Units of Work

Figure 7.5 details the four basic activities 1. to 4. by representing these as UML sequence dia-
gram fragments.

trigger(data)

dummy

action(data):result
state′ ≡ result

action(result)

trigger(data):result

RESULT

action(result)

trigger(data):result

Caller of M:{B|C} Machine Lifeline:{M}

+callees: Callee-
OfM[] {X|D|C}
+callees: Callee-
OfM[] {X|D|C}

STATE of M:{X}

result′ =
data@pre+data
result′ =
data@pre+data

RESULT of M:{D} OUTPUT of M:{C}

[2.]

[3.]

[4.]

alt

[1.]

Legend: B=biddable, C=causal, X=lexical, D=display problem domain, M=machine domain

FIGURE 7.5 Model kit of basic activities for creating specifications by UML sequence diagrams

The following sections elaborate combinations of these basic activities to form problem tem-
plates. These are patterns applicable for modeling tasks (basic units of activities) and respective
scenarios (flow of activities within a basic unit) for those problem descriptions, which involve a de-
fined type of so�ware functionality (TOFF-i. to TOFF-iii.).

Problem templates 125

7.4.2. Problem Template for TOFF-i.

The problem illustrated by figure 7.6 is concerned with so�ware functionality that is classifiable
into TOFF-i., which is in general concerned with the processing of some received information. Sec-
tion 5.4 Problem Class – Kind of Functionality elaborates and discusses in detail what this kind of
problem classification is about. There are some constraints on the setup of a respective problem
template (task pattern) for a TOFF-i. problem, which must be taken into account:

The problem template for TOFF-i. tasks conforms to an elementary process known from func-
tion point analysis, whose application boundary comprises only those so�ware functionality,
which represents an external input (EI).

That is, the task pattern that is to be built, must combine transformations in away, such that it
forms a unit of basic activities, which describes amachine (problemprocessor) that is capable
of operating TOFF-i. so�ware functionality, i.e. a problem process that conforms to an EI.

Themain purpose of an external input (EI) is to processes information, which is sent from out-
side the application boundary to the elementary process, and stored to an internal logical file
(ILF). The processing of information and its results remain inside the application boundary.

This fact is taken into account by associating the lexical problem domain given in the problem
model with the data storage box in the task model. Inside the TOFF-i. problem template this
data storage box models the ILF. It can only be accessed by the data transformation, which
belongs to the TOFF-i. machine. That means, any change to an ILF, and respectively to in-
formation, which are advantageous and used in the following for representing the state of a
so�ware application (life cycle), is under exclusive control of this problem processor.

Other problems or types of elementary processes can inquire an internal logical file (ILF).

Yes, but they cannot change it, whenmaking use of task patterns7 as designed here. Inquiries
to an ILF or respective reads of a lexical problemdomain demand another elementary process
and characterize a di�erent type of functionality, namely those of TOFF.-ii. andTOFF-iii., which
are discussed in upcoming paragraphs.

Figure 7.7 presents a problem template (task pattern) applicable to (and thus operatable by)
TOFF-i. problem (processor)s. Accordingly, the machine and its interfaces as given in the problem
description that is outlined in figure 7.6 are expressed by means of a customized transformation
schema as introduced in section 7.2.2 for assembling the task pattern in figure 7.7. It comprises the
following activities:

1. A trigger-event with respective data is received by the problem processor. That is, this input
event and respective input data enter/are in the scope of responsibility of a TOFF-i. machine
(black-filled box).

2. The control transformation (dashed circle) processes the trigger and initiates an action-event,
which in this problem template controls the data transformation.

3. Dependingon the action-event, the data transformation (solid circle)within this problem tem-
plate starts processing the data received, which produces a result.

7Note: Problem templates are designed to condense problems as given by requirements into tasks, which are basic units
of activities (or transformation work).

126 Problem-Based Units of Work

4. The data transformation makes the result of this data processing persistent in a data storage
named state. That means, the result resides inside the scope of responsibility of this TOFF-
i. problem processor. The state box is a kind of internal logical file (ILF) that belongs to this
problem, i.e. it represents the respective lexical domain.

5. The state box represents the persistent data that can be written and read by a data transfor-
mation. Depending on what information is stored to this state, i.e. by means of the available
result data, it becomes possible to synchronize di�erent tasks, and thus to set up a so�ware
life cycle.

6. This TOFF-i. problem (processor) in itself does not provide any triggering-events or resulting
data to other tasks. As alreadymentioned above as constraint on a TOFF-i. problem template,
the processing of information and its results (in regard to the writes of an ILF) remains inside
the scope of responsibility of this task.

The scenario in figure 7.8 arranges the four basic activities as summarized by the combined frag-
ments in figure 7.5 into a flow of activities, which is bounded to the execution of a specific task,
namely to those activities, which are of relevance to satisfy (the requirements of) TOFF-i. problems.
That is, each task scenario relates to requirements as defined in the respective problem description.
This relation is revealed by use of a UML note symbol at the respective fragement. Usually, there
are several instances of task patterns and respective scenarios to cover the entire, desired so�ware
functionality that is involved with a TOFF-i. problem description. At the heart of each scenario is
again the machine (lifeline of the problem processor), which establishes the flow logic of activities
as specified at its interfaces. The scenario in figure 7.8 comprises the following activities, which re-
sult from instantiating the TOFF.-i. problem template given in figure 7.7 in the context of a TOFF-i.
problem description as in figure 7.6:

1. The machine object represents the problem processor (marked filled black), which is in the
position to execute so�ware functionality that is characteristic to TOFF-i. problems. It receives
(from the activator object of the environment) a synchronuous trigger-message with some
data as argument.

2. Themachine object processes the call and data (via its control transformation).
3. This (event)processingof the trigger-message (white-filledmachine life line) involves thesend-
ing of a synchronous action-message together with the data to the machine’s state object.

4. The state object is in charge of (the data transformation, gray-filled life line) producing the
desired result and to make it persistent.

5. The state object represents the state of the problem, which is known in first instance to the
machine object aka the problem processor only.

6. This use scenario of a TOFF-i. problem process does not demand any (reply) messages from
the machine object to its calling activator object (in the environment). Nevertheless, other
types of problem processes can access state information.

Section 7.4.1 summarizes the findings gathered in here forMapping problems, tasks, and scenar-
ios. Problem templates are used in section 7.5 Solution templates for mapping patterns of problem
analysis with those of solution design, and in chapter 8 to form units of activities, which are bene-
ficial for expressing the so�ware life cycle. This is hardly achievable on the basis of UML sequence
diagrams only, if these are not bound to comparable units of interaction. Task scenarios are used
to produce uniform requirements specifications, which are based on patterns, and the preliminary
work on requirements estimating by functional sizemeasurement in part II. They define interactions
that share the same level of granularity and purpose, and the participating objects, e.g. other users
or tasks, involved with these.

Problem templates 127

«problem» TOFFi

«machine» Problem Processor

«lexicalDomain» State Object

«biddableDomain» Activator Object

«requirements» Task to accomplish

AO!{trigger, data}

PP!{action, data}
SO!{result}

AO!{trigger, data}

SO!{state}

FIGURE 7.6 TOFF-i. problem (general structure)

TOFF-i. Problem

state

trigger

action

data

result

FIGURE 7.7 TOFF-i. processor (task pattern) – Template for operating TOFF-i. processes

action(data):result
state′

trigger(data)

Activator Object:B Problem Processor:M State Object:L

alt
[state] task scenario for

«requirements»
task scenario for
«requirements»

FIGURE 7.8 TOFF-i. process (general structure)

128 Problem-Based Units of Work

7.4.3. Problem Template for TOFF-ii.

The problemmodeled by figure 7.9 involves so�ware functionality, which is of a TOFF-ii. type. It is in
general concerned with providing some information to the environment (via a display domain) that
is retrieved by the machine, see definition DEFINITION 5.3 on page 52.

There are some constraints on the setup of a respective problem template (task pattern) for a
TOFF-ii. problem, which must be taken into account:

The problem template for TOFF-ii. tasks conforms to an external inquiry (EQ) elementary pro-
cess as known from function point analysis.

The task pattern to be built must combine transformations in a way, such that the respective
machine (problem processor) is capable of operating this kind of so�ware functionality.

The main purpose of an EQ is to retrieve information and simply showing these. Therefore, it
can access any data storages available, either internal to the application under consideration
(ILF), or external by means of interfaces to participating objects or other tasks (EIF).

In contrast to the task pattern for TOFF-i. problems as discussed before, the primary purpose
of TOFF-ii. problems is not to change data. Here, the focus of data processing is to assemble
given information for providing some new knowledge only.

The problem template in figure 7.10 represents a task pattern for operating TOFF-ii. problem
processes. It expresses the interactions at themachine interface taken from the problemdescription
in figure 7.9 by a customized transformation schema as follows:

1. A trigger -event with respective data is received by the problem processor (machine, black-
filled box).

2. The control transformation (dashed, white-filled circle) of the machine processes the trigger .
It initiates a respective action-event to control the data transformation (solid, gray-filled cir-
cle).

3. Depending on the action-event, the data transformation starts processing the data received8,
which produces a result .

4. The data transformation makes the result of its data processing available. It can be said, that
the result leaves the scope of responsibility of this task and is made available for further pro-
cessing. To this end, the TOFF-ii. problem processor in itself remains stateless a�er the data
processing. This TOFF-ii. problem process does only provide data information. It is not con-
cerned with producing control information.

8Note: The “data received” can be any information retrieved by the machine from other users, tasks, or respective data
storage boxes.

Problem templates 129

The UML sequence diagram in figure 7.11 shows a scenario or specification of the flow logic for
activities at the machine interface, which gives an interpretation 9 of the TOFF-ii. problem template
in figure 7.10 in the context of a TOFF-ii. problem description such as present in figure 7.9:

1. The machine object represents the problem processor (marked filled black), which is in the
position to execute so�ware functionality that characterizes TOFF-ii. problems. It receives
(from the activator object of the environment) a synchronuous trigger-message with some
data as argument.

2. Themachine object processes the call and data (via its control transformation). This (event)
processing of the trigger-message (white-filled machine life line) invokes an action-self mes-
sage together with the data received from the activator object.

3. This self message is a placeholder for the activities to be done by the machine (i.e. relevant
data transformations, gray-filled machine life line) for retrieving and composing those data
information that make the result.

4. The output object (display domain) is in charge of presenting the calculated result to the en-
vironment, e.g. to that activator object, which has triggered this task. That is why there is in
light-gray color a return message between the display and the biddable domain. Since it can-
not be controlled by themachine, that the biddable domainmakes use of the result, this reply
message should only indicate that the result is allotted to the problem domain, which calls
themachine. The display domain takes the role of a connection domain between themachine
and the activator object.

The [state]-condition used for the alt-fragement represents a precondition for accomplishing
this task. It refers to a state as can only be established by TOFF-i. problems, see section 7.4.2 on
page 125. Nevertheless, this TOFF-ii. problem process is stateless, it does not a�ect the state in it-
self. Mentioning the [state]-condition here is of use only for synchronizing di�erent tasks, which ulti-
matelymakes the so�ware life cycle. Details on this topic are elaborated and discussed in respective
sections.

9Note: Realistic TOFF-ii. problems involve several problem domains fromwhich data is retrieved. This fact is not denied,
and as shown by the examples in the Case Studies part, these problem domains are incorporated in the scenarios,
too. In the example given here, the question to be answered is what so�ware functionality makes the core of TOFF-ii.
problems and respective tasks.

130 Problem-Based Units of Work

«problem» TOFFii

«machine» Problem Processor

«displayDomain» Output Object

«biddableDomain» Activator Object

«requirements» Task to accomplish

AO!{trigger, data}

PP!{action, result}

AO!{trigger, data}

OO!{result}

FIGURE 7.9 TOFF-ii. problem (general structure)

TOFF-ii. Problem

trigger

actiontrigger

data result

FIGURE 7.10 TOFF-ii. processor (task pattern) – Template for operating TOFF-ii. processes

action(result)

trigger(data):result

trigger(data)

Result

Activator Object:B Problem Processor:M Result Object:D

alt
[state] task scenario for

«requirements»
task scenario for
«requirements»

FIGURE 7.11 TOFF-ii. process (general structure)

Problem templates 131

7.4.4. Problem Template for TOFF-iii.

The problemmodeled in figure 7.12 is characteristic for so�ware functionality, which fits TOFF-iii. In
general, its primarypurpose is topresent some information (to theenvironment),which is calculated
or derived by the machine, cf. definition DEFINITION 5.3 on page 52. In contrast to TOFF-ii. prob-
lems, a TOFF-iii. problem involves a higher e�ort of computation regarding the delivery of desired
information, than simply retrieving these from somewhere.

The following constraints for setting up a TOFF-iii. problem template (task pattern) is taken into
account:

The problem template for TOFF-iii. tasks conforms to an external output (EO) elementary pro-
cess as known from function point analysis.

Figure 7.13 maintains the primary purpose of an EO, which is characterized as having a higher
computational e�ort than an external inquiry (EI) process, i.e. a TOFF-ii. problem. This fact is
reflected by the data transformation, which takes over the role and respective responsibilities
of the control transformation, and thus is concerned with control information in addition to
the processing of data information. Furthermore, the initiation of the action-event by the data
transformation can be regarded as indication (signal) for the completion of the computational
task. This is another detail, which distinguishes TOFF-ii. and TOFF-iii. task patterns, since the
TOFF-ii. problem template and its respective machine delivers only data information as reply
to a call. The TOFF-iii. problem template delivers control information and data information as
reply to a call.

The problem template in figure 7.13 represents a pattern formodeling tasks, which can be oper-
ated by a TOFF-iii. problem processor:

1. A trigger -event with respective data is received by the machine (black-filled box).

2. The control transformation (dashed circle) as part of a TOFF-iii. task acts as dummy. It simply
passes the trigger over to the data transformation, but does not process it any further.

3. It is the data transformation (solid, gray-filled circle), which deals with the processing of the
trigger-event, that it has gotten from the control transformation. Depending on the received
trigger , it determines the respective action that is to initiate and processes the data received
for the calculation of the result .

4. Due to its responsibility for the result as well as the action-event, the data transformation
can be considered as to have an added computational e�ort, namely those of processing con-
trol and data information. A�er completing its computation, the result and belonging action-
event leave (via the dummycontrol transformation) the scope of responsibility of this problem
processor.

The action-event provides context to the result . It serves together with the respective result data
as trigger to the environment. A TOFF-iii. problem processor provides control and involved, derived
information to other tasks.

132 Problem-Based Units of Work

The UML sequence diagram in figure 7.14 specifies the flow of activities, which are characteristic
for a TOFF-iii. problem. It is an interpretation of the TOFF-iii. problem template in figure 7.13 in the
context of a TOFF-iii. problem description such as given in figure 7.12:

1. The machine object represents the problem processor (marked filled black), which is in the
position to execute so�ware functionality that characterizes TOFF-iii. problems. It receives
from the activator object of the environment a synchronuous trigger-messagewith some data
as argument.

2. Themachine object processes the call and data (via its control transformation). This (event)
processingof the trigger-message (white-filledmachine life line) invokesan trigger(data):result-
self message, which hands over the processing of control information to the data transforma-
tion (gray-filled machine life line part).

3. This self message is a placeholder for all the activities to be done by themachine, i.e. relevant
control and data transformations, for deriving data information that make the result, as well
as control information that form an action-event.

4. The resulting output event and data form a reply message action(result), which is sent from
the machine in return to the call of the activator object and which is received by a domain
object in the environment.

The interface and respective messages from the machine to the causal domain object can be
used for simple transmission of data information or it can be understood as signal (control infor-
mation), which performs some kind of control on the domain object. The second case makes the
di�erence between TOFF-ii. and TOFF-iii. problem processes.

Problem templates 133

«problem» TOFFiii

«machine» Problem Processor

«causalDomain» Domain Object

«biddableDomain» Activator Object

«requirements» Task to accomplish

AO!{trigger, data}

PP!{

”signal”︷ ︸︸ ︷
action, result}

AO!{trigger, data}

DO!{

”flag”︷ ︸︸ ︷
result of action}

FIGURE 7.12 TOFF-iii. problem (general structure)

TOFF-iii. Problem

trigger action

actiontrigger

data result

FIGURE 7.13 TOFF-iii. processor (task pattern) – Template for operating TOFF-iii. processes

action(result)

trigger(data):result

trigger(data)

Activator Object:B Problem Processor:M Domain Object:C

alt
[state]

task scenario for
«requirements»
task scenario for
«requirements»

FIGURE 7.14 TOFF-iii. process (general structure)

134 Problem-Based Units of Work

7.5. Solution templates

Figure 7.2 Transformation Schemas and their adaptation to Transition Templates on page 118 shows
in its lower right, that a solution template as developed next is a pattern, which describes the con-
figuration of computational components that make a so�ware’s architecture design. It exhibits the
solution processors, i.e. the interacting roles that share responsibility for the processing of a task.

That way, the allocation of desired so�ware functionality to a so�ware platform to-be becomes
possible on apattern basis, since the units of activities for describing problems aswell as for describ-
ing solutions are comparably defined.

A solution template is a configuration pattern of patterns, which composes problem templates
as introduced in theprevious section toemulatebest practices solutions, suchasgivenby commonly
known architectural styles and design patterns as listed in the appendix D Overview on Architecture
Design Patterns.

7.5.1. Set-Up Solution Templates

The development of solution templates does not require the definition of a new notation, such as
done for problem templates. Solution templates utilize problem templates to identify the tasks that
can be processed by an architectural design. This is why problem templates and solution templates
are both a kind of transition template, which is a specialization of Ward and Mellor’s transformation
schemata according to figure 7.2 in section 7.3.

The notational means for problem templates are reused to capture the solution, which is hid-
den in Architectural Design Patterns (ADP). An architectural structure can be seen as a composite of
computational components that vary in their “classes of functionality and interaction they provide.
[. . .] So�ware developers would clearly benefit from having more precise definitions of these [. . .]”
according to Shaw and Garlan [198, Page 149].

Di�erent classes of functionality have already been elaborated in detail from the domain of
problem analysis. Three types of functionality, namely TOFF-i. to TOFF-iii. have been developed,
and each problem template accounts for exactly one of these.

From the domain of solution design originates a classification developed by Shaw and Garlan
[198], who suggest five component types10 “that appear regulary in architectural descriptions” [198,
page 149], where the following three are of further interest: Memory, Link, and (Pure) Computation.
These are unique in their kind of processing data or signals, which conforms to the categorization
according to TOFF as developed in this work.

Memory: is a “shared collection of persistent structured data” [198, Page 149].

Computation: is a “simple input/output relation [. . .with] no retained state” [198, Page 149].

Link: “transmits information between entities” [198, Page 149].

The three respective rows in table 7.3 equate Shaw and Garlan’s understanding of a computa-
tional component to that of Ward and Mellor’s processor concept as used by this work. Thereby, it
establishes a hierarchy into which ADP can be arranged, and which eases their di�erentiation into
those which are architecturally significant, and those which are not.

10These classes of components are: (Pure) computation,Memory, Manager, Controller, Link. The two computational com-
ponentsManager andController fit to Ward and Mellor’s general concept of a processor and Jackson’smachine do-
main. Both are universal in their kind of processing data or signals, and do not constitute a defined class of function-
ality.

Solution templates 135

Computational Component Processor (black box) Processor (white box)

Memory TOFF-i. Data Storage
Computation TOFF-ii. Data Transformation
Link TOFF-iii. Control Transformation

level of design details coarse-grained fine-grained

structures architecture design by component design by
di�erent types of processors di�erent types of transformations

pattern classifiable as architectural patterns and styles design (and coding) patterns

TABLE 7.3 Patterns used for coarse-grained design are architecturally significant

In its second column, table 7.3 maps coarse-grained solution design to the consideration of in-
teractions as provided by processors, which represents the level, which is of relevance to so�ware
architecture. In its third colummn, table 7.3 maps fine-grained solution design to the consideration
of individual parts of a processor, which represents a level that is of relevance to particular compo-
nents of a so�ware architecture only.

The idea is to consider an ADP as a particular composition of processors, in which each of these
computational components takes a specific role to accomplish a task. Within a solution design, sev-
eral processors share the responsibility (and thus interact) for (the fulfillment of) a computational
task. This coincides with Ward and Mellor’s view on the shared processing of some transformation
work, who suggest that “The name given to a processor should highlight the role played by the pro-
cessor in the computation” [219, page 23]. This view on an architectural blueprint is complemented
by table 7.1 on page 117.

The interactions provided by the computational components of an architecture design are first
bound to their typeof functionality, whichmakes thema solution candidate for a specific task or not.
And second,within a configuration of interactions as suggestedby anADP, these solution candidates
or respective solution processors take over particular roles for accomplishing specific tasks. That is
why di�erent ADP represent configurations (so�ware architecture designs) of computation compo-
nents (processors), which are likewise suitable (alternatives) for solving the same tasks. It depends
on the identificationandmapping, i.e. thewell-directedallocationof tasks to their processors,which
makes best practices utilizable and thus enables to benefit from strategic reuse.

Ward and Mellor show by the example of a bottle-filling system [219, pages 20�], that di�erent
alternatives exists (cf. [219, figures 3.4 and 3.5]) for allocating the features as defined in the essential
model to the processors, whichmake an implementationmodel. Their proposed allocation process
is hand-made and guided only by some recommendations on how to execute “reorganizing the con-
tent of the essential model to reflect the choice of a processor configuration” [219, page 36].

By means of solution templates as developed next, this allocation process becomes a pattern-
led one. That is, transition templates are the key to make problems reproducibly absorb into plat-
form on the basis of patterns.

The following sections detail, how to grasp the computational roles and the interactions they
provide inside an ADP, and to represent these in a way, i.e. by means of solution templates, which
eases the allocation of desired so�ware functionality to a so�ware architecture to-be. A�erwards,
this approach is applied to several ADP, suchasClient-Server, Forwarder-Receiver, etc. for illustrating
its use.

136 Problem-Based Units of Work

About solutions, and their types and flow inbetween of involved processors

Solution templates are configuration patterns, which emulate the assembly of interacting computa-
tional components, which are present in an architectural design pattern (ADP). Solution templates
are no new ADP. They simply model known ADP by defined units of so�ware functionality, such as
represented by problem templates.

The intent of solution templates is to normalize commonly known best practices in so�ware ar-
chitecture design, which are documented in varying forms and levels of granularity, cf. appendix D.
This is to the advantage of exploring alternative solutions to recognizable problems in amore seam-
less way, and eases integration of desired so�ware functionality to a so�ware platform to-be.

This approach contributes to brigde the problem-solution gap on a pattern basis, cf. figure 7.2
on page 118. Problems (tasks) and their proper solutions (processors) become identifiable with re-
spect to the same understanding of what are “basic units of activities” that form implementable,
and desired so�ware functionality.

So�warearchitecture solutionsarecompositionsofdi�erent computational components,which
share responsibility for operating tasks. In consequence, only parts of a solution design may be in-
volved in processing a task. These parts take over a role in the task processing, which is nameable,
and relatable to specific activities. The intent of using roles in the following is to map recognizable
responsibilities to recurring units of so�ware functionality, such as documented in problem tem-
plates.

Solution templates illustrate how an architectural design pattern (ADP) implements a defined
typeof so�ware functionality. For instance, a TOFF-i. solution templatepresents howaTOFF-i. prob-
lem process is mapped to and processed by the respective architectural design pattern.

Solution templates 137

The following heuristic is applied to a selection of ADPs and results for each three solution tem-
plates, which are specific to (operate) one type of functionality (TOFF-i. to -iii. problem template).

1. Pick an (architectural) design pattern to be represented as solution template.

AppendixDprovidesanOverviewonArchitectureDesignPatterns fromwhichachoice ismade.

2. Identify the computational components involved with the pattern.

Architectural designpatterns aremodeledbydi�erentmeans,whichareo�enboxes-and-lines
notations or UML sequence diagrams. Boxes and object life lines are first class instances that
can be interpreted as computational components.

3. Model each role as a problem template.

O�en the names given to boxes or objects are related to and thus applicable as role names. In
the following, it is tried to relate these to one out of the three problem templates available, cf.
section 7.4, in order to form comparable units of activities for each of these roles.

4. Assemble roles for designing a solution processor.

If each identified computational component takes a specific role, which is representable by
one problem template, then these roles can be composed to one solution processor, which
emulates the processing, i.e. the interactions of computational components, as defined in the
architectural design pattern under investigation.

According to the classification provided by the second column in table 7.3, the resulting solu-
tion template (and its underlying design) represents a pattern (of a solution processor), which
has architectural significance.

5. If a role does not map a problem template, try to make use of it for designing parts of a
solution processor.

If the scope of responsibility of a role is limited to parts of processing a task, namely to the
implementation of its individual activities, then no solution template can be created, and the
underlying design is categorized as having no architectural significance, because it does not
address the architecture at a coarse-grained design level according to the classification pro-
vided by the third column of table 7.3. As the implementation of individual activities is about
the actual realization of information storage11, data transformations, or control transforma-
tions, there can be patterns which provide design alternatives to this component level of an
architecture (fine-grained design), which are worth to be documented too, but this level is not
seen as architectural significant in table 7.3.

Section 7.5.2 presents solution templates for a Client–Server architecture design following the
5-step heuristic as presented on page 137. Section 7.5.3 shows solution templates, which are built
basedonaForwarder–Receiverdesignpattern. Section7.5.4embedsanObserver- [90]andaPublish-
Subscriber-[46] design pattern to solution templates for TOFF-i., -ii. and –iii. problems. Section 7.5.5
merges theaforementionedsolution templates toonearchitecturalblueprint that follows theModel–
View–Controller style.

Thereby, it is not only shownhowcoarse-grained and fine-grained design patterns become clas-
sifiable into defined categories. The proposed, pattern-based approach also illustrates that unifying

11The patterns Block Storage and Blob Storage in appendix D.4 provide design alternatives for implementing the data
storage (which is only a part) of a computation component according to table 7.3

138 Problem-Based Units of Work

the units for considering some so�ware functionality in problem analysis and solution design, en-
ables the generation of development alternatives by reuse, and the integration of known problems
to best practices solutions.

Each solution template shows, how a problem is (distributed along several computational com-
ponents of an architectural design, which make it) absorb into a solution (platform).

Solution templates 139

7.5.2. Solution Templates for Client–Server

The solution templates are developed by following the 5-steps heuristic as introduced on page 137.

1. Pick an (architectural) design pattern to be represented as solution template.
The solution templates given in figure 7.15, figure 7.16, and figure 7.17 give an interpretation of
howtheClient–(Dispatcher)–Server [46, page323]designpatternas introducedbyBuschmann
etal. canbeused foroperatingdi�erent typesof so�ware functionality, namely thoseaspresent
to the three problem templates designed in section 7.4.

2. Identify the computational components involved with the pattern.
Thereare twocomputational componentsofmost relevance to theClient–(Dispatcher)–Server
pattern, of which one takes the role of a client, and the other takes the role of a server. Both
roles participate, i.e. share responsibility for processing a service (task). The client request
services from the server. The server is in charge of all resources required for providing the
respective service.

3. Model each role as a problem template.
The clienthasnocomputational resourcesand responsibilities. Client’sdataandcontrol trans-
formations simply pass over their trigger and data to the server. That is why in each Client–
(Dispatcher)–Server solution template, both transformations of the client are colored black.
Nevertheless, theClientpt2 representsan instanceofaTOFF-ii. problemtemplate (pt2), whose
control transformation is in general concerned with the processing of events, and whose data
transformation is solely concerned with the processing of data information.
The server has all computational resources and responsibilities. The problem process (task)
is completely executed by this computational component.
In figure 7.15, the Serverpt1 executes the control as well as the data transformation, of which
both are necessary for operating a TOFF-i. problemprocess (pt1). The server holds and utilizes
all computational resources involved with the result, i.e. data storage (state).
In figure 7.16, the Serverpt2 executes both control and data transformation necessary for a
TOFF-ii. problem process (pt2). The server provides the result as a reply to the client.
In figure 7.17, the Serverpt3 executes both control and data transformation necessary for a
TOFF-iii. problem process (pt3). The server triggers a new action and respective result, which
is sent outside the scope of responsibility of the server role.

4. Assemble roles for designing a solution processor.
Each solution template models interactions of a client and a server role to form a solution
processor, whose inner organization implements a Client–(Dispatcher)–Server so�ware ar-
chitecture design.

5. If a role does not map a problem template, try to make use of it for designing parts of a
solution processor.
In figure 7.15, the data transformation and storage represent one part of the computational
component Serverpt1. This part (and not the entire solution template) can be implemented
at a fine-grained level of detail by (architectural) design patterns, e.g. such as Block/Blob Stor-
age, or Relational Database, cf. table D.4 of the appendix D. According to the classification as
defined in thiswork by table 7.3, these ADP,which address a part of a computation component
only, have no architectural significance. These kinds of design patterns do not belong to the
class of architectural design patterns or styles.

140 Problem-Based Units of Work

dummy

TOFF-i. Solution
Clientpt2

trigger

trigger

data

Serverpt1

state

trigger

action
data

result

FIGURE 7.15 Client–Server solution – Template for configuring a TOFF-i. processor

TOFF-ii. Solution
Clientpt2

trigger

action
data

Serverpt2

trigger

trigger
action

data result

FIGURE 7.16 Client–Server solution – Template for configuring a TOFF-ii. processor

TOFF-iii. Solution
Clientpt2

trigger

data

trigger

Serverpt3

trigger action

actiontrigger

data result

FIGURE 7.17 Client–Server solution – Template for configuring a TOFF-iii. processor

Solution templates 141

7.5.3. Solution Templates for Forwarder–Receiver

The solution templates are developed by following the 5-steps heuristic as introduced on page 137.

1. Pick an (architectural) design pattern to be represented as solution template.
The solution templates given in figure 7.18, figure 7.19, and figure 7.20 give an interpretation of
how the Forwarder–Receiver [46, page 307] design pattern as introduced by Buschmann et al.
can be used for operating di�erent types of so�ware functionality, namely those as present
to the three problem templates designed in section 7.4. The underlying assumption for the
interpretationof this pattern is, that apeer has completed a service and invokes its forwarder
component to submit the result to the receiver component of another peer.

2. Identify the computational components involved with the pattern.
There are two computational components of most relevance to the Forwarder–Receiver pat-
tern, of which one as to be expected takes the role of a forwarder, and the other takes the
role of a receiver. Both roles participate in completing one problem process. They share re-
sponsibility for operating a task (service), and reside in one peer. The forwarder completes
the service. The forwarder knows the service outcome’s receivers and delivers the computa-
tional result to these. The receiver is a (kind of dummy) interface, which simply acknowledges
the receipt of the result by proxy to its peer.

3. Model each role as a problem template.
The interpretation of the forwarder and receiver roles given here, is inverted to that of the
client and server roles as discussed in the previous section 7.5.2. The forwarder is an in-
stance of a TOFF-ii. problem template (pt2), and responsible for operating both, the control
as well as the data transformations. Thus, it holds all computational resources and responsi-
bilities regarding the execution of a service, which is comparable to the role of a server in the
previously discussed ADP. The receiver simply accepts the result computed by the transfor-
mations of the forwarder. This makes the receiver role comparable to the role of the client
as discussed in the previous ADP of Client-(Dispatcher)-Server. That is why in figures 7.18, 7.19,
and 7.20 both transformations of the receiver are filled in black. In each of the following solu-
tion templates, the forwarder is extendedbyadata storage receivers (or capable of obtaining
this information) , which is accessed by the forwarder’s data transformation for addressing
the result of a service a�er its completion, respectively.
In figure 7.18, the forwarder is in complete charge of operating TOFF-i. problem processes.
The receiver’s only responsibility remains tomake the delivered result persistent, i.e. tomake
a change to the state, but the receiver is not in charge of computing the result.
In figure 7.19, the forwarder is entirely responsible for executing TOFF-ii. problem processes.
The receiver pipes the result computed by the forwarder to its peer.
In figure 7.20, the forwarder executes both control and data transformations necessary for
processing one TOFF-iii. task. The receiver makes the result in the context of a particular
action-event available to its peer, i.e. it announces the arrival of respective data by this event
to the receiving peer.

4. Assemble roles for designing a solution processor.
Each solution template gives the interactions of forwarder and receiver roles, which imple-
ments a Forwarder–Receiver pattern at the coarse-grained level of solution design, and thus
classifies it as pattern of so�ware architecture design according to table 7.3 on page 135.

5. If a role does not map a problem template, try to make use of it for designing parts of a
solution processor.
Both roles are applicable to model a solution template. Thus, this step can be skipped.

142 Problem-Based Units of Work

dummy

TOFF-i. solution
Forwarderpt2

receivers

trigger

action

data

Receiverpt1

state

action

action

result

result

FIGURE 7.18 Forwarder–Receiver solution – Template for configuring a TOFF-i. processor

TOFF-ii. solution
Forwarderpt2

trigger

action

data

receivers

Receiverpt2

action

action

result result

FIGURE 7.19 Forwarder–Receiver solution – Template for configuring a TOFF-ii. processor

TOFF-iii. solution
Forwarderpt2

trigger

action

data

receivers

Receiverpt3

action action

action

result result

FIGURE 7.20 Forwarder–Receiver solution – Template for configuring a TOFF-iii. processor

Solution templates 143

7.5.4. Solution Templates for Observer/Publisher–Subscriber

The solution templates are developed by following the 5-steps heuristic as introduced on page 137.

1. Pick an (architectural) design pattern to be represented as solution template.
The solution templates given in figure 7.21, figure 7.22, and figure 7.23 give an interpretation
of how the Publish–Subscriber [46, page 339] design pattern as introduced by Buschmann
et al., which is also known as Gamma et al.’s (GOFs) Observer [90, page 293] design pattern,
can be used for operating di�erent types of so�ware functionality, namely those as present to
the three problem templates designed in section 7.4.

2. Identify the computational components involved with the pattern.
There are two computational components of relevance to the Observer/Publish–Subscriber
pattern, ofwhichone takes the role of apublisher, and theother takes the role of a subscriber.
The publisher (or GOF’s subject-role) notifies the subscribers about changes (as initiated by
the occurence of respective trigger -events). Each notified subscriber (or in GOF’s terms the
observer-role) executes respective actions in the context of this announced change (event).

3. Model each role as a problem template.
In each solution template for this pattern, the publisher implements a TOFF-iii. problem tem-
plate (pt3). Accordingly, its data transformation takes over the responsibilities of the control
transformation, in order to notify relevant subscribers about which action to execute. The
data in itself remains unprocessed by the publisher12. That is why the data transformation is
filled out black. The publisher role is not responsible for computing a result. It is concerned
with processing control information. In each solution template, the subscriber role receives
an action-eventwith respective data from the publisher. Its control transformation simply ac-
tivates the subscriber’s data transformation by the received action , which is why the control
transformation is filled out black. The subscriber role is responsible for computing a result.
Its main concern is to process data information. The subscriber’s data transformation is re-
sponsible for processing the received data and producing a result .
Compared to the previously discussd Forwarder–Receiver solution templates in section 7.5.3,
the publisher is comparable to the forwarder, but without the processing responsibility for
the data . The subscriber is comparable to the receiver role, which in contrast to the receiver
represents no dummy interface, since its responsibility is to execute the data transformation.
Figure 7.21 shows the inner organization of a solution processor, which is capable of operating
TOFF-i. problem processes by following aObserver/Publish–Subscriber architectural design.
Figure7.22givesa solution template that configuresaTOFF-ii. taskprocessorbasedonpublish
and subscriber interactions.
In figure 7.23, the Observer/Publish–Subscriber design pattern models the transformations
required for implementing a TOFF-iii. problem processor.

4. Assemble roles for designing a solution processor.
Each solution template gives the interactions of publisher and subscriber roles, which imple-
ments a Observer/Publish–Subscriber solution design, and thus is classifyable as pattern of
so�ware architecture design according to table 7.3 on page 135.

5. If a role does not map a problem template, try to make use of it for designing parts of a
solution processor.
The identified roles canbe combined toone solution template, whichmakes this stepobsolete
for further investigations of this so�ware architecture design pattern.

12The data processing of the publisher according to TOFF-iii. deals with the choice of a subscriber, who wants to receive
the data from the publisher.

https://sourcemaking.com/design_patterns/observer

144 Problem-Based Units of Work

dummy

TOFF-i. solution
Observer/Publisherpt3

trigger

data

subscribers

trigger action

Subscriberpt1

state

action

action

data

result

FIGURE 7.21 Observer/Publisher–Subscriber solution – Template for TOFF-i. processors

TOFF-ii. solution
Observer/Publisherpt3

trigger

data

subscribers

trigger action

Subscriberpt2

action

action

data result

FIGURE 7.22 Observer/Publisher–Subscriber solution – Template for TOFF-ii. processors

TOFF-iii. solution
Observer/Publisherpt3

trigger

data

subscribers

trigger action

Subscriberpt3

action action

actionaction

data result

FIGURE 7.23 Observer/Publisher–Subscriber solution – Template for TOFF-iii. processors

Solution templates 145

7.5.5. Solution Template for Model–View–Controller

The solution template in figure 7.24 and its continued illustration in figure 7.25 are developed by fol-
lowing the 5-step heuristic as introduced on page 137. It combines the solution templates for Client–
Server, Forwarder–Receiver, and Observer/Publish–Subscriber as discussed in the sections before
into one Model–View–Controller solution design.

1. Pick an (architectural) design pattern to be represented as solution template.

The solution template presented in this section, gives an interpretation of the Model–View–
Controller [46, page 125] design pattern (MVC) as known from Buschmann et al. by taking the
following description into account: “TheMVC pattern is an architectural pattern that leads to a
functional decomposition into three groups of components: the Model, the View, the Controller.
TheModel components represent applicationdataanddataaccess, the Viewcomponents render
data for theuser, and theController components handleuser inputs. Themajority ofmodernWeb
Applications are based on this pattern; howevermostWeb Application frameworks (e.g., the PHP
Zend Framework) implement a slightly modified version of the MVC, the so-called "Web MVC" or
"Model 2" pattern [. . .] In the original MVC pattern, the View is an Observer of the Model, and
thus receives direct notifications when changes in the Model’s data occur. On the other hand, in
the Web MVC version, these notifications are redirected through the Controller instead, as this is
easier to realize with many Web technologies [. . .]” [89, 157, page 234]. Due to this particular
utilization of the Controller, the architectural design as elaborated in the following emulates
the Web MVC pattern, which supports the processing of each problem template as designed
in section 7.4.

2. Identify the computational components involved with the pattern.

There are three computational components that share processing of service (task)s in theWeb
MVC pattern, namely the roles ofmodel, view, and controller. Recapitulating the description
of these roles as given above:

The model cares about data processing and persistence, which relates to TOFF-i. so�ware
functionality as is implemented by the data transformation of the Subscriber, see 3. in fig-
ure 7.24.

The view cares about the processing of data (to obtain a result) that is to present to a user
or an entity external to the web application. This kind of behavior or computational respon-
sibility relates to TOFF-ii. and TOFF-iii. so�ware functionality as is implemented by the data
transformation of the Subscriber, see 4. and 5. in figure 7.24.

The controller is as an intermediary always involved with the processing ofmodel as well as
view, which must be taken into account by the solution template to be modeled next. The
respective responsibility of the controller role is implemented by the Observer/Publisher,
see 2. in figure 7.24.

146 Problem-Based Units of Work

3. Model each role as a problem template.

TheWeb MVC pattern in figure 7.24 and as continued in figure 7.25 is the starting point for the
Client–Server solutionasdeveloped in section7.5.2. The computational componentServerpt1
in the problem template of figure 7.15 provides a TOFF-i. solution, which takes over the role
of the model as defined for by the Web MVC pattern. The Serverpt2 in figure 7.16 provides
a TOFF-ii. solution, the Serverpt3 in the problem template of figure 7.16 provides a TOFF-iii.
solution, which both take over the role of a view as defined by theWeb MVC pattern. That is,
why the figure 7.24 and figure 7.25 are vertically structured into a client-part and a server-part
(column), and horizontally into three sections (rows), which each addresses the processing of
a specific problem template. These computational components represent jointly the solution
template for theWeb MVC pattern.

TheServer-part in figure 7.24 and figure 7.25 is further refined by use of theObserver/Publish–
Subscriber solution templates as developed in section 7.5.4 to take the role of the controller
into account. As a result, each Client-request (see 1. in figure 7.24) to the Server passes
the Observer/Publisher-component. Each trigger-event, which initiates the operation of one
specific type of so�ware functionality, is redirected via this computational component, which
is central to the Web MVC pattern. This is also the reason for the gray-shading of the com-
putational components above and below the Controller 2. . There is only one Controller
component (in the center of figure 7.24), whichmanages allSubscribers and thus controls the
model and views respectively.

Figure 7.25 shows only for the sake of completeness, that the Subscriber-components are re-
fineable by means of the Forwarder–Receiver pattern as discussed in section 7.5.3 to manage
the communication of reply messages from the server to the client. This detail is out of scope
for theWeb MVC pattern, and thus not considered further.

In figure 7.24, the TOFF-i. Subscriber 3. is in charge of all computational resources to fulfill
the role of themodel. It processes received data and produces a result, which is stored by its
data transformation. The result remains in the scope of responsibility of the Server.

The TOFF-ii. 4. and TOFF-ii. 5. Subscriber process data information, but send the calculated
result back to a Client. These two computational components take the role of a view. An
announcement-action received fromthe controller provokes eachview toupdate its statusor
respective presentation, i.e. to start the processing and involveddelivery of some information.

4. Assemble roles for designing a solution processor.

The bold emphasized interactions and involved computational components ofmodel, view,
and controller in figure 7.24 form a joint solution processor, which is structured according to
theWeb MVC pattern. Its collaborating, computational roles share the responsibility for (the
processing of) basic units of activities (tasks). According to table 7.3 on page 135 this pattern
belongs to the level of coarsed-grained solution design as used to model so�ware architec-
tures.

5. If a role does not map a problem template, try to make use of it for designing parts of a
solution processor.

The identified roles can be mapped to task patterns and combined to one solution template,
which makes this step obsolete for further investigations of this so�ware architecture design
pattern.

Solution templates 147

2.

Subscriber

3.

ServerClient

TOFF-i.

trigger

trigger

data
m

state

trigger

action

data

result

c

Observer/Publisher

action

data

subscribers

trigger action

1.

trigger

data

TOFF-ii.
4.

v

trigger

action

data result
c

action

data

subscribers

trigger action

trigger

data

TOFF-iii.
5.

v

trigger action

actionaction

data result
c

action

data

subscribers

trigger action

m data transformation takes responsibilities of rolemodel

c data transformation takes responsibilities of role controller

v data transformation takes responsibilities of role view

Box gray-shading masks negligible computational components, whose redundant reference
results only from assembling these to one solution template

FIGURE 7.24 Solution template for Web Model–View–Controller (part 1, Client-to-Server)

148 Problem-Based Units of Work

Subscriber

ClientServer

Subscriber

4.

Subscriber

5.

state

action

action

data

result

ReceiverForwarder

TOFF-ii.

action

action

data

receivers

action

action

result result

Forwarder Receiver

TOFF-iii.

action

data

receivers

action action

action action

actionaction

result result

TOFF-i.
3.

FIGURE 7.25 Solution template for Web Model-View-Controller (part 2, Server-to-Client)

Discussion & Related Work 149

7.6. Discussion & Related Work

Problem-based units of work as developed in this chapter result from an instant mapping of emerg-
ing problems to candidate solutions, which is led by patterns. According toMeyer (2014), the “choice
of abstraction is essential.” [156, page 112] for avoiding a design vision, which yields a hardly refac-
torable so�ware architecture in the presence of changing requirements.

By making patterns of problem analysis and solution design account for the concept of “basic
units of activities”, a constant level of granularity for lookingatdesired so�ware functionality and the
options available for its fulfillment becomes available. This eases the allocation of requirements to
a so�ware platform to-be, andmakes related decision-making transparent. Transition templates as
have been elaborated in this chapter address this need, and thus contribute to the co-development
of requirements and so�ware architecture.

For this, they not only develop the findings of part II of thiswork further bymaking use of therein
introduced units for reproducibly scoping so�ware requirements. Transition templates also consti-
tute the fundamentals for a role-driven mapping of pattern-based best practices knowledge, which
has been started in the work of Schmidt and Wentzla� [191] for implementing a quality-aware and
pattern-oriented analysis and design approach, whose advancement in Côté et al. [69, 70] has re-
ceived noticeable attention.

Transition templates prove Alebrahim [3] wrong in her review of Schmidt and Wentzla� [191],
that “there is no systematic approach given for selecting appropriate architectural patterns” [3, page
350]. Any architectural pattern is suitable, as long as it is known, how its interacting computational
roles share the processing and thus responsibility for a defined task. This knowledge is grasped by
transition templates.

Nevertheless, the research as discussed in here is in accordance with Buschmann and Henney,
who assert that “Problem Frames are an important vehicle to get first hands on a so�ware architec-
ture.” [45, slide 19].

While Alebrahim [3, page 149, step 2] proposes in phase 2 of the Quality-based Co-Development
of Requirements and Architecture (QuaDRA) framework the use of a pattern catalog and respective
questionaire, whose development and application requires massive upfront work in addition to the
work requiredanyway foraddressing theactualproblemmodelathand; transition templatesbenefit
from the (frame) structures, which are already in place, and makes them accessible in an instant
fashion. Instead of artificially reducing the design space, possible solutions relate naturally to the
details given in the problem description.

Rapanotti et al. [99, 182] envisioned a bridge between requirements and so�ware architecture
on the basis of patterns by introducing Architectural Frames (AFrame). These are problem frames,
whose domains are labeledwith role names, which are taken fromdescriptions of commonly known
architectural styles, such as Pipes-and-Filters, or MVC. The use of AFrames creates a solution-aware
decomposition of problems given in frame diagram notation. A frame concern serves as correctness
argument for maintaining the composition, i.e. the dependencies of problems that belong to one
AFrame. In aworst case, this approach increases the complexity of a requirementsmodel depending
on the number of problems that define the composition of one AFrame.

Choppy et al. [50] defined for problem frames a structural mapping to yield solution designs,
which follow a layered architectural style and are denoted by UML composite structure diagrams.
Problem dependencies are maintained by state machines, which model the application’s behav-
ior. In contrast to AFrames, problem decomposition by architectural patterns for problem frames
does not a�ect the requirements model in itself. These patterns care about separating the prob-
lem from its solution. Problem dependencies on architectural components (are handled by merge
rules, which) guide the integration and respective composition of pattern-based solutions to one
combined architecture and so�ware life-cycle.

150 Problem-Based Units of Work

Agility in so�wareprojectsdemands the“ability tokeepadjusting theproduct toemergingneeds
through theadditionofnew features” [44, page 12]. In this context, the “easy compositionof so�ware
assets increases in importance” [37, page 1].

In order to meet this concern, “Align feature-based development and system decomposition
[represents one architectural tactic that merges in an . . .] architectural runway” [23, page 21], which
helps the project team “in forming a mental image of the desired system” [144, page 199], and that
way makes hidden assumptions and architectural dependencies visible.

The application of an intentional architecture [144, chapter 16] is a key factor to successfully
scale agile so�ware development projects. It “provides the guidance needed to ensure [an enduring
design, i.e.] that the whole system has conceptual integrity and is fit for its purpose” [189].

The availability of an architectural blueprint makes a degree of “stability [available, which is]
required to support [the planning of] development [, and] is particularly important to the success-
ful operation of multiple parallel [. . .] teams” [23, page 22] for projects at scale. These “need to be
as decoupled in their work as possible” [37, page 2] “to allow independent decision-making and
reduce communication and coordination overhead” [23, page 22]. For planning “stories to be devel-
oped within each [project] iteration, the team identifies [based on this blueprint] the architectural
elements that must be implemented” [44, page 13] to satisfy these.

Transition templates and architectural patterns for problem frames comparably support the
modeling of a blueprint that demonstrates the allocation of desired so�ware functionality to an in-
tented so�ware platform, and accounts for involved architectural dependencies, even though by
utilizing di�erent notational means.

In doing so, transition templates implement a feature-driven, vertical slicing approach, whereas
architectural patterns for problem frames operate in an infrastructure-driven, horizontal slicing13

mode [23, figure 2, page 21], which supports in both cases based on patterns

the decomposition of problems, i.e. their refactoring14, to fit an architecture design.

the composition of a so�ware design, i.e. the integration15 of computational components into
one combined architectural solution.

the management of functional dependencies, i.e. their proper separation16, which is made
feasible by taking the so�ware application’s life cycle into consideration.

Both approaches keep a problem description untouched for exploring blueprints of a so�ware
system to-be. Their utilization of patterns establishes a means for Architecture Agility by “informed
anticipation”,which “allowsarchitectural development to followa "just-in-time"model[, that]main-
tains a steady and consistent focus on continuing architectural evolution in support of emerging
customer-facing features” [44, page 12].

Problem-based units of work are of twofold use to project planning. This chapter 7 introduces
how the so�ware engineering role in a project team benefits from transition templates to design
a problem-based unit of work, which outlines what is to be done for satisfying user expectations.
The following chapter 8 details how the team can face their project management responsibility, by
taking advantage of transition templates to decide on and justify, what problem-based unit of work
becomes part of the plan for the next project iteration.

13system decomposition/view on a so�ware architecture
14restructuring without change of external behavior
15bring together parts into one whole
16reduction of complexity by a proper scoping of so�ware functionality to self-contained, recognizable units

Summary 151

7.7. Summary

This chapter introduces transition templates, which are pattern of patterns to “bridge the intrado-
main semantic gap” [53, page 33] between problem analysis and solution design. They are built on
a customization of Ward and Mellor’s transformation schemata for identifying those “basic units of
activitites”, which are inherent to patterns in both domains, thus establishing a link between these.

As today’s “most so�ware development is more concerned with composition of existing [. . .]
components in creative configurations” [37], rather than “creatingmasterpieces from nothing” [159,
page 11], it is indispensable to unlock the “body of so�ware practice experience” [135, page 4], which
“engineering have evolved over time [as] a collection [. . .of patterns]”. These collections enshrine
“established, shared understanding of the common forms of design” [198, page 19], which “serve
as a shared, semantically rich vocabulary” [198, page 2] that belongs to “one of the hallmarks of a
mature engineering field” [198, page 19].

For this purpose, transition templatesdetermine recurring computational responsibilities as are
generally defined and structured by patterns of so�ware analysis and design, and which frame the
inner organization of so�ware requirementsmodels, as well as ofmodels for so�ware architectures.

Problem templates as designed in this work are special transition templates to tailor require-
ments to tasks, which represent a machine interface specification that possess a recognizable type
of so�ware functionality and constant level of granularity. These task patterns build on and advance
the findings, which have accompanied the development of problem-based functional sizemeasure-
ment patterns in part II of this dissertation.

Solution templates are designed in this work to configure the computational components that
form a so�ware’s architecture design, into a solution, which is capable of processing tasks as de-
fined by problem templates. These configuration patterns exhibit the di�erent roles and interac-
tions, which are taken over by the components that share responsibility for processing a task. So-
lution templates emulate commonly known architectural styles and design patterns as listed in the
appendix D.

That way, transition templates guide the allocation of desired so�ware functionality to candi-
date so�warearchitecturedesigns. Byutilizing “basic units of activities” as aboundaryobject, which
provides for unifying the user’s and developer’s understanding of a defined set of so�ware function-
ality, transition templates bring a project team in the position “to easily incorporate new require-
ments in the system in a cost e�ective fashion.” [37].

Theapplicationof transition templates to requirementsworkpackages results inproblem-based
units of work, which are a key enabler to speed up so�ware development and shorten time-to-
market. They provide for improved anticipation of requirements-related adoptions by an early envi-
sion of independent engineering e�ort atwhich project “teams can perform their workwithminimal
dependency on other teams.” [37]

Problem-based units of work implement an approach to “Requirements engineering[,
which is. . .] more tightly integrated with system implementation to take advantage of reuse and
to let systems evolve to reflect changing requirements. [. . .This] is the best hope we have for more
e�ective so�ware engineering” [201, page 23].

152 Problem-Based Adaptation Framework

8. Problem-Based Adaptation Framework

8.1. Introduction

This chapter presents an approach to problem-based project adaptation, which copes with the in-
tertwining of requirements and architecture basedonpattern practices, and focuses ondependency
issues involved with these.

It integrates problem-based units of work as developed in the previous chapter 7 into a view
model of so�ware architecture, which captures the di�erent perspectives and concerns, the various
members of a project team have regarding the so�ware functionality to be built. This description
serves the teamas a communicationmodel, which not only allows them for establishing but also for
reviewing their project planning.

Section 8.2 Background introduces Kruchten’s 4+1 View Model on so�ware architecture [133],
which provides for organizing the decision-making on the architecture of a so�ware system. This
decision-making is accompanied by multifaceted dependency concerns, which at the architectural
level are best addressed through considering the so�ware life cycle. For this purpose, di�erent nota-
tions to express and approaches tomanage it are presented, and developed further in the following.

Section 8.3 All for One and "One4All" – An architectural viewmodel for the three amigos adapts
the 4+1 ViewModel to apply to problem-basedunits ofwork. By establishing correspondence among
the di�erent views in a pattern-led, and value-driven1 approach, the resulting “One4All” viewmodel
on so�ware architecture comes along with a built-in dependency management for defined units of
so�ware functionality, which fast-tracks the team in switching priorities on demand for an e�ective
project planning.

Section 8.4 Problem-Based Project Adaptation by the One4All View Model summarizes which
view addresses which concern, and how the means developed in this work contribute to it.

The focus is on managing the dependencies between requirements and architecture. That is
why section 8.5 Synchronizing Requirements by a State Transition Diagram uses state transition di-
agrams in the Process View of the One4All model as alternative to life-cycle expressions. It gives an
example of their application to the case study of a Student Recruitment Web Portal, and thereby
illustrates the ease of synchronizing the items from the Problem View, namely requirements work
packages, into an operational work sequence.

Section 8.6 Sample Application toUse Case Decomposition reasons about a problem-based use
case decomposition. It executes UML use cases decomposition by a problem-based requirements
analysis for the case study of a Student Recruitment Web Portal. And it adds some rules to guide
the creation of use cases on the basis of problem-based functional size measurement patterns. As a
result, use cases that share a common level of granularity become obtainable, which are systemati-
cally concatenated by state transition diagrams.

In order to gain more insights on the role and importance of architecture to so�ware project
adaptation and planning, section 8.7 Discussion & RelatedWork takes a closer look at the intertwin-
ing of requirements and architecture in agile so�ware development projects. In addition, it inves-
tigates how problem-based interaction analysis and dependency management relate to each other
in this context.

Section 8.8 Summary presents the findings of this chapter, i.e. the dues of having a “big pic-
ture” at hand, which makes the identification of decoupled responsibilities and their assignment to
respective roles, both in the technology and in the team, possible.
1since business process-oriented aka so�ware life cycle-founded

Background 153

8.2. Background

This section provides the background on an architecture-centric, problem-based planning method,
which joins the di�erent perspectives taken by users and developers, whowork in one project team,
into one shared, pattern-based communication model.

It supports the team in the envisioning of “blueprints” for building the so�ware to-be, but also
provides them a pathway to choose among these. This is made possible by explicitly taking require-
ments dependencies, and their impact on the components of an architecture design into account.

Therefore, the so�ware life cycle is in focus of this chapter. It enables an informed decision-
making for the project planning, in regard to which desired so�ware functionality should be done
first for satisfying user expectations, but also for skimming the most value out of the aspired tech-
nological solution.

Section 8.2.1 The 4+1 View Model on so�ware architecture introduces an architectural frame-
work for organizing the di�erent views of the teammembers into one comprehensive description. It
is adapted in the following to operate on patterns, which not only serve to establish correspondence
among the views, but also care for quality assurance in each perspective.

Section8.2.2DependencyManagement forProblem-BasedUnitsofWork recapitulatesapproaches
and in particular the notations used tomanage requirements dependencies, and how these are uti-
lized to assemble a solution design and, in the course of this chapter, how they enable decision-
making on an accordant project work plan.

154 Problem-Based Adaptation Framework

8.2.1. The 4+1 View Model on so�ware architecture

Figure 8.1 gives a slightly consended representation of the "4+1 viewmodel" of so�ware architecture
developed by Kruchten (1995), which accounts for the fact, that the various members of a project or
so�ware development team have unique concerns involved with (what is) a so�ware’s architecture,
and respective levels of detail for its consideration. Their di�erent perspectives are commonly re-
ferred to as views. Thus, the attempt to gather “the gist of an archictectural design” [133, page 42]
in one single boxes-and-lines diagram (architectural blueprint) is a futile endeavor, especially when
it serves for communication and review purposes across the di�erent members or respective roles
in a team. Kruchten proposes amodel, which “describes so�ware architecture using five concurrent
views.” [133, page 42], which a team can use to “organize the description of their architectural de-
cisions around these” [133, page 43]. Figure 8.1 shows, that Kruchten’s 4+1 View Model consists of:
the logical view, development view, physical view, process view, plus one view for the scenarios. In
addition, each is assigned with a respective role in a so�ware project or development team, which
is most concerned with it. “Each view is described by [. . .] a "blueprint" that uses its own particular
notation” [133, page 43], but notations and tools other than the described can be used just as well.

Logical
view

Development
view

Physical
view

Process
view

Scenarios

End users Programmers

System engineersSystem integrators

FIGURE 8.1 The 4+1 View Model, slightly adapted from Kruchten [133, page 43, figure 1]

At the heart of the 4+1 View Model are the scenarios, which serve “to show that the elements
of the four views work together seamlessly.” [133, page 47]. So, it is essential to establish “corre-
spondence among [all] views” [133, page 47]. Kruchten establishes this correspondence through
focusing on the identification of “a set of key abstractions” [133, page 44], which are meaningful in
the problem as well in the solution domain, and which he denotes as “items that are architecturally
significant” [133, page 44].

To this end, the "4+1 view model" makes “The description of an architecture – the decisions
made – [transparent to the team,which then] canbe organized around these views [. . .a description]
which deals with the design and implementation of the high-level structure of the so�ware. [. . .] It
is the result of assembling a certain number of architectural elements in some well-chosen forms to
satisfy the major functionality [. . .and non-functional requirements] of the system” [133, pages 42,
43].

Background 155

Logical View

The logical view serves the end user. It “primarily supports the functional requirements – the ser-
vices the system should provide to its end users.” [133, page 43] These have been decomposed into
“a set of key abstractions, taken mainly from the problem domain [. . .] that exploit the principles of
abstraction, encapsulation, and inheritance. In addition to aiding functional analysis, decomposi-
tion identifiesmechanisms and design elements that are common across the system.” [133, page 44]
The logical viewmakes use of class diagrams and templates to form desired key abstractions.

Process View

The process view serves the systems integrators. Thus, it “takes into account some nonfunctional
requirements [. . .and] addresses concurrency and distribution [. . . .It] can be seen as a set of inde-
pendently executing [processes,] which in turn are connected [. . .] and may exist simultaneously,
sharing the same [. . .] resources.” [133, pages 44 and 45]. These processes must be synchronized
properly. Therefore, the so�ware is partitioned into a “set of independent tasks; separate threads of
control that can be individually scheduled” [133, page 45]. The major challenge in here is to identify
the “architectural elements that can be uniquely addressed” [133, page 45], and to let them “com-
municate through a set of well-defined intertask-communication mechanisms” [133, page 45].

“To determine the "right" amount of concurrency and define the set of necessary processes[,. . .]
classes (and their objects) [aremapped] onto a set of tasks andprocesses2” [133, page 48], which fol-
lows the principles of Rubin andGoldberg [186]’s object behavior analysis . Tomodel the “blueprint”
for the process view, Kruchten proposes the use of architectural styles from Garlan and Shaw [91],
ShawandGarlan [198] to establish an intertask-communicationmechanismof architecturally signif-
icant elements.

Development View

The development view serves the programmers. It “focuses on the organization of the actual so�-
waremodules in the so�ware development environment. It supports the allocation of requirements
andwork [. . . ,] and reasoning about so�ware reuse [. . . .] It is the basis for establishing a line of prod-
uct. The development view is represented by [a composition of architectural significant elements
to] modules [of so�ware code] and subsystem diagrams that show the system’s export and import
relationships. ” [133, page 45]

Physical View

The physical view serves the systems engineers. It maps the “various elements identified in the log-
ical, process and development views” [133, page 47] onto their processing nodes, i.e. this view ac-
counts for the physical deployment of a so�ware.

Scenarios

A scenario serves to integrate all views. It “acts as a driver to [. . .] discover architectural significant
elements [. . . ,] and it validates and illustrates thearchitecturedesign, bothonpaper andasa starting
point for the tests of an architecture prototype. [. . .] The scenarios are in some sense an abstraction
of the most important requirements, each is modeled by corresponding scripts (sequence of inter-
actions [. . .]) as described by Rubin and Goldberg [186]” [133, page 47]. Capturing scenarios as use
cases is also a common approach to model this view.
2According to Kruchten [133, see URL, page 4], a process is a grouping of tasks that forms an executable unit.

156 Problem-Based Adaptation Framework

8.2.2. Dependency Management for Problem-Based Units of Work

Dependencies of any kind add to complexity and represent a root cause of unwanted interactions,
if not dealt with properly. According to Nord et al., “Dependency analysis is used to determine the
precedence in the implementation of the features” [160, page 160], and complementedbyRubin and
Goldberg, “the order in which activities take place within a system is one of the principle causes of
change requests in big systems” [186, page 61]. Thus, it is apparent, that dependency management
is cruicial to the success of so�ware projects. As functional user requirements are fundamental to a
so�ware project plan, these are the starting artifacts to analyse and classify requirement dependen-
cies, and to introduce, what this dissertation proposes for their management:

Dependencies among requirements

– Structural dependencies among requirements are reflected by the allocation of these (in
the form of tasks) to the same problem, i.e. to one requirements work package.

For instance, due to requirements decomposition by use of (functional size measure-
ment) patterns, and the application of problem templates, which are task patterns to
streamline the requirements, the resulting tasks t1 and t3 belong toRWPEI and task t2
belongs to RWPEO. RWPEI and RWPEO represent di�erent kinds of problems to be
solved.

In consequence, t1 and t3 depend on the same type of desired so�ware functionality as
is covered byRWPEI .

This kind of dependence is intended to limit the complexity of problemdescriptions, and
to establish a constant level of granularity for considering requirements.

«RWP» EI «RWP» EO

R1
R2

R3
t1t1t1
t3t3t3

t2t2t2

– Functional dependencies among requirements are reflected by composing respective
tasks to one application life cycle.

To continue the example from above, irrespective of the relation between tasks and re-
quirements work packages, it may be the case, that tasks depend on each other.

«RWP» EI «RWP» EO

t1t1t1
t3t3t3

t2t2t2«depends»

For example, task t2 depends on events or data produced by task t3. This dependence is
accountable by constraining the timely order of processing t2 and t3 througha respective
life cycle expressionLC, whichmodels the runtimebehavior for the so�ware application
to-be, such as

LC ::= <t3;t2>,

which defines a sequential relation between these two tasks, and denotes that t3 is exe-
cuted before t2.

Background 157

Dependencies between requirements and architecture

– Structural dependencies between requirements and architecture are reflected by the al-
location of tasks to the computational components that constitute a so�ware architec-
ture design. This kind of dependency is managable via solution templates as introduced
by this dissertation, which are patterns that represent a problem-based configuration of
an architecture design.

For instance, by use of solution templates, it is known, how to allocate the tasks involved
withRWPEI to the computational components (or vertical slices), namelyC01 toC03 of
an so�ware architecture, which for illustration purposes follows here a layered style.

In this example, each EI-problem makes use of an architectural component C01, which
may represent graphical user interface functionality, an architectural component C02,
which can be access functionality to a data base, and an architectural component C03,
which controls access rights to the data base. These components share responsibility for
a complete execution of EI-tasks. Tasks that belong to RWPEO, such as t2, depend on
the componentsCI andCII only.

Accounting for this kind of dependence eases the integration of problems to suitable so-
lutions, and to take advantage of reuse.

«RWP» EI «RWP» EO

t1t1t1
t3t3t3

t2t2t2

EI EO
C01

C02

C03

CI

CII

CIII

– Functional dependencies between requirements and architecture are reflected in the
planning of work packages for a so�ware project. They promote the composition of a
requirements baseline. This takes into account the component usage as provided in the
architectural design for the so�ware application to be built.

«RWP» EI «RWP» EO

t1t1t1
t3t3t3

t2t2t2

EI EO
Component 1

Component 2

Component 3

The example shows that so�ware functionality as desired by RWPEI and RWPEO depends
on the same componentsComponent 1 andComponent 2 given in both architectural designs.
ThatC01 andCI, as well asC02 andCII have been identified as the same architectural com-
ponents, and that finally two di�erent kind of problems depend on the same architectural
components, this synergy (horizontal slice) is again made possible due to the use of patterns
for classifying the requirements.

Knowing this dependence a�ects project planning in several ways. First, it enhances the qual-
ity of requirements. For instance, missing requirements or incomplete requirements become
identifiable by looking at their utilization of computational components in the architecture. In

158 Problem-Based Adaptation Framework

the given example, a read of the data base (Component 2 via t2) without a preceding write to
the data base (an update of Component 2 via t1 or t3), as well as the omission of Component
3 by «RWP» EO can be checked for plausibility. For instance, t2 may do without «RWP»
EI-tasks, because it is in the position to present an empty read result. In this case, the func-
tional dependence still remains, and in addition, there is confidence, that it has no overlooked
consequence.
Second, knowing the functional dependence of requirements to architecture helps the plan-
ner in identifying hot-spot parts of a so�ware application, which are vital to the fulfillment of
many user needs or critical to the maintenance of entire business processes. This issue is ad-
dressable by so�ware life-cycle considerations, which are elaborated in this section in depth.
Third, it allows the planner for synchronizing development work with respect to the resources
available in team and technology, which in consequence avoids accidential and thus costly
replication of already in existence so�ware functionality.

Life-Cycle Expressions

So�ware Life-Cycle Expression (LCE) belong to the early problem analysis steps of the ADIT so�ware
development process as introduced by Heisel and Hatebur [101, 110], which is tought in the lecture
So�ware Technology [108, step A.6, slide 491] at the University of Duisburg-Essen. Their purpose
within the ADIT process is to document the relation of so�ware requirements specifications, which
are given as UML sequence diagrams, and which have been derived separately during problem de-
composition.

In accordance with Rubin and Goldberg, they “typically [model] a time-sequenced ordering of
the major activities that occur in the problem domain” [186, page 50]. So�ware life-cycle expres-
sions describe the "usage protocol" of a so�ware to-be by restricting the order in which thesemajor
activities as defined in the specifications may be invoked.

This kindoforderingaccounts for the functionaldependenceof requirementsamongeachother,
which in consequence involves related computational components that compose the so�ware’s ar-
chitecture design. That is why, so�ware life-cycle expressions are applicable for modeling the con-
figuration of computational components and thus serve the composition of an overall so�ware solu-
tion. This kind of solution composition is illustrated by the example of a vacation rentals application
in [108], which is adopted in section 10 VacationRentalsWebApplicationof theCase Studies part V to
illustrate conceptual improvements in regard to the so�ware life-cycle as contributed by this work.
Côté et al. [70] developed the area of application for life-cycle expressions further by making use of
these for the composition of so�ware architecture design patterns, which are used to build a web
chat application.

The lecture notes [108, slide 497] define life-cycle expressions according toColemanet al. (1994)
in [61] as follows: They are expressions over the alphabet: <sequence diagram name>.
Each sequence diagram name is a life-cycle expression. If x and y are life-cycle expressions then

x;y x is followed by y
x | y either x or y
x∗ x is executed 0 or more times
x+ x is executed at least once
[x] x is optional
x || y x and y are executed concurrently
Operator precedences: [], ∗, +, ;, |, ||
Definitions: name3= life-cycle expression

3name can then be used in other life-cycle expressions (but recursion is not allowed!)

Background 159

State Machines and State Transition Diagrams

Choppy et al. [51, 52] make use of UML state machines in connection with requirements dependen-
cies to manage the composition of components in an architectural design to one overall so�ware
solution.

In contrast to life-cycle expressions, state machines have the advantage of making the (pre and
post) conditions (in form of states) explicit, that call for the execution of specific so�ware function-
ality, and which represent anchor points for a problem-based composition of the solution. In ad-
dition, they allow for nesting states and assigning multiple meanings to these by separating them
into orthogonal regions. This extends the expressiveness of state machine compared to life-cycle
expressions.

Ward and Mellor model “externally observable behavior of the system being controlled” [217,
page 65] bymaking use of State Transition Diagrams (STD), which describe and allow for composing
control transformations that “map input event flows to output event flows” [217, page 64] in a so�-
ware system. State transition diagrams use “states to represent intervals in time over which some
behavior persists and transitions to represent points in time at which behavior changes” [217, page
68].

Both approaches share, that they define a “finite automatonwith output [. . . , which] consists of
a set of states[, . . .] an alphabet of input symbols, an alphabet of output symbols, and a transition
function that maps combinations of states and input symbols into states[, where . . .] both the input
and output alphabet are associated with event flows.” [217, page 67] This finite automaton is orga-
nized as “aMealymachine[, which] associates each transition (that is, each combination of state and
input symbol) with an output symbol.” [217, page 68]

The problem involved with both approaches is the risk of increased complexity through state
explosion and confusion in leveling these, if the creation and reference of states is not controlled
su�iciently. These two problems are not addressed by the concepts used by Choppy et al. andWard
and Mellor, and thus calls in for investigating further means. Otherwise, “the diagram can become
hopelessly tangled” [217, page 69].

state1::=
OFF

staten::=
ON

transition: <condition> / <actions>

PRESS_LIGHT_SWITCH /
ILLUMINATE_BULB_DEFECT,
REQUEST_BULB_SERVICE

PRESS_LIGHT_SWITCH /
ILLUMINATE_BULB_OKAY,
REQUEST_SWITCH_SERVICE

PRESS_LIGHT_SWITCH /
ILLUMINATE_BULB_OKAY

FIGURE 8.2 State transition diagram (example)

Business Process Model & NotationTM

The Business Process Model and NotationTM (BPMN) [165] is an Object Management Group R© (OMG)
standard, which defines the notation and semantics for communicating process information. It pro-
vides for amodeling of business processes diagrams that bridge the gap between business user and
technical developer. Business processes are in industrial practice the first class entity, i.e. the source
fromwhich so�ware requirements emerge, and against which delivered value is evaluated.

160 Problem-Based Adaptation Framework

8.3. All for One and "One4All" – An architectural viewmodel
for the three amigos

Figure8.3 shows the"One4All" viewmodelonso�warearchitecture,which isanadaptionofKruchten’s
"4+1 viewmodel" as presented in section 8.2.1. Both models have in common that they

account for the various perspectives and respective roles in a project team,

establish correspondence among those di�erent views,

guide the project planning by “leading to a shared understanding for the team ” [10].

P

r

Problems Plans

PlatformsProcesses

Patterns

user developer

Patterns
quality assurance
PF

TP

CP

DP

in:software requirements

out:software productsoftware life cycle

software architecture
design alternatives

Legend:

PF Problem Frames/Problem-Based FSM Patterns CP Transition Templates (configuration pattern)

TP Transition Templates (task pattern) DP Design Patterns, Frameworks & APIs

FIGURE 8.3 The "4+1" View Model becomes "One4All", adapted from [133, figure 1, page 43]

The "One4All" View Model applies the Three Amigos strategy common to agile so�ware project
planning. “The three amigos refer to the primary perspectives to examine an increment of work
before, during, and a�er development” [10]. This strategy is attributed to Dinwiddie (2009), who
found that these three people roles, i.e. the product owner or an analyst (business user), a pro-
grammer (technical developer) and a tester (quality assurance), “encourage at least three di�erent
[, mutually orthogonal] viewpoints [. . .] on almost anything you may be build” [80]. Dinwiddie re-
sumes that, “Sometimes these three viewpoints are enough, but sometimes others are also needed.
[. . .But] Looking at [these three perspectives] simultaneously and discussing tradeo�s from the dif-
ferent viewpoints provides further benefits, in terms of readiness [of development] andmaking bet-
ter choices.” [80]

In addition, the "One4All" View Model gives an answer to Dinwiddie, who states the question
of “How could we record our decisions in a way that [. . .] other people[, i.e. all the members in
a project team] will understand without repeating the entire discussion [of the amigos]?” [80]. He

All for One and "One4All" – An architectural view model for the three amigos 161

proposes the use of essential examples or acceptance scenarios, which “provide crispness to the
understanding [. . .] that is hard to achieve any other way[. These serve to set up] a clear picture of
the outcome before starting[, which keeps] the development on track.” [80]

Kruchten’s 4+1 View Model makes use of scenarios, which “ are in some sense an abstraction of
the most important requirements [. . .and used] to show that the elements of the four views work
together seamlessly” [133, page 47].

As figure8.3 shows, the "One4All" ViewModel on so�warearchitectureenablesdecision-making
and its documentation on the basis of patterns, which is – the One – view that glues in all the other
views, i.e. problems, processes, plans, and platforms, for establishing problem-based project plan-
ning. Patterns guide the development of “blueprints” in each view and ensure correspondence
among these. They help the team in avoiding di�erent interpretations of the project plan, and in
identifying “misunderstandings and confusions early and allows learning to happen sooner” [10].

The problems, and processes views are comparatively technology-agnostic. Accordingly, these
belong to the user’s perspective, and are thus in the responsibility of respective roles in a project
team, for instance the Product Owner, an Analyst, or a Domain Expert.

The plans, and platforms views deal with technology concerns, and thus belong to the devel-
oper’s perspective, who are familiar with the platform intented for building and operating the so�-
ware product.

At the heart of the One4All View Model is the patterns view, which is responsible for arbitrating
between the views of the user and the developer, and having an eye for developing (on) best prac-
tices4. It represents the quality assurance perspective in a project team, whose respective role may
be taken by a Scrum Master, an Architect, an UI/UX Expert, a Tester, or a Project Manager, who is
in general familiar with the problem as well as the solution domain. As this dissertation proposes
an approach for mapping the patterns in each view, this provides options for tool support5, which
automates the responsibilities of the quality assurance role.

At last, The "One4all" View Model guides the pathway of the project team (see dashed line in
figure 8.3) from the analysis of desired so�ware functionality (starting in the problems view) to its
delivery (ending in the platforms view). Thereby, the patterns view ensures a problem-based project
planning, which not only makes a seamless transition between the di�erent perspectives possible,
but also helps the team in identifying and reason about those dependencies in requirements and
architecture, which are too o�en unrecognized and thus accidently impede their work plans. The
One4All ViewModelhelps the team in identifyingalternativesandprecedencies for their projectwork
plan, which increases their flexibility in deciding on what is reasonably to be done next.

The following sections explain the meaning and use of each view in detail.

4the team’s lessons learned
5for the rare case of a�ordable and available sta� is not within reach

162 Problem-Based Adaptation Framework

View 1. Problems

The "One4All" Problems view corresponds to the Logical view in the 4+1 ViewModel. Both views are
comparabily concernedwith the partitioning of functional user requirements intomoremanageable
units. Therefore, the Problems view collaborates with the Patterns view for establishingmeasurable
units of so�ware requirements. By means of tailored problem frames, namely problem-based func-
tional sizemeasurementpatterns as havebeendeveloped inpart II of this dissertation, theProblems
view serves the scoping of desired so�ware functionality and respective creation of Requirements
Work Packages.

View 2. Processes

The "One4All" Processes view corresponds to the Process view in the 4+1 View Model. Both views
have in common, that they serve the synchronization of so�ware requirements. That is, they take
the dependencies of requirements into account. This demands proper abstraction of desired so�-
ware functionality “into separate threads of control that can be individually scheduled” [133, page
45]. For this purpose, the Processes view of the "One4All" viewmodel is connectedwith the Patterns
view, which provides respective patterns, i.e. problem templates to create basic units of activities,
i.e. tasks (scenarios) for the requirements involved in a Requirements Work Package. The timely
interaction of tasks across all Requirements Work Packages is then modeled by state transition dia-
grams, which represent the so�ware life cycle.

View 3. Plans

The "One4All" Plans view corresponds to the Development view in the 4+1 View Model. Both views
are in charge of mapping problems to solutions at the level of a so�ware architecture design, one
that envisions a "blueprint" of engineering work for satisfying the users expectations. The so�ware
architecture under consideration can refer to an actual design of a so�ware already in place or one
that is to be built. By reference to the Patterns view, which provides solution templates that ease
the allocation of the problem model (requirements) to the solution model (configuration of archi-
tecturally significant computational components) on the same level of detail regarding their archi-
tecturally significant object(ive)s, the Plans view is capable of preparing several options for actions
(candidate architectures or alternative solution designs) to build a coarse-grained design of a so�-
ware system. These options represent units of (development) work, which enable the planning of
how to fulfill a Requirements Work Package.

View 4. Platforms

The "One4All" Platforms view corresponds to the Physical view in the 4+1 View Model. Both views
care in equal measures for the deployment of work units from development to the production envi-
ronment, such that the so�wareproductbecomesoperative, i.e. releasedand its therewithdelivered
value is put into e�ect. By application of the One4All Patterns view, the platforms view takes advan-
tage of design patterns, frameworks, and APIs to account for its responsibilities. This view is not
further detailed in the following, but involved with the considerations given in the Future Prospect
section.

All for One and "One4All" – An architectural view model for the three amigos 163

View 5. Patterns

The "One4All" Patterns view corresponds to the Scenarios view in the 4+1 View Model. Both pro-
vide those abstractions necessary to glue the di�erent views together, and act as a driver for a re-
producible decision-making in the planning of expected team and development work; one which is
based on so�ware architecture design, cf. Kruchten [133, page 47]. The "One4All" Patterns view pro-
vides a collection of patterns for creating and reviewing so�ware architecture design alternatives to
the project team, and it defines essential relations among these patterns for ensuring consistency in
the decision-making and use of best practices knowledge.

The following section Problem-Based Project Adaptation by the One4All ViewModel focuses on
the application of problem templates, i.e. task patterns as designed in section 7.4, for establishing
correspondence among the Processes view and the Problems view. This is needed to set up a so�-
ware life cycle, which reflects functional dependencies among user requirements. Knowing these
dependencies allows for reasoning about the useful order of delivering accordant so�ware function-
ality, and adapt the project planning, respectively.

164 Problem-Based Adaptation Framework

8.4. Problem-Based Project Adaptation by the One4All View Model

For organizing the planning of so�ware projects Humphrey (1995) proposes the use of “a planning
form. Nowyoudon’t need todecidewhat todo, the form tells you. All youdo is fill in theblanks.” [114,
page 32]. The One4All ViewModel on so�ware architecturesmakes this kind of forms in the Patterns
view available. It is the heart of the One4All View Model, which o�ers templated structures namely
patterns, that provide the team with those adaptation frames where change (to requirements) be-
comes controllable, and “flexing [of] what is being delivered” [21, page 42] becomes justifiable. The
One4All ViewModel allows the teamtoadapt their project planning frommultiple perspectives, each
of these is supported by one view.

View Problems Processes Plans Platforms The –One–4All Patterns

Concern partitioning synchronization configuration integration adaptation

Container RWP as the problem model,
given as a set of tasks that
share a common problem
process

LCE as the interactionmodel,
given as a set of temporally
ordered tasks from several
problem processes

ABP as the solution model, which
is created by use of transition tem-
plates that make the problem ab-
sorb into platform

DO the implementation model,
given as pattern-based description
of the solution,which is scriptedby
the platform in use

·problem frames
· transition templates
· (architectural)
design patterns

Component domains (machine, environ-
ment)

problem process (control and
data transitions)

(roles of) architectural elements
(processors)

modules (framework)

Connector shared phenomena (causal,
symbolic)

in and output events (trigger,
data)

(forms of) architectural assembly
(configuration)

interfaces (api)

Notation behavioral UML diagram
(sequence diagram)

state transition diagram or
LCE

transition schema structural UML diagrams
(class and component diagram)

depends on pattern

Legend:
RWP = Requirements Work Package, LCE = So�ware Life-Cycle Expression, ABP = Architectural Blueprint, DO = Deploy to
operate

TABLE 8.1 Overview of adaptation techniques in the One4All View Model, cf. [133, URL table 1]

Table 8.1 gives an overview of adaptation techniques to the project planning, which are sup-
ported by and a specific concern of each perspective in the One4all View Model. The structure of
table 8.1 is adapted from Kruchten [133, URL table 1].

The fi�h, outer right columnPatterns View allows for the scoping of problems and the bounding
of requirements to a defined type and size of so�ware functionality. Due to the introduction and use
of patterns, requirements become representable at a common level of granularity. This is of impor-
tance for analyzing change and classifying its impact, e.g. the risk involved with it, systematically.
For instance, cp. [21, page 42, section 6.4.3 Embracing change] change to an individual set of so�-
ware functionality, e.g. modified details on one, independent problem, can be related with a minor
change and addressed by other means, than change to (one problem in) a dependent set of so�-
ware functionality, e.g. which can be seen as a major change, if crashing this dependence remains
unrecognized and causes a business process to stop.

The first, outer le� column Problems View serves the partitioning of requirements to measur-
able units of recognizable problems. It cares for a consistent separation and representation of these,
such that in case of changing requirements, the scope of change is defineable and its size measured
in function points changes correspondingly. This allows to choose proper risk mitigation, i.e. adap-
tationmeans, which drive the project planning. In case of the Problems View, it may become neces-
sary tocreateadditionalproblems for incorporatingchanging requirements, or tomodifyanexisiting
problem by relating a new type or size with it. As a result, the project plan is updated. Part II of this
dissertation elaborates the models relevant to the Problems View in detail.

The forth column Platforms View is not detailed further, following the assumption that from a
user-centered approach to project planning, concerns and details of this perspective are either not
of interest to the user, or coverable by the Plans View too. Nethertheless, the Platforms View is from

Synchronizing Requirements by a State Transition Diagram 165

a technical (requirements) perspective of special importance to the planning of so�waremaintaince
projects or reengineering activities. This aspect is discussed in the Future Prospects section of this
dissertation.

The third column Plans View is about adapting the way or plan of how to solve a specific prob-
lem. Again patterns provide guidance for identifying those candidate architectures, which address
the needs of each individual problem. Change within this perspectivemay result in adapting the se-
lection of a solution candidate for one problem, e.g. by the “trading (or swapping)” [21, page 42] of
one solution against an other. The choice of a di�erent problem-solution-configuration represents
an adaptation of the project planning. It is the structural dependence of requirements to architec-
ture, which is addressed by the Plans View. The Plans View takes the framed problems, and enables
the flexingof their proper solution. Part III in its chapter 7 elaborates themodels relevant to thePlans
View in detail.

The second column for the Processes View introduces an adaptation technique to the project
plan, which considers the functional dependencies among the requirements, and thus determines
and gives meaning to their (timely) precedence. The Processes View establishes a synchronization
of the problems at hand. This dynamic perspective is represented as life-cycle expressions or state
machines and elaborated in detailed next. This perspective creates an interactionmodel of require-
ments, which describes a "happy path" [200] of how desired units of so�ware functionality work
successfully together. The principle idea followed in the Processes View is to concatenate these units
(user stories) from the Problems View, into a chain of basic activities, which represents a business
process (feature or epic, cp. [21, page 222, section 25.4 requirements decomposition and granular-
ity]). That way, equally formed and thereby scoped functional user requirements at the level of user
stories serve as reusable and recognizable building blocks to plug value-delivering business epics
together.

In order to execute the Process View, the requirements model from the Problems Viewmust be
available. Starting point are the task scenarios, which form a grouping of requirements into units of
basic activities, whose type of functionality is known. Chapter 7.4 Problem templates explains in de-
tail, how to set up these task scenarios. The Case Studies part gives examples for their application to
a student recruitment anda vacation rentalsmanagement system. There, a discussionon respective
so�ware life-cycle expressions can be found, too. Section 8.6 presents an alternative requirements
partitioning approach by use of UML use cases and how it fits with the One4all View Model. The
next section 8.5 illustrates, how to set up the interaction model of the Processes View given as state
transition diagram.

8.5. Synchronizing Requirements by a State Transition Diagram

A�er partitioning the requirements into basic units of activities (user stories) as is supported by the
Problems View, these can be concatenated formodeling valid interactions between the user and the
so�ware under consideration (business epic) in the Process View of the One4all View Model.

Since each task scenario is built on patterns, for classifying the requirements type of function-
ality and for limiting their details to a recognizable level of granularity, each task scenario consists
of

one trigger, sent from a problem domain6, that is received by the machine domain, and

one corresponding action-event, which is triggered by the machine in response, intended for
producing requested output,

6one, which resides outside the machine, such as an actor, or biddable, and causal domains

166 Problem-Based Adaptation Framework

see chapter 7.4 Problem templates for more details.
Table 8.2 lists all task scenarios and their respective triggering- and action-event for the Stu-

dent Recruitment Web Portal. Note: By chance, in this specific application example, there is exactly
one requirement involvedwith one task scenario, and each requirements work package includes ex-
actly one task scenario. As practices and the case studies part show, usually several requirements
belong to one task scenario, and a requirements work package is made up of several task scenarios.
This circumstance does not conflict with the following intent of illustrating the synchronization of
requirements by composing task scenarios into a state transition diagram.

In addition, it is important to note, that for this purpose the focus is on the functionality and not
on the data involved in some functional user requirements. That is, why parameter lists, etc. are not
discussed at this point, even if they appear in some of the sequence diagrams in the requirements
specification.

RWP Task Scenario see Fig./P. IFPUG-EP/TOFF trigger action

FUR #02 Record Candidate Data Fig. 11.13, P. 240 EI / TOFF-i. record40FormData store40FormData
FUR #05 Upload Candidate Files Fig. 11.16, P. 242 EI / TOFF-i. select6CandidateFiles store6CandidateFiles
FUR #03 Review Candidate Data Fig. 11.14, P. 241 EQ / TOFF-ii. review40FormData showCandidateData
FUR #06 Compile Candidate Résumé Fig. 11.17, P. 242 EQ / TOFF-ii. review40FormData6Files showCandidateDataFiles
FUR #04 Download Candidate Data Fig. 11.15, P. 241 EO / TOFF-iii. review40FormDataToPDF showCandidateDataToPDF
FUR #01 Grant Access Authorization Fig. 11.12, P. 240 EO / TOFF-iii. requestAccessAuthorization sendURLviaEmail

TABLE 8.2 List of Task Scenarios for a Student Recruitment Web Portal

The level of detail created by use of patterns yields task scenarios, forwhich each can result only
one defined e�ect (postcondition), onewhich is involvedwith one defined action-event triggered by
the machine. That way, each task scenario can serve as a kind of state invariant or precondition
for other task scenarios. This makes describing and concatenating these groups of desired so�ware
functionality at a constant level of granularity possible. It also avoids state explosion by artificially
introducing state invariants, since it binds functional requirements dependencies to identifiable ac-
tivities, and not to an arbitrarily placed labeling. A further noticeable fact about the property of task
scenarios is, and which is shown by the example next, that those which represent an External Input
(EI) elementary process or are of a corresponding type of functionality (TOFF-i), make the backbone
of a process chain, which means

1st: their postcondition gives reason for a new state in the state transition diagram, and

2nd: task scenarios, which represent an EQ or EO (TOFF-ii., or TOFF-iii.) do not yield to the cre-
ation of new states in a state transition diagram, since these do not modify/write information
to the system. This implies, that EQ/EO-task scenarios are usually attached to states involved
with EI-task scenarios.

The benefit of these findings is, that the number of possible states in a state transition diagram can
be limited considerably, and requirements dependencies can be maintained more e�ectively.

Figure 8.4 gives the state transition diagram for the Student Recruitment Web Portal.
In figure 8.4 the transitions triggered by a candidate are colored in black, the ones that are trig-

gered by the admin are colored in gray. The triggers in bold text belong to a TOFF-i., i.e. it updates
data hold by the so�ware application.

The trigger of each transition is marked as< requirements work package > . < operation >
and coincides with a respective message to the machine domain in one alt-fragment of a require-
ments work package. The action taken when activating a transition is marked as / < operation >
and coincides with a respectivemessage to a constrained problemdomain in the same alt-fragment

Synchronizing Requirements by a State Transition Diagram 167

CandStart CandData CandFiles

FUR01.request-
AccessAuthorization
/ sendURLviaEmail

FUR02.record40FormData
/ store40FormData

FUR03.review40FormData
/ showCandidateData

FUR04.review40FormDataToPDF
/ showCandidateDataToPDF

FUR05.select6CandidateFiles
/ store6CandidateFiles

FUR06.review40-
FormData6Files
/ showCandidate-
DataFiles

FIGURE 8.4 State machine as joint usage protocol for the student recruitment web portal

of a requirements work package. The transitions in figure 8.4 are consistent with the trigger- and
action-column entires in table 8.2.

Now, the great benefit becomes obvious, of how patterns help to identify and model indepen-
dent units of desired so�ware functionality. These requirements units or task scenarios become syn-
chronizable by the use of a state transition diagram. That is, their dependencies are representable
and usable to manage their precedence (and importance) for a business process, which drives the
project planning.

For instance, the critical path is along the task scenarios, which belong to a TOFF-i. (EI) problem.
In the Student Recruitment Web Portal case, this means that a candidatemust first submit personal
data (trigger: FUR02.record40FormData), and then upload the application documents or respective
files (trigger: FUR05.select6CandidateFiles) for completing the (workflow of the) application proce-
dure successfully. The postcondition of FUR02 becomes a state (invariant) abbreviated “CandData”
for the candidate data, that is now available for processing by the machine, and the postcondition
of FUR05 becomes a state (invariant) named “CandFiles”, meaning that the candidates files upload
is available for further processing too. The state labeling is optional. It should be expressive to the
reader.

Task Scenarios of TOFF-ii. (EQ) or TOFF-iii. (EO) usually read information and do not write in-
formation to the so�ware application. In a general case7, a transition which represents these kinds
of task scenarios, is attached to one state only. It starts and ends in the same state. It leaves the
data information managed by the so�ware unchanged. For instance, the task scenarios for FUR03
and FUR04 process and send information outside the machine, but the application procedure from
a candidate perspective could dowithout these. Nethertheless, these two task scenarios depend on
the availability of candidate data, which is established by (the postcondition of) FUR02.

The existence of states and the transitions between them in the Processes View is traceable to
the functional user requirements that make up the Problems View, and maintained due to the use
of the Patterns View in the One4all View Model.

7In an exceptional case, such as for FUR01: requestAccessAuthorization, which is classified as of TOFF-iii. (EO), it may be
necessary to revise its classification, since its transition results in a new state “CandData”, as is usually only created
by EI, or it should be checked, if this functional user requirements involves a yet unrecognized composition with an EI.
For details on this, see the discussion section.

168 Problem-Based Adaptation Framework

8.6. Sample Application to Use Case Decomposition

UMLuse cases [168] are a popularmeans for the grouping of functional user requirements. Due to its
sketchy nature, the use case diagram is a visual gadget, which is a preferred one for quickly creating
requirements documentations that (too o�en) result from communicating with the user (only). Use
case decomposition blends well with problem-based requirements analysis as is shown next, with
the result that the developer can also take advantage of this requirements documentation.

Tailoringuse casesby taskpatterns (problem templates) into “basic units of activities” advances
the use case descriptions and eases their consistent alignment with the so�ware’s life cycle or busi-
ness process model.

Part Case Studies demonstrates a respective use case decompostion for the vacation rentals.

Student Recruitment Web Portal
Student Recruitment Web Portal

�include�

�include�

candidate

admin

Email Program

File Manager

Document Viewer

Candidate

EO FUR01:
grant access
authorization

EI FUR02:
record

candidate data

EQ FUR03:
review

candidate data

EO FUR04:
download

candidate dataEI FUR05:
upload

candidate files

EQ FUR06:
compile

candidate résumé

FIGURE 8.5 UML use case diagram for the Student Recruitment Web Portal

Figure 8.5 gives a use case diagram for the student recruitment web portal, which takes advan-
tage for the One4All view model. In this example, each of the six use cases (and their involved func-
tional user requirements) is classified to one defined problem, which constitutes a specific type of
functionality. This knowledge guides the creation of corresponding use cases, namely

each EI or TOFF-i. use case must be connected with one triggering actor, and it has no partici-
pating actor, who is addressed by the actions invoked through the trigger.

each EQ or TOFF-ii. use casemust/should be connected with one triggering actor/include-use
case, and it has no participating actor, who is addressed by the actions invoked through the
trigger.

each EO or TOFF-iii. use case must/should be connected with one triggering actor/include-
use case, and it has exactly one participating actor, who is addressed by the actions invoked
through the trigger.

In addition, each use can can be connected with further actors, which provide additional input to
it. By following these validation conditions for a problem-based use case decomposition, the task

Sample Application to Use Case Decomposition 169

patterns underling each use case are reflected in and thus yield a consistent use case diagram.

no. use case EP/TOFF triggering actor participating actor8 further actor9

E.1 FUR #06 compile candidate résumé EQ/TOFF-ii. admin – –

E.2 FUR #01 grand access authorization EO/TOFF-iii. candidate email program –

E.3 FUR #02 record candidate data EI/TOFF-i. candidate – –

E.4 FUR #05 upload candidate files EI/TOFF-i. candidate – file manager

E.5 FUR #03 review candidate data EQ/TOFF-ii. candidate by «include» – –

E.6 FUR #04 download candidate data EO/TOFF-iii. candidate by «include» document viewer –

TABLE 8.3 Reasonsing on a problem-based use case decomposition

Table 8.3 summarizes the e�ects the validation conditions for a problem-based requirements
partitioning have on the use case digram for the student recruitment web portal. It nicely illustrates
the integration of desired so�ware functionality (use cases) with the given environment (actors con-
nected to each use case), which finally validates the application boundary or respectively the scope
of the so�ware system to-be, too.

The following explanations E.1 to E.6 discuss the entries in table 8.3 and their relevance for the
usecasediagram in figure8.5. Ingeneral, ausecasediagramgivesanoverviewof independentactor-
system-interactions. It doesnotdefine the timelyorder of its use cases. An «include»-relationmeans,
that “The including UseCase may depend on the changes produced by executing the included Use-
Case. The included UseCase must be available for the behaviour of the including UseCase to be
completely described” [168, page 641, section 18.1.3.3 Includes]. This kindof use case relationship re-
flects a functional dependence between requirements (and architecture), which is introduced in sec-
tion 8.2.2 on page 157, and which becomes addressed andmanageable by the One4all viewmodel.

E.1 EQ-problems are concernedwith compiling given information and simply presenting these
on adisplay or other basic output device. In contrast to these are EO-problems,which com-
pile information, and provide them (for control purposes via an external or definable inter-
face) to other actors, so�ware systems or programs, which do not belong to the so�ware
system under consideration (cf. E.2).

E.2 EO-problems di�er from EQ-problems as they require a participating actor in the use case
diagram (see also E.6). A participating actor is impacted by the actions/use case invoked
by a triggering actor. In this example case, the student recruitment web portal makes use
of an external interface to send an email containing an access link, which is received in an
other so�ware application, namely an email program.

E.3 The primary purpose of EI-problems is to receive some data from outside the application
boundary and to make these persistent. The data filled in the forms by the candidate is
simply recorded to make it available for further processing. The use cases FUR #03 and
FUR #04 depend on these candidate data, which paves the way for considering this fact
already in the use case diagram as elaborated for E.5 and E.6.

E.4 EI-problems have no participating actor, but can have further actors, such as in this exam-
ple the file manager program. It is another application than the student recruitment web

9participating actor = constrained causal problem domain
9further actor = referenced causal or biddable domain

170 Problem-Based Adaptation Framework

portal. The file manager is to involve by the candidate for uploading selected documents
to the storage of the so�ware under consideration.

E.5 The use case for FUR #03 it triggered by the candidate, for reviewing the data already pro-
vided by invoking the EI-use case FUR #02, see E.3. Since the use case for FUR #03 repre-
sents an EQ-problem, which depends on the data stored via FUR #02, there is a structural
dependence of these requirements to the architecture, which can be alternatively mod-
eled via an «include»-relation in the use case diagram. The context remains the same, i.e.
the candidate is still the triggering actor. In addition, it is already represented that there is
a dependence on the common data information “candidate data”. If nothing is recorded,
nothing can be reviewed on the screen. If the provided information is incomplete, so is
the data compiled for the review. Note: this dependence does not force or mark a timely
order of invoking these independent use cases for FUR #02 and FUR #03. Nethertheless,
such a timely order can be definedwith reference to this «include»-relation in the life-cycle
expressions or state machines for the so�ware life cycle or respective business process.

E.6 As forE.5, thisusecase for FUR#04dependson theavailabilityof “candidatedata” recorded
via executing the use case for FUR #02. The download of candidate data involves the us-
age of an external interface for exporting the compiled information into a pdf-file, which
is accessable via another so�ware application than the student recruitment system itself,
namely a pdf- or document reader. This is one example, why EO-problems di�er in their
complexity from EQ-problems, which are equally concernedwith processing data informa-
tion, but do not involve other so�ware applications, and rathermake use of built-in display
options.

The use case diagram in figure 8.5 gives an overview of the requirements partitioning (for the
student recruitment web portal) into independent groups of basic actor-system-interactions (use
cases at the granularity of user stories).

A state transition diagram can be used for modelling the so�ware life cycle, i.e. the concatena-
tion of user stories to business epics, one which indicates the order (precedence) in which units of
desired so�ware functionality should be reasonably delivered.

Figure 8.6 gives a state machine diagram, which builds on the use case diagram in figure 8.5 for
modeling the so�ware life cycle of the student recruitment web portal.

CandStart CandData CandFiles

grant access autho-
rization

record candidate data

review candidate data

download candidate data

upload candidate files compile
candidate
résumé

FIGURE 8.6 State machine by means of UML use cases for the Student Recruitment Web Portal

Byapplicationof aproblem-based requirementspartitioning formodelinguse cases, these form
equally scoped units of self-contained so�ware functionality. Thereby, each use case becomes by its
execution a provider of a unique and identifiable postcondition, that can be of relevance as precon-
dition to an other use case. That way, recognition of functional requirements dependence is made
easier and better usable for the project planning.

Discussion & Related Work 171

8.7. Discussion & Related Work

Alebrahim (2017) proposes in [3, 4] a method for problem-based detection of functional require-
ments interactions, which addresses the case where the satisfaction of one requirement a�ects the
satisfaction of another [185], and how this situation can be relaxed. In this context, interactions
are seen as particular correlations between requirements, e.g. requirement dependencies, which
have according to Robinson et al. [185, table 3, page 18] none, undefined, negative or positive con-
sequences on their satisfaction.

In order to start Alebrahim’smethod, a comprehensive list of functional so�ware requirements,
and a so�ware life cycle model, which determines the precedence of the requirements, must be
available beforehand as external input to this method [3, page 201]. Then, the requirements list
is analyzed in a three-phase pruning process for identifying interaction candidates. Therefore, as-
sumed and e�ected environmental conditions (system states) as are documented by the require-
ments specification and applicable in phase 3: precondition-based pruning and phase 1: structure-
or postcondition-based pruning, as well as the precedence of these conditions as applied in phase
2: life cycle-based pruning are taken into account.

Problem-based requirements interaction analysis and the One4All View Model build in equal
measures on “Shared domains [to analyse requirements dependencies, since these] provide points
in the requirements model where requirements [can] interact.” [3, page 196]. This property makes
the link between these two approaches. Due to its use of requirements work packages, whichmain-
tain requirement dependencies at the level of problems, as well as the application of a so�ware
life cycle model, that maintains requirement dependencies at the level of tasks, the One4All View
Model improves the input to and thus the quality of problem-based (interaction) analysis for func-
tional requirements, since reasoning on these and thus trade o� considerations becomemuchmore
straightforward and reproducible. For instance, problem diagrams combined to requirements work
packagesease structure-/postcondition-basedpruning, sinceall the requirements inaworkpackage
address the same constrained problem domain. Furthermore, the so�ware life-cycle model, which
operates on the structuring of requirements into tasks as in the One4All ViewModel, eases life cycle-
based as well as precondition-based pruning, since the thereby defined level of granularity for tasks
assures managing traceability of and the dependency among requirements.

Choppy et al. [51, 52] propose the use of system states for composing a statemachine, which ex-
presses the so�ware life cycle. Bymeans of UML state invariants, which represent the pre- and post-
conditions of problem-based requirements specifications, the logical order of problems and there-
with involved satisfactionof the so�ware’s requirements is defined. TheOne4All ViewModel extends
this approach by providing means for limiting the risk of state explosion, which is demonstrated in
part V Case Studies in more depth. This is achieved by considering task scenarios, which form a
requirements specification by basic activities only. In consequence, each task has only one trigger,
whichcancausea transition in the statemachine. Furthermore, newstate invariantsor systemstates
do not rely on a modeler’s experience anymore, and maybe accidently introduced. Systems states
with relevance for the overall so�ware life cycle are bound to problems that process received infor-
mation, i.e. problems that belong to TOFF-i. (external input) so�ware functionality as introduced
in II Problem-Based Project Estimating. That way, other kind of problems, such as of TOFF-ii. or
TOFF-iii. can be reasonably ignored when introducing new system states. As a result, the One4All
ViewModel advances the precision by which the composing a so�ware life cycle and its extension in
case of emerging changes to the requirements is made feasible.

172 Problem-Based Adaptation Framework

8.8. Summary

This chapter introduces a comprehensive architectural framework called the "One4All View Model".
It joins the di�erent views present to a project team based on pattern practices. That way, the

various perceptions of thework required to be done for delivering desired so�ware functionality are
brought into one coherent perspective. This eases the team’s decision-making on how to proceed
and to agree a corresponding project plan.

Therefore, theOne4All ViewModel representsanadaptation frameworkasdetailed in section8.3,
which enables problem-based project planning. As introduced in this chapter, this problem-based
adaptation framework makes explicit allowance for the functional as well as the structural depen-
dencies of so�ware requirements, see page 156�. It advances the resolution of requirements inter-
actions by taking the architecture and the so�ware life-cycle into systematic account.

In case the satisfaction of one requirement a�ects the satisfaction of another [185, page 6], the
Plans View and the Process View of the One4all View Model helps the team to identify and analyse
this circumtance. The Plans View makes use of transition templates as introduced in the previous
chapter 7, for looking at the shared computational components in an architecture design on which
the requirements depend. The Processes View considers the so�ware life-cycle as a means for re-
quirements synchronization. It models the functional precedence of desired so�ware functionality,
for satisfying (business processes) and thereby in which order best to deliver these. The use of state
transition diagrams is elaborated in section 8.5 of this chapter for representing this dependency re-
lation between (equally scoped units of) so�ware requirements. Both, architecture and so�ware
life-cycle build on requirements at the level of tasks, which are created by the Patterns View in the
One4All View Model.

Having these tools for requirements dependency analysis at hand, the team is in the position to
check and adapt their project planning from an engineering as well as a management perspective.
It is the utilization of patterns in each perspective, which enables the team to decide on a defined
andmutually understandable basis.

They can explore alternative solutions by di�erent architectural configurations or they can ben-
efit from the requirements precedence given in the so�ware life-cycle for their project planning. In
addition, these tools ease determining the criticality (minor or major change) of the so�ware re-
quirements, and conflicts become resolvable by trading these instead to cut-o�, i.e. to prune desired
so�ware functionality.

Part IV.

Problem-Based Project Benchmarking

Part IV Problem-Based Project Benchmarking is about answering RQ 1 How to compare speed?
It integrates Problem-Based Project Estimating and Problem-Based Project Adaptation to an ag-
ile project process framework introduced as A S.M.A.R.T. Scrum-A·GenEDA for taking advan-
tage of a project plan (project backlog) that builds on point values (product size) as measurement
for a defined set of software requirements (product scope). This kind of project plan serves as
baseline for establishing benchmarks (project speed), which are comparable among projects and
teams. Chapter 9 Problem-Based Project Baseline and Speed Benchmark details the use of Re-
quirements Work Packages and the "One4All" View Model on software architecture as developed
in this dissertation to set up units for measuring project work progress. Applying these for es-
tablishing a work plan of software product requirements and its involved performance baseline
for a project, ensures the comparability of speed benchmarks. Benchmarking a Problem-Based
Project Baseline – A sustainable planning game demonstrates the use of these units for em-
powering software project teams to benchmark their project success (points scored) compared
to their project plan (points committed), whenever a project timebox is completed. Conducting
agile projects by A S.M.A.R.T. Scrum-A·GenEDA implements problem-based project planning,
which comes with built-in means for requirements prioritization and for exploring alternative
solution designs. In addition, it supports software project teams in adjusting their decision mak-
ing and development activities as needed, both proactive and retrospective. Ultimately, it makes
sustainable control of software projects possible, for and by a demonstrable delivery of value.

174 Problem-Based Project Baseline and Speed Benchmark

9. Problem-Based Project Baseline and Speed
Benchmark

9.1. Introduction

AsMeyer (2014) comments, “Successful project control requires both estimation of e�ort, in advance
of an iteration, and measurement of progress, during the iteration and at the end. [. . .] For both
estimation andmeasurement, teams need units of progress.” [156, page 121] These units of progress
are introduced in this dissertation by Requirements Work Packages, which provide for reproducibly
scoping and sizing of desired so�ware functionality. By use of RequirementsWork Packages not only
(functional size) estimation in advance of a project (iteration) is possible, but also measurement of
progress in terms of successfully "done" these units is supported. Thus, several benchmarks be-
come available: starting with the (function) points (as size) estimated for the items that belong to
the project baseline, to which the team commits to in the beginning of a project, followed by the
points scored in between for "done" work items, i.e. Requirements Work Packages, and finally the
total of points scored for delivered so�ware functionality, a�er the project time-box is completed. It
is the Project Backlog, which serves as this project baseline providing for “a reference level against
which an entity ismonitored and controlled” [21, page 325], and againstwhich to benchmark project
success. In order to illustrate where and how the findings of this work advance the comparison of
project performances (speed), these are integrated to themost commonly used agile project process
framework named Scrum in the following.

Section 9.2 Background gives a brief introduction to Benchmarking and Scrum.
Section 9.3Make the Frame(s)work rebuilds the Scrum framework bymeans of the Agenda Con-

cept to setup problem-based project planning as described by A S.M.A.R.T. Scrum-A·GenEDA1. For
each Scrum Event of Planning, Daily, Review and Retrospective a corresponding Agenda is given,
such that this agileproject process canbeexecuted inaproblem-basedway. Respectively, theScrum
conceptions of Team and Artifacts are developed further to integrate well with the ones newly intro-
duced in this dissertation, namely with patterns as applied in the "One4All" View Model of so�ware
architectures.

Section 9.4 Benchmarking a Problem-Based Project Baseline – A sustainable planning game il-
lustrates how problem-based benchmarking sustains projects and teams. It gives a sample applica-
tion taken from the case studies.

Section 9.5 Discussion & Related Work looks at the use of benchmarking for the continuous im-
provement of projects and teams.

Section 9.6 Summary gives the benefits for agile project planning when relying on a problem-
based project baseline and speed benchmark as provided by A S.M.A.R.T. Scrum-A·GenEDA.

1This it is a word play, which refers the research project GenEDA [109], the Agenda Concept [106], the writing of S.M.A.R.T
objectives [82], and Scrum [193] as combined in here.

Background 175

9.2. Background

This section gives the state-of-the-art literature and concepts used in the following for developing A
S.M.A.R.T. Scrum-A·GenEDA, which is a benchmarking approach to problem-based project plans. It
allows for their comparison in regard to size-driven scope and speed considerations.

Section 9.2.1 Benchmarking introduces the need to take advantage from the lessons learned in
each project, such that ’continuous improvement’ can happen.

Section 9.2.2 Scrum picks the concepts out of the Scrum framework, which are used in the fol-
lowing to set up A S.M.A.R.T. Scrum-A·GenEDA.

9.2.1. Benchmarking

Camp’swork published in 1989on the topic of benchmarking is considered a cornerstone in this field.
Tohim“Benchmarking is apositive, proactiveprocess to changeoperations[, e.g. on the so�warede-
livery process] in a structured fashion to achieve superior performance.” [48, page 3] This is achieved
only by “the comparison to and the understanding of the best practices [. . .of others that]will ensure
superiority.” [48, page 4]

In this context, performance is not considered in isolation, such as looking only at the mea-
surable output of a process, e.g. the speed of delivery. It also incorporates the understanding and
implementation of those practices, which result performance improvements. It is true that “Bench-
marking implies measurement.” [48, page 11] and “Themost significant metric for so�ware projects
is "size".” [194, line 26], but benchmarking is not only about performance measurement, it is also
about “enhanced performance by learning” [113, page 1].

As “truly innovative ideas are probably more likely to be found [. . .] outside one’s own indus-
try.” [113, page 6], ’creative swiping’ [174] is a means for “Emulate their strengths.” [48, page 4] This
search and adapt for the better is characteristic for continuous improvement processes and leads
to the realization that “Benchmarking is entirely consistent with ’kaizen’ (Imai 1986) .” [113, page 3]
Therefore, benchmarking ”forces constant testing of internal actions against external standards of
industry practices. [And] It promotes teamwork [. . .] to remain competitive.“ [48, page 15] and to
focus on incorporating ”those practices into their [own] operations [. . . that] meet customer needs
and have a competitive advantage. ” [48, page 3] That way, “ensuring the organization is satisfying
customer requirements [by their delivered products] andwill continue to do so as customer require-
ments change over time.” [48, page 21] “The purpose of benchmarking is to ensure that probability
of success.” [48, page 3]

“Benchmarking is an integral part of the planning [. . .] to strengthen the use of factual informa-
tion in developing plans.” [113, page 2] “It assists managers in identifying practices that can adapted
to build winning, credible, defensible plans.” [48, page 15] Benchmarking provides valuable input to
the project planning and guidance in the project execution [113, page 23]. By its strict reference to
proven problem-solving know how (best practices), it improves2 the planning of a project

in the beginning, as it ensuresmore realistic commitments thatwin the user, e.g. can the prob-
lem be solved on schedule?
during project execution, as it serves for a more flexible and defensible decision making, e.g.
how to solve the problem e�ectively? Are we on track?
at the end, it establishes credible knowledge on the e�iciency of what works and what does
not, i.e. has the plan worked out, such that the way of solving a problems is a worthwhile one,
e.g. as a lessons learned for future plans?

2and used as a means for risk management it can also demonstrably disprove a plan

176 Problem-Based Project Baseline and Speed Benchmark

9.2.2. Scrum

Scrum is an agile project process framework developed by Schwaber and Sutherland, of which the
latest version is published in 2017 as a 20-pages document named The Scrum GuideTM [193]. It de-
scribes the roles, responsibilities, and resources of an agile project organization, and summarizes
them into rules of the game to enable a highly-frequent and adaptive problem-solving process that
promotes collaborativework and value-based implementation. This type of project implementation
has become particularly popular in the area of so�ware development. Since Scrum in itself is nei-
ther a method, nor comes with specific techniques or technologies for its execution, an adoption of
Scrum is developed in this chapter. Therefore, the following section 9.3 Make the Frame(s)work is
structured in exactly the same way as The Scrum GuideTM .

9.3. Make the Frame(s)work

This section elaborates, how function points not only serve the comparability of so�ware products,
butalsoadvance thecomparabilityof so�wareproductionperformancesbysize-drivenspeedbench-
marks.

9.3.1. Project Time-Box

Table 9.1 shows that Iteration, Cycle, or Sprint are various terms that are used analoguously for de-
scribing the time frame available for starting, managing, and closing a project process with which a
desired project result is to be achieved, e.g. a potentially releasable increment of so�ware product
functionality.

Estimate&Measure [156] in the beginning during at the end Time-Bound
Project Iteration

to compare speed for capacity progress success benchmarks

PDCA [76] Plan Do Check&Act Steps
Continuous Improvement Cycle

Scrum [193] Planning Daily Review, Retrospective Events
Sprint

A S.M.A.R.T. Scrum-A·GenEDA [sec. 9.3.4] Planning Daily Review, Retro Agendas
Project Time-Box

TABLE 9.1 Benchmarking Periods within the Project Process

Within an agile project setting, this project time-box for executing the project process is fixed.
E�ective so�ware project control, which in agile means to continuously “inspect&adapt”, requires
estimation and measurement in the beginning, during, and at the end of such a project time-box.
Comparable speed benchmarks are useful in many ways. In the beginning of a project time-box,
a (credible) speed benchmark helps to set up a reasonable plan of the work volume or capacity a
team is capable to achievewithin the timeavailable. Speedbenchmarks available during theproject
time-box indicate the progress made up to now. In case of deviation from plan, respective counter-
measures can be taken. Speed benchmarks at the end of a completed project time-box show the
success achieved by the team to deliver desired project results in time. The ratio of remaining work
in progress and thework successfully “done” indicates the credibility of a project plan. Project teams
can use this benchmark in future project planning for justifying the work volume they can usefully

Make the Frame(s)work 177

commit to. It is a performance measure, which represents the team’s "sustainable pace", one at
which it has demonstrated to be capable of achieving desired project results.

Agile project processes in general implement a continuous improvement cycle, towhich the four
Scrum Events of Planning, Daily, Review and Retrospective can be mapped respectively. Both, Re-
view and Retrospective occur at the end of a project time-box, but each serves a di�erent purpose.
Thesedi�erencesareexplained in theAgendasofAS.M.A.R.T. Scrum-A·GenEDA,whichare structured
into the project time-box comparably to the Scrum Events.

9.3.2. Project Team

A Scrum Team consists of a Product Owner (PO), a Development Team (SE, QA), and a Scrum Mas-
ter. There is no role like a Project Manager, since in agile project teams are self-organizing, and the
responsibility for delivering desired project results is shared among all Scrum teammembers.

Adapting a project process to an organization involved always themapping of the process roles
to the members in a project organization. Since problem-based project adaptation as introduced
in section 8.3 makes use of the Three Amigos, these build the Project Teammembers in the Scrum-
alike A S.M.A.R.T. Scrum-A·GenEDA.

The role of the ScrumMaster is substituted by the Product Owner in the following. This may be
criticized as not being Scrum anymore, but it still implements the Scrum framework to an extent,
which su�ices for implementing the needs of agile project management.

PO

The Product Owner role is responsible for managing the Product Backlog, clearly expressing the
Product Backlog items, and prioritizing these to optimize the value of the work to be “done”. The
Product Backlog is the only source of requirements, the team is allowed to work from.

The Product Owner as defined here serves the other project teammembers as a ScrumMaster.
ThePOcares for the teamby ensuring a commonunderstanding ofwhat andhowwork is to bedone,
and by leading and coaching the Project Team, or removing impediments respectively.

QA and SE

The Quality Assurance or Tester role and the So�ware Engineer(ing) or Developer role are individual
Project Teammembers, who have specialized skills and areas of focus [193, page 7].

The Engineer ismainly concernedwith proposing and implementingways to get thework done.
QA defines and checks respective acceptance criteria. In this context, QA cares for proper integration
of project results to the evolving so�ware product (by regression testing, and conformance check
with any organizational standards) and (by lessons learned) to the improvement of the project pro-
cess and the team’s maturity.

QA and SE work collaboratively with the PO to deliver a “done” product increment. Conse-
quently, all team “members must have a shared understanding of what it means for work to be
complete” [193, page 18]. Furthermore, the same definition of “done” guides the Project Team “in
knowing how many Product Backlog items it can select during a Sprint Planning.” [193, page 18].
So, problem-based project benchmarking as established by A S.M.A.R.T. Scrum-A·GenEDA ensures
exactly this definition of "done".

178 Problem-Based Project Baseline and Speed Benchmark

9.3.3. Size Matters to Keep the Pace

As function points are used in Problem-Based Project Estimating to determine the size of a so�ware
product with respect to its functional user requirements, the use of these point values is continued
in problem-based project benchmarking to be of equal advantage for determining the speed of the
so�ware production process, which is usually referred to as the pace or performance, within which
a project teamhas demonstrated their capability to deliver at deadline a “done” product increment.

Product Increment

Agile so�ware development conforms to evolutionary so�ware production. Either a so�ware prod-
uct already exists, which is to be developed further in an incremental way, or there is no product
increment yet, but an initial set of desired so�ware functionality in the Product Backlog, which re-
sult from models, wireframes, prototypes, or legacy systems to be replaced. A product increment
is a body of inspectable, done work at the end of a Project Time-Box, which sums all the Product
Backlog items completed [193, page 17].

Product Backlog

A decision onwhat requirements should be done first in the upcoming Project Time-Box is driven by
the items’ ordering in the Product Backlog. Higher ordered items are usually more refined, added
with details, estimates and priority, such that these aremore likely "ready" for selection in a Project
Time-Box. The Product Backlog contains items "done", which are already implemented in the prod-
uct increment, and lists those items to be done for making the product increment complete. “It is
the single source of requirements for any changes to be made to the product” [193, page 15].

Project Backlog

The Project Backlog is named Sprint Backlog in Scrum. It lists all the estimated Product Backlog
items selected by the Team to be done in a Project Time-Box, together with a work plan of how the
team intends to achieve desired project results.

1

2

3

4

5 "done"

Product Backlog
(potential work)

???

1

2

Project Backlog
(work in progress)

Project Time-Box

FIGURE 9.1 Product Backlog, Project Backlog, and the time available, adapted from [180]

The dotted line in Figure 9.1 marks the Project Time-Box available for a Project Backlog. Its ca-
pacity is themaximum, reasonable number or size of selectable Product Backlog items for a Project
Time-Box, which should be aligned to past performances, i.e. the speed of the Project Team. It must
be known to the team and its project planning, howmuch work (items) fit into the Project Time-Box
available.

Make the Frame(s)work 179

9.3.4. A S.M.A.R.T. Scrum-A·GenEDA

Problem-based project benchmarking requires estimating and measuring of project work items at
definedperiodswithin theprojectprocess. Inaddition, thesemust formcomparableunitsofprogress,
so that the Project Team is in the position to judge its performance.

As motivated in section Size-Driven So�ware Project Planning, these units of progress applica-
ble in a project plan, and which are meaningful in the beginning, during, and at the end of a Project
Time-Box, should be S.M.A.R.T. [82], so that they serve the di�erent perspectives, i.e. Management
and Engineering, present in a Project Team equally.

As illustrated in table 3.2 on page 21 and elaborated throughout this dissertation, Requirements
WorkPackages,whicharebasedonand takeadvantageof patterns, fit this need. Theyareapplicable
as project work items that guide the definition of

S.pecific objectives or project results by packaging sets of desired so�ware functionality

M.easurable project work items by determining a function point value for these

A.chievable and alternative solutions as action plans to produce desired project results

R.ealistic commitments, as past performance justifies consensus about future work plans

T.ime-bound risk assessment and delivery forecast based on "done" product increments

size-data useful to baseline and benchmark the so�ware product as well as the so�ware production
process.

The following sections integrate the concepts developed in problem-based project estimating
and problem-based project adaptation to an agile project process framework, which gives an ac-
count of Scrum in form of Agendas, for establishing problem-based project benchmarking.

The resultingAS.M.A.R.T. Scrum-A·GenEDA implementsProblem-BasedProjectPlanning,which
enables the project team to control their speed of project success by patterns and function points.

180 Problem-Based Project Baseline and Speed Benchmark

Project Planning – Baseline product scope

The Project Planning Agenda in table 9.2 represents the Scrum Event of Sprint Planning applicable
to problem-based project planning.

Name: Project Planning

Input: · Product Increment, latest (if one already exists)
· Project Time-Box ::= {duration of 14 or 28 days}, available
· Past Performance of Team ::= {scored points per Project Time-Box}
· Projected Capacity of Team during Project Time-Box :: = {points per Project Time-Box}
· Product Backlog ::= {ordered list of requirements0}

Participants: Team ::= {3Amigos, stakeholders1}

Activities: P 1. Cra� a Project Goal.
P 2. Estimate and decide on Product Backlog items for the Project Time-Box.

I Planning Poker or
I Problem-Based Project Estimating2

P 3. Plan how to deliver Product Backlog items into a "done" Increment.
I Problem-Based Project Adaptation3

Output: · Project Goal
·Project Backlog ::= {set of estimated Product Backlog items selected for the Project Time-
Box, plus their work plan for converting them into a Product Increment} as Baseline

Validation: · Each Project Backlog item is assigned with a point value.
· Each Project Backlog item is assigned with a (definition of "done" for its) work plan.

0 requirements packed into Requirements Work Packages
1 stakeholders to provide technical or domain advice
2 Frame Counting Agenda
3 Plans View of the "One4All" View Model on so�ware architectures

TABLE 9.2 Project Planning Agenda

In the beginning of the Project Time-Box is the project planning, which serves the establishment
of a problem-based project baseline. It contains all the work items from the Product Backlog, the
team has selected to be subject to their upcoming work plan. The Project Backlog represents this
baseline. It is a set of estimated requirements the teamhas committed to be “done” a�er the Project
Time-Box is completed.

The Project Backlog is the resulting output from executing all Project Planning Agenda activi-
ties. In addition, all validation conditions should be checked, before continueworking on theProject
Backlog by the subsequent Project Daily Agenda. The validation conditions ensure the quality of the
Agenda output.

In addition to the three amigos that make up the Project Team in problem-based project plan-
ning, stakeholders from business and IT can participate in this meeting to contribute their insights
to the items of the Product Backlog. In problem-based project planning the Product Backlog is an
ordered list of Requirements Work Packages applied as backlog items.

The Product Increment can be available in various conditions. It provides a point of reference to
the team for decision making on their project work plan.

Past performanceof the team is (the speed)measurement resulting fromproblem-basedproject
benchmarking, which serves as input to project planning. It can be the case, that this point value
(in an exploratory, zero-project time-box) is not yet available. The projected capacity of the team
depends on this performance measure. For instance, if a team can usually do 10 points in a Project

Make the Frame(s)work 181

Time-Box, it cannot reasonably commit toachieve thisperformance incaseof absentTeammembers
on holiday leaves. A�er all, the Project Time-Boxmust have a fixed duration so that the performance
measurements are comparable.

The activities section in the Project Planning Agenda contains three steps for project planning.
First, Craft a Project Goal, should serve the team as an overall theme for the work, they plan to
accomplish in one Project Time-Box.

Second, Estimate Product Backlog items in order to decide which to include in the Project
Time-Box, is "traditionally"done inagilebyPlanningPoker. Problem-basedProjectPlanningmakes
use of I Problem-Based Project Estimating for executing this activity. Starting from the top of the
Product Backlog, a function point value is determined for each backlog item that is present as Re-
quirements Work Package. This product size measurement (on the basis of functional user require-
ments) becomes a project performance or speed measurement in problem-based project bench-
marking. This secondactivity coincideswith the patterns used in theProblems Viewof the "One4All"
ViewModel of so�ware architectures. Thatmeans, the size determined for the problem to be solved
depends on the pattern used to classify respective requirements too.

Third, Plan how to deliver Product Backlog items into a "done" Product Increment is exe-
cutablebyIProblem-BasedProjectAdaptationasproposed in thisdissertation. ThePlansViewpro-
vides solution candidates for each Requirements Work Package on the basis of patterns. That way,
each Project Backlog item can be assignedwith a(n alternative) work plan or architectural blueprint
of how to accomplish desired project results.

With the help of the Project Planning Agenda, the Project Team can establish a project baseline
of defined product scope that is promisingly "ready" to be successfully carried out in the Project
Time-Box. This plan of project work to be done is measurable and analyzable in terms of successful
and failure performance, and is particularly useful to reduce the risk of incorrect assumptions and
involved false commitments.

182 Problem-Based Project Baseline and Speed Benchmark

Project Daily – Work In Progress

TheProjectDailyAgenda in table9.3 represents theScrumEventofSprintDailyapplicable toproblem-
based project planning.

Name: Project Daily

Input: · Project Goal
· Product Increment, latest
· Project Backlog ::= {set of estimated Product Backlog items plus their work plan}
· Project Time-Box ::= {remaining days}, for Ongoing Project Backlog

Participants: Team ::= {3Amigos}

Activities: D 1. Do work on Project Backlog items.
D 2. Inspect and adapt for project’s work progress.

Output: · Product Increment ::= {working set of “done” so�ware functionality}
· Project Backlog, items “done” are marked respectively
· Ongoing Performance of Team ::= {scored points for “done” Project Backlog items}

Validation: ·Work on Project Backlog items is still aligned with Project Goal and Time-Box.
· Project Backlog items "done" are marked and respective point values score to the On-
going Performance of the Team.

TABLE 9.3 Project Daily Agenda

The items of the Project Backlog agreed by use of the Project Planning Agenda represent the
work in progress for a Project Time-Box. During the daily project work on these items, they become
"done". Therefore, the Project Team realizes the items’ assigned work plan, and delivers these as a
working, potentially ship- or releasable Product Increment. Either routine, day-to-day business, or
creativeprojectwork, each comeswith the riskof operational surprises (impediments), whichhinder
the team’s progress as planned. That is why the Sprint Daily in Scrum “is a key inspect and adapt
meeting” [193, page 12] carried out in a Just-In-Time Fashion, daily during an Ongoing Project Time-
Box. As Scrum’s Sprint ReviewandSprint Retrospective,whichboth takeplace at the endof aProject
Time-Box, serve the same purpose of "inspect&adapt", this issue is considered by the respective
Agendas in more detail.

Of relevance in the Project Daily Agenda to problem-based project benchmarking is that each
work item "done" is marked in the Project Backlog, and that respective point values score to the
Ongoing Performance of the Project Team.

The ratio of work successfully "done" and the work (still) in progress is o�en represented in a
Burndown Chart to illustrate the project’s progress. In case of deviation from plan, problem-based
project adaption can be considered for identifying alternative options for action and thus for deliv-
erying desired so�ware functionality in the remaining time.

Make the Frame(s)work 183

Project Review – Benchmark project success

The Project Review Agenda in table 9.4 represents the Scrum Event of Sprint Review applicable to
problem-based project planning.

Name: Project Review

Input: · Product Increment, latest
· Project Backlog, of Ongoing Project Time-Box
· Project Time-Box ::= {all days exhausted }, time for Ongoing Project Backlog is elapsed
· Product Backlog, as before Ongoing Project Time-Box

Participants: Team ::= {3Amigos, key stakeholders}

Activities: R 1. Inspect Product Increment.
R 2. Adapt Product Backlog.

I Problem-Based Project Adaptation1

Output: · Product Backlog, revised (in priority and presence of items)
· Ongoing Performance of Team ::= {scored points for "done" Project Backlog items}
as Benchmark

Validation: · All Project Backlog items can be found and are up-to-date in the Product Backlog.
· Those Project Backlog items not "done" are considered (for their priority and presence)
in the revision of the Product Backlog.
·OngoingPerformance of Team represents the speed atwhich it has successfully delivered
desired so�ware functionality.

1 Processes View of the "One4All" View Model on so�ware architecture

TABLE 9.4 Project Review Agenda

At the end of the Project Time-Box the Project Review Agenda and the Project Retro Agenda are
executed together to benchmark the overall project success. The project review serves the closure
of the Project Backlog and preparation of the Product Backlog for the next Project Planning. It fo-
cuses the product and its (not yet) satisfied requirements compared to the baselined scope in the
beginning of the Project Time-Box. The project retro serves the continuous learning of the team. It
focuses the production process and related (past) project performance compared not only to the
baseline plan in the beginning of the Project Time-Box.

The Project Review Agenda consists of two activities.
First, the Project Team together with the key stakeholders inspect the "done" Product Incre-

ment at the end of the Project Time-Box, where “the presentation of the Increment is intended to
elicit feedback and foster collaboration [. . .] on what to do next” [193, page 13]. Since at this time, all
days of the Project Time-Box are exhausted, theOngoingPerformance of the Team is now fixed. That
is, the speed at which the team is capable to deliver desired project results per Project Time-Box is
now known. It is a benchmark of a now available "done" Product Increment against the planned
product scope in the beginning of the Project Time-Box and documented in function points as re-
lated with respective Project Backlog items.

Then, the Product Backlog is adapted, which involves an update of its work items and their
status. Some work items have been "done", others are started but remain work in progress, still
others did not change. Furthermore, during the daily work on the Project Backlog, the need for new
work itemsmay have been identified by the Project Team, or some requirements may have become
obsolete.

ByI Problem-Based Project Adaptation, these changes to the Product Backlog become under-

184 Problem-Based Project Baseline and Speed Benchmark

standable. Here, the Processes View of the "One4All" View Model is helpful, since it allows for inco-
porating desired changes to the Product Backlog, taking requirements dependencies into account,
which are represented as the so�ware product’s life-cycle (business workflow). It supports the team
in deciding on the priority of an item in the Product Backlog and its general presence in the "done"
Product Increment.

The output of theProject Review is a revisedProduct Backlog andaperformancemeasurement,
which indicates the ongoing pace of the project team and enables a more realistic planning of sub-
sequent Project Time-Boxes in regard to their capacity.

Make the Frame(s)work 185

Project Retro – Lessons Learned

The Project Retro Agenda in table 9.5 represents the Scrum Event of Sprint Retrospective applicable
to problem-based project planning.

Name: Project Retro

Input: · Product Increment, latest
· Project Backlog, of Ongoing Project Time-Box
· Project Time-Box, used for Ongoing Project Backlog
· Ongoing Performance of Team ::= {scored points for "done" Project Backlog items }
· Past Performance, of other Projects or Teams
· Product Backlog, revised

Participants: Team ::= {3Amigos}

Activities: R 3. Inspect Team Performance.
I Problem-Based Project Benchmarking

R 4. Adapt for Team Improvement.
I Problem-Based Project Adaptation1

Output: · Project Backlog, enshrines Lessons Learned, which are imported to the Product Backlog
by I recognizable units of proven problem solving knowledge1

as a shareable means to improve Teamwork/performance in next Project Time-Box.
· Project Time-Box, revised capacity

Validation: · Cause of Ongoing performance has been identified, and considered in Lessons Learned.
· Ongoing Performance of Team is taken into account as past speed for decisions on the
teams projected capacity (sustainable pace) in subsequent Project Planning Agenda.

1 Patterns View of the "One4All" View Model on so�ware architecture

TABLE 9.5 Project Retro Agenda

The last but not least Agenda to be executed at the end of a Project Time-Box is Project Retro.
It is only the Project Team, which participates in this meeting, since it serves their continuous im-
provement by holding on their lessons learned.

No changes to the product’s requirements benchmark, i.e. the "done" product increment, or to
the project’s performance benchmark, i.e. the team’s scored function points for this Project Time-
Box, are made, but these benchmarks are compared with the baseline given by the Project Backlog
of the Ongoing Project Time-Box, or others if available.

The Project Retro is organized into two activities.
First, the team inspects its Ongoing Performance by comparing its function points planned in

the beginning of the Project Time-Box with those actually scored at the end.
These facts are o�enmade transparent and documented by a Sprint Report. I Problem-Based

Project Benchmarking eases the generation of such a report as it builds on a baseline made up of
Requirements Work Packages, which are comparable among project (Time-Boxes and) Teams.

For instance, (variants of) requirements worked on in di�erent project (Time-Boxe)s are com-
parable at the level of problems with each other. As these are equally scoped and in size, when us-
ing Requirements Work Packages, so is their assigned point value comparable, too. That way, the
items of a problem-based project baseline and their speed benchmarks becomemeaningful across
project (team)s. This empowers the Project Team to benefit from proven practices of others and to
disseminate their lessons learned. The failureandsuccessof realizinga specific solution for a specific
problem can now be replayed and revised by any Project Team.

186 Problem-Based Project Baseline and Speed Benchmark

This analysis of deviations from plan by identifying its causes and developing countermea-
sures, is executed in the second activity of the Project Retro Agenda. In focus is the Patterns View of
the "One4All" View Model of so�ware architecture around whichI Problem-Based Project Adapta-
tion takes place. The Project Team can try alternative patterns for gathering problems not "done"
in this Project Time-Box or for designing a di�erent solution to these. Project Backlog items whose
problem-solution approach has proven its usefulness become recognizable units of best practices
knowledge to the Project Team’s lessons learned.

A�er completing the Project Retro Agenda, the Project Backlog is closed, and a new Project
Time-Box can be started by executing the Project Planning Agenda again.

M
ake

the
Fram

e(s)w
ork

187

r r
Pr rP

product size = 17 FP product size = 17+13+18 = 48 FP

1 RWP02 (EI): 13 FP

2 RWP05 (EI): 18 FP

3 RWP06 (EQ): 16 FP

4 RWP03 (EQ): 16 FP

5 RWP04 (EO): 17 FP

6 RWP01 (EO,17) "done"

Product Backlog
of a Student Recruitment

Web Portal

«available»

«available»

«available»

Project Time-Box
available, for planning
the Product Increment

problem-based
project baseline

at approval

projected capacity = ??? FP sustainable pace < 31 FP
size-driven

1 RWP02 (EI) WIP 13 FP

2 RWP05 (EI) WIP 18 FP

3 RWP06 (EQ) WIP 16 FP

Project Backlog
at start of

Project Time-Box

«available»

«available»

«available»

speed benchmark

at production

1 "done" 13 FP

2 WIP

3 WIP

Project Backlog
during the

Project Time-Box

speed benchmark

at delivery

1 "done" scores 13 FP

2 "done" scores 18 FP

3 still WIP scores none

Project Backlog
at end of

Project Time-Box

3 RWP06 (EQ): 16 FP

5 RWP04 (EO): 17 FP

4 RWP03 (EQ): 16 FP

1 "done"

2 "done"

6 RWP01 (EO,17) "done"

Product Backlog
revised, at end of
Project Time-Box

«available»

«available»

Project Time-Box
realistic, for planning
next Product Increment

1 RWP02 (EI,13) "done"

2 RWP05 (EI,18) "done"

Project Planning Agenda Project Daily Agenda Project Review Agenda&Retro Agenda

in in

ou
t I/O

in

ou
t

ou
t

Legend:
EI, EQ, EO = External Input, External Inquiry, External Output RWP = Requirements Work Package
FP = Function Point WIP = work in progress

FIGURE 9.2 Executing an agile project process following A S.M.A.R.T. Scrum-A·GenEDA

188 Problem-Based Project Baseline and Speed Benchmark

9.4. Benchmarking a Problem-Based Project Baseline
– A sustainable planning game

This section illustrates how to execute problem-based project planning by its sample application to
a Student Recruitment Web Portal. Therefore, it follows four agendas of an agile project process as
are elaborated by A S.M.A.R.T. Scrum-A·GenEDA.

In particular, it describes how the establishment of a problem-based project baseline and the
measurement of related, size-driven speed benchmarks contribute to the comparability of projects’
achievements, which is a prerequisite for implementing a sustainable project planning.

As shown in figure 9.2, the agendas for Project Planning, Project Daily, Project Review, and
ProjectRetroengagewitheachother tomanageprojectprogress,which isdocumentedby theProject
Backlog, and inspectable at start, during, and at the end of a Project Time-box.

Planning the project according to the Project Planning Agenda takes a Product Backlog and a
Project Time-Box as input for establishing the project baseline.

The output of this agenda is an approved project plan, which is given by a Project Backlog of
sized and prioritized Requirements Work Packages (RWP), for which a do-able work plan of how to
achieve desired project results is defined too.

The Product Backlog for the sample application of a Student Recruitment Web Portal in fig-
ure 9.2 consists of six Requirements Work Packages. Each includes one problem to be solved next.
In Project Planning, the teammust find a consensus on how to address these properly.

Therefore, the following activities P 1. to P 3. have to be executed:

Benchmarking a Problem-Based Project Baseline – A sustainable planning game 189

EXAMPLE 9.1 A S.M.A.R.T. Scrum-A·GenEDA – Planning activities at the start of a project

P 1. Cra� a Project Goal

As the Team has started to develop a MVPa, all so�ware functionality that belongs to the backbone
of the desired product increment should be provided at first by the project. These are assumed to
be those (20%) functional user requirements, which satisfy most (80%) users of this product. Thus
the Project Goal from subsequent Project Time-Boxes is continued: Deliver a MVP!

P 2. Estimate and decide on Product Backlog items for the Project Time-Box

TheselectionofProductBacklog items to theProjectTime-Boxavailable creates theProjectBacklog.
It forms a baseline of planned product scope and size against which the completion of respective
work items is compared. This comparison results in (speed) benchmarks for project(progres)s.
The top three Requirements Work Packages (RWP) as given in the outer le� Product Backlog for the
StudentRecruitmentWebPortal in figure9.2areathighestpriority tobedone in theavailableProject
Time-Box for the delivery of a MVP.
As the functional size for each Requirements Work Package can be determined byI Problem-Based
Estimating, each work item of the Product Backlog is (reasonably assumedb to be already) assigned
with a function point value.
As can be seen at the upper le� corner of the Product Backlog in 9.2, the size delivered by the latest
Product Increment for the Student Recruitment is 17 FP for providing RWP01 so�ware functionality.
If past performance of the team, i.e. its speed is known, it can be used for determining the projected
capacity of a Project Time-Box. For this example, the Project Time-Box is of unknown size, since the
Team is newly formed, and the problems to be solved are of a di�erent kind (EI, EQ) compared to
what is already implemented in the latest Product Increment (EO). The Team decides to select all
three top RWP from the Product Backlog to become work in progress (WIP) that is to be completed
during the project. For exploring howmuch they are really capable to do in a Project Time-Box, the
team commits to the deliver(y speed of) 47 FP.

P 3. Plan how to deliver Product Backlog items into a "done" Increment

The Plans View of the "One4All" View Model of so�ware architecture assists this activity. It enables
the design of a solution alternative that fits the problem covered in each Requirements Work Pack-
age. Byuseof thisIProblem-BasedAdaptationFrame·work, patterns guide the transitionof desired
so�ware functionality to the delivered product increment through an instant blueprint su�icient for
planning as well as acceptancec of the work needed to be done.
aMVP = Minimum Viable Product
bThis is necessary to satisfy the first validation condition of this agenda.
cThis is necessary to satisfy the second validation condition of this agenda.

190 Problem-Based Project Baseline and Speed Benchmark

Daily doings on the project work During the Project Time-Box the team develops the Product In-
crement. Change to the Product Backlog is not in the focus at this time in a project.

Project progress asmade transparent by theProject Backlog is nowof interest. TheProject Daily
Agenda is applicable for keeping it up-to-date during the elapsing Project Time-Box.

TheProjectDaily Agenda takes theProduct Incrementand theProjectBacklogas input formoni-
toringwhichwork itemsof theproject baseline havealreadybeen "done"or are still work inprogress
(WIP).

The output of this agenda is a synchronization of the altered Project Backlog and the evolved
Product Increment, which measures project progress during execution of the actual so�ware pro-
duction. This allows for timely intervention in case of deviations.

The EXAMPLE 9.2 on page 190 presents the use of the Project Daily Agenda by executing its ac-
tivities D 1. and D 2. for the Student Recruitment Web Portal case study.

EXAMPLE 9.2 A S.M.A.R.T. Scrum-A·GenEDA – Daily activities during a project

D 1. Do work on Project Backlog items

The Team has to implement the work plan for each Project Backlog item. In case of impediments, it
has to strive for alternative solutions as described in D 2.

D 2. Inspect and adapt for project’s work progress

TheProjectBacklogatproduction time is shown in themiddle sectionof figure9.2. At thispoint in the
Project Time-Box, the Team has already completed RWP02, which is of highest priority to be "done"
within this project. This success of being in the position to deliver desired so�ware functionality
scores the first 13 function points to the speed benchmark for this project. Respectively, RWP02 is
marked as "done" in the ongoing Project Time-Box. This is necessary to satisfy the second validation
condition of this agenda.
The Project Backlog items RWP05 and RWP06 remains as WIP to be done for the Product Increment
of this Project Time-Box. The Team should not only make sure that project progress is in time, but
also that it is in ongoing alignmenta with the Project Goal.
aThis is necessary to satisfy the first validation condition of this agenda.

Benchmarking a Problem-Based Project Baseline – A sustainable planning game 191

Re-Vision of the project achievements The Project Review Agenda and Project Retro Agenda are
both executed at the end of the Project Time-Box, so the input required is largely comparable. They
take over the Project Backlog and the Product Increment as they are, a�er the time for the ongoing
project has elapsed. No changes are made to these inputs at this time.

Of most interest is the Project Backlog at the end of the Project Time-Box as it drives the plan-
ning of subsequent projects for this product. It not only exhibits the progress made during produc-
tion, it also embodies related lessons learned of “what works” [86] for the Team in the project while
“mov[ing] towards a common understanding” [86] of (what is) the product (about). Accordingly, the
Project Backlog not only contributes to the revision of the Product Backlog, which belongs to the
output of these agendas too, it also helps to revise the capacity of the Project Time-Box, by which
the Team is enabled tomakemore realistic commitments and consequently to proceed at a sustain-
able pace. The following activities R 1. to R 4. have to be executed:

EXAMPLE 9.3 A S.M.A.R.T. Scrum-A·GenEDA – Review&Retro activities at the end of a project

R 1. Inspect Product Increment

The team demonstrates the Product Increment to its key stakeholders, which exhibits the items of
the Project Backlog that have been "done" in the Project Time-Box. For the example increment, the
Team has to deal without so�ware functionality for RWP06.

R 2. Adapt Product Backlog

The team adapts the Product Backlog based on the feedback provided by the key stakeholders, and
supported by the Processes View as applicable by use of I Problem-Based Project Adaptation. As
a result of this discussion, the priority and presence of Requirements Work Packages in the Product
Backlog is changeda and integrates the results asproduced for eachwork itemof theProjectBacklog.
For the example Product Backlog on the right side of figure 9.2 this means, the progress made for
RWP02 and RWP05 results a reprioritization of these by moving them to the bottom of the Product
Backlog, as they represent "done" so�ware functionality, which is delivered in the Product Incre-
ment. RWP06 remains work in progress (WIP) as it is not implemented, and thus not part of the
Product Increment. It moves to the top of the Product Backlog, since it is at highest priority com-
pared with the other items of the Product Backlog a�er completion of RWP02 and RWP05. RWP03
and RWP04 are reprioritizedb as (RWP04:) having the candidate’s data available in a PDF file is of
more value to the admin users of the students’s recruitment process, than (RWP03:) the simple pre-
sentation of a candidate’s data on the screen only.
aThis is necessary to satisfy the first and second validation condition of the Project Review Agenda.
bNote that this is an example only. Of course, other reasons can be found for this decision making.

192 Problem-Based Project Baseline and Speed Benchmark

EXAMPLE 9.4 A S.M.A.R.T. Scrum-A·GenEDA – Review&Retro activities , continued

R 3. Inspect Team Performance

As illustrated in figure9.2 the speedbenchmarkof 31 FP is scoredby theTeamfor theprojectbaseline.
Remaining WIP from the project score no function points to this speed benchmark the Team has
earned in the Project Time-Box . Since this size-driven performance measurement implements a
I Problem-Based Project Benchmarking, it serves the reasonable limitation of the Project Time-
Box in subsequent project planninga, and supports the Team in identifying alternative solutions for
those desired so�ware functionality, which has not been delivered by the Product Increment. Past
performance becomes a reusable knowledge base for seekingways out of underarchievementb as is
covered by activity R 4.

R 4. Adapt for Team Improvement

As all items of the Project Backlog renew the Product Backlogc, so are the team’s lessons learned at
the end of the project.
By use of I Problem-Based Project Adaptation their problem solving knowledge is made reusable
via the Patterns View of the One4All View Model.
Work items successfully done represent good practices, whereas those not completed can be re-
membered as failed attemps.
Since these valuable experiences gathered by the team are enshrined in recognizable units of so�-
ware functionality, i.e. Requirements Work Packages, they become a reusable means for other
projects or teams to compare their project achievements and improve their practices.
For instance, as the Product Backlog in figure 9.2 does not provide any "done" Requirements Work
Packages for EQ-problems, the team could check other products for implementations of this kind of
problems, such that they get an idea of what works (realistically) to get RWP06 and RWP03 done.
As patterns are the medium used in problem-based project planning for knowledge gathering and
sharing, these create useful synergies for projects and their teams. It is this pattern-enhanced ca-
pability of project teams to adopt the problem-solving knowledge of others, which lets them adapt
their project practices and thereby speed up project progress.
aThis fulfills the second validation condition of the Project Retro Agenda
bThis fulfills the first validation condition of the Project Retro Agenda
cThis satisfies the first validation condition of Project Review Agenda

Discussion & Related Work 193

9.5. Discussion & Related Work

A problem-based project baseline as introduced in this chapter not only supports size-driven speed
benchmarks, whichmake performance measurement of the so�ware delivery process for productiv-
ity analysis [178, page 368] possible.

It also allows for the implementation of a pattern-enhanced improvement process by best prac-
tice benchmarking [113, page 1 and page 7], which is designed for determining the proven problem-
solving knowledge, that has enabledand canbe reused for establishing comparable project achieve-
ments.

To this extent, the proposed approach of Problem-Based Project Benchmarking is in line to
“benchmarking as a key component of quality assurance and process improvement (Watson, 1992).”
[71, page 21], as well as to “Continuous engineering [which] is about strategic reuse, about not re-
inventing the wheel and about actively preventing re-work.” [161]

As “Benchmarking processes are not easy to implement [. . .as they] will be successful only if
made an integral part of the project process” [71, page 24 and 25], problem-based project bench-
markingasdeveloped in this chapter is integrated toaScrum-alikeprojectprocessnamedAS.M.A.R.T.
Scrum-A·GenEDA. It copes successfully with known barriers to the introduction of benchmarking
processes, such as

1. ensuring data validity, addressing

2. the fear of data sharing, and

3. the lack of slack for data collection.

Therefore, problem-based benchmarking takes these known barriers into account by utilizing

1. a pattern-basedmeasurement and development process, which cares by design for data com-
pleteness and accuracy, as it is in accordance with IFPUG ISO standard, instead of relying ex-
clusively on gutfeel assessment. “Benchmarking is the most credible of all justifications for
operations [. . .] as it “removes the subjectivity from decision making” [48, page 15].

2. “an identity-blind [sinceproblem-basedprojectbenchmarking]process,whereasdataareposted
without attribution” [71, page 24] for mitigating the concerns of unwanted exposure to com-
petitive advantages or personal weaknesses, especially given that “measuring employees [. . .]
on an individual basis is illegal in some countries.” [15, page 465] For instance, performance
and behavioral controlmay be in conflict with thework constitution law, the general data pro-
tection regulations, or personal rights, which belong to the fundamental rights in the German
Constitution.

3. the items of product and project backlog, which are already in place, i.e. Requirements Work
Packages as structured reference points for the data harvesting and storage. That way, no ad-
ditional consumption of time or resources for the benchmarking process occurs, as respective
intelligence gathering based on benchmarking data comes along with executing the project
(planning) process itself. It applies these multi-purpose units for the delivery and comparison
of satisfied user expectations as well.

194 Problem-Based Project Baseline and Speed Benchmark

9.6. Summary

This chapter presents a Scrum-alike project process, which enables problem-basedproject planning
and benchmarking.

This project process is documented by A S.M.A.R.T. Scrum-A·GenEDA, which implements agile
practices for the continuous improvement of product management and product engineering per-
spectives in so�ware development projects. It is structured into four agendas, of which each adopts
exactly one event of a Scrum Sprint. In addition, it integrates Problem-Based Project Estimating
and Problem-Based Project Adaptation to these agendas too, which makes problem-based project
benchmarking of the work "done" in a project timebox possible.

One these grounds, requirementswork packages as developed in section 5.3 of this dissertation
becomesultimatelyS.M.A.R.T. Their useasunits for thedefinitionof specific andmeasurableproduct
scope, as well as their use as units for the design of achievable production work plans, is further
developed for their use as units for the realistic and time-bound benchmarking of project progress.
That way, a project baseline (sized product scope) together with its related performance measure-
ment (speed of production), which both build on these units, become comparable among projects
and teams.

Problem-Based Project Benchmarking takes the speed of delivering a working product incre-
ment into systematic account. It factors in the team’s need to know its speed, which is used as input
to their project planning, i.e. for making credible commits. Speed is given by functions points in
Problem-based Project Benchmarking, which are achieved by the team for completed items of a
project work plan in a project timebox. This work plan is set up by a project backlog of requirements
work packages, which all are of known functional size. Consequently, it takes account of proven
progress (scored point values for solved problems) instead of anticipated progress (estimated point
valuesbasedonapoker game) against a recognizableproject plan. Thatway, problem-basedproject
benchmarking establishes a sustainable planning game due to the provision and use of (functional)
size (as performance) data.

As the satisfaction of user expectations is bound to problems and not to people, implemented
solutions and involved success benchmarks become available as sharable lessons learned for other
projects. These patterns of experienced problem-solving knowledge, and their related point values
assist teams in establishing feasible work plans that fit to a defined project timebox.

Part V.

Case Studies

Part V Case Studies presents two comprehensive application examples for illustrating the use and
importance of the contributions given by this dissertation, to control speed of software projects.
Chapter 10 Vacation Rentals Web Application revisits a didactic play from the lecture Software
Technology, which is used by the Working Group Software Engineering at the University of
Duisburg-Essen to demonstrate the ADIT procedure, an agenda-driven and pattern-based soft-
ware development process. Chapter 11 Student Recruitment Web Portal applies the contribu-
tions of this dissertation to a software application, which has emerged from a student project
and is used by the Faculty of Engineering at the University of Duisburg-Essen in support of their
"International Studies in Engineering" program.

http://swe.uni-due.de
www.uni-due.de
www.uni-due.de
http://www.way2studying.de/en/application.html
http://www.uni-due.de/ise/

196 Vacation Rentals Web Application

10. Vacation Rentals Web Application

The vacation rentals is an online travel agency, where some customers or respective guests can go
browsing holiday o�ers, make bookings, etc. The travel agent or respective sta�member is respon-
sible for maintaining the holiday o�ers, that are available via the vacation rentals web application.

This section revisits a respective so�ware requirements documentation as given in [67, 108], for
illustrating the applicationof problem-basedproject estimating as introduced in chapter 6Problem-
BasedEstimatingMethod, aswell asproblem-basedprojectadaptationasdefined inchapter8Problem-
Based Adaptation Framework to this case study.

Thereby, this chapter provides the basis for discussing the use, changes, and impact made by
the contributions of this dissertation on this specific so�ware application, and in general to so�ware
engineering activities.

Requirements Decomposition 197

10.1. Requirements Decomposition

The vacation rentals web application is based on nine requirements, which are given in table 10.1.
These are decomposed to seven independent problems by means of problem frames.

No. Requirement Statement Problem Name

R01 A sta� member canmake holiday o�er s available. Make

R02 A guest can browse available holiday o�er s. Browse[O�erings]

R03 A guest can book available holiday o�er s, which then
are reserved. Book

R04 A�er a guest books a holiday o�er, she is provided a cor-
responding invoice .

R05 If a reserved holiday o�er is not paid within 14 days, it is
automatically set available again.

Reset

R06 A sta� member can record when a payment is re-
ceived[. . . , which makes a holiday o�er booked].

Pay

R07 A sta� member can rate the status of a vacation home,
a�er a guest le� it. Rate

R08 If the status of a vacation home is rated negatively, the
guest receives an additional invoice .

R09 A sta� member can browse reserved[. . .and booked]
holiday o�er s.

BrowseBookings

TABLE 10.1 Requirements for a vacation rentals web application

For the sake of clarity, the requirement statements for R06 and R09 have been slightly modi-
fied, as well as the problem name for R02. The constituent parts of each requirement statement,
which relate to a problem domain are framed by a colored text box, the ones that relate to a causal
phenomenon are written in boldface and the ones that relate to symbolic phenomena are in italics.

198 Vacation Rentals Web Application

Due to the application of problem-based functional size measurement patterns and the crite-
ria for joining measurable problems, these nine requirements are (re-)decomposed to only three,
unique requirementsworkpackages: RWP01, RWP02, andRWP03,whichare summarized in table 10.2.

No. Problem Name Requirement Work Package

R09 BrowseBookings RWP02: Present Holiday O�ers
R02 Browse[O�erings]

R07 Rate
RWP03: Provide InvoiceR08 Rate

R04 Book

R03 Book

RWP01: Prepare Holiday O�erR05 Reset

R06 Pay

R01 Make

TABLE 10.2 Decomposition of requirements for a vacation rentals web application

All the details on the setup of each requirements work package are elaborated in the following.

Requirements Decomposition 199

10.1.1. Problem description for RWP01: Prepare Holiday O�er

The requirements R01, R03, R05, and R06 of the vacation rentals web application that constitute
the Requirements Work Package 01: Prepare Holiday O�er (RWP01) given in table 10.3 are originally
decomposed to di�erent independent problems, namelyMake,Book,Reset, and Pay by instanti-
ating the update or the simple transformation problem frame as documented in [108, slide 257],
which are no Basic FSM patterns. Now, these four requirements belong to the same measurable
problem.

No. Problem Name Problem Frame Problem Class

R03 Book update variant
simple workpieces
(external input, EI)R05 Reset simple transformation

R06 Pay update

R01 Make update

TABLE 10.3 Setup of Requirements Work Package RWP01: Prepare Holiday O�er

Reconsidering the requirements’ problemclass by problem-based functional sizemeasurement
patternsasgiven in table5.5 results in classifying their typeof functionality toonewhich is concerned
with processing received information, i.e. to TOFF-i. as introduced in section 5.4.3.

In other words, the primary intent shared by the requirements R01, R03, R05, and R06 is to
take received information from the guest or sta� member for preparing to some extent a holiday
o�er. This is the concern, which separates relevant from irrelevant requirements for any require-
mentswork package, and the reasonwhy R01, R03, R05, and R06 becomemembers in a common re-
quirements work package representing an instance of the simple workpieces problem frame. Thus,
RWP01 implements a measurable problem, which belongs to an external input (EI).

In this connection, it is not ignored that preparing holiday o�ersmust be presented to the users
in some way, which may initially have given the reason to make use of the update problem frame.
Nevertheless, this is not at theheart of theproblems that are implemented in this requirementswork
package and to be solved here. RWP01 is about preparing holiday o�ers, which is also a recognizable
characteristic in its specification given in figure 10.5.

Of special interest is the assignment of R05 to this requirements work package, which is due to
two reasons that are in contrast to the original documentation of the vacation rentals. First, R05 is
a level I. micro problem according to table 5.3 on page 55, which is now mounted to the basic level
II. of requirements decomposition, that provides more problem context. Second, R05 newly shares
the phenomenon book with R03 as illustrated in figure 10.5.

What happened is that the Book problem R03 integrates the former Reset problem R05 to a
common problem scope, which is justified by the criteria given on page 66 that help to identify over-
laps in the problem scope of measurable problems, and thereby explicating their logical relation or
the involved requirements dependencies.

R01, R03, R05, and R06 fulfill all three criteria: 1st. they fit the same problem class with respect
to holiday offer , 2nd. they have overlaps in their problem scope with respect to status information
available, reserved, and booked, as well as book, which do not let them change independently of
each other, and 3rd. they are in a parallel composition with the Reset Problem according to the
life-cycle for the vacation rentals, which makes them candidates for merger to one common mea-
surable problem. These four requirements form a coherent set of so�ware functionality that is rea-
sonably implemented in one requirements work package. Their overlap is a common constraint on
the holiday offer problem domain.

200 Vacation Rentals Web Application

10.1.2. Problem description for RWP02: Present Holiday O�ers

The requirements R02 and R09 of the vacation rentals web application are implemented in the Re-
quirements Work Package 02: Present Holiday O�ers (RWP02) given in table 10.4. In the original
requirements decomposition as documented by [108, slide 257], they instantiate di�erent indepen-
dent problems, namelyBrowseOfferings andBrowseBookings by use of the query problem frame,
which is a Basic FSM patterns as defined in table 5.5.

No. Problem Name Problem Frame Problem Class

R02 BrowseBookings query query
(external inquiry, EQ)R09 BrowseO�erings query

TABLE 10.4 Setup of Requirements Work Package RWP02: Present Holiday O�ers

The primary intent shared by the requirements R02 and R09 is to retrieve information from the
given holiday o�ers and to show these to a user via the web browser, i.e. their type of functional-
ity belongs to TOFF-ii. as introduced in section 5.4.3. This concern is the reason why R02 and R09
become members in a common requirements work package RWP02, keeping them as instances of
the query problem frame. They describe variants of finally the samemeasurable problem, one that
coincides with an external inquiry as illustrated in figure 10.6. The criteria given on page 66 provide
additional justification for implementing R02 together with R09 in RWP02.

Requirements Decomposition 201

10.1.3. Problem description for RWP03: Provide Invoice

The requirements R04, R07 and R08 of the vacation rentals web application are jointly implemented
in the Requirements Work Package 03: Provide Invoice (RWP03) given in table 10.5. In the original
requirements decomposition as documented by [108, slide 257], they instantiate di�erent indepen-
dent problems, namelyRate for R08 andR07, and theBrowseBookings problem for R04making use
of the update variant problem frames, which are no Basic FSM patterns.

No. Problem Name Problem Frame Problem Class

R04 Book update commanded
data-based control
(external output, EO)

R07 Rate update variant

R08 Rate update variant

TABLE 10.5 Setup of Requirements Work Package RWP03: Provide Invoice

Comparable toRWP01,which isdescribedonpage 199, RWP03comprisesmulti-compositeupdate
problems, whichmust be reduced to a single concern in order to fit a basic FSM pattern, and thus to
represent a measurable problem.

In contrast toRWP01,whose typeof involved so�ware functionalitywasclassifiedasTOFF-i. that
coincides with an external input, this time the primary intent considered by RWP03 is reduced to the
concern of processing derived information, that is TOFF-iii, which coincides with an external output
as introduced in section 5.4.3. This type of functionality is more appropriate for characterizing the
measurable problem at hand.

As figure 10.7 illustrates, with regard to the user triggering a rate or book, RWP03 creates in-
voices based on some derived information for a holiday offer and sends these to a respective guest
via email. This is best covered by the problem-based functional size measurement pattern #15 com-
manded data-based control as given in table 5.5. The criteria given on page 66 provide additional
justification for implementing R04, R07 and R08 in RWP03.

202 Vacation Rentals Web Application

10.2. Requirements Measurement

This chapter gives in its sections 10.2.1 to 10.2.3 a problem-based functional sizemeasurement of the
Vacation Rentals Web Application by following the Frame Counting Agenda.

10.2.1. Problem count for RWP01: Prepare Holiday O�er

«Requirements Work Package» Prepare Holiday O�er

«machine» Holiday O�er editor

«lexicalDomain» Holiday O�er

«biddableDomain» Guest

«biddableDomain» Sta�

«requirements» R01 R05 R03 R06

HEM!{create, reserve, reset, paid}

HO!{Sta�Name, HoName, HoPrice,
CreationDate, GuestName, ReservationDate,

CancelationDate, PaymentDate}

ST!{make, Sta�Name, HoName, HoPrice,
CreationDate, record, PaymentDate}

GT!{book, GuestName, HoName,
ReservationDate, CancelationDate}

ST!{prepare-
HolidayO�er}

GT!{mark-
HolidayO�er}

HO!{HolidayO�erEditing}

DF, 1 ILF, 1RET, 1 FTR

DF, 1EIF, 1RET, 1 FTR

DF, 1EIF, 1RET, 1 FTR

TF, External Input (EI)

13 FP
RWPsize

FIGURE 10.1 Determining the functional size of RWP01: Prepare Holiday O�er

Comments on counting process activity Results of activity
1. Classify FUR by Functional Size Measurement Patterns.
Applied validation conditions: V.i - V.iii PF 2.7 simple workpieces prob-

lem
2. Determine Data Functions.
2.a Identify problem domains as data functions.
Applied validation conditions: V.iv, (V.v) 3 data functions: Sta�, Guest,

Holiday O�er
2.b Classify data functions into ILF or EIF.
Applied validation conditions: V.vi, V.vii, (V.viii,) V.ix, V.x 2 EIF: Sta�, Guest

1 ILF: Holiday O�er
2.c Count DET for each data function.
Applied validation conditions: V.xi DETStaff = 5

DETGuest = 4
DETHoliday Offer = 8

2.d Count RET for each data function.
Applied validation conditions: V.xii RETStaff = 1

RETGuest = 1
RETHoliday Offer = 1

2.e Determine functional complexity for data functions.
Applied validation conditions: V.xiii ILFDET = 8

Applied validation conditions: V.xiv
((((((((((
EIFDET = 5 + 4 = 9

Applied validation conditions: V.xv(, V.xvi) EIFDET = 9− 5− 4 = 0
Applied validation conditions: V.xvii ILFRET = 1
Applied validation conditions: V.xviii EIFRET = 2
Applied validation conditions: V.xix(,V.xxi) dueEIFDET = 0 EIFComplexity = {n/a}

Requirements Measurement 203

Comments on counting process activity Results of activity
Applied validation conditions: V.xx by ILFComplexity(1, 8) = low ILFComplexity = {low}
2.f Determine functional size for data functions.
ILFSize(ILFComplexity, ILF) = ILFSize(low, ILF) = 7 ILFSize = 7 function points
EIFSize(EIFComplexity, EIF) =EIFSize({n/a}, EIF) = 0 EIFSize = 0 function points
Applied validation conditions: V.xxii, V.xxiii(, V.xxiv)
3. Determine Transactional Function.
3.a Identify machine domain as transactional function.
Applied validation conditions: V.xxv TF: Holiday O�er editor
3.b Classify transactional function as either EI, EQ, or EO.
Applied validation conditions: for simple workpieces V.xxvi TFType = EI
3.c Count FTR for transactional function.
TFFTR = n ILF +m EIF = 1 + 2 = 3. TFFTR = 3
Applied validation conditions: V.xxvii
3.d Count DET for transactional function.
Applied validation conditions: V.xxviii, V.xxix, V.xxx, V.xxxi TFDET = 12
3.e Determine functional complexity for transactional function.
TFComplexity(TFType, TFFTR, TFDET) = TFComplexity(EI, 3, 12) TFComplexity = high
Applied validation conditions: V.xxxii
3.f Determine functional size for transactional function.
TFSize(TFComplexity, TFType) = TFSize(high,EI) TFSize = 6 function points
Applied validation conditions: V.xxxiii
4. Report Functional Size for FUR.
MeasurableProblemsize = ILFSize + EIFSize + TFSize = 7 + 0 + 6 RWP01size =
Applied validation conditions: V.xxxiv 13 function points

204 Vacation Rentals Web Application

10.2.2. Problem count for RWP02: Present Holiday O�ers

«Requirements Work Package» Prepare Holiday O�er

«lexicalDomain» Holiday O�er

«requirements» R02 R09

HO!{Holiday O�erings}

«machine» Holiday O�er interrogator

«displayDomain» Web Browser

«biddableDomain» Guest

«biddableDomain» Sta�

HO!{Sta�Name, GuestName, HoName, HoPrice, ReservationDate,
CreationDate, CancelationDate, PaymentDate}

HIM!{retrieve}
HIM!{Sta�Name, GuestName, HoName, HoPrice, ReservationDate,

CreationDate, CancelationDate, PaymentDate}
HIM!{present}

ST!{browse, Sta�Name}

GT!{browse, GuestName}

ST!{browseSta�-
HolidayO�ers}

GT!{browseGuest-
HolidayO�ers}

WB!{BrowseResult4O�erings}

DF, 1 ILF, 1RET, 1 FTR

DF, 1 ILF, 1RET, 1 FTR

DF, 1EIF, 1RET, 1 FTR

DF, 1EIF, 1RET, 1 FTR

TF, External Inquiry (EQ)

13 FP
RWPsize

FIGURE 10.2 Determining the functional size of RWP02: Present Holiday O�ers

Comments on counting process activity Results of activity
1. Classify FUR by Functional Size Measurement Patterns.
Applied validation conditions: V.i - V.iii PF 3.8 query problem
2. Determine Data Functions.
2.a Identify problem domains as data functions.
Applied validation conditions: V.iv, (V.v) 4 data functions: Sta�, Guest,

Holiday O�er, Web Browser
2.b Classify data functions into ILF or EIF.
Applied validation conditions: V.vi, V.vii, (V.viii,) V.ix, V.x 2 EIF: Sta�, Guest

2 ILF:HolidayO�er,WebBrowser
2.c Count DET for each data function.
Applied validation conditions: V.xi DETStaff = 1

DETGuest = 1
DETHoliday Offer = 8
DETWeb Browser = 8

2.d Count RET for each data function.
Applied validation conditions: V.xii RETStaff = 1

RETGuest = 1
RETHoliday Offer = 1
RETWeb Browser = 1

2.e Determine functional complexity for data functions.
Applied validation conditions: V.xiii

((((((((((
ILFDET = 8 + 8 = 16

Applied validation conditions: V.xvi ILFDET = 16− 8 = 8

Applied validation conditions: V.xiv
((((((((((
EIFDET = 1 + 1 = 2

Applied validation conditions: V.xv EIFDET = 2− 1− 1 = 0
Applied validation conditions: V.xvii ILFRET = 2
Applied validation conditions: V.xviii EIFRET = 2
Applied validation conditions: V.xix(,V.xxi) dueEIFDET = 0 EIFComplexity = {n/a}
Applied validation conditions: V.xx by ILFComplexity(2, 8) = low ILFComplexity = {low}
2.f Determine functional size for data functions.
ILFSize(ILFComplexity, ILF) = ILFSize(low, ILF) = 7 ILFSize = 7 function points
EIFSize(EIFComplexity, EIF) =EIFSize({n/a}, EIF) = 0 EIFSize = 0 function points
Applied validation conditions: V.xxii, V.xxiii(, V.xxiv)

Requirements Measurement 205

Comments on counting process activity Results of activity
3. Determine Transactional Function.
3.a Identify machine domain as transactional function. TF: Holiday O�er interrogator
3.b Classify transactional function as either EI, EQ, or EO.
Applied validation conditions: for query V.xxv TFType = EQ
3.c Count FTR for transactional function.
TFFTR = n ILF +m EIF = 2 + 2 = 4. TFFTR = 4
Applied validation conditions: V.xxvi
3.d Count DET for transactional function.
Applied validation conditions: V.xxvii, V.xxviii, V.xxix, V.xxx, V.xxxi TFDET = 13
3.e Determine functional complexity for transactional function.
TFComplexity(TFType, TFFTR, TFDET) = TFComplexity(EQ, 4, 13) TFComplexity = high
Applied validation conditions: V.xxxii
3.f Determine functional size for transactional function.
TFSize(TFComplexity, TFType) = TFSize(high,EQ) TFSize = 6 function points
Applied validation conditions: V.xxxiii
4. Report Functional Size for FUR.
MeasurableProblemsize = ILFSize + EIFSize + TFSize = 7 + 0 + 6 RWP02size =
Applied validation conditions: V.xxxiv 13 function points

206 Vacation Rentals Web Application

10.2.3. Problem count for RWP03: Provide Invoice

«Requirements Work Package» Provide Invoice

«lexicalDomain» Holiday O�er

«requirements» R0708 R04

HO!{Holiday O�erings}

«machine» Invoice scheduler

«causalDomain» Email Program

«biddableDomain» Guest

«biddableDomain» Sta�

HO!{Sta�Name, GuestName, HoName, HoPrice,
PaymentDate}
ISM!{retrieve}

ISM!{Sta�Name, GuestName, HoName, HoPrice,
InvoiceText}
ISM!{provide}

ST!{rate, Sta�Name, HoName, InvoiceText}

GT!{book, GuestName, HoName}

ST!{RatingA�erPay-
Invoice}

GT!{ReservationToPay4-
Invoice}

EP!{Invoice4O�ering}

DF, 1 ILF, 1RET, 1 FTR

DF, 1 ILF, 1RET, 1 FTR

DF, 1EIF, 1RET, 1 FTR

DF, 1EIF, 1RET, 1 FTR

TF, External Output (EO)

14 FP
RWPsize

FIGURE 10.3 Determining the functional size of RWP03: Provide Invoice

Comments on counting process activity Results of activity
1. Classify FUR by Functional Size Measurement Patterns.
Applied validation conditions: V.i - V.iii PF 3.7 commanded data-based

control problem
2. Determine Data Functions.
2.a Identify problem domains as data functions.
Applied validation conditions: V.iv, (V.v) 4 data functions: Sta�, Guest,

Holiday O�er, Email Program
2.b Classify data functions into ILF or EIF.
Applied validation conditions: V.vi, V.vii, (V.viii,) V.ix, V.x 2 EIF: Sta�, Guest

2 ILF: Holiday O�er, Email Pro-
gram

2.c Count DET for each data function.
Applied validation conditions: V.xi DETStaff = 3

DETGuest = 2
DETHoliday Offer = 5
DETEmail Program = 5

2.d Count RET for each data function.
Applied validation conditions: V.xii RETStaff = 1

RETGuest = 1
RETHoliday Offer = 1
RETEmail Program = 1

2.e Determine functional complexity for data functions.
Applied validation conditions: V.xiii

((((((((((
ILFDET = 5 + 5 = 10

Applied validation conditions: V.xvi ILFDET = 10− 4 = 6

Applied validation conditions: V.xiv
((((((((((
EIFDET = 3 + 2 = 5

Applied validation conditions: V.xv EIFDET = 5− 2− 3 = 0
Applied validation conditions: V.xvii ILFRET = 2
Applied validation conditions: V.xviii EIFRET = 2
Applied validation conditions: V.xix(,V.xxi) dueEIFDET = 0 EIFComplexity = {n/a}
Applied validation conditions: V.xx by ILFComplexity(2, 6) = low ILFComplexity = {low}
2.f Determine functional size for data functions.
ILFSize(ILFComplexity, ILF) = ILFSize(low, ILF) = 7 ILFSize = 7 function points
EIFSize(EIFComplexity, EIF) =EIFSize({n/a}, EIF) = 0 EIFSize = 0 function points
Applied validation conditions: V.xxii, V.xxiii(, V.xxiv)

Requirements Measurement 207

Comments on counting process activity Results of activity
3. Determine Transactional Function.
3.a Identify machine domain as transactional function. TF: Invoice scheduler
3.b Classify transactional function as either EI, EQ, or EO.
Applied validation conditions: for query V.xxv TFType = EO
3.c Count FTR for transactional function.
TFFTR = n ILF +m EIF = 2 + 2 = 4. TFFTR = 4
Applied validation conditions: V.xxvi
3.d Count DET for transactional function.
Applied validation conditions: V.xxvii, V.xxviii, V.xxix, V.xxx, V.xxxi TFDET = 13
3.e Determine functional complexity for transactional function.
TFComplexity(TFType, TFFTR, TFDET) = TFComplexity(EO, 4, 13) TFComplexity = high
Applied validation conditions: V.xxxii
3.f Determine functional size for transactional function.
TFSize(TFComplexity, TFType) = TFSize(high,EO) TFSize = 7 function points
Applied validation conditions: V.xxxiii
4. Report Functional Size for FUR.
MeasurableProblemsize = ILFSize + EIFSize + TFSize = 7 + 0 + 7 RWP03size =
Applied validation conditions: V.xxxiv 14 function points

208 Vacation Rentals Web Application

10.3. Use Case Decomposition

Figure 10.4 gives a use case diagram as an alternative requirements decomposition to the problem-
based decomposition in table 10.2. As already illustrated and discussed for the use case decompo-
sition of the Student Recruitment Web Portal in section 8.6 Sample Application to Use Case Decom-
position on page 168, problem-based functional size measurement patterns are applicable for the
identification and structuring of requirements into user stories as well as in UML use cases.

The benefits of this combination are multifold:

1. More flexibility in documenting the requirements.

2. Higher consistency between di�erent requirement models.

3. Wider applicability and comparability of function point values, which result from problem-
based functional size measurement by the Frame Counting Agenda.

For instance: As figure 10.4 showsby thegray-coloredgeneralization relations, usecases,which
can be combined into one requirements work package (due to their shared referenced prob-
lemdomain andproblemclass) become recognizable. This ensures that these are counted the
same way and without redundancy.

4. Other requirementmodels can take advantage of the requirements synchronization approach
as part of the Processes View in the “One4All” architectural view model, which is introduced
in section 8.3. It allows for analyzing requirements dependency based on state transition di-
agrams, such as introduced in section 8.5 Synchronizing Requirements by a State Transition
Diagram.

In figure 10.4, notational elements in gray serve only illustrative purposes. For instance, the
inheritance relations tousecasesRWP_* should show, that respective childuse cases share the same
underlying problem class. All other notational elements are conform to the OMG specification for
UML [168].

Use Case Decomposition 209

Vacation Rentals Web Application
Vacation Rentals Web Application

�include�

guest

sta�

Email Program

RWP_EI prepare
holiday o�er

RWP_EQ present
holiday o�er

RWP_EO provide
invoice

EI R01: make
holiday o�er

EI R06: record pay.
for holiday o�er

EI book
holiday o�er

EI R03:
finish book
holiday o�er

EI R05:
quit book
holiday o�er

EQ R02: browse
o�ers (to sta�)

EQ R09: browse
o�ers (to guest)

EO R07R08: rate
holiday o�er

EO R04: book(ings
invo. to) holiday o�er

FIGURE 10.4 UML use case diagram for the Vacation Rentals Web Application

210 Vacation Rentals Web Application

10.4. Requirements Specification

This section lists all task scenarios (as introduced and applicable for Problem templates in chap-
ter 7.4) for the requirements R01 to R08 that belong to the requirements work packages in the Vaca-
tion Rentals case study.

10.4.1. Task scenarios of RWP01: Prepare Holiday O�er

create
AVAILABLE

make

timeout(14Days)

reset[RESERVED]
AVAILABLE

book

reserve
RESERVED

book

paid
BOOKED

record

sta� member:B guest:B Holiday O�er editor:M Holiday O�er:Xrc

alt
[NONE]

R01R01

alt
[AVAILABLE]

R05R05

alt
[AVAILABLE]

R03R03

alt
[RESERVED]

R06R06

Legend: Objects are instances of a (b)iddable, le(x)ical, or (m)achine domain.
The subscript rc indicates the problem domain to which a requirements constraint (rc) refers to.

FIGURE 10.5 Specification of Requirements Work Package RWP01: Prepare Holiday O�er

Requirements Specification 211

10.4.2. Task scenarios of RWP02: Present Holiday O�ers

retrieve
Holiday O�ers

present(Holiday O�ers)

browse

retrieve
Holiday O�ers

present(Holiday O�ers)

browse

sta� member:B guest:B Holiday O�er interrogator:M Holiday O�er:X Web Browser:Drc

alt
[AVAILABLE or RESERVED or BOOKED]

R02R02

alt
[AVAILABLE]

R09R09

FIGURE 10.6 Specification of Requirements Work Package RWP02: Present Holiday O�ers

212 Vacation Rentals Web Application

10.4.3. Task scenarios of RWP03: Provide Invoice

retrieve
Holiday O�er

deriveInvoice

provide(additionalInvoice)

rate

retrieve
Holiday O�er

deriveInvoice

provide(correspondingInvoice)

book

sta� member:B guest:B Invoice scheduler:M Holiday O�er:X Email Program:Crc

alt
[BOOKED]

R07
and R08R07 and R08

alt
[RESERVED]

R04R04

FIGURE 10.7 Specification of Requirements Work Package RWP03: Provide Invoice

Requirements Dependencies 213

10.5. Requirements Dependencies

10.5.1. Life-Cycle Expressions

According to [108, slide 489] the life-cycle expression composing all seven problems for the vacation
rentals is:

LCguest = (BrowseOfferings+; [Book])∗

since booking a holiday o�er should only be possible a�er browsing these.

LCstaff member = (Make | (BrowseBookings; [Pay|Rate]))∗

LCvacation rentals = (||ni=1 LCguesti) || (||mj=1 LCstaff memberj) ||Reset∗

where ||ni=1LCi denotes the parallel composition of n copies of life-cycleLC.

As already elaborated, the requirements decomposition for the vacation rentals changed due to
the application of problem-based functional size measurement patterns. As a result there are now
three requirements work packages RWP01 to RWP03 that allow for problem composition.

The changed life-cycle expression for the vacation rentals web application integrates these re-
quirements work packages as follows:

LC
′
guest = (RWP02 .browse+; [(RWP01 .book ||RWP03 .book)])∗

LC
′
staff member = (RWP01 .make | (RWP02 .browse; [RWP01 .record |RWP03 .rate]))∗

LC
′
vacation rentals = (||ni=1 LCguesti) || (||mj=1 LCstaff memberj)

The dot-notation between the requirements work package name and one of its operations indi-
cates to which variant of the measurable problem the life-cycle refers to. Seemingly, the di�erence
between these two problem compositions for the vacation rentals consists in a simple problem re-
naming, but this does not tell the entire truth.

Comparing the life-cycle expressions for LCguest with each other reveals that the former Book
problem involves a mixed composition of several kinds of problems.

First, each booking results in a status change of an holiday o�er via so�ware functionality in
RWP01 that represents an external input. In addition it involves sending an invoice to the respective
guest via RWP03, which represents an external output. The life-cycle for LC ′guest reveals this inter-
problemrelationshipsofdi�erentmeasurableproblemsand therewith their respective requirements
dependencies. Di�erent problems are put to di�erent requirements work packages and then com-
posed by life-cycle expressions. That is why RWP01 and RWP03 substitute the formerBook problem
inLCguest and are composed in parallel with respect to the operation book inLC

′
guest.

214 Vacation Rentals Web Application

Second, the Reset problem, which is considered as an “internal operation” in the original re-
quirements decomposition, is now reasonably mounted to the problem context of the “user-recog-
nizable operation” book in RWP01. This establishes intra-problem cohesiveness of dependent so�-
ware functionality, that is implemented in one requirements work package. In addition, this con-
tributes to the user view on requirements as requested by functional size measurement. Therefore,
theReset problem is not a member of theLCvacation rentals anymore.

In addition, the life-cycles forLCguest di�er in respect to the formerBrowseOfferings problem,
which is not separated from the BrowseBookings problem anymore. Their problem scopes have
such a huge overlap, that these two problems can be reasonably implemented in one requirements
work packageRWP02, following the criteria givenonpage 66. Clarifying requirements dependencies
in this way, introduces a means for discovering reusable so�ware functionality.

Comparing the life-cycle expressions for LCstaff member with each other reveals that the former
Makeproblemcoversmore than the initializationconcern for creatingaholidayo�er inLC ′staff member

and that the guest and sta�member “usage protocols” of the vacation rentals have overlaps, which
should not be ignored for several reasons.

In the first case, the formerMake and Pay problems become combined to one requirements
work package RWP01, which covers all changes to the status of holiday o�ers.

In the second case, identifying overlaps in the problem composition contributes to the resolu-
tion of requirements conflicts and prioritization. The requirements work package RWP01 appears in
the life-cycle expression forLC ′staff member andLC

′
guest , which indicates the importance of this set of

so�ware functionality to several user groups. This information is not for direct reading in the former
life-cycle expressions.

Knowing occurrences and the precedence of a requirement work package in the context of a
so�ware’s life-cycle model supports an informed decision making in the project planning step as
further detailed and utilized in part III Problem-Based Project Adaptation.

Requirements Dependencies 215

10.5.2. State Transition Diagram

Comparing the life-cycle expressions for LCvacation rentals with each other reveals that the final
need of the vacation rentals web application to satisfy all life-cycle expressions in parallel does not
change. LC ′staff member and LC

′
guest are synchronized with respect to the status of a holiday o�er,

which makes the states of the vacation rentals.
It also shows that by the use of requirements work packages as a means for problem composi-

tion only interaction between a user and the system are in the focus of considerations. The Reset
problem does not apply in this connection, since it is not directly triggered by a user.

AVAILABLE
RWP01.make︸ ︷︷ ︸

trigger

/ create︸ ︷︷ ︸
action

RESERVED BOOKED

RWP01.book / reserve ∧ provideInvoice

RWP01.book / reset ∧ provideInvoice

RWP02.browse / presentHolidayO�ers

RWP02.browse / presentHolidayO�ers

RWP01.record / paid

RWP02.browse / presentHolidayO�ers

RWP03.rate
/ provide-
Invoice

FIGURE 10.8 State machine as joint usage protocol for the vacation rentals web application

Figure 10.8 gives a state machine representation forLCvacation rentals .
The trigger of each transition is marked as< requirements work package > . < operation >

and coincides with a respective message to the machine domain in one alt-fragment of a require-
ments work package.

Theaction takenwhenactivating a transition ismarked as / < operation > and coincideswith
a respective message to a constrained problem domain in the same alt-fragment of a requirements
work package.

Regarding the occurrences of requirements work packages in the life-cycle forLCvacation rentals :
RWP01 is the one, whose so�ware functionality is most used.

Regarding the precedence of requirements work packages in the life-cycle forLCvacation rentals :
RWP01 is central for initializing the vacation rentals services due to the create action.

216 Vacation Rentals Web Application

Figure 10.9 gives an alternative statemachine for representing the dependencies of the vacation
rentals’s functional user requirements. Its transitions conform to the use cases given in figure 10.4
on page 209.

AVAILABLEmake holiday o�er RESERVED BOOKED

finish book holiday
o�er AND book(ings
invo. to) holiday o�er

quit book holiday
o�er AND book(ings
invo. to) holiday o�er

browse holiday o�er
(to guest)

record pay. for
holiday o�er

browse holiday o�er
(to sta�)

browse holiday o�er
(to sta�)

rate
holiday o�er

FIGURE 10.9 State machine applying UML use cases for the Vacation Rentals Web Application

217

11. Student Recruitment Web Portal

The student recruitment web portal [116] is an online application, which can be accessed via the
weblink: http://www.way2studying.de/application/. It is built to support high school leavers from
abroad to begin their studies in North-Rhine Westphalia (NRW), Germany within the same year of
their secondary school exit examination. This becomes possible due to modifications of paragraph
49 in the university law of NRW in 2013. The University of Duisburg-Essen has decided to open its
International Studies in Engineering (ISE) programme for this type of applicants. The student re-
cruitment web portal assists the respective application procedure for these programme.

http://www.way2studying.de/application/
https://recht.nrw.de/lmi/owa/br_bes_detail?sg=0&menu=1&bes_id=28364&anw_nr=2&aufgehoben=N&det_id=440694
https://recht.nrw.de/lmi/owa/br_bes_detail?sg=0&menu=1&bes_id=28364&anw_nr=2&aufgehoben=N&det_id=440694
http://www.uni-due.de/
http://www.uni-due.de/ise/

218 Student Recruitment Web Portal

11.1. Requirements Decomposition

A set of six requirement statements FUR #01 to FUR #06 has been re-engineered from the user inter-
face of the student recruitment web portal. Its decomposition into six independent problems by
means of problem frames is given in table 11.1.

No. Requirements Statement

FUR #01 A candidate receives an eMail for granting access to the application procedure.

FUR #02 A candidate inserts application data on the web.

FUR #03 A candidate reviews application data on the web.

FUR #04 A candidate reviews application data as PDF file.

FUR #05 A candidate submits application files on the web.

FUR #06 A program admin reviews all data and files for a candidate as one printout.

TABLE 11.1 Requirements for a student recruitment web portal

That each problem takes its own Requirements Work Package (RWP) as shown in table 11.2 is
subject to chance in this specific application example.

No. Problem Name Problem Class: Problem Frame (FSM pattern) RWP

FUR #01 grant access authorization EO: commanded behaviour (#14) RWP01

FUR #02 record candidate data EI: simple workpieces (#02) RWP02

FUR #03 review candidate data EQ: query (#09) RWP03

FUR #04 download candidate data EO: commanded data-based control (#15) RWP04

FUR #05 upload candidate files EI: commandedmodel building (#05) RWP05

FUR #06 compile candidate résumé EQ: query (#09) RWP06

TABLE 11.2 Decomposition of requirements for a student recruitment web portal

Requirements Decomposition 219

11.1.1. Problem description for FUR #01: Grant Access Authorization

Figure 11.1 shows a screenshot of the student recruitment web portal’s landing page on accessing
it via http://www.way2studying.de/application/. It is structured to a sidebar on the le�, and a con-
tent page to the right. The sidebar provides means for navigating the website, the content page
represents the user interface to give information or to get information from the website. That way,
an applicant or respective candidate is supported in filling required application forms one a�er the
other, and to submit necessary documents online.

é

� é https://www.way2studying.de/application/

FIGURE 11.1 Screenshot of user interface covering FUR #01: Grant Access Authorization

The problem covered by FUR #01 can be described as follows: A valid email address and a cor-
rect security code must be provided by the candidate, in order to successfully request access to the
application services of this website. A�er these data have been submitted, thewebsite creates a link
to the personal application page for this candidate, and sends the respective URL to the provided
email address. This link is valid for twenty-four hours within the candidate can start the application
process.

Figure 11.6 gives the respective requirements work package. It is an instance of the functional
size measurement pattern #14 commanded behavior in table 5.5, where the candidate is a biddable
and the email program is a causal problem domain. Based on this classification, the requirements
work package’s so�ware functionality represents a measurable problem, whose constituent parts
are sized according to the rules of an external output (EO).

http://www.way2studying.de/application/

220 Student Recruitment Web Portal

11.1.2. Problem description for FUR #02: Record Candidate Data

Figure 11.2 shows a screenshot of the student recruitment web portal a�er the candidate activates
the access link provided to her by email, see descriptions of FUR #01 on page 219. The application
process starts by requesting the candidate to fill out several, subsequent forms with personal infor-
mation. As can be followed by the sidebar, there is a sequence of seven forms, i.e. personal details
to extra curricular activities to be completed by the candidate.

é

� é https://www.way2studying.de/application/

FIGURE 11.2 Screenshot of user interface covering FUR #02: Record Candidate Data

The problem covered by FUR #02 can be described as follows: The candidate fills the formswith
personal information, that is stored and required for conducting the online application service.

Figure 11.7 gives the respective requirements work package. It is an instance of the functional
sizemeasurement pattern #02 simpleworkpieces in table 5.5, where the candidate is a biddable and
the candidatedata is a lexical problemdomain. The sharedphenomenonFormData1 ..40 is a place-
holder for the forty data fields, e.g. title, family name , first name , etc. that need to be completed
by the candidate, and which are distributed over the above mentioned seven, subsequent forms.

Due to this classification by means of functional size measurement patterns, the requirements
work package’s so�ware functionality represents a measurable problem, whose constituent parts
are sized according to the rules of an external input (EI).

Requirements Decomposition 221

11.1.3. Problem description for FUR #03: Review Candidate Data

Figure 11.3 shows a snippet of a screenshot, that gives the student recruitment web portal a�er the
candidate has completed all forms. Only then the link review application becomes available at the
sidebar. The respective content page shows all the data provided by the candidate for applying to
an ISE study, and which is stored to the data base of the student recruitment web portal.

é

� é https://www.way2studying.de/application/

...

FIGURE 11.3 Screenshot of user interface covering FUR #03: Review Candidate Data

The problem covered by FUR #03 can be described as follows: The candidate can review all
provided, personal information that is stored to conduct the online application service.

Figure 11.8 gives the respective requirements work package. It is an instance of the functional
size measurement pattern #09 query in table 5.5, where the candidate is a biddable, the candidate
data is a lexical problemdomain, and the content page is shownbymeans of thewebbrowser, which
is a display domain.

The stored personal information represented by the shared phenomenon FormData1 ..40 is
simply retrieved from the database and presented at the content page to the candidate.

Due to this classification by means of functional size measurement patterns, the requirements
work package’s so�ware functionality represents a measurable problem, whose constituent parts
are sized according to the rules of an external inquiry (EQ).

222 Student Recruitment Web Portal

11.1.4. Problem description for FUR #04: Download Candidate Data

Figure 11.4 shows a screenshot of the student recruitmentweb portal, which becomes available a�er
the entire application procedure is completed and all personal information and files provided by the
candidate are recorded.

é

� é https://www.way2studying.de/application/

FIGURE 11.4 Screenshot of user interface covering FUR #04: Download Candidate Data

The problem covered by FUR #04 can be described as follows: The candidate can request an
overview given as a PDF file, which comprises all personal information, that has been provided to
the online application service by filling in the forms.

Figure 11.9 gives the respective requirements work package. It is an instance of the functional
size measurement pattern #15 commanded data-based control in table 5.5, where the candidate is
a biddable, the candidate data is a lexical problem domain, and the PDF viewer is an other so�ware
application given as a causal domain, that is used to read the respective summary file, that is to
produce by the student recruitment web portal. Please note, that uploaded candidate files such as
a curriculum vitae or a certification, are not integrated to this PDF file.

Due to this classification by means of functional size measurement patterns, the requirements
work package’s so�ware functionality represents a measurable problem, whose constituent parts
are sized according to the rules of an external output (EO).

Requirements Decomposition 223

11.1.5. Problem description for FUR #05: Upload Candidate Files

Figure 11.5 shows a screenshot of the student recruitment web portal that relates to the sidebar link
document upload and send application . It gives the final content page,which enables the candidate
to upload additional documents and to complete the application.

é

� é https://www.way2studying.de/application/

FIGURE 11.5 Screenshot of user interface covering FUR #05: Upload Candidate Files

The problem covered by FUR #05 can be described as follows: The candidate can upload addi-
tional documents to complete and finally submit the application.

224 Student Recruitment Web Portal

Figure 11.10 gives the respective requirements work package. It is an instance of the functional
size measurement pattern #05 commanded model building in table 5.5, where the candidate is a
biddable, the candidate files are a lexical problem domain, and the file manager given as a causal
domain is another so�wareapplication,whichallows the candidate to select the files for theupload.
These files are represented by the shared phenomenaCF1 toCF6 .

Due to this classification by means of functional size measurement patterns, the requirements
work package’s so�ware functionality represents a measurable problem, whose constituent parts
are sized according to the rules of an external input (EI).

Requirements Decomposition 225

11.1.6. Problem description for FUR #06: Compile Candidate Résumé

There is no screenshot for FUR #06 of the student recruitmentwebportal, since for this requirement,
there is only a call at the command line available, named “admin interface” in the following. Never-
theless, it is a user interface to the application, and considered next.

The problem covered by FUR #06 can be described as follows: The admin can compile each ap-
plication’sdataand files tooneprintout for eachcandidate. Thisprintout is checked in theadmission
process. The “admin interface” is invoked a�er the application period is closed.

Figure 11.11 gives the respective requirements work package. It is an instance of the functional
sizemeasurement pattern #09 query in table 5.5, where the admin is a biddable, the candidate data
and files are lexical problem domains, and the printout of each application is managed by a printer
device, which is classified as a display domain.

Due to this classification by means of functional size measurement patterns, the requirements
work package’s so�ware functionality represents a measurable problem, whose constituent parts
are sized according to the rules of an external inquiry (EQ).

226 Student Recruitment Web Portal

11.2. Requirements Measurement

The previous sections on page 218� give all the details on the setup of each requirementswork pack-
age for the student recruitment web portal. This section is concerned with the sample application
of the counting procedure as introduced in section 6.3 on page 81 to these measurable problems
implemented in FUR #01 to FUR #06.

PrioLC Product Backlog Item Basic FSM PatternPB EP FPs

3. FUR #05 Upload Candidate Files #05 commandedmodel building EI 18
2. FUR #02 Record Candidate Data #02 simple workpieces EI 13

1. FUR #01 Grant Access Authorization #14 commanded behavior EO 17
5. FUR #04 Download Candidate Data #15 commanded data-based control EO 17

5. FUR #03 Review Candidate Data #09 query EQ 16
4. FUR #06 Compile Candidate Résumé #09 query EQ 16

LC Priority of requirements work packages with respect to life-cycle given on page 167
PB Problem-Based Functional Size Measurement Patterns according to table 5.5 on page 72
Elementary Process (EP), Function Points (FP)

TABLE 11.3 Augmented Product Backlog of a student recruitment web portal

Table 11.3 summaries the results of problem-based estimating as applied to the requirements
work packages for the student recruitment web portal. For the sake of readability, the product back-
log items are ordered according to their determined function points and related elementary pro-
cesses. The priority of each item depends on their occurrence within the life-cycle expressions for
the student recruitment web portal as discussed on page 167.

The following sections comment on the results determined for each requirements work pack-
age, where the details of each count are givenonpages 228�. Please reconsider that thiswork strives
towards consistent point values for recognizable requirements. Therefore, it follows the trend to tai-
lor a given functional size measurement method instead of introducing a new one [25, page 180].
It attends to size right by application of the ISO 20926 standard, rather than to question if the ISO
20926 standard applies a right size.

Requirements work packages FUR #02 and FUR #05 implement a measurable problem, which
relates to an external input. According to criteria UF.C1 given on page 66, they cannot be combined
to one unique set of so�ware functionality, since they do not share the same constrained problem
domain.

While the absolute number of data element types that relate to data functions in
FUR#02 (ILFDET + EIFDET = 40 DET) is greater than in FUR#05 (ILFDET + EIFDET =
12 DET), the requirements work package size for FUR#02size = 13 FP is smaller than
for FUR#05size = 18 FP . This is due to the same data function complexity class for these DET
values, which is in both cases low with respect to column one and two in [117, table A.1, page 23]
given on page 262 in the appendix.

The functional size of requirements work packages FUR #02 and FUR #05 is determined accord-
ing to the rules of an external input, but FUR #05 involvesmore datamovements. It comprisesmore
file types referenced (TFFTR = 3) with relevant information, i.e. problem domains with symbolic
phenomena than FUR #02 (TFFTR = 2), which must be processed.

What can be seen here is that according to ISO 20926, the number of interfaces that carry some

Requirements Measurement 227

relevant information counts more than the absolute number of information items implemented in
one respective requirements work package.

Requirements work packages FUR #01 and FUR #04 implement a measurable problem, which
relates to an external output. According to criteriaUF.C1 given on page 66, they cannot be combined
to one unique set of so�ware functionality, since they do not share the same constrained problem
domain.

While theabsolutenumberofdataelement types related todata functions inFUR#01 (ILFDET+
EIFDET = 3DET) is significantly smaller than inFUR#04 (ILFDET+EIFDET = 40DET), the re-
quirements work package size forFUR#01size = 17FP is the same as forFUR#04size = 17FP .

Both measurable problems comprise the same number of file types referenced (TFFTR = 2),
i.e. problem domains with relevant information, which must be processed. However, FUR #01 in-
volvesmore information that crosses the application boundary. It receives data from the candidate,
which is then processed and forwarded via email. In contrast, FUR #04 simply compiles data from
an internal logical file to a PDF document.

As given by the requirement work packages at hand, it is illustrated that according to ISO 20926
processing of information that is not user-recognizable counts less than processing of information,
which crosses the application boundary. In this regard, it is additionally shown that the counting
philosophy of ISO 20926 is met by the problem-based functional size measurement executed for
FUR#01 and FUR#04.

Requirements work packages FUR #03 and FUR #06 implement a measurable problem, which
relates toanexternal inquiry. Bothproductbacklog itemsare instancesof a query frame, butanyway
they cannot be combined to one unique set of so�ware functionality. CriteriaUF.C1 given onpage 66
is not fulfilled, since they do not share the same constrained problem domain.

Both measurable problems comprise the same total number of data element types related to
their data functions ILFDET+EIFDET = 40DET , and theyprocess a comparablenumberof data
that crosses the application boundary, which is TFDET = 42 in case of FUR #03 and TFDET = 48
in case FUR #06.

What can be seen by these requirementswork packages is that these are equally filledwith rele-
vant information that counts in their functional sizemeasurement according to ISO 20926. The need
of FUR #06 to access more internal logical files (3 ILF) than FUR #03 (2 ILF) is subordinate to the
total number of data element types that these ILF hold, when determining their functional size. This
contributes to themeasurement practice, that internal logical filesmodels datawith respect to their
logical dependence rather than to their physical allocation.

FUR#03andFUR#06are instancesof the samemeasurableproblemclassandequally filledwith
information relevant for determining their functional size. That the sizes of these two requirements
work packages conform to each other is an example for the capability of problem-based estimating
estimating to produce consistent function point values for comparable sets of requirements.

228 Student Recruitment Web Portal

11.2.1. Problem count of RWP for FUR #01: Grant Access Authorization

«Requirements Work Package» Grant Access Authorization

«machine» Grant Access

«causalDomain» Email Program

«biddableDomain» Candidate

«requirements» FUR01

CN!{requestAccessAuthorization,
emailaddress, securitycode}

GAM!{sendURLviaEmail,
applicationURL}

requestAccess

grantAccessURLviaEmail
1 ILF, 1RET, 1 FTR

1EIF, 1RET, 1 FTR

TF, External Output (EO)

17 FP
RWPsize

1DET

1DET (ILF)

1DET

2DET (EIF)

FIGURE 11.6 Counting Requirements Work Package FUR #01: Grant Access Authorization

Comments on counting process activity Results of activity
1. Classify FUR by Functional Size Measurement Patterns.
FUR #01: Grant Access Authorization is ameasurable problem, because it fits
the commanded behavior FSM pattern #14 in table 5.5.

commanded behavior problem

Applied validation conditions: V.i - V.iii
2. Determine Data Functions.
FUR #01: Grant Access Authorization has two problem domains, namely the
causal domainEmail Program and the biddable domainCandidate .
2.a Identify problem domains as data functions.
The domain Email Program shares one symbolic phenomenon
applicationURL with the machine domain. The domain Email Program
can be classified as data function. The domain Candidate shares two
symbolic phenomena at the machine interface, namely emailaddress and
securitycode . It is a data function, too.

2 data functions: Email program
and Candidate

Applied validation conditions: V.iv
2.b Classify data functions into ILF or EIF.
This measurable problem has two data functions, of which Email Program
is an internal logical file, andCandidate is an external interface file.

1 ILF: Email Program

Applied validation conditions: V.vi, V.vii, (V.viii,) V.ix 1 EIF: Candidate
2.c Count DET for each data function.
The data function Email Program shares one symbolic phenomenon at the
machine interface, namely applicationURL, which represents the only data
element type of this data function.

DETemail program = 1

The data function Candidate shares two symbolic phenomenon at the ma-
chine interface, namely emailaddress and securitycode , which represent the
data element types of this data function.

DETcandidate = 2

Applied validation conditions: V.xi
2.d Count RET for each data function.
There are two data functions Email Program and Candidate , each repre-
sents 1 RET.

RETemail program = 1
RETcandidate = 1

Applied validation conditions: V.xii
2.e Determine functional complexity for data functions.

Requirements Measurement 229

Comments on counting process activity Results of activity
Email Program is the one data function, i.e. an ILF in this measurable prob-
lem, which has 1 DET according to step 2.c and represents 1 RET according
to step 2.d. Respectively, ILFDET =

∑n
i=1 DETILF i

= DETemail program

and ILFRET =
∑n

i=1 RETILF i
= RETemail program.

ILFDET = 1
ILFRET = 1

Table A.1 of ISO 20926 given in the appendix on page 262 is used to determine
the respective data function complexity ILFComplexity(ILFRET , ILFDET)
by means of these RET and DET values, that is ILFComplexity(1, 1) = low.

ILFComplexity = low

Candidate is the other data function, i.e. an EIF in this measurable prob-
lem, which has 2 DET according to step 2.c and represents 1 RET according
to step 2.d. Respectively,EIFDET =

∑n
i=1 DETEIF i

= DETcandidate and
EIFRET =

∑n
i=1 RETEIF i

= RETcandidate.

EIFDET = 2
ILFRET = 1

Table A.1 of ISO 20926 given in the appendix on page 262 is used to determine
the respectivedata functioncomplexityEIFComplexity(EIFRET , EIFDET)
by means of these RET and DET values, that isEIFComplexity(1, 2) = low.

EIFComplexity = low

Applied validation conditions: V.xiii, V.xiv, V.xvii, V.xx, V.xxi
2.f Determine functional size for data functions.
Table A.2 of ISO 20926 given in the appendix on page 262 is applied to deter-
mine the respective data function size ILFSize(ILFComplexity, ILF)
using its data function complexity determined in the previous
step 2.e., that is ILFSize(low, ILF) = 7. The data function
size EIFSize(EIFComplexity, EIF) is determined respectively
EIFSize(low,EIF) = 5.

ILFSize = 7 function points
EIFSize = 5 function points

Applied validation conditions: V.xxiii, V.xxiv
3. Determine Transactional Function.
FUR #01: Grant Access AuthorizationhasonemachinedomainGrant Access .
3.a Identify machine domain as transactional function.
The machine domainGrant Access represents the transactional function in
this measurable problem.

transactional function:
grant access

3.b Classify transactional function as either EI, EQ, or EO.
which is a functional size measurement pattern as defined in table 5.5 for
determining the functional size of an external output (EO).

TFtype = EO

Applied validation conditions: V.xxv
3.c Count FTR for transactional function.
Grant Access involves two machine interfaces to a data function as defined
in step 2.a, which are the file type referenced to consider in this step. One
data function email program andoneexternal interface file candidate results
in n = 1 andm = 1 for TFFTR = n ILF +m EIF = 1 + 1 = 2.

TFFTR = 2

Applied validation conditions: V.xxvi
3.d Count DET for transactional function.
At the machine interface ofGrant Access are two symbolic phenomena and
one causal shared with Candidate , and the machine shares one causal and
one symbolic phenomenonwith theEmail Program . Each of these five phe-
nomena crosses the application boundary and thus count in the transac-
tional function as DET.

TFDET = 5

Applied validation conditions: V.xxvii, V.xxix, V.xxx, V.xxxi
3.e Determine functional complexity for transactional function.
Table A.4 for EO of ISO 20926 given in the appendix on page 262
is used to determine the transactional function complexity
TFComplexity(TFType, TFFTR, TFDET) = TFComplexity(EO, 2, 5) of
Grant Access by means of the FTR and DET values from step 3.c and 3.d.

TFComplexity = average

Applied validation conditions: V.xxxii V.xxxii
3.f Determine functional size for transactional function.

230 Student Recruitment Web Portal

Comments on counting process activity Results of activity
Table A.5 of ISO 20926 given in the appendix on page 262 is applied
to determine the respective transactional function size of Grant Access
TFSize(TFComplexity, TFType) = TFSize(average,EO) by using its trans-
actional function complexity determined in the previous step 3.e.

TFSize = 5 function points

Applied validation conditions: V.xxxiii
4. Report Functional Size for FUR.
byMeasurableProblemsize = ILFSize + EIFSize + TFSize= 7 + 5 + 5.
Applied validation conditions: V.xxxiv

FUR#01size
= 17 function points

11.2.2. Problem count of RWP for FUR #02: Record Candidate Data

«Requirements Work Package» Record Candidate Data

«machine» Record Data

«lexicalDomain» Candidate Data

«biddableDomain» Candidate

«requirements» FUR02

CN!{record40FormData,
FormData1..40}

REM!{store40FormData,
FormData1..40}

CD!{FormData1..40}

fill-
CandidateData

storeCandidateData
1 ILF, 1RET, 1 FTR

1EIF, 1RET, 1 FTR

TF, External Input (EI)

13 FP
RWPsize

1DET

40DET (ILF)

1DET

40DET (EIF)

FIGURE 11.7 Counting Requirements Work Package FUR #02: Record Candidate Data

Comments on counting process activity Results of activity
1. Classify FUR by Functional Size Measurement Patterns.
Applied validation conditions: V.i - V.iii simple workpieces problem

Requirements Measurement 231

Comments on counting process activity Results of activity
2. Determine Data Functions.
2.a Identify problem domains as data functions.
Applied validation conditions: V.iv 2 data functions: Candidate and

Candidate Data
2.b Classify data functions into ILF or EIF.
Applied validation conditions: V.vi, V.vii, (V.viii,) V.ix 1 EIF: Candidate

1 ILF: Candidate Data
2.c Count DET for each data function.
Count symbolic phenonema DETcandidate = 40
Applied validation conditions: V.xi DETcandidate data = 40
2.d Count RET for each data function.
Applied validation conditions: V.xii RETcandidate = 1

RETcandidate data = 1
2.e Determine functional complexity for data functions.
Only one ILF ILFDET =

∑n
i=1 DETILF i

= DETcandidate data and
ILFRET =

∑n
i=1 RETILF i

= RETcandidate data.
ILFDET = 40
ILFRET = 1

Only one EIFEIFDET =
∑n

i=1 DETEIF i
= DETcandidate andEIFRET =∑n

i=1 RETEIF i
= RETcandidate.

(((((((
EIFDET = 40
EIFRET = 1

ButEIFDET − k, and k = 40 equal phenomena EIFDET = 0
ILFComplexity(ILFRET , ILFDET) = ILFComplexity(1, 40) ILFComplexity = low
EIFComplexity(EIFRET , EIFDET) = EIFComplexity(1, 0) EIFComplexity = {n/a}
Applied validation conditions: V.xiii, V.xiv, V.xvii, V.xx, V.xxi
2.f Determine functional size for data functions.
ILFSize(ILFComplexity, ILF) = ILFSize(low, ILF) = 7 ILFSize = 7 function points
EIFSize(EIFComplexity, EIF) = EIFSize({n/a}, EIF) = 0 EIFSize = 0 function points
Applied validation conditions: V.xxiii, V.xxiv
3. Determine Transactional Function.
3.a Identify machine domain as transactional function.

transactional function:
record data

3.b Classify transactional function as either EI, EQ, or EO.
simple workpieces TFtype = EI
Applied validation conditions: V.xxv
3.c Count FTR for transactional function.
TFFTR = n ILF +m EIF = 1 + 1 = 2. TFFTR = 2
Applied validation conditions: V.xxvi
3.d Count DET for transactional function.
Phenomena atmachine interface to lexical domain do not count, that is only
candidate phenomena are counted

TFDET = 21

Applied validation conditions: V.xxvii, V.xxix, V.xxx, V.xxxi
3.e Determine functional complexity for transactional function.
TFComplexity(TFType, TFFTR, TFDET) = TFComplexity(EI, 2, 21) TFComplexity = high
Applied validation conditions: V.xxxii
3.f Determine functional size for transactional function.
TFSize(TFComplexity, TFType) = TFSize(high,EI) TFSize = 6 function points
Applied validation conditions: V.xxxiii
4. Report Functional Size for FUR.
MeasurableProblemsize = ILFSize + EIFSize + TFSize = 7 + 0 + 6 FUR#02size =
Applied validation conditions: V.xxxiv 13 function points

232 Student Recruitment Web Portal

11.2.3. Problem count of RWP for FUR #03: Review Candidate Data

«Requirements Work Package» Review Candidate Data

«machine» Review Data

«lexicalDomain» Candidate Data

«displayDomain» Web Browser

«biddableDomain» Candidate

«requirements» FUR03

RDM!{showCandidateData,FormData1..40}

CN!{review40FormData}

CD!{FormData1..40}

requestCandidateData

providedCandidateData

1 ILF, 1RET, 1 FTR

0EIF, 0RET, 0 FTR

TF, External Inquiry (EQ) 1 ILF, 1RET, 1 FTR

16 FP
RWPsize

40DET (ILF)

1DET

1DET 40DET (ILF)

overviewOfCandidateData

FIGURE 11.8 Counting Requirements Work Package FUR #03: Review Candidate Data

Comments on counting process activity Results of activity
1. Classify FUR by Functional Size Measurement Patterns.
Applied validation conditions: V.i - V.iii query problem
2. Determine Data Functions.
2.a Identify problem domains as data functions.
Applied validation conditions: V.iv 2 data functions: Web Browser

and Candidate Data
2.b Classify data functions into ILF or EIF.
Applied validation conditions: V.vi, V.vii, V.x 1 ILF: Web Browser

1 ILF: Candidate Data
2.c Count DET for each data function.
Count symbolic phenonema
Applied validation conditions: V.xi

DETweb browser = 40
DETcandidate data = 40

2.d Count RET for each data function.
Applied validation conditions: V.xii RETweb browser = 1

RETcandidate data = 1
2.e Determine functional complexity for data functions.
There are two ILF ILFDET =

∑n
i=1 DETILF i

= DETweb browser +
DETcandidate data and ILFRET =

∑n
i=1 RETILF i

= RETweb browser +
RETcandidate data.

(((((((
ILFDET = 80
ILFRET = 2

No EIF.
But ILFDET − k, and k = 40 equal phenomena ILFDET = 40
ILFComplexity(ILFRET , ILFDET) = ILFComplexity(2, 40) ILFComplexity = average
EIFComplexity(EIFRET , EIFDET) = EIFComplexity(0, 0) EIFComplexity = {n/a}
Applied validation conditions: V.xiii, V.xvi, V.xvii, V.xix, V.xx
2.f Determine functional size for data functions.
ILFSize(ILFComplexity, ILF) = ILFSize(average, ILF) = 10 ILFSize = 10 function points
EIFSize(EIFComplexity, EIF) = EIFSize({n/a}, EIF) = 0 EIFSize = 0 function points
Applied validation conditions: V.xxii, V.xxiii

Requirements Measurement 233

Comments on counting process activity Results of activity
3. Determine Transactional Function.
3.a Identify machine domain as transactional function.

transactional function:
Review Data

3.b Classify transactional function as either EI, EQ, or EO.
query TFtype = EQ
Applied validation conditions: V.xxv
3.c Count FTR for transactional function.
TFFTR = n ILF +m EIF = 2 + 0 = 2. TFFTR = 2
Applied validation conditions: V.xxvi
3.d Count DET for transactional function.
Only candidate and web browser phenomena are counted TFDET = 42
Applied validation conditions: V.xxix, V.xxx, V.xxxi
3.e Determine functional complexity for transactional function.
TFComplexity(TFType, TFFTR, TFDET) = TFComplexity(EQ, 2, 42) TFComplexity = high
Applied validation conditions: V.xxxii
3.f Determine functional size for transactional function.
TFSize(TFComplexity, TFType) = TFSize(high,EQ) TFSize = 6 function points
Applied validation conditions: V.xxxiii
4. Report Functional Size for FUR.
MeasurableProblemsize = ILFSize + EIFSize + TFSize = 10 + 0 + 6 FUR#03size
Applied validation conditions: V.xxxiv = 16 function points

234 Student Recruitment Web Portal

11.2.4. Problem count of RWP for FUR #04: Download Candidate Data

«Requirements Work Package» Download Candidate Data

«machine» Download Data

«lexicalDomain» Candidate Data

«causalDomain» Document Viewer

«biddableDomain» Candidate

«requirements» FUR04

DLM!{showCandidateDataToPDF, FormData1..40}

CN!{review40FormDataToPDF}

CD!{FormData1..40}

requestCandidate-
DataInPDF

overviewOfCandidateDataInPDF
providedCandidateData

1 ILF, 1RET, 1 FTR

0EIF, 0RET, 0 FTR

TF,External Output (EO) 1 ILF, 1RET, 1 FTR

17 FP
RWPsize

40DET (ILF)

1DET

1DET 40DET (ILF)

FIGURE 11.9 Counting Requirements Work Package FUR #04: Download Candidate Data

Comments on counting process activity Results of activity
1. Classify FUR by Functional Size Measurement Patterns.
Applied validation conditions: V.i - V.iii commanded data-based control
2. Determine Data Functions.
2.a Identify problem domains as data functions.
Applied validation conditions: V.iv 2 data functions: Document

Viewer and Candidate Data
2.b Classify data functions into ILF or EIF.
Applied validation conditions: V.vi, V.vii, V.viii, V.x 1 ILF: Document Viewer

1 ILF: Candidate Data
2.c Count DET for each data function.
Count symbolic phenonema
Applied validation conditions: V.xi

DETdocument viewer = 40
DETcandidate data = 40

2.d Count RET for each data function.
Applied validation conditions: V.xii RETdocument viewer = 1

RETcandidate data = 1
2.e Determine functional complexity for data functions.
There are two ILF ILFDET =

∑n
i=1 DETILF i = DETdocument viewer +

DETcandidate data = 40 + 40 and ILFRET =
∑n

i=1 RETILF i =
RETdocument viewer +RETcandidate data = 1 + 1.

(((((((
ILFDET = 80
ILFRET = 2

No EIF.
But ILFDET − k, and k = 40 equal phenomena ILFDET = 40
ILFComplexity(ILFRET , ILFDET) = ILFComplexity(2, 40) ILFComplexity = average
EIFComplexity(EIFRET , EIFDET) = EIFComplexity(0, 0) EIFComplexity = {n/a}
Applied validation conditions: V.xiii, V.xvi, V.xvii, V.xix, V.xx
2.f Determine functional size for data functions.
ILFSize(ILFComplexity, ILF) = ILFSize(average, ILF) = 10 ILFSize = 10 function points
EIFSize(EIFComplexity, EIF) = EIFSize({n/a}, EIF) = 0 EIFSize = 0 function points
Applied validation conditions: V.xxii, V.xxiii
3. Determine Transactional Function.

Requirements Measurement 235

Comments on counting process activity Results of activity
3.a Identify machine domain as transactional function.

transactional function:
download data

3.b Classify transactional function as either EI, EQ, or EO.
query TFtype = EO
Applied validation conditions: V.xxv
3.c Count FTR for transactional function.
TFFTR = n ILF +m EIF = 2 + 0 = 2. TFFTR = 2
Applied validation conditions: V.xxvi
3.d Count DET for transactional function.
Only candidate and document viewer phenomena are counted TFDET = 42
Applied validation conditions: V.xxix, V.xxx, V.xxxi
3.e Determine functional complexity for transactional function.
TFComplexity(TFType, TFFTR, TFDET) = TFComplexity(EO, 2, 42) TFComplexity = high
Applied validation conditions: V.xxxii
3.f Determine functional size for transactional function.
TFSize(TFComplexity, TFType) = TFSize(high,EO) TFSize = 7 function points
Applied validation conditions: V.xxxiii
4. Report Functional Size for FUR.
MeasurableProblemsize = ILFSize+EIFSize+TFSize = 10+0+7 = 17 FUR#04size
Applied validation conditions: V.xxxiv = 17 function points

236 Student Recruitment Web Portal

11.2.5. Problem count of RWP for FUR #05: Upload Candidate Files

«Requirements Work Package» Upload Candidate Files

«machine» Upload Files «lexicalDomain» Candidate Files

«causalDomain» File Manager

«biddableDomain» Candidate

«requirements» FUR05

FM!{CF1, . . . , CF6}

CN!{select6CandidateFiles,
CF1, . . . , CF6}

UFM!{store6CandidateFiles, CF1, . . . , CF6}

chooseCandidateFiles

CandidateFiles
storeCandidateFiles

1 ILF, 1RET, 1 FTR

1EIF, 1RET, 1 FTR

TF,External Input(EI)

1EIF, 1RET, 1 FTR

18 FP
RWPsize

6DET (EIF)

6DET (EIF)

1DET 6DET (ILF)1DET

FIGURE 11.10 Counting Requirements Work Package FUR #05: Upload Candidate Files

Comments on counting process activity Results of activity
1. Classify FUR by Functional Size Measurement Patterns.

commanded model building
problem

2. Determine Data Functions.
2.a Identify problem domains as data functions.
Applied validation conditions: V.iv 3 data functions: File Manager

and Candidate Files and Candi-
date

2.b Classify data functions into ILF or EIF.
Applied validation conditions: V.vi, V.vii, V.viii, V.ix, V.x 1 ILF: Candidate Files

2 EIF: File Manager and Candi-
date

2.c Count DET for each data function.
DETfile manager = 6
DETcandidate files = 6
DETcandidate = 6

2.d Count RET for each data function. RETfile manager = 1
RETcandidate files = 1
RETcandidate = 1

2.e Determine functional complexity for data functions.
There is one ILF ILFDET =

∑n
i=1 DETILF i = DETcandidate files = 6 and

ILFRET =
∑n

i=1 RETILF i
= RETcandidate files = 1.

ILFDET = 6
ILFRET = 1

There are two EIF EIFDET =
∑n

i=1 DETEIF i
= DETfile manager +

DETcandidate = 6 + 6 = 12 and EIFRET =
∑n

i=1 RETEIF i
=

RETfile manager +RETcandidate = 1 + 1 = 2.

(((((((
EIFDET = 12
EIFRET = 2

ButEIFDET − k, and k = 6 equal phenomena EIFDET = 6
ILFComplexity(ILFRET , ILFDET) = ILFComplexity(1, 6) ILFComplexity = low

Requirements Measurement 237

Comments on counting process activity Results of activity
EIFComplexity(EIFRET , EIFDET) = EIFComplexity(2, 6) EIFComplexity = low
Applied validation conditions: V.xiii, V.xiv, V.xv, V.xvii, V.xviii, V.xx, V.xxi
2.f Determine functional size for data functions.
ILFSize(ILFComplexity, ILF) = ILFSize(low, ILF) = 7 ILFSize = 7 function points
EIFSize(EIFComplexity, EIF) = EIFSize(low,EIF) = 5 EIFSize = 5 function points
Applied validation conditions: V.xxiii, V.xxiv
3. Determine Transactional Function.
3.a Identify machine domain as transactional function.

transactional function:
upload files

3.b Classify transactional function as either EI, EQ, or EO.
commandedmodel building TFtype = EI
3.c Count FTR for transactional function.
TFFTR = n ILF +m EIF = 1 + 2 = 3. TFFTR = 3
3.d Count DET for transactional function.
Only candidate and file manager phenomena are counted TFDET = 13
Applied validation conditions: V.xxvii, V.xxviii, V.xxix, V.xxx, V.xxxi
3.e Determine functional complexity for transactional function.
TFComplexity(TFType, TFFTR, TFDET) = TFComplexity(EI, 3, 13) TFComplexity = high
3.f Determine functional size for transactional function.
TFSize(TFComplexity, TFType) = TFSize(high,EI) TFSize = 6 function points
4. Report Functional Size for FUR.
MeasurableProblemsize = ILFSize + EIFSize + TFSize = 7 + 5 + 6 FUR#05size =

18 function points

238 Student Recruitment Web Portal

11.2.6. Problem count of RWP for FUR #06: Compile Candidate Résumé

«Requirements Work Package» Compile Candidate Résumé

«machine» Compile Résumé

«lexicalDomain» Candidate Data

«lexicalDomain» Candidate Files

«displayDomain» Printer

«biddableDomain» Admin

«requirements» FUR06

providedCandidateFiles

CRM!{showCandidateDataFiles, FormData1..40, CF1,. . . , CF6}

CN!{review40FormData6Files}

CD!{FormData1..40}

CF!{CF1,. . . , CF6}

requestCandidate-
DataFiles-
PrintOut

overviewOfCandidateDataFilesPrintOut
providedCandidateData

1 ILF, 1RET, 1 FTR

1 ILF, 1RET, 1 FTR

0EIF, 0RET, 0 FTR

TF External Inquiry (EQ) 1 ILF, 1RET, 1 FTR

16 FP
RWPsize

6DET (ILF)

40DET (ILF)

1DET 40 + 6DET (ILF)

1DET

FIGURE 11.11 Counting Requirements Work Package FUR #06: Compile Candidate Résumé

Comments on counting process activity Results of activity
1. Classify FUR by Functional Size Measurement Patterns.

query problem
2. Determine Data Functions.
2.a Identify problem domains as data functions.
Applied validation conditions: V.iv V.iv 3 data functions:

Candidate Files and Candidate
Data and Printer

2.b Classify data functions into ILF or EIF.
Applied validation conditions: V.vi, V.vii, V.viii, V.ix, V.x 3 ILF: Candidate Files and Candi-

date Data and Printer
2.c Count DET for each data function.

DETcandidate files = 6
DETcandidate data = 40
DETprinter = 46

2.d Count RET for each data function.
RETcandidate files = 1
RETcandidate data = 1
RETprinter = 1

2.e Determine functional complexity for data functions.
There are three ILF ILFDET =

∑n
i=1 DETILF i

= DETcandidate files +
DETcandidate data + DETprinter = 6 + 40 + 46 and ILFRET =∑n

i=1 RETILF i = RETcandidate files +RETcandidate data +RETprinter =
3.

ILFDET = 92
ILFRET = 3

There are no EIF.

Use Case Decomposition 239

Comments on counting process activity Results of activity
But ILFDET − k, and k = 46 equal phenomena ILFDET = 46
ILFComplexity(ILFRET , ILFDET) = ILFComplexity(3, 46) ILFComplexity = average
EIFComplexity(EIFRET , EIFDET) = EIFComplexity(0, 0) EIFComplexity = {n/a}
Applied validation conditions: V.xiii, V.xiv, V.xv, V.xvii, V.xviii, V.xx, V.xxi
2.f Determine functional size for data functions.
ILFSize(ILFComplexity, ILF) = ILFSize(average, ILF) = 10 ILFSize = 10 function points
EIFSize(EIFComplexity, EIF) = EIFSize({n/a}, EIF) = 0 EIFSize = 0 function points
Applied validation conditions: V.xxiii, V.xxiv
3. Determine Transactional Function.
3.a Identify machine domain as transactional function.

transactional function:
Compile Résumé

3.b Classify transactional function as either EI, EQ, or EO.
query TFtype = EQ
3.c Count FTR for transactional function.
TFFTR = n ILF +m EIF = 3 + 0 = 3. TFFTR = 3
3.d Count DET for transactional function.
Only admin and printer are counted TFDET = 48
Applied validation conditions: V.xxvii, V.xxviii, V.xxix, V.xxx, V.xxxi
3.e Determine functional complexity for transactional function.
TFComplexity(TFType, TFFTR, TFDET) = TFComplexity(EQ, 3, 48) TFComplexity = high
3.f Determine functional size for transactional function.
TFSize(TFComplexity, TFType) = TFSize(high,EQ) TFSize = 6 function points
4. Report Functional Size for FUR.
MeasurableProblemsize = ILFSize+EIFSize+TFSize = 10+0+6 = 16 FUR#06size =

16 function points

11.3. Use Case Decomposition

Details on the use case decomposition for the Student Recruitment Web Portal are given in sec-
tion 8.6 on page 168, and figure 8.5 on page 168.

240 Student Recruitment Web Portal

11.4. Requirements Specification

This section lists all task scenarios (as introduced and applicable for Problem templates in chap-
ter 7.4) for the requirements FUR #01 to FUR #06 of the Student Recruitment Web Portal.

11.4.1. Task scenarios of FUR #01: Grant Access Authorization

requestAccessAuthorization(ea,sc):URL

sendURLviaEmail(URL)

requestAccessAuthorization(ea,sc)

candidate:B SRWP:M Email Program:Crc

alt

FUR01FUR01

FIGURE 11.12 Specification of RWP for FUR #01: Grant Access Authorization

11.4.2. Task scenarios of FUR #02: Record Candidate Data

store40FormData(FormData1..40)

FormData1..40

record40FormData(FormData1..40)

candidate:B SRWP:M Candidate Data:Xrc

alt

FUR02FUR02

FIGURE 11.13 Specification of RWP for FUR #02: Record Candidate Data

Requirements Specification 241

11.4.3. Task scenarios of FUR #03: Review Candidate Data

get40FormData():FormData1..40

FormData1..40

showCandidateData(FormData1..40)

FormData1..40

review40FormData

candidate:B SRWP:M Candidate Data:X Web Browser:Drc

alt

FUR03FUR03

FIGURE 11.14 Specification of RWP for FUR #03: Review Candidate Data

11.4.4. Task scenarios of FUR #04: Download Candidate Data

review40FormDataToPDF():FormData1..40

FormData1..40

showCandidateDataToPDF(FormData1..40)

review40FormDataToPDF()

candidate:B SRWP:M Candidate Data:X Document Viewer:Crc

alt

FUR04FUR04

FIGURE 11.15 Specification of RWP for FUR #04: Download Candidate Data

242 Student Recruitment Web Portal

11.4.5. Task scenarios of FUR #05: Upload Candidate Files

getFM(CF1..CF6):FMCF1..FMCF6
FMCF1..FMCF6

store6CandidateFiles(FMCF1..FMCF6)

CF1..CF6

select6CandidateFiles(CF1..CF6)

candidate:B SRWP:M Candidate Files:Xrc File Manager:C

alt

FUR05FUR05

FIGURE 11.16 Specification of RWP for FUR #05: Upload Candidate Files

11.4.6. Task scenarios of FUR #06: Compile Candidate Résumé

review40FormData6Files():FormData1..40

FormData1..40

review40FormData6Files():CF1..CF6
CF1..CF6

showCandidateDataFiles(FormData1..40,CF1..CF6)

FormData1..40,CF1..CF6

review40FormData6Files()

admin:B SRWP:M Candidate Data:X Candidate Files:X Printer:Drc

alt

FUR06FUR06

FIGURE 11.17 Specification of RWP for FUR #06: Compile Candidate Résumé

Requirements Dependencies 243

11.5. Requirements Dependencies

In this section, the dependencies of requirements that belong to di�erent measurable problems are
further elaboratedwith the aim to support requirements prioritization,whichnot only contributes to
determining the capacity of a Project Backlog and product owner value, but also impacts the choice
of a product backlog item, which is planned for the next Project Time-Box.

With regard to the product backlog of the student recruitmentwebportal, table 11.3 on page 226
shows how the life-cycle expressions for this application as given on page 167 control the priority of
each item.

Considering these requirements dependencies and their functional size leads in this case to the
suggestion to add FUR #01 Grant Access Authorization at next to the project backlog. The prior-
ity of this product backlog item is 1. , since it involves so�ware functionality that occurs at first in the
life-cycle for this application. In contrast to this, the product backlog items FUR #03 and FUR #04
share the lowest priority of 5. , since they represent optional so�ware functionality regarding the
life-cycle expressions. It is easy to agree to plan mandatory features before nice to have ones.

11.5.1. Life-Cycle Expressions

The life-cycle expression for the student recruitmentwebportal relates the requirementswork pack-
ages FUR01 to FUR06 as follows:

LCadmin = FUR06 .review40FormData6Files

LCcandidate = FUR01 .requestAccessAuthorization;

FUR02 .record40FormData;

[FUR03 .review40FormData || FUR04 .review40FormDataToPDF];

FUR05 .select6CandidateFiles

LCstudent recruitment web portal = (||ni=1 LCadmini
) || (||mj=1 LCcandidatej)

The optional expression on LCcandidate is of special use for requirements prioritization. It indi-
cates that the requirements work packages FUR03 and FUR04 are of less relevance to a successful
completion of a candidate’s application than the other requirements work packages. This gives rea-
sons for considering the others first in project planning, i.e. to include FUR03 and FUR04 at last to
the Project Backlog. LCadmin and LCcandidate are synchronized with respect to the degree of com-
pletion for a candidate’s application, whichmodels the states of the student recruitment web portal
in figure 8.4.

11.5.2. State Transition Diagram

Details on requirements synchronization for the Student Recruitment Web Portal are given in sec-
tion 8.5 and page 165, and by figure 8.4 on page 167.

Part VI.

Epilogue

Part VI Epilogue compiles the findings and implications of taking advantage from pre-defined
units for planning the scope and speed in software projects as investigated by this dissertation.
Chapter 12 Conclusion summarizes the answers to the research questions as detailed in sec-
tion 1.2. Chapter 13 Future Prospect outlines remaining issues and newly found directions for
paving the way for worthwhile research, one which contributes to a sustainably managed software
engineering discipline in software development projects.

246 Conclusion

12. Conclusion

Problem-Based Project Planning is about pattern-enhanced, size-driven practices to meet the Need
for Speed as is attributed to postmodern so�ware engineering projects. It aims at empowering
project teams to control project success e�ectively and sustainably. For this purpose, recognizable
units of shareable problem-solving knowledge are introduced, which serve the team to frame their
common understanding on the project tradeo�s to be made and thus to speed up project progress.

Project
Plan

Speed Scope

Schedule

WORK FRAME

TIME FRAME

PROBLEM FRAME

Problem-Based Project Planning
by pattern-enhanced, size-driven Requirements Work Packages

Problem-Based Estimating
by pre-defined units of product scope and size

and the Frame Counting Agenda

Problem-Based Benchmarking
by pre-defined units of work progress

and A S.M.A.R.T. Scrum-A·GenEDA

Problem-Based Adaptation
by pre-defined units of production work

and the One4All View Model on software architecture

FIGURE 12.1 A Postmodern So�ware Engineering Approach to Project Planning

12.1. Problem-Based Enablement of Agile So�ware Engineering Projects

Postmodern so�ware engineering projects rely on empirism, which “asserts that knowledge comes
from experience and making decisions based on what is known” [193, page 5]. That is, the project
team depends on sharing their “empirical observation [. . .of] what works” [86].

Improving the common understanding of what is known by a project team, makes it agile, as
it becomes “better able to adapt” [86] to the fuzziness involved with (requirements) change. Agile
project teams have a high responsiveness to change, as they are capable to draw value from their
lessons learned.

For this, agile project practices encourage transparency, inspection, and adaptation, which are
the three pillars of empirical process control [193, page 5]. Problem-Based Project Planning takes
account of these, thereby answering the research questions of this dissertation.

Problem-Based Enablement of Agile Software Engineering Projects 247

12.1.1. Transparency

Transparency [193, page 5] means to make the common understanding of the significant aspects in
the project visible, by defining a standard or language that is shared by all members of the team.

Thisdissertationconsiders functionaluser requirementsas those significantaspects in theproject,
which are of most importance to the team.

As summarized in figure 12.1 by the contribution C 01 Problem-Based Functional Size Measure-
mentPatterns it introducesameans for structuringdesired so�ware functionality intoRequirements
Work Packages. These pre-defined units of product scope and size allow for framing the teammem-
bers’ understanding of what should be achieved in the project to a recognizable level of detail and
type of functionality. They equip the teamwith a standardized viewmodel on the problems, they are
going to solve in theproject, and focus respectiveknowledge sharingonwhat is a�ectedbyachange.
As a result of that, the modeling of so�ware product requirements which builds on problem-based
functional size measurement patterns presents an answer to the research question RQ 1.a How to
establish pre-defined units of scope?

These units not only enable the team to fix the scope of requirements, but they are also applica-
ble for determining consistent estimates on how to satisfy these andwhen to expect the completion
of respective work on these. Both of these estimates are essential inputs to the project planning.
Problem-Based Project Estimating is a prerequisite for measuring project product as well as pro-
duction performance. Both ismade possible by providing the teamwith contribution C 02 Problem-
Based Functional Size Measurement Method named Frame Counting Agenda, which is the answer
to research question RQ 1.b How to estimate scope size?. It makes transparent what counts in and
what does not for determining the size of a problem and the speed of delivering its solution.

12.1.2. Adaptation

Adaptation [193, page 5] means to react to visible deviations of significant aspects in the project
instantly, in case these would cause project results to become unacceptable.

In this dissertation, deviations of significant aspects in the project are considered as change in
requirements, onewhich is not visible to the team in the project plan. This deviationmanifests itself
in the team’s inability to act asplannedor in its failure todeliver aworking solutionwithin theproject
time available.

In order to prevent the team for su�ering from unwanted changes that if not properly adjusted,
will creep the scope of a project plan, Problem-Based Project Adaptation as one pillar of problem-
based project planning according to figure 12.1, exploits requirement dependencies in two ways:

First, it accounts for the structural dependencies of requirements and so�ware architecture,
thereby providing an answer for RQ 2.a How to establish pre-defined units of work?
Asagileprojectprinciplesdemand forEmbracing change, the teamis supportedbycontributionC 03
Transition Templates for bridging the gapbetweenproblemanalysis and solution design. This newly
developed kind of patterns qualify Requirements Work Packages as boundary objects, which are
meaningful to theproduct andproductionperspective in aproject. They guide the team indetermin-
ing a plan of production work that fits the product scope as defined in each requirements unit, i.e.
one that lets the team produce desired project results. In case of emergent requirements, which im-
pedeprogress as plannedand thus hinder expectedproject performance, the team ismade ready for
adapting its planning by deciding instantly on alternative plans on how to proceed with the project.

248 Conclusion

Second, it dealswith the functional dependencies of requirements and so�ware architecture for
answering the question RQ 2.b How to plan worthwhile work volume?
Agile project procedure comes with a fixed time frame available for producing desired results. As
each project team has a limited capacity of production work they can do in time, which implies that
they cannot do everything at once, agile teams strive towards the principle ofMaximize the work
not done flexing the what is done in the project. The Processes View as part of contribution C 04
"One4All" View Model on So�ware Architecture supports the team in having control over their pro-
jected work volume. It facilitates the prioritization of Requirements Work Packages according to
their value for the product’s users. The knowledge about what should be done first is inherent to
the user’s business processes and related workflowmodels. This dissertation uses the so�ware life-
cycle as a source of information for deciding on aworthwhile volume ofwork that takes into account
the priorities of the requirements.

12.1.3. Inspection

Inspection [193, page 5] means to frequently compare project progress against its plan for detecting
those significant aspects in the project, which run outside acceptable limits.

As “a process is only as good as is the rigour of its application” [184, page 366], this dissertation
integrates problem-based project planning and an agile project process framework to A S.M.A.R.T.
Scrum-A·GenEDA. It defines the time intervals within a project in which inspections should take
place.

The basis for comparison is given by contribution C 05 Problem-Based Project Baseline, which
is represented by a Project Backlog that builds on Requirements Work Packages as work items. This
Project Backlog makes the project plan. It is a time-bound view on selected items from the Product
Backlog, which answers the research question RQ 3.a How to baseline project plans?

Project progress against this plan can be inspected as soon as work on the Project Backlog has
started. Those work items "done" within the project time available are used as C 06 Problem-Based
Speed Benchmark. As each is assigned with a product size measurement given in function points,
these become valuable units of progress applicable for Problem-Based Project Benchmarking.

The answer to the research question RQ 3.b How to benchmark the progress of projects? lies
in the backlogs as established by Problem-Based Project Planning. These preserve the speed mea-
surements and respective lessons learned of di�erent projects and teams, and make their project
achievements compare- and reusable. This sustainable best practices knowledge empowers teams
to accelerate their decision making for the benefit of project progress.

249

13. Future Prospect

13.1. How fast can the so�ware project team become?

As refined by the research questions of this dissertation, it depends on the approach how the speed
of so�ware project teams can be measured comparably, and how their speed can be controlled re-
producibly.

Comprehensibleperformancedata that reveals speeddi�erencesaswell as theunderlyingcauses
of these is needed for judging how fast the so�ware project team actually is and still can become.
Knowing their speed and the practices involvedwith it are prerequisites for the continuous improve-
ment processes undertaken in so�ware projects and by their teams.

As “projects prosper to the extent that people learn to work together e�ectively.” [75, page 56],
it matters to which extent the team can take advantage from their lessons learned for executing a
project under specific conditions. Only then, “enhanced performance by learning” [113, page 1] be-
comes possible.

Making this know-how available to the project team is based on pattern practices in this work.
It is made retrievable via equally scoped and sizeable requirements work packages, which serve as
pre-defined, multi-purpose work items to the project team.

Product

Platform

People

Process
4. responsiveness

2. reuse

1. recognition

3. readiness

Sizing

SynchronizationScoping

Satisfaction
2�measuring

2� dependency
2� functionality/FUR

2�work "done"
2� benchmarking
2 Insights from project practice*

2� priority

2 Tool support*
2 Data modeling*
2 Process management*

2 Quality attributes*
2 Testing*

PP
PatternPattern

PracticesPractices

P = Sustainability is a key to speed
2� = subject to this dissertation
* = future research areas

FIGURE 13.1 Sustainable decision-making and speed improvement practices
enable accelerated performance

250 Future Prospect

Figure 13.1 illustrates how this work evolves McConnell’s four dimensions of so�ware project
speed [151] in each dimension of people, product, platform and process by the use of pattern prac-
tices for the sake of systematic speed consideration and its improvement in so�ware projects.

Patterns at the people dimension support the recognition of recurring problems, which lever-
ages collaboration in the team. At the platform dimension, patterns guide the selection and reuse
of proven solutions, which helps to speed up the realization of desired so�ware functionality and
“minimizes wasted e�ort” [206, chapter 6].

In both of these dimensions, patterns stabilize the project team’s common understanding of
what the user wants, and allow for an increased anticipation of the work required to respond those
needs properly. That way empowered teams can start sooner, as the project plan becomes instantly
available to them.

The use of patterns at the process dimension increases the readinessof the project team toover-
come obstacles in regard to their responsibilities. Patterns are boundary objects, which not only
resolve replication of errors and work, but also reduce lead times caused by handovers, which usu-
ally hinder projects from progress(ing fast(er)). They pave the way for technical excellence, the best
guarantee against technical debt, and its associated risk of performance degradation. At the prod-
uct dimension, patterns support the responsiveness of a team to react proactively and not reactively
to (changed) user needs, and for focusing and flexing “their attention to doing the work that is of
highest value to the customer” [206, chapter 1] for deciding on what has to be done first.

In both of these dimensions, patterns help to separate responsibilities and results despite in-
creasing complexity and variability, which comes with change. They establish a separation of con-
cerns,whichon theonehandmaintains the relationamong functional user requirements, andon the
other hand makes an independent consideration of associated work items possible. Pattern prac-
tices contribute to a faster adaptability of the work plan in regard to its prioritization and volumne,
one that really lets teams ’embrace change’.

Functional user requirements stabilized and separated by patterns (practices) form the basis for
creating adaptable so�ware products and project plans. These enable comprehensible decision-
making, which is essential for delivering value to the customer at a sustainable pace, and for having
reason(able) to ’trust (in) the team’.

13.2. Future Directions – Towards Sustainable So�ware Engineering
Practice

This section gives some details on the future research areas as noted in Figure 13.1. Because some
time has passed betweenwriting this dissertation and delivering it, experiencesmade by the author
with the herein proposed approaches is reported in each example paragraph in the following. The
e�ects on the results of this work and their improvement due to their application in project practice
are explained in more detail in Section F For Further Discussion. The examples come from the field
of so�ware development projects for form dialog-basedweb applications to support administrative
processes.

Future Directions – Towards Sustainable Software Engineering Practice 251

13.2.1. Insights from project practice

As Figure 13.1 shows, this dissertation deals with the measurement and benchmarking of functional
user requirements, with the focus on their functional size. The intention is to replace gut feel esti-
mates in so�ware development planning by a counting method in order to make comparable so�-
ware product and production process data available. This data helps projects and their teams in
determining (the reason for) their speed, which is needed for building a work plan, they can have
confidence in. For identifying comparabledataand the relatedbest practices, theapproach followed
in this dissertation depends on the application of analogies [96, 199, 210] for the recognition of com-
monalities in so�ware functionality, which is provisionable by patterns.

The interesting question is here: How applicable are these patterns in real software projects?
Which are the challenges to adapt them to di�erent

project types,
such as green field (“from scratch”1) or brown field (“evolutionary”2) development, or to

project organizations and processes,
for instance regarding standards such as ITIL [20], PMBOK [124], PRINCE2 (Agile) [19, 21],
or V-Modell [77]?

There is good and bad news: The use of problem-based functional size measurement patterns
for measuring functional size is less interesting than their use for scoping so�ware products in prac-
tice. It turnedout that the reproducible separationof functional user requirements into independent
but still interrelatable requirements work packages, which is also made possible by problem-based
functional size measurement patterns is the more significant and needed [143] contribution.

EXAMPLE 13.1 Agile Modernization

Within several so�waredevelopmentprojects, the concept anduseof problem-based functional size
measurement patterns turned out to be very supportive for the requirements decomposition and
respective identification of reusable so�ware artefacts.
These patterns have been developed further into six problem-based user story templates for rec-
ognizing recurring classes of functional user requirements by adopting the concept of requirements
templates and process words from [207]. Each template makes use of a specific keyword for iden-
tifying its transactional function (TF), see Table F.1 Problem-based user story templates applying
TF-keywords on page 291. Especially for modernization projects of highly customized legacy so�-
ware, where the knowledge about a product’s functionality and its respective documentation is not
unambiguously available anymore, user story templates contribute to the systematic execution of
reengineering activities and care for requirements completeness.
A�er redocumenting several legacy products (on the fly in agile settings, as well as retrospectively in
waterfall-like projects) by thehelpof user story templates, it turnedout that not themeasured size of
each, but already the total number of resulting work packages contibutes to the projects’ compara-
bility in a convincingly reliable way. That way, a correlation between amount of requirements work
packages and the time needed for delivering these could been observed across di�erent projects,
and successfully applied for their planning. Furthermore, the recognition of recurring problems and
their solution alternatives has allowed to compare di�erent implementations of so�ware artefacts
and to decide whether they should be retained or how to replace them.
This wasmade possible by the user templates’ underlying pattern practices, which establish equally
scoped units of (comparable kinds of) so�ware functionality.

1green field = newly set up, homegene environments with expectable low integration e�ort, and the assumption ofman-
ageable, since known dependencies

2brown field = grown, heterogeneous environments with expectable high integration e�ort, and the risk of unknown
dependencies

252 Future Prospect

13.2.2. Tool support

As Figure 13.1 shows, this dissertation deals with the dependency and priority of functional user re-
quirements for enhancing responsiveness of so�ware project output to user needs. The intention
is to keep demand synchronized with development in order to proactively control project progress
towards desired directions under changeable conditions.

One cause of divergency between demand and development in the presence of change is the
“Barely Su�icient” Documentation [206, chapter 4] as is commonly observable in so�ware develop-
ment projects. Documentation activities are too o�en perceived as time consuming necessary evil,
whose contribution to the output of the project namely the so�ware product is undervalued. Tool
support which takes advantages from pattern practices can ease the creation and maintainability
of a living so�ware (requirements) documentation, one which makes sure the constant encourage-
ment of the people involved in a project by improving their mutual understanding and concerning
their individual work contribution.

A cascading transition between documents from di�erent domains or disciplines based on pat-
terns is an important first step in order to create synergies, e.g. to systematically combine the re-
quirements analysis with the architecture design and the subsequent so�ware development in a
forward and backward navigable manner.

The next step towards a living documentation is to use patterns in such a way that they serve
as anchors to which appropriate documentation from di�erent disciplines can be attached immedi-
ately. Not just the patterns, but the resulting document instances as well should be understandable
and purposeful ’cases’ in di�erent contexts. This approach is an implementation of “projectional
editing” as described by Fowler [87]. For example, a screenshot of a prototype is sometimes a bet-
ter product specification than a wall of text in natural language, because it is understandable and
of purpose to (guide) its users and developers (in fulfilling their responsibilities in the project). The
anchor, ie. what matters to both is still framed by the underlying pattern. This allows the cascade of
transitions to be skipped, and to reduce the risk of losing information and adding content, like in a
’chinese whisper’ game. It would accelerate the implementation of changes and the corresponding
adaptation of the documentation.

So, how integrate the pre-defined units of software product size and scope as proposed in
this dissertation with exisiting tools for determining work progress and for keeping up a living
documention of the software product(ion work)?

The significant added value of requirements work packages is their pre-defined, equally sliced
functional scope as a result of the underlying problem-based functional sizemeasurement patterns,
whichmakes an independent consideration of these units of “basic activities” for di�erent purposes
in so�ware projects possible. Tooling support for the

project process,

for example ScopeMaster [195], which assists determining the functional size in requirements
analysis, or awork assignment system such as Atlassian Jira [18], which provides tickets appli-
cable as story cards for organizing theworkwithin so�ware development Sprints, and options
for limiting work-in-progress by Boards in kanban-style, would benefit from the pre-defined
units of so�ware functionality as proposed in here

– for streamlining their definition of functional scope and for executing respective segmen-
tation in the requirements analysis and story specification, and

– for normalizing their key figures in accordance with the number of requirements work
packages and their respective functional size to obtain a comparable measurement for
and definition of (work) done.

Future Directions – Towards Sustainable Software Engineering Practice 253

Tooling support for the

product documentation,

can take advantage of the pre-defined logical boundary that comes with each problem-based
functional sizemeasurementpatternbyusing it for the (automatable) linkageof self-contained
so�ware functionality, which is either specified as requirements artefacts or given as so�ware
code within aBizDevSec3Ops-like toolchain4. In this context, research can be

– started by investigating the ((requirements) work) packages’ integrability with scripting
approaches such as the Gherkin language [72] for creating an executable requirements
specification5, or theapplicationof visualmodeling6 toolsofuserdialogsasBalsamiq [27]
for creating click-through prototypes. These help the project team to get a first impres-
sion of the feasibility of requirements based on an early project phase’s product docu-
mentation. Paragraph EXAMPLE 13.2 reports on an attempt to make this work (out).

– continued in the direction of technological frameworks such as JAVAmicroservices [183],
as these share the concept pursued in this dissertation: to set up recognizable service
unitswith a single processing responsibility that is bound to adefineddata set. Thepack-
ing of so�ware product (documentation) artefacts into self-contained units of so�ware
functionality can be continued along the toolchain by containerization, as is possible by
Docker [81]. This increases flexibility in later phases of so�ware development projects, as
the orchestration of so�ware product (service) artefacts is more adaptable to changing
user needs. The logical boundary of artefacts at the level of so�ware code and require-
ments specification is the same. Thatway, the change of one is immediately understand-
able to the other.

EXAMPLE 13.2 Backlogs and Wikis

Using the same pattern-based framing for the functional scope of early and late so�ware (documen-
tation) artefacts and respective tool support, helps the project team to gather a common under-
standing of the problem to be solved and improves their collaboration on its solution.
Since the project teams embody di�erent perspectives and di�erent disciplines, and its members
have to fulfill di�erent reponsibilities, it is important to focus on shareable “basic units of activ-
ity”, because considerations about units where “There is only one WHEN event that triggers the sce-
nario” [163, page 60] is not distracted or confused by problems outside and within their pre-defined
logical boundaries [84]. This facilitates mutual agreement in the team on how to proceed.
For example, a structuring of Requirements Work Package as multi-purpose work item as shown in
Table F.3 serves as a kind of agenda to the project team,which is comprehensible to users and devel-
opers, and guides their discussion of demand towards development during their project planning.
Requirements work packages, which are presented as story tickets by a tool such as Atlassian
Jira [18], for example, can be used within a backlog to set up a so�ware product baseline, and like-
wise integrated into a wiki such as Atlassian Confluence [18] for multi-documentation purposes, for
example tomake contributions to specification and acceptance documents, technical manuals and
user training, etc. In this way, story tickets becomemulti-purpose work items that are not only used
for planning, but also serve the decision-making in subsequent project process phases or Sprint
events. Thesework items forman anchor thatmakes changes transparent and inevitably keeps doc-
umentation updated by those who depend on and work on them.

3“Quality by Design” issues are discussed in Section 13.2.5
4Without the intention of advertising or opportunity to use: Atlassian provides a plugin named testmanagement for Jira
(TM4J), which integrates Gherkin for establishing a DevOps-chain team collaboration.

5The user story templates in Table F.1 account for gherkin
6Visual programming serves also the realization process, in terms of knowledge building and implementation practice.

https://marketplace.atlassian.com/apps/1213259/tm4j-test-management-for-jira

254 Future Prospect

13.2.3. Process management

As Figure 13.1 shows, this dissertation primary deals with the behavioral aspects of functional user
requirements. The intent is to frameuser requirements bymeansof patterns into independent,mea-
surable units of so�ware functionality, which are comparable in their functional scope, and because
of that assist the so�ware product planning and its production process.

Based on these “basic units of activities”, their flow of usage within a so�ware product is mod-
eled by life-cycle expressions, or alternatively by state-transition diagrams in order to systematically
link them with one another into meaningful usage scenarios. This modeling takes into account the
functional dependency of the user requirements. The priority of units or a particular flow of use
depending on their value to the user or the developer of the so�ware product.

Obviously, the furtherdevelopmentofwork flowmodelingbynotationalmeans,whicharecloser
to business and respective value considerations, such as BPMN [88, 165]7 and BABOK [163], is a
feasable future research direction.

It seemsmore promising, however, to address the question of how do requirements work pack-
ages affect the prioritization of work flow within (project business) processes of the product
delivery pipeline, for example in the context of a problem-based

Risk Management, or

Resource Management?

Section 13.2.6 Testing gives an outlook on problem-based riskmanagement for the sake of user
acceptance testing. The case of resourcemanagement in problem-based project planning is opened
in the following paragraph EXAMPLE 13.3. In addition, the current approach to workflow modeling
in problem-based project planning is presented, which has been further developed through use in
di�erent so�ware development projects.

EXAMPLE 13.3 Boards and Capaci/bilities

The Tables F.8 StoryMapping for the Vacation RentalsWeb Application and F.7 StoryMapping for the
Student Recruitment Web Portal show an alternative workflowmodel compared to state-transition
diagrams and life-cycle expressions for the Case Studies discussed in this dissertation.
These tables are not a 1:1-implementation of a Story Map [11], but they retain their concept to assist
“in creating understanding of product functionality, the flow of usage, and to assist with prioritizing
product delivery” [163, page 100].
A table row describes a “scenario [. . .] in terms of how stakeholders interact with the solution” [163,
page 93], which is made visible by relating associated user (roles) in each (scenario) row, in addi-
tion to the flow of individual user stories. For this reason, the term Storyboard also fits this tabular
representation of dependent so�ware product functionalities.
This representation has several advantages over a stacked product backlog. For example, repeated
appearance of a user story indicates its importance for the user and the respective priority for its
development. In addition, a Storyboard provides the "big picture" of so�ware product that is not
visible in a Sprintboard. It only contains a time-boxed excerpt of user stories from the product back-
log. It represents the user story map or product roadmap, too.

7The BPMN task types (receive, service, send) relate to IFPUG FSM elementary process types (input, inquiry, output) and
the basic types of functionality in Problem-Based FSM (TOFF-i., TOFF-ii., TOFF-iii.)

Future Directions – Towards Sustainable Software Engineering Practice 255

EXAMPLE 13.4 Boards and Capaci/bilities, continued

The pre-defined units for Problem-Based Project Planning serves to size the scope of the product,
i.e. its functional user requirements. This size measure (in function points) determines the project
baseline and answers the question of howmuch work needs to be done?
In addition, this size measure is of use in the time dimension of project planning, as it can quantify
howmuch work is actually being done.
The question that has not been addressed so far relates to the resources dimension of project plan-
ning: Do we have the capacity, i.e. the resources available to get the work done? When can the work
be done?
The resources available can either relate to the capabilities, i.e. the skills of the project team, which
are enhanced by pattern-enabled best practices in this dissertation, or the notion of resource can
refer to the capacity, i.e. the timely availability of individual project teammembers to complete the
work.
In this dimension of project planning, the functional dependency of individual requirements work
packages from one another , which is addressed in this dissertation byworkflow considerations and
prioritization in order to fit the project time-box, is not important, but the dependence of individual
requirements work packages on the timely availability of the project organization’s functional units
(represented by each project team member) is of relevance and worthwhile future research. The
problem to be solved is to plan the availability of resources in the project time-box, so that the work
can be done.
Planning the scope and speed of so�ware production is one step. Planning the availability of skills
during so�ware production, i.e. the resource or teammember that ultimately does the work, is the
next.

256 Future Prospect

13.2.4. Data modeling

As Figure 13.1 shows, this dissertation mainly deals with the functionality of user requirements to
frame recognizable “basic units of activities” for establishing a requirements model that assists the
so�ware product planning and its production process.

The intention to address the data involved with functional user requirements belongs to the
area of future research. Since problem-based functional size measurement patterns showed to be
useful for separating functional user requirements into units of desired so�ware functionality, the
question at hand is: how does the associated logical boundary contribute not only to its functional
scope, but also to that of data, which are also bound to these units?

How is the (structuring of) data that is linked to a requirements work package taken into
accounted through different

notations and transformations
(UML [168], OCL [167], ER diagrams, etc.)

application domains and purposes
(technical documentation, data processing rights, test data generation)

for creating a data model?

EXAMPLE 13.5 Roles and Responsibilities

Data modeling is not negligible in problem-based functional size measurement, but it is not bound
to a notation. As elements of so-called ’data functions’, data information, which is processed by a
recognizable unit of so�ware functionality, counts in to the overall function points that determine a
requirements work packages’ functional size.
Table F.2 gives an ideaof how theexpressiveness of keywords, as used inuser story templates, canbe
further developed through OCL expressions, to map data that is linked to requirements work pack-
ages (according to a target structure such as in Figure F.1) to a UML class diagram. Figure F.2 Ex-
emplary Data Model for the Vacation Rentals shows, how this modeling approach is applied to the
Vacation Rentals Case Study. This data model, specified as a UML class diagram, can be used for
documentation and auditing purposes, for instance in the context of data protection and privacy
analysis as outlined in Section 13.2.5 Quality attributes, and it o�ers options for integration into (au-
tomated) testing tools as presented in Section 13.2.6 Testing.
In addition, Table F.2 List of TF-keywords for problem-based user story templates assignes each TF-
keyword read and write responsibilities for its data function.
For instance, a requirements work package which is linked to data for creating a user account, i.e.
TF=create andDF/element=user account, is responsible for including a new element into the col-
lection of existing user accounts by executing a respective write operation to a data base.
Reading information related to this user account is not in focus of this requirements work package.
That is whyTFK1. does not mark so�ware functionality, which is concerned with (only) read oper-
ations.
The clear specification of read and write responsibilities for data is a prerequisite for the creation of
user roles that are used in an authentication matrix, see for example Table F.4.

Future Directions – Towards Sustainable Software Engineering Practice 257

13.2.5. Quality attributes

As Figure 13.1 shows, this dissertation deals with the delivery of so�ware by focusing on the satisfac-
tion of its functional user requirements. The intention is to aid in the identification of work units to
be “done” for implementing desired so�ware functionality by use of patterns. The project progress
and the respective delivery success are measured on the basis of the fulfillment of each “done” unit
of so�ware development work.

Quality attributes such as usability, security, performance, or maintainability are not yet explic-
itly addressed or are part of problem-based project planning. These require additional considera-
tions when planning the satisfaction of user needs.

Projectmanagement and so�ware developmentmust constantly reassure that the user is satis-
fied with the product, because this determines the success of the project. This reassurance not only
serves the validation that the project is on track by answering the question “Do we build the right
thing?8”, but it also verifies the question of “Do we build the thing right?9” due to its strengthening
of confidence in the product’s use. So�ware that is used indicates best its fitness to purpose, i.e. it
confirms the delivery of a product that satisfies (what) the user (really) needs.

Theearlier in theproject process this reassurance ismadepossible, thebetter user satisfaction10

can be achieved, one which acknowledges technical excellence and enables the team to “embrace
change” at a sustainable pace, i.e. by continuously proceed11 in the delivery of so�ware that fits
its purpose. This is made possible by “A Continual Emphasis on Design” [206, chapter 6] from the
beginning of a project, which makes a preview of the expectable quality and its associated work to
be “done” available to the project team (users and developers).

The examples paragraph gives a brief answer to the following question of future research:

How does Quality-by-Design as a principle of Sustainable Software Development
integrate with Problem-Based Project Planning?

EXAMPLE 13.6 Authorization Conception and User-Centered Design

The concern that “models may be created [. . .] but these models are not maintained and not kept
consistent through the further development” [153, page 422] holds for functional user requirements
as well as for quality requirements irrespective of an agile or waterfall-like project process execu-
tion. As discussed in Section 13.2.2, it depends on amodels range of uses and benefits, which would
encourage the team to keep it up-to-date and take care of a living documentation. Themore critical
problem is that quality considerations are too o�en skipped and not built into the product with the
same priority and determination as so�ware features.
For example, security considerations in the context of General Data Protection Regulation [170] re-
quire “documentation andprivacy analysis tasks” [153, page 422], which are needed in thebeginning
of development activities and can be hardly built into a product a�er its delivery. For instance read
and write rights on data, such as proposed by Table F.2 List of TF-keywords for problem-based user
story templates must be known (be)for(e) the establishment of an Authentication matrix, such as
proposed in Table F.5 Permissionsmatrix for the Vacation RentalsWebApplication and Table F.6 Per-
missionsmatrix for the Student RecruitmentWeb Portal for the case studies discussed in this disser-
tation. Data models and authentication schemas are needed to set up data base configurations in
advance to any feature development. Bending these during the development of a so�ware product
is usually an expensive, if not futile, endeavour.

8Do wemeet the actual problem?
9Do wemeet the purpose by the solution?
10In terms of ’built to work’, contrary to ’built to last’, or ’built to flip’ [62, 63], who understands flip as ’through away’
11over the long term

258 Future Prospect

EXAMPLE 13.7 Authorization Conception and User-Centered Design, continued

Usability and User Experience is decided at the user interface (UI). That is why each requirements
work package according to Table F.3 consists of user story and related acceptance criteria, and a
visual representation of the intented UI layout (mockup). A picture is worth a thousand words, and
can help achieve consensus within the team about what quality they want to achieve.
Analysis of personas, the development of a product roadmap, the design of the customer journey,
can be related to the Storyboard, its roles and scenarios, such as proposed in Table F.8 and Table F.7.
In this way, the pre-defined units for problem-based project planning are ofmulti-purpose for di�er-
ent quality attributes, and help to achieveQuality-by-Design right from the start of a project.

13.2.6. Testing

As Figure 13.1 shows, this dissertation deals with user satisfaction by the delivery of a “done” work
item that fulfills the functional user requirements. The intention is to make the delivery of desired
so�ware functionality by use of patterns possible, i.e. to get thework done (in one or the other way).

From a quality assurance perspective, user satisfaction and user acceptance correlate, espe-
cially in projects that follow a user-centered design.

It is worthwhile to have “A Working Product at all times/ [by] Valuing Defect Prevention over
Defect Detection” [206, chapter 4 and 5], not only for the implemention of Sustainable So�ware
Development and the achievement of technical excellence, but also to collect user feedback12 in a
timely manner.

Ensuring as soon as possible that the user is satisfied with the way the product is working, not
only paves the way to the user’s approval to accept the product under development, but also opens
the way for using this confirmed observation (of what is working for the user or not) for testing.

Part of future research can involve the question of: How the development and use of

functional test cases,

test data, and

test management

can take advantage from the pre-defined units of software functionality as proposed for operating
problem-based project planning?

12As discussed in Section 2.1 The So�ware Project Triad, lack of user involvement and insu�icient requirements not only
belong together, they are also among to top reasonswhy so�ware projects fail, according to The Standish Group [208].

Future Directions – Towards Sustainable Software Engineering Practice 259

EXAMPLE 13.8 Automated user acceptance testing

The enumerated scenarios of user stories in Table F.8 Story Mapping for the Vacation Rentals Web
Application and Table F.7 Story Mapping for the Student Recruitment Web Portal proved useful for

reflecting the workflow and to decide on the user stories’ prioritization
as discussed in Section 13.2.3 Process management

identifying recurring data chunks that adhere to a user story, providing a retrievable starting
point for their refinement as discussed in Section 13.2.4 Data modeling
and assist the development of their respective read and write access right and according user
roles as dicussed in Section 13.2.5 Quality attributes

risk- (and problem-)based test management.

By assigning user stories to values for a damage classa and a frequency classb, the discussion in the
project team about the criticality of each becomes very productive in regard to the need and devel-
opment of countermeasures, and the decision of test automation and its depth. This information is
successfully integratable with test automation tools. In this way, these tables are of multi-purpose
in the project, to the users, to the developers (and testers), and for the team members’ to work to-
gether. These tables, intended for theproject planning, guide theentireproject execution, during the
development testing and in user acceptance testing (UAT). A project team that finds these useful, will
make sure of itself that this document is kept up to date.
adamage class: the estimated severity caused by a failed user story, e.g. low, intermediate, or high
bfrequency class: the estimated occurence of the execution a user story, e.g. infrequent, or frequent

Part VII.

Appendices

Last but not least, Part VII Appendices provides supplementary materials to this dissertation.
Appendix A ISO/IEC 20926:2009 Complexity and Size Tables belongs to the input documents
of the Frame Counting Agenda, specifying the complexity parameters and point values that can
be assigned to a Requirements Work Package. Appendix B Sanity Checks intends to justify the
quality and fitness of the requirements sizing method proposed by the frame counting agenda to
the standard ISO/IEC 20926:2009 and to the certification practices of the International Function
Point Users Group. Appendix C Listing of Philosophies represents a loose collection of philoso-
phies around agile project practices. Appendix D Overview on Architecture Design Patterns enu-
merates commonly known patterns applicable to software architecture design. Appendix E Struc-
tures of Architecture Design Patterns lists the structure of those architecture design patterns,
which are discussed in chapter 7.3 Transition Templates – Making problems absorb into plat-
form for the development of solution templates. Appendix F For Further Discussion presents a
collection of notes on the further development of the contributions in this dissertation. A List
of Tables, List of Figures, and List of Examples are complemented by an overview of Acronyms
frequently applied in this dissertation. Finally, a bibliography comprising all References used to
this dissertation are offered to its dear reader.

http://www.ifpug.org
http://www.ifpug.org

262 ISO/IEC 20926:2009 Complexity and Size Tables

A. ISO/IEC 20926:2009
Complexity and Size Tables

A.1. Data Function Complexity Matrix

DETs
1-19 20-50 >50

RETs
1 Low Low Average
2-5 Low Average High
>5 Average High High

TABLE A.1 Data function complexity matrix, taken from [117, table A.1, page 23]

A.2. Data Function Size Matrix

Type
ILF EIF

Functional Complexity
Low 7 5

Average 10 7
High 15 10

TABLE A.2 Data function size matrix, taken from [117, table A.2, page 23]

Transactional Function Complexity Matrix 263

A.3. Transactional Function Complexity Matrix

DETs
1-4 5-15 >15

FTRs
0-1 Low Low Average
2 Low Average High
>2 Average High High

TABLE A.3 EI functional complexity matrix, taken from [117, table A.3, page 23]

DETs
1-5 6-19 >19

FTRs
0-1 Low Low Average
2-3 Low Average High
>3 Average High High

NOTE: An EQ has a minimum of 1 FTR.

TABLE A.4 EO and EQ functional complexity matrix, taken from [117, table A.4, page 23]

A.4. Transactional Function Size Matrix

Type
EI EO EQ

Functional Complexity
Low 3 4 3

Average 4 5 4
High 6 7 6

TABLE A.5 Transactional function size matrix, taken from [117, table A.5, page 23]

264 Sanity Checks

B. Sanity Checks

This appendix provides some quick-and-dirty evaluation for some of the concepts andmethods de-
signed in this dissertation. It shows the rationale behind the conceptualization done in thiswork and
provides a means of plausibility check to the reader.

Section B.1 FCA Validation Conditions and the IFPUG Measurement Process gives a mapping of
the functional size measurement method taken from ISO 20926 [117, pages 8–22, chapter 5] to the
activities and steps of the FrameCounting Agenda as summarized in table 6.2 on page 82 and its Val-
idation Conditions as presented by table 6.3 on page 86�.

It visualizes the coverage of both approaches to early function point counting, and justifies the
deduction of each validation condition by commenting inline on these, and giving explicit reference
to respective sections in the ISO 20926 standard.

Section B.2 UML4PF and the Criteria for Certification of Function Point So�ware type 2 inves-
tigates which impediments to overcome for making the UML4PF tool [107] an ISO 20926-conform,
IFPUG-certifiable so�ware, that assists the requirements engineer or estimator in an automated ex-
ecution of early functional size measurement.

It compares the fundamentals of problem-based functional size measurement patterns, i.e. the
constraints (in table 5.1 on page 48) and criteria (in Definition DEFINITION 5.5 on page 66) for im-
plementing a set of unique so�ware functionality, as well as the validation conditions of the frame
counting agendawith the criteria given for certification of function point so�ware type 2 [121], which
allow for certification for “So�ware [that] provides Function Point data collection and calculation
functionality, where the user and the system/so�ware determine the Function Point count inter-
actively. [That is,] The user answers the questions presented by the system/so�ware and the sys-
tem/so�ware makes decisions about the count, records it and performs the appropriate calcula-
tions.” In doing so, a reverse conclusion is possible by which a certifiable UML4PF tool, one that
implements problem-based functional sizemeasurement, is a confirmation for the applicability and
quality of the means as developed in this dissertation.

FCA Validation Conditions and the IFPUG Measurement Process 265

B.1. FCA Validation Conditions and the IFPUG Measurement Process

This section gives a mapping of the problem-based functional size measurement method as repre-
sentedby the FrameCounting Agenda and its involved ValidationConditions to the IFPUG functional
size measurement process as documented by ISO 20926 [117, pages 8–22, chapter 5].

The first column, shows the activities and steps of the frame counting agenda, and in its third
column it shows the activities of ISO 20926measurement process. That way, in each row of table B.1
it is illustrated, which activities in either the agenda or the ISO standard method conform to each
other. For instance, the Activity 2. Determine Data Functions. of the frame counting agenda re-
lates to the activity 5.4 Measure data functions of ISO 20926. Those rows, which relate to activities,
are highlighted in gray color for the sake of readability. Darkgray-colored rows indicate activities,
which are of no relevance for the mapping. A discussion about the appropriateness of this delib-
erate omission is present in section 6.2.2 IFPUG FSM Method ISO/IEC 20926:2009 – Measurement
Process on page 78.

In its second column, table B.1 shows the respective validation conditions, which belong to each
activity or step of the frame counting agenda. These represent customizations of the counting rules
taken from ISO 20926 [117] for using these in functional size measurement bymeans of patterns, i.e.
those as in Table 5.5 on page 72. That is why, the fourth column of table B.1 gives all the references
to the ISO standard, which have been of relevance for deducing respective validation conditions. In
addition, besides each validation condition an inline comment is present, which provides further
insights on the reasoning behind creating these.

On a quick look, it becomes obvious that each relevant activity of the IFPUG ISO 20926 standard
measurement process is covered by the frame counting agenda in regard to purpose and sequence.
ISO 20926 activity 5.4.1 Overview is not explicitly addressed, since it provides only an overview
of subsequent activities and no independent tasks to perform. This is in contrast to activity 5.5.1
Overview, which is explicitly considered by the frame counting agenda. That is due to the reason,
that by start of the activities for 5.5, only transactional functions are in the focus of considerations.
The activities previous to 5.5 focus on data functions. Transactional and data functions are repre-
sented by di�erent domains according to themetamodel in figure 5.5 on page 47 and its constraints
on requirements modeling and counting as presented by table 5.1 on page 48. That is, activity 3.a
Identify machine domain as transactional function. is intended for making the estimator aware
that there is a change regarding the elements, which undergo the functional size measurement.
It can be discussed, if the actitivities 3.a and 3.b of the frame counting agenda should be merged.
Activity 4. Report Functional Size for FUR. covers two activities of the ISO 20926 measurement
process, namely 5.9 Document the function point count and 5.10 Report the results of the func-
tion point count. This is reasonable, since 5.9. summarizes which documents must be available for
reporting the result of a function point count, and activity 5.10 only demands from an ISO 20926-
conform functional sizemeasurement to document and indicate any costumizations by a respective
postfix to the result of a function point count. That is why it is reasonable to merge the activities 5.9
and 5.10 into one.

Comments on origin and meaning for each validation condition can be found inline to the fol-
lowing explanations of table B.1.

266
Sanity

C
hecks

Frame
Counting
Agenda

Validation
Conditions

ISO 20926 Measurement Process,
taken from [117, pages 8–22, chapter 5]

ISO 20926 reference

5.1 Overview [117, pages 8–9, section 5.1]
5.2 Gather the available documentation [117, page 9, section 5.2]

Comment: For initiating the function point count, the base functional components (ILF, EIF, EI, EQ, EO) must be identified. This activity
is assisted by and reduced to the consideration of patterns for requirements in problem-based functional size measurement. In this case,
functional size measurement (FSM) starts with classifying functional user requirements (FUR) by means of specific problem-based functional
size measurement patterns, which is described next.

Activity 1. Classify FUR by FSM Patterns. 5.3 Determine the counting scope and boundary and
identify FUR

[117, pages 9–10, section 5.3]

Comment: According to ISO 20926, this activity serves the identification of the a) purpose of the count, b) type of count, c) counting scope,
d) boundary of application within counting scope based on user view, e) functional requirements, not the non-functional ones. These concerns
are addressed as follows: a) The purpose of count is fix, since the purpose is to determine the functional size of a requirements work package.
b) The type of count is fix, too. There is no type of count, since different calculations for determining the functional size of a requirements
work package do not exist and are not required. c) The counting scope, it is limited to one problem given in a requirements work package.
d) The application boundary is based on the user view and reflected by the machine interface. The patterns used care for a problem-oriented
perspective on the requirements, such that technical considerations are excluded from considerations by design. e) The problem-based functional
size measurement patterns as in table 5.5 Basic Problem Frames with relevance in Functional Size Measurement on page 72 focus on functional
requirements.

V.i
}

take care that only one, independent problem is going to be counted.
V.ii

V.iii assures that functional size measurement takes place at a defined application boundary, which in this work equates with
the machine interface, cf. table 5.1 on page 48.

Activity 2. Determine Data Functions. 5.4 Measure data functions [117, pages 10–13, section 5.4]
5.4.1 Overview [117, page 10, section 5.4.1]

Comment: This activity is subdivided into the steps 2.a to 2.f in the frame counting agenda as discussed next.

Continued on next page. . .

FC
A

V
alidation

C
onditions

and
the

IF
P
U
G

M
easurem

ent
P
rocess

267
Frame
Counting
Agenda

Validation
Conditions

ISO 20926 Measurement Process,
taken from [117, pages 8–22, chapter 5]

ISO 20926 reference

2.a Identify problem domains as data functions. 5.4.2 Identify and group all logical data into
data functions

[117, pages 10–11, section 5.4.2]

Comment: This activity serves according to ISO 20926 for identifying those a) logical groups of c) related and user recognizable data information,
which are involved with the requirements under consideration. Thereby, keeping the user perspective on these data is of first importance. Code
data or d)-f) data specially created for implementing a particular solution as for instance data base foreign keys, etc., or data, which b) is out
of scope for the problem at hand, must be clearly excluded.
These groups of logically related data is associated with the concept of problem domains in the meta-model as presented in figure 5.5 on page 47
and detailed by table 5.1 on page 48, which are fundamental to each problem-based functional size measurement pattern. That is, the grouping
of logical related data comes by design when using these patterns for building the requirements model. In addition, these patterns focus the
problem by making explicit reference to the user perspective as given in the requirements. All parts and details to any possible solution are
hidden in the machine black box, and thus not considered in this representation of the requirements.

V.iv identifies all problem domains, which are candidates for being evaluated as data function.

V.v excludes all problem domains from becoming data functions, which share only causal phenomena and thus control information
with the machine.

2.b Classify data functions into ILF or EIF. 5.4.3 Classify each data function as either ILF or EIF [117, page 11, section 5.4.3]

Comment: This activity is a refinement of the results provided by the previous one, where two types of data functions must be distinguished
according to ISO 20926 in a) Internal Logical Files (ILF) and b) External Interface Files (EIF). Since problem domains are either of a causal
(C), biddable (B), lexical (X) or display (D) domain type, these characteristics assists the separation of data functions as either ILF or EIF.
Note: The question to answer here is, what type of problem domain, that is in control of symbolic phenomena at the machine interface, is an
ILF and which one is an EIF.

V.vi is concerned with symbolic phenomena that are controlled by the machine domain. This VC expresses that respective problem
domains, i.e. the ones whose symbolic phenomena are controlled by the machine, represents an ILF, since these are “maintained
by the application being measured.” [117, page 11, section 5.4.3 a)].

Continued on next page. . .

268
Sanity

C
hecks

Frame
Counting
Agenda

Validation
Conditions

ISO 20926 Measurement Process,
taken from [117, pages 8–22, chapter 5]

ISO 20926 reference

V.vii is concerned with symbolic phenomena that are controlled by problem domains. These domains represent data groups,
which are “referenced, but not maintained by the application being measured [. . . and may be] identified in an ILF in one or
more other applications” [117, page 11, section 5.4.3 b)]. Respectively, a data function cannot take the role of an ILF and an
EIF simultaneously. For all four types of problem domains it must be decided, if it is counted as in ILF or as an EIF. This is
implemented by the following validation conditions: V.viii, V.ix, and V.x as follows.

V.viii allows for the most generic domain type of a causal (C) problem domain to be either EIF or ILF. It must be only assured
that across all counts of this domain, its role as EIF or ILF is maintained consistently.

V.ix limits biddable domains to represent EIF only, due to the fact, that a biddable domain type cannot be placed with a require-
ments constraint according the Jackson’s original problem frames approach [128]. Thus, a biddable (B) problem domain can
never be an ILF. There are no phenomena controlled by the machine, which are shared at a firsthand interface to any biddable
domain.

V.x makes allowance for the fact, that problem domains of a lexical (X) or display (D) type represent passive ones (see [68,
table 1]), which would never create data by themselves. They represent data sinks, which are accessible for the machine domain
only. They take the role of ILFs in functional size measurement exclusively, since the machine domain uses these for storing or
representing data information. That is, each time a machine domain controls symbolic phenomena at an interface to a lexical
or display domain, it manages data, which is internal to the software application under consideration, or at least processed to
some extend by it.

2.c Count DET for each data function. 5.4.4 Count DETs for each data function [117, page 11, section 5.4.4]

Comment: After having clarified which problem domain (type C, B, X, D) represents what kind of data function (ILF, EIF) in the previous
activity 2.b, ISO 20926 requires to count the number of data element types (DET) for each data function. In doing so, special care must be
taken to avoid double counts of DET, which represent “unique user recognizable, non-repeatable attributes maintained in or retrieved from the
data function” [117, page 11, section 5.4.4 a)] or respective symbolic, shared phenomena at the interface of problem domains and the machine.

Continued on next page. . .

FC
A

V
alidation

C
onditions

and
the

IF
P
U
G

M
easurem

ent
P
rocess

269
Frame
Counting
Agenda

Validation
Conditions

ISO 20926 Measurement Process,
taken from [117, pages 8–22, chapter 5]

ISO 20926 reference

For each of these, count a) one DET, and make sure that only those attributes that are b) used and referenced by the software application
under count, c) checked for relationship with another data function, and d) reasonably grouped in relation to an elementary process, are taken
into considerations.
Each of these points a) to d) as postulated by ISO 20926 in its activity 5.4.4 is supported by design in problem-based functional size measurement.
By means of problem-based functional size measurement patterns d) each unit of measure, i.e. a requirements work package is tailored to exactly
one elementary process, which b) involves a defined scope of problem context, namely only those problem domains, which are of relevance to
the requirements. In addition, c) in each requirement work package, it is the machine domain, which represents the application boundary and
establishes relationships between data functions. Its interface allows for analyzing respective dependencies and potential duplicated appearances
of shared phenomena in and across requirements work packages. Maybe multiple counts of the same DET are adjusted in activity 2.e of the
frame counting agenda, when all necessary information for determining the functional size of one requirements work package is collated.
Note: Causal phenomena are of relevance to transactional functions. These are counted in activity 3. of the frame counting agenda as discussed
later.

V.xi ensures that determining the functional size of data functions is related to symbolic phenomena only.

2.d Count RET for each data function. 5.4.5 Count RETs for each data function [117, page 12, section 5.4.5]

Comment: In ISO 20926 activity 5.4.5 serves the counting of record element types (RET), which are “user recognizable sub-group of data
element types within a data function” [117, page 7, section 3.46]. Problem domains relate to data functions. Both represent a logical grouping
of shared phenomena or respective DET by definition. In accordance with IFPUG counting practices [118, section 6-9, RET rules] and ISO
20926 activity 5.4.5 b) the consideration of additional logical sub-grouping of DETs within one data function is neglectable, and thus 5.4.5 a)
one RET is counted for each data function by default.

V.xii takes advantage of the structuring for requirements as provided by problem-based functional size measurement patterns.
These patterns allow for simple identification and respective counting of RETs for each data function in a requirements work
package.

2.e Determine functional complexity for data functions. 5.4.6 Determine the functional complexity for each
data function

[117, page 12, section 5.4.6]

Comment: This activity takes the Data function complexity matrix, taken from [117, table A.1, page 23] into account for determining the
functional complexity of a requirements work package based on its data functions.

Continued on next page. . .

270
Sanity

C
hecks

Frame
Counting
Agenda

Validation
Conditions

ISO 20926 Measurement Process,
taken from [117, pages 8–22, chapter 5]

ISO 20926 reference

In contrast to ISO 20926 activity 5.4.6, which determines the functional complexity for each identified data function in isolation based solely
on the Data function complexity matrix, taken from [117, table A.1, page 23], an approach which comes along with the risk of malcounts due
to the unawareness of data function relationships and with it the risk of accidently missing the repeated occurence of a DET, the accordant
activity 2.e in the frame counting agenda benefits from the grouping of data functions, i.e. the meaningful relationship of problem domains
and their shared phenomena as represented by a requirements work package for the application of ISO 20926 data function complexity table.
It is build on patterns, which make a systematic analysis of data functions and their DETs possible. It is guided by the validation conditions
as follows for adjusting the results of functional size measurement, i.e. counted RET and DET for all data functions in a requirements work
package, as have been determined so far.
Note: The intended of problem-based functional size measurement is to enable consistent requirement estimates, which are represented by
reproducible function points. Therefore, it applies patterns as a requirements model for executing the function point count. ISO 20926 makes
no constraints on what requirements model is to use. That is, the following validation conditions represent an interpretation of ISO 20926
activity 5.4.6, such that it is implementable by problem-based functional size measurement. Have in mind, that in the sense of Carveth Read:
it is better to be approximately right than exactly wrong [187].

V.xiii summarizes the count of DET for all ILF in a requirements work package (RWP) to one cumulated value. This is
reasonable, since within one RWP it is in the responsibility of the machine domain to take care for the symbolic phenomena
counted as DET of all ILF, i.e. in either requesting or preparing these by its interfaces with respective problem domains. A
data function classified as ILF is usually a problem domain that takes the role of a data source, which is internal(ly accessible)
to (and thus inside the boundary of) the software application under consideration.

V.xiv summarizes the count of DET for all EIF in a requirements work package to one cumulated value. This is reasonable,
since the phenomena counted as DET at the machine interface of an EIF are under the control of the problem domains that
belong to one RWP. A data function classified as EIF usually represents a(n interface to a) data source external to the software
application (boundary) under consideration, e.g. such as a user, or an other software application, which are comparably defined
in ISO 20926.

Continued on next page. . .

FC
A

V
alidation

C
onditions

and
the

IF
P
U
G

M
easurem

ent
P
rocess

271
Frame
Counting
Agenda

Validation
Conditions

ISO 20926 Measurement Process,
taken from [117, pages 8–22, chapter 5]

ISO 20926 reference

V.xv benefits from the logical grouping of data functions in one requirements work package. It adjusts the count of DET for
all ILF and EIF in regard to the multiple occurence of shared phenomena, whose repeated consideration within one function
point count must be strictly avoided and justified. For instance, cf. the simple workpieces problem as discussed in detail in
section Step-By-Step Guide to the Requirements Sizing Method. In this problem, the problem domain “User” (EIF) controls
the symbolic phenomenon “Guest” (= 1 DET), and the “Party Plan” (ILF) controls the same symbolic phenomenon “Guest”
(= 1 DET) on behalf of the machine domain, too. In order to avoid accidently double counts of here the “Guest” phenomenon
(as 6= 2 DET) for this requirements work package, this validation condition makes clear that counting the DET of an ILF
suffices in this case, since what happens at this machine interfaces and respective problem domain “Party Plan” is constrained
by the (functional user) requirements, and thus makes the functionality to be delivered by the software application to-be. That
is why, after application of this validation condition, DETILF remains one (1 DET) and DETEIF becomes zero (0 DET) for
the “Guest” phenomenon in this requirements work package.

V.xvi considers the case, where two different data functions classified as ILF in one requirements work package, are involved
with the same DET. 9 out of 17 patterns for functional size measurement, i.e. frames no. #01, #03–05, #12, #13, #15–17
as in table 5.5 on page 5.5, are candidate problems for this case, which illustrates the importance of this validation condition.
For instance, the functional size measurement patterns #03 PF 3.2 and #04 PF 3.4 represent transformation problems,
which simply move data information from one place or lexical problem domain (X) to the next (X) by means of an external
input (EI) process (TOFF-i. functionality). Remember that a lexical domain (X) can only take the role of an ILF in problem-
based functional size measurement, since these are internal to the software application (boundary) according to validation
condition V.x. This means, that it is finally the machine, which holds the responsibility for maintaining their DET. This
situation comes with two implications: First, for each ILF referenced in one problem, there is (or should be) another problem
available, where this referenced ILF is a constrained one. Second, double counts of the same DET in one requirements work
package are (easily) preventable by counting only those of the constrained problem domain.
Note: As illstrated by this validation condition, problem-based functional size measurement assists not only the consistency of
function point counts, but also enables a second field of application to the analyst or estimator, namely that of checking the
requirement’s completeness with respect to a specific problem domain. By use of patterns the analysis of inevitable problem
compositions or work package dependencies can be supported, such as e.g. each time a “simple workpieces” problem is identified,
which is intended for making some data information persistent, a “display information” problem is also involved for providing
feedback on the status of storing these data, etc. This approach prevents from overseeing the “gray rhino” requirements, which
are the “obvious thing that’s coming at you” [205].

Continued on next page. . .

272
Sanity

C
hecks

Frame
Counting
Agenda

Validation
Conditions

ISO 20926 Measurement Process,
taken from [117, pages 8–22, chapter 5]

ISO 20926 reference

V.xvii

differentiate between ILF (constrained domain with symbolic phenomena) and EIF (referenced domain with symbolic
phenomena) for determining in accordance with validation condition V.xii the total number of problem domains or
their respective machine interfaces (RET) in one requirements work package.

V.xviii

V.xix takes ILF and EIF specific RET from validation conditions V.xvii and V.xviii above, as well as DET from validation
conditions V.xiii to V.xvi, and applies these as input to ISO 20926 table A.1 Data function complexity matrix, taken from [117,
table A.1, page 23]. In this context, validation condition V.xix covers the case, where one of these values is zero (0), for instance
due to multiple occurences of some DET. Then, {n/a} which stands for “not applicable” becomes a kind of default value for
their respective functional complexity, which allows for continuing in the frame counting agenda.

V.xx determines the functional complexity for all data function of one requirements work package, which are classified as ILF.

V.xxi determines the functional complexity for all data function of one requirements work package, which are classified as EIF.

2.f Determine functional size for data functions. 5.4.7 Determine the functional size for each
data function

[117, page 13, section 5.4.7]

Comment: This activity takes the Data function size matrix, taken from [117, table A.2, page 23] into account for determining the functional
size of a requirements work package. After completing this activity 2.f of the frame counting agenda, the size for all data functions within one
requirements work package is available given by a numerical value in function points.

V.xxii considers the case, where according to V.xix in activity 2.e determining a functional complexity is not possible. It sets
the size of respective data functions to zero (0) function points by default.

V.xxiii

consider the case, where the functional complexity for some data functions is available. These validation conditions ensure
that respective functional sizes are determined for all ILF and EIF within one requirements work package. Note: Placing
constraints on what problem domain type (X, D, C, or B) belongs to what data function (ILF or EIF) as done by the validation
conditions V.vi to V.x before, is now to the advantage of reproducible function points. The input to table Data function size
matrix, taken from [117, table A.2, page 23] depends on these constraints. Thus, its systematic application is facilitated by
the use of problem-based functional size measurement patterns and by the validation conditions as part of the frame counting
agenda.

V.xxiv

Continued on next page. . .

FC
A

V
alidation

C
onditions

and
the

IF
P
U
G

M
easurem

ent
P
rocess

273
Frame
Counting
Agenda

Validation
Conditions

ISO 20926 Measurement Process,
taken from [117, pages 8–22, chapter 5]

ISO 20926 reference

Activity 3. Determine Transactional Function. 5.5 Measure transactional functions [117, page 13, section 5.5]
3.a Identify machine domain as transactional function. 5.5.1 Overview [117, page 13, section 5.5.1]
3.b Classify transactional function as either EI, EQ, or EO. 5.5.2 Identify elementary processes [117, pages 13–15, section 5.5.2]

5.5.3 Classify each elementary process as a
transactional function

[117, page 16, section 5.5.3]

Comment: This activity 3. Determine Transactional Function is subdivided into the steps 3.a to 3.f by the frame counting agenda. It integrates
the activities 5.5.2 and 5.5.3 of the ISO 20926 functional size measurement process to 3.b, since elementary processes and transactional functions
become synonymic by the application of problem-based functional size measurement pattern. In general, activity 3. of the frame counting agenda
is concerned with determining the functional size of transactional functions, e.g. the interactions required for moving data information from
source to sink or for providing some control information for triggering actions. So, the main interest here is to identify the form of processing
data and to count the interfaces within one requirements work package. According to ISO 20926 activity 5.5.1 this should be done for “all
transactional functions within the counting scope” [117, page 13, section 5.5.1], of which in a requirements work package exactly one exists,
which is represented by the machine domain. Problem-based functional size measurement patterns are tailored to produce problems, which
represent one specific transactional function aka elementary process (EI, EQ, EO), cf. table 5.5 on page 72. Thus, their use realizes ISO
20926 activities 5.5.2 and 5.5.3 by design. Maybe the following validation condition V.xxv is be perceived as expendable, but it is left in for
creating awareness of what to measure next.

V.xxv marks the shift in perspective on what counts in the measurement procedure. It clearly indicates to the estimator, that
transactional functions are in the focus of considerations now, and not the data functions. In addition, it ensures that problem-
based functional size measurement patterns are used for executing the function point count. Otherwise, consistent requirements
estimates cannot be expected by use of the frame counting agenda.

Note: Activities 5.2.2 and 5.2.3 in ISO 20926 functional size measurement process provide a huge catalog of hints and examples, i.e. heuristics
for identifying and classifying transactional functions. Their use becomes obsolete by the application of problem-based functional size measure-
ment patterns, which save the estimator much inspection effort and limits the risk of misinterpretation regarding these heuristics. Nevertheless,
subsequent paragraphs comment on the subactivities 5.5.2.1 to 5.5.2.3, and 5.5.3.1 to 5.5.3.2 in some brief statements.

Continued on next page. . .

274
Sanity

C
hecks

Frame
Counting
Agenda

Validation
Conditions

ISO 20926 Measurement Process,
taken from [117, pages 8–22, chapter 5]

ISO 20926 reference

ISO 20926 activity 5.5.2.1 for identifying elementary processes can be fulfilled, since problem-based functional size measurement
patterns are design for a) composing and decomposing the functional user requirements into units of measure for requirements,
which b) at least create a.2) a complete, and a.1) a meaningful unit for requirements estimating. This is established by DEFI-
NITION 5.1 for Problem Unit – Requirements Work Package in section 5.3 on page 46.

ISO 20926 activity 5.5.2.2 a), b) are covered by problem-based functional size measurement, since a) similar elementary
processes are identifiable based on the patterns applied, cf. table 5.5 Basic Problem Frames with relevance in Functional Size
Measurement , and their involved type of functionality as introduced by DEFINITION 5.3, and b) multiple forms of finally
the same elementary process are packaged to one requirements work package by following the criteria in DEFINITION 5.1.

ISO 20926 activity 5.5.2.3 lists in its table 3 [117, page 14] thirteen examples for different forms of processing logic.
Each of these is reducible to one elementary process (EI, EO, EQ) and thus representable by problem-based functional size
measurement patterns as in table 5.5.

ISO 20926 activity 5.5.3.1 demands to identify the primary intent for each elementary process by some characteristics
a) to c), which conforms to particular types of problem domains as discussed in section 5.4 and summarized by table 5.2, and
thus are inherent to problem-based functional size measurement patterns.

ISO 20926 activity 5.5.3.2. and its definition of a) EI, b) EO, c) EQ, have been strengthened to what has been already
explained in the paragraphs above. Its table 4 – relationship between primary intent and transactional function types has
inspired table 5.2 Mapping problem frames to elementary processes by types of functionality, and table 5 – relationship
between processing logic and transactional function type induced the idea for table 5.5 Basic Problem Frames with relevance in
Functional Size Measurement .

3.c Count FTR for transactional function. 5.5.4 Count FTR for each transactional function [117, page 17, section 5.5.4]

Comment: ISO 20926 activity 5.5.4 demands to count one (1) FTR for each data function accessed by the transactional function.

V.xxvi correlates the count of FTR with the number of interfaces at the machine domain. In one requirements work package,
this conforms to the total number of problem domains that share an interface with the machine.

Continued on next page. . .

FC
A

V
alidation

C
onditions

and
the

IF
P
U
G

M
easurem

ent
P
rocess

275
Frame
Counting
Agenda

Validation
Conditions

ISO 20926 Measurement Process,
taken from [117, pages 8–22, chapter 5]

ISO 20926 reference

3.d Count DET for transactional function. 5.5.5 Count DETs for each transactional function [117, page 17, section 5.5.5]

Comment: ISO 20926 activity 5.5.5 demands to count b),[d)] unique attributes as DETs for a transactional function, which a) cross the
application boundary, whereby making explicit that c), e) certain kinds of DET, which do not fulfill 5.5.5 a, b),[d)] are excluded from the count,
such as those which reside inside the application boundary only, or DETs, which are only present due to technical reasons, but not related to
the functional user requirements.
Deciding on the location of DETs in regard to the application boundary is eased by problem-based functional size measurement, since these take
the type of involved problem domains into account.

V.xxviimakes allowance for the fact that counting DET for data functions or transactional functions serves different purposes
in functional size measurement. So each shared phenomenon at the machine interface is again part of considerations. In case
of transactional functions, symbolic as well as causal phenomena are of relevance.

V.xxviii takes into account that a lexical (X) problem domain relates to an Internal Logical File (ILF), cf. validation condi-
tion V.x, which resides inside the application boundary and thus does not count as DET for a transactional function, whose
DETs have to cross the application boundary. Note: In order to avoid double counts of DET, shared phenomena at the machine
interface to a lexical problem domain do not count for transactional functions. First, they have been already considered as data
functions. Second, for each machine interface to a lexical domain there exists a machine interface to a biddable or a causal
problem domain in the same requirements work package, which holds corresponding shared phenomena. For instance, in a
simple workpieces problem such as discussed in section 6.4 Step-By-Step Guide to the Requirements Sizing Method, a (biddable)
user (domain) has control of phenomena for planning a list of guests for her party, e.g. User!{plan, Guest}. These phenomena
are also present at the machine interface to the respective (lexical) party plan (domain), and have been already counted as data
function. Considering these phenomena in the count of a transactional function would yield a replicated and thus to a malcount
of these.

V.xxix takes into account that causal (C) and biddable (B) problem domains in general relate to External Interface Files (EIF),
cf. validation conditions V.viii and V.ix, which reside outside the application boundary. Their interaction with the machine
domain, which represents the transactional function in a requirements work package, requires their DET to cross the application
boundary. The display (D) problem domain type is often in use as a kind of connecting domain between the machine and a
biddable problem domain, which requires respective DET also to cross the application boundary (as seen from the requirements
perspective on this problem).

Continued on next page. . .

276
Sanity

C
hecks

Frame
Counting
Agenda

Validation
Conditions

ISO 20926 Measurement Process,
taken from [117, pages 8–22, chapter 5]

ISO 20926 reference

V.xxx

After identifying those shared phenomena, which cross the application boundary by validation condition V.xxvii
to V.xxix, each of these counts one (1) DET for the transactional function in this requirements work package.

V.xxxi

3.e Determine functional complexity for transactional function. 5.5.6 Determine the functional complexity for each
transactional function

[117, page 18, section 5.5.6]

Comment: This activity takes the EI functional complexity matrix, taken from [117, table A.3, page 23] as well as the EO and EQ functional
complexity matrix, taken from [117, table A.4, page 23] into account for determining the functional complexity of a requirements work package
for its transactional function. The functional complexity of a transaction function (TFComplexity) depends on its type (TFType) as determined
in activity 3.b of the frame counting agenda, and its belonging number of FTR and DET as determined in activity 3.c and 3.d.

V.xxxii TFType defines what functional complexity Table A.3 or Table A.4 is to use for determining the functional complexity of
the transactional function. TFFTR and TFDET provide input values to both tables, such that a functional complexity of either
Low, Average, or High becomes ascertainable.

3.f Determine functional size for transactional function. 5.5.7 Determine the functional size of each transac-
tional function

[117, page 19, section 5.5.7]

Comment: This activity takes the Transactional function size matrix, taken from [117, table A.5, page 23] into account for determining the
functional size of the transactional function within one requirements work package. After completing this activity 3.f of the frame counting
agenda, the size for the transactional function is available given by a numerical value in function points.

V.xxxiii TFType as determined in activity 3.b of the frame counting agenda, and TFComplexity as determined in the previous
activity 3.e, represent input to Table A.5 for ascertaining the functional size of the transactional function.

5.6 Measure conversion functionality [117, page 19, section 5.6]
5.7 Measure enhancement functionality [117, page 19, section 5.7]
5.8 Calculate functional size [117, pages 19–20, section 5.8]

Comment: ISO 20926 activities 5.6 to 5.8 are not addressed by the frame counting agenda as motivated in section 6.2.2.

Continued on next page. . .

FC
A

V
alidation

C
onditions

and
the

IF
P
U
G

M
easurem

ent
P
rocess

277
Frame
Counting
Agenda

Validation
Conditions

ISO 20926 Measurement Process,
taken from [117, pages 8–22, chapter 5]

ISO 20926 reference

Activity 4. Report Functional Size for FUR. 5.9 Document the function point count [117, page 21, section 5.9]
5.10 Report the results of the function point count [117, pages 21–22, section 5.10]

Comment: ISO 20926 activity 5.9 provides a list of information, some of them are mandatory and some of them are optional, that have to
be documented for a function point count. This list is fulfilled by the use of a requirements work package for executing the functional size
measurement process, as it comprises a requirements model, which is in accordance with this standard. Due to the application of problem-
based functional size measurement patterns, a requirements work package makes all the attributes transparent and documentable that have to be
counted for measuring the functional size of this unit for requirements. According to ISO 20926 5.10.2 the results of the frame counting agenda,
which implements a problem-based functional size measurement process, represent a customization of the measurement method as defined in
the standard. Respectively, its results shall be reportet as: S FP (IFPUG-IS-FCA), where S is the number of function points, FP is the unit of
size in functional size measurement, namely function points, IS indicates the application of ISO 20926 standard (ISO/IEC 20926:2009) [117],
and FCA marks the utilization of the frame counting agenda for executing the measurement process.
At the end of this activity 4., which also marks the end of the functional size measurement for one requirements work package, there is one
function point value, which represents the functional size of its involved requirements.

V.xxxiv The number of function points S for a requirements work package is a cumulated one, based on the functional size for
the data functions (ILF, EIF) as determined in activity 2.f, and the functional size for the transactional function as determined
in activity 3.f of the frame counting agenda.

TABLE B.1 Sanity check of problem-based functional size measurement by ISO 20926 [117]

278 Sanity Checks

B.2. UML4PF and the Criteria for Certification of Function Point So�ware
type 2

General idea: UML4PF [107] is an eclipse plugin for modeling requirements based on the problem
frames approach by Jackson [128]. An extension of this plugin by problem-based functional size
measurement would establish an automated functional size measurement tool, which is in accor-
dance with the IFPUG ISO 20926 functional size measurement method. The IFPUG has published
their criteria used for the certification of such a so�ware tool [121]. These criteria are taken for a
quick plausibility check of problem-based functional size measurement, and their check serves as a
simple feasibility study for the intented UML4PF extension as well.

Results at a glance:While executing this check, two issues arise:

The first issue refers to the criteria 3.e, 4.g, and 5.g for certifying function point so�ware type 2,
which all are concerned with assessing the “capability [. . .] to send a system response [. . . , which]
is counted as one DET” [121]. With regard to a requirements work package this implies to add the
lump-sum of 1 DET to its count. This does not a�ect its functional size significantly, especially if it is
done by default for each requirements work package. In summary, this first issue is negligible.

The second issue refers to the criteria 3.f, 4.h, and 5.h for certifying function point so�ware type
2, which all are concernedwith assessing the “ability [. . .] to specify an action to be taken is counted
as one DET, even if there are multiple methods for invoking the same logical process”. This issue is
already addressed by the kind of decomposing requirements to the same work package as estab-
lished by the criteria given in DEFINITION 5.1. It implements the measurement rule 5.5.2.2.b) in ISO
20926 [117, page 14] to “Do not split an elementary process with multiple forms of processing logic
into multiple elementary processes.” For instance, as discussed for the Vacation Rentals Web Appli-
cation example in theCaseStudies chapter, browsing theholidayo�ers of a vacation rentalsweb site
may be done by a guest or a sta�member, but the problemper se, namely “browsing holiday o�ers”
remains the same (logical process). Thus, the proposed requirements sizing method addresses this
second issue as well.

Recommendations: Extending the UML4PF tool by the Requirements Sizing Method as proposed in
this dissertation is a worthwhile idea for automating the estimation of requirements, and determin-
inga functionpoint value for these,which is in conformancewith the IFPUG ISO20926. Itwouldallow
for a so�ware-supported, pattern-basedmanaging andmeasuring of requirements at once. This ex-
tension would be certifiable according to the criteria used for the certification of function point so�-
ware type 2 [121], which also emphasizes the quality of problem-based functional sizemeasurement
as introduced in this dissertation.

279

C. Listing of Philosophies

C.1. 7 Lean Principles [156]

1. Eliminate waste
2. Amplify learning
3. Decide as late as possible
4. Deliver as fast as possible
5. Empower the team
6. Build integrity in
7. See the whole

C.2. 3 Forms of Waste addressed in Lean Production [148]

Muda: “futility; uselessness; idleness; superfluity; waste; wastefulness” or failures of people or
processes to e�iciently deliver product.

Mura: “unevenness; irregularity; lackofuniformity; inequality”, or failures related tounpredictable
or inconsistent outputs.

Muri: “unreasonableness; impossible; beyond one’s power; too di�icult; by force; compulsorily;
excessive; immoderation, Overburden”, or failures of standardization to create e�icient
process.

C.3. 5 CMMI Maturity Levels for services [123]

Maturity Level 5 – Optimizing: Stable and flexible.
Organization is focused on continuous improvement and is built to pivot and
respond to opportunity and change. The organization’s stability provides a
platform for agility and innovation.

Maturity Level 4 – Managed: Measured and controlled.
Organization is data-drivenwith quantitative performance improvement ob-
jectives that are predictable and align to meet the needs of internal and ex-
ternal stakeholders.

Maturity Level 3 – Defined: Proactive, rather than reactive.
Organization-widestandardsprovideguidanceacrossprojects, programsand
portfolios.

Maturity Level 2 – Managed: Managed on the project level.
Projects are planned, performed,measured, and controlled.

Maturity Level 1 – Initial: Unpredictable and reactive.
Work gets completed but is o�en delayed and over budget.

280 Listing of Philosophies

C.4. 12 Agile So�ware Development Principles behind The Manifesto [30]

1. Customer satisfaction by early and continuous delivery of valuable so�ware.
2. Welcome changing requirements, even in late development.
3. Working so�ware is delivered frequently (weeks rather than months).
4. Close, daily cooperation between business people and developers.
5. Projects are built aroundmotivated individuals, who should be trusted.
6. Face-to-face conversation is the best form of communication (co-location).
7. Working so�ware is the primary measure of progress.
8. Sustainable development, able to maintain a constant pace.
9. Continuous attention to technical excellence and good design.
10. Simplicity – the art ofmaximizing the amount of work not done – is essential.
11. Best achitectures, requirements, and designs emerge from self-organizing teams.
12. Regularly, the team reflects on how to becomemore e�ective, and adjusts accordingly.

C.5. 9 Scaled Agile Framework (SAFe) Lean-Agile Principles [188]

1. Take an economic view
2. Apply systems thinking
3. Assume variability; preserve options
4. Build incrementally with fast, integrated learning cycles
5. Base milestones on objective evaluation of working systems
6. Visualize and limit WIP, reduce batch size, andmanage queue lengths
7. Apply cadence, synchronize with cross-domain planning
8. Unlock the intrinsic motivation of knowledge workers
9. Decentralize decision-making

C.6. 7 Principles of Earned Value Management System [6, 17]

1. Plan all work scope for the program to completion.
2. Break down the program work scope into finite pieces that can be assigned to a responsible
person or organization for control of technical, schedule, and cost objectives.

3. Integrate program work scope, schedule, and cost objectives into a performance measure-
ment baseline plan against which accomplishments may be measured. Control changes to
the baseline.

4. Use actual costs incurred and recorded in accomplishing the work performed.
5. Objectively assess accomplishments at the work performance level.
6. Analyze significant variances from the plan, forecast impacts, andprepare an estimate at com-
pletion based on performance to date and work to be performed.

7. Use this performance information in the organization’s management processes.

Architectural Styles 281

D. Overview on Architecture Design Patterns

D.1. Architectural Styles

Pattern Name Pattern Category

Batch Sequential Dataflow SystemsPipes and Filters

Main Program and subroutine
Call-and-return SystemsOO systems

Hierarchical Layers

Communicating processes Independent ComponentsEvent systems

Interpreters Virtual MachinesRule-Based Systems

Databases Data-centeredSystems
(repositories)Hypertext systems

Blackboards

TABLE D.1 Architectural Styles [198] by Shaw and Garlan (1996)

282 Overview on Architecture Design Patterns

D.2. So�ware Architecture

Pattern Name Pattern Category

Layers

Architectural patterns

Pipes and Filters
Blackboard
Broker
Model–View–Controller
Presentation-Abstraction-Control
Microkernel
Reflection

Whole-Part

Design patterns

Master-Slave
Proxy
Command Processor
View Handler
Counted Pointer
Forwarder–Receiver
Client-Dispatcher-Server
Publisher–Subscriber

TABLE D.2 So�ware Architecture [46] by Buschmann et al. (1996)

Design Patterns 283

D.3. Design Patterns

Pattern Name Pattern Category

Abstract Factory

Creational patterns

Builder
Factory Method
Object Pool
Prototype
Singleton

Adapter

Structural patterns

Bridge
Composite
Decorator
Facade
Flyweight
Private Class Data
Proxy

Chain of Responsibility

Behavioral patterns

Command
Interpreter
Iterator
Mediator
Memento
Null Object
Observer
State
Strategy
Template Method
Visitor

TABLE D.3 Design Patterns [90] by Gamma et al. (1995)

284 Overview on Architecture Design Patterns

D.4. Cloud Computing Patterns

Pattern Name Pattern Category
...
Block Storage

Cloud O�erings/
Storage O�erings

Blob Storage
Relational Database
Key-Value Storage
Strict Consistency
Eventual Consistency

...
Stateful Component

Cloud Application
Architectures/
Cloud Application
Components

Stateless Component
User Interface Component
Processing Component
Batch Processing Component
Data Access Component
Data Abstractor
Idempotent Processor
Transaction-based Processor
Timeout-based Message Processor
Multi-Component Image
...

Restricted Data Access Component
Cloud Application
Architectures/
Cloud Integration

Message Mover
Application Component Proxy
Compliant Data Replication
Integration Provider
...

TABLE D.4 Cloud Computing Patterns [85] by Fehling et al. (2014)

http://www.cloudcomputingpatterns.org/Block_Storage
http://www.cloudcomputingpatterns.org/Blob_Storage
http://www.cloudcomputingpatterns.org/Relational_Database
http://www.cloudcomputingpatterns.org/key_value_storage
http://www.cloudcomputingpatterns.org/Strict_Consistency
http://www.cloudcomputingpatterns.org/Eventual_Consistency
http://www.cloudcomputingpatterns.org/Stateful_Component
http://www.cloudcomputingpatterns.org/Stateless_Component
http://www.cloudcomputingpatterns.org/User_Interface_Component
http://www.cloudcomputingpatterns.org/Processing_Component
http://www.cloudcomputingpatterns.org/Batch_Processing_Component
http://www.cloudcomputingpatterns.org/Data_Access_Component
http://www.cloudcomputingpatterns.org/Data_Abstractor
http://www.cloudcomputingpatterns.org/Idempotent_Processor
http://www.cloudcomputingpatterns.org/Transaction-based_Processor
http://www.cloudcomputingpatterns.org/Timeout-based_Message_Processor
http://www.cloudcomputingpatterns.org/Multi-Component_Image
http://www.cloudcomputingpatterns.org/Restricted_Data_Access_Component
http://www.cloudcomputingpatterns.org/Message_Mover
http://www.cloudcomputingpatterns.org/Application_Component_Proxy
http://www.cloudcomputingpatterns.org/Compliant_Data_Replication
http://www.cloudcomputingpatterns.org/Integration_Provider

Enterprise Integration Patterns 285

D.5. Enterprise Integration Patterns

Pattern Name Pattern Category

File Transfer

Integration StylesShared Database
Remote Procedure Invocation
Messaging

Message Channel

Messaging Systems

Message
Pipes and Filters
Message Router
Message Translator
Message Endpoint

Point-to-Point Channel

Messaging Channels

Publish-Subscribe Channel
Datatype Channel
Invalid Message Channel
Dead Letter Channel
Guaranteed Delivery
Channel Adapter
Messaging Bridge
Message Bus

Command Message

Message Construction

Document Message
Event Message
Request-Reply
Return Address
Correlation Identifier
Message Sequence
Message Expiration
Format Indicator

Content-Based Router

Message Routing

Message Filter
Dynamic Router
Recipient List
Splitter
Aggregator
Resequencer
Composed Msg. Processor
Scatter-Gather
Routing Slip
Process Manager
Message Broker

http://www.enterpriseintegrationpatterns.com/patterns/messaging/FileTransferIntegration.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/SharedDataBaseIntegration.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/EncapsulatedSynchronousIntegration.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Messaging.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Message.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PipesAndFilters.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageTranslator.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageEndpoint.html

286 Overview on Architecture Design Patterns

Pattern Name Pattern Category

Envelope Wrapper

Message Transformation

Content Enricher
Content Filter
Claim Check
Normalizer
Canonical Data Model

Messaging Gateway

Messaging Endpoints

Messaging Mapper
Transactional Client
Polling Consumer
Event-Driven Consumer
Competing Consumers
Message Dispatcher
Selective Consumer
Durable Subscriber
Idempotent Receiver
Service Activator

Control Bus

SystemManagement

Detour
Wire Tap
Message History
Message Store
Smart Proxy
Test Message
Channel Purger

TABLE D.5 Enterprise Integration Patterns [112] by Hohpe and Woolf (2003)

287

E. Structures of Architecture Design Patterns

This appendix lists the architecture design patterns used in sections 7.5.2 through 7.5.5 for develop-
ing a new representation out of these, which is referred to as solution templates. Solution templates
allowaproblem-based functional user requirementsmodel to be assigned to each solution architec-
ture design in a pattern-to-pattern way, as explained in chapter 7.3 Transition Templates – Making
problems absorb into platform.

The contribution of this approach is that the level of detail in the requirements model (problem
architecture) and in the correspondingmodel of architecture design (solution architecture) remains
the same and can bemaintained.

This is useful for controlling the scope of the requirements, for the dependency management
of requirements and architecture as well as for the decisionmaking about solution alternatives and
the reuse for functional user requirements.

E.1. Client–Dispatcher–Server

requests service returns result

registersaccepts link

establishes connection

requests connection

Client

doTask()
sendRequest()

Server

acceptConnection()
runService()
receiveRequest()

Dispatcher

locationMap

registerService()
unregisterServer()
locateServer()
establishChannel()
getChannel()

FIGURE E.1 Client–Dispatcher–Server as UML class diagram, adapted from [46, page 326]

288 Structures of Architecture Design Patterns

E.2. Forwarder–Receiver

sendMsg

receiveMsg

1:1

sendMsg

receiveMsg

1:1

IPC

IPC

Peer 1

service()

Forwarder

marshal()
deliver()
sendMsg()

Receiver

receive()
unmarshal()
receiveMsg()

Peer 2

service()
Forwarder

marshal()
deliver()
sendMsg()

Receiver

receive()
unmarshal()
receiveMsg()

optional
process
boundary

FIGURE E.2 Forwarder–Receiver as UML class diagram, adapted from [46, page 311]

E.3. Observer/Publisher-Subscriber

Note: Neither Gamma et al. in [90] nor Buschmann et al. in [46, page 339�] specify a UML class
diagram-like structure for the static relationshipsbetween theparticipants in apublisher–subscriber
design pattern. Both refer to the observer design pattern, when explaining the kind of interaction,
which is known as publish-subscribe [90, page 294].

subject

observers[]

Subject

Attach(Observer)
Detach(Observer)
Notify()

ConcreteSubject

subjectState

GetState()
SetState()

Observer

Update()

ConcreteObserver

observerState

Update()

Notify: for all o in observers {
o.Update() }

Notify: for all o in observers {
o.Update() }

Update: observerState =
subject.GetState()

Update: observerState =
subject.GetState()

GetState: return subjectStateGetState: return subjectState

FIGURE E.3 Observer as UML class diagram, adapted from [90, page 294]

Model–View–Controller 289

E.4. Model–View–Controller

manipulate

display

creategetData
attach

call update

attach call service

Observer

update()

Model

coreData
observers:Observer[]

attach(Observer)
detach(Observer)
notify()
getData()
service()

View

myModel
myController

initialize(Model)
makeController()
activate()
display()
update()

Controller

myModel
myView

initialize(Model,View)
handleEvent()
update()

FIGURE E.4 Model–View–Controller as UML class diagram, adapted from [46, page 129]

290 For Further Discussion

F. For Further Discussion

This appendix presents some first extensions on the concepts developed and introduced in this dis-
sertation. It is structured as follows: Section F.1 User Story templates out of problem-based func-
tional size measurement patterns on page 291 adapt the SOPHIST’s classification of requirements
by keywords to problem-based functional sizemeasurement pattern for classifying these by indicat-
ing their transactional function. This results problem-based user story templates. Section F.2 Data
modeling by problem-based user story templates gives an idea of how to structures data due to use
of problem-based user story templates into a UML class diagram. Section F.3 Roles and Permissions
matrix by problem-based user story templates discusses permission matrix, which are of use for
managing data access rights and for implementing data protection requirements. Section F.4 Story
Mappingbyproblem-baseduser story templates –Theamigos’ bigpicturepresents analternative re-
quirements dependencymanagement by state transition diagrams using an agile practices, namely
Storyboards.

User Story templates out of problem-based functional size measurement patterns 291

F.1. User Story templates out of problem-based functional size
measurement patterns

no. user story template

TFK1. TF-keyword = create
As a user/in the role of an <role-name="editor">,
I want to <TF-keyword="create"> <DF="candidate data">,
so that I can write and read all <DET of DF="details"> on the <DF> later.

TFK2. TF-keyword = update
As a user/in the role of an <role-name="editor">,
I want to <TF-keyword="update"> <DF="candidate data">,
so that I can keep all <DET of DF="details"> on the <DF> uptodate.

TFK3. TF-keyword = delete
As a user/in the role of an <role-name="editor">,
I want to <TF-keyword="delete"> <DF="candidate data">,
so that I cannot write or read this <DF> anymore.

TFK4. TF-keyword = show
As a user/in the role of an <role-name="editor"> or <role-name="consultant">,
I want the software application to <TF-keyword="show"> all <DET of DF="details">
of <DF="candidate data"> (on the display) to me,
so that I can (only) read all <DET of DF="details"> available on the <DF>.

TFK5. TF-keyword = browse
As a user/in the role of an <role-name="editor"> or <role-name="consultant">,
I want to <TF-keyword="browse"> all available <DF="candidate data">
that can be limited by <search_criteria>,
so that I can choose one <DF> from the search_results (list)
to write or read it(s <DET of DF="details">).

TFK6. TF-keyword = export
As a user/in the role of an <role-name="editor"> or <role-name="consultant">,
I want the software application to <TF-keyword="export"> <DF="candidate data">
via interface/in the format of . . . (<EIF>="Email/Excel-Export"),
so that . . . (continue working on <DF> in <EIF>) becomes possible (to me).

TABLE F.1 Problem-based user story templates applying TF-keywords

no. TF-keyword (also) write (only) read EP exemplary comparison to OCL expression

TFK1. create YES NO EI collection→includes(element)=true
TFK2. update YES NO EI collection→select(element) and element = update(element@pre)
TFK3. delete YES NO EI collection→excludes(element)=true

TFK4. show NO YES EQ collection→select(element) or selfˆdisplay(element)
TFK5. browse NO YES EQ collection→collect(element=search_criteria)=collection(search_results)
TFK6. export NO YES EO collection→select(element) and otherˆexport(element|collection)

Note:
Transactional Function-keywords serve the same purpose as signal words or respective process verbs
in requirements templates proposed by The SOPHISTs [207].

TABLE F.2 List of TF-keywords for problem-based user story templates

292 For Further Discussion

structure content about

name FUR#03: show (candidate) data <rwp-no:, TF-keyword, data function>

keywords candidate this user story is <accessable by role>

user interface mockup of user story by a <screenshot of prototype>, or design sketch

é

� é https://www.way2studying.de/application/

...

user story created by user story template in accordance with table F.1
As a user/in the role of an <role-name="candidate">,
I want the <software application="Student Recruitment Web Portal">
to <TF-keyword="show"> all <DET of DF="information">
of <DF="candidate data"> (on the display) to me,
so that I can read all <DET of DF="information"> available on the
<DF="candidate data">.

user
acceptance
criteria

acceptance criteria (AC) account for data model, such as discussed in sec-
tion 13.2.4, workflow (WF)/flow of usage in story map, such as table F.7,
and test cases, maybe referenced by test tool
data model1 information (=DET) of "(candidate) data" = (DF): ti-

tle::={Mr|Mrs}, *family name, *first name, . . .
WF pre2 User story "FUR#02 record candidate data" is suc-

cessfully completed.
WF post3 none
AC.01.4 If candidate selects "review application" in the

navigation bar, all stored information of "(candi-
date) data" according to the data model section
are "shown" on the display.

AC.02.5 If candidate selects "review application" in the
navigation bar, but no information about "(candi-
date) data" according to the data model section
is available, an empty form is "shown" on the dis-
play, or "review application" is not accessable via
the navigation bar.

1 The data model can be given as a simple list of attributes, by a UML class diagram, etc.
2 WF pre means, that the mentioned user story is a prerequisite for the execution of the actual user story.
3 WF post means, that the mentioned user story can be executed a�er the actual one is successfully completed.
4 Acceptance criteria must be testable. This requires an recognisable action and the definition of expected output, when the action is
successfully completed.

5 Plausibility checks and respective error message handling/notification of the user can also belong to acceptance criteria.

TABLE F.3 Requirements Work Package as multi-purpose work item

Data modeling by problem-based user story templates 293

F.2. Data modeling by problem-based user story templates

-collection[*]

attribute

Machine

-collection: Element[]

+create(id:Element, attribute:Type): Collection
+update(id:Element, attribute:Type): Element
+delete(id:Element): Collection
+show(id:Element): Element
+browse(collection, search_criteria=attribute:Type):
search_result=Subcollection
+export(id:Element, interface): Element

Element

- attribute: Type

Subelement

- attribute: Type

FIGURE F.1 Exemplary Data Model structured according to OCL expressions

-o�erings[*]

-ho

summary

Vacation Rentals

-o�erings: Holiday O�er[]

+make(ho:Holiday O�er, ho.name="Nice place 2b"): o�erings
+update(ho.name="Nice place 2b", name="Even better place 2b"): ho
+delete(ho.name="Not available place 2b"): o�erings
+show(ho.name="Even better place 2b"): ho
+browse(o�erings, search_criteria=ho.name):
search_result=Subo�erings
+export(ho.name="Even better place 2b", Email): ho

Holiday O�er

- status: Enumeration
{available|reserved|booked}
- summary: Description

Description

- name: String
- bookableSlots: TimeSlot[]

FIGURE F.2 Exemplary Data Model for the Vacation Rentals

294 For Further Discussion

F.3. Roles and Permissions matrix by problem-based user story
templates

A user story, which is created by a problem-based user story template, describes functional user
requirements,which consist of some functionality and their (involved readandwrite accesson) data.
In addition, it must be specified, which user (which role) can access which story, in order to clarify
their access rights. This mapping is represented by a permission matrix, see also [29, chapter 11].

Table F.4 outlines the structure of a permission matrix for problem-based user story templates.
Itmaps some general roles to each problem-based user story template, eachwhich is identifiable by
a TF-keyword as proposed in section F.1.

For instance, in thecontextof theStudentRecruitmentWebPortal theeditor is a rolewhichowns
full write and read access on the candidate date, while the consultant role is only allowed to access
functionality that provides readonly access to the candidate data. In this example, the administrator
role has full access to functionality, that dealswith themanagementof data about authorizedactors.

role/story by TFK1. TFK2. TFK3. TFK4. TFK5. TFK6. data function
TF-keyword create update delete show browse export

editor YES YES YES YES YES YES <DFx="candidate data">consultant NO NO NO YES YES YES

administrator YES YES YES YES YES YES <DFy="authorized actors">

Legend:
TF = transactional function, which represents the functionality of a user story
DF = data function, which represents the data of a user story

TABLE F.4 Permissions matrix, exemplary structure

Table F.5 takes the UML use case diagram of the Vacation Rentals Web Application into account.

role/story R01: make o�er (EI) R02: browse (o�er) EQ R03 finish book (o�er) EI R04: book (o�er) EO R05: quit book (o�er) EI R06: record pay. (o�er) EI R78: rate (o�er) EO R09: browse (o�er) EQ <DF>

sta� Y Y Y Y Y N N N o�erguest N N N N N Y Y Y

Legend:

Y = role has the right to execute user stories and access respective <DF>
N = role is not allowed to execute user stories and access to respective <DF> via this story is denied
story = write access to data function (DF), otherwise read

columncolor = these stories are the same user story used by di�erent roles only, synergize possible.

TABLE F.5 Permissions matrix for the Vacation Rentals Web Application

Table F.6 takes the UML use case diagram of the Student Recruitment Web Portal into account.

role/story FUR01 (none|url) EO FUR02: record (data) EI FUR03 (data) EQ FUR04 (data) EO FUR05:upload (files) EI FUR06 (resume=filesNdata) EQ

candidate Y Y Y Y Y N

(program) admin N N N N N Y

Legend: see table F.5

TABLE F.6 Permissions matrix for the Student Recruitment Web Portal

Story Mapping by problem-based user story templates – The amigos’ big picture 295

F.4. Story Mapping by problem-based user story templates –
The amigos’ big picture

Table F.7 presents an alternativeworkflowmodel as in the state-transition diagramgive by figure 8.4
on page 167. In an agile project setting, it can be used as a storyboard that also includes the permis-
sion matrix.

no. role scenario
candidate admin

1. Y N FUR01: access application (EO)

2. Y N FUR02: record data (EI)

3. Y N FUR03: review data (EQ)
FUR04: download data (EO)

4. Y N FUR05: upload files (EI)

5. N Y FUR06: compile resume=files&data (EQ)

Legend:
Y = role has the right to execute user stories of this scenario
N = role is not allowed to execute user stories of this scenario
story = write access to data function files and data, otherwise read only

TABLE F.7 Story Mapping for the Student Recruitment Web Portal

TableF.8presentsanalternativeworkflowmodelas in the state-transitiondiagramgiveby figure 10.8
on page 215. In an agile project setting, it can be used as a storyboard that also includes the permis-
sion matrix by roles1.

no. role scenario
sta� guest

1. Y N R01: make o�er (EI)

2. Y N R02: browse o�ers (EQ)

3. N Y R09: browse o�ers (EQ)

4. N Y R03: finish/reserve book o�er (EI)
R05: quit/reset book o�er (EI)
R04: book o�er (EO)

5. Y N R06: record pay. for o�er (EI)

6. Y N R78: rate o�er (EO)

Legend:
Y = role has the right to execute user stories of this scenario
N = role is not allowed to execute user stories of this scenario
story = write access to data function o�er, otherwise read only

rowcolor = these scenarios make use of the same user story by di�erent roles only, synergize possible.

TABLE F.8 Story Mapping for the Vacation Rentals Web Application

1Roles are compared here to actors in a UML use case diagram.

Tables 297

Tables

TABLE 0.1. Structure of dissertation, its research questions, contributions, and intension . . ix

TABLE 3.1. Speed improvement through responsiveness to change 18
TABLE 3.2. S.M.A.R.T. criteria for project planning units, adapted from [82, page 36] 21

TABLE 4.1. Overview on research objectives and contributions of this dissertation 23
TABLE 4.2. Published scientific contributions . 31

TABLE 5.1. Constraints on a problem-based unit of measure for requirements 48
TABLE 5.2. Mapping problem frames to elementary processes by types of functionality . . . 52
TABLE 5.3. Hierarchical levels of detail for functional size measurement patterns 55
TABLE 5.4. Problem Frame permutations as published in [68], revisited 70
TABLE 5.5. Basic Problem Frames with relevance in Functional Size Measurement 72

TABLE 6.1. Criteria for selecting a good proxy, adapted from [114, p. 111] and [177, p. 33] . . . 77
TABLE 6.2. Frame Counting Agenda . 82
TABLE 6.3. Frame Counting Agenda, Validation Conditions 86
TABLE 6.4. Local tra�ic monitoring is a measurable information display problem 104
TABLE 6.6. Occasional sluice gate is a measurable commanded behaviour problem 106

TABLE 7.1. Bridging the problem-solution gap by transition templates 117
TABLE 7.2. Basic activities at the machine interface . 123
TABLE 7.3. Patterns used for coarse-grained design are architecturally significant 135

TABLE 8.1. Overview of adaptation techniques in the One4All ViewModel, cf. [133, URL table 1] 164
TABLE 8.2. List of Task Scenarios for a Student Recruitment Web Portal 166
TABLE 8.3. Reasonsing on a problem-based use case decomposition 169

TABLE 9.1. Benchmarking Periods within the Project Process 176
TABLE 9.2. Project Planning Agenda . 180
TABLE 9.3. Project Daily Agenda . 182
TABLE 9.4. Project Review Agenda . 183
TABLE 9.5. Project Retro Agenda . 185

TABLE 10.1. Requirements for a vacation rentals web application 197
TABLE 10.2. Decomposition of requirements for a vacation rentals web application 198
TABLE 10.3. Setup of Requirements Work Package RWP01: Prepare Holiday O�er 199
TABLE 10.4. Setup of Requirements Work Package RWP02: Present Holiday O�ers 200
TABLE 10.5. Setup of Requirements Work Package RWP03: Provide Invoice 201

TABLE 11.1. Requirements for a student recruitment web portal 218
TABLE 11.2. Decomposition of requirements for a student recruitment web portal 218
TABLE 11.3. Augmented Product Backlog of a student recruitment web portal 226

298 Tables

TABLE A.1. Data function complexity matrix, taken from [117, table A.1, page 23] 262
TABLE A.2. Data function size matrix, taken from [117, table A.2, page 23] 262
TABLE A.3. EI functional complexity matrix, taken from [117, table A.3, page 23] 263
TABLE A.4. EO and EQ functional complexity matrix, taken from [117, table A.4, page 23] . . 263
TABLE A.5. Transactional function size matrix, taken from [117, table A.5, page 23] 263

TABLE B.1. Sanity check of problem-based functional size measurement by ISO 20926 [117] 277

TABLE D.1. Architectural Styles [198] by Shaw and Garlan (1996) 281
TABLE D.2. So�ware Architecture [46] by Buschmann et al. (1996) 282
TABLE D.3. Design Patterns [90] by Gamma et al. (1995) . 283
TABLE D.4. Cloud Computing Patterns [85] by Fehling et al. (2014) 284
TABLE D.5. Enterprise Integration Patterns [112] by Hohpe and Woolf (2003) 286

TABLE F.1. Problem-based user story templates applying TF-keywords 291
TABLE F.2. List of TF-keywords for problem-based user story templates 291
TABLE F.3. Requirements Work Package as multi-purpose work item 292
TABLE F.4. Permissions matrix, exemplary structure . 294
TABLE F.5. Permissions matrix for the Vacation Rentals Web Application 294
TABLE F.6. Permissions matrix for the Student Recruitment Web Portal 294
TABLE F.7. Story Mapping for the Student Recruitment Web Portal 295
TABLE F.8. Story Mapping for the Vacation Rentals Web Application 295

Figures 299

Figures

FIGURE 2.1. The so�ware project triad on its head, adapted from [144, page 68, figure 6-1] . 8
FIGURE 2.2. The four dimensions of so�ware project speed, adapted from [151, p. 11, fig. 2-3] 9
FIGURE 2.3. The Cone of Uncertainty, adapted from [152, p. 37, fig. 4-2, and p. 38, fig. 4-3] . 12
FIGURE 2.4. Time-Accuracy Curve, adapted from [55, page 50, figure 6.1] 13

FIGURE 3.1. The project trade-o� triangle, cf. [151, page 126, chapter 6.6, figure 6-10] 15
FIGURE 3.2. The four dark spikes of designing the responsiveness to change 17
FIGURE 3.3. Estimating provides input to project planning, adapted from [55, p. 34, fig. II.1] 19
FIGURE 3.4. Size-Driven Project Planning is S.M.A.R.T. (cf. tab. 3.2) 20

FIGURE 5.1. Annotated “simple workpieces” problem frame, cf. [223, fig. 2] 40
FIGURE 5.2. Transforming requirements into points, adapted from [175, page 31, figure 3.2] 42
FIGURE 5.3. Overview of base functional components measurable by IFPUG [117] 43
FIGURE 5.4. Hierarchical representation of FSM patterns, taken from [212, figure 3] 45
FIGURE 5.5. Conceptualization of a Requirements Work Package 47
FIGURE 5.6. Cases for unique functionality within requirements work packages 65

FIGURE 6.1. Towards a more lean function point counting process, cf. [117, p. 9, fig. 1] . . . 80

FIGURE 7.1. Transformation Schema, decryption example adapted from [217, p. 41, fig. 6.1] 115
FIGURE 7.2. Transformation Schemas and their adaptation to Transition Templates 118
FIGURE 7.3. Problem template structure . 119
FIGURE 7.4. Problem templates are task patterns . 120
FIGURE 7.5. Model kit of basic activities for creating specifications by UML sequence diagrams 124
FIGURE 7.6. TOFF-i. problem (general structure) . 127
FIGURE 7.7. TOFF-i. processor (task pattern) – Template for operating TOFF-i. processes . 127
FIGURE 7.8. TOFF-i. process (general structure) . 127
FIGURE 7.9. TOFF-ii. problem (general structure) . 130
FIGURE 7.10. TOFF-ii. processor (task pattern) – Template for operating TOFF-ii. processes . 130
FIGURE 7.11. TOFF-ii. process (general structure) . 130
FIGURE 7.12. TOFF-iii. problem (general structure) . 133
FIGURE 7.13. TOFF-iii. processor (task pattern) – Template for operating TOFF-iii. processes 133
FIGURE 7.14. TOFF-iii. process (general structure) . 133
FIGURE 7.15. Client–Server solution – Template for configuring a TOFF-i. processor 140
FIGURE 7.16. Client–Server solution – Template for configuring a TOFF-ii. processor 140
FIGURE 7.17. Client–Server solution – Template for configuring a TOFF-iii. processor 140
FIGURE 7.18. Forwarder–Receiver solution – Template for configuring a TOFF-i. processor . 142
FIGURE 7.19. Forwarder–Receiver solution – Template for configuring a TOFF-ii. processor . 142
FIGURE 7.20. Forwarder–Receiver solution – Template for configuring a TOFF-iii. processor . 142
FIGURE 7.21. Observer/Publisher–Subscriber solution – Template for TOFF-i. processors . . 144
FIGURE 7.22. Observer/Publisher–Subscriber solution – Template for TOFF-ii. processors . . 144

300 Figures

FIGURE 7.23. Observer/Publisher–Subscriber solution – Template for TOFF-iii. processors . 144
FIGURE 7.24. Solution template for Web Model–View–Controller (part 1, Client-to-Server) . . 147
FIGURE 7.25. Solution template for Web Model-View-Controller (part 2, Server-to-Client) . . 148

FIGURE 8.1. The 4+1 View Model, slightly adapted from Kruchten [133, page 43, figure 1] . . 154
FIGURE 8.2. State transition diagram (example) . 159
FIGURE 8.3. The "4+1" View Model becomes "One4All", adapted from [133, figure 1, page 43] 160
FIGURE 8.4. State machine as joint usage protocol for the student recruitment web portal . 167
FIGURE 8.5. UML use case diagram for the Student Recruitment Web Portal 168
FIGURE 8.6. StatemachinebymeansofUMLuse cases for theStudentRecruitmentWebPortal 170

FIGURE 9.1. Product Backlog, Project Backlog, and the time available, adapted from [180] 178
FIGURE 9.2. Executing an agile project process following A S.M.A.R.T. Scrum-A·GenEDA . . 187

FIGURE 10.1. Determining the functional size of RWP01: Prepare Holiday O�er 202
FIGURE 10.2. Determining the functional size of RWP02: Present Holiday O�ers 204
FIGURE 10.3. Determining the functional size of RWP03: Provide Invoice 206
FIGURE 10.4. UML use case diagram for the Vacation Rentals Web Application 209
FIGURE 10.5. Specification of Requirements Work Package RWP01: Prepare Holiday O�er . . 210
FIGURE 10.6. Specification of Requirements Work Package RWP02: Present Holiday O�ers . 211
FIGURE 10.7. Specification of Requirements Work Package RWP03: Provide Invoice 212
FIGURE 10.8. State machine as joint usage protocol for the vacation rentals web application 215
FIGURE 10.9. State machine applying UML use cases for the Vacation Rentals Web Application 216

FIGURE 11.1. Screenshot of user interface covering FUR #01: Grant Access Authorization . . 219
FIGURE 11.2. Screenshot of user interface covering FUR #02: Record Candidate Data 220
FIGURE 11.3. Screenshot of user interface covering FUR #03: Review Candidate Data 221
FIGURE 11.4. Screenshot of user interface covering FUR #04: Download Candidate Data . . . 222
FIGURE 11.5. Screenshot of user interface covering FUR #05: Upload Candidate Files 223
FIGURE 11.6. Counting Requirements Work Package FUR #01: Grant Access Authorization . . 228
FIGURE 11.7. Counting Requirements Work Package FUR #02: Record Candidate Data 230
FIGURE 11.8. Counting Requirements Work Package FUR #03: Review Candidate Data 232
FIGURE 11.9. Counting Requirements Work Package FUR #04: Download Candidate Data . . 234
FIGURE 11.10. Counting Requirements Work Package FUR #05: Upload Candidate Files 236
FIGURE 11.11. Counting Requirements Work Package FUR #06: Compile Candidate Résumé . 238
FIGURE 11.12. Specification of RWP for FUR #01: Grant Access Authorization 240
FIGURE 11.13. Specification of RWP for FUR #02: Record Candidate Data 240
FIGURE 11.14. Specification of RWP for FUR #03: Review Candidate Data 241
FIGURE 11.15. Specification of RWP for FUR #04: Download Candidate Data 241
FIGURE 11.16. Specification of RWP for FUR #05: Upload Candidate Files 242
FIGURE 11.17. Specification of RWP for FUR #06: Compile Candidate Résumé 242

FIGURE 12.1. A Postmodern So�ware Engineering Approach to Project Planning 246

FIGURE 13.1. Sustainable decision-making and speed improvement practices
enable accelerated performance . 249

FIGURE E.1. Client–Dispatcher–Server as UML class diagram, adapted from [46, page 326] . 287
FIGURE E.2. Forwarder–Receiver as UML class diagram, adapted from [46, page 311] 288

Figures 301

FIGURE E.3. Observer as UML class diagram, adapted from [90, page 294] 288
FIGURE E.4. Model–View–Controller as UML class diagram, adapted from [46, page 129] . . 289

FIGURE F.1. Exemplary Data Model structured according to OCL expressions 293
FIGURE F.2. Exemplary Data Model for the Vacation Rentals 293

Examples 303

Examples

EXAMPLE 5.1. Level I. micro problem – write of a log file . 56
EXAMPLE 5.2. Level II. basic problem – write of a log file . 57
EXAMPLE 5.3. Level III. composite problem – write of a log file 60
EXAMPLE 5.4. Level III. composite problem, continued – write of a log file 62
EXAMPLE 5.5. Level IV. multi-composite problem – write of a log file 64
EXAMPLE 5.6. Determine a unique set of functionality – Pack the package for FUR wolf . . . 68

EXAMPLE 6.1. Frame Counting Agenda – Introduction to Jackson’s Party Plan Editing problem 87
EXAMPLE 6.2. Frame Counting Agenda – Activity 1. Classify requirements by patterns 88
EXAMPLE 6.3. Frame Counting Agenda – Activity 2./Step 2.a Determine data functions . . . 89
EXAMPLE 6.4. Frame Counting Agenda – Step 2.b Classify data functions 90
EXAMPLE 6.5. Frame Counting Agenda – Step 2.c and 2.d Count data and record element types 91
EXAMPLE 6.6. Frame Counting Agenda – Step 2.e Determine data function complexity . . . 93
EXAMPLE 6.7. Frame Counting Agenda – Step 2.f Determine data function size 94
EXAMPLE 6.8. Frame Counting Agenda – Activity 3./Step 3.a Determine transactional function 96
EXAMPLE 6.9. Frame Counting Agenda – Step 3.b Classify transactional function 97
EXAMPLE 6.10. Frame Counting Agenda – Step 3.c Count file types referenced 98
EXAMPLE 6.11. Frame Counting Agenda – Step 3.d Count data element types 99
EXAMPLE 6.12. Frame Counting Agenda – Step 3.e Determine transactional function complexity100
EXAMPLE 6.13. Frame Counting Agenda – Step 3.f Determine transactional function size . . . 101
EXAMPLE 6.14. Frame Counting Agenda – Activity 4. Report the requirement’s functional size 102

EXAMPLE 9.1. A S.M.A.R.T. Scrum-A·GenEDA – Planning activities at the start of a project . . 189
EXAMPLE 9.2. A S.M.A.R.T. Scrum-A·GenEDA – Daily activities during a project 190
EXAMPLE 9.3. A S.M.A.R.T. Scrum-A·GenEDA – Review&Retro activities at the end of a project 191
EXAMPLE 9.4. A S.M.A.R.T. Scrum-A·GenEDA – Review&Retro activities , continued 192

EXAMPLE 13.1. Agile Modernization . 251
EXAMPLE 13.2. Backlogs and Wikis . 253
EXAMPLE 13.3. Boards and Capaci/bilities . 254
EXAMPLE 13.4. Boards and Capaci/bilities, continued . 255
EXAMPLE 13.5. Roles and Responsibilities . 256
EXAMPLE 13.6. Authorization Conception and User-Centered Design 257
EXAMPLE 13.7. Authorization Conception and User-Centered Design, continued 258
EXAMPLE 13.8. Automated user acceptance testing . 259

Acronyms 305

Acronyms

AB Application Boundary

ABP Architectural Blueprint

ADP Architectural Design Pattern

APP So�ware Application

BFC Base Functional Component

DET Data Element Type

DF Data Function

EI External Input

EIF External Interface File

EO External Output

EP Elementary Process

EQ External Inquiry

FP Function Point

FPA Function Point Analysis

FPC Function Point Count

FSM Functional Size Measurement

FTR File Type Referenced

FUR Functional User Requirements

IFPUG International Function Point Users Group

ILF Internal Logical File

LCE Life-Cycle Expression

PI Primary Intent

RET Record Element Type

STD State Transition Diagram

TF Transactional Function

USR User

References 307

References

[1] Alain Abran, Denis St-Pierre, Marcela Maya, and Jean-Marc Desharnais. Full Function Points
for Embedded and Real-Time So�ware. Technical Report Oct. 30-31, UKSMA Fall Conference,
London, UK, 1998.
Cited on page 108.

[2] Allan J. Albrecht. Measuring Application Development Productivity. In Proceedings of the
Joint SHARE/GUIDE IBM Applications Development Symposium, pages 83–92, White Plains,
New York, 14 – 17 October 1979. IBM Corporation.
Cited on pages 5, 24, and 42.

[3] Azadeh Alebrahim. Bridging the Gap between Requirements Engineering and So�ware
Architecture – A Problem-Oriented and Quality-Driven Method. Dissertation, University of
Duisburg-Essen, So�ware Engineering (Prof. Dr. Maritta Heisel), 2017.
Cited on pages 149 and 171.

[4] Azadeh Alebrahim, Stephan Faßbender, Maritta Heisel, and Rene Meis. Problem-Based
Requirements Interaction Analysis. In Proceedings of the International Working Conference
on Requirements Engineering: Foundation for So�ware Quality (REFSQ), LNCS 8396, pages
200–215. Springer, 2014.
DOI 10.1007/978-3-319-05843-6_15 .
Cited on page 171.

[5] Christopher Alexander, Sara Ishikawa, and Murray Silverstein.
A Pattern Language: Towns, Buildings, Construction. Center for Environmental Structure
Berkeley, Calif: Center for Environmental Structure series. Oxford University Press, 1978.
Cited on pages 45 and 114.

[6] Glen B. Alleman. The Seven Principles Of Project Performance Management, Jan. 10, 2010.
URL https://herdingcats.typepad.com/my_weblog/2010/01/the-seven-
principles-of-project-performance-management.html.
Cited on page 280.

[7] Glen B. Alleman. Performance-Based Project Management: Increasing the Probability of
Project Success. AMACOM, 2014.
Cited on pages 26 and 46.

[8] Glen B. Alleman. AMACOM Books: Blog – Glen Alleman on Elements of Project Success,
February 25, 2014.
URL https://amacombooks.wordpress.com/2014/02/25/glen-alleman-elements-
project-success/.
Cited on pages 3 and 7.

http://dx.doi.org/10.1007/978-3-319-05843-6_15
https://herdingcats.typepad.com/my_weblog/2010/01/the-seven-principles-of-project-performance-management.html
https://herdingcats.typepad.com/my_weblog/2010/01/the-seven-principles-of-project-performance-management.html
https://amacombooks.wordpress.com/2014/02/25/glen-alleman-elements-project-success/
https://amacombooks.wordpress.com/2014/02/25/glen-alleman-elements-project-success/

308 References

[9] Agile Alliance. Glossary: What is Role-Feature-Reason?, 2018.
URL https://www.agilealliance.org/glossary/role-feature/.
Cited on page 41.

[10] Agile Alliance. Glossary: What are the Three Amigos?, 2019.
URL https://www.agilealliance.org/glossary/three-amigos.
Cited on pages 160 and 161.

[11] Agile Alliance. Glossary: What is Story Mapping?, 2020.
URL https://www.agilealliance.org/glossary/storymap.
Cited on page 254.

[12] Scott W. Ambler. The Object Primer: Agile Model-Driven Development with UML 2.0.
Cambridge University Press, New York, NY, USA, 3rd edition, 2004.
Cited on pages 114 and 120.

[13] Scott W. Ambler. Acceleration: An agile productivity metric, June 13, 2016.
URL http://www.disciplinedagiledelivery.com/acceleration/.
Cited on pages 3 and 7.

[14] Scott W. Ambler. Usage scenarios: An agile introduction, 2018.
URL http://www.agilemodeling.com/artifacts/usageScenario.htm.
Cited on page 120.

[15] Scott W. Ambler and Mark Lines. Disciplined Agile Delivery: A Practitioner’s Guide to Agile
So�ware Delivery in the Enterprise. IBM Press, 1st edition, 2012.
Cited on page 193.

[16] Marc Andreessen. Why So�ware is Eating The World, August 20, 2011.
URL https:
//www.wsj.com/articles/SB10001424053111903480904576512250915629460.
Cited on page 2.

[17] Humphreys & Associates. 7 Principles of Earned Value Management Tier 2 System
Implementation Intent Guide, August 12, 2013.
URL https://blog.humphreys-assoc.com/7-principles-of-earned-value-
management-tier-2-system/.
Cited on page 280.

[18] Atlassian. Products: Jira and Confluence, 2020.
URL https://www.atlassian.com.
Cited on pages 252 and 253.

[19] AXELOS. Managing Successful Projects with PRINCE2 R©. tso (The Stationery O�ice Ltd),
Norwich, 2009.
URL http://best-management-practice.com.
Cited on pages 6, 7, 8, 20, 26, and 251.

[20] AXELOS. Service Management – IT Infrastructure Library (ITIL) R©.
http://www.best-management-practice.com/itil, 2014.
URL http://www.best-management-practice.com/itil.
Cited on page 251.

https://www.agilealliance.org/glossary/role-feature/
https://www.agilealliance.org/glossary/three-amigos
https://www.agilealliance.org/glossary/storymap
http://www.disciplinedagiledelivery.com/acceleration/
http://www.agilemodeling.com/artifacts/usageScenario.htm
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://blog.humphreys-assoc.com/7-principles-of-earned-value-management-tier-2-system/
https://blog.humphreys-assoc.com/7-principles-of-earned-value-management-tier-2-system/
https://www.atlassian.com
http://best-management-practice.com
http://www.best-management-practice.com/itil
http://www.best-management-practice.com/itil

References 309

[21] AXELOS. PRINCE2 Agile R©. tso (The Stationery O�ice Ltd), Norwich, 2015.
URL http://best-management-practice.com.
Cited on pages 7, 14, 26, 39, 164, 165, 174, and 251.

[22] Muhammad Ali Babar and Ian Gorton, editors. Proceedings of the Fourth European
Conference on So�ware Architecture (ECSA 2010), volume 6285 of Lecture Notes in Computer
Science, Copenhagen, Denmark, August 23-26, 2010. Springer.
DOI 10.1007/978-3-642-15114-9 .
Cited on pages 2 and 310.

[23] Felix Bachmann, Robert L. Nord, and Ipek Ozkaya. Architectural Tactics to Support Rapid and
Agile Stability. CrossTalk – the Journal of Defense So�ware Engineering, 3(3):20–25, 5/6 2012.
URL http://www.crosstalkonline.org/storage/issue-
archives/2012/201205/201205-Bachmann.pdf.
Cited on page 150.

[24] Manish Bahl. Fast, but not furious: Accelerating to win in the fourth industrial revolution,
2017.
URL https://www.cognizant.com/perspectives/fast-but-not-furious-
accelerating-to-win-in-the-fourth-industrial-revolution.
Cited on page 3.

[25] Sohaib Shahid Bajwa, Çigdem Gencel, and Pekka Abrahamsson. So�ware Product Size
Measurement Methods: A Systematic Mapping Study. In Joint Conference of the
International Workshop on So�ware Measurement and the International Conference on
So�ware Process and Product Measurement (IWSM/Mensura 2014), pages 176–190,
Rotterdam, The Netherlands, October 2014.
DOI 10.1109/IWSM.Mensura.2014.24 .
Cited on page 226.

[26] Arthur Bakker, Phillip Kent, Celia Hoyles, and Richard Noss. Designing for communication at
work: A case for technology-enhanced boundary objects. International Journal of
Educational Research, 50(1):26–32, January 2011.
DOI 10.1016/j.ijer.2011.04.006 .
Cited on pages 38, 41, and 46.

[27] Balsamiq. Wireframes, 2020.
URL https://balsamiq.com/.
Cited on page 253.

[28] Vitor A. Batista, Daniela C. C. Peixoto, Eduardo P. Borges, Wilson Pádua, Rodolfo F. Resende,
and Clarindo Isaías P. S. Pádua. ReMoFP: A Tool for Counting Function Points from UML
Requirement Models. Advances in So�ware Engineering, 2011.
DOI 10.1155/2011/495232 .
Cited on pages 108 and 109.

[29] Joy Beatty and Anthony Chen. Visual Models for So�ware Requirements. Microso� Press,
2012.
Cited on page 294.

http://best-management-practice.com
http://dx.doi.org/10.1007/978-3-642-15114-9
http://www.crosstalkonline.org/storage/issue-archives/2012/201205/201205-Bachmann.pdf
http://www.crosstalkonline.org/storage/issue-archives/2012/201205/201205-Bachmann.pdf
https://www.cognizant.com/perspectives/fast-but-not-furious-accelerating-to-win-in-the-fourth-industrial-revolution
https://www.cognizant.com/perspectives/fast-but-not-furious-accelerating-to-win-in-the-fourth-industrial-revolution
http://dx.doi.org/10.1109/IWSM.Mensura.2014.24
http://dx.doi.org/10.1016/j.ijer.2011.04.006
https://balsamiq.com/
http://dx.doi.org/10.1155/2011/495232

310 References

[30] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Je�ries, Jon Kern, Brian Marick,
Robert C. Martin, Steve Mellor, Ken Schwaber, Je� Sutherland, and Dave Thomas. Principles
Behind The Agile Manifesto, 2001.
URL http://agilemanifesto.org/principles.html.
Cited on pages vi, 15, and 280.

[31] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Je�ries, Jon Kern, Brian Marick,
Robert C. Martin, Steve Mellor, Ken Schwaber, Je� Sutherland, and Dave Thomas. Manifesto
for Agile So�ware Development, 2001.
URL http://agilemanifesto.org/.
Cited on pages viii, 2, 7, and 15.

[32] Vieri del Bianco and Luigi Lavazza. Applying the COSMIC Functional Size Measurement
Method to Problem Frames. In Proceedings of the 14th IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS, pages 282–290, Washington, DC, USA,
2009. IEEE Computer Society.
DOI 10.1109/ICECCS.2009.25 .
Cited on page 73.

[33] Dick Billows. Project Trade-O�s – Scope, Time, Cost, Risk, Quality, October 12, 2015.
URL https://4pm.com/2015/10/12/project-trade-offs-4pm-com.
Cited on pages 15 and 16.

[34] Barry Boehm. So�ware Engineering Economics. Prentice Hall, Englewood Cli�s, NJ, 1981.
Cited on pages 4 and 43.

[35] Barry Boehm. Get Ready for Agile Methods, with Care. IEEE Computer, 35(1):64–69, January
2002.
DOI 10.1109/2.976920 .
Cited on pages viii, 8, 9, 10, and 14.

[36] Barry Boehm and Richard Turner. Balancing Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley, Boston, MA, USA, 2003.
Cited on page 10.

[37] Jan Bosch. Architecture in the Age of Compositionality. In Babar and Gorton [22], pages 1–4.
DOI 10.1007/978-3-642-15114-9_1 .
URL https:
//resources.sei.cmu.edu/asset_files/Presentation/2011_017_001_22595.pdf.
Cited on pages 2, 150, and 151.

[38] Jan Bosch. Achieving Simplicity with the Three-Layer Product Model. Computer, 46(11):
34–39, November 2013.
DOI 10.1109/MC.2013.295 .
Cited on page 114.

[39] Jan Bosch. Speed, Data, and Ecosystems: Excelling in a So�ware-Driven World. CRC Press,
Boca Raton, FL, USA, 2016.
Cited on page 2.

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/
http://dx.doi.org/10.1109/ICECCS.2009.25
https://4pm.com/2015/10/12/project-trade-offs-4pm-com
http://dx.doi.org/10.1109/2.976920
http://dx.doi.org/10.1007/978-3-642-15114-9_1
https://resources.sei.cmu.edu/asset_files/Presentation/2011_017_001_22595.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2011_017_001_22595.pdf
http://dx.doi.org/10.1109/MC.2013.295

References 311

[40] Jan Bosch. So�ware driven world, 2017.
URL https://janbosch.com/blog/index.php/2017/01/28/9-out-of-10-in-rd-work-
on-commodity/.
Cited on page 114.

[41] Jan Bredereke. Configuring members of a family of requirements using features. In Feature
Interactions in Telecommunications and So�ware Systems VIII, ICFI’05, 28-30 June 2005,
Leicester, UK, pages 96–113, 2005.
Cited on page 38.

[42] Frederick P. Brooks, Jr. No Silver Bullet Essence and Accidents of So�ware Engineering.
Computer, 20(4):10–19, April 1987.
DOI 10.1109/MC.1987.1663532 .
Cited on pages 11, 13, 14, and 26.

[43] Frederick P. Brooks, Jr.
The Mythical Man-Month: Essays on So�ware Engineering (Anniversary Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.
Cited on page 14.

[44] Nanette Brown, Robert L. Nord, and Ipek Ozkaya. Enabling Agility through Architecture.
CrossTalk – the Journal of Defense So�ware Engineering, 6(6):12–17, 11/12 2010.
URL http://www.crosstalkonline.org/storage/issue-
archives/2010/201011/201011-Brown.pdf.
Cited on page 150.

[45] Frank Buschmann and Kevlin Henney. So�ware architecture styles and paradigms. SIG
DATACOM OOP 2011 – So�ware meets Business, January 24-28, 2011, Munich, Germany, 2011.
URL http://www.sigs.de/download/oop_2011/downloads/files/Fr2_Buschmann_
Henney_Architecture_Styles_And_Paradigms.pdf.
Cited on page 149.

[46] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented So�ware Architecture – A System of Patterns. John Wiley & Sons,
Chichester, USA, 1996.
Cited on pages vii, 137, 139, 141, 143, 145, 282, 287, 288, 289, 298, 300, and 301.

[47] Rina Diane Caballar. Programming Without Code: The Rise of No-Code So�ware
Development, March 11, 2020.
URL https://spectrum.ieee.org/tech-talk/computing/software/programming-
without-code-no-code-software-development.
Cited on page vi.

[48] Robert C. Camp. Benchmarking – The Search for Industry Best Practices that Lead to
Superior Performance. American Society for Quality Control, 1989.
Cited on pages 26, 175, and 193.

[49] Christine Choppy and Maritta Heisel. Une approache à base de patrons pour la spécification
et le développement de systèmes d’information. Approches Formelles dans l’Assistance au
Développement de Logiciels - AFADL, 2004.
Cited on pages 64 and 70.

https://janbosch.com/blog/index.php/2017/01/28/9-out-of-10-in-rd-work-on-commodity/
https://janbosch.com/blog/index.php/2017/01/28/9-out-of-10-in-rd-work-on-commodity/
http://dx.doi.org/10.1109/MC.1987.1663532
http://www.crosstalkonline.org/storage/issue-archives/2010/201011/201011-Brown.pdf
http://www.crosstalkonline.org/storage/issue-archives/2010/201011/201011-Brown.pdf
http://www.sigs.de/download/oop_2011/downloads/files/Fr2_Buschmann_Henney_Architecture_Styles_And_Paradigms.pdf
http://www.sigs.de/download/oop_2011/downloads/files/Fr2_Buschmann_Henney_Architecture_Styles_And_Paradigms.pdf
https://spectrum.ieee.org/tech-talk/computing/software/programming-without-code-no-code-software-development
https://spectrum.ieee.org/tech-talk/computing/software/programming-without-code-no-code-software-development

312 References

[50] Christine Choppy, Denis Hatebur, and Maritta Heisel. Architectural patterns for problem
frames. So�ware, IEE Proceedings, 152(4):198 – 208, 09 2005.
DOI 10.1049/ip-sen:20045061 .
Cited on page 149.

[51] Christine Choppy, Denis Hatebur, and Maritta Heisel. Composing architectures based on
architectural patterns for problem frames. Technical Report , , 2005.
URL https://www.uni-due.de/imperia/md/content/swe/papers/2005comparch.pdf.
Cited on pages 159 and 171.

[52] Christine Choppy, Denis Hatebur, and Maritta Heisel. Component Composition through
Architectural Patterns for Problem Frames. In 13th Asia-Pacific So�ware Engineering
Conference (APSEC’06), pages 27–36. IEEE Computer Society, 2006.
Cited on pages 159 and 171.

[53] Jane Cleland-Huang, Brian Berenbach, Stephen Clark, Ra�aella Settimi, and Eli Romanova.
Best Practices for Automated Traceability. Computer, 40(6):27–35, June 2007.
DOI 10.1109/MC.2007.195 .
Cited on page 151.

[54] Mike Cohn. User Stories Applied: For Agile So�ware Development. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 2004.
Cited on pages 4, 39, and 43.

[55] Mike Cohn. Agile Estimating and Planning. Prentice Hall Professional Technical Reference,
Upper Saddle River, NJ, USA, 2005.
Cited on pages 4, 5, 13, 19, 26, 43, and 299.

[56] Mike Cohn. Establishing a Common Baseline for Story Points, August 6, 2008.
URL http://www.mountaingoatsoftware.com/blog/establishing-a-common-
baseline-for-story-points.
Cited on pages 4 and 5.

[57] Mike Cohn. User Stories, Epics and Themes, October 24, 2011.
URL https://www.mountaingoatsoftware.com/blog/stories-epics-and-themes.
Cited on page 39.

[58] Mike Cohn. The Best Way to Establish a Baseline When Playing Planning Poker, May 31, 2016.
URL http://www.mountaingoatsoftware.com/blog/the-best-way-to-establish-a-
baseline-when-playing-planning-poker.
Cited on pages 4 and 73.

[59] Mike Cohn. How to Prevent Estimate Inflation, May 3, 2016.
URL http://www.mountaingoatsoftware.com/blog/how-to-prevent-estimate-
inflation.
Cited on page 4.

[60] Mike Cohn. User Stories and User Story Examples, 2018.
URL http://www.mountaingoatsoftware.com/agile/user-stories.
Cited on pages 4 and 39.

http://dx.doi.org/10.1049/ip-sen:20045061
https://www.uni-due.de/imperia/md/content/swe/papers/2005comparch.pdf
http://dx.doi.org/10.1109/MC.2007.195
http://www.mountaingoatsoftware.com/blog/establishing-a-common-baseline-for-story-points
http://www.mountaingoatsoftware.com/blog/establishing-a-common-baseline-for-story-points
https://www.mountaingoatsoftware.com/blog/stories-epics-and-themes
http://www.mountaingoatsoftware.com/blog/the-best-way-to-establish-a-baseline-when-playing-planning-poker
http://www.mountaingoatsoftware.com/blog/the-best-way-to-establish-a-baseline-when-playing-planning-poker
http://www.mountaingoatsoftware.com/blog/how-to-prevent-estimate-inflation
http://www.mountaingoatsoftware.com/blog/how-to-prevent-estimate-inflation
http://www.mountaingoatsoftware.com/agile/user-stories

References 313

[61] Derek Coleman, Patrick Arnold, Stephanie Bodo�, Chris Dollin, Helena Gilchrist, Fiona Hayes,
and Paul Jeremaes. Object-Oriented Development: The Fusion Method. Prentice Hall, 1994.
Cited on page 158.

[62] Jim Collins. Built to Flip, March 2000.
URL https://www.jimcollins.com/article_topics/articles/built-to-flip.html.
Cited on page 257.

[63] Jim Collins. Good to great : why some companies make the leap ... and others don’t. Harper
Business, New York, NY, 2001.
Cited on page 257.

[64] James O. Coplien, Daniel Ho�man, and David M. Weiss. Commonality and Variability in
So�ware Engineering. IEEE So�ware, 15(6):37–45, November 1998.
DOI 10.1109/52.730836 .
Cited on pages 3 and 38.

[65] COSMIC. The COSMIC Implementation Guide for ISO/IEC 19761:2011 So�ware engineering. A
functional size measurement method, April 2015.
URL http://www.cosmicon.com/portal/public/MMv4.0.1.pdf.
Cited on page 45.

[66] COSMIC. ISO/IEC 19761:2011 So�ware engineering. A functional size measurement method,
2016.
URL http://www.cosmicon.com/.
Cited on page 45.

[67] Isabelle Côté. A Systematic Approach to So�ware Evolution. Dissertation, University of
Duisburg-Essen, So�ware Engineering (Prof. Dr. Maritta Heisel), 2013.
Cited on pages 30 and 196.

[68] Isabelle Côté, Denis Hatebur, Maritta Heisel, Holger Schmidt, and Ina Wentzla�. A Systematic
Account of Problem Frames. In Proceedings of the 12th European Conference on Pattern
Languages of Programs (EuroPLoP 2007), pages 749–767, Irsee, Germany, July 4-8, 2007.
Universitätsverlag Konstanz.
URL http://www.uni-due.de/imperia/md/content/swe/papers/2007europlop.pdf.
Cited on pages 23, 27, 36, 50, 53, 69, 70, 71, 72, 268, and 297.

[69] Isabelle Côté, Maritta Heisel, and Ina Wentzla�. Pattern-Based Evolution of So�ware
Architectures. In Flávio Oquendo, editor, Proceedings of the First European Conference on
So�ware Architecture (ECSA 2007), volume 4758 of Lecture Notes in Computer Science, pages
29–43, Aranjuez, Spain, September 24-26, 2007. Springer.
DOI 10.1007/978-3-540-75132-8_4 . Best Paper Award.
Cited on pages 23, 30, 31, and 149.

[70] Isabelle Côté, Maritta Heisel, and Ina Wentzla�. Pattern-Based Exploration of Design
Alternatives for the Evolution of So�ware Architectures. International Journal of Cooperative
Information Systems (IJCIS), 16(3/4):341–365, September/December 2007.
DOI 10.1142/S0218843007001688 .
Cited on pages 23, 31, 149, and 158.

https://www.jimcollins.com/article_topics/articles/built-to-flip.html
http://dx.doi.org/10.1109/52.730836
http://www.cosmicon.com/portal/public/MMv4.0.1.pdf
http://www.cosmicon.com/
http://www.uni-due.de/imperia/md/content/swe/papers/2007europlop.pdf
http://dx.doi.org/10.1007/978-3-540-75132-8_4
http://dx.doi.org/10.1142/S0218843007001688

314 References

[71] National Research Council. Measuring Performance and Benchmarking Project Management
at the Department of Energy. The National Academies Press, Washington, DC, 2005.
DOI 10.17226/11344 .
URL https://www.nap.edu/catalog/11344/measuring-performance-and-
benchmarking-project-management-at-the-department-of-energy.
Cited on page 193.

[72] Cucumber. Gherkin, 2020.
URL https://cucumber.io/docs/gherkin/.
Cited on page 253.

[73] Maya Daneva, Egbert van der Veen, Chintan Amrit, Smita Ghaisas, Klaas Sikkel, Ramesh
Kumar, Nirav Ajmen, Uday Ramteerthkar, and Roel Wieringa. Agile requirements
prioritization in large-scale outsourced system projects: An empirical study. Journal of
Systems and So�ware, 86(5):1333–1353, 2013.
Cited on pages vii, 4, 5, and 73.

[74] Tom DeMarco. Structured Analysis and System Specification. Yourdon Press, 1979.
Cited on page 115.

[75] Tom DeMarco. The deadline: a novel about project management. Dorset House Publishing,
1997.
Cited on page 249.

[76] William Edwards Deming. Out of the Crisis. Massachusetts Institute of Technology, Center for
Advanced Engineering Study, 2000.
Cited on pages vii and 176.

[77] Der Beau�ragte der Bundesregierung für die Informationstechnik. V-Modell XT Bund, 2020.
URL https://www.cio.bund.de/SharedDocs/Publikationen/DE/Architekturen-und-
Standards/V-Modell-XT-Bund/v_modell_xt_bund_dokumentation_23.pdf. (available
in german only).
Cited on page 251.

[78] Edsger Wybe Dijkstra. The Humble Programmer. Communications of the ACM, 15(10):
859–866, 1972.
URL https://www.cs.utexas.edu/∼EWD/ewd03xx/EWD340.PDF. Turing Award lecture.
Cited on page v.

[79] Edsger Wybe Dijkstra. On the cruelty of really teaching computing science, December 2, 1988.
URL https://www.cs.utexas.edu/∼EWD/ewd10xx/EWD1036.PDF. EWD 1036.
Cited on page vi.

[80] George Dinwiddie. If you don’t automate acceptance tests, 2009.
URL http://blog.gdinwiddie.com/2009/06/17/if-you-dont-automate-acceptance-
tests/.
Cited on pages 160 and 161.

[81] Docker. Containerization, 2020.
URL https://www.docker.com/resources/what-container.
Cited on page 253.

http://dx.doi.org/10.17226/11344
https://www.nap.edu/catalog/11344/measuring-performance-and-benchmarking-project-management-at-the-department-of-energy
https://www.nap.edu/catalog/11344/measuring-performance-and-benchmarking-project-management-at-the-department-of-energy
https://cucumber.io/docs/gherkin/
https://www.cio.bund.de/SharedDocs/Publikationen/DE/Architekturen-und-Standards/V-Modell-XT-Bund/v_modell_xt_bund_dokumentation_23.pdf
https://www.cio.bund.de/SharedDocs/Publikationen/DE/Architekturen-und-Standards/V-Modell-XT-Bund/v_modell_xt_bund_dokumentation_23.pdf
https://www.cs.utexas.edu/~EWD/ewd03xx/EWD340.PDF
https://www.cs.utexas.edu/~EWD/ewd10xx/EWD1036.PDF
http://blog.gdinwiddie.com/2009/06/17/if-you-dont-automate-acceptance-tests/
http://blog.gdinwiddie.com/2009/06/17/if-you-dont-automate-acceptance-tests/
https://www.docker.com/resources/what-container

References 315

[82] George T. Doran. There’s a S.M.A.R.T. way to write management’s goals and objectives.
Management Review, 70:35–36, 1981.
URL https://community.mis.temple.edu/mis0855002fall2015/files/2015/10/S.M.
A.R.T-Way-Management-Review.pdf.
Cited on pages 19, 20, 21, 39, 174, 179, and 297.

[83] Christof Ebert and Reiner Dumke. So�ware Measurement: Establish - Extract - Evaluate -
Execute. Springer, 2007.
DOI 10.1007/978-3-540-71649-5 .
Cited on page 3.

[84] Eric Evans. Domain-Driven Design: Tacking Complexity In the Heart of So�ware.
Addison-Wesley, MA, USA, 2003.
Cited on page 253.

[85] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter Arbitter. Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.
Springer, 2014.
URL http://www.cloudcomputingpatterns.org/.
Cited on pages 284 and 298.

[86] Ryan Fogarty. Postmodernism in So�ware Development, 2009.
URL https://well.tc/3e39.
Cited on pages vi, 191, and 246.

[87] Martin Fowler. ProjectionalEditing, January 14, 2008.
URL https://martinfowler.com/bliki/ProjectionalEditing.html.
Cited on page 252.

[88] Jakob Freund and Bernd Rücker. Camunda – Workflow and Decision Automation, 2021.
URL https://camunda.com/.
Cited on page 254.

[89] Andrei Furda, Colin Fidge, Alistair Barros, and Olaf Zimmermann. Reengineering Data-Centric
Information Systems for the Cloud – A Method and Architectural Patterns Promoting
Multitenancy, chapter 13, pages 227–251. Volume 1 of Mistrik et al. [157], 2017.
DOI 10.1016/B978-0-12-805467-3.00013-2 .
URL https://www.sciencedirect.com/science/article/pii/B9780128054673000132.
Cited on page 145.

[90] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns – Elements
of Reusable Object-Oriented So�ware. Addison Wesley, Boston, USA, 1995.
Cited on pages vii, 45, 114, 137, 143, 283, 288, 298, and 301.

[91] David Garlan and Mary Shaw. An Introduction to So�ware Architecture. Technical Report
CMU/SEI-94-TR-021, So�ware Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, 1994.
URL http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12235.
Cited on pages vii and 155.

https://community.mis.temple.edu/mis0855002fall2015/files/2015/10/S.M.A.R.T-Way-Management-Review.pdf
https://community.mis.temple.edu/mis0855002fall2015/files/2015/10/S.M.A.R.T-Way-Management-Review.pdf
http://dx.doi.org/10.1007/978-3-540-71649-5
http://www.cloudcomputingpatterns.org/
https://well.tc/3e39
https://martinfowler.com/bliki/ProjectionalEditing.html
https://camunda.com/
http://dx.doi.org/10.1016/B978-0-12-805467-3.00013-2
https://www.sciencedirect.com/science/article/pii/B9780128054673000132
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12235

316 References

[92] David Garmus and David Herron. Function Point Analysis - Measurement Practices for
Successful So�ware Projects. Addison-Wesley, 2001.
Cited on pages 24 and 42.

[93] Kai T. Gilb. Concept Glossary for projects, planning, management, development, delivery and
maintenance, and for specification-quality-control, 2013.
URL http://concepts.gilb.com/Glossary.
Cited on page 20.

[94] Tom Gilb. Competitive Engineering: A Handbook For Systems Engineering, Requirements
Engineering, and So�ware Engineering Using Planguage. Elsevier Science, 2005.
Cited on pages 21 and 22.

[95] Tom Gilb. Value Planning. Leanpub, 2015.
URL tinyurl.com/ValuePlanning.
Cited on page 19.

[96] Kesten C. Green and J. Scott Armstrong. Structured analogies for forecasting. International
Journal of Forecasting, 23(3):365 – 376, 2007.
DOI https://doi.org/10.1016/j.ijforecast.2007.05.005 .
Cited on page 251.

[97] James Grenning. Planning Poker or How to avoid analysis paralysis while release planning,
2002.
URL https://wingman-sw.com/papers/PlanningPoker-v1.1.pdf.
Cited on page 43.

[98] Carl A. Gunter, Elsa L. Gunter, Michael Jackson, and Pamela Zave. A reference model for
requirements and specifications. IEEE So�ware, 17(3):37–43, May 2000.
DOI 10.1109/52.896248 .
Cited on page 38.

[99] Jon G. Hall and Lucia Rapanotti. Problem Frames for Socio-technical Systems. Technical
Report No: 2003/09, Department of Computing, The Open University, 2003.
Cited on page 149.

[100] Jon G. Hall, Lucia Rapanotti, and Michael Jackson. Problem-Oriented So�ware Engineering.
Technical Report No: 2010/03, Department of Computing, The Open University, 2010.
URL http://computing-reports.open.ac.uk/2010/TR2010-03.pdf.
Cited on pages 37, 38, and 42.

[101] Denis Hatebur. Pattern and Component-based Development of Dependable Systems.
Dissertation, University of Duisburg-Essen, So�ware Engineering (Prof. Dr. Maritta Heisel),
2012.
Cited on page 158.

[102] Denis Hatebur, Maritta Heisel, and Holger Schmidt. Security engineering using problem
frames. In Günter Müller, editor, Emerging Trends in Information and Communication
Security, pages 238–253, Berlin, Heidelberg, 2006. Springer.
DOI 10.1007/11766155_17 .
Cited on page 29.

http://concepts.gilb.com/Glossary
tinyurl.com/ValuePlanning
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2007.05.005
https://wingman-sw.com/papers/PlanningPoker-v1.1.pdf
http://dx.doi.org/10.1109/52.896248
http://computing-reports.open.ac.uk/2010/TR2010-03.pdf
http://dx.doi.org/10.1007/11766155_17

References 317

[103] Will Hayes. Agile Metrics: Seven Categories (SEI Blog), September 22, 2014.
URL https://insight.sei.cmu.edu/sei_blog/2014/09/agile-metrics-seven-
categories.html.
Cited on page 7.

[104] Claudia Hazan. The 13 Mistakes of Function Point Counting, chapter 11, pages 197–214.
Volume 2012 of IFPUG [120], 2012.
Cited on pages 74 and 109.

[105] Vikas Hazrati. Is Measuring Hyper-Productivity a Waste of Time?, June 2, 2009.
URL https://www.infoq.com/news/2009/06/measuring-hyper-productivity.
Cited on pages 2 and 3.

[106] Maritta Heisel. Agendas – a concept to guide so�ware development activities. In R. N.
Horspool, editor, Systems Implementation 2000: IFIP TC2 WG2.4 Working Conference on
Systems Implementation 2000: Languages, methods and tools 23–26 February 1998, Berlin,
Germany, pages 19–32, Boston, MA, 1998. Springer US.
DOI 10.1007/978-0-387-35350-0_2 .
Cited on pages 81 and 174.

[107] Maritta Heisel. UML4PF – eclipse plugin, 2017.
URL http://www.uml4pf.org/.
Cited on pages 47, 87, 108, 264, and 278.

[108] Maritta Heisel. So�waretechnik – lecture notes, 2017.
URL http://swe.uni-due.de/.
Cited on pages 158, 196, 199, 200, 201, and 213.

[109] Maritta Heisel and Michael Goedicke. GenEDA – Generation and Evaluation of Design
Alternatives for So�ware Architectures, 2017.
URL http://www.geneda.org/. GenEDA is funded by the Deutsche Forschungsgemeinscha�
(DFG, German Research Foundation) under the grants no. GO774/5-1, GO774/5-2, HE3322/4-1, and
HE3322/4-2.
Cited on page 174.

[110] Maritta Heisel and Denis Hatebur. A model-based development process for embedded
systems. In Proceedings of the Workshop on Model-Based Development of Embedded
Systems, number TUBS-SSE-2005-01 in . Technical University of Braunschweig, 2005.
URL https://www.uni-due.de/imperia/md/content/swe/papers/2005mbees.pdf.
Cited on page 158.

[111] James A. Highsmith. Agile So�ware Development Ecosystems, volume 13 of Agile so�ware
development series. Addison-Wesley Professional, 2002.
Cited on pages 9 and 18.

[112] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Boston, MA, USA, 2003.
URL http:
//www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html.
Cited on pages 286 and 298.

https://insight.sei.cmu.edu/sei_blog/2014/09/agile-metrics-seven-categories.html
https://insight.sei.cmu.edu/sei_blog/2014/09/agile-metrics-seven-categories.html
https://www.infoq.com/news/2009/06/measuring-hyper-productivity
http://dx.doi.org/10.1007/978-0-387-35350-0_2
http://www.uml4pf.org/
http://swe.uni-due.de/
http://www.geneda.org/
https://www.uni-due.de/imperia/md/content/swe/papers/2005mbees.pdf
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html

318 References

[113] Jacky A. Holloway, C. Matthew Hinton, David Mayle, and Graham Francis. Why benchmark?
understanding the processes of best practice benchmarking, 1997.
URL https://www.researchgate.net/profile/C_Hinton/publication/254519995_
WHY_BENCHMARK_UNDERSTANDING_THE_PROCESSES_OF_BEST_PRACTICE_BENCHMARKING/
links/5755c66008aec74acf5833ba/WHY-BENCHMARK-UNDERSTANDING-THE-PROCESSES-
OF-BEST-PRACTICE-BENCHMARKING.pdf.
Cited on pages 175, 193, and 249.

[114] Watts S. Humphrey. A Discipline for So�ware Engineering. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.
Cited on pages 3, 4, 5, 24, 42, 76, 77, 109, 164, and 297.

[115] Watts S. Humphrey. Using a defined andmeasured personal so�ware process. IEEE So�ware,
13(3):77–88, May 1996.
DOI 10.1109/52.493023 .
Cited on pages 76 and 77.

[116] Axel Hunger. Student Recruitment Web Portal, 2020.
URL http://www.way2studying.de/application/.
Cited on page 217.

[117] IFPUG. So�ware and systems engineering - So�ware measurement – IFPUG functional size
measurement method 2009. International Organization for Standardization, Geneva,
Switzerland, 2009.
Cited on pages 5, 24, 28, 37, 43, 44, 46, 51, 55, 57, 64, 65, 76, 78, 80, 81, 82, 83, 93, 94, 109, 226, 262, 263, 264, 265,
266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 298, and 299.

[118] IFPUG. IFPUG CPM 4.3.1 – Function Point Counting Practices Manual (CPM) Version 4.3.1.
International Function Point Users Group, Princeton Junction/NJ, USA, 2010.
Cited on pages 5, 44, 51, 57, and 269.

[119] IFPUG. So�ware Non-functional Assessment Practices (SNAP) Manual 2.1. International
Function Point Users Group, Princeton Junction/NJ, USA, 2012.
Cited on page 43.

[120] IFPUG. The IFPUG Guide to IT and So�ware Measurement, volume 2012. Taylor & Francis
Group, 2012.
Cited on pages 109, 317, and 321.

[121] IFPUG. Criteria for Certification of Function Point So�ware Type 2 (Word) – Expert System
That Aids Counting of Function Points, 2017.
URL http://www.ifpug.org/certification/software-certification/.
Cited on pages 108, 264, and 278.

[122] Masaaki Imai. Kaizen: The Key To Japan’s Competitive Success. McGraw-Hill Education, 1986.

Cited on page 175.

[123] CMMI Institute. Capability Maturity Model Integration (CMMI) R©, 2016.
URL http://cmmiinstitute.com.
Cited on page 279.

https://www.researchgate.net/profile/C_Hinton/publication/254519995_WHY_BENCHMARK_UNDERSTANDING_THE_PROCESSES_OF_BEST_PRACTICE_BENCHMARKING/links/5755c66008aec74acf5833ba/WHY-BENCHMARK-UNDERSTANDING-THE-PROCESSES-OF-BEST-PRACTICE-BENCHMARKING.pdf
https://www.researchgate.net/profile/C_Hinton/publication/254519995_WHY_BENCHMARK_UNDERSTANDING_THE_PROCESSES_OF_BEST_PRACTICE_BENCHMARKING/links/5755c66008aec74acf5833ba/WHY-BENCHMARK-UNDERSTANDING-THE-PROCESSES-OF-BEST-PRACTICE-BENCHMARKING.pdf
https://www.researchgate.net/profile/C_Hinton/publication/254519995_WHY_BENCHMARK_UNDERSTANDING_THE_PROCESSES_OF_BEST_PRACTICE_BENCHMARKING/links/5755c66008aec74acf5833ba/WHY-BENCHMARK-UNDERSTANDING-THE-PROCESSES-OF-BEST-PRACTICE-BENCHMARKING.pdf
https://www.researchgate.net/profile/C_Hinton/publication/254519995_WHY_BENCHMARK_UNDERSTANDING_THE_PROCESSES_OF_BEST_PRACTICE_BENCHMARKING/links/5755c66008aec74acf5833ba/WHY-BENCHMARK-UNDERSTANDING-THE-PROCESSES-OF-BEST-PRACTICE-BENCHMARKING.pdf
http://dx.doi.org/10.1109/52.493023
http://www.way2studying.de/application/
http://www.ifpug.org/certification/software-certification/
http://cmmiinstitute.com

References 319

[124] Project Management Institute.
A Guide to the Project Management Body of Knowledge (PMBOK Guide). PMI, 2013.
Cited on pages 7, 8, 11, 26, and 251.

[125] Michael A. Jackson. System Development. Prentice-Hall, 1983.
URL http://mcs.open.ac.uk/mj665/JSPDDevt.pdf.
Cited on page vii.

[126] Michael A. Jackson. So�ware Requirements & Specifications: a lexicon of practice, principles
and prejudices. Addison-Wesley, New York, NY, USA, 1995.
Cited on pages viii and 40.

[127] Michael A. Jackson. Problem Analysis Using Small Problem Frames. In Special Issue on the
4th Workshop on Formal and Applied Computer Science (WOFACS 1998), volume 22, pages
47–60. South African Computer Journal, 1999.
Cited on page 46.

[128] Michael A. Jackson. Problem Frames: Analysing and Structuring So�ware Development
Problems. Addison-Wesley Professionals, 2001.
Cited on pages viii, 24, 27, 37, 38, 40, 41, 50, 55, 57, 58, 61, 70, 75, 76, 87, 103, 104, 106, 120, 121, 123, 134, 268,
and 278.

[129] Ron Je�ries. Essential XP: Card, Conversation, Confirmation, August 30, 2001.
URL http://xprogramming.com/articles/expcardconversationconfirmation/.
Cited on page 39.

[130] Ralph E. Johnson. Frameworks = Components + Patterns – How frameworks compare to
other object-oriented reuse techniques. Communications of the ACM, 40(10):39–42, Oct.
1997.
DOI 10.1145/262793.262799 .
Cited on page 114.

[131] Capers Jones. The Mess of So�ware Metrics. Namcook Analytics, Inc., May 2017.
URL http://www.namcook.com.
Cited on page 42.

[132] Brett King. Bank 2.0: How Customer Behaviour and Technology Will Change the Future of
Financial Services. Marshall Cavendish Business, 2010.
Cited on page 2.

[133] Philippe Kruchten. Architectural blueprints – the 4+1 viewmodel of so�ware architecture.
IEEE So�ware, 12(6):42–50, 1995.
DOI 10.1109/52.469759 .
URL http://www.cs.ubc.ca/∼gregor/teaching/papers/4+1view-architecture.pdf.
Cited on pages 25, 152, 154, 155, 160, 161, 162, 163, 164, 297, and 300.

[134] Philippe Kruchten. So�ware Design in a Postmodern Era. IEEE So�ware, pages 16–18, 2005.
Cited on pages v, vi, and vii.

[135] Philip A. Laplante. What Every Engineer Should Know about So�ware Engineering. CRC
Press, 2007.
Cited on page 151.

http://mcs.open.ac.uk/mj665/JSPDDevt.pdf
http://xprogramming.com/articles/expcardconversationconfirmation/
http://dx.doi.org/10.1145/262793.262799
http://www.namcook.com
http://dx.doi.org/10.1109/52.469759
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf

320 References

[136] Luiz A. Laranjeira. So�ware Size Estimation of Object-Oriented Systems. IEEE Transactions of
So�ware Engineering, 16(5):510–522, May 1990.
DOI 10.1109/32.52774 .
Cited on page 13.

[137] Grant Larsen. Designing Component-Based Frameworks Using Patterns in the UML.
Communications of the ACM, 42(10):38–45, 10 1999.
DOI 10.1145/317665.317674 .
Cited on page 114.

[138] Soren Lauesen. So�ware Requirements: Styles and Techniques. Pearson Education, 2002.
Cited on page 38.

[139] Soren Lauesen. So�ware requirements, 2018.
URL http://www.itu.dk/∼slauesen/SorenReqs.html.
Cited on page 38.

[140] Luigi Lavazza. Business goals, user needs, and requirements: A problem frame-based view.
Expert Systems, 30(3):215–232, 2013.
DOI 10.1111/j.1468-0394.2012.00648.x .
Cited on pages 38 and 41.

[141] Luigi Lavazza and Vieri del Bianco. Functional size measurement based on problem frames: A
case study. In Proceedings of the 3rd International Workshop on Applications and Advances
of Problem Frames, IWAAPF, pages 44–47, New York, NY, USA, 2008. ACM.
DOI 10.1145/1370811.1370820 .
Cited on page 73.

[142] Luigi Lavazza and Sandro Morasca. Measuring the Functional Size of Real-Time and
Embedded So�ware: a Comparison of Function Point Analysis and COSMIC. In Proceedings of
the 8th International Conference on So�ware Engineering Advances, ICSEA, 2013.
Cited on page 108.

[143] Richard Lawrence. How to split a user story, October 28, 2009.
URL https://agileforall.com/resources/how-to-split-a-user-story/.
Cited on page 251.

[144] Dean Le�ingwell. Scaling So�ware Agility: Best Practices for Large Enterprises.
Addison-Wesley Professional, 2007.
Cited on pages 8, 15, 150, and 299.

[145] Susan Leigh Star and James R. Griesemer. Institutional ecology, ‘translations’ and boundary
objects: Amateurs and professionals in berkeley’s museum of vertebrate zoology, 1907-39.
Social Studies of Science, 19:387–420, August 1989.
DOI 10.1177/030631289019003001 .
Cited on pages 41 and 46.

[146] Mark Leveson. Stable Teams Really Do Matter. Agile Pain Relief Consulting, 2013.
URL http://agilepainrelief.com/notesfromatooluser/2013/09/stable-teams-
really-do-matter.html.
Cited on pages 14 and 43.

http://dx.doi.org/10.1109/32.52774
http://dx.doi.org/10.1145/317665.317674
http://www.itu.dk/~slauesen/SorenReqs.html
http://dx.doi.org/10.1111/j.1468-0394.2012.00648.x
http://dx.doi.org/10.1145/1370811.1370820
https://agileforall.com/resources/how-to-split-a-user-story/
http://dx.doi.org/10.1177/030631289019003001
http://agilepainrelief.com/notesfromatooluser/2013/09/stable-teams-really-do-matter.html
http://agilepainrelief.com/notesfromatooluser/2013/09/stable-teams-really-do-matter.html

References 321

[147] Stefan Lindegaard. First Mover or Fast Follower: A Key Question for Innovation, Nov. 1, 2014.
URL https://www.linkedin.com/pulse/20141101124643-46249-first-mover-or-
fast-follower-a-key-question-for-innovation.
Cited on page 2.

[148] The Clever Product Manager. The Three Forms of Waste – Muda, Mura, andMuri, May 19, 2015.
URL http://www.cleverpm.com/2015/05/19/the-three-forms-of-waste-muda-mura-
and-muri/.
Cited on page 279.

[149] Antony Marcano. How the industry broke the Connextra Template, August 31, 2016.
URL http://antonymarcano.com/blog/2016/08/how-the-industry-broke-the-
connextra-template/.
Cited on page 41.

[150] James Martin. Application Development without Programmers. Prentice Hall PTR, 1982.
Cited on page vi.

[151] Steve McConnell. Rapid Development: Taming Wild So�ware Schedules. Microso� Press,
Redmond, WA, USA, 1996.
Cited on pages 9, 10, 11, 12, 15, 16, 18, 21, 22, 26, 250, and 299.

[152] Steve McConnell. So�ware Estimation: Demystifying the Black Art. Microso� Press,
Redmond, WA, USA, 2006.
Cited on pages 12, 13, 76, and 299.

[153] Rene Meis. Problem-based Privacy Analysis (ProPAn) – A Computer-aided Privacy
Requirements Engineering Method. Dissertation, University of Duisburg-Essen, So�ware
Engineering (Prof. Dr. Maritta Heisel), Dec 2018.
URL https://duepublico2.uni-due.de/receive/duepublico_mods_00047797.
Cited on page 257.

[154] Roberto Meli. So�ware Measurement in Procurement Contracts, chapter 29, pages 561–583.
Volume 2012 of IFPUG [120], 2012.
Cited on pages 42 and 74.

[155] Total Metrics. Function Point Frequently Asked Questions, 2017.
URL http://www.totalmetrics.com/function-point-resources/function-point-
FAQ.
Cited on page 109.

[156] Bertrand Meyer. Agile!: The Good, the Hype and the Ugly. Springer, 2014.
Cited on pages 3, 114, 149, 174, 176, and 279.

[157] Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel, and Bruce Maxim, editors.
So�ware Architecture for Big Data and the Cloud, volume 1. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2017.
URL https://www.sciencedirect.com/science/book/9780128054673.
Cited on pages 145 and 315.

https://www.linkedin.com/pulse/20141101124643-46249-first-mover-or-fast-follower-a-key-question-for-innovation
https://www.linkedin.com/pulse/20141101124643-46249-first-mover-or-fast-follower-a-key-question-for-innovation
http://www.cleverpm.com/2015/05/19/the-three-forms-of-waste-muda-mura-and-muri/
http://www.cleverpm.com/2015/05/19/the-three-forms-of-waste-muda-mura-and-muri/
http://antonymarcano.com/blog/2016/08/how-the-industry-broke-the-connextra-template/
http://antonymarcano.com/blog/2016/08/how-the-industry-broke-the-connextra-template/
https://duepublico2.uni-due.de/receive/duepublico_mods_00047797
http://www.totalmetrics.com/function-point-resources/function-point-FAQ
http://www.totalmetrics.com/function-point-resources/function-point-FAQ
https://www.sciencedirect.com/science/book/9780128054673

322 References

[158] Ben Morris. Agile velocity is not a measure of productivity, August 12, 2013.
URL http://www.ben-morris.com/agile-velocity-is-not-a-measure-of-
productivity/.
Cited on page 3.

[159] James Noble and Robert Biddle. Notes on Postmodern Programming. SIGPLAN Notices, 39
(12):40–56, December 2004.
DOI 10.1145/1052883.1052890 .
Cited on pages vi, vii, and 151.

[160] Robert L. Nord, Ipek Ozkaya, Nanette Brown, and Raghvinder S. Sangwan. Modeling
Architectural Dependencies to Support So�ware Release Planning. In S. D. Eppinger,
M. Maurer, K. Eben, and U. Lindemann, editors, 13th International Dependency and Structure
Modelling Conference, DSM’11, Section: So�ware Architectures, pages 159–171, Cambridge,
Massachusetts, USA, September 14–15, 2011. Design Society.
URL https://www.designsociety.org/download-publication/30831/Modeling+
Architectural+Dependencies+to+Support+Software+Release+Planning.
Cited on page 156.

[161] David Norfolk. Continuous Engineering, 8th March, 2014.
URL http://www.bloorresearch.com/blog/the-norfolk-punt/continuous-
engineering/.
Cited on page 193.

[162] Bashar Nuseibeh. Weaving Together Requirements and Architectures. IEEE Computer, 34(3):
115–117, March 2001.
DOI 10.1109/2.910904 .
Cited on pages 114 and 117.

[163] International Institute of Business Analysis and Agile Alliance.
Agile Extension to the BABOKTM Guide, 2017.
URL https://www.agilealliance.org/wp-
content/uploads/2017/08/AgileExtension_V2-Member-Copy.pdf.
Cited on pages 253 and 254.

[164] Neil C. Olsen. Survival of the Fastest: Improving Service Velocity. IEEE So�ware, 12(5):28–38,
September 1995.
DOI 10.1109/52.406754 .
Cited on pages 2, 5, 10, and 18.

[165] OMG. Business Process Model And NotationTM Specification, December 9, 2013.
URL https://www.omg.org/spec/BPMN/.
Cited on pages 159 and 254.

[166] OMG. Automated Function Points, Version 1.0, January 2014.
URL http://www.omg.org/spec/AFP/.
Cited on page 42.

[167] OMG. Object Constraint Language R© Specification, February 3, 2014.
URL https://www.omg.org/spec/OCL/.
Cited on page 256.

http://www.ben-morris.com/agile-velocity-is-not-a-measure-of-productivity/
http://www.ben-morris.com/agile-velocity-is-not-a-measure-of-productivity/
http://dx.doi.org/10.1145/1052883.1052890
https://www.designsociety.org/download-publication/30831/Modeling+Architectural+Dependencies+to+Support+Software+Release+Planning
https://www.designsociety.org/download-publication/30831/Modeling+Architectural+Dependencies+to+Support+Software+Release+Planning
http://www.bloorresearch.com/blog/the-norfolk-punt/continuous-engineering/
http://www.bloorresearch.com/blog/the-norfolk-punt/continuous-engineering/
http://dx.doi.org/10.1109/2.910904
https://www.agilealliance.org/wp-content/uploads/2017/08/AgileExtension_V2-Member-Copy.pdf
https://www.agilealliance.org/wp-content/uploads/2017/08/AgileExtension_V2-Member-Copy.pdf
http://dx.doi.org/10.1109/52.406754
https://www.omg.org/spec/BPMN/
http://www.omg.org/spec/AFP/
https://www.omg.org/spec/OCL/

References 323

[168] OMG. Unified Modeling Language R© Specification, December 5, 2017.
URL https://www.omg.org/spec/UML/.
Cited on pages 39, 122, 123, 168, 169, 208, and 256.

[169] Cristina Palomares, Carme Quer, and Xavier Franch. Requirements reuse and requirement
patterns: a state of the practice survey. Empirical So�ware Engineering, pages 1–44, 2016.
DOI 10.1007/s10664-016-9485-x .
Cited on pages 73 and 74.

[170] European Parliament and Council of the European Union. Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation), May 25, 2018.
URL https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679.
Cited on page 257.

[171] David L. Parnas. On the criteria to be used in decomposing systems into modules. Commun.
ACM, 15(12):1053–1058, December 1972.
DOI 10.1145/361598.361623 .
Cited on page 38.

[172] David L. Parnas. On the design and development of program families. IEEE Transactions of
So�ware Engineering, 2(1):1–9, 1976.
DOI 10.1109/TSE.1976.233797 .
Cited on page 38.

[173] David L. Parnas. Stop the Numbers Game. Communications of the ACM, 50(11):19–21,
November 2007.
DOI 10.1145/1297797.1297815 .
Cited on page 27.

[174] Tom Peters. Thriving on Chaos: Handbook for a Management Revolution. Collins, 1987.
Cited on page 175.

[175] Shari L. Pfleeger, Felicia Wu, Rosalind Lewis, and United States. Air Force. So�ware Cost
Estimation and Sizing Methods: Issues, and Guidelines. Rand Corporation, 2005.
Cited on pages 16, 42, and 299.

[176] John Pocknell. Fast and furious agile development, September 15, 2016.
URL https://www.quest.com/community/b/en/posts/fast-and-furious-agile-
development.
Cited on page 3.

[177] Marsha Pomeroy-Hu�, Robert Cannon, Timothy A. Chick, Julia Mullaney, and William Nichols.
The personal so�ware processsm body of knowledge, version 2.0, August 2009.
URL https:
//resources.sei.cmu.edu/asset_files/SpecialReport/2009_003_001_15029.pdf.
Cited on pages 76, 77, and 297.

[178] Lawrence H. Putnam andWare Myers. Measures for Excellence: Reliable So�ware on Time,
within Budget. Yourdon Press, 1992.
Cited on pages 3 and 193.

https://www.omg.org/spec/UML/
http://dx.doi.org/10.1007/s10664-016-9485-x
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1109/TSE.1976.233797
http://dx.doi.org/10.1145/1297797.1297815
https://www.quest.com/community/b/en/posts/fast-and-furious-agile-development
https://www.quest.com/community/b/en/posts/fast-and-furious-agile-development
https://resources.sei.cmu.edu/asset_files/SpecialReport/2009_003_001_15029.pdf
https://resources.sei.cmu.edu/asset_files/SpecialReport/2009_003_001_15029.pdf

324 References

[179] Rally So�ware Development. The Impact of Agile – Quantified, 2013.
URL http://www.rallydev.com/finally-get-real-data-about-benefits-adopting-
agile.
Cited on page 14.

[180] Rally So�ware Development. Release Planning Guide, 2013.
URL https://www.projectmanagement.com/pdf/ReleasePlanningGuide.pdf.
Cited on pages 178 and 300.

[181] Brian Randell, Peter Naur, and John Noel Buxton. The NATO So�ware Engineering
Conferences, 1968 and 1969.
URL http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html.
Cited on page v.

[182] Lucia Rapanotti, Jon G. Hall, Michael A. Jackson, and Bashar Nuseibeh. Architecture-Driven
Problem Decomposition. In Proceedings of the 21st IEEE International Conference on
Requirements Engineering, pages 80–89, Los Alamitos, CA, USA, 2004. IEEE.
DOI 10.1109/ICRE.2004.1335666 .
Cited on pages 29 and 149.

[183] Chis Richardson. Microservices Patterns: With examples in Java. Manning Publications, 2018.
URL https://microservices.io/book.
Cited on page 253.

[184] Hugh Robinson, Pat Hall, Fiona Hovenden, and Janet Rachel. Postmodern So�ware
Development. The Computer Journal, 41:363–375, January 1998.
DOI 10.1093/comjnl/41.6.363 .
Cited on pages vi, vii, and 248.

[185] William Robinson, Suzanne Pawlowski, and Vecheslav Volkov. Requirements Interaction
Management. ACM Computing Surveys, 35:132–190, June 2003.
DOI 10.1145/857076.857079 .
Cited on pages 171 and 172.

[186] Kenneth S. Rubin and Adele Goldberg. Object behavior analysis. Communications of the
ACM, 35(9):48–62, September 1992.
DOI 10.1145/130994.130996 .
Cited on pages 155, 156, and 158.

[187] Je� Sauro. Better to be approximately right than exactly wrong, April 16, 2016.
URL https://measuringu.com/approx-right/.
Cited on page 270.

[188] Scaled Agile, Inc. Scaled Agile Framework R©: SAFe Principles, August 24, 2016.
URL http://www.scaledagileframework.com/safe-lean-agile-principles/.
Cited on page 280.

[189] Scaled Agile, Inc. Scaled agile framework R©: Intentional architecture, October 23, 2017.
URL http://www.scaledagileframework.com/architectural-runway/.
Cited on page 150.

http://www.rallydev.com/finally-get-real-data-about-benefits-adopting-agile
http://www.rallydev.com/finally-get-real-data-about-benefits-adopting-agile
https://www.projectmanagement.com/pdf/ReleasePlanningGuide.pdf
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html
http://dx.doi.org/10.1109/ICRE.2004.1335666
https://microservices.io/book
http://dx.doi.org/10.1093/comjnl/41.6.363
http://dx.doi.org/10.1145/857076.857079
http://dx.doi.org/10.1145/130994.130996
https://measuringu.com/approx-right/
http://www.scaledagileframework.com/safe-lean-agile-principles/
http://www.scaledagileframework.com/architectural-runway/

References 325

[190] Holger Schmidt. A pattern and component based method to develop secure so�ware.
Dissertation, University of Duisburg-Essen, So�ware Engineering (Prof. Dr. Maritta Heisel),
2010.
Cited on page 29.

[191] Holger Schmidt and Ina Wentzla�. Preserving So�ware Quality Characteristics from
Requirements Analysis to Architectural Design. In Volker Gruhn and Flávio Oquendo, editors,
Third European Workshop on So�ware Architecture (EWSA 2006), Revised Selected Papers,
volume 4344 of Lecture Notes in Computer Science, pages 189–203, Nantes, France,
September 4-5, 2006. Springer.
DOI 10.1007/11966104_14 .
Cited on pages 23, 29, 30, and 149.

[192] Joe Schofield, Alan W. Armemtrout, and Regina M. Trujillo. Function Points, Use Case Points,
Story Points — Observations From a Case Study. CrossTalk – the Journal of Defense So�ware
Engineering, 26(3):23–27, 5/6 2013.
http://www.crosstalkonline.org/storage/flipbooks/2013/201305/index.html.
Cited on page 42.

[193] Ken Schwaber and Je� Sutherland. The Scrum GuideTM , November 2017.
URL http://www.scrumguides.org/.
Cited on pages 6, 26, 174, 176, 177, 178, 182, 183, 246, 247, and 248.

[194] Scopemaster Limited and Colin Hammond. Automated requirements analysis. Patent,
(International Application Number: PCT/GB2019/050478, International Publication Number:
WO 2019/162676 A2), 08 2019.
URL https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019162676.
Cited on page 175.

[195] Scopemaster Limited and Colin Hammond. ScopeMaster R©, 2019.
URL https://www.scopemaster.com/.
Cited on page 252.

[196] Scrum.org. Improving the Profession of So�ware Delivery, 2018.
URL http://www.scrum.org/Resources/What-is-Scrum.
Cited on page 6.

[197] Brian Shanblatt. Solved: epic vs story vs task, January 02, 2016.
URL https://community.atlassian.com/t5/Jira-Core-questions/epic-vs-story-
vs-task/qaq-p/204224.
Cited on page 39.

[198] Mary Shaw and David Garlan. So�ware Architecture. Perspectives on an Emerging Discipline.
Prentice Hall, Eaglewood Cli�s, New Jersey, USA, 1996.
Cited on pages 49, 134, 151, 155, 281, and 298.

[199] M. Shepperd and C. Schofield. Estimating so�ware project e�ort using analogies. IEEE
Transactions on So�ware Engineering, 23(11):736–743, 1997.
Cited on page 251.

http://dx.doi.org/10.1007/11966104_14
http://www.crosstalkonline.org/storage/flipbooks/2013/201305/index.html
http://www.scrumguides.org/
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019162676
https://www.scopemaster.com/
http://www.scrum.org/Resources/What-is-Scrum
https://community.atlassian.com/t5/Jira-Core-questions/epic-vs-story-vs-task/qaq-p/204224
https://community.atlassian.com/t5/Jira-Core-questions/epic-vs-story-vs-task/qaq-p/204224

326 References

[200] So�ware Engineering Institute. "Happy Path" Testing. Patterns of Failure: Acquisition
Archetypes, 2009.
URL https://www.sei.cmu.edu/library/assets/happy.pdf.
Cited on page 165.

[201] Ian Sommerville. Integrated Requirements Engineering: A Tutorial. IEEE So�ware, 22(1):
16–23, January 2005.
DOI 10.1109/MS.2005.13 .
Cited on pages 114 and 151.

[202] Ian Sommerville. Construction by Configuration: Challenges for So�ware Engineering
Research and Practice. In 19th Australian So�ware Engineering Conference (ASWEC 2008),
pages 3–12, Perth, Australia, March 25-28, 2008.
DOI 10.1109/ASWEC.2008.4483184 .
Cited on page 114.

[203] Markus Specker and Ina Wentzla�. Exploring Usability Needs by Human-Computer
Interaction Patterns. In Marco Winckler, Hilary Johnson, and Philippe Palanque, editors,
Proceedings of the 6th International Workshop on Task Models and Diagrams for User
Interface Design (TAMODIA 2007), pages 254–260, Toulouse, France, November 7-9, 2007.
Springer.
DOI 10.1007/978-3-540-77222-4_20 .
Cited on page 29.

[204] Je� Sutherland. Scrum: The Art of Doing Twice the Work in Half the Time. Random House
Business, 2015.
Cited on pages 2, 3, 6, 10, 15, and 16.

[205] Anneken Tappe. 5 questions with the woman who coined the term ‘gray rhino’, Jan. 24, 2019.
URL https://www.marketwatch.com/story/what-is-a-gray-rhino-and-why-are-
they-so-dangerous-to-investors-5-questions-for-michele-wucker-2019-01-23.
Cited on page 271.

[206] Kevin Tate. Sustainable So�ware Development : An Agile Perspective. Addison-Wesley
Professional, 2005.
Cited on pages 250, 252, 257, and 258.

[207] The SOPHISTs. Requirements Engineering: The SOPHISTs "A short RE Primer", 2016.
URL https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/
Publikationen/Wissen_for_free/RE-Broschuere_Englisch_-_Online.pdf.
Cited on pages 251 and 291.

[208] The Standish Group. Chaos Report, 1995.
URL http://www.cs.nmt.edu/∼cs328/reading/Standish.pdf.
Cited on pages 8 and 258.

[209] Total Metrics. What is a Unique Functional Requirement?, 2006.
URL http://www.totalmetrics.com/total-metrics-articles/Function-Points-
Unique-Requirements.pdf.
Cited on page 65.

https://www.sei.cmu.edu/library/assets/happy.pdf
http://dx.doi.org/10.1109/MS.2005.13
http://dx.doi.org/10.1109/ASWEC.2008.4483184
http://dx.doi.org/10.1007/978-3-540-77222-4_20
https://www.marketwatch.com/story/what-is-a-gray-rhino-and-why-are-they-so-dangerous-to-investors-5-questions-for-michele-wucker-2019-01-23
https://www.marketwatch.com/story/what-is-a-gray-rhino-and-why-are-they-so-dangerous-to-investors-5-questions-for-michele-wucker-2019-01-23
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/RE-Broschuere_Englisch_-_Online.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/RE-Broschuere_Englisch_-_Online.pdf
http://www.cs.nmt.edu/~cs328/reading/Standish.pdf
http://www.totalmetrics.com/total-metrics-articles/Function-Points-Unique-Requirements.pdf
http://www.totalmetrics.com/total-metrics-articles/Function-Points-Unique-Requirements.pdf

References 327

[210] Hugo Troche. So�ware estimation using pattern analogies, 2004.
URL http:
//www.developerdotstar.com/mag/articles/troche_patternanalogies.html.
Cited on pages 73 and 251.

[211] Sylvie Trudel and Luigi Buglione. Guideline for Sizing Agile Projects with COSMIC. In 20th
International Workshop on So�ware Measurement (IWSM/MetriKon/Mensura 2010), Vector
Consulting Services, Stuttgart, Germany, November 10-12, 2010.
URL http://www.cosmicon.com/portal/public/guideline_for_sizing_agile_
projects_with_cosmic_trudel_buglione.pdf.
Cited on page 5.

[212] Sylvie Trudel, Jean-Marc Desharnais, and Jimmy Cloutier. Functional size measurement
patterns: A proposed approach. In International Workshop on So�ware Measurement (IWSM
Mensura 2016), October, 5-7, 2016, Berlin, Germany, 2016.
DOI 10.1109/IWSM-Mensura.2016.016 .
Cited on pages 37, 45, 54, 55, 56, 57, 58, 64, and 299.

[213] Bruce Wayne Tuckman. Developmental sequence in small groups. Psychological Bulletin, 63
(6):384–399, 1965.
Cited on page 14.

[214] Portia Tung. The Dream Team Nightmare – Boost Team Productivity Using Agile Techniques.
Pragmatic Bookshelf, 2013.
Cited on page 26.

[215] Takuya Uemura, Shinji Kusumoto, and Katsuro Inoue. Function point measurement tool for
uml design specification. In Proceedings Sixth International So�ware Metrics Symposium
(Cat. No. PR00403), pages 62–69, 1999.
DOI 10.1109/METRIC.1999.809727 .
Cited on page 73.

[216] Bill Wake. INVEST in Good Stories, and SMART Tasks, August 17, 2003.
URL https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/.
Cited on page 39.

[217] Paul T. Ward and Stephen J. Mellor. Structured Development for Real-Time Systems, volume
1: Introduction and Tools. Yourdon Press, 1985.
Cited on pages 25, 113, 115, 116, 117, 118, 159, and 299.

[218] Paul T. Ward and Stephen J. Mellor. Structured Development for Real-Time Systems, volume
2: Essential Modeling Techniques. Yourdon Press, 1985.
Cited on pages 122, 123, and 134.

[219] Paul T. Ward and Stephen J. Mellor. Structured Development for Real-Time Systems, volume
3: Implementation Modeling Techniques. Yourdon Press, 1985.
Cited on pages 115, 117, 118, 119, 120, 134, 135, and 151.

[220] Kelly Waters. The Value of Stable Teams, 2011.
URL http://www.allaboutagile.com/the-value-of-stable-teams/.
Cited on pages 14 and 43.

http://www.developerdotstar.com/mag/articles/troche_patternanalogies.html
http://www.developerdotstar.com/mag/articles/troche_patternanalogies.html
http://www.cosmicon.com/portal/public/guideline_for_sizing_agile_projects_with_cosmic_trudel_buglione.pdf
http://www.cosmicon.com/portal/public/guideline_for_sizing_agile_projects_with_cosmic_trudel_buglione.pdf
http://dx.doi.org/10.1109/IWSM-Mensura.2016.016
http://dx.doi.org/10.1109/METRIC.1999.809727
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://www.allaboutagile.com/the-value-of-stable-teams/

328 References

[221] Kelly Waters. All about Agile: Agile Management Made Easy! Createspace, 2012.
URL https://www.101ways.com/blog/.
Cited on pages 4, 5, 7, 39, and 108.

[222] Gregory H. Watson. The Benchmarking Workbook: Adapting Best Practices for Performance
Improvement. Productivity Press, 1992.
Cited on page 193.

[223] Ina Wentzla�. Establishing a Requirements Baseline by Functional Size Measurement
Patterns. In First International Workshop on Requirements Prioritization and Enactment
(PrioRE’17), CEUR Joint Proceedings of REFSQ 2017 Workshops co-located with the 23nd
International Conference on Requirements Engineering: Foundation for So�ware Quality
(REFSQ 2017), Essen, Germany, February 27, 2017.
URL http://ceur-ws.org/Vol-1796/priore-paper-1.pdf.
Cited on pages 23, 28, 40, and 299.

[224] Ina Wentzla� and Markus Specker. Pattern-Based Development of User-Friendly Web
Applications. In Workshop Proceedings of the Sixth International Conference on Web
Engineering, Palo Alto, California, USA, July 11-14, 2006. ACM.
DOI 10.1145/1149993.1149996 .
Cited on pages 29 and 70.

[225] Karl E. Wiegers. More About So�ware Requirements: Thorny Issues and Practical Advice.
Microso� Press, Redmond, WA, USA, 2005.
Cited on pages 5, 15, 16, 17, and 20.

[226] Karl E. Wiegers and Joy Beatty. So�ware Requirements. Developer Best Practices. Microso�
Press, Redmond, WA, USA, 3rd edition, 2015.
Cited on pages 5, 6, 26, and 73.

[227] Niklaus Wirth. A Plea for Lean So�ware. IEEE Computer, 28(2):64–68, 1995.
DOI 10.1109/2.348001 .
Cited on pages 11 and 26.

[228] Dave Wolber and Neil Calder, editors. ICWE ’06: Workshop Proceedings of the Sixth
International Conference on Web Engineering, New York, NY, USA, 2006. ACM.
Cited on page 70.

[229] Sherif M. Yacoub and Hany H. Ammar. Pattern-oriented analysis and design (POAD): a
structural composition approach to glue design patterns. In Proceedings of the 34th
International Conference on Technology of Object-Oriented Languages and Systems - TOOLS
34, pages 273–282, August 2000.
DOI 10.1109/TOOLS.2000.868978 .
Cited on page 114.

[230] Sherif M. Yacoub and Hany H. Ammar. Pattern-Oriented Analysis and Design: Composing
Patterns to Design So�ware Systems. Addison-Wesley Professional, 2004.
Cited on page 113.

[231] Edward Yourdon. Modern Structured Analysis. Yourdon Press, 1989.
Cited on page 115.

Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-
tion and explanation without intent to infringe.

https://www.101ways.com/blog/
http://ceur-ws.org/Vol-1796/priore-paper-1.pdf
http://dx.doi.org/10.1145/1149993.1149996
http://dx.doi.org/10.1109/2.348001
http://dx.doi.org/10.1109/TOOLS.2000.868978

References 329

What have we learned?
Even a snail can do a Sprint.

Diese Dissertation wird via DuEPublico, dem Dokumenten- und Publikationsserver der
Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor.

DOI:
URN:

10.17185/duepublico/74971
urn:nbn:de:hbz:464-20211119-145934-6

Alle Rechte vorbehalten.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/74971
https://nbn-resolving.org/urn:nbn:de:hbz:464-20211119-145934-6

	Problem-Based Project Planning in Postmodern Software Engineering
	Abstract
	Zusammenfassung
	Introduction
	Contents
	Software Projects – Perspectives on a Managed Engineering Discipline
	Motivation – Empowering software project teams to move faster
	The Need for Speed
	Research Questions
	RQ 1 How to determine speed of software project teams that is comparable?
	RQ 1.a How to establish pre-defined units of scope?
	RQ 1.b How to estimate scope size?

	RQ 2 How do software project teams get at speed? How do they adjust it?
	RQ 2.a How to establish pre-defined units of work?
	RQ 2.b How to plan worthwhile work volume?

	RQ 3 How to compare speed of software project teams?
	RQ 3.a How to baseline project plans?
	RQ 3.b How to benchmark the progress of projects?

	Background – On the emergence of product requirements and project teams
	The Software Project Triad
	The Four Dimensions of Software Project Speed
	The Fuzzy Front End of Software Projects

	Research Objective – Sustaining decision making and development by pattern practices
	Balancing Project Trade-Offs
	Designing for Change
	Planning for Value

	Overview – Introducing pre-defined units for planning scope and speed of software projects
	Contributions
	C 01 Problem-Based Functional Size Measurement Patterns
	C 02 Problem-Based Functional Size Measurement Method
	C 03 Transition Templates
	C 04 "One4All" View Model on Software Architecture
	C 05 Problem-Based Project Baseline
	C 06 Problem-Based Speed Benchmark

	Publications
	Limitation
	Structure

	Problem-Based Project Estimating
	Problem-Based Units of Measure
	Introduction
	Background
	Problem-Orientation and Requirements Engineering
	Early Software Measurement
	IFPUG FSM Method ISO/IEC 20926:2009 – Terms and Definitions
	Categories of Functional Size Measurement Patterns

	Problem Unit – Requirements Work Package
	Self-Contained Functionality
	Measurable Functionality

	Problem Class – Kind of Functionality
	Frame Concern of Problem Frames
	Primary Intent of Elementary Processes
	Mapping Patterns to Processes by Types of Functionality
	TOFF-i. processing received information
	TOFF-ii. processing retrieved information
	TOFF-iii. processing derived information

	Problem Scope – Amount of Functionality
	Hierarchical Levels of Detail
	Level I. micro problems
	Level II. basic problems
	Level III. composite problems
	Level IV. multi-composite problems

	Tailoring Measurable Problems – Pack the package

	Problem Pattern – Frames Revisited
	Integrity Conditions
	Merge Rules
	Problem-Based Functional Size Measurement Patterns

	Discussion & Related Work
	Summary

	Problem-Based Estimating Method
	Introduction
	Background
	Proxy-Based Estimation – The PROBE Method
	IFPUG FSM Method ISO/IEC 20926:2009 – Measurement Process

	Requirements Sizing Method
	Counting Process
	Validation Conditions

	Step-By-Step Guide to the Requirements Sizing Method
	Activity 1. Classify FUR by Functional Size Measurement Patterns
	Activity 2. Determine Data Functions
	2.a Identify problem domains as data functions
	2.b Classify data functions into ILF or EIF
	2.c Count DET for each data function
	2.d Count RET for each data function
	2.e Determine functional complexity for data functions
	2.f Determine functional size for data functions

	Activity 3. Determine Transactional Function
	3.a Identify machine domain as transactional function
	3.b Classify transactional function as either EI, EQ, or EO
	3.c Count FTR for transactional function
	3.d Count DET for transactional function
	3.e Determine functional complexity for transactional function
	3.f Determine functional size for transactional function

	Activity 4. Report Functional Size for FUR

	Sample Application to Jackson's Basic Frames
	Counting a Simple Workpieces Problem: Party Plan Editing
	Counting an Information Display Problem: Local Traffic Monitoring
	Counting a Commanded Behaviour Problem: Occasional Sluice Gate

	Discussion & Related Work
	Summary

	Problem-Based Project Adaptation
	Problem-Based Units of Work
	Introduction
	Background
	Architectural Blueprints and Pattern-Oriented Analysis and Design
	Transformation Schemas

	Transition Templates – Making problems absorb into platform
	Problem templates
	Set-Up Problem Templates
	About problems, and their type and flow inside of involved processes
	Mapping problems, tasks, and scenarios

	Problem Template for TOFF-i.
	Problem Template for TOFF-ii.
	Problem Template for TOFF-iii.

	Solution templates
	Set-Up Solution Templates
	About solutions, and their types and flow inbetween of involved processors

	Solution Templates for Client–Server
	Solution Templates for Forwarder–Receiver
	Solution Templates for Observer/Publisher–Subscriber
	Solution Template for Model–View–Controller

	Discussion & Related Work
	Summary

	Problem-Based Adaptation Framework
	Introduction
	Background
	The 4+1 View Model on software architecture
	Dependency Management for Problem-Based Units of Work

	All for One and "One4All" – An architectural view model for the three amigos
	View 1. Problems
	View 2. Processes
	View 3. Plans
	View 4. Platforms
	View 5. Patterns

	Problem-Based Project Adaptation by the One4All View Model
	Synchronizing Requirements by a State Transition Diagram
	Sample Application to Use Case Decomposition
	Discussion & Related Work
	Summary

	Problem-Based Project Benchmarking
	Problem-Based Project Baseline and Speed Benchmark
	Introduction
	Background
	Benchmarking
	Scrum

	Make the Frame(s)work
	Project Time-Box
	Project Team
	Size Matters to Keep the Pace
	Product Increment
	Product Backlog
	Project Backlog

	A S.M.A.R.T. Scrum-AGenEDA
	Project Planning – Baseline product scope
	Project Daily – Work In Progress
	Project Review – Benchmark project success
	Project Retro – Lessons Learned

	Benchmarking a Problem-Based Project Baseline – A sustainable planning game
	P 1. Craft a Project Goal
	P 2. Estimate and decide on Product Backlog items for the Project Time-Box
	P 3. Plan how to deliver Product Backlog items into a "done" Increment
	D 1. Do work on Project Backlog items
	D 2. Inspect and adapt for project's work progress
	R 1. Inspect Product Increment
	R 2. Adapt Product Backlog
	R 3. Inspect Team Performance
	R 4. Adapt for Team Improvement

	Discussion & Related Work
	Summary

	Case Studies
	Vacation Rentals Web Application
	Requirements Decomposition
	Problem description for RWP01: Prepare Holiday Offer
	Problem description for RWP02: Present Holiday Offers
	Problem description for RWP03: Provide Invoice

	Requirements Measurement
	Problem count for RWP01: Prepare Holiday Offer
	Problem count for RWP02: Present Holiday Offers
	Problem count for RWP03: Provide Invoice

	Use Case Decomposition
	Requirements Specification
	Task scenarios of RWP01: Prepare Holiday Offer
	Task scenarios of RWP02: Present Holiday Offers
	Task scenarios of RWP03: Provide Invoice

	Requirements Dependencies
	Life-Cycle Expressions
	State Transition Diagram

	Student Recruitment Web Portal
	Requirements Decomposition
	Problem description for FUR #01: Grant Access Authorization
	Problem description for FUR #02: Record Candidate Data
	Problem description for FUR #03: Review Candidate Data
	Problem description for FUR #04: Download Candidate Data
	Problem description for FUR #05: Upload Candidate Files
	Problem description for FUR #06: Compile Candidate Résumé

	Requirements Measurement
	Problem count of RWP for FUR #01: Grant Access Authorization
	Problem count of RWP for FUR #02: Record Candidate Data
	Problem count of RWP for FUR #03: Review Candidate Data
	Problem count of RWP for FUR #04: Download Candidate Data
	Problem count of RWP for FUR #05: Upload Candidate Files
	Problem count of RWP for FUR #06: Compile Candidate Résumé

	Use Case Decomposition
	Requirements Specification
	Task scenarios of FUR #01: Grant Access Authorization
	Task scenarios of FUR #02: Record Candidate Data
	Task scenarios of FUR #03: Review Candidate Data
	Task scenarios of FUR #04: Download Candidate Data
	Task scenarios of FUR #05: Upload Candidate Files
	Task scenarios of FUR #06: Compile Candidate Résumé

	Requirements Dependencies
	Life-Cycle Expressions
	State Transition Diagram

	Epilogue
	Conclusion
	Problem-Based Enablement of Agile Software Engineering Projects
	Transparency
	Adaptation
	Inspection

	Future Prospect
	How fast can the software project team become?
	Future Directions – Towards Sustainable Software Engineering Practice
	Insights from project practice
	Tool support
	Process management
	Data modeling
	Quality attributes
	Testing

	Appendices
	ISO/IEC 20926:2009 Complexity and Size Tables
	Data Function Complexity Matrix
	Data Function Size Matrix
	Transactional Function Complexity Matrix
	Transactional Function Size Matrix

	Sanity Checks
	FCA Validation Conditions and the IFPUG Measurement Process
	UML4PF and the Criteria for Certification of Function Point Software type 2

	Listing of Philosophies
	7 Lean Principles
	3 Forms of Waste addressed in Lean Production
	5 CMMI Maturity Levels for services
	12 Agile Software Development Principles behind The Manifesto
	9 Scaled Agile Framework (SAFe) Lean-Agile Principles
	7 Principles of Earned Value Management System

	Overview on Architecture Design Patterns
	Architectural Styles
	Software Architecture
	Design Patterns
	Cloud Computing Patterns
	Enterprise Integration Patterns

	Structures of Architecture Design Patterns
	Client–Dispatcher–Server
	Forwarder–Receiver
	Observer/Publisher-Subscriber
	Model–View–Controller

	For Further Discussion
	User Story templates out of problem-based functional size measurement patterns
	Data modeling by problem-based user story templates
	Roles and Permissions matrix by problem-based user story templates
	Story Mapping by problem-based user story templates – The amigos' big picture

	Tables
	Figures
	Examples
	Acronyms

	References
	Infobox

