Nitrogen cycling in technical water systems

Dissertation

zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften

– Dr. rer. nat. –

vorgelegt von

Julia Heise

geboren in Warburg

Fakultät für Chemie der Universität Duisburg-Essen

2020

Die vorliegende Dissertation wurde im Zeitraum von März 2015 bis September 2018 im Arbeitskreis von Prof. Dr. Rainer Meckenstock am Biofilm Centre der Universität Duisburg-Essen durchgeführt.

Gutachter: Prof. Dr. Rainer Meckenstock

Prof. Dr. Martin Denecke

Tag der Disputation: 04.03.2021

Vorsitzende: PD Dr. Ursula Telgheder

DuEPublico Duisburg-Essen Publications online	UNIVERSITÄT D_U,I,S,B,U,R,G Offen im Denken Universitäts bibliothek
Diese Dissertation wird via DuEPublico, dem Dokumenten- u Universität Duisburg-Essen, zur Verfügung gestellt und liegt a DOI: 10.17185/duepublico/74169 URN: urn:nbn:de:hbz:464-20210419-101545-7	nd Publikationsserver der auch als Print-Version vor.
Alle Rechte vorbehalten.	

For my Family.

Table of contents

1. Ge	neral Introduction	11
1.1.	The nitrogen cycle	11
1.2.	The nitrification process	12
1.3.	The denitrification process	15
1.4.	The anammox process	18
1.5.	Environmental impacts of nitrogen	20
1.6.	Health impacts of nitrogen species	21
1.7.	Biofilms	22
1.8.	Bioelectrochemical systems	23
1.8	3.1. The setup of a bioelectrochemical system	23
1.8	3.2. Losses decreasing BES performance	25
1.8	3.3. The electron transfer	
1.9.	Community analysis	27
1.10.	Aims of the study	
2 00	mammay Nitraanira parform ammania transformation in a baakuara	4
		J 24
aquapo		
2.1.	Abstract	
2.2.	Introduction	
2.3.	Experimental procedure	
2.3	3.1. The aquaponic system	
2.3	3.2. Test sediments and sampling	
2.3	3.3. Sample preparation and analyses using ion chromatography.	
2.3	3.4. DNA extraction of aquaponic samples	
2.3	3.5. Preparation of 16S rRNA gene amplicon library	
2.3	3.6. Analysing 16S rRNA gene sequencing data	
2.3	3.7. Metagenomic sequencing and analysis	
2.3	3.8. Quantification of comammox <i>Nitrospira</i> using qPCR	
2.4.	Results	41
2.4	4.1. Nitrogen species in the aquaponic system	41

2.4.2.	Microbial diversity	42
2.4.3.	Metagenome analyses	45
2.4.4.	Quantification of comammox <i>Nitrospira</i> in the aquaponic system	49
2.5. Dis	cussion	51
2.5.1.	Performance of the aquaponic system	51
2.5.2.	Microbial community composition	51
2.5.3.	Two-step nitrification or comammox?	52
2.5.4.	Abundances of comammox <i>Nitrospira</i> in the aquaponic system	54
2.6. App	pendix	55
3. Denitrif	cation in bioelectrochemical systems for the treatment of nitrate	
contaminate	ed groundwater	59
3.1. Abs	stract	59
3.2. Intr	oduction	60
3.3. Exp	perimental procedure	63
3.3.1.	Growth medium for denitrifying bacteria in BES	63
3.3.2.	Inoculum for denitrification	64
3.3.3.	Setup of the cathodic bioelectrochemical system	65
3.3.4.	Stability test using chronoamperiometry and investigation of redox act	ive
compo	unds using cyclic voltammetry in a cathodic BES	67
3.3.5.	Run of the experiment	67
3.3.6.	Analysis of nitrogen species via ion chromatography	68
3.3.7.	DNA extraction and 16S rRNA amplicon library preparation	68
3.3.8.	Analysis of 16S rRNA gene sequencing data	68
3.4. Res	sults	69
3.4.1.	Nitrate turnover in BES using intermittent and continuous potential	69
3.4.2.	Analyses of microbial biofilm community compositions on the cathode	73
3.5. Dis	cussion	78
3.5.1.	Bioelectrochemical systems for nitrate removal	78
3.5.2.	Microbial community compositions	79
3.5.3.	Nitrate reduction via denitrification or DNRA?	81
3.5.4.	BES performance for denitrification in batch reactors	82
3.6. App	pendix	84

4.	Am	mon	ia removal from wastewater using partial nitrification and the anamme	сх
pro	cess	s		101
4	l.1.	Abs	stract	. 101
4	l.2.	Intr	oduction	102
4	.3.	Exp	perimental procedure	104
	4.3	.1.	Growth medium for ammonium oxidising bacteria in BES	104
	4.3	.2.	Inoculum for partial nitrification and anammox in BES	105
	4.3	.3.	Setup of the anodic batch bioelectrochemical system	105
	4.3	.4.	Setup of the anodic upflow bioelectrochemical system	106
	4.3	.5.	Stability test using chronoamperiometry and investigation of redox a	ctive
	cor	npo	unds using cyclic voltammetry in an anodic BES	108
	4.3	.6.	Investigation of oxygen evolution rates	108
	4.3	.7.	Setup of batch reactors for microbial community investigations	108
	4.3	.8.	Analysis of nitrogen species via ion chromatography	109
	4.3	.9.	DNA extraction, 16S rRNA amplicon library preparation and analysis	109
4	ŀ.4.	Res	sults	110
	4.4	.1.	Oxygen evolution rates in batch and upflow anodic BES	110
	4.4	.2.	Ammonium removal in batch systems	111
	4.4	.3.	Microbial community compositions for ammonium oxidation	112
4	.5.	Dis	cussion	118
	4.5	.1.	Oxygen evolution rates and the performance of BES systems	118
	4.5	.2.	Ammonium removal in batch reactors	119
4	.6.	Арр	pendix	122
F		ablia	breast of the restriction fragment length polymerships (DELD) to sho	
ວ.	ESU		and rapid applying of low diverse besterial community compositions	que
as	ane	asy	and rapid analysis of low diverse bacterial community compositions	133
5	5.1.	Abs	stract	133
5	5.2.	Intr	oduction	134
5	5.3.	Exp	perimental procedure	136
	5.3	.1.	Bacterial strains and cultivation	136
	5.3	.2.	Extraction of genomic DNA	136
	5.3	.3.	Quantification of DNA yield	136
	5.3	.4.	Amplification of 16S rRNA genes	137

	5.3	5.5.	Purification of amplicons	138
	5.3	6.6.	Selection of restriction enzymes and in-silico restriction analysis	138
	5.3	5.7.	Restriction of PCR amplicons	138
	5.3	.8.	Visualization of restriction fragments on the fragment analyser and	
	ana	alyse	es of restriction fragments	139
	5.4.	Res	sults	140
	5.4	.1.	Evaluation of test strains: <i>in silico</i> and <i>in situ</i>	140
	5.4	.2.	Differentiation of test strains in mixtures	142
	5.5.	Dis	cussion	144
	5.6.	Арр	pendix	147
6.	Sur	nma	ary and outlook	155
	6.1.	Αqι	uaponic systems for food production	155
	6.2.	Der	nitrification in BES for drinking water production	156
	6.3.	The	e anammox process in BES for wastewater treatment	156
	6.4.	The	e RFLP technique for rapid in-house analysis	157
7.	Bib	liogr	aphy	159

Abbreviations

C°	degree Celsius (unit)
ΔG^0	Gibb's free energy
A	Ampere (unit)
AMO	ammonia monooxygenase
anammox	anaerobic ammonium oxidation
asv	amplicon sequencing variant(s)
BES	bioelectrochemical system(s)
bp	base pairs (unit)
CO ₂	carbon dioxide
comammox	complete ammonium oxidation
Cq	threshold cycle(s)
DGGE	denaturing gradient gel electrophoresis
DNA	deoxyribonucleic acid
dNTP	2'-desoxyribonucleosid-5'-triphosphate
EPS	extracellular polymeric substances
g	gram (unit)
h	hour (unit)
hao	hydroxylamine dehydrogenase gene
hcp	hydroxylamine reductase gene
HDH	hydrazine dehydrogenase
HZS	hydrazine synthase
J	Joule, 1 V A s (unit)
k (prefix)	kilo, 10 ³ (unit)
L	litre (unit)
μ (prefix)	micro, 10 ⁻⁶ (unit)
m (prefix)	milli, 10 ⁻³ (unit)
min	minute (unit)
тто	methane monooxygenase gene
mol	mole (unit)
n (prefix)	nano, 10 ⁻⁹ (unit)
n.a.	not available, not detected
N ₂	elemental nitrogen
N_2H_4	hydrazine

N ₂ O	nitrous oxide
NAP	(periplasm-bound) nitrate reductase
NAR	(membrane-bound) nitrate reductase
NH ₂ OH	hydroxylamine
NH ₃	ammonia
NH4 ⁺	ammonium ion
NIR	nitrite reductase
NO	nitric oxide
NO ₂ -	nitrite
NO ₂ ⁻ -N	nitrite-nitrogen, referring to the nitrogen atom in nitrite
NO ₃ -	nitrate
NO₃ ⁻ -N	nitrate-nitrogen, referring to the nitrogen atom in nitrate
NOR	nitric oxide reductase
NOS	nitrous oxide reductase
NXR	nitrite oxidoreductase
OTU(s)	operational taxonomy unit(s)
PMO	particulate methane monooxygenase
(q)PCR	(quantitative) polymerase chain reaction
RAS	recirculating aquaculture system
RF(s)	restriction fragment(s)
RFLP	restriction fragment length polymorphism
RFU	relative fluorescence units (unit)
rpm	rounds per minute (unit)
rRNA	ribosomal ribonucleic acid
S	second (unit)
T-RFLP	terminal restriction fragment length polymorphism
U	unit of enzyme activity, µmol substrate min ⁻¹
V vs. Ag/AgCl	Volt versus silver/silver chloride reference electrode (unit)
WHO	World's Health Organisation
WWTP(s)	wastewater treatment plant(s)

1. General Introduction

1.1. The nitrogen cycle

Nitrogen is one of the most abundant elements on earth. The atmosphere contains a volume fraction of 78% dinitrogen (N₂). It is also an essential component of many biomolecules, such as nucleic acids and amino acids. For microorganisms, it is one of the major elements in demand together with carbon, oxygen, hydrogen, phosphorous, and sulphur (Madigan & Martinko, 2006). However, dinitrogen is an inert gas and its fixation is highly energy intensive. Only few microorganisms are capable of fixing the molecular nitrogen. The nitrogen available for microorganisms represents a small fraction and is cycled between organic nitrogen found in biomass, dead organic matter and soluble inorganic nitrogen salts in biogeochemical processes (Figure 1.8.1-1) (Maier *et al.*, 2009).

Figure 1.8.1-1 | The nitrogen cycle adapted from (Maier et al., 2009) .

Nitrogen can obtain oxidation states between -3 in ammonium (NH_4^+) and +5 in nitrate (NO_3^-) during fixation, ammonification, assimilation, nitrification, and denitrification processes. While the nitrification process depends on the availability of oxygen, denitrification of nitrate to ammonium and dissimilatory reduction of nitrate to ammonium are carried out under anoxic conditions using nitrogen as electron acceptor (Madigan & Martinko, 2006).

1.2. The nitrification process

Nitrification describes the two-step oxidation process of ammonia (NH₄⁺) to nitrate (NO₃⁻) via the intermediate nitrite (NO₂⁻). It is predominantly carried out under aerobic and chemoautotrophic conditions (Maier *et al.*, 2009) and both reaction steps deliver energy (Eq. 1.2-1 – 1.2-3) (van Kessel *et al.*, 2015). Most of the energy is used for CO₂ fixation via the reductive tricarboxylic acid cycle (Klotz *et al.*, 2006, Lücker *et al.*, 2010, Daims *et al.*, 2015). Some species produce carboxysomes for accumulation of the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) to enhance CO₂ fixation (Koops *et al.*, 1991).

$NH_4^+ + 1.5 O_2 \rightarrow NO_2^- + H_2O + 2 H^+$	$\Delta G^0 = -274.7 \text{ kJ mol}^{-1}$	(Eq. 1.2-1)
$NO_2^- + 0.5 O_2 \rightarrow NO_3^-$	ΔG^0 = -74.1 kJ mol ⁻¹	(Eq. 1.2-2)
$NH_4^+ + 2 O_2 \rightarrow NO_3^- + H_2O + 2 H^+$	ΔG ⁰ = -348.9 kJ mol ⁻¹	(Eq. 1.2-3)

Depending on the pH in the system, ammonium exists in the form of ammonia (NH₃) or the ammonium ion (NH₄⁺). The equilibrium is favoured towards the ionised form at acidic and near-neutral pH. The pH optimum for nitrification is between 6.6 to 8.0. Below pH 4.5 the reaction process seems to be inhibited (Maier *et al.*, 2009). Nevertheless, it was shown that nitrification can also occur at pH 4 in aggregations of chemolithotrophic bacteria due to their protection against nitrous oxide within the cell aggregates (De Boer *et al.*, 1991). At near-neutral pH nitrite might accumulate in the system as it was recently described in soil (Tierling & Kuhlmann, 2018). Ammonia is naturally not or only present in small amounts in groundwater exhibiting a neutral level of 0.2 mg NH₄⁺ L⁻¹. The limit value of ammonia in groundwater and in surface waters is 0.3 mg NH₄⁺ L⁻¹ (TrinkwV, 2001, Wricke, 2014).

The two-step nitrification process is carried out by two physiological distinct groups of microorganisms (Koops *et al.*, 2006). Bacteria performing the first oxidation step from ammonia to nitrite are labelled with the prefix *Nitroso-* (e.g. *Nitrosomonas*), while those responsible for the second step show the prefix *Nitro-* (e.g. *Nitrobacter, Nitrospira*). Aerobic ammonia oxidising bacteria and nitrite oxidising bacteria are gram

negative and belong to the *Alpha*-, *Beta*-, *Gamma*-, and *Deltaproteobacteria*. *Nitrospira* comprise their own phylum. They are commonly coexisting in many different terrestrial and aquatic environments (Madigan & Martinko, 2006, Maier *et al.*, 2009).

Ammonium is oxidised by the ammonia monooxygenase (AMO) to hydroxylamine (Norton *et al.*, 2002, Stein *et al.*, 2007). The enzyme ammonia monooxygenase is a copper containing enzyme, which consists of at least three subunits, *amoA*, *amoB*, and *amoC* (Arp *et al.*, 2007). It is also homologous to the particulate methane monooxygenase (PMO) (Norton *et al.*, 2002). Subsequently, hydroxylamine is converted to nitrite in the periplasma via the hydroxylamine dehydrogenase, also referred to as hydroxylamine (oxido-)reductase, which consists of two subunits, *hoaA* and *hoaB* (Arp *et al.*, 2007). There are two cytochromes, c_{554} and c_{M552} , that were shown to be additionally important for the oxidation of ammonium to nitrite (Arp *et al.*, 2002).

The nitrite produced in the first step is further oxidised by the nitrite oxidoreductase (NXR). Nitrite oxidation is a reversible process and the nitrite oxidoreductase can catalyse the reduction of nitrate to nitrite as it was shown for Nitrobacter winogradskyi (Bock et al., 1991). The NXR complex is a membraneassociated protein in Nitrobacter located at the inner cell membrane and the intracytoplasmic membrane (Spieck et al., 1996, Starkenburg et al., 2006) and it is an iron-sulphur molybdoprotein (Sundermeyer-Klinger et al., 1984, Meincke et al., 1992). The protein consists of two, *nxrA* and *nxrB* (Meincke *et al.*, 1992), to three subunits with an assumed $\alpha_2\beta_2\gamma_1$ stoichiometry (Sundermeyer-Klinger *et al.*, 1984). As Nitrospira form their own phyla, the enzymes of these canonical Nitrospira are different from those of Nitrobacter. The NXR of Nitrospira contains molybdenum and is found at the inner cell membrane in contact with the periplasma since an intracytoplasmic membrane is missing (Spieck et al., 1998). The enzymes for nitrite oxidation and the carbon fixation pathway in Candidatus Nitrospira defluvii were shown to be different from all other known nitrifying bacteria but were more related to the NRX complex of *Candidatus* Kuenenia stuttgartiensis, an anaerobic ammonium oxidising bacterium (Lücker *et al.*, 2010).

Due to the energy efficiency of the single nitrification steps (Eq. 1.2-1 and 1.2-2), it was postulated that bacteria capable of performing the complete nitrification (Eq. 1.2-3) would exist (Costa *et al.*, 2006). It was in 2015, when two research groups were the first to report *Candidatus* Nitrospira species, which genomes exhibit all necessary genes for <u>complete amm</u>onium <u>ox</u>idation, in short comammox (Daims *et al.*, 2015, van Kessel *et al.*, 2015). The species were isolated from a biofilm found in a hot water pipe used as oil exploration well (Daims *et al.*, 2015) and from a biofilm of a trickling filter used in an anaerobic compartment in a recirculating aquaculture system (RAS) (van Kessel *et al.*, 2015). They were proposed as *Candidatus* Nitrospira nitrosa, *Candidatus* Nitrospira nitrificans (van Kessel *et al.*, 2015), and *Candidatus* Nitrospira inopinata (Daims *et al.*, 2015). Conditions favouring comammox in the environment may be slow, substrate-influx-limited growth in microbial aggregates and biofilms (Costa *et al.*, 2006).

In addition to the NXR complex for nitrite oxidation, the newly discovered *Nitrospira* strains also exhibit the full set of AMO and hydroxylamine dehydrogenase genes necessary for ammonia oxidation. The enzymes resemble but are phylogenetically distinct from those of canonical ammonium-oxidising bacteria (Daims *et al.*, 2015, van Kessel *et al.*, 2015). *Candidatus* Nitrospira inopinata showed two further AMO homologous of the proteins AmoD and AmoE as well as tetraheam c-type chromosomes, which resemble those in ammonia oxidising bacteria (Daims *et al.*, 2015). *Candidatus* Nitrospira nitrificans were also found to lack enzymes responsible for assimilatory nitrite reduction, which would indicate the adaptation to ammonium containing habitats (van Kessel *et al.*, 2015).

As the *amoA* gene of comammox *Nitrospira* involved in ammonia oxidation are distinct from other ammonium-oxidising bacteria, specific PCR primers for the detection of *amoA* did not detect comammox *Nitrospira* and, thus, were overlooked for a long time (Pjevac *et al.*, 2017). Previously designed PCR primers revealed the abundances of comammox *Nitrospira* in different habitats (Bartelme *et al.*, 2017, Pjevac *et al.*, 2017). Meanwhile, they have been investigated in wastewater treatment plants (Gonzalez-Martinez *et al.*, 2016, Pjevac *et al.*, 2017), drinking water systems (Pinto *et al.*, 2016, Wang *et al.*, 2017), groundwater aquifers (Fowler *et al.*, 2018), agricultural soils (Beeckman *et al.*, 2018), and rivers (Black & Just, 2018).

1.3. The denitrification process

The denitrification process is carried out under facultative anaerobic, carbonlimiting, and electron acceptor-rich conditions (Tiedje, 1988). Denitrifying bacteria vary widely in terms of energy and carbon sources as well as electron donors (Maier *et al.*, 2009). Nitrate is reduced by microorganisms to elementary nitrogen (N₂) via the intermediates nitrite (NO₂⁻), nitric oxide (NO), and nitrous oxide (N₂O). The single step equations (Eq. 1.3-1 to 1.3.4) and the overall equation (Eq. 1.3-5) are shown below with their respective Gibb's free energies (ΔG^0) (Thauer *et al.*, 1977).

$2 \text{ NO}_3^- + 4 \text{ e}^- + 4 \text{ H}^+ \rightarrow 2 \text{ NO}_2^- + 2 \text{ H}_2\text{O}$	
$\Delta G^0 = -326.0 \text{ kJ mol}^{-1}$	(Eq. 1.3-1)
$2 \text{ NO}_2^- + 2 \text{ e}^- + 4 \text{ H}^+ \rightarrow 2 \text{ NO} + 2 \text{ H}_2\text{O}$	
$\Delta G^0 = -146.4 \text{ kJ mol}^{-1}$	(Eq. 1.3-2)
2 NO + 2 e^- + 2 H ⁺ \rightarrow N ₂ O + 2 H ₂ O	
$\Delta G^0 = -306.3 \text{ kJ mol}^{-1}$	(Eq. 1.3-3)
$N_2O + 2 e^- + 2 H^+ \rightarrow N_2 + H_2O$	
$\Delta G^0 = -341.4 \text{ kJ mol}^{-1}$	(Eq. 1.3-4)
$2 \text{ NO}_3^- + 10 \text{ e}^- + 12 \text{ H}^+ \rightarrow \text{N}_2 + 6 \text{ H}_2\text{O}$	(Eq. 1.3-5)

In the first step, nitrate is reduced to nitrite by the dissimilatory nitrate reductase, which can be expressed as a membrane-bound reductase (NAR) or a reductase located in the periplasm (NAP) (Philippot, 2002). The membrane-bound nitrate reductase (NAR) consists of three subunits (*narGHI*): a molybdopterin cofactor catalytic subunit (*narG*), a soluble β subunit (*narH*), and a subunit containing two *b*-type haems (*narI*) (Philippot, 2002). The *narGHI* complex is organised in an operon with *narJ*, a gene required for the assembly of the subunits (Blasco *et al.*, 1998). The *narGHJI* operon is often associated with at least one *narK* encoding protein responsible for transmembrane transportation (Marger & Saier Jr, 1993). The

periplasmatic nitrate reductase (NAP) consists of two subunits: a molybdopterin cofactor catalytic subunit (*napA*) and a *c*-type cytochrome (*napB*) (Berks *et al.*, 1995). Also belonging to the operon is the *napC* gene. This gene encodes a membrane-anchored c-type tetra-haem cytochrome, which is supposed to be involved in electron transfer between quinols and the complex (Berks *et al.*, 1995).

The reduction of nitrite to nitric oxide is a key step in denitrification and distinguishes denitrifiers from other nitrate reducing bacteria (Zumft, 1997). There are two different nitrite reductases: a cytochrome cd_1 enzyme encoded by the *nirS* gene (cd₁NIR) and a copper-containing enzyme encoded by the *nirK* gene (Cu-NIR) (Throbäck *et al.*, 2004). Both enzymes are evolutionary unrelated and are different in terms of structure and the containing metal (Philippot, 2002). The soluble cd₁NIR is composed of two identical subunits, each containing a haem *c* and a haem d_1 (Gudat *et al.*, 1973). Haem d_1 enables the binding of nitrite and nitric oxide to its reduced form (Ward, 2015). The Cu-NIR consists of three identical subunits and each subunit contains a type I copper site and one type II copper site (Abraham *et al.*, 1993). They are connected via ligands, a cysteine-histidine bridge, for rapid electron transfer (Li *et al.*, 2015).

The nitric oxide reductase (NOR) catalyses the reduction of nitric oxide to nitrous oxide and it is composed of two subunits encoded by the genes *norC* and *norB* (Arai *et al.*, 1995). The *norC* gene encodes the membrane-anchored *c*-type cytochrome, while the *norB* gene encodes cytochrome *b* (Ward, 2015). There are three types of NOR reported: cNOR, qNOR and qCu_ANOR. The cNOR is an iron-containing enzyme (Hino *et al.*, 2010) and is present in many denitrifying bacteria (Zumft, 2005). The qNOR is usually found in bacteria that are of medical interests (Ward, 2015). It is a single-subunit resembling the NorB subunit in cNOR (Spiro, 2012). The hybrid qCu_ANOR consists of two subunits: the NorB and a membrane-bound subunit containing two copper atoms (Cu_A) (Ward, 2015). It was described in the gram positive *Bacillus azotoformans* (Suharti *et al.*, 2001).

The last step in the denitrification pathway is the reduction of nitrous oxide to elemental nitrogen. The nitrous oxide reductase (NOS) consists of two identical subunits containing eight copper atoms (SooHoo & Hollocher, 1991). They are

arranged as two conserved domains with copper centres, Cu_A and Cu_Z (Brown *et al.*, 2000). The Z-type Nos is encoded by the *nosZ* gene, which is generally linked to other *nos* genes (Spiro, 2012). A c-type Nos additionally consists of a C-terminal mono-haem cytochrome *c* domain and is characterised in Wolinella species (Kern & Simon, 2009).

There are many bacteria capable of denitrification. They are all aerobes with one exception (Shapleigh, 2013) and found throughout more than 50 genera (Zumft, 1997). Among them are *Pseudomonas*, *Beggiatoa*, *Geobacter*, *Rhodobacter*, *Thauera*, *Thiobacillus*, and *Azoarcus*. Studies on denitrifying communities is usually done using primers targeting the genes *nirS*, *nirK*, *norB* as well as *nosZ* (Scala & Kerkhof, 1999, Braker *et al.*, 2000, Braker & Tiedje, 2003, Heylen *et al.*, 2007). However, the nosZ gene is not always representative as some denitrifying bacteria lack this enzyme (Throbäck *et al.*, 2004).

Some bacteria such as *Beggiatoa* species are able to storage nitrate in vacuoles (McHatton et al., 1996). Beggiatoa are filamentous, gliding sulphur bacteria (Teske & Salman, 2014). They are chemolithoautotrophic and oxidise sulphide using nitrate as electron acceptor for sulphide oxidation in the absence of oxygen (Sweerts et al., 1990, Sayama et al., 2005, Kamp et al., 2006). In large marine Beggiatoa species the vacuoles can rise up to 90% of the cell volume with nitrate concentrations up to 160 mmol L⁻¹ (McHatton *et al.*, 1996). Freshwater *Beggiatoa* were shown to have smaller nitrate storing capacities or even lack vacuoles (Teske & Salman, 2014). They form dense, easily recognisable mats of filaments in the sediment-water interface separating the oxygen layer from the sulphidic subzone (Teske & Salman, 2014). In anoxic sediments, where nitrate is depleted, *Beggiatoa* do not form dense mats. They are gliding in the sediments to bridge the spacial separation of electron donors and acceptors (Mußmann et al., 2003, Preisler et al., 2007). The nitrate storage capacity of *Beggiatoa* is, therefore, an advantage over other bacteria since nitrate is taken up in times of substrate influxes into the upper sediment layer and is used as electron acceptor for sulphide oxidation in deeper layers (Mußmann et al., 2003).

1.4. The anammox process

The anaerobic ammonia oxidation process, shortly called the anammox process, is another possibility of bacterial ammonia degradation (Mulder *et al.*, 1995, Strous *et al.*, 1997). Ammonium is oxidised by chemolithoautotrophic bacteria in the presence of nitrite under strictly anoxic conditions via the intermediates nitric oxide (NO), hydroxylamine (NH₂OH) or hydrazine (N₂H₄) (Van De Graaf *et al.*, 1997, Strous *et al.*, 1999, Zekker *et al.*, 2015). The single anammox reaction, the nitritation reaction and the overall reactions are given in the following equations (Eq. 1.4-1 to 1.4-3) (Kartal *et al.*, 2010) with their respective Gibb's free energies (Op den Camp *et al.*, 2007):

(I) $NH_4^+ + NO_2^- \rightarrow N_2 + 2 H_2O$ $\Delta G^0 = -357 \text{ kJ mol}^{-1}$ (Eq. 1.4-1) (II) $NH_4^+ + 1.5 O_2 \rightarrow NO_2^- + 2 H^+ + H_2O$ $\Delta G^0 = -275 \text{ kJ mol}^{-1}$ (Eq. 1.4-2) $2 NH_4^+ + 1.5 O_2 \rightarrow N_2 + 2 H^+ + 3 H_2O$ (Eq. 1.4-3)

In comparison to the aerobic ammonium oxidation reaction, the anaerobic oxidation is almost equally energetically favourable (Mulder *et al.*, 1995). Since microorganisms usually live in communities, the nitrite required for the anammox reaction can be provided by aerobic ammonium-oxidising bacteria and archaea (Francis *et al.*, 2007). The anammox bacteria utilize CO₂ as their carbon source for growth using the acetyl coenzyme A pathway (Schouten *et al.*, 2004). Therefore, the equation 1.4-1 is often expressed as the following equation 1.4-4 (Kuenen, 2008):

So far, the molecular mechanism of anammox is proposed as follows by Kartal *et al.* (2011). In the first step nitrite is converted to nitric oxide by a nitrite reductase

(NIR). In the second step nitric oxide is combined with ammonium to form hydrazine by a hydrazine synthase (HZS). The hydrazine is subsequently converted to dinitrogen gas by a set of hydrazine dehydrogenases (HDH) that resemble the hydroxylamine reductases encoded by *hao* genes in aerobic ammonia oxidisers. The whole process is catalysed by several cytochrome c proteins.

Anammox bacteria are quite distinct from other bacteria as they share some features with all three domains of life, *Bacteria*, *Archaea*, and *Eukarya*. Their membrane lipids, called ladderanes, show ester-linked and ether-linked fatty acids as well as two different ring systems (Damsté *et al.*, 2002, Jetten *et al.*, 2003, Kuypers *et al.*, 2003, Damsté *et al.*, 2005). The ladderanes are very impermeable and assist the anammox process by keeping metabolites such as the toxic hydrazine within a unique cell compartment separated by intracytoplasmic membranes, called the anammoxosome (Damsté *et al.*, 2002). The anammoxosome is assumed to be organelle, where all catabolic processes are carried out (Lindsay *et al.*, 2001, van Niftrik *et al.*, 2008, Jetten *et al.*, 2009, Van Niftrik *et al.*, 2010).

The anammox process can reversibly be inhibited by dissolved oxygen concentrations higher than 0.5% air saturation as well as by organic carbon (Strous *et al.*, 1997). Complete and irreversible inhibition by dissolved oxygen is observed at 18% air saturation (Egli *et al.*, 2001). The oxidation process may also be inhibited by higher concentrations of more than 7.14 mmol NO₂⁻-N L⁻¹. Nitrite concentrations higher than 15 mmol L⁻¹ inhibited the growth of a *Brocadia* species almost completely (Carvajal-Arroyo *et al.*, 2013). Inhibition due to nitrite can be overcome with the addition of hydroxylamine or hydrazine (Strous *et al.*, 1999). Additionally, it was shown for *Brocadia* that elevated concentrations of the intermediates up to 3 mmol L⁻¹ may inhibit the anammox process (Carvajal-Arroyo *et al.*, 2013).

Bacterial species that are capable of ammonia oxidation belong to the *Planctomycetes* (Strous *et al.*, 1999). So far, the six genera *Candidatus* Brocadia (Kartal *et al.*, 2004), *Candidatus* Kuenenia (Schmid *et al.*, 2000), *Candidatus* Scalindua (Kuypers *et al.*, 2003), *Candidatus* Jettenia (Quan *et al.*, 2008), *Candidatus* Anammoxoglobus (Kartal *et al.*, 2007), and *Candidatus* Anammoxibacterium (Khramenkov *et al.*, 2013) have been proposed. The discovery of anammox bacteria

was first reported in the 1990's (Van de Graaf *et al.*, 1995, Strous *et al.*, 1999) and subsequent studies showed that these bacteria inhabit a wide range of environments, including wastewater treatment plants (Van de Graaf *et al.*, 1995, Jetten *et al.*, 2003), freshwater bodies (Schubert *et al.*, 2006, Smith *et al.*, 2015), and marine sediments (Schmid *et al.*, 2000, Kuypers *et al.*, 2003). In marine environments, it is assumed that at least 50% of the nitrogen is converted by the anammox process (Arrigo, 2004, Francis *et al.*, 2007) and it can be observed at low and at high temperatures as well as at high and at low salinities (Kartal *et al.*, 2010). The anammox process most likely takes place in oligotrophic systems with low oxygen concentrations and a surplus of ammonium (van Niftrik & Jetten, 2012).

Due to their capability of ammonia oxidation, anammox bacteria find application in wastewater treatment plants as an alternative to conventional techniques (Op den Camp *et al.*, 2006, Van der Star *et al.*, 2007, Kartal *et al.*, 2010). However, anammox bacteria are slow growing with generation times of about 10 to 12 days at 35°C (Kuenen, 2008). The slow growth and activity of anammox bacteria at temperatures below their optimum range of 30 to 40 °C limits wastewater treatment performance (Morales *et al.*, 2015).

1.5. Environmental impacts of nitrogen

During the last decades the supply of ionic (reactive) nitrogen species (ammonium and nitrogen oxides (NO_x)) has increased from anthropogenic sources to meet human's needs (Vitousek *et al.*, 1997, Galloway *et al.*, 2003, Erisman *et al.*, 2013). The cultivation of crops and vegetables enhances the biological nitrogen fixation to ammonium. Nitrogen containing fertilizers used in plant cultivation are mostly generated by the Haber-Bosch process, where additional elemental nitrogen is fixed. High ammonium and nitrate concentrations are responsible for acidification, eutrophication, and the loss of biodiversity in soils, lakes, streams, and coastal ecosystems (Dodds *et al.*, 2002, Smith, 2003, Conley *et al.*, 2009). Eutrophication causes the development and proliferation of primary producers (phytoplankton, algae, and macrophytes), which are responsible for the degradation of organic compounds leading to oxygen depletion in the aquatic systems. Hypoxic or anoxic conditions with

subsequent mortality of fishes and invertebrates in the freshwater systems are the result (Anderson *et al.*, 2002, Breitburg, 2002).

Furthermore, the combustion of fossil fuels leads to the production of nitrous oxide (N₂O) and nitric oxide (NO). Both nitrogen oxide species are greenhouse gases, promoting the global climate change and increasing ozone depletion. N₂O is as approximately 300 times stronger greenhouse gas than CO₂ (IPCC Climate Change, 2007) and has a residence time of about 100 years in the atmosphere (Galloway *et al.*, 2003). Furthermore, N₂O emissions also arise from nitrogen-containing fertilizers by soil bacteria (Tierling & Kuhlmann, 2018).

1.6. Health impacts of nitrogen species

Although, nitrogen is a vital component for all living beings, inorganic nitrogen compounds are also of public health concern (World Health Organization, 2004). Guideline values for nitrate and nitrite of 50 mg NO_3^{-} L⁻¹ and 0.1 mg NO_2^{-} L⁻¹ were introduced, respectively (TrinkwV, 2001). While the concentration of nitrate must not rise in the drinking water distribution system, the concentration of nitrate may increase to 0.1 mg NO_2^{-} L⁻¹. Ammonium is not assumed to be directly responsible causing health implications in humans but is regarded as faecal indicator. The guideline value for ammonium is 0.5 mg NH_4^+ L⁻¹ (TrinkwV, 2001).

The uptake of elevated nitrate and nitrite concentrations may elicit several health implications in humans (Cissé & Mao, 2008, Ward *et al.*, 2018). Nitrate has been mainly associated with methemoglobinemia in infants ("blue-baby syndrome") (Fan & Steinberg, 1996, Manassaram *et al.*, 2010, Shuval & Gruener, 2013). Nitrate is reduced to nitrite in the body, which is taken up into the bloodstream. There, nitrite oxidizes the Fe²⁺ present in haemoglobin to Fe³⁺, a molecule called methaemoglobin (Umbreit, 2007). In contrast to haemoglobin, which binds oxygen reversible, methaemoglobin is unable to transport oxygen through the bloodstream leading to asphyxia (Mansouri & Lurie, 1993). Due to low levels of red cell NADH-cytochrome b5 reductases in infants, methaemoglobin cannot be converted back to haemoglobin (Mansouri & Lurie, 1993). Moreover, studies suggest that nitrate in drinking water is

also associated with preterm delivery and low birth weight (Stayner *et al.*, 2017), and neural tube defects (Brender *et al.*, 2004).

Additionally, nitrate and nitrite were classified as probably cancerogenic (International Agency for Research on Cancer, 2010). Evidences of linkages between nitrate in drinking water and cancer were shown (Inoue-Choi *et al.*, 2012, Espejo-Herrera *et al.*, 2016, Jones *et al.*, 2016). Nitrate can be reduced to nitrite in the human body and nitrite subsequently reacts with certain amines to cancerogenic nitrosamines (Mirvish, 1977, Ward *et al.*, 2005). The risk of cancer due to the uptake of elevated nitrate and nitrite concentrations through food is assumed to be irrelevant as nitrosation (i.e. conversion of organic compounds to nitroso derivatives) is inhibited at high concentrations of ascorbic acid, polyphenols, and other compounds present in most vegetables (International Agency for Research on Cancer, 2010).

1.7. Biofilms

At aqueous interfaces to air and solid surfaces, microorganisms form flocs, mats, sludge, and biofilms (Wimpenny, 2000, Flemming & Wingender, 2010). Biofilms have been found in different shapes ranging from flat films to mushroom-like architectures (Tielen *et al.*, 2005). The biofilm matrix consists predominantly of water making up 90% to 97% and a conglomeration of a wide range of biopolymers known as extracellular polymeric substances (EPS), which are primarily produced by the microorganisms themselves (Sutherland, 2001, Flemming & Wingender, 2010). The EPS matrix differs also in its chemical and physical properties and is influenced by intrinsic (i.e. microorganisms) and extrinsic factors (i.e. physico-chemical environment) (Sutherland, 2001). Additionally, enzymes, lipids, polysaccharides, oligonucleotides, and other cell compounds resulting from cell lysis are constituents of the matrix (Flemming & Wingender, 2010).

Within these biofilms, microorganisms are protected against environmental stresses such as oxygen (De Beer *et al.*, 1994), disinfectants (Bridier *et al.*, 2011), surfactants (Simões *et al.*, 2006), and desiccation (Espinal *et al.*, 2012), since the biofilm matrix functions as a diffusion barrier (Flemming & Wingender, 2010). The EPS matrix additionally favours the horizontal gene transfer facilitating the exchange of

DNA between cells (Molin & Tolker-Nielsen, 2003), the 'communication' of bacterial cells termed quorum sensing process via small signal molecules (autoinducers) in the biofilm matrix (Nadell *et al.*, 2008), and the production of shuttle molecules used for extracellular electron transfer (Rabaey & Verstraete, 2005). In natural occurring biofilms microbial communities are established containing many different species (Wimpenny, 2000).

1.8. Bioelectrochemical systems

1.8.1. The setup of a bioelectrochemical system

A bioelectrochemical system (BES) is an electrochemical cell in which electrochemically active microorganisms form biofilms on either one of the electrodes or both and catalyse oxidation and/or reduction reactions (Larminie and Dicks 2000). A BES consists of a cell containing two electrodes, the anode and the cathode, connected via a circuit so that electrons can travel from the cathode to the anode through a voltmeter or potentiostat (Larminie and Dicks 2000). A schematic overview of a BES is shown in Figure 1.8.1-1. In the presence of attached microorganisms on the anode and the cathode, electrodes are referred to as bioanodes or biocathodes, respectively.

To build up a bioelectrochemical system all components utilized have to be chosen very well. The reactor design, the electrode material and their size in relevance to the size of the chamber, the establishment of biofilms, and living conditions for the microorganisms (e.g. nutrient sources, pH, temperature) determine the efficiency of the system (Call & Logan, 2008, Freguia *et al.*, 2008, Logan, 2010, Patil *et al.*, 2010, Wrighton *et al.*, 2010, Patil *et al.*, 2011, Guo *et al.*, 2015).

Figure 1.8.1-1 | Schematic overview of a bioelectrochemical system. Substrates (Sub) are oxidised or reduced by microorganisms living in biofilms. Abiotic reactions (e.g. oxidation/reduction of water) also take place. RE = reference electrode. CEM = cation exchange membrane.

Bioelectrical systems can be separated into microbial fuel cells and electrolysis cells (Rozendal *et al.*, 2008). In microbial fuel cells reactions occur spontaneously and energy can be obtained. In electrolysis cells reactions do not occur spontaneously and, therefore, energy has to be provided. Most of the described systems in literature are microbial fuel cells as gaining electricity from bioelectrochemical systems is one of the main aims (Logan *et al.*, 2006). Hydrogen formed in microbial electrolysis cells may be a sustainable energy carrier used as a clean fuel, for instance, in transportation systems (Schrope, 2001, Turner, 2004). However, the main aim regarding microbial electrolysis cells focuses on the removal of contaminants. Bioelectrical systems are mainly applied in wastewater treatment. It is often referred then to a bioremediation system, since waste or contaminants are removed from the electrolyte (Harnisch & Schröder, 2010).

The ability of microorganisms to form biofilms at aqueous surfaces can be used in bioelectrochemical systems. Electrochemically active microorganisms establish a biofilm community directly on the electrode catalysing various redox reactions (Du *et al.*, 2007). Homogenous biofilm communities established on electrodes provide lower current densities in BES than heterogeneous biofilm communities (Rabaey *et al.*, 2008). It is suggested that microbial interactions between species present in the biofilm lead towards an electrochemically competent biofilm (Rabaey *et al.*, 2007) that fits best the performance of the BES (Wrighton *et al.*, 2010).

1.8.2. Losses decreasing BES performance

The performance of a BES is decreased by electrode potential losses, ohmic losses and membrane pH gradients (Rozendal et al., 2008). The electrode potential losses can be divided into three kinds of losses: (I) activation losses, (II) bacterial metabolism losses, and (III) mass transport or concentration losses (Logan et al., 2006). Activation losses occur during the electron transfer from or to a compound at the electrode in imperfect catalysis of reduction/oxidation reactions (Rabaey et al., 2007). They are dependent on the electrode material (Noren & Hoffman, 2005) and have a great impact on voltage drop in cells working at low temperatures (Larminie et al., 2003). They can be lowered by increasing the electrode surface resulting in a lower current density, by increasing the operating temperature or through the establishment of an enriched biofilm featuring mediated electron transfer (Aelterman et al., 2006, Logan et al., 2006). The bacterial metabolic losses are related to the energy generation of bacteria by transporting electrons from a compound at a low potential through the electron transport chain to the final electron acceptor at a higher potential. The higher the metabolic energy yield for the microorganism is, the lower will be the maximum attainable voltage (Logan et al., 2006). Mass transport or concentration losses occur at high current densities due to limited mass transfer of chemical species by diffusion to the electrode surface leading to an increased ratio of the oxidised to the reduced species at the anode and a decreased ratio at the cathode (Larminie et al., 2003, Logan et al., 2006). It is assumed that mass transfer losses occur predominantly within the biofilm because the losses did not significantly decrease after increasing the recirculation (Aelterman et al., 2006). The mass transfer losses additionally describe the reduced substrate flux to the biofilm that may arise when the system is poorly mixed (Logan *et al.*, 2006).

Moreover, bioelectrical systems suffer from ohmic voltage losses. They describe the potential losses concerning the electrode and the ones related to the electrolyte (Rabaey & Verstraete, 2005) and increase linearly with increasing ohmic resistance and current density (Noren & Hoffman, 2005). The electrode ohmic losses imply the voltage loss caused by the movement of electrons through the electrodes, the electrical contacts and the wiring. The electrolyte ohmic losses are related to the movement of electrons through the electrolyte and the membrane (Rabaey & Verstraete, 2005). The electrolyte ohmic losses become considerable when electrolytes with low conductivity are applied (Rozendal *et al.*, 2008).

In BES, usually ion exchange membranes are used to ensure efficient transport of cations from one electrode to the other to avoid pH gradients in the compartments. However, the transport of different ions than protons and hydroxyl ions were often observed (Rozendal *et al.*, 2006, Kim *et al.*, 2007, Harnisch *et al.*, 2008). Loopfigurations of BES have been shown to overcome the problem of pH gradients because the electrolyte in the anode compartment (i.e. anolyte) is transferred to the cathode compartment (Freguia *et al.*, 2008, Virdis *et al.*, 2008).

1.8.3. The electron transfer

To catalyse redox reactions, electrons have to be extracellularly transferred between electrodes and the microorganisms. Up to now, different mechanisms were described. Most of them were investigated in anodic systems. It is suggested that the mechanisms of electron transfer from the anode to the microorganism differs from the mechanisms transferring electrons from the microorganism to the cathode (Strycharz *et al.*, 2011). It is also assumed that direct electron transfer may possibly be bidirectional (Rosenbaum *et al.*, 2011). However, it is not yet clarified whether electron transfer is possible from one microorganism to another within the biofilm.

In general, electrons can be transferred through immobilized structures (direct transfer) and through mobile components indirect transfer). For the direct electron transfer through an immobilized structure the microorganisms are in physical contact to the acceptor or donor (Gregory *et al.*, 2004, Pous *et al.*, 2014). The electrons are transferred from the insoluble donor to the microorganism and from the microorganism to the insoluble acceptor, respectively, via membrane associated redox proteins, such as c-type chromosomes (Rabaey *et al.*, 2007). Investigations of the electron transfer in *Geobacter sulfurreducens* revealed that c-type chromosomes as well as other outermembrane proteins such as OmpJ are involved in the reduction of Fe(III) oxides and

Mn(IV) oxides (Afkar *et al.*, 2005, Mehta *et al.*, 2005). Additionally, the electron transfer through highly conductive pili have been reported in *Geobacter sulfurreducens* (Reguera *et al.*, 2005). With pili, a certain distance can be bridged between the microorganism and the electrode.

Furthermore, extracellular electron transfer can occur without a direct contact between microorganisms and the electrode. This indirect transfer is achieved with the utilization of mobile components. Microorganisms are able to produce soluble molecules that are used as redox mediators. Several compounds have been studied in bioelectrical systems as possible mediators such as hydrogen (Rabaey *et al.*, 2008) or pyocyanin and phenazine in *Pseudomonas aeruginosa*, which significantly enhance electron transfer (Rabaey *et al.*, 2004, Rabaey *et al.*, 2005). Microorganisms are also capable of using redox mediators which are produced by other species (Rabaey *et al.*, 2004). Additionally, artificial substances such as neutral red can be added to enhance electron transfer (Park & Zeikus, 2000).

1.9. Community analysis

To investigate main key players in biodegradation processes, different fingerprinting techniques targeting evolutionary conserved marker genes (e.g. 16S rRNA genes) have been developing. Specified regions of bacterial 16S rRNA are amplified by polymerase chain reactions (PCR) and analysed using electrophoresis procedures, such as denaturing gradient gel electrophoresis (DGGE), terminal restriction length polymorphism (T-RFLP) or next-generation sequencing techniques.

The DGGE procedure for the characterization of complex bacterial communities was first reported in 1993 (Muyzer *et al.*, 1993). In this study species that represent only 1% of the total communities have been identified in microbial mats and wastewater treatment reactors. Following in 1997, the T-RFLP technique was introduced (Liu *et al.*, 1997) identifying up to 72 unique terminal restriction fragment lengths in sludge, aquifer sand, and termite gut. Digital data output of the separation patterns facilitated the analysis of complex environmental samples. Both techniques, DGGE and T-RFLP, were subsequently used to investigate microbial community compositions and their changes in e.g. agricultural soils (Lukow *et al.*, 2000, Smalla *et*

al., 2007, Wallis *et al.*, 2010), forest soils (Bäckman *et al.*, 2003, Rich *et al.*, 2003, Agnelli *et al.*, 2004, Kemnitz *et al.*, 2007), marine sediments (Wieringa *et al.*, 2000, Braker *et al.*, 2001, Webster *et al.*, 2007, Schauer *et al.*, 2010), wastewater (Boon *et al.*, 2002, LaPara *et al.*, 2002, Siripong & Rittmann, 2007, Lefebvre *et al.*, 2010), and aquacultures (Sandaa *et al.*, 2003, Michaud *et al.*, 2009, Wietz *et al.*, 2009, Gregory *et al.*, 2012).

Environmental samples, however, are very complex and can consist of millions of different species though only a small number of species are dominant in these community compositions (Curtis *et al.*, 2002, Sogin *et al.*, 2006). High-throughput sequencing methods have been developed and became the method of choice for the characterization of complex community structures as sequencing services are meanwhile available at relative low costs (Sogin *et al.*, 2006, Dong *et al.*, 2017). The two commonly used high-throughput sequencing systems are Roche 454 pyrosequencing and the Illumina MiSeq platform, whereas the Illumina system became the commonly used platform of next-generation sequencing methods in the last years. Extracted DNA from diverse environmental habitats is amplified with PCR using primers that target conserved regions of prokaryotic 16S rRNA genes with lengths of ~400 bp (Dong *et al.*, 2017). The amplicons in each sample are subsequently tagged with "barcode" sequences specific for each sample. After pooling the samples, all amplicons are sequenced in a single run.

For data processing of Illumina sequencing results many software programs have been developing such as MetaAmp (Dong *et al.*, 2017) and mothur (Kozich *et al.*, 2013), or they can be analysed in the R environment (R Core Team, 2018) using additional analysis packages. With the web-based MetaAmp software, Illumina fastaor fastq-files are uploaded online for analysis. Profonde expertise or training is not required. OTU tables are generated based on the large SILVA databank (Quast *et al.*, 2012). Despite choosing parameter settings in the beginning for the analysis, however, direct influence on the analysis itself is impeded. The Mothur software provides the possibility to monitor calculations done during data processing and to change parameter settings. Unfortunately, Mothur generates large data files and the analysis of large data sets arising from highly complex samples are not doable on home computers or notebooks. Analysis in the R environment, on the contrary, allows direct influence on the calculations and even larger data sets can be evaluated without the need of additional servers. OTU taxonomy and diversities of many complex samples are analysed and displayed using additional R packages such as phyloseq (McMurdie & Holmes, 2013) and stringr (Wickham, 2019). Since different databanks can be chosen for the taxonomical classification, one must keep in mind that the classification heavily depends on the underlying databank (Dong *et al.*, 2017).

1.10. Aims of the study

During the last few decades, environmental problems concerning nitrogen pollution have become evident (Galloway *et al.*, 2003, Camargo & Alonso, 2006, Winiwarter *et al.*, 2015, Boyle, 2017). This thesis addresses fundamental research using bioelectrochemical systems as well as aquaponic systems to provide knowledge for problem-solving approaches in drinking water production, wastewater treatment and food production.

Aquaponic systems combine aquaculture (fish cultivation) and hydroponic systems (vegetable and fruit production) to a recirculating system using the ammonium enriched effluent from the fish tank as fertilizer for the plants in the grow beds. Residual ammonium, which is toxic to fish in high concentration is converted by microorganism into less toxic nitrate. Studying microbial communities in an aquaponic system is rarely done so far. Until now, it is not known, which microorganisms are primarily responsible for the oxidation of toxic ammonium in the system. However, understanding the fundamental principles of such a system can help to improve the overall outcome of sustainable food production. In this thesis, research is based on the microbial community composition in the sump of a backyard aquaponic system to reveal the key microorganisms responsible for ammonium oxidation. Additionally, chemical species will be measured to monitor the efficiency of the system.

In Germany, about 51% of groundwater bodies are contaminated with nitrate due to excessive fertilization on agricultural lands (European Commission, 2018). So far, process steps in drinking water production systems for complete nitrate removal of groundwater water are not implemented yet. Here, batch bioelectrochemical systems (BES) are used to remove nitrate by means of denitrification at the cathode. A largescale BES could be added as a step in the existing drinking water production process. Until now, however, the key microorganisms and removal processes at the cathode in BES are not clear. Furthermore, the influence of time-depending potential settings has not been investigated. In this study, the microbial communities at the cathode are studied using continuous and intermittent potential settings.

Wastewater treatment plants deal with highly ammonium concentrated municipal sewage, most likely due to low household drinking water usage. Therefore, BES are used in this study to remove ammonium by combining nitrification and the anammox process at the anode. It is the first attempt to cultivate nitrifying bacteria and anammox bacteria in a BES. Furthermore, little is known about oxygen evolution rates in BES. Oxygen is essential for nitrification, however, the anammox process is inhibited by oxygen. Here, the focus lies on a controlled oxygen production at the anode to ensure constant oxygen concentration for nitrifying bacteria without inhibiting anammox bacteria. So far, using the anammox process in a BES has not been investigated.

Next-generation sequencing techniques meanwhile became quite cheap and reveal detailed information of the whole microbial community composition. However, it takes several days until results are provided by a company. For monitoring systems including the presence of specific bacterial species responsible for the compound degradation of interest, the knowledge of the whole community composition is not even necessary. Here, an easy and rapid method known as restriction fragment length polymorphism (RFLP) for the detection of specific strains within a few days will be tested using capillary electrophoresis for analysis. To our knowledge, this is the first report of carrying out an established method on a regular and already available device such as a capillary electrophoresis.

2. Comammox *Nitrospira* perform ammonia transformation in a backyard aquaponic system

The aquaponic system was build, maintained and sampled by Dr. Rainer U. Meckenstock. The statistical analysis was mainly performed by Dr. Alexander J. Probst. Dr. Huber Müller analysed the metagenomic data. All other work was conducted by Julia Heise. The paper was submitted to the journal Current Microbiology on the 30th of June 2020.

2.1. Abstract

Aquaponic systems are sustainable solutions for food production combining fish growth (aquaculture) and production of vegetables (hydroponic) in one recirculating system. In aquaponics, ammonium-enriched wastewater from fish in the aquaculture serves as fertilizer for the plants in the hydroponics, while the ammonium-depleted and detoxified water flows back to the aquaculture. To investigate bacterial nitrogen cycling in such an aquaponic system, measurements of nitrogen species was coupled with time-resolved 16R rRNA gene profiling and the functional capacity of organisms was studied using metagenomics. The aquaponic system was consistently removing ammonia and nitrite below 23 µM and 19 µM, and nitrate to steady state concentrations of about 0.5 mM. 16S rRNA gene amplicon sequencing of sediments exposed in the pump sump revealed that typical signatures of canonical ammoniaoxidising microorganisms were below detection limit. However, one of the most abundant operational taxonomic units (OTU) was classified as a member of the genus Nitrospira, for which we also recovered genome scaffolds encoding the only ammonia monooxygenase genes identified in the metagenome. This study indicates that even in highly efficient aquaponic systems, comammox Nitrospira rather than canonical nitrifying organisms can be responsible for complete nitrification at low steady-state ammonia concentrations.

2.2. Introduction

Over the last 50 years, aquaponic systems became a promising biotechnology for sustainable food production. In aquaponics, aquaculture (fish cultivation) and hydroponics (vegetables production) are integrated into one water-circulating system. One of the main issues in aquaculture is the accumulation of ammonium due to decomposed fish food and fish excrements. Depending on the fish species and the exposure time (USEPA, 2013), ammonia is chronically toxic to fish in concentrations higher than 1.9 mg L⁻¹ total ammonia nitrogen at pH 7 and 20 °C. Therefore, the water of aquaculture systems must be replaced regularly or requires cleaning. Aquaponic systems solve the issue of regeneration by pumping water from the fish tank into the grow beds of the hydroponic part, where it serves as fertilizer for vegetables, fruits, or herbs. Plants can use both ammonium and nitrate as nitrogen sources (Xu et al., 2012). However, the essential reaction in the aquaponic system is the nitrification, during which toxic ammonium is oxidised to less harmful nitrate (Stormer et al., 1996, Alonso & Camargo, 2003). Since the complete oxidation of ammonia to nitrate is an essential step for the effective operation in an aquaponic system, the nitrogen turnover in such a system was elucidated in this study.

Until 2015, nitrification was assumed to be exclusively performed in a two-step process carried out by two phylogenetically distinct bacterial lineages. In the first step, ammonium is oxidised to nitrite via hydroxylamine by e.g. *Nitrosomonas*. In the second step, nitrite is oxidised to nitrate by e.g. *Nitrobacter* or *Nitrospira*. This process was discovered in marine (Foesel *et al.*, 2007, Kuhn *et al.*, 2010) and freshwater (Tokuyama *et al.*, 2004, Sugita *et al.*, 2005, Itoi *et al.*, 2006, Pedersen *et al.*, 2009) aquaponic or aquaculture systems by enrichment techniques, fluorescence *in situ* hybridization, or sequence analyses.

In 2015, Daims *et al.* (2015) and van Kessel *et al.* (2015) discovered that nitrification can also be carried out by one single organism affiliated to the genus *Nitrospira*. By showing that this bacterium was capable of oxidising ammonium fully to nitrate, a process called 'comammox' (<u>complete ammonia ox</u>idation), the authors overturned the 100-yr old lasting paradigm that nitrification can only be performed by two distinct groups of organisms. Since there discovery, comammox *Nitrospira* have

been frequently detected in aquifers (Fowler *et al.*, 2018), drinking water systems (Pinto *et al.*, 2016), wastewater treatment plants (Pjevac *et al.*, 2017), as well as in recirculating aquaculture systems (Bartelme *et al.*, 2017). Furthermore, 16S rRNA gene analysis of community compositions in different compartments of an aquaponic system showed that nitrification took place on a biofilter located behind the fish tank retaining large particle matter (Schmautz *et al.*, 2017). Since *Nitrospira* was among the most abundant species and other nitrifying bacteria seemed not to be present in the biofilm community of the aquaponic system, the authors assumed that the nitrification process was carried out by *Nitrospira* alone.

So far, all known comammox *Nitrospira* belong to the sublineage II of *Nitrospira* (Daims *et al.*, 2015, van Kessel *et al.*, 2015, Pinto *et al.*, 2016), which comprises comammox *Nitrospira* species and nitrite-oxidising (canonical) *Nitrospira* species (Daims *et al.*, 2001, Koch *et al.*, 2015). Additionally, comammox and canonical *Nitrospira* form mixed phylogenetic clades within this sublineage (Daims *et al.*, 2015, van Kessel *et al.*, 2015, Pinto *et al.*, 2016), suggesting that they cannot be distinguished based on 16S rRNA sequences alone.

Here, we elucidate the type of microbial nitrogen metabolism in an aquaponic system and how the microbial communities develop over time. A combination of 16S rRNA gene sequencing and metagenomic analysis is employed for distinguishing different types of nitrification and to follow the respective functional clades.

2.3. Experimental procedure

2.3.1. The aquaponic system

The aquaponic system was build and continuously maintained by Dr. Rainer U. Meckenstock. The fish tank was built from a regular 1200 L plastic intermediate bulk container (IBC) and filled with 1000 L tap water. The hydroponic part consisted of two grow beds, each 100 x 120 cm in size and filled with gravel up to 30 cm in height. The overflow water from the fish tank flew into the grow beds by gravity and was treated by a biofilter made of gauze with 1 mm mesh size to remove larger particles. The particle filter was cleaned daily. The water of the grow beds was periodically released into a sump by a hydraulic siphon system. From there, it was continuously pumped back into the fish tank with an adjusted flow rate of 800 L h⁻¹. The setup of the aquaponic system is schematically shown in Figure 2.3.1-1.

Figure 2.3.1-1 | Schematic view of the backyard aquaponic system (not to scale). The test sediments used for analysing the microbial community were exposed in small cylinders in the sump (hair curlers).

In the beginning of the operation carps (Cyprinus carpio) and wels catfish (Silurus glanis) were grown. After a fish disease killing all the fishes, the water in the aquaponic system was completely exchanged and all system parts cleaned. Only carps were grown then resulting in 15 individuals of 400 g weight each at the end of the experiment. Lettuce, tomatoes, cucumber, and strawberries were grown in the grow beds from May to October.

2.3.2. Test sediments and sampling

Quartz sand (1 mm grain size) was autoclaved for 20 min at 120 °C. Regular plastic hair curlers (6.5 cm in length) with porous walls (1x0.5 mm pore size) were filled with approximately 10 g of the sand and closed with parafilm at both ends. The test sediments were incubated in the aquaponic sump over 17 months. One curler was regularly taken for amplicon sequencing. For metagenome sequencing, DNA was extracted from one test sediment taken at the last day of incubation. Water was sampled regularly to check the system performance and analyses of nitrogen species concentrations (cf. section 2.3.3). The pH was determined on-site using test stripes (pH 4.5-10) [Carl Roth GmbH, Karlsruhe, Germany].

2.3.3. Sample preparation and analyses using ion chromatography

To analyse the concentrations of nitrate, nitrite, and ammonium water samples were regularly taken from the aquaponic sump and triplicates were analysed by ion chromatography. The samples were prepared by 1:2 dilution with 0.01 mM potassium buffer for the analysis of anions and with 20 mM methyl sulfonic acid (70% v/v) (Merck KGaA, Darmstadt, Germany) for the analysis of cations. All samples were centrifuged for 15 min at 16,000 x g to precipitate solids. 200 μ L of the supernatants were diluted 1:5 with ultrapure water (18.2 μ S, Merck Millipore System, Merck KGaA, Darmstadt, Germany). The samples were stored at -20 °C until analysis.

Anions and cations were measured with an ion chromatograph (Thermo Fisher Scientific, Dreieich, Germany) equipped with a Dionex[™] IonPac[™] AS23-4µm column and an AERS 500 suppressor (2 mm) for the measurement of anions using 0.8 mM NaHCO₃/4.5 mM Na₂CO₃ (Thermo Fisher Scientific, Dreieich, Germany) as eluent at a flow rate of 0.25 mL min⁻¹ at 7 mA. Ammonium was measured with a Dionex[™] IonPac[™] CS12 A column and a CERS 500 suppressor (2 mm) using 20 mM methyl sulfonic acid (70% v/v) (Merck KGaA, Darmstadt, Germany) as eluent at a flow rate of 0.25 mL min⁻¹ at 15 mA.

The detection limit was calculated based on the calibration method according to DIN EN 32645. Non-equidistant calibration points (10, 20, 50, 100, 200 μ M) were used.

2.3.4. DNA extraction of aquaponic samples

DNA was extracted using the FastDNA[™] SPIN Kit for Soil [MP Biomedicals, Heidelberg, Germany]. 460-480 mg of sand (wet weight) were taken and treated as described in the manufacturers' instructions. For the cell lysis the bead-beating system Precellys24 tissue homogenizer [Bertin Instruments, Montigny-le-Bretonneux, France] was used for two times at 65,000 rpm for 30 s each turn. The DNA samples were stored at -20 °C until further usage.

2.3.5. Preparation of 16S rRNA gene amplicon library

The preparation of the amplicon library was adapted from the Illumina 16S sequencing library preparation guide (part no. 15044223 Rev. B). The primers Pro341F/Pro805R (Table 2.3.5-1) (Takahashi *et al.*, 2014) targeting the V3-V4 region of 16S rRNA genes of bacteria and archaea were applied to get 250 bp reads lengths. They were combined with the Illumina overhang adapters [Eurofins Genomics, Ebersberg, Germany].

Table 2.3.5-1 | Primer set used for amplification of 16S rRNA genes for sequencing. The primer sequences (underlined) are shown inclusively the Illumina barcode adapter sequences.

Primer	Sequence
Pro341F	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG <u>CCTACGGGNBGCASC</u> <u>AG</u>
Pro805R	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG <u>GACTACNVGGGTAT</u> <u>CTAATCC</u>

For the first stage PCR, 2 μ L of extracted DNA was mixed with 1X KAPA HiFi Hot Start Ready Mix [Roche, Basel, Switzerland], 0.25 μ mol L⁻¹ of each the forward and the reverse primers including the Illumina overhang adapters, and nuclease-free water [Qiagen, Hilden, Germany] to a final reaction volume of 25 μ L. Duplicates were
prepared for each sample and pooled after the PCR. The PCR amplification was carried out with an initial denaturation step at 94 °C for 5 min followed by 30 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, and extension at 70 °C for 1 min, and a final extension at 70 °C for 5 min.

The PCR amplicons were purified using MagSi-NGS^{PREP} Plus magnetic beads [Steinbrenner, Wiesenbach, Germany] by thoroughly mixing 32 μ L of magnetic beads with 40 μ L of samples and following the PCR clean-up instructions given in the Illumina 16S metagenomic sequencing library preparation guide with the exception that the beads were resuspended in 42.5 μ L of elution buffer EB [Qiagen, Hilden, Germany]. 40 μ L of the supernatants were then taken for further analyses.

The index PCR was performed using the Nextera XT DNA Library Preparation Kit v2 Set D (FC-131-2004) from Illumina [Munich, Germany]. The PCR and the second PCR clean-up were performed as described in the Illumina 16S metagenomic sequencing library preparation guide.

DNA concentrations were measured with a Qubit fluorometer using the Qubit[™] dsDNA HS Assay Kit [ThermoFisher Scientific, Dreieich, Germany]. The samples were normalized to a concentration of 2 ng µL⁻¹ and 5 µL of all samples were combined into one ready-to-load sample, which was analysed by GATC Biotech AG [Konstanz, Germany] on an Illumina Miseq platform. The 16S rRNA gene sequence reads are deposited in the NCBI's nr database as SUB5504898 in the bioproject PRJNA534201.

2.3.6. Analysing 16S rRNA gene sequencing data

The 16S rRNA sequences were analysed as paired-end run using the MetaAmp Version 2.0 software (Dong et al., 2017). The settings were: similarity cutoff of 0.97, minimum overlap of 35 bp, no mismatches in the overlap region, no differences in primer sequences, max. one expected error and a trim amplicon length of 350 bp. The alignment of reads was conducted using the SILVA 128 database.

Statistical analyses were carried out using the R code described in (Weinmaier et al., 2015). For multivariate statistics, data were rarefied (to the lowest number of sequences in the samples) and a Bray-Curtis distance was calculated. In order to

account for rarefication biases, we repeated this procedure 100 times and averaged the distance across these iterations. Alpha diversity was determined using the Shannon-Wiener-Index. Principle coordinate analysis (PCoA) was used to display the beta diversity of the samples. Relationships between OTUs and environmental factors (time, pH, nitrate, ammonia, sulphate, chloride, sodium, magnesium, and calcium) were calculated using PERMANOVA (Adonis testing).

Identification of OTUs that significantly correlated with time in relative abundance, were selected by applying a Pearson correlation. Only OTUs with a p-value < 0.001 are reported in the manuscript.

2.3.7. Metagenomic sequencing and analysis

For the metagenome sequencing, 390 ng of DNA were extracted from the sand sample on day 508. Library preparation and Illumina HiSeq sequencing of paired-end 150-bps reads were done by GATC Biotech AG (Konstanz, Germany). Raw reads obtained from GATC Biotech were trimmed and quality filtered using bbduk (http://jgi.doe.gov/data-and-tools/bbtools/) and SICKLE version 1.21 (https://github.com/najoshi/sickle). The processed reads were assembled and scaffolded using metaSPADES version 3.10.1 (Nurk et al., 2017). For scaffolds longer than 1 kb genes were predicted using prodigal (Hyatt et al., 2010) and diamond blastp (Buchfink et al., 2015) was used to annotate the genes against the Unifref100 database (Suzek et al., 2014), which contained taxonomy information from UniProt and the NCBI taxonomy database.

Databases of 100 amino acid sequences each for ammonia monooxygenase subunit A (amoA), subunit B (amoB), and subunit C (amoC) and the hydroxylamine reductase were created from highly identical sequences derived from NCBI's nr database. The sequences were aligned using MUSCLE (Edgar, 2004) and maximum likelihood phylogenetic trees were constructed based on the JTT matrix-based model (Jones et al., 1992) using the MEGA7 software (Kumar et al., 2016) by applying default settings.

2.3.8. Quantification of comammox Nitrospira using qPCR

The concentration of comammox *Nitrospira* in the aquaponic system were measured with quantitative PCR (qPCR) using the primer sets reported by Pjevac *et al.* (2017) for comammox Nitrospira clade A and clade B (Table 2.3.8-1). The primers were purchased from Eurofins Genomics [Ebersberg, Germany].

		Name	Sequence
Clade A	Forward primer	comaA-244F	TAYAAYTGGGTSAAYTA
	Reverse primer	comaA-659R	ARATCATSGTGCTRTG
Clade B	Forward primer	comaB-244F	TAYTTCTGGACRTTYTA
	Reverse primer	comaB-659R	ARATCCARACDGTGTG

Table 2.3.8-1 | qPCR primer sets used for quantification of comammox *Nitrospira*.

Standards for quantification of comammox *Nitrospira* in qPCR were obtained from 16S rRNA sequences lodged by Pjevac *et al.* (2017) derived in the present study in NCBI's nr database (NZ_LN885086.1 for *comaA* and KY606428.1 for *comaB*) using the primers mentioned above. The standards were purchased from IDT Integrated DNA Technologies [Leuven, Belgium]. They were prepared in gene copies μ L⁻¹ as serial dilutions in nuclease-free water ranging from 10⁶ to 10¹ gene copies μ L⁻¹.

The qPCR mix was prepared using the SsoFast[™] EvaGreen[®] supermix [Bio-Rad Laboratories, Munich, Germany] and following the manufacturers' instructions (Table 2.3.8-2). The thermal profile used for quantification is shown in Table 2.3.8-2. A subsequent melting curve was conducted from 60 °C to 96 °C with 0.5 °C per second.

	Stock conc. Final conc.		Per reaction				
DNA template	-		- 5 µL				
Nuclease-free water	-		- 3 µL				
SsoFast [™] EvaGreen [®]	10X	1	X 10 μL				
Forward primer	100 µmol L ⁻¹	0.5 µmol L	- ⁻¹ 1μL				
Reverse primer	100 µmol L-1	0.5 µmol L	1 1 μL				

Table 2.3.8-2 | gPCR mix for the quantification of comammox Nitrospira.

Temperature	Time	_
95 °C	3 min	
95 °C	30 s]
52 °C	45 s	
72 °C	1 min	40 Cycles
70 °C	5 min	J
4 °C	hold	_

Table 2.3.8-3 | Thermal profile used for qPCR.

All samples were measured in duplicates. Nuclease-free water was purchased from Promega GmbH [Mannheim, Germany]. The qPCR was performed in the thermal cycler CFX96TM real-time system [Bio-Rad Laboratories, Munich, Germany]. Analyses of samples were done using the attended software CFX-Manager 3.0. The raw qPCR data are shown in the appendix in Table 2.5.4-3 (*Nitrospira* clade A) and Table 2.5.4-4 (*Nitrospira* clade B).

2.4. Results

2.4.1. Nitrogen species in the aquaponic system

The aquaponic system efficiently removed nitrogen from the water. Only nitrate was measurable in low concentrations up to 1.1 mM in the sump of the aquaponic system at the end of the system operation (Figure 2.4.1-1).

Figure 2.4.1-1 | Concentrations of nitrate (squares) and pH (circles) in the aquaponic system from May 2016 to October 2017. Concentrations of nitrite and ammonium were below 23 μ M and 19 μ M, respectively, throughout the monitoring time.

Ammonium and nitrite concentrations were always below 23 μ M and 19 μ M, respectively, indicating that both ammonium and nitrate were taken up by the plants and residual ammonium was completely oxidised by nitrifying microorganisms. In April 2017, the concentration of nitrate raised to 0.6 mM due to the starting metabolism of the fish resulting in a higher nitrogen load of the water. When seedlings were planted in May, nitrate and potentially ammonium were increasingly taken up by the plants leading to a decrease of nitrate concentrations to 0.1 mM in June 2017. The nitrate concentrations increased again from June onwards to 1.1 mM at the end of the operation in October 2017. The absence of ammonium in all samples indicated that a

nitrifying microbial community was established in the aquaponic system. The pH stayed constant between 6.8 and 7 and was not adjusted.

2.4.2. Microbial diversity

Sequencing of 16S rRNA genes revealed a highly diverse community structure in the aquaponic system. A total of 40 bacterial phyla were identified, out of which 15 made up 95.4% of the total microbial community. The most dominant phyla in the aquaponic system were Proteobacteria, Bacteroidetes, Verrucomicrobia, Acidobacteria, Actinobacteria, and Nitrospira (Figure 2.4.2-1). The three most abundant OTUs classified on family level at the end of the operation of the aquaponic system (day 508) were Verrucomicrobiaceae (4.3%), Nitrospiraceae (3.8%), and Comamonadaceae (2.8%), which belong to the phylum Proteobacteria.

Figure 2.4.2-1 | Relative abundances of taxonomic phyla in the aquaponic system based on 16S rRNA gene sequencing. Taxonomy was sorted based on the total reads of the sample "day 508". Please consider the repetition of colours. The water change was performed on day 293.

In the highly diverse samples, the 100 most abundant genera make up almost 50% of the total community at the end of the operation of the aquaponic system (Figure 3). After a water change on day 293, unclassified *Verrucomicrobia*, unclassified *Chloroplasts*, as well as *Nitrospira*, *Aquabacterium*, and *Arenimonas* were among the

most dominant genera based on OTUs. The dominant OTU classified as *Nitrospira* was found in all samples after the water change. The classical genus of ammonia oxidisers, *Nitrosomonas*, was only found in very low relative abundance (0.03%) suggesting that the detected *Nitrospira* were fully oxidising ammonium to nitrate similar to the previously found *Candidatus* Nitrospira inopinata (Daims *et al.*, 2015, van Kessel *et al.*, 2015).

The microbial diversity in the aquaponic system was described using the Shannon index H_s (Figure 2.4.2-2). During the first year of operation, the diversity was increasing over time from 4.74 (day 9) to 6.30 (day 307). During the second year the Shannon index stagnated between 6.27 and 6.39 indicating a stabilization of the microbial diversity on a very high diversity level. A total water exchange was performed on day 293.

Figure 2.4.2-2 | Shannon indices as measure for microbial alpha diversity calculated from OTU abundances at different time points.

Principal coordinate analysis of the relative abundances of OTUs showed a distinct shift in the microbial community composition over time (Figure 2.4.2-3). Samples taken in the beginning of the operation in spring 2016 (day 9 and day 13) differed significantly from the samples taken at the end of summer (day 102 and day

115). After the change of water in spring 2017 (day 293), the microbial community composition deviated again showing a precedent shift in the winter period. In the last half of the year of operation, the community composition seemed to become more stable and shifted only slightly with seasons.

Figure 2.4.2-3 | Principal coordinate analysis diagram showing the beta diversity of OTUs in the microbial community at different sampling days. Principal coordinate analysis axis 1 and axis 2 explained 44.2% and 22.5% of the total variance in the community, respectively.

As indicated in the principal coordinate analysis, time had a substantial impact on the microbial community composition (PERMANOVA p-value 0.001). Interestingly, no other measured parameter showed a significant association with the observed microbiome structure. OTUs classified as members of the genera *Nitrospira*, *Acidobacteria*, *Sphingobacteria* and *Cytophagia* were less abundant or not even detectable in the beginning and increased continuously during the operation time of the aquaponic system (Figure 2.4.2-4). Other genera, mainly belonging to the *Alphaproteobacteria*, decreased in abundances over time. However, even after one and a half years of operation a steady state community had not been reached according to the PERMANOVA test.

Figure 2.4.2-4 | Correlation of OTUs with the factor time. Relative abundances of 50 OTUs are shown in each panel that changed either most positively (A) or most negatively (B) with time. Note the differences in scales.

2.4.3. Metagenome analyses

Metagenome sequencing was performed from the samples taken at the last sampling day (day 508) to investigate the metabolism of the key players in ammonia oxidation. The assembled metagenome showed that the ammonia monooxygenases genes *amoA*, *amoB*, and *amoC* were only found on scaffolds classified as *Nitrospira*. The ammonia monooxygenase subunits *amoA* (Figure 2.4.3-1), *amoB* (Figure 2.4.3-2), and *amoC* (Figure 2.4.3-3) showed highly identical amino acid sequences to those obtained from reference sequences of comammox *Nitrospira nitrificans* (Table 2.4.3-1). The sequences of amino acids showed highest identities (98% for *amo* subunits and 96% for hydroxylamine reductase) with comammox *Nitrospira* species found on a rapid sand filter and a household sand filter (Wang *et al.*, 2017, Palomo *et*

al., 2018). Two further scaffolds contained *amoA* and *amoC* genes, respectively (Table 2.5.4-1).

amoA, uncultured betaproteobacteria
OQW38018 mmo/amoA, drinking water Nitrospira sp.
WP 087474114 mmolamoA, Nitrospira cf. moscoviensis
pmolamo, uncultured rice field soil/floodwater bacteria
AFL65358 pmoA, uncultured rice field soil bacterium
pmoA, uncultured wetland bacteria
WP 062484767 mmo/amoA, Candidatus Nitrospira inopinata
WP 086426537 mmo/amoA, Nitrospira cf. moscoviensis
AEJ33965 pmo, waste water treatment plant enrichment culture bacterium
WP 090742150 mmolamoA, Candidatus Nitrospira nitrosa
OYT21943 mmolamoA, nutrient removal reactor Nitrospira sp.
AEJ33966 pmo, waste water treatment plant enrichment culture bacterium
CAZ15803 pmoA, uncultured soil bacterium
AAL87427 amo-like, uncultured forest soil bacterium
BAE16354 amo-like, uncultured rice field floodwater bacterium
AAK51664 amo-like, uncultured forest soil bacterium
WP 090900649 mmo/amoA, Candidatus Nitrospira nitrificans
— ALP31924 pmo, uncultured sea sediment alphaproteobacterium
ABC86671 pmo, uncultured lake sediment alphaproteobacterium
NODE 8879 amoA
<i>pmoA</i> , unculatured soil bacteria
<i>pmoA</i> , rapid sand filter backwash water <i>Crenothrix polystora</i>
moA, rapid sand filter backwash water Crenothrix polystora
- CBI62714 mmo, uncultured wetland bacterium
 AGS41494 pmoA, uncultured cold methane seapages bacterium
CBI62698 mmo, uncultured wetland bacterium
CBI62596 mmo, uncultured wetland bacterium
PLY29908 mmo/amo4 ranid sand filter Nitrospire sp
A A 706172 amo uncultured river plain aquifer hacterium
- CBI62682 mmo, uncultured wetland bacterium
AAZ06204 amo. uncultured river plain aquifer bacterium
- CBI62700 mmo, uncultured wetland bacterium
 AAZ06173 amo/pmo, uncultured river plain aquifer bacterium
AAZ06149 amo-like, uncultured river plain aquifer bacterium
AAZ06171 amo, uncultured river plain aquifer bacterium
CAD92078 amo/pmoA, uncultured drinking water bacterium

0.050

Figure 2.4.3-1 | Phylogenetic tree of *amoA* gene sequences using the maximum likelihood method based on the JTT matrix-based model (Jones *et al.*, 1992). *Amo*: ammonia monooxygenase. *Mmo*: methane monooxygenase. *Pmo*: particulate methane monooxygenase. Scale bar indicates estimated number of substitutions per site.

0.10

Figure 2.4.3-2 | Phylogenetic tree of *amoB* gene sequences using the maximum likelihood method based on the JTT matrix-based model (Jones *et al.*, 1992). *Amo*: ammonia monooxygenase. *Mmo*: methane monooxygenase. Scale bar indicates estimated number of substitutions per site.

0.050

Figure 2.4.3-3 | Phylogenetic tree of *amoC* gene sequences using the maximum likelihood method based on the JTT matrix-based model (Jones *et al.*, 1992). *Amo*: ammonia monooxygenase. *Mmo*: methane monooxygenase. Scale bar indicates estimated number of substitutions per site.

Table 2.4.3-1 | Comparison of genes involved in complete ammonia oxidation obtained in this study and from known strains. Identity and total score were retrieved from a blast search against the NCBI's nr database.

	Nitrospira nitrificans		Nitrospira n	itrosa	Nitrospira inopinata	
	Identity	Score	Identity	Score	Identity	Score
amoA	WP 090900649.1		WP_090742150.1		WP_062484767.1	
	98%	499	91%	437	90%	443
amoB	WP_090900646.1		WP_090742146.1		WP_062484768.1	
	93%	782	82%	723	82%	734
amoC	WP_090895910.1		WP_090744476.1		WP_062484140.1	
	98%	351	96%	342	95%	340
hcp	WP_090894739.1		WP_090900629.1		WP_062481664.1	
	70%	564	69%	561	70%	566

Moreover, hydroxylamine reductases were only found in *Nitrospira* (Figure 2.4.3-4). Two additional genes were identified for a putative hydroxylamine reductase (Table 2.5.4-1). Consequently, *Nitrospira* was the only significantly abundant genus capable of ammonia oxidation in the backyard aquaponic system.

Figure 2.4.3-4 | Phylogenetic tree of hydroxylamine reductase gene sequences using the maximum likelihood method based on the JTT matrix-based model (Jones *et al.*, 1992). RAS: recirculating aquaculture system. Scale bar indicates estimated number of substitutions per site.

2.4.4. Quantification of comammox Nitrospira in the aquaponic system

The abundance of comammox *Nitrospira* was investigated via qPCR using primer sets specifically designed for both clades, clade A and clade B (Pjevac *et al.*, 2017). The concentrations given in gene copies μ L⁻¹ are shown in Table 2.4.4-1. Comammox *Nitrospira* clade A were only detectable at day 102 and day 432. All other samples revealed measurable concentrations in gene copies μ L⁻¹ for both genes. However, different melting temperatures were obtained showing that different qPCR products might have been amplified. Comammox *Nitrospira* clade B were detectable in 6 out of 12 samples showing additionally a similar melting temperature as the standard. It must also be stated that efficiencies were very low (54.6% and 49.3% in

the case of comammox *Nitrospira* clade A and clade B, respectively) in the qPCR assays.

Sample day	Concentration of comammox <i>Nitrospira</i> clade A	Concentration of comammox <i>Nitrospira</i> clade B	
	[gene copies µL⁻¹]	[gene copies µL⁻¹]	
Day 9	N/A	N/A	
Day 13	N/A	9.88 ± 0.47 x 10 ⁴	
Day 102	3.50 ± 0.74 × 10 ⁴	1.30 ± 0.08 x 10⁵	
Day 115	N/A	9.87 ± 1.49 x 10 ⁴	
Day 293	N/A	3.07 ± 0.51 x 10 ⁵	
Day 307	N/A	N/A	
Day 340	N/A	N/A	
Day 362	N/A	2.36 ± 0.30 x 10 ⁵	
Day 395	N/A	N/A	
Day 432	1.05 ± 0.14 × 10 ⁵	N/A	
Day 472	N/A	9.96 ± 0.47 x 10 ⁵	
Day 508	N/A	N/A	

Table 2.4.4-1 | Quantification of comammox *Nitrospira* clade A and clade B in the aquaponic system. N/A = not available based on melting temperature.

On sample day 362, a second peak was found in the melting temperature profile at 82.5 °C for the comammox *Nitrospira* clade B, indicating the presence of a second qPCR product that can be amplified with the applied primer set. This could lead to an overestimation of the actual concentration of comammox *Nitrospira* clade B. Although, they were mainly available in the first half of operation of the aquaponic system, comammox *Nitrospira* clade B were most abundant in the end of operation (day 472) with approximately 10⁶ gene copies μ L⁻¹. However, they were not detectable in the months before and after this day.

2.5. Discussion

2.5.1. Performance of the aquaponic system

Ammonia concentration is one of the most important parameters in aquaculture since it is toxic to fish species in relatively low concentrations (0.94 mmol L⁻¹ for acute intoxication and 0.11 mmol L⁻¹ for chronic intoxication at pH 7 and 20 °C) (USEPA, 2013). In an aquaponic system, ammonia nitrogen is released into the fish tank and taken up by the plants in the grow beds either as ammonium or after oxidation to nitrate (Xu *et al.*, 2012). The nitrifying microbial community in the sediments converts the residual ammonium that is not taken up by plants to nitrate, which is less harmful to fish species than ammonia (Stormer *et al.*, 1996, Alonso & Camargo, 2003). The crucial concentration of ammonium is at the end of the hydroponic part at the influent to the aquaculture fish tank. In our aquaponic system, a nitrifying community was efficiently established reducing the ammonium concentration effectively below 23 μ M.

Nitrification in aquaculture biofilters is most efficient at slightly alkaline pH of 7.5 to 9.0 (Hochheimer & Wheaton, 1998, Kim *et al.*, 2007). However, hydroponic plants grow best at slightly acidic conditions such as pH 5.5 for romaine lettuce crops (Pantanella *et al.*, 2012) and 5.5 to 6.0 for greenhouse cucumber (Hochmuth, 2001). Compromising the efficiencies of nitrification, fish cultivation and plant growth, neutral pH 7 is commonly accepted as the optimal pH for aquaponic systems (Rakocy *et al.*, 2006). Our aquaponic system was continuously running at pH 6.8-7.0 without adjustment providing an efficiently self-regulated system with optimal nitrogen removal.

2.5.2. Microbial community composition

Since the focus was on microbial nitrification processes, we installed our test sediments in the pump sump located between the grow beds and the fish tank. Until now, microbial diversity in aquaculture and aquaponic systems was mainly studied on biofilters (Sugita *et al.*, 2005, Itoi *et al.*, 2006, Brown *et al.*, 2012, Bartelme *et al.*, 2017, Schmautz *et al.*, 2017). In aquaponic systems, however, the biofilter function is replaced by the grow beds.

In our test sediments the most abundant OTUs were member of *Proteobacteria*, *Bacteroidetes*, *Verrucomicrobia*, *Acidobacteria* and *Actinobacteria*. The same phyla were also among the most dominant ones of an aquaponics biofilter community (Schmautz *et al.*, 2017). In contrast, Bartelme *et al.* (2017) identified *Actinobacteria*, *Gammaproteobacteria*, *Planctomycetes*, and *Sphingobacteria* as the most dominant phyla in freshwater recirculating aquaculture systems (RAS). Sugita *et al.* (2005) found *Alphaproteobacteria*, *Betaproteobacteria*, *Nitrospira*, *Actinobacteria*, *Bacilli*, *Gammaproteobacteria*, *Planctomycetacia*, and *Sphingobacteria* as predominant phyla in similar systems.

Surprisingly, in our aquaponic system the microbial community compositions in the aquaponic system changed continuously over 508 days. Since the parameters determined for the aquaponic system were relatively constant, the change of microbial community compositions only correlated with the factor time. There was no correlation between the nitrifying community and the nitrate concentrations detectable. Since the ammonium concentration was always very little, the removal of the nitrogen compounds by the plants was in equilibrium with the ammonia production by the fish and the microbial nitrification keeping all nitrogen species at low steady state concentrations.

Oxygen concentrations have a strong influence on the microbial communities since ammonia oxidation depends on the oxygen availability in the system. However, the fish biomass and, thus, the fish food increased continuously over time, which certainly led to a continuous increase of the ammonia release rate by the fish. Although, this did obviously not influence the steady state concentrations of the nitrogen species, it will have influenced the compound fluxes.

2.5.3. Two-step nitrification or comammox?

The microbial community composition on the sediments revealed *Nitrospira* as the only organisms potentially involved in nitrification. The classically known members of the genus *Nitrospira* perform the second part of the two-step nitrification, the oxidation of nitrite to nitrate. For a complete nitrification process, a second organism such as *Nitrosomonas* would be essential to oxidise ammonia to nitrite. However, ammonia-oxidising bacteria like *Nitrosomonas* were at negligible abundance in our aquaponic sediments. *Nitrospira* belonged to the most abundant organisms in the aquaponic system and is most likely the organism performing the complete ammonia oxidation to nitrate. Similar results were reported by Schmautz *et al.* (2017), who found *Nitrospira* to be one of the most abundant species in the aquaponic system. Since other ammonia-oxidising bacteria were only found at very low abundance, the authors assumed that the detected *Nitrospira* were comammox organisms.

Ammonia is first oxidised to hydroxylamine by ammonia monooxygenase, which consists of at least three subunits (*amoA*, *amoB*, and *amoC*). Hydroxylamine is then oxidised to nitrite catalysed by the hydroxylamine reductase. These genes can, therefore, be taken as indicators for ammonia oxidation. Detection of both genes for ammonia and nitrite oxidation in one genome are strongly indicative of comammox (Daims *et al.*, 2015). In our aquaponic system, the scaffolds of genes for the ammonia-oxidising enzymes were only found on scaffolds classified as *Nitrospira*. *Nitrosomonas* und *Nitrobacter*, which have been regarded as the main nitrifying bacteria so far, do probably not play a pivotal role in nitrification in our well-performing freshwater aquaponic systems. Hence, the interpretation of the community analysis was strongly supported by the metagenomic analysis and the detection of genes coding for enzymes involved in nitrification.

Comammox *Nitrospira* were predicted to survive in environments with low ammonium concentrations (Costa *et al.*, 2006). This assumption was recently underlined, when comammox *Nitrospira* were detected in groundwater (Fowler *et al.*, 2018), drinking water systems (Pinto *et al.*, 2016, Wang *et al.*, 2017) as well as recirculating aquaculture systems with low ammonium loading (Bartelme *et al.*, 2017). Due to the high similarities of the genes involved in complete ammonia oxidation between known comammox *Nitrospira* and those obtained in this study, it is concluded that in the aquaponic system ammonia was completely oxidised by comammox *Nitrospira*.

2.5.4. Abundances of comammox Nitrospira in the aquaponic system

The quantification of comammox Nitrospira via qPCR reveals measurable abundances throughout the operation of the aquaponic system and that comammox Nitrospira clade B are more abundant than those of clade B. As the efficiencies are extremely low, comammox Nitrospira may remain undetected in many samples. Despite the first sampling day (day 9), PCR products are amplified on sampling days that reveal a distinct melting temperature from the standard sequences. In consent with the metagenomic analysis showing clear presence of comammox Nitrospira in all samples, it is assumed, that those PCR products with different melting temperatures might indeed originate from comammox Nitrospira but are undetectable due to the inadequate efficiencies. Efficiencies in real-time qPCR decrease significantly with the amplicon lengths, which usually range between 100 to 250 bp (Wang & Seed, 2006). Manufacturers of qPCR system even recommend lower amplicon sizes of 75 to 200 bp (Bio-Rad Laboratories Inc., 2006) or below 150 bp (QIAGEN, 2010) to ensure successful amplification of the target DNA. The specific primer sets for comammox *Nitrospira* clade A and clade B used in this study target sequences with an amplicon length of 415 bp (Pjevac et al., 2017) and do not seem to be applicable for the detection and clade differentiation of comammox *Nitrospira* in this aguaponic system.

2.6. Appendix

Taxonomy=Bacteria; Nitrospirae; Nitrospirales; Nitrospiraceae; T Nitrospira	Taxonomy=Bacteria; Nitrospirae; Nitrospirales; Nitrospiraceae; 11 Nitrospira	 Taxonomy=Bacteria: Nitrospirae; Nitrospirales; Nitrospiraceae; Nitrosoria 	Taxonomy=Bacteria; Nitrospirae; Nitrospirales; Nitrospiraceae; T Nitrospira	a Taxonomv=	Taxonomy=Bacteria; Nitrospirae; Nitrospirales; Nitrospiraceae; T Nitrospira		Taxonomy=Bacteria; Proteobacteria; Gammaproteobacteria: A Alteromonadales; Colvelliaceae; M Thalassotalea	Taxonomy=Bacteria; Nitrospirae; Nitrospirales; Nitrospiraceae; Nitrospira	Taxonomy=Bacteria; Nitrospirae; Nitrospirales; Nitrospiraceae; Nitrospira	 Taxonomy=Bacteria, Nitrospirae; Nitrospirales; Nitrospiraceae;
UniRef100_A0A0S4LM25 Ammonia monooxygenase, subunit A n=1 Tax=Candidatus Nitrospira nitrificans TaxID=1742973 RepID=A06S4LM25 9BAC	UniRef100_A0A0S4LUC5 Ammonia monooxygenase, subunit B n=1 Tax=Candidatus Nitrospira nitrificans TaxID=1742973 RepID=A0A0S4LUC5 9BAC	UniRef100_A0A177QD36 Methane monooxygenase/armmonia monooxygenase subunit C n=1 Tax= <i>Nitrospira</i> sp. SCGC AG 212-E16 TaxID=1799664 ReolD=A0A177QD36 9BACT	UniRef100_A0A0S4LD97 Ammonia monooxygenase, subunit C n=1 Tax=Candidatus Nitrospira nitrosa TaxID=1742972 RepID=A0A0S4LD97 9BAC	UniRef100_A0A0S4LPC4 Ammonia monooxygenase, subunit A n=2 Tax=Bacteri TaxID=2 RepID=A0A0S4LPC4_9BACT	UniRef100_A0A0S4LEU9 Ammonia monooxygenase, subunit C n=1 Tax= <i>Candidatu</i> s Nitrospira nitrificans TaxID=1742973 RepID=A0A0S4LEU9_9BAC		UniRef100_A0A099KDl2 Hydroxylamine reductase n=1 Tax= <i>Thalassotalea</i> sp. ND16 TaxID=1535422 RepID=A0A099KDl2_9GAMI	UniRef100_A0A177QNG2 Hydroxylamine reductase n=1 Tax= <i>Nitrospir</i> a sp. SCGC AC 212-E16 TaxID=1799664 RepID=A0A177QNG2_9BACT	UniRef100_A0A177QNG2 Hydroxylamine reductase n=1 Tax= <i>Nitrospir</i> a sp. SCGC AC 212-E16 TaxID=1799664 RepID=A0A177QNG2 9BACT	UniRef100_A0A177QNG2 Hydroxylamine reductase n=1 Tax= <i>Nitrospira</i> sp. SCGC AC 212-E16 TaxID=1799664 Decino-A0A477CNC2 on ACT
512.7	813.5	529.3	142.9	453	363.6		137.9	104.8	169.5	776 5
4E-142	2E-232	5E-147	2.7E-31	4E-124	2.3E-97		1.3E-29	1.3E-19	3.3E-39	3E-206
282	419	266	272	280	245		541	200	200	569
247	420	265	72	217	175		108	115	06	388 388
246	419	262	71	217	174		76	66	06	387
98.4	92.8	92.4	85.9	98.2	97.7		80.3	66.7	85.6	86
UniRef100 A0A0S4LM25	UniRef100 A0A0S4LUC5	UniRef100 A0A177QD36	UniRef100 A0A0S4LD97	UniRef100 A0A0S4LPG4	UniRef100_A0A0S4LEU9		UniRef100_A0A099KDI2	UniRef100 A0A177QNG2	UniRef100 A0A177QNG2	UniRef100 A0A177ONG2
Ammonia monooxygenase NODE_8879 length_2199 cov 2.755131 1	NODE_8879 length_2199 cov_2.755131_2	NODE_10762 length_1994 cov 3.495616 1	NODE_11067 length_1964 cov 3.334730 4	NODE_24566 length_1301 cov_9.516854_1	NODE_24566 length_1301 cov_9.516854_2	Hvdroxvlamine reductase	NODE_7910 length_2329 cov_2.131047_1	NODE_19566 length_1462 cov_1.855011_2	NODE_19566 length_1462 cov_1.855011_3	NODE_30472 length_1165

Table 2.5.4-1 | Genes annotated as ammonia monooxygenase and hydroxylamine reductase.

Ammonia monooxygen	ase subunit A
>NODE_8879 length_2199 cov_2_755131_1 # 2 #	IV GTFHMHTALLCGDWDFWLDWKDRQWWPIVTPVTLITFCAALQYYNWVNYRQPFGATLCILALGAGKWIAVYTSWWWWSN YPPNFVMPATAIPGALVLDITLLTRNWTLTAVIGAWMFAALFYPSNWPIFAYSHTPLVVDGALLSWADYMGFMYVRTGTPEYI RMIEVGSI RTFGGHSTMISAFFSAFASSI TYII WWOFGKFFCTSYFYMTDDRORTTKVYDVFAFATI GPOGDIXAKI SGGKA
742 # 1 # ID=667_1	
>NODE_24566 length 1301	MFRTDEIIKASKLPPEGVAMSRHLDHIYFIPILFITIVGTFHMHTALLCGDWDFWIDWKDRQWWPIVTPVTTITFCAALQYYNWVN YRQPFGATITILALAFGKWIAVYTSWWWWSNYPPNFVMPATLLPSALVLDITLLLTRNWTLTAVIGAWMYAILFYPSNWPIFGYS
cov_9.516854_1 # 1 #	HTPIVVDGSLLSWADYMGFMYVRTGTPEYIRMIEVGSLRTFGGHST
651 # -1 # ID=4036_1	
Ammonia monooxygen	ase subunit b Mitalian real waiting oo wat a attrait nith a raitornoorner na inn waxbarewa korotha wextart i youring ornanday
>NUUE_8879 length_2199	M IAKHVEREWMIKELGGVV I LAA I PAEDI I PAEDI PAENGERSGEPELKMK I VNW YD I EWVGKS I KVNUV I ELKGKFILSEUWPRAV VKPTRTFINVGSPSSVFVRESSKVNGTPMFVSGPMEIGRDYEYIVKLKARLPGHHIIHPMFAVKEAGPIAGPGGWMDITGRYE
cov_2.755131_2 # 739 #	DFTNPIKTLNETFDSETMGSMTGIGWHIWWIALGIFWVGFFAIRPMYLIRARVLAAYGDEILLDPIDRKVGVAVLVLTLTVVVAGY
1998 # 1 # ID=66/_2	MAAEAKHPISVPLQAGEAKIKPMPIKPNPLIVUVIHAEYUVPGKALKWVLHATINNGISPTIIGEFTTAGIKFINKFGAAKVUPNYP AELVASAGLTMDNEAPIQPGQTVDIKVESKDVLWEVQRLVDILHDPDQRFAGLFLSWTDSGERLINPVWAPVLPVFTRMGA
Ammonia monooxygen	ase subunit C
>NODE_10762	MATTWGGADRGYDMSLWYDSKPLKIGWFAMLAAVGSEVIFQRVFGYSHGLDSMTPEFENVWMGLWRFNVISNIIFSAATLG
length_1994	WIWSTRDRNVANVDPKTELKRYFYWMMWLAIYVFGVYWAGSYTLEQDASWHQVIIRDTSFTASHIIAFYFTFPLYITCGVASYL
cov_3.495616_1 # 991 #	YAMTRLPQFSKAVSFPLVGAIVGPMMILPNVGLNEWGHAFWFVDELFAAPLHWGFVTLGWCGLFGGTGGVAAQIVARMSNL
1785 # 1 # ID=2550_1	CDVVWNNESKDCLHVIPY
>NODE_24566	KRYFYWMGWLVCYIWGVYYAGSYTLEQDAAWHQVIIRDTSFTASHIVAFYGTFPLYITCGVSSYLYAQTRLPLYSQATSFPLVA
length_1301	AVVGPMFILPNVGLNEWGHAFWFVDELFAAPLHWGFVTLGWCGLFGAAGGVAAQIVSRMSNLADVIWNNAPKSILDPFASQI
COV_9.516854_2 # //5 # 1299 # -1 # ID=4036_2	GPGAKOVY
Hvdroxvlamine reductase	
>NODE 19566	MVKHVAKYAMVI CGITI AAPAHAOYSSIPKETEFAI NIORSATPKEEHEAI TKRYKDPGKGAGKGOYGOYWEPIPXXXXAVCE
length 1462	VPHRIAWLGGHVEAKHPCQSGPDPQAHAER
cov_1.855011_2 # 908 #	
1252 # 1 # ID=3142_2	
>NODE_19566	MWKRSTHANLDQIRKLTPKDDTFYKKAKLEEIEGNLRSLGKLGPKENLKEVSCIDCHVDINAKKAADHRVDLKMPTSDTCGSCH
length_1462 cov 1 855011 3 # 1191	LMEYAE
# 1460 # 1 # ID=3142 3	
>NODE_30472	IDCHVDINAKKAADHRVDLKMPTADVCGNCHLMEYAERESERDTILWPKNQWPRGRPSHVLDWRANVETDIWAGMSQREIAE
length_1165	GCSMCHTNQNKCDNCHTRHEFSVADSRKPEACGTCHSGADHINWEAYNGSQHGLGYQASKNRWNWNLQLKDMVVKGGQK
cov_3.902703_1 # 2 #	FPTCQSCHMEYQGKFSHNTVRKVRWANYPFVPGIREAVFDNWGMQRYEAWVKTCTTCHSETFARAYLEFIDNGTSHGLDKY
1165 # -1 # ID=1730_1	DEAHNVVHKQFEARLLTGQRTNRPAPPAPAKALFDQFWQIYWSKNNSPTAIELKLFEMAEDHLVQLHVALAHQYPGFTYTVG WAAMNRAVVFIMDFDTKI KDRMI I MDRVTKI FEKTKTSSI I DEDSTDGKI TIGSI GGGMI I TGT

Table 2.5.4-2 | Predicted amino acid sequences of genes annotated as ammonia monooxygenase and hydroxylamine reductase.

						(*******	
Well	Fluor	Content	Sample	Cq	Starting Quantity (SQ)	Melt Temperature	Peak Height
A01	SYBR	Std-1		26.86	1.000E+06	85.00	1735.61
A02	SYBR	Std-1		27.40	1.000E+06	85.00	1773.51
A03	SYBR	Std-1		27.46	1.000E+06	84.50	1789.23
A04	SYBR	Unkn	AP2	39.36	6.549E+03	None	None
A05	SYBR	Unkn	AP2	39.10	7.351E+03	None	None
A06	SYBR	Unkn	AP10	29.26	5.338E+05	None	None
A07	SYBR	Unkn	AP10	28.74	6.687E+05	None	None
B01	SYBR	Std-2		33.64	1.000E+05	85.00	1340.67
B02	SYBR	Std-2		32.56	1.000E+05	84.50	1471.59
B03	SYBR	Std-2		32.99	1.000E+05	84.50	1484.06
B04	SYBR	Unkn	AP3	34.34	5.826E+04	None	None
B05	SYBR	Unkn	AP3	34.30	5.950E+04	None	None
B06	SYBR	Unkn	AP11	33.37	8.896E+04	None	None
B07	SYBR	Unkn	AP11	32.82	1.134E+05	None	None
C01	SYBR	Std-3		39.91	1.000E+04	None	None
C02	SYBR	Std-3		40.34	1.000E+04	None	None
C03	SYBR	Std-3		40.36	1.000E+04	None	None
C04	SYBR	Unkn	AP4	36.53	2.248E+04	None	None
C05	SYBR	Unkn	AP4	35.67	3.275E+04	None	None
C06	SYBR	Unkn	AP12	30.22	3.510E+05	None	None
C07	SYBR	Unkn	AP12	29.97	3.916E+05	None	None
D01	SYBR	Std-4		41.72	1.000E+03	None	None
D02	SYBR	Std-4		41.63	1.000E+03	None	None
D03	SYBR	Std-4		44.09	1.000E+03	None	None
D04	SYBR	Unkn	AP5	35.87	3.001E+04	None	None
D05	SYBR	Unkn	AP5	35.66	3.279E+04	None	None
D06	SYBR	Unkn	AP13	39.41	6.423E+03	None	None
D07	SYBR	Unkn	AP13	39.01	7.630E+03	None	None
E01	SYBR	Std-5		N/A	1.000E+02	None	None
E02	SYBR	Std-5		N/A	1.000E+02	None	None
E03	SYBR	Std-5		N/A	1.000E+02	None	None
E04	SYBR	Unkn	AP6	31.99	1.621E+05	None	None
E05	SYBR	Unkn	AP6	31.52	1.995E+05	None	None
F01	SYBR	Std-6		N/A	1.000E+01	None	None
F02	SYBR	Std-6		N/A	1.000E+01	None	None
F03	SYBR	Std-6		N/A	1.000E+01	None	None
F04	SYBR	Unkn	AP7	35.69	3.243E+04	None	None
F05	SYBR	Unkn	AP7	33.60	8.046E+04	None	None
G01	SYBR	Std		N/A	1.000E+00	None	None
G02	SYBR	Std		N/A	1.000E+00	None	None
G03	SYBR	Std		N/A	1.000E+00	None	None
G04	SYBR	Unkn	AP8	34.16	6.322E+04	None	None
G05	SYBR	Unkn	AP8	34.32	5.887E+04	None	None
H01	SYBR	NTC		N/A	N/A	None	None
H02	SYBR	NTC		N/A	N/A	None	None
H03	SYBR	NTC		N/A	N/A	None	None
H04	SYBR	Unkn	AP9	29.81	4.195E+05	84.00	960.71
H05	SYBR	Unkn	AP9	30.42	3.214E+05	84.00	924.42

Table 2.5.4-3 | Raw qPCR data for the samples from the aquaponic system (AP) using the primer set for the amplification of comammox *Nitrospira* clade A (comaA).

printer				Comamino			
Well	Fluor	Content	Sample	Cq	Starting Quantity (SQ)	Melt Temperature	Peak Height
A08	SYBR	Unkn	AP6	36.34	2.894E+05	None	None
A09	SYBR	Unkn	AP6	35.81	3.576E+05	None	None
A10	SYBR	Std		32.44	1.000E+06	86.00	1556.34
A11	SYBR	Std		34.31	1.000E+06	86.50	1314.84
A12	SYBR	Std		32.08	1.000E+06	86.50	1562.99
B08	SYBR	Unkn	AP7	42.01	3.043E+04	None	None
B09	SYBR	Unkn	AP7	42.23	2.787E+04	None	None
B10	SYBR	Std		39.69	1.000E+05	None	None
B11	SYBR	Std		40.07	1.000E+05	None	None
B12	SYBR	Std		38.99	1.000E+05	None	None
C08	SYBR	Unkn	AP8	42.90	2.133E+04	None	None
C09	SYBR	Unkn	AP8	43.02	2.037E+04	None	None
C10	SYBR	Std		N/A	1.000E+04	None	None
C11	SYBR	Std		N/A	1.000E+04	None	None
C12	SYBR	Std		43.96	1.000E+04	None	None
D08	SYBR	Unkn	AP9	37.00	2.226E+05	None	None
D09	SYBR	Unkn	AP9	36.50	2.720E+05	None	None
D10	SYBR	Std-4		N/A	1.000E+03	None	None
D11	SYBR	Std-4		N/A	1.000E+03	None	None
D12	SYBR	Std-4		N/A	1.000E+03	None	None
E06	SYBR	Unkn	AP2	41.50	3.724E+04	None	None
E07	SYBR	Unkn	AP2	42.02	3.031E+04	None	None
E08	SYBR	Unkn	AP10	31.86	1.723E+06	83.00	1320.29
E09	SYBR	Unkn	AP10	31.89	1.703E+06	83.00	1356.95
E10	SYBR	Std-5		N/A	1.000E+02	None	None
E11	SYBR	Std-5		N/A	1.000E+02	None	None
E12	SYBR	Std-5		N/A	1.000E+02	None	None
F06	SYBR	Unkn	AP3	38.87	1.061E+05	None	None
F07	SYBR	Unkn	AP3	38.69	1.140E+05	None	None
F08	SYBR	Unkn	AP11	36.15	3.133E+05	None	None
F09	SYBR	Unkn	AP11	36.40	2.826E+05	None	None
F10	SYBR	Std-6		N/A	1.000E+01	None	None
F11	SYBR	Std-6		N/A	1.000E+01	None	None
F12	SYBR	Std-6		N/A	1.000E+01	None	None
G06	SYBR	Unkn	AP4	38.18	1.395E+05	None	None
G07	SYBR	Unkn	AP4	38.03	1.482E+05	None	None
G08	SYBR	Unkn	AP12	33.31	9.666E+05	86.00	962.86
G09	SYBR	Unkn	AP12	33.18	1.018E+06	86.00	957.69
G10	SYBR	Unkn	wasted	40.58	5.380E+04	None	None
G11	SYBR	Std		N/A	1.000E+00	None	None
G12	SYBR	Std		N/A	1.000E+00	None	None
H06	SYBR	Unkn	AP5	39.07	9.810E+04	None	None
H07	SYBR	Unkn	AP5	38.52	1.221E+05	None	None
H08	SYBR	Unkn	AP13	41.74	3.384E+04	None	None
H09	SYBR	Unkn	AP13	N/A	N/A	None	None
H10	SYBR	Std		N/A	1.000E+00	None	None
H11	SYBR	NTC		N/A	N/A	None	None
H12	SYBR	NTC		N/A	N/A	None	None

Table 2.5.4-4 | Raw qPCR data for the samples from the aquaponic system (AP) using the primer set for the amplification of comammox *Nitrospira* clade B (comaB).

3. Denitrification in bioelectrochemical systems for the treatment of nitrate contaminated groundwater

3.1. Abstract

Groundwater reservoirs are the major source for drinking water production in Germany. Intensive agricultural land use applying nitrogen containing fertilizers and animal manure from livestock farming resulted in nitrate contaminations exceeding the World's Health Organisation's guideline value of 50 mg NO₃⁻ L⁻¹. In this study the nitrate removal was investigated in bioelectrochemical batch systems using intermittent and continuous potential settings and the microbial community compositions were studied over time. Complete nitrate removal was efficiently achieved with both potential settings, though it was faster in the reactors running with continuous potential. The electrochemically active community compositions were different in both systems. Amplicon sequencing variations assigned to the genera Geobacter and Thauera became predominant on the carbon felt cathode and in the medium with applied continuous potential. Using intermittent potential settings, amplicon sequencing variations belonging to the genera Candidatus Nitrotoga and Thiobacillus were most abundant on the cathode and amplicon sequencing variations assigned to the genera Anaerobacillus, Azoarcus and Delftia became dominant members in the medium, respectively. The intermittent potential conditions stimulate denitrification the process in the system. These intermittent running bioelectrochemical systems can be implemented into the drinking water production process to efficiently remove nitrate from groundwater without consistent energy supply.

3.2. Introduction

The neutral (non-contaminated) level of nitrate in groundwater reservoirs are usually less than 10 mg NO₃⁻ L⁻¹ (2 mg NO₃⁻-N L⁻¹) (Mueller *et al.*, 1995). Higher concentrations of nitrate in groundwater are implicated to anthropogenic influences that are mainly intensive livestock farming and leaching of nutrients from synthetic fertilizers containing nitrate and animal manure in agricultural land use (Smith *et al.*, 2015, European Commission, 2018). However, in an *in-situ* tracer experiment in France it could be shown that only 61% to 65% of the nitrate applied to the agricultural areas can be taken up by plants for metabolism (Sebilo *et al.*, 2013). The surplus of nitrate leaches with (rain-)water through the soil systems with an overall negative charge reaching the groundwater after 5 to 30 years or later (Sebilo *et al.*, 2013, Keeler & Polasky, 2014), as the negatively charged nitrate is a soluble and a very mobile compound in soils (Maier *et al.*, 2009, Smith *et al.*, 2015). Due to possible health risks a guideline value of 50 mg NO₃⁻ L⁻¹ (10 mg NO₃⁻-N L⁻¹) in groundwater and drinking water was introduced by the World's Health Organization (WHO) in 1958.

Data from 2012 to 2015 reveal that 13.2% of all sampling sites in Europe exceeded the guideline value of 50 mg $NO_3^- L^{-1}$ (European Commission, 2018). In Germany, even 28% of sampled groundwater wells exceeded 50 mg NO₃⁻ L⁻¹ and 22.8% have elevated concentrations of nitrate between 25 mg and 50 mg NO₃⁻ L⁻¹ (European Commission, 2018). More than 70% of the water used for drinking water production is taken from groundwater reservoirs (Wricke, 2014, Smith et al., 2015). Agricultural intensification over the last 60 years has led to contaminations $(>25 \text{ mg NO}_3 \text{ L}^{-1})$ of 50% groundwater about of wells in Germany (European Commission, 2018). 2.5 kg ha⁻¹ year⁻¹ of pesticides and growth control chemicals are applied in average onto agricultural areas (Wricke, 2014), resulting in expensive processing techniques to provide safe drinking water.

Since the rediscovery of bioelectrochemical systems (BES) in the 1970's, BES have been being investigated for various applications, including nitrate removal on both bioanodes and biocathodes. A BES is an electrochemical cell, in which electrochemically active microorganisms form biofilms on either one of the electrodes or both and catalyse oxidation and/or reduction reactions (Larminie *et al.*, 2003).

Electrons are extracellularly transferred by microorganisms through the biofilms either directly between microorganism and electrodes via membrane associated redox proteins (Afkar *et al.*, 2005, Mehta *et al.*, 2005, Pous *et al.*, 2014) and conductive pili structures (Reguera *et al.*, 2005) or indirectly via autochthonous redox shuttles, such as pyocyanin from *Pseudomonas aeruginosa* (Rabaey *et al.*, 2004, Rabaey *et al.*, 2005) and allochthonous redox shuttles such as hydrogen (Rabaey *et al.*, 2008) as well as artificial ones such as neutral red (Park & Zeikus, 2000).

Several studies have been conducted addressing autotrophic denitrification in groundwater revealing various removal efficiencies. In BES, nitrate reduction from $28.32 \pm 6.15 \text{ mg NO}_3-\text{N } \text{L}^{-1}$ to $12.14 \pm 3.59 \text{ mg NO}_3-\text{N } \text{L}^{-1}$ were obtained for low conductive ($955 \pm 121 \ \mu\text{S } \text{cm}^{-1}$) groundwater (Pous *et al.*, 2013). 78% of the applied nitrate were removed from the influent, when using a bioanode (Nguyen *et al.*, 2015). A nitrate removal efficiency of more than 90% were achieved at -0.303 V (Molognoni *et al.*, 2017). However, in these studies, acetate oxidation was required at the bioanode to guarantee a flow of electrons and protons. Maximum nitrate removal rates of 43% (Nguyen *et al.*, 2015) and $62.15 \pm 3.04 \text{ g NO}_3-\text{N m}^{-3} \text{ d}^{-1}$ (Cecconet *et al.*, 2018) were achieved at biocathodes with abiotic anodes. In one of the first approaches of *in situ* nitrate removal using bioelectrical systems in groundwater, 90.5% of nitrate was removed (Zhang & Angelidaki, 2013). The groundwater was not directly applied to the system, but nitrate could penetrate the membrane into the cathodic chamber. In a sand-filled reactor buried fully in an aquifer a nitrate removal rate of 322.6 mg m⁻² d⁻¹ was obtained at a potential of -0.7 V (Nguyen *et al.*, 2016).

The enhancing potential of intermittent conditions was studied at anodes before (Hsu *et al.*, 2017, Wang *et al.*, 2018). It was suggested that some materials are capable of storing energy (Wang *et al.*, 2018). A study on intermittently applied current at cathodes was only recently reported, where the production of methane from carbon dioxide as renewable electricity conversion was improved using granular carbon-based biocathodes (Liu *et al.*, 2018). Another study reports that intermittent potential conditions enhanced hydrogen production up to 41% in microbial electrolysis cells (Cho *et al.*, 2019). The hydrogen then can be used as electron shuttles by electrochemically active bacteria (Rabaey *et al.*, 2008).

In this study, a cathodic BES was operated with intermittently and continuously applied potential, respectively, for complete nitrate removal. It is the first report investigating the microbial community compositions on the cathodes and in the medium using 16S rRNA gene sequencing.

3.3. Experimental procedure

3.3.1. Growth medium for denitrifying bacteria in BES

The growth medium used in these experiments was adapted from Kamp *et al.* (2006). All solutions (Table 3.3.1-1) were prepared using ultra-pure water and were autoclaved for 20 min at 120 °C. The vitamin solution was filter sterilised (2 μ m pore size). As the nitrate and the carbonate solution were added under anoxic conditions, both solutions were sparged with N₂/CO₂ (80:20 (v/v)) gas [Air Liquide, Düsseldorf, Germany] prior to autoclaving. The 0.5 mol L⁻¹ nitrate solution was sparged for 20 min. The 1 mol L⁻¹ carbonate solution was prepared with anoxic hot water and the headspace was exchange for 5 min with N₂/CO₂ (80:20 (v/v)) gas. Basal medium, MgSO₄ solution, CaCl₂ solution and carbonate were stored at room temperature. Other solutions were stored at 4 °C.

		Final concentration	ns
	Compound	[g L ⁻¹]	[mmol L ⁻¹]
Basal medium .nH	EDTA	0.01	0.03
7.0	NaCl	0.02	0.27
	$Na_2HPO_4 \cdot 2 H_2O$	0.22	1.24
	NaH ₂ PO ₄ · 2 H ₂ O	0.16	1.15
MgSO ₄ solution	MgSO ₄ · 7 H ₂ O	0.20	0.81
CaCl ₂ solution	$CaCl_2 \cdot 2 H_2O$	0.26	1.80
FeCl ₃ solution	FeCl₃ (anhydrous)	0.58	3.58
Nitrate solution	NaNO₃	0.09	1.00
Carbonate solution	NaHCO₃	2.52	30.00
Micronutrient solution	Cf. Table 3.3.1-2	1X	1X
Vitamin solution	Cf. Table 3.3.1-3	1X	1X

Table 3.3.1-1 | Solutions used as growth medium for denitrifying bacteria.

		Final concentrations	
	Compound	[mg L ⁻¹]	[µmol L ⁻¹]
Micronutrient	H_2SO_4	0.5 μL L ⁻¹	9.380
solution	$MnSO_4 \cdot H_2O$	2.280	13.490
	$ZnSO_4 \cdot 7 H_2O$	0.500	1.739
	H ₃ BO ₃	0.500	8.087
	$CuSO_4 \cdot 5 H_2O$	0.025	0.100
	$Na_2MoO_4 \cdot 2 H_2O$	0.025	0.103
	CoCl ₂ · 6 H ₂ O	0.045	0.190

Table 3.3.1-2 | Micronutrient solution used for the growth medium of denitrifying bacteria. The solution was prepared as 1000X.

Table 3.3.1-3 | Vitamin solution used for the growth medium of denitrifying bacteria. Each vitamin was separately dissolved in 10 mL ultra-pure water and filter sterilised. For the final stock solution 1 mL of each stock solution were combined in 100 mL ultra-pure water (50X).

		Concentrations of separate stock solutions [g L ⁻¹]	Final concentrations	
	Compound		[mg L ⁻¹]	[µmol L ⁻¹]
Vitamin solution	Cyanocobalamin (B12)	0.1	0.019	0.014
	Inositol	0.1	0.019	0.104
	Biotin	0.1	0.019	0.077
	Folic acid	0.1	0.019	0.042
	p-Aminobenzoic acid	1.0	0.188	1.367
	Nicotinic acid	10.0	1.875	15.230
	D-Pantothenate	10.0	1.875	7.869
	Thiamine-HCI (B1)	20.0	3.750	11.119

3.3.2. Inoculum for denitrification

A sediment sample was taken from a freshwater tideland of the river Elbe near Fährmannssand, Schleswig-Holstein, Germany, as inoculum. For the first enrichment of denitrifying bacteria and for the depletion of organic substances by organotrophic bacteria, 100 mL of growth medium (cf. section 3.3.1) with 0.5 mmol L⁻¹ Na₂S was inoculated with 10% (v/v) with the sediment sample in a serum bottle and sparged with N₂/CO₂ (80:20 (v/v)) gas [Air Liquide, Düsseldorf, Germany]. The bottle was sealed

with a butyl rubber and it was incubated at 30 °C in the dark until nitrate was almost completely consumed.

3.3.3. Setup of the cathodic bioelectrochemical system

For the experiments on denitrification at the cathode a batch reactor was built from a 5-necked glass flask and a hungate tube designed in the glass blowing workshop as previously described in (Patil *et al.*, 2015). The main materials used for the setup are given in Table 3.3.3-1. An image of the reactor is shown below in Figure 3.3.3-1.

	Material	Specification	Manufacturers
Cathode	Carbon felt	1.0x5.0 cm	Alfa Aeser (Thermo Fisher GmbH), Karlsruhe, Germany
Anode	Stainless steel felt	1.5x5.0 cm	Alfa Aeser (Thermo Fisher GmbH), Karlsruhe, Germany
Reference electrode	RE-1B (Ag/AgCl)		ALS Co., Ltd., Tokyo, Japan
Membrane	Fumasep FKB-PK- 130	2.0x2.0 cm	Fumatech BWT GmbH, Bietigheim-Bissingen, Germany
Wirings	Titan, WirePurity 99.6%+	10 cm, 5 cm. Ø 1 mm	Advent Research Materials Ltd., England, Great Britain
Rubber stopper	Butyl	N20 and GL45	Glasgerätebau Ochs GmbH, Bovenden, Germany

Table 3.3.3-1 | Materials used for assembling a bioelectrochemical system used for denitrification processes at the cathode.

All materials were thoroughly cleaned with ultra-pure water before usage. The carbon felt cathodes (1x5x0.1 cm) [Alfa Aeser, Karlsruhe, Germany] were pre-treated by cleaning the material for 24 h in 1 M HCl and 1 M NaOH, respectively. After each step the felts were rinsed with ultra-pure water. Pieces of 2x2 cm of the cation exchange membrane (Fumasep FKB-PK-130) [Fumatech BWT GmbH, Bietigheim-Bissingen, Germany] were pre-treated by up-swelling in a 4% NaCl solution for 24 h.

The 5-necked glass flask was used as cathode chamber including the carbon felt cathode, an Ag/AgCl reference electrode (RE-1B) [ALS Co., Ltd., Tokyo, Japan] and sampling needles [B. Braun, Melsungen, Germany]. As experiments were conducted

under anoxic conditions, all holes were sealed with N20 butyl rubbers [Glasgerätebau Ochs GmbH, Bovenden, Germany]. The electrodes were connected to the 1000C potentiostat [CH Instruments, Ltd., Austin, USA] via titan wirings (Ø 1 mm, WirePurity 99.6%+) [Advent Research Materials Ltd., England, Great Britain]. Needles were used for sampling the medium as well as the gas phase and were sealed with 3-way valves [B. Braun, Melsungen, Germany]. A hungate tube [Glasgerätebau Ochs GmbH, Bovenden, Germany] was used as anode chamber cutting the bottom. The membrane was placed onto a N20 butyl rubber with a hole and both was fixed with aluminium caps to the N20 opening of the hungate tube. The anode chamber was placed upsidedown into the cathode chamber. The stainless steel felt anode was placed into the hungate tube by cutting the bottom of the tube.

Figure 3.3.3-1 | Schematic view of the cathodic BES.

The cathode chamber was filled with growth medium (Table 3.3.1-1) to a final volume of 220 mL after adding nitrate, carbonate, and the inoculum between the cyclic voltammetry procedures (cf. section 3.3.4). The medium in the cathode chamber was sparged with N_2/CO_2 (80:20 (v/v)) gas [Air Liquide, Düsseldorf, Germany] and was continuously stirred during the experiments using a stirring bar. The anodic chamber was filled with 22 mL of growth medium lacking nitrate, carbonate and the inoculum.

3.3.4. Stability test using chronoamperiometry and investigation of redox active compounds using cyclic voltammetry in a cathodic BES

Before starting the denitrification experiments, a stability test was performed at a potential of -0.5 V vs. Ag/AgCl for 24 hours to examine leakages and connection issues. The reactors were used for the experiments, when the current stayed constant within this time.

Cyclic voltammetry was done before and after the addition of nitrate and carbonate as well as the inoculation. The applied potential ranged from 0.2 V vs. Ag/AgCl to -0.8 V Ag/AgCl and 5 cycles were used.

3.3.5. Run of the experiment

For the main experiments, two sets of reactors were prepared. The first set (three reactors) was run under continuous application of a potential of -0.5 V Ag/AgCl. The second set (three reactors) was running under intermittent conditions using alternating on- and off-phases of 6 h each. During the on-phases a potential of -0.5 V Ag/AgCl was applied. Abiotic controls missing the inoculum were additionally built for each set. A biotic control was established by running a reactor without application of potential.

Reactors were run until complete nitrate turnover measured via ion chromatography (cf. section 2.3.3). One reactor of each set was taken for microbial community analyses on the cathode (cf. section 3.3.7). Again, 1 mol L⁻¹ nitrate and 30 mol L⁻¹ carbonate were added to the remaining reactors and the main run was continued. They were analysed after the second and the third cycles of complete nitrate depletion, respectively.

Current densities were obtained by averaging the current densities over 6 hours. The nitrate removal rates were calculated for each cycle of complete nitrate turnover using the first three to five concentrations measured after nitrate addition to get the highest nitrate removal rate. Gas overpressure in the reactors were weekly released through the gas outlet. Raw data of currents measured in the reactors are shown in the appendix (Table 3.5.4-1 and Table 3.5.4-2).

3.3.6. Analysis of nitrogen species via ion chromatography

Samples of 500 μ L were taken twice a week from the catholyte for measuring concentrations of nitrate, nitrite, and ammonium. All samples were prepared and measured via ion chromatography as described in section 2.3.3. The summarized raw data of the ion concentrations are shown in the appendix (Table 3.5.4-3 to Table 3.5.4-7).

3.3.7. DNA extraction and 16S rRNA amplicon library preparation

Samples for DNA extraction were taken from the cathode material by cutting the carbon felt in pieces of 60-70 mg as duplicates. DNA extraction was performed using the FastDNA[™] SPIN Kit for Soil [MP Biomedicals, Heidelberg, Germany] and applying the bead-beating settings as previously described in section 2.3.5. The samples were stored at -20 °C until further usage.

The 16S rRNA amplicon library was prepared according to the Illumina 16S sequencing library preparation guide (part no. 15044223 Rev. B) as stated above (cf. section 2.3.6) using the primers, indices and material as mentioned. The samples were stored at -20 °C until shipping for analysis to GATC Biotech AG [Konstanz, Germany].

3.3.8. Analysis of 16S rRNA gene sequencing data

Analysis of the 16S rRNA gene sequences was done in the R environment (R Core Team, 2018). The DADA2 pipeline tutorial 1.8 (Callahan *et al.*, 2016) was applied using the phyloseq R package (McMurdie & Holmes, 2013). Graphs were obtained with the ggplot2 package (Wickham, 2017). Since reverse amplicons had been trimmed, overlapping of the forward and reverse amplicons were expected to be insufficient during merging. Therefore, forward and reverse amplicons were analysed separately and abundances of amplicon sequence variants (asv) were summarised based on genus level using the forward primers. 16S gene sequencing data for the most abundant species are shown in the appendix in Table 3.5.4-8.

3.4. Results

3.4.1. Nitrate turnover in BES using intermittent and continuous potential

The nitrate removal was usually slower in batch BES running with intermittently applied potential than with continuously applied potential (Figure 3.4.1-1), which accordingly resulted in higher nitrate removal rates at continuous potential settings (Table 3.4.1-1). Three cycles of complete nitrate turnover were achieved in 82 days at intermittent potential and 60 days at continuous potential settings. Independent on the potential settings, the first cycles lasted about 5 days longer than the following cycles due to adaption of microorganisms to the cathode material, resulting in smaller nitrate removal rates during the first cycle. However, a very low rate (28.1 µmol L⁻¹ d⁻¹) was obtained in the reactor running continuously for two turnover cycles and in the reactor running intermittently for three cycles indicating the presence of potential inhibitors. Initial high concentrations of nitrate above 1 mmol L⁻¹ in the reactors arose from addition of nitrate to residual nitrate in the inoculum. High concentrations of nitrite that might inhibit denitrification were not measured.

	Cycles of N-turnover	Nitrate removal rate intermittent conditions	Nitrate removal rate continuous conditions	
Reactor 1	1	98.0 µmol L ⁻¹ d ⁻¹	53.5 µmol L ⁻¹ d ⁻¹	
Reactor 2	1	57.4 µmol L ⁻¹ d ⁻¹	77.4 µmol L ⁻¹ d ⁻¹	
	2	90.5 µmol L ⁻¹ d ⁻¹	28.1 µmol L ⁻¹ d ⁻¹	
Reactor 3	1	60.7 µmol L ⁻¹ d ⁻¹	191.7 µmol L ⁻¹ d ⁻¹	
	2	80.3 µmol L ⁻¹ d ⁻¹	185.4 µmol L ⁻¹ d ⁻¹	
	3	63.6 µmol L ⁻¹ d ⁻¹	205.6 µmol L ⁻¹ d ⁻¹	
Abiotic control		3.9 µmol L ⁻¹ d ⁻¹	12.1 µmol L ⁻¹ d ⁻¹	
		Nitrate removal rate without potential		
Biotic control			2.6 µmol L ⁻¹ d ⁻¹	

Table 3.4.1-1 | Nitrate removal rates after each cycle of complete nitrate turnover obtained in batch BES running with intermittent and continuous potential, respectively.

Figure 3.4.1-1 | Current densities (---) and concentrations of nitrate (---), nitrite (- \times -), and ammonium (- \circ -) in batch BES during the cycles of complete nitrogen turnover running with intermittent (left site) and continuous (right site) potential, respectively. The black arrows mark the addition of nitrate.

While current densities were constantly very low at continuously applied potential in the range of 10⁻⁴ to 10⁻⁷ mA cm⁻², peaks of current densities visibly marked the denitrification process with up to 0.13 mA cm⁻². Large peaks were obtained for the first denitrification step from nitrate to nitrite followed by smaller peaks presenting further

downstream reactions. The enhanced current consumption indicated that the denitrification process is stimulated in these reactors. The peaks correlated with the measured nitrate concentrations. Nitrite was only detectable in small concentrations around 19 μ mol L⁻¹. Ammonia was not measurable in quantifiable concentrations.

Current densities were very low in the abiotic controls as shown in Figure 3.4.1-2. Nitrate concentrations decreased only slightly with removal rates of 3.9 μ mol L⁻¹ d⁻¹ and 12.1 μ mol L⁻¹ d⁻¹ at intermittent and continuous potential, respectively.

Figure 3.4.1-2 | Current densities (-•-) and concentrations of nitrate (-•-), nitrite (-×-), and ammonium (- \circ -) in batch BES controls running with intermittent (abiotic control, left site) and continuous (abiotic control, right site) potential, respectively. The concentrations of nitrogen species in the biotic control is shown below.

The findings indicated abiotic reactions at the cathode or biotic reduction by organisms that did not originate from the sediment preculture but were introduced into the system during the reactor assembling because the reactor materials were not autoclaved. The nitrite concentration increased in the abiotic control running at intermittent potential to 200 μ M L⁻¹ at the end of operation. The biotic control showed the smallest nitrate removal rate with 2.6 μ mol L⁻¹ d⁻¹.

Gas overpressure was observed in the batch reactors running with intermittent potential indicating the formation of either nitrogen gas or nitrous oxide. However, the accumulation of nitrous oxide was not measurable using gas chromatography in previously conducted experiments using carbon cloth as cathode material (data not shown).

Since sulphate was additionally available for microorganisms as electron acceptor in concentrations of approximately 1 mmol L⁻¹, the concentrations were compared between the intermittent and continuous potential settings (Figure 3.4.1-3).

Figure 3.4.1-3 | Sulphate concentrations in the batch BES at intermittently (A) and at continuously (B) applied potential during 1 ($-\bullet-$), 2 ($-\bullet-$) and 3 ($-\times-$) cycles of complete nitrate turnover.

Varying sulphate concentrations indicated sulphur cycling in all reactors. At continuously applied potential, the sulphate concentrations slightly decreased showing that the reduction rate seemed to be higher than the sulphide oxidation rate.
3.4.2. Analyses of microbial biofilm community compositions on the cathode

Different microbial community compositions were obtained at the cathode and in the medium when using intermittent and continuous potential settings (Figure 3.4.2-1).

Figure 3.4.2-1 | Microbial community compositions by means of the 20 most abundant asv (above) and the alpha diversity indices (below) on the cathode material (carbon felt = F) and in the medium (M) obtained in batch BES running at intermittent (Int) and continuous (Cont) potential for one (C1), two (C2), and three (C3) cycles of complete nitrate turnover. Additionally, the freshwater sediment and the pre-cultivated inoculum are shown.

The 20 most abundant amplicon sequence variants (asv) of all samples represented in average 70% in the batch reactors running at continuous potential. With intermittent conditions they represent 65% on the cathode and 50% in the medium, respectively. At intermittent applied potential the 20 most abundant asv accounted for 40% to 60% of the total microbial community. The most abundant asv belonged to the genus *Candidatus* Nitrotoga and were found on the cathode material after the first cycle of complete nitrate turnover but decreased during the second and third cycle. On the contrary, asv that were assigned to the genus *Thiobacillus*, increased in the biofilm community on the cathode. In the medium, however, asv belonging to *Pseudomonas* and *Anaerobacillus* were most abundant. While asv of *Pseudomonas* decreased again and were not present in the medium of the reactor running for three cycles, asv of *Anaerobacillus* were still present. Additionally, the asv assigned to the genera *Delftia* and *Azoarcus* established themselves in the medium.

In the reactors running with continuously applied potential the microbial community composition on the cathode did not differ from the one in the medium. The 20 most abundant asv made up approximately 70% of the total community composition. Asv assigned to *Thauera* and *Geobacter* were most abundant in the medium. On the cathode felt, asv belonging to *Thauera*, *Rhodobacter*, *Geobacter*, *Desulfocapsa*, and *Desulfomicrobium* were the dominant ones.

The highly diverse freshwater sediment comprised more than 5000 genera making up 80% of the total community composition showing the need of clustering the asv based on the relative abundances of genera. The 20 most abundant genera, then, accounted for approximately 45% of the total community composition in this sample (Figure 3.4.2-2, right). In the pre-cultured inoculum, the 20 most abundant genera in this sample accounted for almost 70% of the total community composition after clustering asv (Figure 3.4.2-2, left). Approximately 5% of the present asv became members of the electrochemically denitrifying communities in the reactors. The alpha diversity indices (Figure 3.4.2-1, below) underlined the high diversity of these two samples with values of approximately 7.7 in the freshwater sediment and 6.3 in the pre-cultured inoculum.

Figure 3.4.2-2 | Microbial community compositions in the pre-cultured inoculum (left) and in the sediment sample (right) by means of the 20 most abundant genera after clustering asv based on genera abundances.

In summary, denitrifying community compositions were established in both systems with intermittent and continuous potential, respectively. *Beggiatoa* and other vacuolated bacteria seemed not to be present in the sediment sampled from the freshwater tideland on the river Elbe, Germany.

Since the genus *Geobacter* was often described in literature as electrochemically active species and *Candidatus* Nitrotoga was the most dominant genus found on the electrode material, the 10 most abundant asv assigned to these genera were analysed separately (Figure 3.4.2-3). In the batch BES running at continuous potential, the 10 most dominant asv belonging to the genus *Geobacter* accounted for 13% and 20% of the total microbial community composition on the electrode and in the medium, respectively. *Geobacter* asv were also available in the sediment and decreased in the pre-cultured inoculum. They were scarcely present in the reactors running under intermittent potential conditions.

In contrast, in the reactors running under intermittent potential conditions, asv assigned to the genus *Candidatus* Nitrotoga were found to be highly abundant. They accounted for almost 60%, 40% and 30% during the three cycles of complete nitrate turnover, respectively, on the carbon felt electrode showing a continuous decrease of abundance. *Candidatus* Nitrotoga asv did not play a pivotal role in the reactors under

continuous potential and were also very minor abundant in the freshwater sediment and in the pre-cultured inoculum.

Figure 3.4.2-3 | The 10 most abundant asv of *Geobacter* (above) and *Candidatus* Nitrotoga (below) on the cathode material (carbon felt = F) and in the medium (M) obtained in batch BES running at intermittent (Int) and continuous (Cont) potential for one (C1), two (C2), and three (C3) cycles of complete nitrate turnover as well as in the freshwater sediment and in the pre-cultured inoculum.

The relationship between the microbial community compositions under different potential settings and in both sampling sources (electrode and medium) was visualized

using a heat map (Figure 3.4.2-4). Clear distinct microbial community compositions were revealed on the cathode and in the medium in the reactors with applied intermittent potential.

Figure 3.4.2-4 | Heatmap for the visualization of relationships between reactor samples from the cathode material (carbon felt = F) and from the medium (M) obtained in batch BES running at intermittent (Int) and continuous (Cont) potential for one (C1), two (C2), and three (C3) cycles of complete nitrate turnover as well as from the freshwater sediment and in the pre-cultured inoculum.

The microbial community compositions on the cathode significantly changed over time in the reactors with intermittent potential. These compositions had the least in common with the inoculum and the freshwater sediment as well as with the community compositions in the medium of the same reactor. Interestingly, the community compositions on the cathodes and those in the medium in the batch BES running at continuous potential resembled more than the compositions on the cathode and in the medium at intermittent potential.

3.5. Discussion

3.5.1. Bioelectrochemical systems for nitrate removal

The present study is the first one investigating denitrification in BES with intermittent potential conditions. However, it focused on the development of microbial community compositions on the cathodes rather than optimal BES performance. Complete nitrate removal was achieved in both systems running with continuously and intermittently applied potential settings. The consistently applied potential guarantees a constant electron flow utilized by the electrochemically active bacteria for nitrate reduction resulting in shorter time frames of complete nitrate turnover. In the reactors running with intermittent potential, on the contrary, nitrate reduction is stimulated. Enhanced hydrogen production by intermittently applied potential (Cho et al., 2019) might have occurred accelerating the electron transport between electrochemically active microorganisms and the hydrogen (Rabaey *et al.*, 2008). During the starvation period, when the intermittently applied potential is paused, nitrate could also be stored in vacuoles within the bacterial cells as in the case of Beggiatoa species (Teske & Salman, 2014). When the potential is switched on again, the nitrate would be rapidly available for reduction. The enhancement of energy consumption during denitrification at the cathode can be seen in the current peaks, while current consumption at continuously applied potential stays constantly low. If the enhancement of energy consumption provides a pivotal advantage in BES performance was not observed here and should be investigated in further studies.

Most studies on denitrification use organic carbon (e. g. acetate) favouring heterotrophic denitrification at the cathode or acetate oxidation at the anode providing the electrons (Nguyen *et al.*, 2015, Pous *et al.*, 2015, Molognoni *et al.*, 2017). Here, addition of organic substrates was relinquished to lower costs and to avoid the use of organic substrates in a drinking water treatment plant. Groundwater naturally constitutes of low concentrations of dissolved organic and inorganic compounds depending on the travelling time through soils (Appelo & Postma, 2004) serving as substrates for microorganisms. In drinking water production, the denitrification process on the cathode may be implemented as the first step, taking advantage of the presence

of substrates such as carbonate and minerals in the natural groundwater to ensure denitrification. The growth medium was used here due to the focus on the enrichment of microorganisms and must be replaced by natural or synthetic groundwater in further studies of denitrification in BES.

The time for complete nitrate turnover in the reactors running with continuously applied potential takes two third the time interval than that of the reactors running intermittently. However, the intermittent potential was applied only half the time. Therefore, energy can be saved, and the denitrification process may accelerate, when time intervals are optimized.

3.5.2. Microbial community compositions

Completely different denitrifying community compositions are established in both systems with intermittent and continuous potential settings, respectively. It was assumed that vacuolated bacterial species would be enriched during intermittent potential settings that have advantage over other denitrifying bacteria by storage of nitrate within their cells (Teske & Salman, 2014) during the off-phases of applied potential. The stored nitrate would be immediately available for nitrate reduction at the cathode as soon as the potential is switched on. However, vacuolated bacteria such as *Beggiatoa* are not present. The results show that the presence of vacuolated bacteria is not necessary for stimulated nitrate reduction with intermittent potential are present in the community possessing vacuoles, which are so far unknown and which would need further investigation.

Amplicon sequencing variants (asv) assigned to the genera *Geobacter* and *Thauera* are predominant in the reactors when potential is applied continuously. *Geobacter* species have been intensively studied as electrochemically active species in BES, for instance in Nevin *et al.* (2008), Strycharz *et al.* (2011), Rotaru *et al.* (2014), Kashima & Regan (2015), Wan *et al.* (2018). Both genera exhibit facultative nitrate reducers such as *Geobacter metallireducens* (Kashima & Regan, 2015), *Thauera aromatica* (Anders *et al.*, 1995), and *Thauera mechernichensis* (Scholten *et al.*, 1999). Additionally, it was recently reported that syntrophic growth of denitrifying bacteria and

the non-denitrifying *Geobacter sulfurreducens* enhances denitrification by direct interspecies electron transfer (Wan *et al.*, 2018). Direct interspecies electron transfer describes the electron transfer between species under syntrophic growth conditions (Summers *et al.*, 2010). This was also shown for methanogens, where the direct electron transfer between *Methanosarcina barkeri* and *Geobacter metallireducens* was investigated (Rotaru *et al.*, 2014). The asv of *Geobacter* are not further analysed in this study allowing both assumptions that the enriched *Geobacter* species are either denitrifying species or they accelerate denitrification by direct interspecies electron transfer between the cathode and the denitrifiers through *Geobacter* species.

In the reactors running with intermittently applied potential the bacterial denitrifying community shifts over time from the medium onto the cathode indicating the conversion of nitrate by microorganisms using residual electron donors in the medium. Afterwards, a rapid adaptation to the cathode takes place, where electrons are provided. The most dominant species found on the cathodes of these reactors belonged to the genus *Candidatus* Nitrotoga. This is the first report of *Candidatus* Nitrotoga playing a major part as an electrochemically active microorganism in a BES. The finding indicates that nitrite might have been produced but was rapidly consumed by nitrite oxidation back to nitrate since *Candidatus* Nitrotoga is known as nitrite-oxidising genus (Kitzinger *et al.*, 2018). The produced nitrate is further cycled via denitrification as nitrite was always measured in low concentrations in the medium.

As sulphide plays a major role in nitrate conversion in the environment especially regarding nitrate storing bacteria (Nelson *et al.*, 1986, McHatton *et al.*, 1996, Otte *et al.*, 1999), the sulphate concentrations in the medium were analysed. The sulphate concentration in the reactors running with intermittent potential does not change significantly. It can be assumed that biological reduction of sulphate to sulphide or elemental sulphur takes place under consumption of electrons from the cathode. Then, the reaction back to sulphate must also take place. This is indicated by the presence of asv assigned to sulphur oxidising *Thiobacillus* species (Madigan & Martinko, 2006). The sulphur oxidation to sulphate results in the release of electrons, which could flow into the nitrate reduction by detour. This way of electron usage could moreover explain the longer timeframe needed for nitrate reduction besides the intermittent potential settings. Sulphide could also be chemically oxidised back to sulphate by Fe²⁺ ions

(Preisler *et al.*, 2007). Fe³⁺ ions are present in the medium with a concentration of 3.58 mmol L⁻¹ and could also be cycled to Fe²⁺ ions to a certain extend. Nevertheless, the complete nitrate reduction around 15 days shows that most of the electrons are flowing into the nitrogen cycle.

While the sulphur cycle seems to be a complete cycle under intermittent potential settings, in the reactor running continuously with the same potential the sulphate is consumed. This is indicated by the presence of asv related to species such as *Desulfomicrobium* species that can use sulphate as electron acceptor (Kuever & Galushko, 2014). In this case, electrons are also flowing into the sulphur cycle making the electrons unavailable for nitrate reduction. The shorter timeframe for complete nitrate reduction within approximately ten days is due to the continuously poised cathode. Whether sulphur cycling contributes to the conversion of nitrate and to what extend it does so is not clear and should further be studied.

3.5.3. Nitrate reduction via denitrification or DNRA?

While denitrification occurs under carbon-limited and terminal electron-acceptor rich environments, DNRA is favoured in carbon-rich and terminal electron acceptor poor environments (Maier *et al.*, 2009). Nevertheless, ammonium was not detectable in all reactors except in the beginning, which may be residual ammonium from the precultures. Instead, gas pressure rose in the reactors. It can be assumed that elemental nitrogen was formed during operation, which had to be released from time to time. Thus, this study indicates that nitrate reduction in BES running with intermittently applied potential is carried out via the denitrification pathway.

The production of nitrous oxide is always a crucial step in the denitrification process, since it is a greenhouse gas and approximately 300 times stronger than carbon dioxide (IPCC Climate Change, 2007). Nitrous oxide generation might occur in the batch systems running intermittently if the time frame of applied potential is too short. The reaction would stop because of missing electrons from the cathode. Prolonging the time frame in the intermittent settings can solve this issue. The accumulation of nitrous oxide in BES has been observed before (Pous *et al.*, 2013,

Van Doan *et al.*, 2013). However, nitrous oxide does not seem to accumulate in the reactors used in this study but should be further investigated in future studies.

3.5.4. BES performance for denitrification in batch reactors

Until now, biofilm communities have not been studied in cathodic BES running with intermittent potential since the focus usually lies on the efficient bioremediation of wastes with no regard to specific microorganisms. This is the first report on the comparison of community structures in intermittently and continuously running cathodic BES so far. It is shown, that they are completely different from each other resulting in different additional reactions. The knowledge of microbial community compositions may enhance BES performance for instance by improving optimal growth conditions, application of specific microorganisms for a special purpose. New insights into the communities could also reveal another possible usage in bioremediation due to an electrochemically active but previously unknown microorganism. However, it remains unclear why exactly the community compositions differ significantly between the intermittent und continuous potential setting.

The BES performance greatly depends on its setup. Especially in the small batch systems on has to consider several issues. For instance, a close proximity between the electrodes is essential because H⁺ ions travel better in the medium without getting lost the nearer the electrodes are located together (Logan *et al.*, 2006). In the batch BES, it is difficult to always match the same distances between the electrodes causing rather long travelling times of H⁺ ions. This explains the varying performances of the reactors as there were different nitrate removal rates obtained for the cycles. Another point to mention is the kind of membrane and its size of the surface. Here, a cation exchange membrane was applied but also bipolar membranes are commercially available. The latter can help to maintain a more stable pH in the system (Ter Heijne *et al.*, 2006). The medium in the experiments in this study became rather acidic over time due to the prolonged travelling time of H⁺ ions. The size of the membrane surface is quite small with a diameter of 1 cm that can be used effectively. The small size again limits the diffusion of H⁺ ions into the counter chamber.

Nevertheless, the small batch reactors used in this study perfectly suit basic research questions as there are easy to build, low in cost and they allow the accumulation of microorganisms in the medium in contrast to flow cells. In large scale, however, different reactor settings have to be investigated.

3.6. Appendix

Time	Time	Current	Current	Current	Current
hours	days	mA/cm ²	mA/cm ²	mA/cm ²	mA/cm ²
		Cycle 1	Cycle 2	Cycle 3	Abiotic control
0	0	-7.32E-04	-1.09E-03	-1.04E-03	-2.02E-03
12	0.5	-6.87E-04	-1.31E-03	-1.05E-03	-2.07E-03
24	1	-7.11E-04	-5.97E-04	-1.07E-03	-1.89E-03
36	1.5	-7.99E-04	-6.55E-04	-1.17E-03	-1.59E-03
48	2	-1.17E-03	-6.83E-04	-1.28E-03	-1.05E-03
60	2.5	-1.38E-03	-7.48E-04	-1.43E-03	-8.07E-04
72	3	-2.00E-03	-9.30E-04	-2.03E-03	-6.11E-04
84	3.5	-2.94E-03	-1.29E-03	-3.07E-03	-6.45E-04
96	4	-4.41E-03	-1.69E-03	-4.52E-03	-6.87E-04
108	4.5	-6.77E-03	-2.61E-03	-7.65E-03	-6.84E-04
120	5	-1.06E-02	-4.48E-03	-1.33E-02	-6.91E-04
132	5.5	-1.72E-02	-7.99E-03	-2.25E-02	-7.01E-04
144	6	-2.72E-02	-1.46E-02	-4.13E-02	-6.98E-04
156	6.5	-4.55E-02	-2.48E-02	-6.32E-02	-7.21E-04
168	7	-6.66E-02	-4.35E-02	-4.91E-02	-7.17E-04
180	7.5	-9.72E-02	-7.47E-02	-5.29E-02	-8.19E-04
192	8	-1.20E-01	-1.18E-01	-4.84E-02	-8.37E-04
204	8.5	-1.12E-01	-9.08E-02	-4.48E-02	-8.43E-04
216	9	-7.66E-02	-7.56E-02	-4.27E-02	-8.31E-04
228	9.5	-4.31E-02	-7.53E-02	-4.56E-02	-8.03E-04
240	10	-2.32E-02	-6.40E-02	-4.24E-02	-7.64E-04
252	10.5	-1.28E-02	-3.50E-02	-4.11E-02	-8.27E-04
264	11	-7.34E-03	-1.68E-02	-3.09E-02	-8.20E-04
276	11.5	-5.35E-03	-7.32E-03	-2.50E-02	-8.15E-04
288	12	-4.62E-03	-3.26E-03	-1.87E-02	-8.22E-04
300	12.5	-4.38E-03	-1.31E-03	-1.34E-02	-8.06E-04
312	13	-4.41E-03	-7.65E-04	-9.73E-03	-7.98E-04
324	13.5	-4.56E-03	-6.96E-04	-6.74E-03	-7.83E-04
336	14	-5.11E-03	-6.90E-04	-4.76E-03	-8.02E-04
348	14.5	-5.45E-03	-7.11E-04	-3.45E-03	-8.19E-04
360	15	-5.67E-03	-7.61E-04	-2.25E-03	-9.02E-04
372	15.5	-6.06E-03	-8.68E-04	-1.52E-03	-9.37E-04
384	16	-6.53E-03	-9.97E-04	-1.04E-03	-9.40E-04
396	16.5	-7.13E-03	-1.20E-03	-8.29E-04	-9.39E-04
408	17	-8.12E-03	-1.49E-03	-8.26E-04	-9.42E-04
420	17.5	-9.30E-03	-1.85E-03	-8.57E-04	-9.32E-04
432	18	-9.92E-03	-2.31E-03	-9.20E-04	-9.10E-04
444	18.5	-1.18E-02	-2.96E-03	-1.03E-03	-8.88E-04
456	19	-1.38E-02	-3.79E-03	-1.17E-03	-8.70E-04
468	19.5	-1.57E-02	-4.83E-03	-1.35E-03	-8.86E-04
480	20	-1.69E-02	-6.13E-03	-1.60E-03	-8.51E-04
492	20.5	-1.74E-02	-7.68E-03	-1.95E-03	-9.23E-04
504	21	-1.73E-02	-9.29E-03	-2.38E-03	-9.67E-04
516	21.5	-1.68E-02	-1.12E-02	-3.34E-03	-1.02E-03
528	22	-1.56E-02	-1.09E-02	-3.86E-03	-1.04E-03
540	22.5	-1.45E-02	-9.97E-03	-4.16E-03	-1.05E-03
552	23	-1.34E-02	-9.09E-03	-4.40E-03	-1.04E-03
564	23.5	-1.26E-02	-7.92E-03	-4.37E-03	-1.06E-03
576	24	-1.17E-02	-6.73E-03	-4.23E-03	-1.09E-03
588	24.5	-1.09E-02	-5.75E-03	-3.95E-03	-1.11E-03
600	25	-1.14E-02	-4.82E-03	-3.59E-03	-1.83E-03
612	25.5	-1.10E-02	-4.10E-03	-3.26E-03	-1.83E-03
624	26	-1.04E-02	-3.11E-03	-2.88E-03	-1.83E-03
636	26.5	-1.02E-02	-2.05E-03	-2.50E-03	-1.86E-03

Table 3.5.4-1 | Current averaged over 6 hours in batch BES running at intermittent potential settings.

Time	Time	Current	Current	Current	Current
hours	days	mA/cm ²	mA/cm ²	mA/cm ²	mA/cm ²
		Cvcle 1	Cvcle 2	Cvcle 3	Abiotic control
648	27	-9 79E-03	-1 71E-03	-2 17E-03	-1 90E-03
660	27.5	-7.34E-03	-1.40E-03	-1.93E-03	-1.11E-03
672	28	-7 68E-03	-1 12E-03	-1 63E-03	-1 10E-03
684	28.5	-7 76E-03	-8 83F-04	-1 40E-03	-1 12E-03
696	20.0	_7.97E-03	-6.88E-04	_1 14E-03	-1 15E-03
708	29.5	-8 10E-03	-5 34E-04	-9 53E-04	_1.10E 00
720	30	-8 12E-03	-4 37E-04	-7 64E-04	-1 18E-03
732	30.5	-8.55E-03	-4.37E-04	-6.16E-04	-1.18E-03
744	31	-8.67E-03	-4.10E-04	_4 91E-04	-1.10E-03
756	31.5	-8.41E-03	-4.06E-04	-4.0TE-04	-1.16E-03
750	32	-0.41E-03	-4.00L-04	-4.40L-04	-1.15E-03
780	32.5	-0.22E-03	-4.02E-04	-4.20E-04	-1.20E-03
700	33	-0.13E-03	-1.34E-01	-2.00L-02	-1.31E-03
804	33.5	-0.40E-03	-5.13E-02	-3.26E-02	-1.30E-03
816	33.3	-0.70L-03	-5.43L-02	-3.03L-02	-1.40L-03
010	24 5	-9.09L-03	-5.40L-02	-3.10L-02	-1.42L-03
020	34.3	-0.07E-03	-0.40E-02	-3.21E-02	-1.39E-03
040	30 25 F	-9.13E-03	-J.UZE-UZ	-3.20E-02	-1.44E-03
002	30.5	-0.99E-U3	-0.00E-02	-3.19E-UZ	-1.40E-03
004	30 26 F	-9.295-03	-0.10E-UZ	-3.29E-UZ	-1.01E-03
0/0	30.5 27	-9.395-03	-0.90E-02	-3.20E-U2	-1.00E-03
000	31 27 E	-9.420-03	-0.90E-UZ	-3.31E-UZ	-1.00E-03
900	20	-9.522-03	-0.04L-02	-3.29L-02	-1.00L-03
912	20 5	-9.06E-03	-4.00E-02	-3.29E-02	-1.02E-03
924	30.0	-1.00E-02	-3.40E-02	-3.33E-02	-1.03E-03
930	20.5	-1.09E-02	-2.20E-02	-3.34E-02	-1.04E-03
940	39.5	-1.11E-02	-1.34E-02	-3.29E-02	-1.05E-03
900	40	-1.11E-02	-1.07E-02	-3.27E-02	-1.04E-03
972	40.3	-1.10E-02	-7.79L-03	-3.27 L-02	-1.04L-03
904	41	-1.10L-02	-0.07 L-03	-3.33L-02	-1.01L-03
1008	42	-1.00E-02	-5.98E-03	-3.37E-02	-1.00E-00
1000	42.5	-1.09E-02	-6.45E-03	-3.37E-02	-1.00E-00
1020	42.3	-1.09E-02	-0.43E-03	-3.36E-02	-1.59E-03
1032	43.5	-1.12E-02	-7.50E-03	-3.30E-02	-1.04E-03
1056	44	-1.10E-02	-0.37E-03	-2.54F-02	-1.70E-03
1068	44 5	_1.13E-02	-1 09E-02	_1 79E-02	-1 76E-03
1080	45	-1 11F-02	-1 13E-02	-1 21F-02	-1 76E-03
1092	45.5		-1 11F-02	-8 16E-03	-1 82E-03
1104	46		-1 04F-02	-5 77E-03	-1.85E-03
1116	46.5		-9 49F-03	-4 30E-03	-2.05E-03
1128	47		-8 48E-03	-3 50E-03	-2 13E-03
1140	47.5		-7.20F-03	-3.22F-03	-2.16F-03
1152	48		-6.14F-03	-3.22F-03	-2.19F-03
1164	48.5		-5.10F-03	-3.63F-03	-2.65F-03
1176	49		-4.13F-03	-4.41F-03	-2.55F-03
1188	49.5		-3.28E-03	-5.52E-03	-2.55E-03
1200	50		-2.56E-03	-7.14E-03	-2.54E-03
1212	50.5		-1.94E-03	-8.78E-03	-2.53E-03
1224	51		-1.43E-03	-9.95E-03	-2.50E-03
1236	51.5		-1.04E-03	-1.04E-02	-2.48E-03
1248	52		-7.44E-04	-1.03E-02	-2.49E-03
1260	52.5		-5.48E-04	-9.99E-03	-2.49E-03
1272	53		-4.00E-04	-9.25E-03	-2.48E-03
1284	53.5		-3.62E-04	-8.36E-03	-2.51E-03
1296	54		-3.47E-04	-7.39E-03	-2.46E-03
1308	54.5		-3.50E-04	-6.51E-03	-2.47E-03
1320	55		-3.48E-04	-5.59E-03	-2.47E-03
1332	55.5		-3.30E-04	-4.71E-03	-2.26E-03
1344	56		-3.36E-04	-4.04E-03	-2.22E-03
1356	56.5		-3.29E-04	-3.37E-03	-2.18E-03

Time	Time	Current	Current	Current	Current
hours	days	mA/cm ²	mA/cm ²	mA/cm ²	mA/cm ²
		Cvcle 1	Cvcle 2	Cvcle 3	Abiotic control
1368	57		-3.34E-04	-2 82E-03	-2 15E-03
1380	57.5		-3 27E-04	-2 31E-03	-2 18E-03
1302	58		-3 31E-04	_1 89E-03	-2 16E-03
1404	58.5		-3.30E-04	-1.00E-00	-2.10E-03
1404	50.5		-3.30L-04	-1.JUE-03	-2.13E-03
1410	59		-3.30E-04	-1.16E-03	-2.19E-03
1428	59.5		-3.25E-04	-9.26E-04	-2.29E-03
1440	60		-3.27E-04	-7.34E-04	-2.37E-03
1452	60.5		-3.29E-04	-5.82E-04	-2.34E-03
1464	61		-3.30E-04	-4.73E-04	-2.31E-03
1476	61.5		-3.25E-04	-3.86E-04	-2.28E-03
1488	62		-3.24E-04	-3.63E-04	-2.33E-03
1500	62.5			-4.37E-02	-2.16E-03
1512	63			-4.07E-02	-2.15E-03
1524	63.5			-3.96E-02	-2.17E-03
1536	64			-4.11E-02	-2.13E-03
1548	64.5			-4.07E-02	-2.16E-03
1560	65			-4.08E-02	-2.17E-03
1572	65.5			-4 02E-02	-2 18E-03
1584	66			-3 91F-02	-2 18E-03
1504	66.5			-3.88E-02	-2.16E-03
1609	67			-3.00L-02	-2.15E-03
1000	67.5			-3.65E-02	-2.10E-03
1020	07.3			-3.55E-02	-2.13E-03
1632	68			-2.83E-02	-2.13E-03
1644	68.5			-2.29E-02	-2.13E-03
1656	69			-1.92E-02	-2.13E-03
1668	69.5			-1.69E-02	-2.39E-03
1680	70			-1.55E-02	-2.40E-03
1692	70.5			-1.38E-02	-2.46E-03
1704	71			-1.26E-02	-2.50E-03
1716	71.5			-1.17E-02	-2.53E-03
1728	72			-1.06E-02	-2.54E-03
1740	72.5			-9.32E-03	-2.55E-03
1752	73			-7.89E-03	-2.60E-03
1764	73.5			-6.29E-03	-2.45E-03
1776	74			-4.92E-03	-2.47E-03
1788	74 5			-3 73E-03	-2 45E-03
1800	75			-2 77E-03	-2 43E-03
1812	75.5			_1 98E-03	_2.10E 00
1824	76			-1.36E-03	-2.47E-03
1024	76 5			-1.30L-03	-2.492-00
1030	70.3			-0.94L-04	
1048	// 			-0.47 E-04	
1860	//.5			-3.86E-04	
18/2	/8			-3.83E-04	
1884	/8.5			-3.73E-04	
1896	79			-3.65E-04	
1908	79.5			-3.70E-04	
1920	80			-3.79E-04	
1932	80.5			-3.69E-04	
1944	81			-3.80E-04	
1956	81.5			-3.82E-04	
1968	82			-3.85E-04	
1980	82.5			-3.75E-04	
1992	83			-3.75E-04	
2004	83.5			-3.76E-04	
2016	84			-3.91F-04	
2028	84 5			-3 93F-04	
2020	54.5 ۶۶			_3 Q1F_0/	
2040	<u>۵</u> 5 و ۲			_3 77E 04	
2032	00.0			-3.72 04	
2004	00			-0.10E-04	
20/6	0.00		1	-3.02E-U4	

Time	Time	Current	Current	Current	Current
hours	days	mA/cm ²	mA/cm ²	mA/cm ²	mA/cm ²
		Cycle 1	Cycle 2	Cycle 3	Abiotic control
2088	87			-3.91E-04	
2100	87.5			-3.85E-04	
2112	88			-3.75E-04	
2124	88.5			-3.78E-04	
2136	89			-3.78E-04	
2148	89.5			-3.78E-04	

Table 3.5.4-2 | Current averaged over 6 hours in batch BES running at continuous potential settings.

Time	Time	Current	Current	Current	Current
hours	days	mA/cm ²	mA/cm ²	mA/cm ²	mA/cm ²
		Cycle 1	Cycle 2	Cycle 3	Abiotic control
0	0	-8.19E-06	-2.63E-06	-2.85E-06	-6.52E-07
6	0.25	-4.74E-06	-1.51E-06	-2.47E-06	-6.36E-07
12	0.5	-2.55E-06	-1.11E-06	-2.11E-06	-6.28E-07
18	0.75	-2.77E-06	-1.06E-06	-1.86E-06	-6.19E-07
24	1	-2.64E-06	-1.06E-06	-1.71E-06	-6.10E-07
30	1.25	-2.32E-06	-1.12E-06	-1.56E-06	-6.05E-07
36	1.5	-1.97E-06	-1.19E-06	-1.39E-06	-6.05E-07
42	1.75	-1.65E-06	-1.30E-06	-1.23E-06	-5.99E-07
48	2	-1.47E-06	-1.52E-06	-8.97E-07	-5.94E-07
54	2.25	-1.28E-06	-2.10E-06	-8.43E-07	-5.90E-07
60	2.5	-1.13E-06	-3.69E-06	-1.04E-06	-5.86E-07
66	2.75	-1.03E-06	-6.91E-06	-1.18E-06	-5.90E-07
72	3	-9.24E-07	-1.28E-05	-5.37E-07	-5.77E-07
78	3.25	-8.63E-07	-2.42E-05	-5.09E-07	-5.75E-07
84	3.5	-8.27E-07	-4.65E-05	-5.00E-07	-5.74E-07
90	3.75	-7.98E-07	-8.97E-05	-5.06E-07	-5.85E-07
96	4	-7.63E-07	-1.70E-04	-5.05E-07	-5.79E-07
102	4.25	-7.47E-07	-3.01E-04	-4.88E-07	-5.85E-07
108	4.5	-7.46E-07	-4.54E-04	-4.89E-07	-5.88E-07
114	4.75	-7.42E-07	-5.45E-04	-4.85E-07	-5.96E-07
120	5	-7.42E-07	-5.42E-04	-4.84E-07	-5.88E-07
126	5.25	-7.34E-07	-4.69E-04	-4.84E-07	-5.82E-07
132	5.5	-7.32E-07	-3.79E-04	-4.77E-07	-5.85E-07
138	5.75	-7.10E-07	-2.87E-04	-4.79E-07	-5.89E-07
144	6	-6.59E-07	-2.08E-04	-4.69E-07	-5.91E-07
150	6.25	-6.34E-07	-1.60E-04	-4.67E-07	-5.94E-07
156	6.5	-6.30E-07	-1.35E-04	-4.54E-07	-6.00E-07
162	6.75	-6.80E-07	-1.08E-04	-4.33E-07	-6.08E-07
168	7	-6.52E-07	-8.29E-05	-4.16E-07	-6.08E-07
174	7.25	-6.36E-07	-7.09E-05	-4.21E-07	-6.22E-07
180	7.5	-6.28E-07	-6.59E-05	-4.23E-07	-6.28E-07
186	7.75	-6.19E-07	-5.83E-05	-4.25E-07	-6.30E-07
192	8	-6.10E-07	-5.44E-05	-4.19E-07	-6.28E-07
198	8.25	-6.05E-07	-5.59E-05	-4.19E-07	-6.27E-07
204	8.5	-6.05E-07	-6.18E-05	-4.16E-07	-6.31E-07
210	8.75	-5.99E-07	-6.86E-05	-4.10E-07	-6.32E-07
216	9	-5.94E-07	-7.93E-05	-4.08E-07	-6.32E-07
222	9.25	-5.90E-07	-9.11E-05	-4.11E-07	-6.36E-07
228	9.5	-5.86E-07	-9.62E-05	-4.05E-07	-0.35E-07
234	9.75	-5.90E-07	-9.29E-05	-4.01E-07	-0.44E-07
240	10	-3.//E-U/	-0.31E-05	-4.05E-07	-0.42E-07
246	10.25	-5./5E-0/	-7.55E-05	-4.38E-07	-0.43E-07
252	10.5	-5.74E-07	-1.13E-05	-4.46E-07	-0.40E-07
208	10.75	-0.000-07	-0.000-05	-4.00E-07	-0.02E-07
∠04	1 11	-0.490-00	-4.900-00	-4.000-0/	-2.920-00

Time	Time	Current	Current	Current	Current
hours	days	mA/cm ²	mA/cm ²	mA/cm ²	mA/cm ²
		Cycle 1	Cycle 2	Cycle 3	Abiotic control
270	11.25	-7.62E-05	-5.94E-05	-4.70E-07	-2.80E-06
276	11.5	-7.74E-05	-6.22E-05	-4.63E-07	-2.90E-06
282	11.75	-6.94E-05	-6.21E-05	-4.56E-07	-3.36E-06
288	12	-6.58E-05	-5.55E-05	-4.50E-07	-3.54E-06
294	12 25	-6.31E-05	-4 50E-05	-4 60E-07	-3 62E-06
300	12.5	-5 82E-05	-6 25E-05	-4.58E-07	-3 65E-06
306	12 75	-5 41E-05	-6 97E-05	-4 60E-07	-3.68E-06
312	13	-5 21E-05	-6 72E-05	-4 65E-07	-4 77E-06
318	13 25	-5.01E-05	-6 64E-05	-4 84F-07	-4 79E-06
324	13.5	-4 68E-05	-6 52E-05	-4 77E-07	-4 73E-06
330	13 75	-4 48E-05	-6.37E-05	-4 72E-07	-4 62E-06
336	10.10	-4 33E-05	-5.96E-05	-4 75E-07	-4 58E-06
342	14 25	-4.00E-00	-5.30E-05	_4.92E-07	-4.30E-00
348	14.5	-3.94E-05	-5 53E-05	-5 16E-07	-4 49E-06
354	14.75	-3.97E-05	-5.33E-05	-5.18E-07	-4.49E-06
360	15	-3.87E-05	-5.31E-05	-5.16E-07	-4.50E-06
366	15 25	-3.68E-05	-7.62E-05	-5.10E-07	-4.50E-00
300	15.25	-3.00L-05	-7.02L-05	-5.29L-07	-4.50E-00
270	15.5	-3.33E-05	-7.00L-05	-3.37E-07	-4.JTL-00
370	10.70	-3.34E-03	-0.07E-05	-5.23E-07	-4.37 E-00
304	10	-3.36E-05	-0.04E-05	-5.19E-07	-4.03E-00
390	10.20	-3.34E-05	-0.90E-05	-3.24E-07	-4.03E-00
390	10.3	-3.31E-05	-0.36E-05	-5.13E-07	-3.30E-00
402	10.75	-3.33E-05	-4.34E-05	-5.18E-07	-4.77E-06
408	17	-3.31E-05	-2.89E-05	-5.22E-07	-4.00E-00
414	17.25	-3.35E-05	-2.18E-05	-5.33E-07	-4.08E-00
420	17.5	-3.34E-05	-1.80E-05	-5.43E-07	-4.83E-06
420	17.75	-3.34E-05	-1.01E-05	-5.46E-07	-4.94E-06
432	18	-3.38E-05	-1.54E-05	-5.33E-07	-4.96E-06
438	18.25	-3.39E-05	-1.55E-05	-5.40E-07	-5.00E-06
444	18.5	-5.13E-05	-1.37E-05	-5.55E-07	-5.05E-06
450	10.75	-5.10E-05	-1.52E-05	-5.56E-07	-3.04E-06
450	19	-5.04E-05	-1.73E-05	-5.58E-07	-5.06E-06
402	19.25	-5.02E-05	-2.06E-05	-3.00E-07	-3.07E-00
408	19.5	-5.06E-05	-2.54E-05	-5.73E-07	-5.09E-06
474	19.75	-4.96E-05	-3.23E-05	-3.09E-07	-3.06E-00
400	20	-4.91E-05	-4.23E-05	-5.55E-07	
400	20.23	-4.00E-03	-3.22E-03	-5.00E-07	
492	20.5		-1.20E-04	-3.04E-07	
490	20.75		-1.23E-04	-5.56E-07	
504	21		-1.21E-04	-5.50E-07	
510	21.25		-1.18E-04	-3.01E-07	
516	21.5		-1.16E-04	-5.75E-07	
522	21./5		-1.12E-04	-5.91E-07	
528	22		-1.09E-04	-5.90E-07	
534	22.25		-1.11E-04	-5.89E-07	
540	22.5		-1.13E-04	-5.84E-07	
546	22.75		-1.11E-04	-5.87E-07	
552	23		-1.10E-04	-5.82E-07	
558	23.25		-1.12E-04	-5./3E-07	
564	23.5		-1.12E-04	-5.60E-07	
570	23.75		-1.12E-04	-6.64E-06	
5/6	24		-1.43E-04	-5.12E-06	
582	24.25		-1.41E-04	-4.12E-06	
588	24.5		-1.22E-04	-3.63E-06	
594	24./5		-1.1/E-04	-3.30E-06	
600	25		-1.13E-04	-3.06E-06	
606	25.25		-1.12E-04	-2.20E-06	
612	25.5		-1.08E-04	-1./1E-06	
618	25.75		-1.06E-04	-1./3E-06	
624	26	l	-1.05E-04	-1.64E-06	l

Time	Time	Current	Current	Current	Current
hours	days	mA/cm ²	mA/cm ²	mA/cm ²	mA/cm ²
	-	Cycle 1	Cycle 2	Cycle 3	Abiotic control
630	26.25	-	-1.03E-04	-1.57E-06	
636	26.5		-1.01E-04	-1.50E-06	
642	26.75		-9.89E-05	-1.46E-06	
648	27		-9.92E-05	-1.44E-06	
654	27 25		-9 69E-05	-1 34E-06	
660	27.5		-1 17E-04	-1 17E-06	
666	27 75		-1 09E-04	-1.08E-06	
672	28		-1 05E-04	-9 86E-07	
678	28 25		-1 03E-04	-8 88E-07	
684	28.5		-1 01F-04	-8 15E-07	
690	28.75		-1 01E-04	-7 57E-07	
696	29		-9 91F-05	-7 15E-07	
702	29 25		-1 03E-04	-6 57E-07	
702	20.20		-1 01E-04	-6.09E-07	
714	20.0		-1.01E-04	-0.00E-07	
714	30		-0.86E-05	-5.70E-07	
726	30.25		-9.00L-05	-5.40L-07	
720	30.23		-3.010-03	-5.200-07	
720	30.3 20.75		1 22E 04	-3.290-07	
730	30.75		-1.23E-04	-3.13E-07	
744	24.05		-1.21E-04	-4.97E-07	
750	31.25		-1.18E-04	-4.94E-07	
750	31.5		-1.16E-04	-4.96E-07	
762	31.75		-1.12E-04	-4.92E-07	
/08	32		-1.09E-04	-4.84E-07	
7/4	32.25		-1.11E-04	-4.78E-07	
780	32.5		-1.13E-04	-4.77E-07	
786	32.75		-1.11E-04	-4.95E-07	
792	33		-1.10E-04	-5.04E-07	
798	33.25		-1.12E-04	-5.01E-07	
804	33.5		-1.12E-04	-5.03E-07	
810	33.75		-1.12E-04	-5.04E-07	
816	34		-1.43E-04	-5.03E-07	
822	34.25		-1.41E-04	-5.08E-07	
828	34.5		-1.22E-04	-5.06E-07	
834	34.75		-1.18E-04	-5.11E-07	
840	35		-1.13E-04	-4.92E-07	
846	35.25		-1.12E-04	-4.76E-07	
852	35.5		-1.08E-04	-4.84E-07	
858	35.75		-1.06E-04	-4.83E-07	
864	36		-1.05E-04	-4.74E-07	
870	36.25		-1.03E-04	-4.76E-07	
876	36.5		-1.01E-04	-4.84E-07	
882	36.75		-9.89E-05	-4.80E-07	
888	37		-9.92E-05	-4.74E-07	
894	37.25		-9.69E-05	-4.89E-07	
900	37.5			-4.94E-07	
906	37.75			-5.11E-07	
912	38			-5.11E-07	
918	38.25			-5.02E-07	
924	38.5			-4.97E-07	
930	38.75			-5.02E-07	
936	39			-4.99E-07	
942	39.25			-5.00E-07	
948	39.5			-4.96E-07	
954	39.75			-4.94E-07	
960	40			-4.93E-07	
966	40.25			-2.13E-06	
972	40.5			-1.69E-06	
978	40.75			-1.53E-06	
984	41			-1.45E-06	

Time	Time	Current	Current	Current	Current
hours	days	mA/cm ²	mA/cm ²	mA/cm ²	mA/cm ²
		Cvcle 1	Cvcle 2	Cvcle 3	Abiotic control
990	41.25		- 1	-1 58E-06	
996	41.5			-1 83E-06	
1002	41 75			-2 24E-06	
1002	42			-2 74F-06	
1014	42.25			-3 77E-06	
1014	42.25			-5.77L-00	
1020	42.5			-3.31E-00	
1020	42.73			-9.29L-00	
1032	43			-1.00L-05	
1030	43.23			-3.732-05	
1044	43.3			-7.44E-03	
1050	43.73			-1.43E-04	
1056	44			-2.57E-04	
1062	44.25			-2.17E-04	
1068	44.5			-1.79E-04	
1074	44.75			-1.57E-04	
1080	45			-1.43E-04	
1086	45.25			-1.28E-04	
1092	45.5			-1.13E-04	
1098	45.75			-1.02E-04	
1104	46			-9.92E-05	
1110	46.25			-6.99E-05	
1116	46.5			-5.12E-05	
1122	46.75			-4.36E-05	
1128	47			-3.93E-05	
1134	47.25			-3.77E-05	
1140	47.5			-3.96E-05	
1146	47.75			-4.26E-05	
1152	48			-4.37E-05	
1158	48.25			-4.27E-05	
1164	48.5			-4.28E-05	
1170	48.75			-4.54E-05	
1176	49			-4.74E-05	
1182	49.25			-4.67E-05	
1188	49.5			-4.45E-05	
1194	49.75			-4.24E-05	
1200	50			-4.09E-05	
1206	50.25			-3.95E-05	
1212	50.5			-3 83E-05	
1218	50 75			-3 67E-05	
1224	51			-3 69E-05	
1230	51 25			-1 50E-06	
1236	51.5			-1 72E-06	
1230	51.5			_1 2/E_06	
1242	51.75			_1.24L-00	
1240	52 52				
1204	52.20			-9.900-07	
1200	52.5			1 205 06	
1200	52.75			-1.20E-06	
1272	50 05			-1.40E-00	
1278	53.25			-1.53E-06	
1284	53.5			-1.01E-06	
1290	53.75			-1./2E-06	
1296	54			-1.94E-06	
1302	54.25			-2.13E-06	
1308	54.5			-2.98E-06	
1314	54.75			-3.00E-06	
1320	55			-3.49E-06	
1326	55.25			-3.21E-06	
1332	55.5			-3.25E-06	
1338	55.75			-5.04E-06	
1344	56			-7.10E-06	

Time	Time	Current	Current	Current	Current
hours	days	mA/cm ²	mA/cm ²	mA/cm ²	mA/cm ²
		Cycle 1	Cycle 2	Cycle 3	Abiotic control
1350	56.25			-7.68E-06	
1356	56.5			-8.00E-06	
1362	56.75			-8.07E-06	
1368	57			-8.86E-06	
1374	57.25			-9.42E-06	
1380	57.5			-9.27E-06	
1386	57.75			-8.62E-06	
1392	58			-8.31E-06	

Г- Г			8	16	2			, - ·										89	56												25	1																	
te			7.07	3.09											te			1.82	2.32									fe			4.66	2.82																	
Nitri	ž	Std	0		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Nitri	ž	Std			n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Nitri	Ę	Std			n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Nitrite	Mu	Mean	40.3/2/	25.3111	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Nitrite	Mu	Mean	72.8708	38.1092	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Nitrite	Mu	Mean	69.2529	37.2274	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Conc3	Ми	0007.00	36.4303	27,8390											Conc3	M		73.2871	39.9502									Conc3	Mu		65.0024	36.6405	#VALUE!																
Conc2	Mu	1007 07	- C021.04	21.8641											Conc2	Mu		74.4556	35.4956									Conc2	Mu		68.5164	34.7459	33.3395																
Conc 1	Мц		100.24	26.2301											Conc 1	Мц		70.8696	38.8817									Conc 1	Mu		74.2398	40.2957	34.6709																
53	W		3.8430	2,7839											53	W		3.6644	3.9950									53	Wr		3.2501	3.6640	.а.																
32	Ă	0070	4.0120	2.1864											32	M		3.7228	3.5496									32	Ă		3.4258	3.4746	3.3340 1																
31 51	Σ		1.002.4	2.6230											31 0	M		3.5435	3.8882									31 51	Σ		3.7120	4.0296	3.4671																
Nitrate S	Mu	Std	3 2078	5.8750	1.8327	2.1177	0.9185	2.3625	1.3816	2.2346	0.6994	0.5489	11.6538	2.0214	Nitrate	M	Std	22.5234	5.8436	1.2993	1.4959	2.3161	7.4739	3.3076	17.9369	7.4681	3.8437	Nitrate	M	Std	10.6576	2.2721	1.8582	2.1903	1.7095	1.1259	1.1778	29.1364	6.3342	11.8802	i0//IC#	8.6080	10.1076	9.9176	6.7019	4.4019	3.7039	5.225	7.2685
Nitrate	N,	Vean 300 2000	808.9293 706.0110	669.2252	163.9507	64.7221	35.4145	44.3426	33.6759	34.5598	33.6650	28.6731	37.4536	30.0256	Vitrate	N,	Mean 3	782.2420	378.1828	32.9488	25.3806	32.9384	695.1534	61.4165	49.8175	21.2124	9.4646	Nitrate	M	Mean	870.2395	354.0228	73.8404	54.4373	60.6260	745.1014	182.9615	54.7708	32.0159	28.7772	10//IC#	835.4290	630.5628	575.7434	120.0795	54.2978	26.0456	40.5805	60.2105
Conc3	M	-	70/ 3806	663.9621	162.4210	63.1278	36.4671	41.9147	34.7369	32.5865	34.2513	28.3710	50.8277	27.9445	Conc3	M		805.1103	379.1314	33.7327	26.4084	35.5101	691.2154	60.8758	30.1956	16.9117	6.6180	Conc3	Mu		857.9814	351.4635	75.5133	55.7802	59.1708	743.9469	181.6113	87.6494	26.0366	36.9887	n.a.	828.3765	626.3869	587.0074	124.5801	57.5379	22.6880	35.2932	59.5814
Conc2	M	0100 100	800 2543	668.1499	165.9820	63.9135	35.0002	46.6337	34.1771	36.9862	33.8530	28.3417	29.4774	30.1506	Conc2	M		781.5355	371.9229	31.4490	23.6644	31.0168	690.4719	58.4125	65.3700	16.8897	7.9390	Conc2	Mu		875.4268	355.8024	71.8404	55.6220	62.5087	745.1609	183.7779	32.1527	38.6536	34.1881	n.a.	832.8894	642.0893	568.3224	123.2812	49.2862	25.4302	40.7126	53.2770
Conc1	Мц	0001 010	7102 2017	675,5636	163.4490	67.1249	34.7761	44.4795	32.1136	34.1066	32.8908	29.3067	32.0558	31.9815	Conc1	Мц		760.0801	383.4941	33.6646	26.0690	32.2882	703.7728	64.9611	53.8870	29.8358	13.8369	Conc1	Mu		877.3105	354.8024	74.1676	51.9098	60.1986	746.1964	183.4952	44.5103	31.3575	15.1547	n.a.	845.0210	623.2123	571.9003	112.3772	56.0693	30.0188	45.7357	67.7731
S3	Мц		00542.10 0051.07	66.3962	16.2421	6.3128	3.6467	4.1915	3.4737	3.2586	3.4251	2.8371	5.0828	2.7945	S3	Мц		40.2555	37.9131	3.3733	2.6408	3.5510	34.5608	6.0876	3.0196	1.6912	0.6618	S3	Ы		42.8991	35.1463	7.5513	5.5780	5.9171	37.1973	18.1611	8.7649	2.6037	3.6989	n.a.	82.8377	62.6387	29.3504	12.4580	5.7538	2.2688	3.5293	5.9581
S2	Mu		80.0254 80.0254	66.8150	16.5982	6.3914	3.5000	4.6634	3.4177	3.6986	3.3853	2.8342	2.9477	3.0151	S2	Mu		39.0768	37.1923	3.1449	2.3664	3.1017	34.5236	5.8412	6.5370	1.6890	0.7939	S2	MM		43.7713	35.5802	7.1840	5.5622	6.2509	37.2580	18.3778	3.2153	3.8654	3.4188	n.a.	83.2889	64.2089	28.4161	12.3281	4.9286	2.5430	4.0713	5.3277
S1	Mu		00C2.10 70.3307	67.5564	16.3449	6.7125	3.4776	4.4480	3.2114	3.4107	3.2891	2.9307	3.2056	3.1982	S1	Mu		38.0040	38.3494	3.3665	2.6069	3.2288	35.1886	6.4961	5.3887	2.9836	1.3837	S1	Mu		43.8655	35.4802	7.4168	5.1910	6.0199	37.3098	18.3495	4.4510	3.1358	1.5155	n.a.	84.5021	62.3212	28.5950	11.2377	5.6069	3.0019	4.5736	6.7773
Tme	lays	4	D W	o 0.	13	16	20	23	27	8	8	37	41	4	Ime	lays		0	9	13	20	27	32	39	48	53	09	Ime	lays		0	9	13	20	27	32	39	48	53	09	61	65	68	72	75	79	83	87	6
<u>-</u>	#	•		- ~	n N	4	5	9	7	80	6	10	11	12	C2	#		0	-	2	e	4	2	9	7	80	6	ទ	#		0	-	2	e	4	5	9	7	8	6	10	11	12	13	4	15	16	17	18

Table 3.5.4-3 | Nitrate and nitrite concentrations in the batch BES running with intermittent potential settings.

Table 3.5.4-4 |Nitrate and nitrite concentrations in the abiotic control running with intermittent potential settings.

AC	Time	S1	S2	S3	Conc1	Conc2	Conc3	Nitrate	Nitrate	S1	S2	53	Conc1	Conc2	Conc3	Nitrite	Nitrite
#	days	Мц	Mu	Мц	Мц	Mi	Mu	Mu	Mi	Мц	Mu	Wr	Mu	Mu	Мч	Mi	MI
								Mean	Std							Mean	Std
0	0	67.152	3 67.6014	67.0552	2 671.5225	676.0138	670.5520	672.6961	2.9139	4.2782	3.9592	4.407	0 42.7824	39.5921	44.0702	42.1482	2.3054
Ē	9	72.3496	3 72.6420	72.7024	4 723.4975	726.4205	727.0237	725.6472	1.8860	10.2141	11.2266	10.364	4 102.1410	112.2662	103.6438	106.0170	5.4639
N	б	70.564	3 70.5024	70.475	3 705.6476	705.0243	704.7532	705.1417	0.4586	10.8230	11.1716	11.003.	3 108.2300	111.7157	110.0332	109.9930	1.7432
r,	13	67.4794	1 67.6076	67.116	5 674.7945	676.0764	671.1646	674.0118	2.5477	11.4178	11.7691	11.154	3 114.1779	117.6914	111.5478	114.4723	3.0824
4	16	68.8936	5 69.1118	68.685	9 688.9361	691.1183	686.8580	688.9708	2.1304	9.2399	10.4065	10.144	7 92.3994	104.0654	101.4471	99.3040	6.1212
2	20	65.2984	1 65.2687	65.3887	7 652.9844	652.6868	653.8870	653.1861	0.6250	10.4218	9.6705	9.680	3 104.2180	96.7051	96.8081	99.2437	4.3081
9	23	58.809	1 58.1567	58.494	3 588.0906	581.5668	584.9478	584.8684	3.2626	14.7836	14.7259	15.228.	2 147.8361	147.2589	152.2821	149.1257	2.7487
7	27	54.683(54.7396	54.5654	4 546.8300	547.3957	545.6540	546.6266	0.8885	15.8128	16.0290	15.581	7 158.1279	160.2903	155.8173	158.0785	2.2369
80	30	53.8302	2 54.7103	53.9076	5 538.3019	547.1026	539.0760	541.4935	4.8730	16.7265	16.6667	15.917	9 167.2652	166.6666	159.1790	164.3703	4.5057
5	34	60.049	1 59.4309	59.7618	8 600.4914	594.3093	597.6179	597.4729	3.0936	17.8464	18.2270	18.131	1 178.4635	182.2696	181.3112	180.6814	1.9796
6	37	58.495	3 57.8184	57.9615	9 584.9528	578.1837	579.6191	580.9186	3.5668	17.9611	18.2131	18.386	5 179.6113	182.1311	183.8650	181.8691	2.1389
1	41	57.3155	5 59.4547	58.8316	3 573.1550	594.5472	588.3181	585.3401	11.0026	18.4565	18.4567	18.629	5 184.5653	184.5674	186.2946	185.1424	0.9978
12	44	56.8556	56.6759	55.846	3 568.5559	566.7589	558.4684	564.5944	5.3808	18.4018	18.1833	17.576.	2 184.0178	181.8326	175.7621	180.5375	4.2775
13	48	56.918	1 55.3010	55.936(0 569.1808	553.0104	559.3600	560.5171	8.1470	18.0310	17.8484	18.274	5 180.3102	178.4845	182.7447	180.5131	2.1374
4	51	54.4202	2 55.5007	56.011(0 544.2024	555.0075	560.1105	553.1068	8.1226	18.0501	18.2960	18.661	1 180.5005	182.9603	186.6111	183.3573	3.0746
15	55	55.9225	55.3884	55.5078	559.2253	553.8837	555.0781	556.0624	2.8035	18.7040	16.0335	18.495	4 187.0398	160.3354	184.9539	177.4430	14.8523
16	58	56.3680	56.5238	57.1264	4 563.6799	565.2376	571.2639	566.7271	4.0054	18.8079	16.6146	16.136	3 188.0792	166.1460	161.3676	171.8643	14.2443
17	62	54.679	1 55.9188	55.411	1 546.7943	559.1875	554.1112	553.3643	6.2303	18.6335	20.4029	16.221.	3 186.3348	204.0287	162.2132	184.1923	20.9899
18	65	56.5118	3 55.9323	56.9256	9 565.1176	559.3232	569.2592	564.5666	4.9909	20.8289	21.7865	21.840	3 208.2891	217.8652	218.4082	214.8542	5.6920
19	69	56.0170	56.0844	54.7257	7 560.1702	560.8436	547.2575	556.0905	7.6570	20.4174	20.3631	20.734	1 204.1743	203.6305	207.3413	205.0487	2.0040
20	72	55.788	3 53.1524	54.2900	0 557.8832	531.5236	542.9003	544.1023	13.2209	20.9969	19.3056	20.076	3 209.9693	193.0559	200.7678	201.2643	8.4676
21	76	56.4600) 55.7262	55.4177	7 564.5999	557.2617	554.1775	558.6797	5.3539	19.8146	20.9936	20.788	1 198.1459	209.9357	207.8808	205.3208	6.2980
22	79	54.9632	2 54.6580	55.0560	3 549.6322	546.5800	550.5632	548.9251	2.0836	19.0107	19.5782	19.539.	9 190.1072	195.7825	195.3990	193.7629	3.1717
23	83	56.042	1 54.3542	54.6327	7 560.4213	543.5419	546.3272	550.0968	9.0491	20.9350	20.1261	19. 189.	209.3505	201.2606	191.8916	200.8342	8.7373

Table 3.5.4-5 | Nitrate and nitrite concentrations in the biotic control without potential settings.

p	זנ	e	าเ	la	18	se	II	In	g	<u>s.</u>																
Nitrite	Mu	Std	*VALUE!	2.7902	0.9972	1.5731	2.4193	3.2705	1.0663	2.6403	1.7590	1.2837	1.6776	3.1323	0.8210	1.2292	1.4037	0.1323	0.6133	2.8726	5.1532	0.3524	1.1649	2.5586	1.1673	1.5716
Nitrite	M	Mean	****	32.5372	48.4071	46.9766	47.0379	48.0250	43.9005	46.1072	47.4964	48.2392	49.6458	51.7607	50.5935	51.3805	48.8799	50.6207	48.8106	51.1838	49.7779	49.0660	52.4784	46.4810	49.0921	48.4972
Conc3	Мц		36.6342	30.5059	49.5549	48.7788	48.6033	51.5237	43.0005	48.8685	45.4655	48.0470	50.5675	50.6440	51.0314	51.4800	49.7083	50.6220	48.4285	47.9325	53.3605	49.2577	53.8194	44.4361	49.7920	49.7739
Conc2	Мч		#VALUE!	31.3871	47.7534	46.2722	48.2591	47.5068	43.6227	45.8455	48.5335	47.0624	47.7095	55.2984	49.6464	50.1045	49.6722	50.7523	49.5180	52.2404	52.1013	49.2811	51.7163	49.3501	49.7397	46.7420
Conc1	M		39.7172	35.7186	47.9130	45.8789	44.2514	45.0446	45.0782	43.6074	48.4903	49.6081	50.6605	49.3398	51.1028	52.5570	47.2591	50.4877	48.4852	53.3783	43.8721	48.6593	51.8996	45.6568	47.7445	48.9757
3	Σ		3.6634	3.0506	4.9555	4.8779	4.8603	5.1524	4.3001	4.8869	4.5466	4.8047	5.0568	5.0644	5.1031	5.1480	4.9708	5.0622	4.8429	4.7933	5.3360	4.9258	5.3819	4.4436	4.9792	4.9774
2 S	л Б		ë	3.1387	4.7753	4.6272	4.8259	4.7507	4.3623	4.5846	4.8533	4.7062	4.7710	5.5298	4.9646	5.0105	4.9672	5.0752	4.9518	5.2240	5.2101	4.9281	5.1716	4.9350	4.9740	4.6742
S	۱ ۱		3.9717 n.	3.5719	4.7913	4.5879	4.4251	4.5045	4.5078	4.3607	4.8490	4.9608	5.0660	4.9340	5.1103	5.2557	4.7259	5.0488	4.8485	5.3378	4.3872	4.8659	5.1900	4.5657	4.7745	4.8976
S S	맄	_	80	9	ო	Ģ	2	0	0	Q	~	ෆ	5	ę	2	2	5	4	e	0	œ	1Q	2	ŋ	0	<u>.</u>
Nitrate	Mi	Std	2.302	8.194	1.079	4.774	2.388	3.850	3.600	5.434	1.157	4.083	12.759	9.557	3.724	5.078	10.200	9.319	3.801	12.057	8.281	3.975	5.458	3.837	6.933	5.624
Nitrate	Mu	Mean	835.8103	923.6775	889.6214	896.5671	927.9530	933.4083	907.8661	878.4850	859.2207	934.9502	947.5647	942.3619	907.5466	907.5554	892.3897	894.0384	906.6052	889.6593	920.2836	879.4713	888.9341	875.7431	895.7589	885.4913
Conc3	Мц		838.3627	914.9547	890.8574	899.0159	925.8663	937.1575	909.5519	880.6977	859.5264	931.4415	954.6051	953.3002	906.7582	913.2997	902.5907	895.8347	906.3064	882.8640	919.8711	884.0559	882.7714	873.2659	887.7921	880.5782
Conc2	M		833.8885	924.8648	888.8653	891.0650	930.5577	933.6027	903.7315	882.4635	860.1949	939.4322	932.8359	938.1613	911.6019	905.7027	892.3878	902.3289	910.5470	882.5336	928.7639	876.9758	893.1588	873.7995	899.0592	884.2699
Conc1 (W		835.1798	931.2132	889.1414	899.6204	927.4351	929.4648	910.3149	872.2937	857.9408	933.9769	955.2532	935.6244	904.2797	903.6637	882.1905	883.9517	902.9621	903.5802	912.2158	877.3823	890.8720	880.1640	900.4254	891.6257
53	M		83.8363	91.4955	89.0857	89.9016	92.5866	93.7158	90.9552	88.0698	85.9526	93.1442	95.4605	95.3300	90.6758	91.3300	90.2591	89.5835	90.6306	88.2864	91.9871	88.4056	88.2771	87.3266	88.7792	88.0578
32 52	Ψ.		83.3888	92.4865	88.8865	89.1065	93.0558	93.3603	90.3732	88.2463	86.0195	93.9432	93.2836	93.8161	91.1602	90.5703	89.2388	90.2329	91.0547	88.2534	92.8764	87.6976	89.3159	87.3799	89.9059	88.4270
5	л Д		83.5180	93.1213	88.9141	89.9620	92.7435	92.9465	91.0315	87.2294	85.7941	93.3977	95.5253	93.5624	90.4280	90.3664	88.2191	88.3952	90.2962	90.3580	91.2216	87.7382	89.0872	88.0164	90.0425	89.1626
me S	lų sys		0	9	6	13	16	20	23	27	30	34	37	41	44	48	51	55	58	62	65	69	72	76	79	83
́ с	dê	_	0	-	2	e	4	5	9	7	ω	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23
Ô	#																									

#			26	23	Conc1	Conc2	Conc3	Nitrate	Nitrate	S1	S2	S3	Conc1	Conc2	Conc3	Nitrite	Nitrite
	days	Мц	M	Mu	Мц	M	M	Mu	ЧW	Мц	Mu	Мц	Mu	Mu	Mu	Мц	Mu
								Mean	Std							Mean	Std
0	0	0 83.3591	1 83.5690	83.8157	833.5906	835.6896	838.1566	835.8123	2.2854	3.7743	4.1388	4.0721	37.742	8 41.388	1 40.7210	39.9507	1.9409
-	9	5 12.3575	5 12.9901	12.3710	123.5750	129.9013	123.7100	125.7288	3.6141	1.7154	1.4131	1.5840	17.153	8 14.131	0 15.8403	15.7084	1.5157
2	6	9 4.761C	4.8198	4.1303	47.6104	48.1980	41.3034	45.7039	3.8223							n.a.	n.a.
S	13	3 2.5752	3.2172	2.5149	25.7521	32.1718	25.1494	27.6911	3.8921							n.a.	n.a.
4 1	16	2.7801	1 2.8160	2.9134	27.8015	28.1599	29.1339	28.3651	0.6895							n.a.	n.a.
2	20	2.5713	3 2.4733	2.4507	25.7130	24.7330	24.5073	24.9845	0.6410							n.a.	n.a.
9	23	3 3.5216	3.5146	3.4239	35.2185	35.1455	34.2390	34.8677	0.5457							n.a.	n.a.
~	27	7 4.0363	3 4.0208	4.1286	40.3628	40.2076	41.2863	40.6189	0.5832							n.a.	n.a.
œ	30	38.5083	3 38.1836	38.7789	770.1657	763.6717	775.5780	769.8051	5.9613							n.a.	n.a.
6	34	4 2.4235	3.5341	2.4852	24.2331	35.3408	24.8521	28.1420	6.2420							n.a.	n.a.
10	37	7 3.5005	9 2.2838	3.9082	35.0087	22.8375	39.0817	32.3093	8.4518							n.a.	n.a.
11	41	3.7962	2 2.6636	3.4152	37.9622	26.6356	34.1520	32.9166	5.7635							n.a.	n.a.
12	44	4 3.1441	3.0170	3.0774	31.4414	30.1699	30.7745	30.7953	0.6360							n.a.	n.a.
13	48	3.2517	7 3.5814	3.1811	32.5171	35.8145	31.8109	33.3808	2.1370							n.a.	n.a.
14	51	1 85.9524	4 87.6463	83.5085	859.5240	876.4629	835.0853	857.0240	20.8018							n.a.	n.a.
15	55	3.5944	4 3.3119	3.4296	35.9440	33.1193	34.2965	34.4533	1.4189							n.a.	n.a.
16	58	3.9465	3.4720	3.5130	39.4688	34.7195	35.1298	36.4394	2.6315							n.a.	n.a.
17	62	3.1846	3 2.0144	3.1584	31.8458	3 20.1445	31.5839	27.8581	6.6815							n.a.	n.a.
ۍ	Time	S1	S2	S3	Conc1	Conc2	Conc3	Nitrate	Nitrate	S1	S2	S3	Conc1	Conc2	Conc3	Nitrite	Nitrite
#	days	Мц	Mu	Mu	Мц	Мц	Мц	Mu	Мц	Мц	Mu	Мц	Mu	Mu	Mu	Мц	Мц
								Mean	Std							Mean	Std
0	0	50.4744	4 51.7740	51.7753	1009.4873	1035.4800	1035.5056	1026.8243	15.0143							n.a.	n.a.
-	9	5 90.4991	1 91.8324	91.5328	904.9915	918.3237	915.3276	912.8809	6.9948							n.a.	n.a.
2	6	9 54.4711	1 54.2439	54.4169	544.7110	542.4390	544.1690	543.7730	1.1866							n.a.	n.a.
S	13	3 39.1936	38.8846	38.6074	391.9390	388.8459	386.0743	388.9531	2.9338							n.a.	n.a.
4	16	5 17.6387	7 17.7449	18.3132	176.3866	177.4493	183.1321	178.9893	3.6269							n.a.	n.a.
2	20	3 4.1396	3 4.4453	4.1244	41.3956	44.4526	41.2437	42.3640	1.8104							n.a.	n.a.
5 C	Time	S1	S2	S3	Conc1	Conc2	Conc3	Nitrate	Nitrate	S1	S2	S3	Conc1	Conc2	Conc3	Nitrite	Nitrite
#	days	Мц	Mu	Mu	Мц	Mu	Мц	Мц	лM	Мц	Мц	Мц	Mu	Мц	Mu	Мц	Мц
								Mean	Std							Mean	Std
0	0	0 54.0244	4 53.1960	53.2080	1080.4877	1063.9208	1064.1602	1069.5229	9.4965							n.a.	n.a.
~	9	91.9196	91.4119	91.6298	919.1991	914.1195	916.2977	916.5388	2.5484							n.a.	n.a.
2	6	9 54.4711	1 54.2439	54.4169	544.7111	542.4394	544.1692	543.7732	1.1865							n.a.	n.a.
e	13	6.0881	1 5.6251	5.7086	60.8806	56.2513	57.0862	58.0727	2.4673							n.a.	n.a.
4	16	5 2.2346	3 3.1722	3.2286	22.3484	31.7220	32.2856	28.7853	5.5816							n.a.	n.a.
2	20	0 2.6754	4 2.7508	2.3841	26.7535	5 27.5083	23.8414	26.0344	1.9363							n.a.	n.a.
9	23	3 42.5339	9 42.7949	40.0734	850.6777	855.8985	801.4675	836.0145	30.0323							n.a.	n.a.
7	27	7 78.1685	5 77.8106	78.6099	781.6853	3 778.1057	786.0991	781.9634	4.0039							n.a.	n.a.
œ	30	0 74.3606	3 73.1843	74.6427	743.6061	731.8428	746.4273	740.6254	7.7356							n.a.	n.a.
0	34	4 58.8947	60.4964	58.5185	588.9474	604.9639	585.1845	593.0319	10.5032							n.a.	n.a.
10	37	7 43.9071	1 43.8713	42.9075	439.0707	438.7132	429.0753	435.6197	5.6705							n.a.	n.a.
YC:	Time .	S1	S2	S3	Conc1	Conc2	Conc3	Nitrate	Nitrate	S1 ::	S2	S3	Conc1	Conc2	Conc3	Nitrite	Nitrite
H	days	MIT	MIN	MM	МЦ	MM	MIM	Miq	PHM Std	MIN	MM	МЦ	Мп	M	MH	Min	NIH Sto
C	C	011101	CN35 CN C	0100 11		319C 710	075 0005	020 0027	11 1001								2 0
7		70 1160	70 6167	01 6000	701 1620	706 1522	020.0300	0000 1000	1001.11								
- c		19.1104	2010.61 2	20000.10	727 5760	730 0300	3900.010	001.0403 707 5014	10.0001							Ш.а.	П. а.
7 0	2 C	1102.01 0	040101010	60 4075	672 0696	1 03.0033	684 0750	0100.101	4.3407							Ц.а.	, a
24	2 4	0 U1.23U5	00.100 64 1676	63 2417	630 5022	641 6761	632 4173	637 8650	3.0110 A 8416							П.а.	л.а. 2
υ t	200	00.000 0	60 5411	60.6861	623 4502	605.4106	806 8605	411 0101	10.0280	7 5080	2 5030	7 586/	75 089	0 25.038	2 75 8636	11.a. 25.6304	11.a. 0.5162
<u>ہ</u>	23	3 58.6460	57.1797	57.3522	586.4601	571.7968	573.5219	577.2596	8.0144	2.2350	2.7803	2.2997	7 22.349	7 27.803	3 22.9966	24.3832	2.9795

Table 3.5.4-6 | Nitrate and nitrite concentrations in the batch BES running with continuous potential settings.

	79	65	-	20							÷	33	1	82	_			72	19	50	67				86	9	19	2	47	36	88	39	13	80	4	96	26	64	46	ø	92	g	
Conc.	1641.02	1270.39	i0//IC#	1277.16						Conc.	1640.088	1251.380	i0//IC#	1248.296	i0//IC#	i0//IC#	i0//IC#	1205.47	1152.70	1165.21	1196.66			Conc.	1219.30	1161.35	1187.12	987.90	1148.38	1037.97	769.58	683.77	879.94	636.51	653.37	733.03	635.46	573.65	546.06	546.24	590.96	547.70	
onc. IC	82.0514	127.0396	i0//IO#	127.7166	#DIV/0	i0//IC#				onc. IC	82.0044053	125.138032	i0//IO#	124.829662	#DIV/0i	i0//IO#	#DIV/0i	120.5477	115.2702	116.5213	119.6667			onc. IC	121.9310	116.1351	118.7122	98.7900	114.8385	103.7974	76.9589	68.3774	43.9971	63.6520	65.3377	73.3040	63.5463	57.3656	54.6065	54.6241	59.0969	54.7709	
	1.8362	2.8574	#DIV/0i	2.8728	#DIV/01	#DIV/01				EAN C	1.8351	2.8142	#DIV/0I	2.8072	#DIV/01	#DIV/0i	#DIV/0i	2.7100	2.5902	2.6186	2.6900			EAN C	2.7414	2.6099	2.6684	2.2161	2.5804	2.3298	1.7206	1.5258	0.9723	1.4185	1.4568	1.6376	1.4161	1.2758	1.2132	1.2136	1.3151	1.2169	
rea 3 M	1.8468	2.9286	iled	2.8379	iled	iled				rea 3 M	1.838	2.8318	iled	2.7028	iled	iled	iled	2.6248	2.587	2.547	2.685			rea 3 M	2.7225	2.6431	2.6825	2.2253	2.5826	2.3412	1.7667	1.5571	1.0145	1.4592	1.4546	1.7417	1.4413	1.3368	1.2169	1.2192	1.3573	1.3088	
rea 2 A	1.8546	2.8389	iled fa	2.8995	iled fa	iled fa				rea 2 A	1.8246	2.8227	iled fa	2.8821	iled fa	iled fa	iled fa	2.7312	2.6103	2.6467	2.6633			rea 2 A	2.771	2.6212	2.6749	2.2106	2.6169	2.3677	1.7524	1.5887	0.9384	1.4381	1.545	1.6327	1.4465	1.3308	1.2607	1.2482	1.3633	1.2247	
Area 1 A	1.8071	2.8047	ailed fa	2.8809	ailed fa	ailed fa				Area 1 A	1.8427	2.7882	ailed fa	2.8368	ailed fa	ailed fa	ailed fa	2.7741	2.5734	2.6622	2.7218			Area 1 A	2.7308	2.5653	2.6477	2.2125	2.5418	2.2805	1.6426	1.4315	0.9641	1.3582	1.3707	1.5384	1.3605	1.1598	1.1619	1.1733	1.2247	1.1172	
or Time /	1 T0	F	T2	13	T4 f	T5 f				or Time /	2 T0	F	12	13	T4	T5 f	T6 f	4	Т8	T9	T10			or Time /	D	Ч	12	T3	T4	T5	TG	4	T8	T9	T10	T11	T12	T13	T14	T15	T16	T17	
React	D10 R									React	D10 R													React	D9 R1																		
Cycle	1 Con C1	0	4	0	80	8	0	4	-	Cycle	7 Con C1	8	6	4	8	0	ß	0	7	e	-	0	2	Cvcle	0 Con C3	e	80	4	0	4	6	0	0	2		~	8	0	80	0	0	2	
Conc.	1211.483	1250.748	1002.584	969.339	965.638	983.406	921.086	908.355	1057.900	Conc.	1388.663	703.333	692.422	1102.305	734.449(1397.1806	684.346	935.815(950.616	936.916	720.925	809.486	1034.478	Conc.	1496.9750	723.568	698.472	929.794	733.627(1400.029	668.839	841.351(984.933	991.174	i0//IC#	936.784	918.590	984.699	986.240	1011.894	973.906	1142.070	n nossible
Conc. IC	121.1483	125.0749	100.2584	96.9339	96.5639	98.3407	92.1087	90.8355	105.7900	Conc. IC	69.4332	70.3333	69.2423	110.2305	73.4449	69.8590	68.4347	93.5815	95.0617	93.6916	72.0925	80.9486	103.4479	Conc. IC	74.8488	72.3568	69.8473	92.9794	73.3627	70.0015	66.8840	84.1351	98.4934	99.1175	#DIV/0	93.6784	91.8590	98.4699	98.6241	101.1894	97.3906	114.2070	ak senaratior
VEAN (2.7237	2.8128	2.2495	2.1740	2.1656	2.2059	2.0645	2.0356	2.3750	AEAN 0	1.5497	1.5702	1.5454	2.4758	1.6408	1.5594	1.5271	2.0979	2.1315	2.1004	1.6101	1.8111	2.3219	AEAN (1.6727	1.6161	1.5591	2.0842	1.6389	1.5626	1.4919	1.8835	2.2094	2.2236	#DIV/0i	2.1001	2.0588	2.2089	2.2124	2.2706	2.1844	2.5661	a no clear pe
Vrea 3 N	2.7389	2.8174	2.2252	2.1851	2.1299	2.1938	2.0443	2.0429	2.0646	Vrea 3 N	1.5572	1.5615	1.5615	2.5488	1.6379	1.5774	1.5098	2.1033	2.1341	2.097	1.6	1.8135	2.3284	Vrea 3 N	1.6755	1.6206	1.5543	2.0603	1.6495	1.5620	1.4175	2.1119	2.1842	2.2019		2.0924	2.0297	2.1822	2.2488	2.3239	2.1736	2.5111	nown species
Vrea 2 /	2.7519	2.8292	2.2207	2.1106	2.2013	2.1849	2.0757	1.9842	2.5412	Vrea 2 /	1.5523	1.6027	1.501	2.4965	1.6462	1.5859	1.528	2.1214	2.1555	2.1014	1.6078	1.8089	2.3149	Vrea 2 /	1.6749	1.6198	1.5618	2.0806	1.6267	1.5272	1.5291	2.1691	2.2344	2.2226		2.0885	2.0872	2.2253	2.1901	2.2668	2.1879	2.6217	on with an unk
Area 1 /	2.6802	2.7918	2.3025	2.2263	failed	2.2391	2.0734	2.0796	2.5193	Area 1 /	1.5397	1.5463	1.5737	2.3822	1.6383	1.5149	1.5434	2.069	2.1049	2.1028	1.6225	1.811	2.3223	Area 1 /	1.6676	1.6079	1.5613	2.1118	1.6406	1.5987	1.5290	1.3694	2.2096	2.2462		2.1194	2.0595	2.2191	2.1982	2.2211	2.1916	2.5655	failed: co-elutic
Time	0L	ц	T2	T3	T4	T5	T6	Ē	T 8	Time	0L	Ц	T2	13	T4	T5	T6	Ē	1 8	T9	T10	T11	T12	Time	0 <u>1</u>	Ħ	T2	13	T4	T5	T6	4	T8	T9	110	T11	T12	T13	T14	T15	T16	T17	
Reactor	D9 R2									Reactor	D8 R5													Reactor	D8 R6																		:20
Cycle	Int C1									Cycle	Int C2													Cvcle	Int C3																		dilution 1

Table 3.5.4-7 | Sulphate concentrations in the batch BES running with intermittent (int) and with continuous (cont) potential settings.

Table 3.5.4-8 | The most abundant 16S gene sequencing data (count of sequence \geq 10) of all samples obtained from the batch reactors used for nitrate removal from synthetic groundwater. Asv were summarised on genus level and shown on the lowest classified level

Pow Labels	Count of
Archaga	649
Creparchaeota	87
Bathvarchaeia	77
NA	10
Eurvarchaeota	92
Methanomicrobia	46
Methanomicrobiales	23
Methanoregulaceae	23
Methanoregula	23
Methanosarcinales	23
Methanoperedenaceae	10
Candidatus_Methanoperedens	10
Methanosaetaceae	13
Methanosaeta	13
Thermoplasmata	46
Methanomassiliicoccales	31
Methanomassiliicoccaceae	14
NA	17
NA	15
NA	95
Nanoarchaeaeota	375
NA	12
Woesearchaeia	363
Bacteria	11523
Acidobacteria	597
	52
Solibacterales	52
Brychaster	JZ 15
Bryobacter Condidatus Solihostor	10
NA	10
NA Paludibaculum	14
	40
Aminicenantales	40
AT-s3-28	13
Holophagae	55
Holophagales	23
Holophagaceae	23
Subgroup 7	32
NA	23
Subaroup 17	60
Subgroup 18	26
Subgroup 22	61
Subgroup 6	186
Thermoanaerobaculia	81
Thermoanaerobaculales	81
Thermoanaerobaculaceae	81
Subgroup_10	42
Subgroup_23	11
Thermoanaerobaculum	13
TPD-58	15
Actinobacteria	455
Acidimicrobiia	123
Actinomarinales	33
IMCC26256	20
Microtrichales	70
Ilumatobacteraceae	28
CL500-29_marine_group	13
Ilumatobacter	15
Microtrichaceae	22
NA	10

l and shown on the lowest classified	level.
Sva0996_marine_group	12
NA	20
Actinobacteria	65
NA Branianikastarialas	52
Propionibacteriales	13
Nocardioidas	13
Coriobacterija	68
NA	12
OPB41	56
MB-A2-108	26
NA	50
Thermoleophilia	107
Gaiellales	68
Galellaceae	14
	14 54
Solirubrobacterales	39
67-14	29
Solirubrobacteraceae	10
WCHB1-81	16
Armatimonadetes	73
Chthonomonadetes	10
Chthonomonadales	10
Fimbriimonadia	15
Fimbriimonadales	15
ΝΔ	48
Atribacteria	40 11
JS1	11
Bacteroidetes	1063
Bacteroidia	802
Bacteroidales	336
Bacteroidetes_BD2-2	28
Bacteroidetes_vadinHA17	155
NA Brolivibactoracoao	39 75
BSV/13	17
NA	45
WCHB1-32	13
Rikenellaceae	15
Blvii28_wastewater-sludge_group	15
SB-5	24
Chitinophagales	177
37-13 Chitinenhagenee	11
ΝΔ	20 20
Terrimonas	13
NA	18
Saprospiraceae	115
NA	104
Phaeodactylibacter	11
Cytophagales	18
Microscillaceae	18
Flavobacteriaces	31
Flavobacterium	31 10
NA	12
ΝΑ	83
Sphingobacteriales	157
AKYH767	33
env.OPS_17	14
Lentimicrobiaceae	47

NA	53
NS11-12_marine_group	10
Ignavibacteria	251
Ignavibacteriales	86
Ignavibacteriaceae	26
Ignavibacterium	26
NA	15
PHOS-HE36	17
SR-FBR-L83	28
Kryptoniales	111
BSV26	96
MSB-3C8	15
	17
5JA-28	37
Rhodothermales	10
Phodothermanoa	10
	70
Calditrichaeota	11
Calditrichia	11
Calditrichales	11
Calditrichaceae	11
Chlamydiae	64
Chlamydiae	64
Chlamydiales	64
NA	24
Parachlamydiaceae	40
NA	17
Neochlamydia	23
Chloroflexi	1361
Anaerolineae	1074
ADurb.Bin180	26
Anaerolineales	476
Anaerolineaceae	476
Anaerolinea	51
GWD2-49-16	18
Leptolinea	32
Levilinea	19
NA	299
	10
	24
Ardonticatonalos	23 19
Caldilingalos	10
Caldilineaceae	193
Litorilinea	133
NA	179
NA	106
RBG-13-54-9	54
SBR1031	91
A4b	32
NA	59
SJA-15	98
01/01/2020	12
Chloroflexia	23
Thermomicrobiales	23
JG30-KF-CM45	23
Dehalococcoidia	92
GIF9	23
MSBL5	11
	41
	17
	22
NA	53
	50 25
	20

53	TK10	14
10	Cyanobacteria	191
251	Melainabacteria	10
86	Gastranaerophilales	10
26	Oxyphotobacteria	168
26	Chloroplast	93
15	NA	48
17	Nostocales	16
28	Synechococcales	11
11	Cyanobiaceae	11
96	Cyanobium PCC-6307	11
15	Sericytochromatia	13
17	Dependentiae	200
37	Babeliae	200
10	Babeliales	200
10	Babeliaceae	21
10	NA	98
70	UBA12409	14
11	Vermiphilaceae	67
11	Flusimicrobia	74
11	Elusimicrobia	32
11		19
61		13
64		13
04 64	Lineage_lib	21
04		10
24 40		10
40	FCPU426	12
17	Fibrobacteres	13
23	Fibrobacteria	13
561	Fibrobacterales	13
)74	Firmicutes	465
26	Bacilli	73
1/6	Bacillales	73
76	Bacillaceae	58
51	Anaerobacillus	16
18	Bacillus	24
32	NA	18
19	Paenibacillaceae	15
299	Paenibacillus	15
10	Clostridia	350
24	Clostridiales	336
23	Christensenellaceae	13
18	Christensenellaceae_R-7_group	13
93	Clostridiaceae_1	63
93	Clostridium_sensu_stricto_1	13
14	Clostridium_sensu_stricto_13	14
79	NA	36
06	Family XII	26
54	Acidaminobacter	16
91	NA	10
32	Family XIII	31
59	Anaerovorax	21
98	NA	10
12	Heliobacteriaceae	12
23	Hydrogenispora	12
23	Lachnospiraceae	17
23	NA	66
92	Pentococcaceae	28
22	Desulfoenorosinus	
2J 11	ΝΔ	16
11		10
41	NA	00 40
17		40
22		18
53	Syntrophomonadaceae	12
58	Syntrophomonas	12
25	NA	14

NA	27
Negativicutes	15
Selenomonadales	15
Veillonellaceae	15
Gemmatimonadetes	80
BD2-11_terrestrial_group	20
Gemmatimonadetes	60
Gemmatimonadales	60
Gemmatimonadaceae	60
Hvdrogenedentes	98
Hvdrogenedentia	98
Hydrogenedentiales	98
Hydrogenedensaceae	98
Kiritimatiellaeota	47
Kiritimatiellae	47
WCHB1-41	47
Latoscibactoria	142
	142
	30
	30
	30
	12
NA	21
NA	105
LCP-89	10
Margulisbacteria	17
NA	929
Nitrospinae	30
P9X2b3D02	30
Nitrospirae	91
4-29-1	13
Nitrospira	18
Nitrospirales	18
Nitrospiraceae	18
Nitrospira	18
Thermodesulfovibrionia	60
Omnitrophicaeota	47
NA	30
Omnitrophia	17
Omnitrophales	17
Omnitrophaceae	17
Candidatus_Omnitrophus	17
Patescibacteria	713
ABY1	82
Candidatus_Falkowbacteria	15
Candidatus_Kerfeldbacteria	31
Candidatus_Magasanikbacteria	23
NA	13
Berkelbacteria	23
CPR2	25
Gracilibacteria	89
Absconditabacteriales (SR1)	20
Candidatus Peregrinibacteria	21
Candidatus Peribacteria	10
NA	38
Microgenomatia	169
Candidatus Levybacteria	10
Candidatus Pacebacteria	38
Candidatus Roizmanbacteria	17
Candidatus Woesebacteria	83
NA	21
NA	44
Parcubacteria	136
Candidatus Kaiserbacteria	20 20
Candidatus Moranhactoria	20
Candidatus Nomurabactoria	52
Candidatus Vanofekybactoria	10
Sanalaatas_ranoiskybacteria	11

NA	57
Saccharimonadia	66
Saccharimonadales	66
WS6_(Dojkabacteria)	30
WWE3	49
Planctomycetes	598
OM190	39
Phycisphaerae	128
CCM11a	14
Phycisphaerales	47
AKAU3564 sediment group	13
Phycisphaeraceae	34
NA	16
SM1A02	18
Pla1 lineage	31
Tepidisphaerales	36
WD2101 soil group	36
Pla4 lineage	15
Planctomycetacia	416
Gemmatales	52
Gemmataceae	52
Gemmata	16
NA	36
Pirollulales	313
Pirellulaceae	313
Plietopirollulo	25
Candidatua Anammovimiarahium	17
	1/
NA Din1 lineane	140
Piralula	41
Pirelluia	50
	22
Planctomycetales	51
Cimencies	40
Gimesiaceae	10
Gimesiaceae NA	10 41
Gimesiaceae NA Proteobacteria	10 41 3145
Gimesiaceae NA Proteobacteria Alphaproteobacteria	10 41 3145 373
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA	10 41 3145 373 109
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales	10 41 3145 373 109 116
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae	10 41 3145 373 109 116 32
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium	10 41 3145 373 109 116 32 222
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium	10 41 3145 373 109 116 32 22 10
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA	10 41 3145 373 109 116 32 22 10 42
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae	10 41 3145 373 109 116 32 22 10 42 20
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis	10 41 3145 373 109 116 32 22 10 42 20 11
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiaceae Rhizobiaceae Sedis Xanthobacteraceae	10 41 3145 373 109 116 32 22 10 42 20 11
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales	10 41 3145 373 109 116 32 22 10 42 20 11 11 137
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacteraceae	10 41 3145 373 109 116 32 22 10 42 20 11 11 137 137
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacteraceae Frigidibacter	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacteraceae Frigidibacter NA	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 11
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacteraceae Frigidibacter NA Rhodobacter	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 11 111
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacteraceae Frigidibacter NA Rhodobacter	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 11 111 15 11
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacteraceae Frigidibacter NA Rhodobacter Sphingomonadales Sphingomonadaceae	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 137 11 111 15 11
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacteraceae Frigidibacter NA Rhodobacter Sphingomonadales Sphingomonadaceae Deltaproteobacteria	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 11 111 15 11 111 15 11
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacteraceae Frigidibacter NA Rhodobacter Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 11 111 15 11 111 15 11 346 89
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacteraceae Frigidibacter NA Rhodobacter Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 11 111 15 11 111 15 11 346 89 25
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacteraceae Frigidibacter NA Rhodobacter Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae NA	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 137 11 111 15 11 111 15 11 1346 89 25 25
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacteraceae Frigidibacter NA Rhodobacter Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae NA Peredibacter	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 137 11 111 15 11 111 1346 89 25 25 11
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacterales Rhodobacterales Rhodobacterales Rhodobacterales Rhodobacterales Sphingomonadales Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae NA Peredibacter Bdellovibrionaceae	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 137 11 111 15 11 111 1346 89 25 211 14
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacterales Rhodobacterales Rhodobacterales Rhodobacterales Rhodobacterales Sphingomonadales Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae NA Peredibacter Bdellovibrionaceae Bdellovibrionaceae Bdellovibrionaceae Bdellovibrionaceae	10 41 3145 373 109 116 32 222 10 42 200 11 11 11 137 137 11 111 1346 89 25 11 14 64 38
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacteraceae Frigidibacter NA Rhodobacter Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae NA Peredibacter Bdellovibrionaceae Bdellovibrionaceae Bdellovibrio	10 41 3145 373 109 116 32 22 20 10 42 20 11 11 11 137 137 11 11 1346 89 25 11 14 64 38 26
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacteraceae Frigidibacter NA Rhodobactera Sphingomonadales Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae NA Peredibacter Bdellovibrionaceae Bdellovibrionaceae Bdellovibrionaceae Bdellovibrionaceae Bdellovibrionaceae Bdellovibrio	10 41 3145 373 109 116 32 22 10 42 200 11 11 11 137 137 11 111 1346 89 255 11 14 44 38 26 27
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacterales Rhodobacterales Sphingomonadales Sphingomonadales Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae NA Peredibacter Bdellovibrionaceae Bdellovibrionaceae Bdellovibrionaceae Bdellovibrionaceae Bdellovibrionaceae Bdellovibrio	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 137 11 111 1346 89 255 111 14 64 38 26 27 77
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacterales Rhodobacteraceae Frigidibacter NA Rhodobacter Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae NA Peredibacter Bdellovibrionaceae Bdellovibrionaceae Bdellovibrio OM27_clade Deltaproteobacteria_Incertae_Sedis Syntrophorhabdaceae Syntrophorhabdaceae	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 137 11 111 111 1346 89 255 111 14 64 38 26 27 27 27
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacteraceae Frigidibacter NA Rhodobacter Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae NA Peredibacter Bdellovibrionaceae Bdellovibrio OM27_clade Deltaproteobacteria_Incertae_Sedis Syntrophorhabdaceae Syntrophorhabdaceae	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 11 11 111 1346 89 25 11 14 464 38 26 27 27 27
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacterales Rhodobacterales Rhodobacterales Rhodobacterales Sphingomonadales Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae NA Peredibacter Bdellovibrionaceae Bdellovibrionaceae Bdellovibrio OM27_clade Deltaproteobacteria_Incertae_Sedis Syntrophorhabdaceae Syntrophorhabdaceae Syntrophorhabdus Desulfarculales	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 11 11 111 1346 89 25 11 14 464 38 26 27 27 27 27 75
Gimesiaceae NA Proteobacteria Alphaproteobacteria NA Rhizobiales Hyphomicrobiaceae Hyphomicrobium Pedomicrobium NA Rhizobiaceae Rhizobiales_Incertae_Sedis Xanthobacteraceae Rhodobacterales Rhodobacterales Rhodobacterales Rhodobacterales Rhodobacterales Rhodobacterales Sphingomonadales Sphingomonadales Sphingomonadaceae Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae NA Peredibacter Bdellovibrionaceae Bdellovibrionaceae Bdellovibrionaceae Syntrophorhabdaceae Syntrophorhabdaceae Syntrophorhabdaceae Desulfarculaceae Desulfarculaceae Desulfarculaceae	10 41 3145 373 109 116 32 22 10 42 20 11 11 11 137 137 11 11 111 1346 89 255 11 14 464 388 265 27 27 27 75 75

NA	32	Thiobacillus
Desulfobacterales	146	NA
Desulfobacteraceae	76	Nitrosomonadaceae
NA	44	Ellin6067
Sva0081 sediment group	32	mle1-7
Desulfobulbaceae	70	MND1
Desulfobulbus	20	NA
NA	50	Nitrosomonas
Dosulfuromonadalos	110	Phodocyclacopo
Desulturementedeses	119	
Desulturomonadaceae	14	Azoarcus
Desulfuromonas	14	Denitratisoma
Geobacteraceae	82	NA
Geobacter	72	Sulfurisoma
Geothermobacter	10	Sulfuritalea
NA	23	Thauera
MBNT15	35	SC-I-84
Myxococcales	233	Sulfuricellaceae
Archangiaceae	25	Ferritrophicum
Anaeromyxobacter	25	TRA3-20
Blrii41	18	Cellvibrionales
Blfdi19	14	Halieaceae
Haliandiaceae	44	Halioglobus
Haliangium	44	OM60(NIOR5) clade
MidBo	10	Spangijbastorasooo
	12	
	50	
P30B-42	16	Competibacterales
Phaselicystidaceae	15	Competibacteraceae
Phaselicystis	15	Candidatus_Competibacter
Sandaracinaceae	39	Coxiellales
NA	28	Coxiellaceae
Sandaracinus	11	Coxiella
NA	185	Diplorickettsiales
NB1-j	45	Diplorickettsiaceae
Oligoflexales	64	Aquicella
0319-6G20	37	Gammaproteobacteria Incertae Sedis
Oligoflexaceae	27	Unknown Family
RCP2-54	10	
Sva0485	49	
Syntrophohacterales	269	
Syntrophaceae	210	Methylococcales
Dosulfobacca	210	Methylomonacaaa
Desulfomanila	90	Cronothriv
Desuitornornie	19	Mathudahaatar
	25	Methylobacter
Smithella	23	NA
Syntrophus	47	NA
Syntrophobacteraceae	59	PLTA13
Desulfovirga	13	Pseudomonadales
NA	30	Pseudomonadaceae
Syntrophobacter	16	Pseudomonas
Gammaproteobacteria	1325	Steroidobacterales
1013-28-CG33	10	Steroidobacteraceae
Acidiferrobacterales	27	Woeseiaceae
Acidiferrobacteraceae	27	Woeseia
Sulfurifustis	27	Xanthomonadales
Betaproteobacteriales	791	Xanthomonadaceae
Burkholderiaceae	172	Stepotrophomonas
Lautropia	1/	NA
Lantothrix	14	Bokubaataria
Leptotinix	10	NC40
	12	
NA	400	
Callianalla	136	Methylomirabilales
Gallionellaceae	136 99	Methylomirabilates Methylomirabilaceae
Gallionellaceae Candidatus_Nitrotoga	136 99 60	Methylomirabilaceae Sh765B-TzT-35
Gallionellaceae Candidatus_Nitrotoga Gallionella	136 99 60 13	Methylomirabilates Methylomirabilaceae Sh765B-TzT-35 Spirochaetes
Gallionellaceae Candidatus_Nitrotoga Gallionella NA	136 99 60 13 26	Methylomirabilates Methylomirabilaceae Sh765B-TzT-35 Spirochaetes Leptospirae
Gallionellaceae Candidatus_Nitrotoga Gallionella NA Hydrogenophilaceae	136 99 60 13 26 101	Methylomirabilaies Methylomirabilaceae Sh765B-TzT-35 Spirochaetes Leptospirae Leptospirales

RBG-16-49-21	47	Pedosphaeraceae	340
MVP-15	18	ADurb.Bin063-1	51
Spirochaetia	131	NA	289
Spirochaetales	131	S-BQ2-57_soil_group	20
Spirochaetaceae	131	Verrucomicrobiales	202
NA	70	DEV007	60
Spirochaeta_2	61	NA	18
Tenericutes	22	Rubritaleaceae	95
Mollicutes	22	Luteolibacter	82
Izimaplasmatales	22	NA	13
Verrucomicrobia	598	Verrucomicrobiaceae	29
Verrucomicrobiae	598	WS2	12
Chthoniobacterales	24	WS4	29
Chthoniobacteraceae	24	Zixibacteria	47
Chthoniobacter	24	Eukaryota	526
NA	12	NA	133
Pedosphaerales	340	Grand Total	12831

4. Ammonia removal from wastewater using partial nitrification and the anammox process

Studies in the batch reactors regarding the ammonium removal and the microbial community compositions were conducted by B. Sc. Constantin Soffner. The investigation of oxygen evolution rates in the upflow BES was done by Julia Heise.

4.1. Abstract

The intention to save drinking water by reduced usage in households leads to high concentrations of ammonium in the sewage systems. The ammonium removal of the wastewater streams is a huge challenge for the wastewater treatment plants. In this study bioelectrochemical systems have been applied to remove ammonium from synthetic wastewater via nitrification and the anammox process. In a first step nitrifying bacteria are enriched on the anode as a preliminary biofilm. Anammox bacteria are added in a second step joining the anaerobic outer layer of the biofilm.

Oxygen evolution rates at an abiotic anode revealed that adjustment of oxygen concentrations was best achieved in upflow BES due to lower activation and ohmic losses. Ammonium removal and microbial community studies were done in batch reactors revealing constant ammonium removal. The predominant asv assigned to the genera *Hyphobmicrobium*, *Dechloromonas*, *Pseusoxanthomonas*, *Pseudomonas*, and *Anaerobacillus* and *Azonexus* were found on the anode and asv assigned to the genera *Pedobacter* and *Candidatus* Kuenenia were found in the synthetic wastewater medium.

This is the first report of a bioelectrochemical system to continuously apply a constant oxygen concentration for optimization of ammonium removal from wastewater using nitrifying and anammox bacteria. The efficiency of the process shows great potential for application in a wastewater treatment plant.

4.2. Introduction

Wastewater treatment plants (WWTPs) must deal with highly ammonia concentrated municipal wastewater streams. The complete removal of ammonium is a crucial step in municipal wastewater treatment as residual ammonia in the effluent is discharged into the environment leading to contaminations of open water bodies. Subsequent depletion of dissolved oxygen due to ammonium oxidation results in killing of fishes and invertebrates due to almost anoxic conditions in the freshwater systems (Camargo & Alonso, 2006). Therefore, the statutory requirement set a limit value of 10 mg NH_4^+-N L⁻¹ for ammonium in the waste water discharge (Deutsche Bundesregierung, 2004).

In WWTPs, the combination of nitrification (oxidation of ammonium to nitrate) and denitrification (reduction of nitrate to nitrogen gas) in activated sludge have usually been widely used for ammonia removal. Mainly due to the required aeration for the nitrification reaction, the process is rather expensive. In contrast to this process, however, ammonia can also be removed anoxically by <u>anaerobic ammonium ox</u>idation (anammox), a process discovered for the first time in a denitrifying fluidised bed reactor (Mulder *et al.*, 1995). Bacteria that are capable of anaerobic ammonia oxidation convert ammonium together with nitrite to nitrogen gas (Jetten *et al.*, 1998) and belong to the *Planctomycetes*. So far, five genera have been studied: *Brocadia*, *Kuenenia*, *Scalindua*, *Jettenia* and *Anammoxoglobus* (van Niftrik & Jetten, 2012).

Since 2002, several pilot plants have been implementing the anammox process, also known as the <u>completely autotrophic nitrogen removal over nitrite</u> (CANON) process (Sliekers *et al.*, 2003), or the <u>single reactor system for high-rate ammonia removal over nitrite</u> (SHARON) process (Van Dongen *et al.*, 2001). The nitrite essential for the reaction is gained from partial nitrification (nitritation) of ammonium to nitrite. Although, anammox bacteria are very susceptible to dissolved oxygen concentrations of more than 2.3 mg L⁻¹ in granular anammox enrichment cultures (Carvajal-Arroyo *et al.*, 2013), the co-existence of both aerobic and anaerobic bacteria in one reactor is possible in systems kept under oxygen limitations (Sliekers *et al.*, 2003). The co-existence of aerobic and anaerobic microorganisms in aquatic systems has been shown before. Microorganisms form microbial communities in flocs,

granules, and biofilms (Flemming & Wingender, 2010), where anoxic regions occur in the inner parts due to oxygen diffusion limitations (De Beer *et al.*, 1994). Using the anammox process, 90% of the ammonium present in a wastewater stream can be converted to elemental nitrogen (Kumar & Lin, 2010). The residual 10% is nitrate, which is a side product in the anammox process (Kumar & Lin, 2010). The anammox process provides the advantage that addition of organic carbon and aeration is not necessary (Kartal *et al.*, 2010).

Besides the CANON- and the SHARON-Processes, also bioelectrochemical systems (BES) can be applied. In a BES, electrochemically active microorganisms form biofilms on the electrodes and catalyse oxidation and/or reduction reactions (Larminie *et al.*, 2003). Ammonia removal by nitrification reactions in BES have already been reported in literature. For instance, in a reactor consisting of two celite biocarrier filled columns, the removal of nitrate nitrogen and ammonia nitrogen have been investigated at room temperature (Goel & Flora, 2005). At a current density of 0.5 mA cm⁻² an ammonia nitrogen removal up to 56% was measured. The simultaneous removal of carbon at the anode and nitrogen (nitrate and ammonia nitrogen) at the cathode was studied in a microbial fuel cell using a loop configuration (Virdis *et al.*, 2010). Up to 94.1 % of nitrogen could be eliminated at -0.146 V.

The idea of using the nitritation-anammox process in BES is rather new. The advantage of such a system is the simultaneous generation of energy from the microbial reactions (Rabaey & Verstraete, 2005). Recently, such a system was built using a membrane-aerated cathode and anaerobic sludge at the anode to drive the reaction (Yang *et al.*, 2017). A nitrogen removal efficiency of 94.8 ± 7.7% was achieved at a current density of 72.3 ± 1.9 A m⁻³.

In the present study an anodic BES using the nitritation-anammox process is constructed. The anode is preconditioned with a preliminary biofilm of nitrifying bacteria using the oxygen generated at the anode as electron acceptor for nitritation. In a second step the, anammox bacteria added to the system can inhabit the outer anoxic zones of the established biofilm converting ammonium and nitrite to nitrogen gas. Aeration of the system and addition of organic carbon is not required.

4.3. Experimental procedure

4.3.1. Growth medium for ammonium oxidising bacteria in BES

The growth medium used in these experiments was adapted from Ke (2014). All solutions were prepared using ultra-pure water and were autoclaved for 20 min at 120 °C. As the ammonium and the carbonate solution were added under anoxic conditions, both solutions were sparged with N₂/CO₂ (80:20 (v/v)) gas [Air Liquide, Düsseldorf, Germany] prior to autoclaving. The ammonium solution was sparged for 20 min. A 1 mol L⁻¹ carbonate solution was prepared with anoxic hot water and the headspace was exchange for 5 min with N₂/CO₂ (80:20 (v/v)) gas prior to autoclaving. K₂HPO₄ solution, MgSO₄ solution, CaCl₂ solution and carbonate were stored at room temperature. Other solutions were stored at 4 °C.

		Final concentrations	
	Compound	[g L ⁻¹] [mmo	ol L⁻¹]
K ₂ HPO ₄ solution	K ₂ HPO ₄	0.03	0.20
MgSO ₄ solution	MgSO ₄ · 7 H ₂ O	0.30	1.22
CaCl ₂ solution	CaCl ₂ · 2 H ₂ O	0.18	1.22
Ammonium solution	NH₄CI	0.05	1.00
Carbonate solution	NaHCO₃	0.42	5.00
Trace elements solution A	Cf. Table 4.3.1-2	1X	1X
Trace elements solution B	Cf. Table 4.3.1-3	1X	1X

Table 4.3.1-1 | Solutions used as growth medium for ammonia oxidising bacteria.

Table 4.3.1-2 | Trace elements solution A used for the growth medium of ammonia oxidising bacteria. The solution was prepared as 1000X.

		Final concentratio	ns
	Compound	[mg L ⁻¹]	[µmol L⁻¹]
Trace elements	Na₂EDTA	6.37	17.11
solution A	FeSO ₄ · 7 H ₂ O	9.15	32.91

	Final concentrations		
	Compound	[mg L ⁻¹]	[µmol L ⁻¹]
Trace elements solution B	Na₄EDTA	21.37	51.35
	ZnCl ₂	0.204	1.50
	$CoCl_2 \cdot 6 H_2O$	0.24	1.01
	$MnCl_2 \cdot 4 H_2O$	0.99	5.00
	$CuSO_4 \cdot 5 H_2O$	0.25	1.00
	$Na_2MoO_4 \cdot 2 H_2O$	0.22	0.91
	$NiCl_2 \cdot 6 H_2O$	0.19	0.80
	$Na_2SeO_3 \cdot 5 H_2O$	0.22	0.84
	H ₃ BO ₃	0.014	0.23

Table 4.3.1-3 | Trace elements solution B used for the growth medium of ammonia oxidising bacteria. The solution was prepared as 1000X.

4.3.2. Inoculum for partial nitrification and anammox in BES

For the partial nitrification, activated granular sludge was taken from a running reactor of the Department of Municipal Water and Waste Water Management, University of Duisburg-Essen, Germany, maintained by Dr. Leon Steuernagel. The anammox inoculum derived from a reactor of the Department of Environmental Biotechnology, University of Delft, Netherlands, maintained by Dr. Michele Laureni. As the anammox sample was introduced under anoxic conditions during the experiments, the flask was sparged with N₂/CO₂ (80:20 (v/v)) gas [Air Liquide, Düsseldorf, Germany] beforehand.

4.3.3. Setup of the anodic batch bioelectrochemical system

For the experiments on ammonia oxidation at the anode, batch reactors were built as described previously in section 3.3.3 except for the electrode material. The main materials used for the setup are given in Table 4.3.3-1. Iridium oxide (IrOx) coated titanium anodes were chosen for oxygen evolution on the anode. Additionally, a sensor spot was glued with silicon glue on the inside of the anode chamber for noninvasive measurement of oxygen concentration in the medium. All materials used were cleaned thoroughly with ultra-pure water. The membrane was pre-treated by upswelling in a 4% NaCl solution for 24 h.

	Material	Specification	Manufacturers
Anode	IrOx coated titanium	1.0x5.0 cm	Magneto Special Anodes B.V., Schiedam, Netherlands
Cathode	Carbon felt	1.5x5.0 cm	Alfa Aeser (Thermo Fisher GmbH), Karlsruhe, Germany
Reference electrode	RE-1B (Ag/AgCl)		ALS Co., Ltd., Tokyo, Japan
Membrane	Fumasep FKB-PK- 130	2.0x2.0 cm	Fumatech BWT GmbH, Bietigheim-Bissingen, Germany
Wirings	Titan, WirePurity 99.6%+	10 cm, 5 cm. Ø 1 mm	Advent Research Materials Ltd., England, Great Britain
Rubber stopper	Butyl	N20 and GL45	Glasgerätebau Ochs GmbH, Bovenden, Germany
Sensor spot	SP-PSt6-NAU-D5- YOP		PreSens GmbH, Regensburg, Germany

Table 4.3.3-1 | Materials used for assembling an anodic batch bioelectrochemical system for ammonium oxidation at the anode.

The anode chamber was filled with growth medium (Table 4.3.1-1) to a final volume of 220 mL after adding ammonium, carbonate, and one or both inoculums between the cyclic voltammetry procedures (cf. section 4.3.5). The medium was sparged with N_2/CO_2 (80:20 (v/v)) gas [Air Liquide, Düsseldorf, Germany] for 45 min. Continuous stirring during the experiments was achieved using a stirring bar. The cathode chamber was filled with 22 mL of growth medium lacking ammonium, carbonate and the inoculum.

4.3.4. Setup of the anodic upflow bioelectrochemical system

An upflow BES was built of Perspex as described previously (Gildemyn *et al.*, 2015). The chambers were built from two identical frames with dimensions of 20.0x5.0x2.0 cm covered with two Perspex plates at the outsides. All Perspex parts were merged using rubber sheets between all parts to prevent leaking. To collect electrons from the carbon felt cathode, a current made of stainless steel was used that was connected to the potentiostat. The main materials used are given in Table 4.3.4-1.

A setup scheme is shown in Figure 4.3.4-1. A sensor spot for oxygen measurement was glued with silicon glue onto the Perspex at the inside of the anode chamber. The pre-treatment of materials was done as described in the previous section 4.3.3.

	Material	Specification	Manufacturers
Anode	IrOx coated titanium	20.0x5.0 cm, diamond shaped	Magneto Special Anodes B.V., Schiedam, Netherlands
Cathode	Carbon felt	22.0x8.0 cm	Alfa Aeser (Thermo Fisher GmbH), Karlsruhe, Germany
Reference electrode	RE-1B (Ag/AgCl)		ALS Co., Ltd., Tokyo, Japan
Membrane	Fumasep FKB-PK- 130	2.0x2.0 cm	Fumatech BWT GmbH, Bietigheim-Bissingen, Germany
Wirings	Titan, WirePurity 99.6%+	10 cm, 5 cm. Ø 1 mm	Advent Research Materials Ltd., England, Great Britain
Rubber stopper	Butyl	N20 and GL45	Glasgerätebau Ochs GmbH, Bovenden, Germany
Sensor spot	SP-PSt6-NAU-D5- YOP		PreSens GmbH, Regensburg, Germany

Table 4.3.4-1 | Materials used for assembling an anodic upflow bioelectrochemical system for ammonium oxidation at the anode.

Figure 4.3.4-1 | Schematic view of the upflow BES from the side (left) and its single parts (right). The medium is pumped from the below into the cell compartments (Perspex frames). 1: Perspex plate, 2: Ir-coated Ti-oxide anode, 3: Perspex frame used as anode/cathode chamber, 4: membrane, 5: carbon felt cathode, 6: current collector.

1 L growth medium (Table 4.3.1-1) was pumped continuously through the anodic chamber with 10 mL min⁻¹ and sparged steadily with N₂/CO₂ (80:20 (v/v)) gas [Air Liquide, Düsseldorf, Germany]. Ammonium and carbonate were added between the cyclic voltammetry procedures (cf. section 4.3.5). Medium without ammonium and carbonate was pumped through the cathode chamber.

4.3.5. Stability test using chronoamperiometry and investigation of redox active compounds using cyclic voltammetry in an anodic BES

A stability test was performed at a potential of 0.7 V vs. Ag/AgCl for 24 hours to examine leakages and connection issues before starting the main experiments. When the current stayed constant within this time, the reactor was regarded as stable.

Cyclic voltammetry was done before and after the addition of ammonium, carbonate and the inoculation. The applied potential ranged from 0.0 V vs. Ag/AgCl to 1.0 V Ag/AgCl and 5 cycles were used.

4.3.6. Investigation of oxygen evolution rates

To study the oxygen evolution on the anode the batch reactors were run abiotically with potentials ranging from 0.7 V to 0.9 V vs. Ag/AgCl for 8 h. Oxygen concentrations in the medium were measured every hour non-invasively through the sensor spot via an optical fibre and the Fibox 4 trace oxygen meter [PreSens GmbH, Regensburg, Germany]. Oxygen evolution rates were calculated from the slope of the oxygen concentrations over time. The upflow system was run with potentials ranging from 0.6 V to 0.8 V vs. Ag/AgCl. Oxygen concentrations were measured every 3 s over 24 h. The summarized raw data are shown in the appendix in Table 4.5.2-1.

4.3.7. Setup of batch reactors for microbial community investigations

Studies regarding the changes of the microbial communities on the anode were conducted in two sets of batch reactors by B.Sc. Constantin Soffner. Nitrifying bacteria were enriched first in order to establish a preliminary biofilm on the anode. In a second step, anammox bacteria were added.
The AerAOB were enriched for seven days with constantly poised anodes at 0.95 V vs. Ag/AgCI. This potential was also kept after adding anammox bacteria for the main run. Current densities were obtained by averaging the current densities over 6 hours. The averaged current densities are shown in the appendix in Table 4.5.2-2 (Reactor 1), Table 4.5.2-3 (Reactor 2), and Table 4.5.2-4 (Reactor 3).

4.3.8. Analysis of nitrogen species via ion chromatography

The preparation of samples for ion chromatography was performed as previously described in section 2.3.3 and was conducted by B. Sc. Constantin Soffner. Also, the further mentioned specifications for the measurement were the same. The summarized raw data of ion concentrations are shown in the appendix (Table 4.5.2-5 (ammonium), Table 4.5.2-6 (nitrate), and Table 4.5.2-7 (nitrite)).

4.3.9. DNA extraction, 16S rRNA amplicon library preparation and analysis

Samples for DNA extraction were taken from the anode by scrapping the biofilm from the material as duplicates using cell scrapers [Sarstedt, Nümbrecht, Germany]. DNA extraction was performed using the FastDNA[™] SPIN Kit for Soil [MP Biomedicals, Heidelberg, Germany] and applying the bead-beating settings as previously described in section 2.3.4. The 16S rRNA amplicon library was prepared as stated above (cf. section 2.3.6). The samples were stored at -20 °C until shipping for analysis to GATC Biotech AG [Konstanz, Germany]. Analysis of the 16S rRNA gene sequences was done in the R environment using the DADA2 pipeline as previously described in section 3.3.8. 16S gene sequencing data are shown in the appendix in Table 4.5.2-8.

4.4. Results

4.4.1. Oxygen evolution rates in batch and upflow anodic BES

The oxygen evolution at the anode was investigated in both batch and upflow BES and are shown below in Figure 4.4.1-1. In the upflow BES, oxygen concentrations measured in the medium were not as high as in the batch systems. The oxygen evolution rate increased from 0.04 μ g L⁻¹ h⁻¹ to 0.63 μ g L⁻¹ h⁻¹ between 0.7 V to 0.8 V vs. Ag/AgCl in the upflow BES. In the batch systems, the rate increased from 0.67 μ g L⁻¹ h⁻¹ to 22.17 μ g L⁻¹ h⁻¹ within the potential range of only 0.85 V to 0.90 V vs. Ag/AgCl. Standard deviations of oxygen evolution rates measured in the upflow BES (±0.35 μ g L⁻¹ h⁻¹ the highest) were significantly smaller than those obtained in the batch systems (±21.44 μ g L⁻¹ h⁻¹ the highest), where the medium was constantly stirred but not flushed.

Figure 4.4.1-1 | Oxygen evolution rates (n=3) obtained in bioelectrochemical batch systems (left) and in upflow cells (right). Mind the scales.

Oxygen concentrations were more straightforward to adjust in the upflow systems than in the batch reactors. However, the exact oxygen concentrations at the anode could not be measured in both systems since the sensor spots were located at the inner side of the batch flask and on the frame of the upflow reactor, respectively.

4.4.2. Ammonium removal in batch systems

For the removal of ammonium in batch BES, AerAOB were cultivated for seven days to ensure the establishment of a biofilm on the anodes. Figure 4.4.2-1 shows the current densities and the concentration of nitrogen species during the cultivation of AerAOB and the subsequent additional cultivation of anammox bacteria.

Figure 4.4.2-1 | Current densities (---) and concentrations of ammonium (---), nitrate (--), and nitrite (---) in batch BES. The anammox bacteria were added on day 5 and were cultivated for one, two, and three weeks, respectively. Mind the scale for reactor 2.

The ammonium was depleted after 13 days, 18 days and 27 days in reactor 1, 2 and 3, respectively. In reactors 2 and 3, ammonium was, therefore, added again to ensure continuous growth of the microbial community for further molecular studies.

However, nitrate was produced during the operation of the reactors reaching 753.9 μ mol L⁻¹, 556.9 μ mol L⁻¹ and 225.6 μ mol L⁻¹ in reactors 1, 2 and 3, respectively, indicating active ammonium oxidation by AerAOB. The highest nitrite concentrations measured were 41.4 μ mol L⁻¹, 45.0 μ mol L⁻¹ and 41.8 μ mol L⁻¹ in reactors 1, 2 and 3, respectively. Nevertheless, the sum of the nitrate and nitrite concentrations did not reach the initial ammonium concentration. This finding indicated that ammonia oxidation to elemental nitrogen was possibly carried out by AerAOB and anammox bacteria.

Ammonium oxidation took also place in the controls most likely due to the presence of low oxygen concentrations, though it was slower than in the main reactors. In the abiotic control 279.2 μ mol ammonium L⁻¹ were converted within 30 days and 352.1 μ mol ammonium L⁻¹ within 21 days were consumed in the biotic control. In the latter nitrate was also produced up to 175.5 μ mol L⁻¹.

Current was measured in reactor 1 with about 0.05 mA cm⁻² and between 0.00 mA cm⁻² and 0.05 mA cm⁻² in reactor 3, which were lower than in the currents measured in the reactor set 1. In reactor 2 and in the abiotic control, currents were measured only in μ A cm⁻² range.

4.4.3. Microbial community compositions for ammonium oxidation

As inoculums for the ammonium removal in batch BES, AerAOB and anammox bacteria were taken from currently running reactors treating wastewater. In Figure 4.4.3-1 the 50 most abundant genera are shown for both inoculums. The dominant asv in the AerAOB community belonged to the genera *Nitrospira* and *Candidatus* Nitrocosmicus. In the anammox inoculum, the most dominant asv were assigned to the genus *Candidatus* Kuenenia. Other main asv belonged to members of the genera *Ignavibacterium* and *Denitratisoma*.

Figure 4.4.3-1 | Microbial community compositions of the enriched inoculums taken from currently running reactors for wastewater treatment. The 50 most abundant asv are visualized.

The 50 most abundant asv of all samples were analysed for ammonium oxidation in batch BES covering in average 60% to 70% of the total community compositions in each sample. Though, only 30% of the community composition was displayed in the medium of the biotic control.

In the batch reactors, the microbial community compositions showed different structures (Figure 4.4.3-2). While differences were expected between the community compositions on the anode and in the medium, there was no clear shift in compositions over time of incubation (from reactor 1 to reactor 3). In general, the community compositions were composed of several abundant genera. The predominant asv in reactor 1 belonged to the three genera *Hyphobmicrobium*, *Dechloromonas*, and *Azonexus*. In the medium, the most abundant asv were assigned to the genera *Pedobacter* and *Candidatus* Kuenenia. In reactor 2, the anode was colonized with asv belonging to *Dechloromonas*. Other asv assigned to the genera *Pseusoxanthomonas*, *Pseudomonas*, and *Anaerobacillus* became established as well, although, their abundances were lower than that of the genera *Dechloromonas*. In the medium of reactor 2, the predominant asv belonged to the genera *Nitrospira*, *Candidatus* Nitrocosmicus, and *Ferribacterium*. On the anode of reactor 3, asv assigned to the genus *Pseudomonas* became dominant. The community composition in the medium

did not show dominant asv but several asv that became established, for instance belonging to the genera *Pseudomonas*, Candidatus *Kuenenia*, and *Bergeyella*.

Figure 4.4.3-2 | Microbial community compositions (above) at the anode and in the medium of the reactors and the inoculum samples (AerAOB and anammox bacteria) and the alpha diversity shown as Shannon indices (below). The 50 most abundant genera of all samples are visualized for the community structures.

In the biotic control, asv assigned to the genus *Flavobacterium* became the most dominant member of the community on the anode. In the medium, however, the community composition seemed to be more diverse and the low coverage of the total community composition with only 30% did not allow adequate conclusions. Unfortunately, growth was also observed in the abiotic control. In the medium, asv assigned to the genus *Xanthobacter* were most dominant. On the anode, the community composition was made of several abundant genera, among them were *Xanthobacter* and *Hyphomicrobium*.

The diversity analysis showed Shannon indices (Figure 4.4.3-2) approximately between 2.7 (in the medium of the abiotic control) and 4.75 (in the medium of the biotic control). Enrichments of specific microorganisms on the anode or in the medium over time that would be indicated by decreasing indices from reactor 1 to reactor 3 were not observed.

To investigate the relationships between the community compositions a heatmap based on 100 asv was generated (Figure 4.4.3-3). Two clusters could be determined: First, the community compositions in the media of reactor 1, reactor 3, and the biotic control showed similar structures but the community in the medium of reactor 2 differed. The latter resembled the community composition in the inoculum of anammox bacteria. The second cluster could be made up by the community compositions on the anodes with applied voltage (all but the anode in the biotic control).

Figure 4.4.3-3 | Heatmap for the visualization of relationships between reactor samples from the anode material and from the medium obtained in batch BES for ammonium oxidation and the inoculum samples (AerAOB and anammox bacteria).

Furthermore, samples were investigated regarding the anammox bacteria (Figure 4.4.3-4). In the inoculum, only asv assigned to *Candidatus* Brocadia and *Candidatus* Kuenenia were detectable. While the presence of *Candidatus* Brocadia was almost neglectable (about 0.03% of the total community composition), *Candidatus* Kuenenia made up approximately 25% of the total community composition in the inoculum. The major asv of *Candidatus* Kuenenia (asv2) in the inoculum was also found in all reactor samples and the biotic control. The abundances were generally higher in the medium than on the related anode. The asv accounted for approximately 13%, 1%, 7%, and 6% of the total microbial community composition in the media of reactor 1, reactor 2, reactor 3, and the biotic control, respectively. The major asv of *Candidatus* Brocadia (asv697) was not detectable in the reactor samples or the controls. Another asv (*Candidatus* Brocadia asv1848), however, was detectable in the medium of reactor 2.

Figure 4.4.3-4 | The ten major asv assigned to the genera *Candidatus* Brocadia (above) and to *Candidatus* Kuenenia (below) in the batch BES for ammonium removal. Mind the scale.

4.5. Discussion

4.5.1. Oxygen evolution rates and the performance of BES systems

A low oxygen concentration is inevitable for ammonia removal when using nitrification and the anammox process in a BES. While the anammox process is inhibited by oxygen, the nitrification depends on its availability. In a BES, the oxygen evolution can be adjusted at the anode to a specified concentration by the applied potential to keep both reactions, nitrification and anammox, running.

The adjustment of oxygen evolution was easier to achieve in the upflow BES. Although, the system was continuously sparged with nitrogen/CO₂ gas resulting in oxygen losses with the gas outflow, the oxygen evolution rates obtained in the upflow BES showed low standard deviations. The reason why the upflow BES revealed a better performance than the batch system is the overall setup. In the upflow BES, the electrode surfaces as well as the membrane are approximately 9 times and 100 times larger, respectively, than in the batch BES. With increasing electrode surface area, the activation losses can be decreased, which arise from the electron transfer directly or indirectly from the bacterial cell to the electrode due to kinetic slowness of reactions (Logan et al., 2006). Additionally, the energy used for biological catalysed reactions has to be considered, which are determined by the amount of catalysing microorganisms relative to the available electrode surface area, the electron transfer rate as well as the biological activity of the microbial community (Clauwaert et al., 2008). The activation losses are the main overpotentials present in the system in low current densities ranges (Freguia et al., 2008). Low current densities were also measured in all batch reactors in this study. A higher potential of approximately 0.875 V vs. Ag/AgCl was set to the batch reactors in contrast to the upflow system (about 0.725 V vs. Ag/AgCl) to generate oxygen. This overvoltage that had to be applied to the batch reactors indicates the presence of those losses.

Moreover, the electrodes and the membrane are put together in close spatial proximity. The spatial distances between the electrodes and the membrane in the upflow BES are very narrow with 1 mm due to the rubber sheets used for sealing the system. In the batch systems, the spatial distances of the electrodes and the

membrane can be several centimetres and vary from reactor to reactor. The spacing between the electrodes is responsible for ohmic losses in a system because of the long travel distance of electrons through the electrolytes (Logan *et al.*, 2006). The ohmic losses can also be reduced, when electrolytes with increased conductivity are applied. Since waste waters show high conductivities and the spacing between the electrodes were narrow, we can assume that ohmic losses do not play a pivotal role in the upflow BES. However, in the batch BES the ohmic losses have to be further investigated, when they are used for microbial enrichment studies.

Oxygen was not measured directly at the anode but at the glass frame. This means that the oxygen originally production cannot be determined and has to be considered as the residual oxygen concentration, which dissolved from the anode into the medium. The oxygen concentration was measured in the medium because the concentration was most crucial there due to the oxygen sensitivity of the anammox bacteria.

The findings show that the upflow BES is a suitable application for ammonium removal via nitrification and the anammox process. The oxygen concentrations can be adjusted relative precisely. Future studies should also focus on the activation losses and the ohmic losses in the systems since they will determine the overall activity of the BES.

4.5.2. Ammonium removal in batch reactors

Ammonium was constantly converted in all three reactors. However, nitrate was also produced indicating that the anammox process was not successful. This can be explained by the enrichment procedure. To establish a preliminary biofilm on the anode, AerAOB were enriched before adding the anammox bacteria. The time frame of seven days might have been too long. It seems that a microbial community was formed, which converted the ammonium to elemental nitrogen with nitrate as accumulating side product in the absence of anammox bacteria. This assumption can be underlined with the diversity of the samples. The Shannon index of the AerAOB inoculum was approximately 3.75 indicating that the inoculum was already enriched to a competent ammonium oxidising microbial community.

The diversities of the samples taken from the BES were slightly higher (between 3.5 and 4.5) than in the inoculums. This was expected due to the fact that two microbial communities, the AerAOB and the anammox community were combined. However, the Shannon indices seem to increase over time (from reactor 1 to reactor 3). This leads to the assumption that a competent microbial community composition consisting of AerAOB and anammox bacteria could not have been established in these few weeks. The precondition of the anode with a single strain or several nitrifying strains for the oxidation of ammonium to nitrite might overcome this problem. The precondition then might take less than a week.

In the community compositions obtained in this study, one main genus capable of ammonium oxidation, namely *Nitrospira*, was detected. This genus was also reported to be capable of complete ammonium oxidation to elemental nitrogen (Daims *et al.*, 2015). This finding additionally supports the assumption stated above that ammonium and nitrite are converted by this genus instead of anammox bacteria. Several genera, however, were found as predominant members that were capable of using nitrate as electron acceptor such as *Pseudomonas* (Palleroni, 2015), *Dechloromonas* (Coates *et al.*, 2001, Horn *et al.*, 2005), *Azonexus* (Quan *et al.*, 2006), and *Pseudoxanthomonas* (Yang *et al.*, 2005). Therefore, the produced nitrite or nitrate can also be converted to elemental nitrogen or ammonium by denitrification or dissimilatory nitrate reduction. Interestingly, nitrate accumulated in the reactors over time. This finding indicates that the relative abundance of a strain might not necessarily correspond with its activity in bioelectrochemical systems.

As anammox bacterium, *Candidatus* Kuenenia has been found in the medium (approximately 13% and 7% of the total community composition in reactor 1 and reactor 3, respectively) showing that ammonium is also anaerobically oxidised. The presence of *Candidatus* Kuenenia in the medium indicates that the oxygen concentration at the anode might have been too high for acceptable accumulation in the biofilm. Nevertheless, asv assigned to this genus were detected in the anode communities in low abundances as well. The results show that preconditioning of the anode with AerAOB for a preliminary biofilm and the subsequent accumulation of anammox bacteria are achievable. Future studies may address the optimization of

several parameters such as oxygen evolution rates at the anode. The studies should especially focus on the pre-conditioning of the anode.

Slow ammonium removal was additionally observed in the controls. While ammonium might have consumed by AerAOB and anammox bacteria using residual dissolved oxygen in the biotic control, in the abiotic control ammonium oxidation might have happened also abiotically. However, the presence of bacterial asv in the abiotic control indicates additional biotic ammonium conversion. Interestingly, asv assigned to the genus *Xanthobacter*, a nitrogen-fixing genus was the dominant genus in the medium of the abiotic control. The genus also comprises bacteria described as hydrogen oxidiser (Knallgas bacteria), which produce water from elemental hydrogen and oxygen (Wiegel, 2006). This means that hydrogen is not only present as H⁺ deriving from the electrolysis reaction but also as H₂, which is produced due to the high applied potential of 0.95 V vs. Ag/AgCl (Larminie *et al.*, 2003).

Despite the drawbacks concerning the enrichment of nitrifying and anammox bacteria in an oxygen generating BES, this study reveals the potential of such a system in contrast to currently systems in use. In the BES, the nitrification can be steered by adjusting the oxygen evolution rate at the anode leading to an optimized ammonium removal from wastewater.

4.6. Appendix

A 05	11 - 0			╞			ſ		2 0 0 C	1			_	_	ľ					Γ
CO F					1001					2	1001	[CO] 0		<u> </u>	-	- mo		0 [00]	0.001	
	D	د (<u>7</u> 5]	د [22] ،	د ,	, [ر د [25] ک				د	, , [01]	د [<u>7</u> 5]	د [<u>7</u> 5]	<u>,</u> ,	-		د [رکم] ۲	د [ر ح]	, , , , ,	
ho	nıs	hg L ⁻¹ h ⁻¹	hg L ⁻¹ h	ůų P	J L-' h-'	hg L ⁻¹ h ⁻¹	_		hours	<u> </u>	g L ⁻¹ h ⁻¹	µg L ⁻¹ h ⁻¹	hg L ⁻¹ h	l gul ''		iours	µg L ⁻¹ h ⁻¹	µg L ⁻¹ h ⁻¹	hg L ⁻¹ h ⁻¹	-
		Reactor 1	Reactor	2 R	eactor 3	Reactor 4	4			œ	eactor 1	Reactor 2	Reacto	r3 Rea	ctor 4		Reactor 4	Reactor 2	Reactor	с С
	9	_	10	7	0,		5			•	~	0	9	6	9			e e		6
	0.5		11	9	Ę		9			0.5						0.		5		24
	-									-						•		8		54
	1.5						-			1.6	ē	6	7	22	9	1.1		8		59
	CN	c ,		-						7	4	8	9	23	9					
	2.5		19	9	9		9			2.5	4	2	9	28	9	2.5		0		122
			19	9	5		9			ę	2	-	9	28	9	'n	U	8		141
	3.5			-						3.5	Ö	6	9	25	9	3.6	•	8		166
	4		20	9	5		9			4	0	0	9	25	9	4.2	U	8		187
	4.5		19	9	0,		9			4.5	Ö	0	9	23	9	4.5	-			
	2		19	9	0,		9			S	2	2	9	21	9		-			
	5.5		17	9	0,		9			5.5	7	0	9	23	9	5.5		2		147
	9			-						9	Ø	6	7	17	9	6.9	•	2		120
	6.5						-			6.5	Ö	8	7	15	9					
	2			-						7	Ω	2	7	14	9					
	7.5			-						7.5	ũ	8	9	13	9					
	80									œ	ũ	10	7	12	9					
									_											
0 6 0	0 mV													DPot	ential (oxygen co	ncentration	0		
F	ne	c [02]	c [02]	U	[02]	c [02]	Ē	ne	c [02	0	[02]	c [02]		>	s. Aq/Aqu	а L ⁻¹ h ⁻¹	ua L ⁻¹ h ⁻¹	ua L ⁻¹ h ⁻¹		
h	nıs	µg L ⁻¹ h ⁻¹	hg L ⁻¹ h	hg L	L ⁻¹ h ⁻¹	hg L ⁻¹ h ⁻¹	- P	urs	, bu	, ц	с-1 h ⁻¹	µg L ⁻¹ h ⁻¹			, <u> </u>	tun 1	Run 2	Run 3		
		Reactor 1	Reactor	2 R	eactor 3	Reactor 4	4		Reac	tor 4 R	eactor 2	Reactor 3			0.700	0.0140				
	0		10	9	0,		9		0	9		0	6		0.725	0.009	0.02332	01		
	0.5	10	14	1	þ		9		9.0	9	-	6	11		0.750	0.01283		0.1364		-
	-		34	16	12	01	9		-	9	3	8	10		0.775	0.1132	0.4353	t 0.2846		
	1.5		58	18	18	~	9	·	ъ.	9	4	-	10		0.800	0.66623	0.64336	0.56715		
	24		78	19	34		9		7	9	ۍ ن	e	10		0.825			1.02635		
	2.5	16	92	18	4	~	9	.,	9.	9	Ö	10	10							
	e)	~	10	17	51		9		e	9	Q	2	10							
	3.5	-	19	16	55	~	9	.,	9.	9	Ö	8	10							
	4	-	30	14	22	~	9		4	9	2	2	10							
	4.5	-	34	7	55	~	9	•	.5	7	7	-	10							
	3	-	35	1	57	_	9	~	1.	7	Ö	6	10							
	5.5	1	40	80	22	01	9													,
	9	-	44	80	46	(0	9													-
	6.5	1	44	7	47	•	9													
	-	-	46	7	45	10	9													
	7.5	-	54	~	4	~	9													
_	3	~	45	2	36	10	9						_	_						_

Table 4.5.2-1 | Oxygen concentrations measured in batch BES (A, B and C; manually once per half an hour) and oxygen concentrations calculated in upflow BES (D; concentrations measured continuously once per ten seconds and averaged per hour).

Time	Current	Current	Time	Time	Current	Current
s	А	А	h	days	mA/cm ²	mA/cm ²
	Reactor 1	Abiotic control			Reactor 1	Abiotic control
21600	1.09E-05	-3.18E-06	6.00E+00	2.50E-01	2.19E-03	-6.36E-04
21600	8.85E-06	-2.61E-06	1.20E+01	5.00E-01	1.77E-03	-5.22E-04
21600	8.18E-06	-1.98E-06	1.80E+01	7.50E-01	1.64E-03	-3.96E-04
21600	9.70E-05	-3.21E-07	2.40E+01	1.00E+00	1.94E-02	-6.41E-05
21600	7.77E-05	-7.45E-07	3.00E+01	1.25E+00	1.55E-02	-1.49E-04
21600	6.90E-05	-7.26E-07	3.60E+01	1.50E+00	1.38E-02	-1.45E-04
21600	6.52E-05	-6.34E-07	4.20E+01	1.75E+00	1.30E-02	-1.27E-04
7200	6.34E-05	-6.29E-07	4.40E+01	1.83E+00	1.27E-02	-1.26E-04
21600	2.28E-04	-3.20E-07	5.00E+01	2.08E+00	4.55E-02	-6.40E-05
21600	2.17E-04	-5.55E-07	5.60E+01	2.33E+00	4.34E-02	-1.11E-04
21600	2.03E-04	-5.99E-07	6.20E+01	2.58E+00	4.06E-02	-1.20E-04
21600	1.90E-04	-6.07E-07	6.80E+01	2.83E+00	3.80E-02	-1.21E-04
21600	1.77E-04	-6.05E-07	7.40E+01	3.08E+00	3.54E-02	-1.21E-04
21600	1.69E-04	-6.25E-07	8.00E+01	3.33E+00	3.37E-02	-1.25E-04
21600	1.68E-04	-6.13E-07	8.60E+01	3.58E+00	3.35E-02	-1.23E-04
21600	1.73E-04	-5.66E-07	9.20E+01	3.83E+00	3.46E-02	-1.13E-04
21600	1.68E-04	-5.98E-07	9.80E+01	4.08E+00	3.35E-02	-1.20E-04
21600	1.58E-04	-6.04E-07	1.04E+02	4.33E+00	3.16E-02	-1.21E-04
21600	1.56E-04	-5.97E-07	1.10E+02	4.58E+00	3.12E-02	-1.19E-04
21600	1.57E-04	-5.89E-07	1.16E+02	4.83E+00	3.14E-02	-1.18E-04
21600	1.54E-04	-5.90E-07	1.22E+02	5.08E+00	3.08E-02	-1.18E-04
21600	1.50E-04	-5.98E-07	1.28E+02	5.33E+00	2.99E-02	-1.20E-04
21600	1.45E-04	-5.75E-07	1.34E+02	5.58E+00	2.90E-02	-1.15E-04
14400	1.43E-04	-5.90E-07	1.38E+02	5.75E+00	2.85E-02	-1.18E-04
7200	1.44E-04	-5.74E-07	1.40E+02	5.83E+00	2.88E-02	-1.15E-04
21600	1.51E-04	-5.38E-07	1.46E+02	6.08E+00	3.02E-02	-1.08E-04
21000	1.54E-04	-3.20E-07	1.52E+02	0.33E+00	3.09E-02	-1.03E-04
21000	1.50E-04	-3.01E-07	1.30E+02	0.30E+00	3.11E-02	-1.12E-04
12600	1.53E-04	-3.04E-07	1.04E+02	6.03E+00	3.00E-02	-7.27E-03
21600	1.52E-04	8 16E-06	1.00E+02	7.23E+00	3.00F-02	1.63E-03
21600	1.50E-04	5 77E-06	1.80E+02	7.20E+00	3.01E-02	1 15E-03
21600	1 48F-04	6 69F-06	1.86E+02	7 73E+00	2.97E-02	1 34F-03
21600	1.46E-04	8.24E-06	1.92E+02	7.98E+00	2.93E-02	1.65E-03
21600	1.48E-04	6.71E-06	1.98E+02	8.23E+00	2.96E-02	1.34E-03
21600	1.49E-04	8.03E-07	2.04E+02	8.48E+00	2.97E-02	1.61E-04
21600	1.46E-04	1.19E-06	2.10E+02	8.73E+00	2.91E-02	2.39E-04
9000	1.43E-04	1.38E-06	2.12E+02	8.83E+00	2.86E-02	2.76E-04
7200	1.33E-04	1.66E-06	2.14E+02	8.92E+00	2.66E-02	3.32E-04
7200	1.41E-04	1.63E-06	2.16E+02	9.00E+00	2.82E-02	3.26E-04
21600	1.47E-04	1.97E-06	2.22E+02	9.25E+00	2.93E-02	3.95E-04
21600	1.48E-04	2.69E-06	2.28E+02	9.50E+00	2.96E-02	5.38E-04
21600	1.47E-04	2.32E-06	2.34E+02	9.75E+00	2.95E-02	4.65E-04
21600	1.45E-04	2.19E-06	2.40E+02	1.00E+01	2.90E-02	4.38E-04
21600	1.42E-04	8.70E-07	2.46E+02	1.03E+01	2.83E-02	1.74E-04
21600	1.33E-04	1.56E-06	2.52E+02	1.05E+01	2.66E-02	3.12E-04
21600	1.34E-04	8.41E-07	2.58E+02	1.08E+01	2.68E-02	1.68E-04
21600	1.37E-04	1.54E-06	2.64E+02	1.10E+01	2.74E-02	3.08E-04
21600	1.34E-04	2.15E-06	2.70E+02	1.13E+01	2.69E-02	4.30E-04
21600	1.31E-04	2.78E-06	2.76E+02	1.15E+01	2.62E-02	5.56E-04
21600	1.31E-04	2.78E-06	2.82E+02	1.18E+01	2.62E-02	5.56E-04
21600	1.34E-04	2.55E-06	2.88E+02	1.20E+01	2.68E-02	5.11E-04
21600	1.36E-04	3.43E-06	2.94E+02	1.23E+01	2.72E-02	6.85E-04
21600	1.32E-04	4.33E-06	3.00E+02	1.25E+01	2.63E-02	8.66E-04
21600	1.32E-04	1.24E-05	3.06E+02	1.28E+01	2.63E-02	2.47E-03
21600	1.34E-04	2.39E-05	3.12E+02	1.30E+01	2.69E-02	4.77E-03
12600	1.34E-04	1.93E-05	3.16E+02	1.31E+01	2.69E-02	3.85E-03
21600	1.41E-04	1.16E-05	3.22E+02	1.34E+01	2.82E-02	2.32E-03

Table 4.5.2-2 | Raw data of currents of Reactor 1 and the abiotic control measured in batch BES.

Table 4.6-3 | continued

Time	Current	Current	Time	Time	Current	Current
S	A	A	h	days	mA/cm ²	mA/cm ²
0.4000	Reactor 1	Abiotic control	0.005.00	4.005.04	Reactor 1	Abiotic control
21600	1.38E-04	5.32E-06	3.28E+02	1.36E+01	2.76E-02	1.06E-03
21600	1.30E-04	4.04E-00	3.34E+02	1.39E+01	2.72E-02	0.00E-04
21600	1.32E-04	7 23E-06	3.40E+02	1.41E+01	2.04L-02 2.63E-02	1.20L-03
21600	1.30E-04	5 30E-06	3.52E+02	1.44E+01	2.00E-02	1.40E 00
21600	1.32E-04	6.40E-06	3.58E+02	1.49E+01	2.63E-02	1.28E-03
21600	1.29E-04	1.38E-05	3.64E+02	1.51E+01	2.58E-02	2.76E-03
14400	1.27E-04	3.27E-06	3.68E+02	1.53E+01	2.55E-02	6.55E-04
21600	1.26E-04	1.70E-06	3.74E+02	1.56E+01	2.52E-02	3.39E-04
21600	1.29E-04	2.62E-06	3.80E+02	1.58E+01	2.59E-02	5.24E-04
21600	1.29E-04	5.14E-06	3.86E+02	1.61E+01	2.57E-02	1.03E-03
14400	1.27E-04	1.65E-05	3.90E+02	1.62E+01	2.54E-02	3.30E-03
21600	1.24E-04	4.55E-06	3.96E+02	1.65E+01	2.48E-02	9.09E-04
21600	1.25E-04	9.43E-06	4.02E+02	1.67E+01	2.50E-02	1.89E-03
21600	1.25E-04	3.52E-06	4.08E+02	1.70E+01	2.50E-02	7.03E-04
21600	1.23E-04	1.45E-06	4.14E+02	1.72E+01	2.46E-02	2.90E-04
10800	1.19E-04	1.57E-06	4.17E+02	1.74E+01	2.39E-02	3.13E-04
21600	1.16E-04	2.95E-06	4.23E+02	1.70E+01	2.32E-02	5.90E-04
21600	1.10E-04	9.39E-00	4.29E+02	1.79E+01	2.32E-02	8 15E-03
21600	1.20E-04	3 38E-05	4.33E+02	1.84E+01	2.47E-02	6 77E-03
21600	1.20E 04	3 40E-05	4 47E+02	1.84E+01	2.47E 02	6 79E-03
21600	1.21E-04	3.76E-05	4.53E+02	1.89E+01	2.43E-02	7.52E-03
21600	1.22E-04	3.85E-05	4.59E+02	1.91E+01	2.44E-02	7.69E-03
21600	1.21E-04	3.95E-05	4.65E+02	1.94E+01	2.42E-02	7.91E-03
21600	1.17E-04	3.96E-05	4.71E+02	1.96E+01	2.35E-02	7.92E-03
21600	1.13E-04	3.71E-05	4.77E+02	1.99E+01	2.25E-02	7.43E-03
21600	1.12E-04	3.43E-05	4.83E+02	2.01E+01	2.24E-02	6.85E-03
21600	1.13E-04	3.51E-05	4.89E+02	2.04E+01	2.27E-02	7.02E-03
21600	1.10E-04	3.44E-05	4.95E+02	2.06E+01	2.21E-02	6.89E-03
21600	1.07E-04	3.41E-05	5.01E+02	2.09E+01	2.14E-02	6.82E-03
21600	1.08E-04	3.68E-05	5.07E+02	2.11E+01	2.17E-02	7.35E-03
21600	1.06E-04	3.63E-05	5.13E+02	2.14E+01	2.11E-02	7.26E-03
21600	1.06E-04	3.54E-05	5.19E+02	2.10E+01	2.12E-02	7.09E-03
21600	1.04E-04	3.39E-05	5.25E+02	2.19E+01	2.00E-02	7.17E-03
21600	1.07E-04	6 42F-06	5.37E+02	2.21E+01	2.13E-02	1 28E-03
21600	1.15E-04	1.35E-05	5.43E+02	2.26E+01	2.30E-02	2.70E-03
21600	1.11E-04	1.01E-05	5.49E+02	2.29E+01	2.22E-02	2.01E-03
21600	1.13E-04	-1.87E-05	5.55E+02	2.31E+01	2.25E-02	-3.74E-03
3600	1.13E-04	-1.92E-05	5.56E+02	2.31E+01	2.26E-02	-3.84E-03
21600	1.12E-04	-5.68E-06	5.62E+02	2.34E+01	2.24E-02	-1.14E-03
21600	1.09E-04	-3.02E-06	5.68E+02	2.36E+01	2.17E-02	-6.05E-04
21600	1.09E-04	-2.20E-06	5.74E+02	2.39E+01	2.17E-02	-4.41E-04
21600	1.10E-04	-1.95E-06	5.80E+02	2.41E+01	2.20E-02	-3.90E-04
21600	1.10E-04	-1.87E-06	5.86E+02	2.44E+01	2.20E-02	-3.75E-04
21600	1.08E-04	-1.79E-06	5.92E+02	2.46E+01	2.16E-02	-3.58E-04
21600	1.12E-04	-1.80E-06	5.98E+02	2.49E+01	2.24E-02	-3.60E-04
21600	1.17E-04	-1./UE-U6	6 10E±02	2.51E+01	2.34E-02	-3.39E-04
21000	1 185-04	-1.09E-00	6 16E+02	2.545701	2.300-02	-3.39E-04
21600	1 20F-04	-1 79F-06	6 22F+02	2.50E+01	2.30L-02 2.40F-02	-3.58F-04
21600	1.24F-04	-1 82F-06	6.28F+02	2.61F+01	2.48F-02	-3 65F-04
21600	1.23E-04	-2.06E-06	6.34E+02	2.64E+01	2.46E-02	-4.12E-04
21600	1.18E-04	-2.19E-06	6.40E+02	2.66E+01	2.35E-02	-4.39E-04
21600	1.13E-04	-2.41E-06	6.46E+02	2.69E+01	2.26E-02	-4.82E-04
18000	1.12E-04	-2.40E-06	6.51E+02	2.71E+01	2.23E-02	-4.80E-04
21600	3.77E-05	-2.57E-06	6.57E+02	2.74E+01	7.54E-03	-5.15E-04
21600	3.89E-05	-2.58E-06	6.63E+02	2.76E+01	7.79E-03	-5.16E-04

Table 4.6-3 | continued

Time	Current	Current	Time	Time	Current	Current
S	A	A	h	days	mA/cm ²	mA/cm ²
	Reactor 1	Abiotic control			Reactor 1	Abiotic control
21600	3.97E-05	-2.66E-06	6.69E+02	2.79E+01	7.95E-03	-5.32E-04
21600	3.88E-05	-2.71E-06	6.75E+02	2.81E+01	7.76E-03	-5.43E-04
21600	3.99E-05	-2.60E-06	6.81E+02	2.84E+01	7.98E-03	-5.19E-04
21600	3.97E-05	-2.91E-06	6.87E+02	2.86E+01	7.94E-03	-5.81E-04
21600	3.98E-05	-2.96E-06	6.93E+02	2.89E+01	7.97E-03	-5.91E-04
21600	3.91E-05	-3.00E-06	6.99E+02	2.91E+01	7.81E-03	-6.00E-04
14400	1.21E-04	-3.14E-06	7.03E+02	2.93E+01	2.43E-02	-6.29E-04
21600	1.10E-04	-3.17E-06	7.09E+02	2.95E+01	2.21E-02	-6.33E-04
21600	1.08E-04	-3.14E-06	7.15E+02	2.98E+01	2.15E-02	-6.28E-04
21600	1.03E-04	-3.28E-06	7.21E+02	3.00E+01	2.06E-02	-6.56E-04
5400	1.02E-04	-3.54E-06	7.22E+02	3.01E+01	2.05E-02	-7.08E-04

Table 4.5.2-3 | Raw data of currents of Reactor 2 measured in batch BES.

Time	Current	Time	Time	Current
S	A	h	days	mA/cm ²
	Reactor 2			Reactor 2
21600	6.35E-06	6.00E+00	2.50E-01	1.27E-03
21600	3.16E-06	1.20E+01	5.00E-01	6.32E-04
21600	1.30E-06	1.80E+01	7.50E-01	2.60E-04
21600	1.10E-06	2.40E+01	1.00E+00	2.21E-04
21600	4.38E-07	3.00E+01	1.25E+00	8.76E-05
21600	-1.26E-07	3.60E+01	1.50E+00	-2.52E-05
21600	2.43E-07	4.20E+01	1.75E+00	4.86E-05
21600	-4.03E-08	4.80E+01	2.00E+00	-8.07E-06
21600	-3.21E-07	5.40E+01	2.25E+00	-6.42E-05
21600	-2.80E-06	6.00E+01	2.50E+00	-5.60E-04
21600	-2.80E-06	6.60E+01	2.75E+00	-5.60E-04
21600	-7.60E-07	7.20E+01	3.00E+00	-1.52E-04
21600	-5.51E-07	7.80E+01	3.25E+00	-1.10E-04
21600	-7.85E-07	8.40E+01	3.50E+00	-1.57E-04
21600	-8.71E-07	9.00E+01	3.75E+00	-1.74E-04
21600	-1.28E-06	9.60E+01	4.00E+00	-2.55E-04
12600	-5.97E-07	9.95E+01	4.15E+00	-1.19E-04
21600	-5.41E-07	1.06E+02	4.40E+00	-1.08E-04
21600	-5.44E-07	1.12E+02	4.65E+00	-1.09E-04
21600	-5.40E-07	1.18E+02	4.90E+00	-1.08E-04
21600	-5.07E-07	1.24E+02	5.15E+00	-1.01E-04
21600	-5.26E-07	1.30E+02	5.40E+00	-1.05E-04
21600	-5.28E-07	1.36E+02	5.65E+00	-1.06E-04
21600	-5.54E-07	1.42E+02	5.90E+00	-1.11E-04
21600	-5.12E-07	1.48E+02	6.15E+00	-1.02E-04
14400	-5.74E-07	1.52E+02	6.31E+00	-1.15E-04
86400		1.76E+02	7.31E+00	
14400	-5.82E-07	1.80E+02	7.48E+00	-1.16E-04
21600	-5.48E-07	1.86E+02	7.73E+00	-1.10E-04
21600	-5.46E-07	1.92E+02	7.98E+00	-1.09E-04
21600	-5.53E-07	1.98E+02	8.23E+00	-1.11E-04
21600	-5.78E-07	2.04E+02	8.48E+00	-1.16E-04
10800	-6.01E-07	2.07E+02	8.60E+00	-1.20E-04
21600	-5.30E-07	2.13E+02	8.85E+00	-1.06E-04
21600	-4.90E-07	2.19E+02	9.10E+00	-9.81E-05
21600	-5.09E-07	2.25E+02	9.35E+00	-1.02E-04
21600	-4.86E-07	2.31E+02	9.60E+00	-9.73E-05
21600	-5.51E-07	2.37E+02	9.85E+00	-1.10E-04
21600	-5.04E-07	2.43E+02	1.01E+01	-1.01E-04
21600	-5.06E-07	2.49E+02	1.04E+01	-1.01E-04
21600	-5.10E-07	2.55E+02	1.06E+01	-1.02E-04

Table 4.6-4	continued
	0011011000

Time	Current	Time	Time	Current
S	А	h	days	mA/cm ²
	Reactor 2			Reactor 2
21600	-5.48E-07	2.61E+02	1.09E+01	-1.10E-04
21600	-5.25E-07	2.67E+02	1.11E+01	-1.05E-04
21600	-5.06E-07	2.73E+02	1.14E+01	-1.01E-04
21600	-5.82E-07	2.79E+02	1.16E+01	-1.16E-04
21600	-4.26E-07	2.85E+02	1.19E+01	-8.51E-05
21600	-5.56E-07	2.91E+02	1.21E+01	-1.11E-04
21600	-5.19E-07	2.97E+02	1.24E+01	-1.04E-04
21600	-5.57E-07	3.03E+02	1.26E+01	-1.11E-04
21600	-3.36E-07	3.09E+02	1.29E+01	-6.72E-05
21600	-4.69E-07	3.15E+02	1.31E+01	-9.39E-05
21600	-4.92E-07	3.21E+02	1.34E+01	-9.83E-05
21600	-6.94E-07	3.27E+02	1.36E+01	-1.39E-04
21600	-5.21E-07	3.33E+02	1.39E+01	-1.04E-04
21600	-5.10E-07	3.39E+02	1.41E+01	-1.02E-04
21600	-4.60E-07	3.45E+02	1.44E+01	-9.19E-05
3600	-4.44E-07	3.46E+02	1.44E+01	-8.88E-05
21600	-5.67E-07	3.52E+02	1.46E+01	-1.13E-04
21600	-5.22E-07	3.58E+02	1.49E+01	-1.04E-04
21600	-5 47E-07	3 64E+02	1.51E+01	-1 09F-04
21600	-5 46E-07	3 70E+02	1.54E+01	-1.09E-04
21600	-5.82E-07	3 76E+02	1.56E+01	-1 16E-04
21600	-5 16E-07	3 82E+02	1.59E+01	-1.03E-04
21600	-5 18E-07	3 88E+02	1.61E+01	-1.04E-04
21600	-5.07E-07	3.94E+02	1.64E+01	-1.01E-04
21600	-5 57E-07	4 00E+02	1.66E+01	-1 11E-04
21600	-5.59E-07	4.06E+02	1.69E+01	-1.12E-04
21600	-5 34E-07	4 12E+02	1 71E+01	-1 07E-04
21600	-6.89E-07	4.18E+02	1.74E+01	-1.38E-04
21600	-8 24E-07	4 24E+02	1 76E+01	-1 65E-04
21600	-8 99E-07	4 30E+02	1 79E+01	-1 80F-04
21600	-9.98E-07	4 36E+02	1.81E+01	-2 00E-04
18000	-1.01E-06	4 41E+02	1.84E+01	-2 02E-04
21600	-9 99E-07	4 47E+02	1.86E+01	-2 00E-04
21600	-9 79E-07	4 53E+02	1.89E+01	-1 96E-04
21600	-1.02E-06	4.59E+02	1.00E+01	-2 04F-04
21600	-1.07E-06	4.65E+02	1.94E+01	-2 14F-04
21600	-1.07E-06	4.00E+02	1.94E+01	-2 15E-04
21600	-1 12E-06	4.77E+02	1.00E+01	-2.10E 04
21600	-1 18F-06	4 83F+02	2 01F+01	-2.36F-04
21600	-1 25E-06	4.80E+02	2.01E+01	_2.50E-04
14400	-1.25E-00	4 93 =+02	2.042.01	-2.50E-04
21600	_9.81E_07	4 99E+02	2.00E+01	_1.96E-04
21600		5 05=+02	2.000-101	_1 50E-04
21600	-7.62E-07	5.032+02	2.102+01	_1 52E_04
<u> </u>	7 30 - 07	5 10E±02	2.13ETUI	1 495 04
5400	-1.30E-07		2.IJETUI	<u>-1.40⊏-04</u>

Time	Current	Time	Time	Current
S	A	h	days	mA/cm ²
	Reactor 3			Reactor 2
21600	2.95E-06	6.00E+00	2.50E-01	5.90E-04
21600	3.55E-04	1.20E+01	5.00E-01	7.09E-02
21600	3.38E-04	1.80E+01	7.50E-01	6.76E-02
21600	3.37E-04	2.40E+01	1.00E+00	6.74E-02
21600	3.45E-04	3.00E+01	1.25E+00	6.89E-02
21600	3.52E-04	3.60E+01	1.50E+00	7.04E-02
21600	3.56E-04	4.20E+01	1.75E+00	7.12E-02
21600	3.37E-04	4.80E+01	2.00E+00	6.74E-02
21600	3 13E-04	5 40E+01	2 25E+00	6 26F-02
21600	3.02E-04	6.00E+01	2.50E+00	6.04F-02
21600	3.03E-04	6.60E+01	2 75E+00	6.06E-02
21600	2 42E-04	7 20E+01	3.00E+00	4.83E-02
21600	2.42E-04	7.20E+01	3.25E+00	4.03E-02
21600	2.43E-04	8.40E+01	3.50E+00	4.87E-02
21600	2.42E-04	0.40E+01	3.75E+00	4.03E-02
21000	2.450-04	9.00L+01	3.73E+00	4.900-02
21600	2.4 IE-04	9.00E+01	4.00E+00	4.02E-02
21600	2.40E-04	1.02E+02	4.25E+00	4.00E-02
21600	2.47E-04	1.08E+02	4.50E+00	4.94E-02
21600	2.52E-04	1.14E+02	4.75E+00	5.03E-02
21600	2.48E-04	1.20E+02	5.00E+00	4.97E-02
21600	2.70E-04	1.26E+02	5.25E+00	5.40E-02
21600	2.59E-04	1.32E+02	5.50E+00	5.17E-02
21600	2.63E-04	1.38E+02	5.75E+00	5.26E-02
3600	2.48E-04	1.39E+02	5.79E+00	4.95E-02
21600	2.58E-04	1.45E+02	6.04E+00	5.16E-02
21600	2.51E-04	1.51E+02	6.29E+00	5.01E-02
21600	2.49E-04	1.57E+02	6.54E+00	4.98E-02
21600	2.52E-04	1.63E+02	6.79E+00	5.04E-02
21600	2.49E-04	1.69E+02	7.04E+00	4.98E-02
21600	2.44E-04	1.75E+02	7.29E+00	4.87E-02
21600	2.53E-04	1.81E+02	7.54E+00	5.05E-02
21600	2.60E-04	1.87E+02	7.79E+00	5.19E-02
21600	2.54E-04	1.93E+02	8.04E+00	5.09E-02
21600	2.47E-04	1.99E+02	8.29E+00	4.93E-02
21600	2.49E-04	2.05E+02	8.54E+00	4.98E-02
21600	2.55E-04	2.11E+02	8.79E+00	5.10E-02
21600	2.47E-04	2.17E+02	9.04E+00	4.94E-02
21600	2.34E-04	2.23E+02	9.29E+00	4.67E-02
21600	2.24E-04	2.29E+02	9.54E+00	4.47E-02
18000	2.18E-04	2.34E+02	9.75E+00	4.37E-02
21600	2.31E-04	2.40E+02	1.00E+01	4.61E-02
21600	2.33E-04	2.46E+02	1.03E+01	4.66E-02
21600	2.32E-04	2.52E+02	1.05E+01	4.63E-02
21600	2.24E-04	2.58E+02	1.08E+01	4.48E-02
21600	2.31E-04	2.64E+02	1.10E+01	4.63E-02
21600	2.29E-04	2.70E+02	1.13E+01	4.58E-02
21600	2.29E-04	2.76E+02	1.15E+01	4.59E-02
21600	2.28E-04	2.82E+02	1.18E+01	4.55E-02
14400	2.30E-04	2.86E+02	1.19E+01	4.60E-02
21600	2.43E-04	2.92E+02	1.22E+01	4.87E-02
21600	2.42E-04	2.98E+02	1.24E+01	4.84E-02
21600	2.36E-04	3.04E+02	1.27E+01	4.72E-02
5400	2.37E-04	3.06E+02	1.27E+01	4.73E-02

Table 4.5.2-4 | Raw data of currents of Reactor 3 measured in batch BES.

R18	R1	Ammoni	um						
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	70.339	78.937	72.456	1.407	1.579	1.449	1.478	0.090
1	6	61.257	65.625	63.968	1.225	1.313	1.279	1.272	0.044
2	13	50.228	52.267	54.285	1.005	1.045	1.086	1.045	0.041
3	20	34.182	34.541	33.563	0.684	0.691	0.671	0.682	0.010
4	27	n.a.	n.a.	n.a.	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
5	29	71.414	66.344	65.569	1.428	1.327	1.311	1.356	0.063
6	30	61.456	61.525	78.385	1.229	1.231	1.568	1.342	0.195
R19	AC	Ammoni	um						
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	78.611	79.727	78.398	1.572	1.595	1.568	1.578	0.014
1	6	74.239	75.087	71.193	1.485	1.502	1.424	1.470	0.041
2	13	62.712	74.188	70.369	1.254	1.484	1.407	1.382	0.117
3	20	67.682	63.508	61.521	1.354	1.270	1.230	1.285	0.063
4	27	69.219	57.159	61.844	1.384	1.143	1.237	1.255	0.122
5	30	50.216	72.086	72.547	1.004	1.442	1.451	1.299	0.255
R21	BC	Ammoni	um						
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	80.614	75.478	77.415	1.612	1.510	1.548	1.557	0.052
1	4	75.095	81.049	75.551	1.502	1.621	1.511	1.545	0.066
2	11	69.360	69.302	73.372	1.387	1.386	1.467	1.414	0.047
3	18	63.144	62.269	61.934	1.263	1.245	1.239	1.249	0.012
4	21	62.441	68.873	49.368	1.249	1.377	0.987	1.205	0.199
R22	R2	Ammoni	um						
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	243.474	232.907	241.127	4.869	4.658	4.823	4.783	0.111
1	4	70.392	78.629	75.526	1.408	1.573	1.511	1.497	0.083
2	11	43.155	42.899	42.851	0.863	0.858	0.857	0.859	0.003
3	18	n.a.	n.a.	n.a.	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
4	20	66.391	74.047	74.868	1.328	1.481	1.497	1.435	0.094
5	21	73.812	69.721	70.650	1.476	1.394	1.413	1.428	0.043
R23	R3	Ammoni	um						
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	65.641	67.136	65.987	1.313	1.343	1.320	1.325	0.016
1	3	61.485	60.531	59.250	1.230	1.211	1.185	1.208	0.022
2	6	41.004	47.983	50.157	0.820	0.960	1.003	0.928	0.096
3	10	21.268	20.507	19.822	0.425	0.410	0.396	0.411	0.014
4	13	n.a.	n.a.	n.a.	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!

Table 4.5.2-5 | Raw data of ammonium concentrations measured in batch BES.

R18	R1	Nitrate							
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	4.930	4.926	5.185	0.025	0.025	0.026	0.025	0.001
1	6	5.769	5.524	5.779	0.029	0.028	0.029	0.028	0.001
2	13	26.829	26.667	26.124	0.134	0.133	0.131	0.133	0.002
3	20	41.305	41.338	41.610	0.207	0.207	0.208	0.207	0.001
4	27	46.996	46.707	46.680	0.235	0.234	0.233	0.234	0.001
5	29	33.320	33.818	33.889	0.167	0.169	0.169	0.168	0.002
6	30	45.517	44.230	45.620	0.228	0.221	0.228	0.226	0.004
R19	AC	Nitrate							
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	2.342	2.244	4.425	0.012	0.011	0.022	0.015	0.006
1	6	3.537	3.565	3.295	0.018	0.018	0.016	0.017	0.001
2	13	n.a.	n.a.	n.a.	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
3	20	n.a.	n.a.	n.a.	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
4	27	2.063	3.065	2.954	0.010	0.015	0.015	0.013	0.003
5	30	n.a.	n.a.	n.a.	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
R21	BC	Nitrate							
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	3.740	2.086	3.827	0.019	0.010	0.019	0.016	0.005
1	4	3.312	3.428	3.130	0.017	0.017	0.016	0.016	0.001
2	11	26.380	22.402	22.104	0.132	0.112	0.111	0.118	0.012
3	18	26.302	26.388	26.602	0.132	0.132	0.133	0.132	0.001
4	21	31.461	31.458	31.607	0.157	0.157	0.158	0.158	0.000
R22	R2	Nitrate							
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	2.847	2.369	2.553	0.014	0.012	0.013	0.013	0.001
1	4	11.208	11.615	10.394	0.056	0.058	0.052	0.055	0.003
2	11	67.461	64.704	66.554	0.337	0.324	0.333	0.331	0.007
3	18	114.256	115.850	113.094	0.571	0.579	0.565	0.572	0.007
4	20	96.556	99.118	96.532	0.483	0.496	0.483	0.487	0.007
5	21	113.354	111.108	109.675	0.567	0.556	0.548	0.557	0.009
R23	R3	Nitrate							
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	n.a.	n.a.	n.a.	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
1	3	26.956	26.910	26.628	0.135	0.135	0.133	0.134	0.001
2	6	73.446	73.970	76.135	0.367	0.370	0.381	0.373	0.007
3	10	127.617	126.414	127.821	0.638	0.632	0.639	0.636	0.004
4	13	151.521	152.422	148.405	0.758	0.762	0.742	0.754	0.011

Table 4.5.2-6 | Raw data of nitrate concentrations measured in batch BES.

R18	R1	Nitrite							
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	1.004	1.257	1.204	0.005	0.006	0.006	0.006	0.001
1	6	n.a.	n.a.	n.a.	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
2	13	1.991	1.714	2.031	0.010	0.009	0.010	0.010	0.001
3	20	0.020	0.030	n.a.	0.000	0.000	#VALUE!	#VALUE!	#VALUE!
4	27	n.a.	n.a.	n.a.	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
5	29	7.705	8.073	9.318	0.039	0.040	0.047	0.042	0.004
6	30	5.405	2.435	2.184	0.027	0.012	0.011	0.017	0.009
R19	AC	Nitrite							
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	7.177	7.487	7.106	0.036	0.037	0.036	0.036	0.001
1	6	2.998	6.095	3.827	0.015	0.030	0.019	0.022	0.008
2	13	n.a.	n.a.	n.a.	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
3	20	0.100	0.150	0.120	0.001	0.001	0.001	0.00	0.000
4	27	4.242	5.372	3.921	0.021	0.027	0.020	0.02	0.004
5	30	7.027	7.428	7.318	0.035	0.037	0.037	0.04	0.001
R21	BC	Nitrite							
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	0.300	0.020	0.340	0.002	0.000	0.002	0.001	0.001
1	4	0.040	0.030	0.040	0.000	0.000	0.000	0.000	0.000
2	11	0.170	0.140	0.150	0.001	0.001	0.001	0.001	0.000
3	18	2.631	2.493	2.464	0.013	0.012	0.012	0.013	0.000
4	21	4.331	4.617	4.029	0.022	0.023	0.020	0.022	0.001
R22	R2	Nitrite							
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	0.060	0.080	0.100	0.000	0.000	0.001	0.000	0.000
1	4	0.080	0.090	0.080	0.000	0.000	0.000	0.000	0.000
2	11	0.110	0.120	0.120	0.001	0.001	0.001	0.001	0.000
3	18	2.905	4.371	1.676	0.015	0.022	0.008	0.015	0.007
4	20	8.852	8.895	9.221	0.044	0.044	0.046	0.045	0.001
5	21	3.526	3.470	2.955	0.018	0.017	0.015	0.017	0.002
R23	R3	Nitrite							
#	days	1	2	3	C 1	C 2	C 3	Mean	Std.
0	0	7.602	0.98	1.005	0.038	0.005	0.005	0.005	0.000
1	3	2.523	2.648	2.535	0.013	0.013	0.013	0.013	0.000
2	6	5.188	5.213	5.124	0.026	0.026	0.026	0.026	0.000
3	10	2.368	2.509	2.767	0.012	0.013	0.014	0.013	0.001
4	13	8.410	8.576	7.826	0.042	0.043	0.039	0.041	0.002

Table 4.5.2-7 | Raw data of nitrite concentrations measured in batch BES.

Table 4.5.2-8 | The most abundant 16S gene sequencing data (count of sequence \geq 10) of all samples obtained from the batch reactors used for ammonium removal from wastewater. Asv were summarised on genus level and shown on the lowest classified level.

Pow Labols	Count of
Archaoa	Sequence
Furvarchaeota	12
Methanomicrohia	12
Methanosarcinales	12
Methanosaetaceae	12
Methanosaeta	12
Thaumarchaeota	48
Nitrososphaeria	48
Nitrososphaerales	48
Nitrososphaeraceae	48
Candidatus Nitrocosmicus	48
Bacteria	1179
Acidobacteria	11
Blastocatellia_(Subgroup_4)	11
Blastocatellales	11
Blastocatellaceae	11
Actinobacteria	70
Acidimicrobiia	11
Actinomarinales	11
Actinobacteria	36
Corynebacteriales	11
Mycobacteriaceae	11
Mycobacterium	11
Micrococcales	14
Microbacteriaceae	14
NA	11
NA	11
Thermoleophilia	12
Gaiellales	12
Armatimonadetes	21
Fimbriimonadia	21
Fimbriimonadales	21
Bacteroidetes	94
Bacteroidia	94
Bacteroidales	26
Dysgonomonadaceae	14
Proteiniprilium	14
WCHB1_32	12
Chitinonhagales	23
Chitinophagaceae	23
NA	35
Sphingobacteriales	10
Chloroflexi	202
Anaerolineae	124
Anaerolineales	27
Anaerolineaceae	27
Ardenticatenales	10
Caldilineales	25
Caldilineaceae	25
RBG-13-54-9	26
SBR1031	36
A4b	23
NA	13
Chloroflexia	36
Thermomicrobiales	36
AKYG1722	14
JG30-KF-CM45	22
Gitt-GS-136	18
NA	10
OLB14	14

۱	the lowest classified level.	
	Deferribacteres	10
	Deferribacteres	10
	Deferribacterales	10
	Deferribacteraceae	10
	Deinococcus-Thermus	22
	Deinococci	22
	Deinococcales	22
	Trueperaceae	22
	Truepera	22
	Firmicutes	56
	Bacilli	34
	Bacillales	34
	Bacillaceae	34
	Anaerobacillus	12
	Bacillus	12
	NA	10
		22
		10
	Family_XI	10
	Soeningenia	10
	Deculfectorecipue	12
	Lydrogonodontoo	14
	Hydrogenedentia	11
		11
	Hydrogenedensaceae	11
	NA	131
	Nitrospirae	24
	Nitrospira	24
	Nitrospirales	24
	Nitrospiraceae	24
	Nitrospira	24
	Patescibacteria	11
	Parcubacteria	11
	Planctomycetes	35
	Brocadiae	35
	Brocadiales	35
	Brocadiaceae	35
	Candidatus_Kuenenia	35
	Proteobacteria	437
	Alphaproteobacteria	155
	NA	75
	Parvibaculales	11
	Parvibaculaceae	11
	Parvibaculum	11
	Rhizobiales	69
	NA	34
	Rhizobiaceae	18
	Xantnobacteraceae	17
		13
		10
	0319-0G20 Commonito charteria	2/1
	Betanroteobacteriales	158
	Burkholderiaceae	61
	Limnohacter	1/
	NA	Δ7
	NA	20
	Rhodocyclaceae	20 77
	Dechloromonas	11
	Denitratisoma	13
	Ferribacterium	36
	NA	17

Legionellales	10	Leptospiraceae	10
Legionellaceae	10	Turneriella	10
Legionella	10	Synergistetes	14
NA	33	Synergistia	14
Pseudomonadales	14	Synergistales	14
Pseudomonadaceae	14	Synergistaceae	14
Pseudomonas	14	Thermovirga	14
Xanthomonadales	26	Thermotogae	20
Xanthomonadaceae	26	Thermotogae	20
NA	11	Petrotogales	20
Thermomonas	15	Petrotogaceae	20
NA	28	Defluviitoga	20
Spirochaetes	10	Eukaryota	218
Leptospirae	10	NA	21
Leptospirales	10	Grand Total	1478

 Establishment of the restriction fragment length polymorphism (RFLP) technique as an easy and rapid analysis of low diverse bacterial community compositions

5.1. Abstract

In this study the restriction fragment length polymorphism (RFLP) technique has been investigated for implementation to monitor enriched community compositions in laboratory systems and to verify pre-defined cultures used in the laboratory. The DNA is amplified with non-labelled primers and the amplicons restricted with two restriction enzymes simultaneously. The restriction patterns of the applied strains are visualized using a fragment analyser.

The six test strains almost matched the *in silico* determined restriction lengths *in situ*. Although, the lengths varied slightly over time. The highest calculated standard deviations were 11.2 bp (*Pseudomonas fluorescens*) and 6.9 bp (*Escherichia coli*). The standard deviations of all other restriction fragments were below 2.4 bp. The single strains also revealed clear peaks with acceptable intensities up to 5000 RFU. When mixed together and normalised to a certain concentration, the strains were still detectable but peak intensities were very low for some strains or two slightly distinct restrictions fragments reveal the same peak.

The RFLP technique is suitable for the identification of pure cultures but still needs to be improved for mixed cultures with low diversities concerning the restriction enzymes as well as the procedures. However, it is an easy, rapid and cost-effective technique and shows great potential for in-house investigation of microbial community compositions with low diversity.

5.2. Introduction

To apprehend microbial processes in technical systems, it is important to understand the dynamics in the microbial communities. Therefore, such communities are investigated concerning their species richness, referring to the number of species in a community, and their species evenness, meaning the sizes of species populations within a community. As it is not possible to cultivate most of the bacteria found in the environment in the laboratory, culture-independent methods are necessary to study biodiversity by fingerprinting communities. Techniques such as denaturing gradient gel electrophoresis (DGGE) (Muyzer *et al.*, 1993) or temperature gradient gel electrophoresis (TGGE) (Rosenbaum & Riesner, 1987), single-strand conformation polymorphism (SSCP) (Schwieger & Tebbe, 1998), and terminal restriction fragment length polymorphism (T-RFLP) (Liu *et al.*, 1997) have been the methods of choice.

In T-RFLP the 16S rRNA gene target region is first amplified via PCR (Avaniss-Aghajani et al., 1994, Liu et al., 1997). Universal primers have been developed covering a broad range of bacteria. They can be tagged with a fluorophore on the forward primer allowing to compress the analysis to one single fragment per species. The obtained amplicons of all bacteria present in a sample show almost the same lengths. Subsequent digestion of the amplicons by specified restrictions endonucleases lead to specific restriction fragment (RF) lengths (Liu et al., 1997). These enzymes typically have recognition sites of 4 to 6 bp in lengths. Many restrictions endonucleases are now commercially available facilitating the applications regarding different recognition sites and incubation temperatures. This also allows the simultaneous usage of two or more restriction enzymes in one digestion step. The restriction patterns are then visualized computer-assisted using gel or capillary electrophoresis and the digitally received profiles can be directly compared with constantly growing 16S rRNA gene databanks (Liu et al., 1997). In DGGE, TGGE, and SSCP, however, visualization is done on polyacrylamide gels revealing generally lower resolution (Marsh, 1999).

Since its development, T-RFLP was used to describe microbial communities in various environments such as clinical specimens (Avaniss-Aghajani *et al.*, 1996, Hayashi *et al.*, 2003, Layer *et al.*, 2006), soils (Lukow *et al.*, 2000, Fierer & Jackson,

2006, Smalla *et al.*, 2007), sediments (Scala & Kerkhof, 2000, Konstantinidis *et al.*, 2003, Edlund *et al.*, 2006), wastewater (Kelly *et al.*, 2005, Siripong & Rittmann, 2007, Kraigher *et al.*, 2008) as well as bioelectrochemical systems (Lefebvre *et al.*, 2010, Harnisch *et al.*, 2011, Patil *et al.*, 2011).

For T-RFLP, however, a sequencer is essential for the analysis of the restriction profiles that is usually not available in each institution as they are very expensive. In contrast to sequencer, capillary electrophoresis systems are more reasonable. In this study an in-house fragment analyser will be applied for the implementation of RFLP without labelled primers as an easy and rapid technique to monitor and verify predefined community compositions used in our laboratory rather than complex environmental samples. Non-labelled primers are used as most of the cultures are enriched and will reveal distinct RF profiles. What seems to be a step backwards in history, could be a step forward to an easy and cost-effective technique for the rapid in-house monitoring of enrichment cultures applied in the laboratory.

5.3. Experimental procedure

5.3.1. Bacterial strains and cultivation

The bacterial strains shown in Table 5.3.1-1 were cultivated overnight on nutrient agar [Merck GmbH, Darmstadt, Germany]. The media is composed of 5.00 g L⁻¹ peptone, 3.00 g L⁻¹ meat extract, and 12.00 g L⁻¹ agar-agar. The pH was 7.0.

Table 5.3.1-1 | Bacterial strains used as model strains for RFLP. The strains were cultivated overnight on nutrient agar.

Strain	DSMZ No.	Incubation temperature	Incubation medium
Aeromonas hydrophila	30187	30 °C	Nutrient agar
Pseudomonas aeruginosa	50071	37 °C	Nutrient agar
Pseudomonas fluorescens	50090	30 °C	Nutrient agar
Sphingomonas koreensis	15582	30 °C	Nutrient agar
Flavobacterium johnsoniae	2064	30 °C	Nutrient agar
Escherichia coli	30083	37 °C	Nutrient agar

5.3.2. Extraction of genomic DNA

The DNA of the model strains was extracted using the Blood & Tissue Kit provided by QIAGEN GmbH [Hilden, Germany]. For cell lysing the samples were pretreated with proteinase K as described for gram-negative cells. The DNA extracts were stored at -20 °C until further usage.

5.3.3. Quantification of DNA yield

The DNA yields in the extractions were quantified using the Invitrogen Qubit[™] 4 fluorometer [ThermoFisher Scientific, Dreieich, Germany]. The attendant Invitrogen Qubit[™] dsDNA HS Assay Kit [ThermoFisher Scientific, Dreieich, Germany] was applied according to the manufacturers' instructions using 1 µL of sample.

5.3.4. Amplification of 16S rRNA genes

For the amplification of the 16S rRNA genes the primer set Ba27f/Ba907r (Table 5.3.4-1) was applied. The primers were purchased from Eurofins Genomics [Ebersberg, Germany].

Table 5.3.4-1 | Primers used for the amplification of 16S rRNA genes.

	Name	Sequence	Reference
Forward primer	Ba27f	AGAGTTTGATCMTGGCTCAG	Pilloni <i>et al.</i> (2011)
Reverse primer	Ba907r	CCGTCAATTCMTTTRAGTTT	Lane <i>et al.</i> (1985)

The PCR components were mixed as described in Table 5.3.4-2. All components for the PCR were purchased from ThermoFisher Scientific [Dreieich, Germany], Promega GmbH [Mannheim, Germany] and Sigma-Aldrich Chemie GmbH [Munich, Germany]. The DNA extraction products of all samples used as templates were normalized to 10 ng/ μ L in nuclease-free water beforehand. The thermal profile used for the PCR is shown in Table 5.3.4-3 and was done in the Mastercycler epgradient S [Eppendorf GmbH, Wesseling-Berzdorf, Germany]. Strains were tested separately and all mixed together. In case of the latter the normalized concentration was 10 ng/ μ L in total.

	Stock concentration	Final concentration	Per reaction
DNA template	1-20 ng μL ⁻¹	0.02-0.4 ng μL ⁻¹	1 µL
Nuclease-free water	-	-	39.25 µL
PCR Buffer	10 X	1 X	5 µL
MgCl ₂	25 mmol L ⁻¹	1.5 mmol L ⁻¹	3 µL
BSA	20 μg μL ⁻¹	0.2 μg L ⁻¹	0.5 µL
dNTPs	10 mmol L ⁻¹	0.1 mmol L ⁻¹	0.5 µL
Forward primer Ba27f	100 µmol L-1	0.5 µmol L-1	0.25 μL
Reverse primer Ba907r	100 µmol L-1	0.5 µmol L ⁻¹	0.25 μL
Taq polymerase	5 U μL ⁻¹	0.025 U μL ⁻¹	0.25 µL

Table 5.3.4-2 | PCR reaction mix used for RFLP.

Temperature	Time	
94 °C	5 min	
94 °C	0.5 min]
52 °C	0.5 min	05
70 °C	1 min	25 cycles
70 °C	5 min	
4 °C	hold	

Table 5.3.4-3 | Thermal profile for PCR amplification for RFLP.

5.3.5. Purification of amplicons

After PCR, the amplicons were purified using the NucleoSpin PCR and Gel Clean-Up provided by Macherey-Nagel GmbH und Co. KG [Düren, Germany] following the manufacturers' instructions. The amplicons were eluted in 15 μ L buffer NE and stored at -20 °C until further analyses.

5.3.6. Selection of restriction enzymes and in-silico restriction analysis

The 16S rRNA sequences of the strains (Table 5.3.1-1) were derived from NCBI's nr database using the PCR primers (Table 5.3.4-1). *In silico* restriction fragments were obtained using different restriction enzymes in the restriction mapper Version 3 (http://www.restrictionmapper.org). The enzymes Kpn2I and SacI were chosen as they have only one restriction site and they revealed distinct RF lengths for the tested bacterial strains.

5.3.7. Restriction of PCR amplicons

The PCR amplicons used as templates were normalized to the lowest DNA yield measured in the samples beforehand using the Invitrogen Qubit[™] 4 fluorometer [ThermoFisher Scientific, Dreieich, Germany] as previously described in section 5.3.3. The enzymes Kpn2I and SacI (Table 5.3.7-1) and the respective buffer were purchased from Invitrogen, Thermo Scientific [Dreieich, Germany]. They were applied simultaneously for the restriction of the amplicons. The restriction mix was prepared as described in the manufacturers' instructions (Table 5.3.7-2). Nuclease-free water

was purchased from Promega GmbH [Mannheim, Germany]. The samples were incubated for 20 min in the Mastercycler epgradient S [Eppendorf GmbH, Wesseling-Berzdorf, Germany].

Table 5.3.7-1 Restriction enzymes used in RFLP.					
Enzyme Restriction site Dilution buffer Incubation temperature					
Kpn2l	T CCGGA	Anza™ 10x Buffer	37 °C		
Sacl	AGT ACT	Anza [™] 10x Buffer	37 °C		

Table 5.3.7-2 | Restriction mix used for RFLP.

	Stock concentration	Final concentration	For 1 reaction
Amplicon template	100 ng μL ⁻¹	25 ng μL ⁻¹	10.00 µL
Nuclease-free water	-	-	6.50 µL
Buffer (incl. BSA)	10 X	1 X	2.00 μL
Sacl	10 U μL ⁻¹	0.5 U μL ⁻¹	1.00 µL
Kpn2l	20 U μL ⁻¹	0.5 U μL ⁻¹	0.50 µL

5.3.8. Visualization of restriction fragments on the fragment analyser and analyses of restriction fragments

The restriction fragments (RFs) were visualized using the Fragment Analyzer [Advanced Analytical Technologies GmbH, Heidelberg, Germany]. For the detection of the RFs the DNF-910 dsDNA Reagent Kit for fragments between 35 bp and1500 bp length was used as described in the manufacturers' instructions. As templates, 4 μ L of the restriction products were applied. To verify PCR results, amplicons were additionally visualized.

PCR and restriction of single tested strains was conducted eleven times for *A. hydrophila*, ten times for *E.coli*, and nine times for the other strains. Mean values and standard deviations were calculated of the lengths given by the fragment analyser. Raw data obtained from the fragment analyser are shown in the appendix (Table 5.4.2-1 to Table 5.4.2-9).

5.4. Results

To implement the RFLP technique for monitoring microbial cultures used in the laboratory, six test strains were evaluated as single strains investigating the differences of *in silico* RFs and experimentally tested RFs. Mixtures of five strains were analysed whether differentiation of those strains was achieved.

5.4.1. Evaluation of test strains: in silico and in situ

The RFs of each of the six chosen strain was determined *in silico* with both restriction enzymes, SacI and Kpn2I, and investigated experimentally. The analyses revealed that the RFs of *E. coli* and *A. hydrophila* had almost the same length with 848 bp and 851 bp, respectively. They also shared the same restriction fragment at 70 bp. Series of *in situ* experiments, however, showed that both strains could be clearly separated as the RF of *A. hydrophila* was only 825 ± 2.4 bp in length (Table 5.4.1-1, Figure 5.4.1-1). Although, all strains were normalized to the concentration of the strain with the lowest concentration (between 50 and 60 ng μ L⁻¹) before restriction, the relative fluorescence varied between each run.

	Restriction enzyme	In silico RF	Tested RF
Aeromonas hydrophila	Kpn2l	70 bp	79.3 ± 0.8 bp
		851 bp	825.0 ± 2.4 bp
Escherichia coli	Kpn2I	70 bp	79.8 ± 0.4 bp
		848 bp	847.5 ± 6.9 bp
Pseudomonas aeruginosa	Kpn2I	143 bp	143 ± 0.0 bp
		770 bp	760.0 ± 2.4 bp
Pseudomonas fluorescens	Sacl	77 bp	93.2 ± 0.4 bp
		836 bp	846.5 ± 11.2 bp
Sphingomonas koreensis	Sacl	306 bp	298.9 ± 2.7 bp
		556 bp	562.8 ± 1.6 bp
Flavobacterium johnsoniae	Kpn2I	366 bp	379.0 ± 1.1 bp
		536 bp	534.7 ± 0.9 bp

Table 5.4.1-1 | Restriction fragments (RFs) of test strains. Experimentally generated RFs were obtained from test series of n=11 for A. hydrophila, n=10 for E. coli and n=9 for *P. aeruginosa*. *P. fluorescens*. *Sph. koreensis* and *F iohnsoniae*.

Figure 5.4.1-1 | Relative intensities of *in silico* RFs (grey) and intensities of experimentally tested RFs of test strains (blue; n=11 for A. hydrophila, n=10 for E. coli and n=9 for *P. aeruginosa*, *P. fluorescens*, *Sph. koreensis* and *F johnsoniae*).

The standard deviations of the measured RFs lengths were generally low between ± 0 bp and ± 2.4 bp. Only in the case of *E. coli* and *P. fluorescens* the standard deviations reached ± 6.9 bp and ± 11.2 bp. In summary, the RFLP technique provided good results for the identification of most of the single strains.

5.4.2. Differentiation of test strains in mixtures

The *in silico* analysis resulted in a pattern as shown in Figure 5.4.2-1 with clearly distinct restriction fragments for all test strains except for *E. coli* and *A. hydrophila*. These strains had almost the same length with 848 bp and 851 bp, respectively. As the relative fluorescence would be low in the case of small amounts of input templates, the longest fragments were used for identification, here determined as RF1 in Figure 5.4.2-1.

Figure 5.4.2-1 | In silico constructed pattern of RFs of test strains.

The experimental series revealed a different pattern of the five strains used in these experiments (Figure 5.4.2-2). The electropherograms showed generally low relative fluorescence of most of the strains compared to the size markers applied in the fragment analyser. Not all peaks could be clearly assigned to the test strains *A. hydrophila*, *P. aeruginosa*, *P. fluorescens*, *Sph. koreensis*, and *F. johnsoniae*. In the first set, for instance, the peak at 843 bp might be identified as *E. coli* (single strain tests: 847.5 ± 6.9 bp). However, this strain was not part of the set. *A. hydrophila* (single strain tests: 825.0 ± 2.4 bp) could not be found in the pattern. In the second pattern the peak showing a RF length of 831 bp could be assigned to *A. hydrophila*,

although, it was 6 bp higher than the calculated average size. *P. aeruginosa* and *P. fluorescens* were only identified by their minor peaks of 143 bp and 91 to 93 bp (single strain tests: 143.0 ± 0.0 bp for *P. aeruginosa* and 93.2 ± 0.4 bp for *P. fluorescens*), respectively, but their major peaks of about 760 bp and 852 bp could not be found in the first set of experiments. In the second set a minor peak with 766 bp could be identified as *P. aeruginosa* (single strain tests: 760.0 ± 2.4 bp). *Sph. koreensis* was not detectable in the first set of experiments at all. In the second set it was represented by a very low peak with a RF size of 302 bp (single strain tests: 298.9 ± 2.7 bp). *F. johnsoniae* (single strain tests: 379.0 ± 1.1 bp, however, was clearly detectable in both sets at least by one peak at 374 bp (set 1) and 380 bp (set 2). The second RFs were 4 bp and 7 bp longer than the calculated average size of 534.7 ± 0.9 bp but still identifiable as *F. johnsoniae*.

Figure 5.4.2-2 | Experimentally achieved RF patterns of five species (except *E. coli*) of two sets of experiments.

Differences of RF lengths and intensities between the single analysed strains and mixed strains were also obtained, when only two, three or four strains were mixed (data not shown). The obtained RF lengths differed up to 24 bp and 17 bp from the average values for *A. hydrophila* and *P. aeruginosa*, respectively. In conclusion, for identification of strains in mixed samples, the RFLP technique required optimization procedures for accurate applications.

5.5. Discussion

In this study, a potential in-house RFLP technique for the analysis of community compositions of samples with low microbial diversity is addressed. The aim is to rapidly investigate the microbial communities within a running system such as a bioelectrochemical system and to verify enriched and pure cultures used in a strain collection. Although, the RFLP technique shows great potential, there were several issues that have to be focused on in further investigations.

The study showed that this in-house RFLP technique can be easily utilised for the verification of pure cultures as the RFs of all single strains are obtained with low standard deviations. Only the RFs for *E. coli* were getting longer over time and it was, therefore, not used for the experiments where strains were mixed. Unfortunately, it cannot be explained why this phenomenon occurred. Amplicons may become degraded over time during storage due to the presence of DNA degrading enzymes resulting from improper DNA extractions, rapid freeze-thawing conditions (QIAGEN Service & Support Centre, 2013-2020), or storage buffer compositions (Röder et al., 2010). DNA degradation, however, was not observed. All strains were efficiently tested as single samples in the same run without observation of DNA degradation processes in the stored DNA extractions. Studies showed that parameters concerning the PCR may have an influence on the resulting T-RFLP profiles (Clement et al., 1998, Osborn et al., 2000). The PCR parameters and products used in this study, however, were not changed. Furthermore, the restriction process can affect the T-RFLP profiles as incomplete digestion may result in additional T-RFs (Bruce, 1997, Clement et al., 1998). This phenomenon can occur in complex environmental communities and, consequently, leads to overestimations of the microbial diversity in the samples (Osborn et al., 2000). In this study, only five known strains make up the microbial community. Incomplete digestion might have been a problem but were identifiable as PCR products with approximately 920 bp, which were seldomly observed.

The main problems of this technique are observed when mixing two or more strains together. The longer the fragments are, the higher is their relative fluorescence intensity because of the staining. These longer fragments, therefore, are regarded as
the major fragments revealing the strains identity. Unfortunately, it seems that RFs of different strains are coeluting leading to false results. A reason for this might be the concentration of the gel solution. In electrophoresis, the gel concentration is justified to the lengths of DNA molecules. The higher the concentration of the gel is, the lower is the ability of resolving the molecules and the fragments may be separated inaccurately (Yılmaz *et al.*, 2012). For the experiments the gel concentration of the water from the gel solution can be excluded. Additionally, the ladder with an upper band of 1,500 bp was efficiently resolved on the gel, while PCR products with approximately 920 bp were additionally adequately resolved, which were applied on the fragment analyser to verify efficient PCR processes.

Interestingly, *P. aeruginosa* is always detectable with its RF at 143 bp with a very low intensity in the mixed samples but not its major RF. The latter could coelute with the major RF of another strain. However, no RF of the other strains has approximately the same size. Here, the aforementioned possibility of DNA degradation may play a role, although it was excluded as mentioned above. Another point to mention are unspecific restrictions that can occur as it was observed to happen in T-RFLP analyses (Egert & Friedrich, 2003). It was shown that these unspecific restrictions may result from single-stranded DNA fragments since endonucleases are only able to cleave double-stranded DNA fragments at their specific recognition sites (Nishigaki *et al.*, 1985). This phenomenon might have indeed occurred as well in this study and has to be further addressed.

Small fragment lengths below 200 bp generally show very little intensities. They might be overcome by using higher amount of loading dye, although, the amount of dye added to the samples according to the manuals is usually more than sufficient to stain all fragments completely. The initial concentration of the sample must be known if one prefers to efficiently adapt the concentration of the loading dye to prevent depletion of the dye.

Another point to mention is the simultaneous application of two restriction enzymes. Although, they have two completely different restriction sites, the enzymes could interfere with each other. For instance, the recognition site of the first enzyme might be close to a region that resembles the recognition site of the second enzyme. This second enzyme might be attracted to the possible restriction site without cutting but blocking the entire region for the first enzyme for a certain time. This might lead to incomplete restriction. Indeed, for instance, a recognition site for the enzyme SacI that differs in one base pair is directly located beside the restriction site for Kpn2I in the amplicon of *A. hydrophila*. Nevertheless, unrestricted fragments were not present or only detectable in low concentrations showing that the restriction was in general complete. The restriction in the sample mixtures has to be investigated using only one restriction enzyme at a time. This should allow the restriction of only *P. fluorescens* and *S. koreensis* in one run and *A. hydrophila*, *P. aeruginosa*, *F. johnsoniae* and, *E. coli* in the next run. Nevertheless, the simultaneous application of restriction enzymes would save time and money and, therefore, is the preferred approach.

For each strain tested, the restriction enzymes must be chosen well to avoid enzyme inefficiencies and incomplete restrictions. The same holds true for the concentration of enzymes, the application time as well as temperature. While the application temperature depends on the used enzymes, the concentration and time could be adjusted individually. However, the change of parameters related to the restriction process as well as to PCR does not necessarily solve the problem concerning unspecific restrictions (Egert & Friedrich, 2003).

During the study, the drawbacks of this technique could not be entirely investigated. Although, the technique is very suitable for the verification of pure cultures, further optimization steps have to be tested for the application of RFLP to monitor mixed samples. The implementation of RFLP as a rapid in-house test would save time and money and enhance the efficiency of laboratory experiments.

5.6. Appendix

Table 5.4.2-1 | Raw data from electrophoresis on the fragment analyzer (23.11.2017). Aero = *A. hydrophila*, Psae = *P. aeruginosa*, Psfl = *P. fluorescens*, Sphingo = *Sph. koreensis*.

		- ,	1		J ,	E7	Doft 1		· · ·	5	- 1-
FI	Aero I					F/					
Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU
1	35 (LM)		22.674	0.4856	10583	1	35 (LM)		22.278	0.4771	7172
2	68	2.3	5.567	0.2308	169	2	82	4	3.509	0.1761	100
3	70	4.1	8 380	0.4041	101	3	03	7.2	5 654	0 3107	100
3	73	4.1	0.309	0.4041	191	J	90	1.2	3.034	0.3197	109
4	/ 35	0.9	0.19	0.0849	/5	4	827	88.8	7.815	3.9265	1700
5	829	92.7	18.218	9.1795	4929	5	1500 (UM)		0.549	0.5	11959
6	1500 (UM)		0.549	0.5	17068						
	,						TIC	4 4222	na/ul		
	TIC:	0 0000	ng/ul				TIM	16.070	nmolo/l		
	TIC:	9.6992	ng/uL					10.979	nmole/L		
	TIM:	32.365	nmole/L				Total Conc	4.7149	ng/uL		
	Total Conc	10.1513	ng/uL								
						F8	Psfl 2				
E2	A oro 2					Book ID	Size (bp)	% (Cono.)	nmolo/l	ng/ul	DELL
12		0((O)	1.0		DELL	Feak ID	Size (bp)	70 (COIIC.)		11g/ui	7000
Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	1	35 (LM)		22.061	0.4725	7332
1	35 (LM)		23.4	0.5012	10601	2	83	0.4	0.721	0.0364	64
2	68	3.1	3.746	0.1553	142	3	93	2.3	3.785	0.2153	86
3	70	4.1	4 161	0 2004	132	1	858	07.3	17 548	0 1/3/	3166
3	73	4.1	4.101	0.2004	152	4	000	91.5	17.340	3.1434	5100
4	825	92.8	9.137	4.5775	3585	5	1500 (UM)		0.549	0.5	12505
5	1500 (UM)		0.549	0.5	16876						
							TIC:	9.3951	na/uL		
	TIC	1 0333	na/ul				TIM	22.054	nmole/l		
	TINA.		ng/uL				Tatal Ori	22.034	ninoic/L		
	111V1:	17.044	nmole/L				TOTAL CONC	9.672	rig/uL		
	Fotal Conc	5.2568	ng/uL								
						F9	Psfl 3				
F3	Aero 3					Peak ID	Size (hp)	% (Conc.)	nmole/I	na/ul	RELL
Decl: ID		0/ /0-	mma = 1 = 11	malui	DELL	i can ID	0120 (up)	/0 (0010.)	00.055	- 19/01	000-
Реак ID	Size (bp)	% (Conc.)	nmole/L	ng/ui	KFU	1	35 (LM)		23.052	0.4937	8887
1	35 (LM)		22.899	0.4904	8962	2	82	2.6	3.995	0.2004	133
2	69	6.9	3.374	0.141	121	3	93	5.4	7.249	0.4099	165
2	70	6.0	2.0.4	0 1376	102	4	Q/1	00.9	13 510	6 0097	2022
3	79	0.7	2.037	0.13/0	102	4	041	90.0	13.519	0.9087	2933
4	822	86.4	3.533	1.7649	1941	5	1169	1.2	0.126	0.0897	58
5	1500 (UM)		0.549	0.5	14841	6	1500 (UM)		0.549	0.5	14409
	TIC:	2 0425	ng/ul				TIC	7 6097	ng/ul		
	TIC.	2.0433	ng/uL				TIC.	1.0007	ng/uL		
	TIM:	9.763	nmole/L				TIM:	24.89	nmole/L		
	Total Conc	2.3212	ng/uL				Total Conc	7.791	ng/uL		
E4	Doop 1					E10	Sphingo 1				
F4	FSae I					FIU	Springo i				
Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU
1	35 (LM)		21.918	0.4694	10640	1	35 (LM)		22.647	0.485	8881
2	143	44	4 286	0.3719	615	2	296	29.2	13 131	2 3631	1192
	140	7.0	6.60	0.6066	210	-	E00	60.7	10.101	E 6004	2150
3	149	1.2	0.09	0.6066	219	3	504	09.7	10.405	5.6364	3159
4	760	88.4	16.126	7.4426	4896	4	865	1.1	0.166	0.0873	119
5	1500 (UM)		0.549	0.5	18078	5	1500 (UM)		0.549	0.5	14698
	TIO	0.4044					TIO	0.0000			
	TIC:	8.4211	ng/uL				IIC:	8.0888	ng/uL		
	TIM:	27.103	nmole/L				TIM:	29.763	nmole/L		
	Total Conc	8.6317	ng/uL				Total Conc	8.4953	ng/uL		
			Ū								
F.C.	De se O					E44	Outines O				
F5	Psae 2					FIT	Spningo 2				
Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	KFU
1	35 (LM)		22.272	0.477	9578	1	35 (LM)		22.285	0.4773	10612
2	1/2	/ 1	4 615	0 4004	5/10	3	206	20.0	Q 105	1 65/19	1211
2	450		013	0.4004	010	2	230	20.0	14.045	2 0000	2060
3	150	8.4	9.104	0.8282	224	3	501	69	11.215	3.8263	2968
4	760	86.8	18.587	8.5783	4616	4	865	1.1	0.117	0.0615	95
5	1169	0.7	0.102	0.0724	59	5	1500 (UM)		0.549	0.5	17491
6	1500 (UM)		0 549	0.5	15989		. ,				
	(0.11)	-	0.010	0.0			TIC	5 5400	ng/ul		
	70	0.077					TIU.	0.0420	11g/uL		
	TIC:	9.8793	ng/uL				HM:	20.527	nmole/L		
	TIM:	32.407	nmole/L				Total Conc	5.8902	ng/uL		
	Total Conc	10.0716	ng/uL								
	21.10					F12	Ladder				
56	DeciO					Decili ID		0/ (0-)	mma c 1 - P	malu:	DEL
г о	Psae 3					Peak ID	Size (bp)	70 (Conc.)	rimoie/L	ng/ui	RFU
Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	1	35 (LM)		22.36	0.4789	11723
1	35 (LM)	,	23.144	0.4957	8079	2	100	7.4	52.07	3.1709	7624
· ·	1/2	10 7	5 667	0 /017	365	2	200	ຊາ	20 172	3 5/95	0886
2	750	12.7	3.007	0.4317	0047		200	0.2	20.173	0.0400	10101
3	/52	85.8	7.252	3.3115	2047	4	300	8.1	19.224	3.5061	10484
4	905	1.4	0.099	0.0546	77	5	400	8.2	14.485	3.5216	10862
5	1500 (UM)		0.549	0.5	13140	6	500	23.2	32,948	10.0116	16460
				1.0		7	008	0.3	11 009	4 0122	0553
	TIO	0.0575	a a la d			1	000	9.3	0.770	4.0133	5003
	IIC:	3.8578	ng/uL			8	/00	8.7	8.776	3.733	11557
	TIM:	13.018	nmole/L			9	800	9	7.947	3.8631	11744
	Total Conc	4.1136	na/ul			10	900	87	6.885	3.7646	11460
						44	1000	0.1	£ 474	3 0222	11200
						11	1000	9.1	0.4/4	3.9332	11300
						12	1500 (UM)		0.549	0.5	19299
		[[TIC:	43 066	na/ul		
							TIM	100.000	nmele/!		
							TIVI:	108.99	ninole/L		
							Iotal Conc	43.3411	ng/uL		

Table 5.4.2-2 | Raw data from electrophoresis on the fragment analyzer (23.11.2017). Sphingo = Sph. koreensis, Flavo = F. jonsoniae, Aero = A. hydrophila, Psae = P. aeruginosa, Psfl = P. fluorescens.

G1	Sphingo 3					G7	Ecoli 3				
Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU
1	35 (LM)	, ,	19.788	0.4238	10583	1	35 (LM)	, ,	20.041	0.4292	8207
2	300	34.5	14 066	2 5653	1421	2	69	2.3	5 981	0 2501	144
2	562	64.3	12 072	4 7745	3664	2	80	2.0	9 792	0.4262	172
3	302	04.3	13.972	4.7745	3004	J	00	4	0.702	10.0050	5112
4	000	1.2	0.109	0.0000	140	4	000	93.7	19.307	10.0056	5113
5	1500 (UM)		0.549	0.5	19871	5	1500 (UM)		0.549	0.5	15351
	TIC:	7.4284	ng/uL				TIC:	10.6821	ng/uL		
	TIM:	28.206	nmole/L				TIM:	34.07	nmole/L		
	Total Cond	7.7687	ng/uL				Total Conc	10.971	ng/uL		
									-		
G2	Flavo 1					G8	NTC PCR				
Book ID	Size (bp)	% (Conc.)	nmolo/l	ng/ul	DELL	Book ID	Size (bp)	% (Conc.)	nmolo/l	ng/ul	DELL
Feak ID	Size (bp)	70 (COIIC.)	ninole/L	11g/ui	10004	FeakiD	312e (bp)	70 (COIIC.)		ng/ui	NFU 0044
1	35 (LM)		21.758	0.466	10281	1	35 (LM)		19.691	0.4217	8341
2	377	40.4	19.191	4.4026	2077	2	56	63.8	24.116	0.8294	721
3	534	58.7	19.685	6.3924	5456	3	71	15.7	4.722	0.2041	203
4	927	0.8	0.161	0.0905	150	4	912	20.5	0.482	0.2668	322
5	1500 (UM)		0.549	0.5	18302	5	1500 (UM)		0.549	0.5	15890
	, ,						. ,				
	TIC	10 8855	na/ul				TIC	1 3004	ng/ul		
	TIM:	20.027	ng/uL				TIM:	20.22	ng/uL		
	TIIVI.	39.037	ninole/L				TIIVI.	29.32	ninole/L		
	Total Cond	11.2416	ng/uL				Total Conc	1.6055	ng/uL		
G3	Flavo 2					G9	Aero 1 PC	R			
Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU
1	35 (LM)	. /	21.643	0.4635	9702	1	35 (LM)	. ,	24.399	0.5225	9658
2	370	27	13 705	3 1501	1505	2	60	0.1	2 333	0.026	5550
2	3/0	31	0.005	0.001	1000	2	70	0.1	4.050	0.000	35
3	429	6.3	2.055	0.5353	169	3		0.1	1.659	0.0729	88
4	534	49.9	13.07	4.244	4210	4	257	0.2	0.809	0.1263	216
5	621	6.1	1.377	0.5199	187	5	464	0.1	0.128	0.0362	61
6	927	0.7	0.101	0.0568	89	6	598	0.1	0.134	0.0486	50
7	1500 (UM)		0.549	0.5	16833	7	658	0.1	0.244	0.0977	125
	,					8	901	99.3	121 771	66 6604	62527
	TIC	9 506	ng/ul			0	1500 (LIM)	00.0	0.540	00.0004	14625
	TIC.	0.000	ng/uL			9	1300 (0101)		0.349	0.5	14023
	TIM:	30.306	nmole/L				-				
	Total Cond	8.846	ng/uL				TIC:	67.128	ng/uL		
							TIM:	127.078	nmole/L		
G4	Flavo 3						Total Conc	67.6684	ng/uL		
Peak ID	Size (bp)	% (Conc.)	nmole/L	na/ul	RFU				-		
1	35 (LM)	(19 352	0 4 1 4 5	11046	G10	Psae 1 PC	R			
	379	40.3	12.022	2 7656	1727	Book ID	Size (bp)	% (Conc.)	nmolo/l	ng/ul	DELL
2	570	40.3	12.032	2.7050	17.57	FeakiD	312e (bp)	70 (COIIC.)		ng/ui	10105
3	535	58.9	12.432	4.0452	4832	1	35 (LM)		25.05	0.5365	10105
4	927	0.8	0.1	0.0564	115	2	57	0.3	5.408	0.1879	97
5	1500 (UM)		0.549	0.5	21277	3	71	0.2	3.241	0.1412	129
						4	608	0.2	0.361	0.1335	179
	TIC:	6.8672	na/uL			5	901	99.3	117.12	64,1143	62557
	TIM	24 564	nmole/l			6	1500 (UM)		0 549	0.5	15074
	Total Cana	7 1601	ninoic/E			0	1000 (011)		0.040	0.0	10074
	TOLAI COIL	7.1001	ng/uL				TIO	04 5700			
							TIC:	64.5769	ng/uL		
G5	Ecoli 1						HM:	126.13	nmole/L		
Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU		Total Conc	65.168	ng/uL		
1	35 (LM)		20.027	0.4289	9899						
2	72	2.1	5.942	0.2611	175	G11	Psfl 1 PCR	1			
3	79	37	9.456	0.4556	222	Peak ID	Size (bp)	% (Conc)	nmole/L	na/ul	RFU
1	0.98	04.2	22 278	11 6450	6983	1	35 (I M)	(22 262	0 4768	11627
	1500 (1 1 4)	0 4 .2	0 540	0.0	10067		30 (LIVI) 40	0.4	4 500	0.0455	E0
C D	1000 (01/1)		0.049	0.5	10007	2	49	0.1	1.528	0.0405	50
	TIO	10.55				3	250	0.1	0.446	0.0678	1/7
	TIC:	12.3625	ng/uL			4	661	0.1	0.172	0.0691	121
	TIM:	37.676	nmole/L			5	916	99.6	89.553	49.8214	62525
	Total Conc	12.6093	ng/uL			6	1500 (UM)		0.549	0.5	19271
					i						
G6	Ecoli 2						TIC:	50.0038	na/uL		
Peak ID	Size (hn)	% (Conc.)	nmole/I	na/ul	RFU		TIM:	91 7	nmole/I		
1	35 (I M)	- (21 617	0.463	8640	-	Total Conc	50 / 701	na/ul		
	00 (LIVI)	0.5	21.017	0.403	450			50.4791	ng/uL		
2	69	2.5	0.349	0.20//	152	0.10	1				
3	79	4	9.045	0.4357	177	G12	Ladder				
4	850	93.5	19.679	10.169	5191	Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	KFU
5	1500 (UM)		0.549	0.5	15099	1	35 (LM)		21.495	0.4604	11837
						2	100	6.7	52.963	3.2254	8093
	TIC:	10.8725	na/ul				200	77	30.657	3.729	10756
	TIM·	35 072	nmole/I			4	200	7 9	20.672	3 7701	11772
	Total Corre	11 0000	na/ul			4	400	1.0	15 000	0.1101	10050
		11.0093	ng/uL			5	400	8	10.032	3.049	12200
						6	500	23.2	36.844	11.1954	19841
						7	600	9.4	12.42	4.5285	11606
						8	700	9	10.207	4.3416	14491
					i	9	800	9.1	9.075	4.411	14601
						10	900	93	8.188	4,4771	14473
						10	1000	0.0	7 764	4 7160	1/181/
							1500 (184)	3.0	0.540	4./109	200005
						12	1500 (UNI)		0.549	0.5	20005
							11C:	48.2439	ng/uL		
							TIM:	204.622	nmole/L		
							Total Conc	48.3635	ng/uL		

Table 5.4.2-3 Raw data from electrophoresis on the fragment analyzer (11.01.2018). Aer	0
<i>= A. hydrophila</i> , Psae <i>= P. aeruginosa</i> , Sphingo <i>= Sph. koreensis</i> .	

A1		Aero 1					Α7	Psae 2				
Rook ID		Size (bp)	% (Conc.)	nmole/l	ng/ul	DELL	Rook ID	Size (bp)	% (Conc.)	nmolo/l	na/ul	DELL
Feak ID	_	Size (up)	% (CONC.)	TITIOIe/L	ng/ui	RFU	Feak ID	Size (up)	% (COLC.)	TITIOIe/L	ng/u	REU
	1	35 (LM)		21.926	0.4696	9831	1	35 (LM)		22.458	0.481	7983
	2	69	2.5	3.785	0.1588	130	2	143	10.7	7.476	0.6506	355
	2	90	2.0	2 772	0 1946	101	2	715	2.0	0.4	0 1720	90
	3	00	2.9	3.112	0.1040	121	3	715	2.9	0.4	0.1739	00
	4	824	93.6	11.802	5.9089	3258	4	756	86.4	11.439	5.2515	2361
	5	1172	0.9	0.083	0.059	62	5	1500 (UM)		0.549	0.5	13303
	6	1500 (LIM)		0.540	0.5	16842	-					
	0	1300 (0101)		0.549	0.5	10042		-				
								TIC:	6.076	ng/uL		
		TIC:	6.3113	na/uL				TIM:	19.316	nmole/L		
	_	TIM	10 442	nmolo/l				Total Cono	6 2200	ng/ul		
	_	TIIVI.	19.442	TITIOIe/L				Total Conc	0.3299	ng/u∟		
		Total Conc	6.5168	ng/uL								
							A8	Psae 3				
10		A oro 2					Dook ID	Size (hp)	0/ (Cono.)	nmolo/l	na/ul	DELL
AZ	_	Ael0 Z					Feak ID	Size (pp)	% (COLC.)	TITTOIe/L	ng/ui	REU
Peak ID		Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	1	35 (LM)		24.292	0.5203	8527
	1	35 (LM)		22.953	0.4916	10913	2	143	3.5	4.454	0.3876	444
	2	60 (2)	2.0	2 101	0 1220	107	2	140	7.0	0,400	0.9620	170
	2	00	3.9	3.191	0.1320	127	3	149	1.9	9.499	0.6029	1/0
	3	80	4.3	3.019	0.1468	107	4	717	2.3	0.574	0.2501	129
	4	822	91.7	6.202	3.0964	2557	5	762	86.3	20.46	9.468	3532
	5	1500 (1114)		0.540	0.5	17956	6	1500 (11M)		0.540	0.5	12041
	Э	1500 (UNI)		0.549	0.5	1/000	0	1500 (UNI)		0.549	0.5	13041
		TIC	3 376	na/ul				TIC	10,9686	ng/ul		
		TINA.	10,410	ng, aL				TIMA.	24.007	ng, ale /l		
	_	T IIVI:	12.412	nmole/L				T IIVI.	34.987	nmole/L		
		Total Conc	3.6496	ng/uL				Total Conc	11.2888	ng/uL		
						1				-		
12	_	A ors 2					4.0	Cohine d				
AJ		Aelo 3					A9	Springo 1				
Peak ID		Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU
	1	35 (LM)		24 060	0 5155	9992	1	35 (LM)	. /	23 436	0 5010	8106
	-	55 (LIVI)		27.009	0.0100	3332	-	30 (LIVI)		20.400	0.0019	0190
	2	68	1.8	3.104	0.1292	143	2	297	26.9	12.194	2.1991	826
	3	80	1.5	2.191	0.1065	98	3	565	72	17.151	5.8841	2302
	Λ	824	96.7	13 03/	6 9763	33/12	1	863	11	0 178	0.0032	112
	-4	024	30.7	13.934	0.9703	3342	4	000	1.1	0.170	0.0952	112
	5	1500 (UM)		0.549	0.5	15759	5	1500 (UM)		0.549	0.5	13131
	_	TIC	7 212	na/ul				TIC	8 1765	ng/ul		
	_	110.	1.212	ng/uL				110.	0.1705	ng/uL		
		HM:	19.229	nmole/L				HM:	29.522	nmole/L		
		Total Conc	7.4443	ng/uL				Total Conc	8.508	ng/uL		
				5						3		
	_											
A4		Aero 4					A10	Sphingo 2				
Peak ID		Size (bp)	% (Conc.)	nmole/L	na/ul	RFU	Peak ID	Size (bp)	% (Conc.)	nmole/L	na/ul	RFU
	4	25 (1 14)		00.070	0.40	0400		25 (1 14)		04.000	0 5450	0010
	- 1	35 (LIVI)		22.070	0.49	9420	1	35 (LIVI)		24.060	0.5159	9012
	2	68	2.6	4.116	0.1713	130	2	296	25.6	7.275	1.3072	776
	3	80	31	4 208	0 2045	123	3	562	73.3	10 953	3 7439	2002
	4	004	04.0	10.044	0.2010	0444		001	1.0.0	0.440	0.050	2002
	4	824	94.2	12.241	6.1287	3141	4	801	1.2	0.113	0.059	79
	5	1500 (UM)		0.549	0.5	15871	5	1500 (UM)		0.549	0.5	13843
	_	. ,						,				
	_	-						-				
		TIC:	6.5046	ng/uL				TIC:	5.1101	ng/uL		
		TIM:	20.565	nmole/L				TIM:	18.341	nmole/L		
		Total Conc	6 7799	na/ul				Total Conc	5 4343	na/ul		
	-	Total Cono	0.1100	ng/uL				Total Cono	0.1010	ng/ aL		
A5		Aero 5					A11	Sphingo 3				
Poak ID		Sizo (bp)	% (Conc.)	nmolo/l	na/ul	DELL	Poak ID	Size (bp)	% (Conc.)	nmolo/l	ng/ul	DELL
F Cak ID		Size (bp)	70 (COIIC.)		ng/ui	110	Feak ID	Size (bp)	70 (COIIC.)		ng/ui	
	1	35 (LM)		22.71	0.4864	9714	1	35 (LM)		24.27	0.5198	10053
	2	69	22	4.548	0.1908	134	2	297	6.3	3.451	0.6224	1023
	-	00	2.2	E 700	0.00	107	2	207	2.0	10 420	2 2002	1064
	ა	00	3.3	5.762	0.28	137	3	303	د22.3	12.432	2.2903	1001
	4	727	0.9	0.167	0.0737	57	4	566	69.4	19.856	6.8247	2803
	5	826	93.6	15.831	7.9484	3523	5	863	1	0.191	0.1002	149
	6	1500 (1114)		0.540	0.5	16120	0			0.540	0.5	15725
	0			0.049	0.0	10120	n	1500 (LIM)			0.0	10/00
							6	1500 (UM)		0.349		
							6	1500 (UM)		0.549		
		TIC:	8.4929	ng/uL			6	1500 (UM) TIC:	9.8375	ng/uL		
		TIC: TIM:	8.4929	ng/uL nmole/l			6	1500 (UM) TIC: TIM:	9.8375 35.93	ng/uL nmole/l		
		TIC: TIM:	8.4929 26.308	ng/uL nmole/L			0	1500 (UM) TIC: TIM: Total Car	9.8375 35.93	ng/uL nmole/L		
	_	TIC: TIM: Total Conc	8.4929 26.308 8.6865	ng/uL nmole/L ng/uL				1500 (UM) TIC: TIM: Total Conc	9.8375 35.93 10.1337	ng/uL nmole/L ng/uL		
A6	_	TIC: TIM: Total Conc	8.4929 26.308 8.6865	ng/uL nmole/L ng/uL				1500 (UM) TIC: TIM: Total Conc	9.8375 35.93 10.1337	ng/uL nmole/L ng/uL		
		TIC: TIM: Total Conc Psae 1	8.4929 26.308 8.6865	ng/uL nmole/L ng/uL			A12	1500 (UM) TIC: TIM: Total Conc	9.8375 35.93 10.1337	ng/uL nmole/L ng/uL		
Deal		TIC: TIM: Total Conc Psae 1	8.4929 26.308 8.6865	ng/uL nmole/L ng/uL			A12	1500 (UM) TIC: TIM: Total Conc Ladder	9.8375 35.93 10.1337	ng/uL nmole/L ng/uL		
Peak ID		TIC: TIM: Total Conc Psae 1 Size (bp)	8.4929 26.308 8.6865 % (Conc.)	ng/uL nmole/L ng/uL nmole/L	ng/ul	RFU	A12 Peak ID	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp)	9.8375 35.93 10.1337 % (Conc.)	ng/uL nmole/L nmole/L	ng/ul	RFU
Peak ID	1	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM)	8.4929 26.308 8.6865 % (Conc.)	ng/uL nmole/L ng/uL nmole/L 21.804	ng/ul 0.467	RFU 8842	A12 Peak ID	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM)	9.8375 35.93 10.1337 % (Conc.)	ng/uL nmole/L ng/uL nmole/L 23.445	ng/ul 0.5021	RFU 10980
Peak ID	1	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM)	8.4929 26.308 8.6865 % (Conc.)	ng/uL nmole/L ng/uL nmole/L 21.804 5 256	ng/ul 0.467	RFU 8842 336	A12 Peak ID	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM)	9.8375 35.93 10.1337 % (Conc.)	ng/uL nmole/L ng/uL nmole/L 23.445 56.051	ng/ul 0.5021 3 4134	RFU 10980 7483
Peak ID	1 2	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143	8.4929 26.308 8.6865 % (Conc.) 11.6	ng/uL nmole/L ng/uL nmole/L 21.804 5.256	ng/ul 0.467 0.4574	RFU 8842 336	A12 Peak ID 1 2	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100	9.8375 35.93 10.1337 % (Conc.) 7.4	ng/uL nmole/L ng/uL nmole/L 23.445 56.051	ng/ul 0.5021 3.4134	RFU 10980 7483
Peak ID	1 2 3	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5	ng/uL nmole/L ng/uL nmole/L 21.804 5.256 0.229	ng/ul 0.467 0.4574 0.0997	RFU 8842 336 60	A12 Peak ID 1 2 3	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3	ng/uL nmole/L ng/uL 23.445 56.051 31.417	ng/ul 0.5021 3.4134 3.8215	RFU 10980 7483 9579
Peak ID	1 2 3 4	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8	ng/uL nmole/L ng/uL nmole/L 21.804 5.256 0.229 7.352	ng/ul 0.467 0.4574 0.0997 3.3749	RFU 8842 336 60 1876	A12 Peak ID 1 2 3 4	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3	ng/uL nmole/L ng/uL nmole/L 23.445 56.051 31.417 21.007	ng/ul 0.5021 3.4134 3.8215 3.8312	RFU 10980 7483 9579 10277
Peak ID	1 2 3 4 5	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (LM)	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8	ng/uL nmole/L nmole/L 21.804 5.256 0.229 7.352 0.549	ng/ul 0.467 0.4574 0.0997 3.3749	RFU 8842 336 60 1876	A12 Peak ID 1 2 3 4	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.3 8.3	ng/uL nmole/L ng/uL 23.445 56.051 31.417 21.007	ng/ul 0.5021 3.4134 3.8215 3.8312 3.7227	RFU 10980 7483 9579 10277 10545
Peak ID	1 2 3 4 5	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM)	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8	ng/uL nmole/L ng/uL nmole/L 21.804 5.256 0.229 7.352 0.549	ng/ul 0.467 0.4574 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 4 4 5	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300 400	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.1	ng/uL nmole/L 23.445 56.051 31.417 21.007 15.312	ng/ul 0.5021 3.4134 3.8215 3.8312 3.7227	RFU 10980 7483 9579 10277 10545
Peak ID	1 2 3 4 5	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM)	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8	ng/uL nmole/L nmole/L 21.804 5.256 0.229 7.352 0.549	ng/ul 0.467 0.4574 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 4 5 6	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300 400 500	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.3 8.3 8.1 23.1	ng/uL nmole/L ng/uL 23.445 56.051 31.417 21.007 15.312 34.925	ng/ul 0.5021 3.4134 3.8215 3.8312 3.7227 10.6122	RFU 10980 7483 9579 10277 10545 15830
Peak ID	1 2 3 4 5	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM) TIC:	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8 3.932	ng/uL nmole/L ng/uL nmole/L 21.804 5.256 0.229 7.352 0.549 ng/uL	ng/ul 0.467 0.4574 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 4 4 5 6 6 7	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300 400 500 600	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.3 8.1 23.1 9.1	ng/uL nmole/L ng/uL 23.445 56.051 31.417 21.007 15.312 34.925 11.46	ng/ul 0.5021 3.4134 3.8215 3.8312 3.7227 10.6122 4.1781	RFU 10980 7483 9579 10277 10545 15830 9012
Peak ID	1 2 3 4 5	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM) TIC:	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8 3.932	ng/uL nmole/L ng/uL 21.804 5.256 0.229 7.352 0.549 ng/uL ng/uL	ng/ul 0.467 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 4 4 5 6 7 7	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300 400 500 600	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.3 8.1 23.1 9.1	ng/uL nmole/L ng/uL 23.445 56.051 31.417 21.007 15.312 34.925 11.46	ng/ul 0.5021 3.4134 3.8215 3.8312 3.7227 10.6122 4.1781	RFU 10980 7483 9579 10277 10545 15830 9012
Peak ID	1 2 3 4 5	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM) TIC: TIM:	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8 3.932 12.836	ng/uL nmole/L ng/uL 21.804 5.256 0.229 7.352 0.549 ng/uL nmole/L	ng/ul 0.467 0.4574 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 3 4 5 6 6 7 7 8	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300 400 500 600 700	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.3 8.1 23.1 9.1 8.8	ng/uL nmole/L 23.445 56.051 31.417 21.007 15.312 11.46 9.494	ng/ul 0.5021 3.4134 3.8215 3.8312 3.7227 10.6122 4.1781 4.0381	RFU 10980 7483 9579 10277 10545 15830 9012 11564
Peak ID	1 2 3 4 5	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM) TIC: TIM: Total Conc	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8 3.932 12.836 4.2136	ng/uL nmole/L ng/uL 21.804 5.256 0.229 7.352 0.549 ng/uL nmole/L ng/uL	ng/ul 0.467 0.4577 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 4 4 5 6 6 7 7 8 9 9	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300 400 500 600 7000 800	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.3 8.1 23.1 9.1 8.8 8.8 8.8	ng/uL nmole/L 23,445 56.051 31.417 21.007 15.312 34.925 11.46 9.494 8.401	ng/ul 0.5021 3.4134 3.8215 3.8312 3.7227 10.6122 4.1781 4.0381 4.0836	RFU 10980 7483 9579 10277 10545 15830 9012 11564 11572
Peak ID	1 2 3 4 5	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 7566 1500 (UM) TIC: TIM: Total Conc	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8 3.932 12.836 4.2136	ng/uL nmole/L ng/uL 21.804 5.256 0.229 7.352 0.549 ng/uL nmole/L ng/uL	ng/ul 0.467 0.4574 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 2 3 4 5 6 6 7 8 9 9	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300 400 500 600 700 800 800	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.1 23.1 9.1 8.8 8.9 8.7 8.7	ng/uL nmole/L ng/uL 23.445 56.051 31.417 21.007 15.312 34.925 11.46 9.494 8.401 7.275	ng/ul 0.5021 3.4134 3.8215 3.7227 10.6122 4.1781 4.0831 4.0836 3.978	RFU 10980 7483 9579 10545 15830 9012 11564 11572 11074
Peak ID	1 2 3 4 5	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM) TIC: TIM: Total Conc	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8 3.932 12.836 4.2136	ng/uL nmole/L ng/uL 21.804 5.256 0.229 7.352 0.549 ng/uL nmole/L ng/uL	ng/ul 0.467 0.4574 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 4 4 5 6 6 7 7 8 9 9	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 2000 300 400 500 600 7000 800 800 900	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.1 23.1 9.1 8.8 8.9 8.7 0.2 2	ng/uL nmole/L 23.445 56.051 31.417 21.007 15.312 34.925 11.46 9.494 8.401 7.275	ng/ul 0.5021 3.4134 3.8215 3.8312 3.7227 10.6122 4.1781 4.0836 3.978 4.2227	RFU 10980 7483 9579 10277 10545 15830 9012 11564 11572 11564
Peak ID	1 2 3 4 5	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM) TIC: TIM: Total Conc	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8 3.932 12.836 4.2136	ng/uL nmole/L ng/uL 21.804 5.256 0.229 7.352 0.549 ng/uL nmole/L ng/uL	ng/ul 0.467 0.4574 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 3 4 5 6 7 8 8 9 9 10	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300 400 500 600 700 800 900 900	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.1 23.1 9.1 8.8 8.9 9.8 7 9.2	ng/uL nmole/L 23.445 56.051 31.417 21.007 15.312 34.925 11.46 9.494 8.401 7.275 6.974	ng/ul 0.5021 3.4134 3.8215 3.8312 3.7227 10.6122 4.1781 4.0381 4.0836 3.978 4.2373	RFU 10980 7483 9579 10277 10545 15830 9012 11564 11572 11074 11572
Peak ID	1 2 3 4 5	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM) TIC: TIM: Total Conc	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8 3.932 12.836 4.2136	ng/uL nmole/L q/uL 21.804 5.256 0.229 7.352 0.549 ng/uL nmole/L ng/uL	ng/ul 0.467 0.4574 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 4 4 5 6 6 7 7 8 9 9 10 0 11	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 2000 300 400 500 6000 700 800 900 1000 1500 (UM)	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.1 9.1 9.1 8.8 8.9 8.7 9.2	ng/uL nmole/L ng/uL 23.445 56.051 51.417 21.007 15.312 34.925 11.46 9.494 8.401 7.275 6.974 0.549	ng/ul 0.5021 3.4134 3.8215 3.8312 3.7227 10.6122 4.1781 4.0381 4.0383 3.978 4.2373 0.5	RFU 10980 7483 9579 10277 10545 15830 9012 11564 11572 11074 11053 17532
Peak ID	1 2 3 4 5	TIC: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM) TIC: TIM: Total Conc	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8 3.932 12.836 4.2136	ng/uL nmole/L ng/uL 21.804 5.256 0.229 7.352 0.549 ng/uL nmole/L ng/uL	ng/ul 0.467 0.4574 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 4 4 5 6 6 7 7 8 9 9 10 11	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300 400 500 600 700 800 900 1500 (UM)	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.1 23.1 9.1 8.8 8.9 9.8.7 9.2	ng/uL nmole/L 23.445 56.051 31.417 21.007 15.312 11.46 9.494 8.401 7.275 6.974 0.549	ng/ul 0.5021 3.4134 3.8215 3.8215 3.7227 10.6122 4.1781 4.0381 4.0386 3.978 4.2373 0.5	RFU 10980 7483 9579 10277 10545 15830 9012 11564 11572 11074 11573
Peak ID	1 2 3 4 5	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM) TIC: TIM: Total Conc	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8 3.932 12.836 4.2136	ng/uL nmole/L 21.804 5.256 0.229 7.352 0.549 ng/uL nmole/L ng/uL	ng/ul 0.467 0.4574 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 3 4 5 6 7 7 8 9 10 11 11	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 2000 300 400 500 600 700 800 900 1000 1500 (UM)	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.3 8.1 9.1 8.8 8.8 9.2 9.2	ng/uL nmole/L ng/uL 23.445 56.051 31.417 21.007 15.312 34.925 11.46 9.494 8.401 7.275 6.974 0.549	ng/ul 0.5021 3.4134 3.8215 3.8312 3.7227 10.6122 4.1781 4.0836 3.9783 0.5	RFU 10980 7483 9579 10277 10545 15830 9012 11564 11572 11074 11053 17532
Peak ID	1 2 3 4 5	TIC: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM) TIC: TIM: Total Conc	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8 3.932 12.836 4.2136	ng/uL nmole/L 21.804 5.266 0.229 7.352 0.549 ng/uL nmole/L ng/uL	ng/ul 0.467 0.4574 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 4 4 5 6 6 7 7 8 9 10 11 12	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300 400 500 600 700 800 900 1000 (UM) 1500 (UM)	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.1 23.1 9.1 8.8 8.9 8.7 9.2 45.9161	ng/uL nmole/L 23.445 56.051 31.417 21.007 15.312 34.925 11.46 9.494 8.401 7.275 6.974 0.549 ng/uL	ng/ul 0.5021 3.4134 3.8215 3.8312 3.7227 10.6122 4.1781 4.0836 3.978 4.2373 0.5	RFU 10980 7483 9579 10277 10545 15830 9012 11564 11572 11574 11074 11073 17532
Peak ID	123455	TIC: TIM: Total Conc Psae 1 Size (bp) 35 (LM) 143 717 756 1500 (UM) TIC: TIM: Total Conc	8.4929 26.308 8.6865 % (Conc.) 11.6 2.5 85.8 3.932 12.836 4.2136	ng/uL nmole/L ng/uL 21.804 5.256 0.229 7.352 0.549 ng/uL nmole/L ng/uL	ng/ul 0.467 0.4574 0.0997 3.3749 0.5	RFU 8842 336 60 1876 15211	A12 Peak ID 1 2 3 3 4 5 6 6 7 7 8 9 10 11 12	1500 (UM) TIC: TIM: Total Conc Ladder Size (bp) 35 (LM) 100 200 300 400 500 600 700 800 900 1000 1500 (UM) TIC: TIM:	9.8375 35.93 10.1337 % (Conc.) 7.4 8.3 8.3 8.3 8.3 9.1 8.8 8.9 8.7 9.2 45.9161 202.316	ng/uL nmole/L 23.445 56.051 31.417 21.007 15.312 34.925 11.46 9.494 8.401 7.275 6.974 0.549 ng/uL nmole/L	ng/ul 0.5021 3.4134 3.8215 3.7227 10.6122 4.1781 4.0836 3.978 4.2373 0.5	RFU 10980 7483 9579 10277 10545 15830 9012 11564 11572 11074 11053 17532

- B1	Flavo 1					B7	Ecoli 4				
Peak ID	Size (bn)	% (Conc.)	nmole/l	na/ul	RELL	Peak ID	Size (bn)	% (Conc.)	nmole/l	na/ul	RELL
	25 (LM)	70 (Conc.)	21 710	0 4652	10602		25 (LM)	70 (Conc.)	22.266	0 470	0150
1	33 (LIVI)	20.0	12 272	2.0014	1450	1		2.1	22.300	0.479	110
2	300	39.9	13.373	3.0914	1459	2	69	3.1	4.233	0.1769	110
3	536	59	14.051	4.5/4/	3975	3	80	4.4	5.182	0.252	121
4	919	1.1	0.146	0.0815	113	4	834	89.5	10.104	5.1201	2591
5	1500 (UM)		0.549	0.5	19004	5	1172	3	0.239	0.17	93
						6	1500 (UM)		0.549	0.5	14500
	TIC:	7.7476	ng/uL								
	TIM:	27.57	nmole/L				TIC:	5.719	na/uL		
	Total Conc	8 0321	na/ul				TIM	19 758	nmole/I		
		0.0021	ng/uL				Tatal Cana	F 9051	ninoic/L		
							Total Cond	5.6951	ng/uL		
32	Flavo 2										
Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	B8	Ecoli 5				
1	35 (LM)		20.705	0.4434	11800	Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU
2	361	0.4	0.15	0.0328	60	1	35 (LM)	. ,	22,704	0.4862	8845
3	380	40.4	14 26	3 2905	1621	2	69	11	2 681	0 1121	103
1	524	F0.1	14 657	4 7522	12/2	2	00	1.1	2.001	0.1121	95
4	554	50.4	14.057	4.7555	4343	3	00	1.2	2.5//	0.1253	60
5	923	0.9	0.124	0.0694	135	4	843	97.7	19.444	9.964	4045
6	1500 (UM)		0.549	0.5	22119	5	1500 (UM)		0.549	0.5	14808
	TIC	8 146	na/ul				TIC	10 2014	na/ul		
	TIM	20 101	nmole/I			-	TIM	24 701	nmole/I		
	Tetal Ori	23.131	nnoie/L			_	Tetal Ori	4.701	nnoic/L		
	Total Cond	ö.4246	ng/uL		l		TOTAL CONC	10.4475	ng/uL		
33	Flavo 3					B9	PCR NTC				
Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU
- 1	35 (I M)	(<u>.</u> .)	25 072	0 537	9709		35 (I M)	, · ····/	21 936	0 4698	8958
۱ م	200 (111)	20 0	21 202	4 0124	1607		JO (LIVI)	27	21.000	0.0024	E0
2	380	30.2	21.293	4.9134	1007		40	3.7	2.900	0.0031	80
3	478	1	0.432	0.1256	66	3	57	81.5	52.965	1.8528	1415
4	494	0.4	0.186	0.056	52	4	72	14.8	7.685	0.337	290
5	534	55.9	22.168	7.1889	4507	5	1500 (UM)		0.549	0.5	15877
6	687	37	1 144	0 4777	163		. ,				
7	010	0.8	0 195	0 1088	135		TIC	2 2720	na/ul		
0	1500 (1104)	0.0	0.133	0.1000	14092		TIM.	62.626	ng/uL		
0	1500 (0101)		0.549	0.5	14903			03.030	ninole/L		
							Total Conc	2.503	ng/uL		
	TIC:	12.8704	ng/uL								
	TIM:	45.418	nmole/L			B12	Ladder				
	Total Conc	13 3005	na/ul			Peak ID	Size (bp)	% (Conc.)	nmole/I	na/ul	REU
		10.0000	ng/aE			1 001010	25 (LM)	70 (Cono.)	22 022	0 4000	11040
	E 114					1	35 (LIVI)	7.0	22.923	0.4909	7000
34	ECOIL 1					2	100	1.2	53.653	3.2674	7288
Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	3	200	8.1	30.422	3.7005	9358
1	35 (LM)		20.902	0.4476	9751	4	300	8.1	20.138	3.6727	10139
2	69	1.8	4.513	0.1887	137	5	400	8.1	15.092	3.6692	10733
3	80	33	7 158	0.3481	164	6	500	23.3	34 949	10 6195	16494
1	855	0.0	10 513	10 1302	1483	7	600	0.5	11 873	4 320	0/0/
	4500 (1104)	35	19.515	10.1332	47770	1	700	9.0	0.420	4.023	14040
5	1500 (UNI)		0.549	0.5	1///2	6	700	8.8	9.432	4.0116	11946
						g	800	9	8.429	4.0972	12161
	TIC:	10.6759	ng/uL			10	900	8.8	7.332	4.0094	11725
	TIM:	31.185	nmole/L			11	1000	9.1	6.858	4.1665	11482
	Total Conc	10.8844	na/uL			12	1500 (LIM)		0.549	0.5	18373
						12			0.010	0.0	
25	Ecoli 2						TIC:	45 5400	ng/ul		
		0/ /2			DELL		TIL.	40.0429	ng/uL		
eak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	KFU		LIM:	198.178	nmole/L		
1	35 (LM)		21.449	0.4594	10745		Total Conc	45.8435	ng/uL		
2	69	0.8	1.942	0.0818	138						
3	80	5.2	10.26	0.5024	173						
4	846	.94	17 668	9 0795	4390						
	1500 (1114)		0.5/0	0.5705	10///	-					
5	1000 (01/1)		0.049	0.0	13444						
	TIC	0.000-									
	IIC:	9.6637	ng/uL		l						
	11M:	29.87	nmole/L								
	Total Conc	9.8415	ng/uL								
			-						ĺ		
36	Ecoli 3					_					
Dook ID	Sizo (ha)	0/2 (Cana)	nmelo/!	ng/ul	DELL						
cat ID		/0 (CONC.)	ninole/L	ng/ul							
1	35 (LM)		22.096	0.4732	9174						
2	69	2.5	5.219	0.2199	136						
3	80	4.2	7.663	0.3752	160						
4	843	93.3	16 23	8 3172	3829						
	1500 /1 184	55.5	0.20	0.0172	16200						
5	1000 (01/1)		0.549	0.5	10288						
	-				l						
	T1C:	8.9123	ng/uL								
	TIM:	29.112	nmole/L								
	Total Cond	9.1299	ng/uL								

Table 5.4.2-4 | Raw data from electrophoresis on the fragment analyzer (11.01.2018). Flavo = F. jonsoniae, NTC = no template control

Table 5.4.2-5 Raw data from electrophoresis on the fragment analyzer (16.01.2017). Aer	0
= A. hydrophila, Psae = P. aeruginosa, Sphingo = Sph. koreensis.	

C1	Aero 1			_		C7	Sphingo 1				
Peak ID	Size (hn)	% (Conc.)	nmole/l	na/ul	RELL	Peak ID	Size (bp)	% (Conc.)	nmole/l	na/ul	RELL
		70 (Conc.)	00.000	0 4000	0440			70 (Conc.)	04 240	0 5000	7406
1	35 (LIVI)		22.023	0.4000	9410	1	35 (LIVI)		24.310	0.5206	7490
2	68	2.1	3.418	0.1423	104	2	300	32.8	3.662	0.6678	387
3	78	4.5	6.345	0.3028	158	3	562	67.2	4.002	1.3679	1080
4	829	93.4	12.557	6.3219	3880	4	1500 (UM)		0.549	0.5	8478
5	1500 (UM)		0.549	0.5	11335						
	. ,						TIC	2 0357	na/ul		
	TIC:	6 767	ng/ul				TIM:	7 664	ng/ac		
	TIC.	0.707	ng/uL				TIIVI.	7.004			
	TIM:	22.32	nmole/L				Total Conc	2.3207	ng/uL		
	Total Conc	7.0377	ng/uL								
						C8	Sphingo 2				
C2	Aero 2					Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU
Peak ID	Size (bp)	% (Conc.)	nmole/I	na/ul	RFU	1	35 (LM)	· · · /	25 21	0 5399	8076
1	35 (LM)		22 033	0 /011	10617	2	207	7.5	3 007	0.5584	682
	55 (LIVI)	2.5	22.900	0.4311	10017	2	200	7.5	10.551	1.0254	002
2	00	2.5	3.090	0.1279	103	3	302	20.1	10.551	1.9351	959
3	78	4.8	5.148	0.2456	153	4	564	65.7	14.205	4.8643	2380
4	826	92.7	9.464	4.7516	3591	5	872	0.7	0.093	0.0495	51
5	1500 (UM)		0.549	0.5	12624	6	1500 (UM)		0.549	0.5	8887
	. ,										
	TIC·	5 1252	na/ul				TIC	7 4074	na/ul		
	TINA:	17.74	ng/uL				TIM.	27.046	ng/uL		
	TIIVI.	17.71	nmole/L				TIIVI.	27.940	nmole/L		
	Total Conc	5.3923	ng/uL				Total Conc	7.7183	ng/uL		
C3	Aero 3					C9	Sphingo 3				
Peak ID	Size (bp)	% (Conc)	nmole/L	na/ul	RFU	Peak ID	Size (bp)	% (Conc)	nmole/L	na/ul	RFU
1	35 (I M)	. (00110.)	26 202	0.5652	0680	1	35 (I M)	- (00110.)	24 556	0 5250	7660
	55 (LIVI)	0.0	20.392	0.0002	3000		00 (LIVI)	-	24.000	0.5259	7009
2	68	2.8	3.55	0.14/8	116	2	295	8	2.36	0.4231	546
3	79	4.6	5.179	0.2489	169	3	300	28.4	8.25	1.5047	764
4	824	92.6	9.918	4.9657	3094	4	562	63.6	9.875	3.3754	1812
5	1500 (UM)		0.549	0.5	10133	5	1500 (UM)		0.549	0.5	8633
	. , ,						. ,				
	TIC:	E 2622	ng/ul				TIC:	E 2022	ng/ul		
	TIC.	5.3023	ng/uL				TIC.	5.3032	ng/uL		
	TIM:	18.647	nmole/L				TIM:	20.486	nmole/L		
	Total Conc	5.656	ng/uL				Total Conc	5.5984	ng/uL		
C4	Psae 1					C10	Flavo 1				
Peak ID	Size (hn)	% (Conc.)	nmole/I	na/ul	RELL	Peak ID	Size (hn)	% (Conc.)	nmole/I	na/ul	RELL
	25 (1 M)	70 (Cono.)	02 417	0 5015	0744		25 (1 M)	70 (Cono.)	04.250	0 5017	0640
1	35 (LIVI)		23.417	0.5015	0/41	1	35 (LIVI)		24.330	0.5217	0040
2	143	11.1	9.302	0.8094	451	2	379	41.7	16.2	3.7327	1395
3	762	88.9	14.01	6.4832	3534	3	535	57.8	15.912	5.1769	3408
4	1500 (UM)		0.549	0.5	10330	4	929	0.5	0.087	0.0489	51
	,					5	1500 (UM)		0.549	0.5	9792
	TIC·	7 2027	ng/ul			-					
	TIM.	02.040	ng/uL				TIC	0.0505	na/ul		
	TIIVI.	23.312	TITIOIE/L				110.	0.9000	ng/uL		
	Total Conc	7.602	ng/uL				TIM:	32.198	nmole/L		
							Total Conc	9.2673	ng/uL		
C5	Psae 2										
Peak ID	Size (bp)	% (Conc.)	nmole/L	na/ul	RFU	C11	Flavo 2				
1	35 (LM)		23 366	0 5004	9290	Peak ID	Size (bp)	% (Conc.)	nmole/l	na/ul	RELL
	440	40.7	40.00	0.0004	404		25 (LMA)		04 007	0 54 40	
2	143	12.7	10.22	0.8893	481	1	ან (LIM)		24.037	0.5148	9292
3	762	83.1	12.585	5.8241	3721	2	379	40.4	9.25	2.1312	1124
4	863	4.2	0.568	0.2978	202	3	534	59.6	9.699	3.1494	2662
5	1500 (UM)		0.549	0.5	11059	4	1500 (UM)		0.549	0.5	10651
	, ,				i i i		. ,				
	TIC	7 0112	na/ul				TIC	5 2807	na/ul		
	TIM:	22 274	nmole/l				TIM·	10.2007	nmole/I		
	T-4-1 O	23.374					T-1-1-0	10.940			
	IOIAI CONC	1.34/7	ng/uL				Iotal Conc	5.5957	ng/uL		
C6	Psae 3					C12	Ladder				
Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	Peak ID	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU
1	35 (LM)		23.53	0 5039	8220	1	35 (LM)	, ,	24 766	0 5304	9869
	140	10 7	0 066	0.7715	410		100	77	61 200	3 73/6	6707
2	143	13.7	0.000	0.7715	419	2	100	1.1	01.320	3.7340	0/2/
3	/62	81.1	9.849	4.55/8	2780	3	200	8.4	33.552	4.0812	8064
4	865	5.1	0.549	0.2886	146	4	300	8.3	21.973	4.0074	8277
5	1500 (UM)		0.549	0.5	9752	5	400	8.1	16.194	3.937	8002
	, , ,					6	500	23.6	37.553	11.4109	12363
	TIC:	5 6170	na/ul			7	600	0.0 Ω 0	11 654	1 2/01	6883
	TIM:	10 00 1	ng/uL			-	700	0.0	0.007	4.2491	7040
		19.264	nmole/L		ļļ_	8	/00	8.5	9.667	4.1116	/813
	Total Conc	5.8825	ng/uL			9	800	8.8	8.768	4.2619	7841
						10	900	8.7	7.656	4.1862	7570
						11	1000	9.1	7.245	4.4017	7671
						12	1500 (LIM)		0 540	0.5	10914
						12	1000 (0101)		0.049	0.0	10314
							TO	40.00.10			
							IIC:	48.3816	ng/uL		
							TIM:	215.587	nmole/L		
							Total Conc	48.7333	ng/uL		

D1		Flavo 3					D12	Ladder				
Peak ID	-	Size (bp)	% (Conc.)	nmole/L	na/ul	RFU	Peak ID	Size (bp)	% (Conc.)	nmole/L	na/ul	RFU
. our ib	1	35 (I M)	/* (001101)	21 296	0 4561	10481	1	35 (LM)	/* (*****)	22 79	0 4881	9412
	2	380	41.8	10 246	2 365	1567	2	100	7.5	57 333	3 4914	6474
	3	536	57.6	10.240	3 2627	3946	3	200	8.3	31 813	3 8696	8333
	4	000	0.0	0.064	0.036	53	4	300	8	20.427	3 7255	8753
	5	1500 (LIM)	0.0	0.004	0.030	19060	4	400	0 1	15 499	2 7654	0700
	5	1500 (0101)		0.549	0.5	10000	5	400	0.1	15.400	3.7034	14076
	_	TIO	E 0007	m m (s al			0	500	23.5	33.936	10.92	14070
	_	TIC:	5.0037	ng/uL			/	600	9	11.491	4.1896	7948
	_	TIM:	20.324	nmole/L			8	700	8.6	9.396	3.9966	9675
	_	Total Conc	5.9293	ng/uL			9	800	9	8.576	4.1685	9842
	_						10	900	8.7	7.415	4.0544	9346
D2	_	Ecoli 1					11	1000	9.3	7.154	4.3464	9241
Peak ID		Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU	12	1500 (UM)		0.549	0.5	14766
	1	35 (LM)		22.172	0.4748	11165						
	2	69	2.1	4.249	0.1777	138		TIC:	46.5274	ng/uL		
	3	80	5.1	8.648	0.4197	228		TIM:	205.03	nmole/L		
	4	844	92.8	15.003	7.6979	5693		Total Conc	47.5559	ng/uL		
	5	1500 (UM)		0.549	0.5	18653						
		TIC:	8.2952	ng/uL								
		TIM:	27.9	nmole/L								
	_	Total Conc	8.6807	na/uL								
				3								
D3	_	Ecoli 2										
Peak ID		Size (bp)	% (Conc.)	nmole/l	na/ul	RFU						
	1	35 (LM)		30 532	0.6539	8374						
	2	69	27	6 118	0.0000	129						
	3	80	5.6	11 062	0.5368	200						
	4	837	01 7	17 316	8 8085	4149						
	5	1500 (LIM)	51.7	0.540	0.0005	10260						
	5	1300 (0101)		0.549	0.5	10203						
	_	TIC	0.6022	na/ul			_					
	_	TIC.	9.0033	ng/uL								
	_	TIM:	34.496	nmole/L								
	_	Total Conc	9.9528	ng/uL								
D 4	_	F I O										
D4	_	ECOII 3	a									
Peak ID	_	Size (bp)	% (Conc.)	nmole/L	ng/ul	RFU						
	1	35 (LM)		22.799	0.4883	8756						
	2	69	2.2	4.415	0.1862	115						
	3	79	4.9	8.756	0.4218	186						
	4	844	92.9	15.561	7.984	4549						
	5	1500 (UM)		0.549	0.5	14451						
		TIC:	8.592	ng/uL								
		TIM:	28.732	nmole/L								
		Total Conc	8.8776	ng/uL								

Table 5.4.2-6 | Raw data from electrophoresis on the fragment analyzer (16.01.2018). Flavo = *F. jonsoniae*.

Table 5.4.2-7 | Raw data from electrophoresis on the fragment analyzer (09.05.2018).

				% (Conc.)					TIM	Total Conc.
Well	Sample ID	Peak ID	Size (bp)	(ng/uL)	nmole/L	ng/ul	RFU	TIC (ng/ul)	(nmole/L)	(ng/ul)
H8	P. fluorescens 1	1	35		20.2741	0.4342	8031	13.795	43.6147	14.1026
H8	P. fluorescens 1	2	84	0.9	2.4887	0.1259	169	13.795	43.6147	14.1026
H8	P. fluorescens 1	3	94	7.1	16.8626	0.9859	335	13.795	43.6147	14.1026
H8	P. fluorescens 1	4	855	83.5	22.3037	11.5187	8164	13.795	43.6147	14.1026
H8	P. fluorescens 1	5	931	8.4	1.9597	1.1644	955	13.795	43.6147	14.1026
H8	P. fluorescens 1	6	1500		0.5498	0.5	15027	13.795	43.6147	14.1026
H9	P. fluorescens 2	1	35		20.7529	0.4445	8645	12.8399	38.5644	13.1382
H9	P. fluorescens 2	2	87	1.9	4.6669	0.2417	170	12.8399	38.5644	13.1382
H9	P. fluorescens 2	3	93	4.9	10.7445	0.6282	301	12.8399	38.5644	13.1382
H9	P. fluorescens 2	4	744	1.6	0.4695	0.2051	119	12.8399	38.5644	13.1382
H9	P. fluorescens 2	5	850	91.1	22.5908	11.6944	8714	12.8399	38.5644	13.1382
H9	P. fluorescens 2	6	1181	0.5	0.0925	0.0704	53	12.8399	38.5644	13.1382
H9	P. fluorescens 2	7	1500		0.5509	0.5	15950	12.8399	38.5644	13.1382
H10	P. fluorescens 3	1	35		20.4042	0.437	9466	12.2937	36.2117	12.5584
H10	P. fluorescens 3	2	87	1.9	4.4892	0.2325	179	12.2937	36.2117	12.5584
H10	P. fluorescens 3	3	93	4.7	9.7839	0.572	310	12.2937	36.2117	12.5584
H10	P. fluorescens 3	4	740	1.7	0.4688	0.2048	113	12.2937	36.2117	12.5584
H10	P. fluorescens 3	5	848	71.1	16.9785	8.7376	7837	12.2937	36.2117	12.5584
H10	P. fluorescens 3	6	931	20.3	4.4278	2.4992	4103	12.2937	36.2117	12.5584
H10	P. fluorescens 3	7	1188	0.4	0.0635	0.0476	51	12.2937	36.2117	12.5584
H10	P. fluorescens 3	8	1500		0.5513	0.5	17981	12.2937	36.2117	12.5584

Table 5.4.2-8	Raw data from	electrophoresis	on the fragment	analyzer	(29.05.2018) f	or
mixed samples	s of strains.		_	-		

				% (Conc.)					TIM	Total Conc.
Well	Sample ID	Peak ID	Size (bp)	(ng/uL)	nmole/L	ng/ul	RFU	TIC (ng/ul)	(nmole/L)	(ng/ul)
B1	all 5-1	1	35		20.0156	0.4165	10568	8.9276	34.0664	9.174
B1	all 5-1	2	69	0.9	1.8551	0.0792	69	8.9276	34.0664	9.174
B1	all 5-1	3	/9	1.9	3.3209	0.1659	111	8.9276	34.0664	9.174
BI	all 5-1	4	93	1.9	2.9697	0.1730	150	8.9276	34.0664	9.174
		5	143	0.4	0.4043	0.0352	03	0.9270	34.0004	9.174
B1	all 5-1	7	302	0.5	0.3042	0.0400	55	8 9276	34.0004	9.174
B1	all 5-1	8	380	26	0.2127	2 3224	1071	8 9276	34.0664	9.174
B1	all 5-1	9	530	34.4	0 3365	3 0751	4632	8 9276	34.0664	9 174
B1	all 5-1	10	766	11	0.2236	0 1016	101	8 9276	34 0664	9 174
B1	all 5-1	11	831	23.5	4 1321	2 1014	2955	8 9276	34 0664	9 174
B1	all 5-1	12	930	8.8	1.3309	0.7876	588	8.9276	34.0664	9.174
B1	all 5-1	13	1500	0.0	0.5498	0.5	19572	8 9276	34 0664	9 174
B2	all 5-2	1	35		21.5696	0.462	11287	7.3762	28.4375	7.6545
B2	all 5-2	2	69	0.7	1.1599	0.0495	55	7.3762	28.4375	7.6545
B2	all 5-2	3	79	1.8	2.5993	0.1299	96	7.3762	28.4375	7.6545
B2	all 5-2	4	93	2.4	2.9594	0.1784	136	7.3762	28.4375	7.6545
B2	all 5-2	5	143	0.4	0.2984	0.026	52	7.3762	28.4375	7.6545
B2	all 5-2	6	378	28.5	9.041	2.0992	1830	7.3762	28.4375	7.6545
B2	all 5-2	7	538	36.6	8.2078	2.6984	4148	7.3762	28.4375	7.6545
B2	all 5-2	8	764	0.7	0.1061	0.0487	63	7.3762	28.4375	7.6545
B2	all 5-2	9	828	20.7	3.0095	1.525	2367	7.3762	28.4375	7.6545
B2	all 5-2	10	927	8.4	1.0561	0.6211	431	7.3762	28.4375	7.6545
B2	all 5-2	11	1500		0.5516	0.5	19518	7.3762	28.4375	7.6545
B3	all 5-3	1	35		21.2432	0.455	10707	6.5427	25.7861	6.8472
B3	all 5-3	2	69	1	1.4855	0.0634	59	6.5427	25.7861	6.8472
B3	all 5-3	3	79	2.4	3.1197	0.1578	98	6.5427	25.7861	6.8472
B3	all 5-3	4	94	2.8	3.0776	0.1799	150	6.5427	25.7861	6.8472
B3	all 5-3	5	379	25.6	7.2398	1.6766	1499	6.5427	25.7861	6.8472
B3	all 5-3	6	538	31.7	6.3092	2.0742	3301	6.5427	25.7861	6.8472
B3	all 5-3	7	828	26.9	3.4817	1.7621	2417	6.5427	25.7861	6.8472
B3	all 5-3	8	927	6.5	0.7557	0.4251	410	6.5427	25.7861	6.8472
B3	all 5-3	9	993	3.1	0.3169	0.2035	150	6.5427	25.7861	6.8472
B3	all 5-3	10	1500		0.5505	0.5	18306	6.5427	25.7861	6.8472
B4	all 4-1	1	35		19.7262	0.4105	11093	7.9926	29.3296	8.2419
B4	all 4-1	2	69	0.6	1.1819	0.0512	60	7.9926	29.3296	8.2419
B4	all 4-1	3	/8	1.5	2.4976	0.1233	112	7.9920	29.3296	8.2419
D4		4	92	0.9	1.2003	0.0729	00	7.9920	29.3290	0.2419
D4 B4	all 4-1	5	370	20.7	10 2217	0.0410	2064	7.9920	29.3290	0.2419
B4	all 4-1	7	537	29.7	0.5443	2.3733	2004	7.9920	29.3290	8 2419
B4	all 4-1	8	762	0.8	0 130/	0.0641	4930	7.9920	29.3290	8 2/19
B4	all 4-1	9	828	18.7	2 941	1 4921	2463	7 9926	29.3296	8 2419
B4	all 4-1	10	927	8	1.0694	0.6361	512	7.9926	29.3296	8.2419
B4	all 4-1	11	1500		0.5505	0.5	20734	7.9926	29.3296	8.2419
B5	all 4-2	1	35		20.1189	0.4309	11206	8.3319	30.6454	8.5097
B5	all 4-2	2	69	0.7	1.4321	0.0611	62	8.3319	30.6454	8.5097
B5	all 4-2	3	79	1.6	2.6772	0.1338	120	8.3319	30.6454	8.5097
B5	all 4-2	4	93	0.9	1.3185	0.0763	95	8.3319	30.6454	8.5097
B5	all 4-2	5	143	0.6	0.5732	0.0502	83	8.3319	30.6454	8.5097
B5	all 4-2	6	379	28.9	10.336	2.4061	2074	8.3319	30.6454	8.5097
B5	all 4-2	7	517	0.4	0.1052	0.0329	50	8.3319	30.6454	8.5097
B5	all 4-2	8	539	37.9	9.6024	3.1569	4900	8.3319	30.6454	8.5097
B5	all 4-2	9	764	1.5	0.2754	0.1246	122	8.3319	30.6454	8.5097
B5	all 4-2	10	828	19.2	3.1629	1.6027	2625	8.3319	30.6454	8.5097
B5	all 4-2	11	927	8.2	1.1626	0.6873	495	8.3319	30.6454	8.5097
B5	all 4-2	12	1500		0.5516	0.5	20205	8.3319	30.6454	8.5097
B6	all 3-1	1	35		20.4631	0.4258	9529	11.1376	40.5057	11.3993
B6	all 3-1	2	69	0.6	1.5551	0.0664	60	11.1376	40.5057	11.3993
B6	all 3-1	3	79	1.5	3.2578	0.1628	111	11.1376	40.5057	11.3993
B6	all 3-1	4	93	1	1.9847	0.116	103	11.1376	40.5057	11.3993
B6	all 3-1	5	247	0.2	0.1682	0.0252	52	11.1376	40.5057	11.3993
D0 D6	all 3-1	6	3/9	29.7	14.1943	3.3129	2149	11.13/6	40.5057	11.3993
D0 D6	all 3-1	1	517	0.4	12 6020	0.0434	5000	11.13/6	40.5057	11.3993
D0 B6	all 3-1	8	539	40.2	13.0036	4.4806	5209	11.13/6	40.5057	11.3993
B6	all 3-1	10	031	20.0	4.01/0	2.292	2909	11.13/0	40.0007	11.3993
B6	all 3_1	10	927	5.7	0.5512	0.0304	423	11 1276	40.0007	11 2002
B7	all 3-2	1	1000		20 5765	0.5	7300	8 7552	31 5705	0 1001
B7	all 3-2	2	78	15	2 6386	0.4202	65	8 7552	31 5705	9.1091
B7	all 3-2	3	.0	1.0	2 4117	0 141	84	8 7552	31 5795	9 1091
B7	all 3-2	4	379	30.5	11.4626	2.6684	1414	8.7552	31.5795	9.1091
B7	all 3-2	5	538	40.4	10.7315	3.5346	3440	8.7552	31.5795	9,1091
B7	all 3-2	6	831	19.6	3.3749	1.7122	1817	8.7552	31.5795	9.1091
B7	all 3-2	7	930	6.5	0.9603	0.5671	285	8.7552	31.5795	9.1091
B7	all 3-2	8	1500		0.5498	0.5	13558	8.7552	31.5795	9.1091

	•			% (Conc.)					ТІМ	Total Conc
Well	Sample ID	Peak ID	Size (hn)	(na/ul.)	nmole/l	na/ul	RELL	TIC (na/ul)	(nmole/L)	(ng/ul)
H1	all 5 I	1 001 10	35	(lig/uL)	22 7729	0 4877	7347	5 4816	21 3663	5 9855
		2	77	1.9	22.1123	0.4077	60	5.4916	21.3003	5.0855
	all 5 l	2	01	1.0	1 5282	0.0903	87	5.4010	21.3003	5.9055
		1	374	36.4	8 7860	1 0075	1679	5.4816	21.3003	5.9055
	all 5 l	4	5/4	4/ 1	7 3360	2 4165	3112	5.4010	21.3003	5.9055
	alisi	5	041	44.1	1.3309	2.4105	3112	5.4610	21.3003	5.9655
	alisi	0	043	12.9	1.3/00	0.7040	730	5.4616	21.3003	5.9655
HI	alisi	1	940	3.3	0.3135	0.1817	122	5.4816	21.3003	5.9855
HI	alisi	8	1500		0.5505	0.5	9959	5.4816	21.3003	5.9855
HZ		1	35	4.0	22.3843	0.4794	1142	4.1289	15.470	4.6065
H2	all 4 I	2	11	1.2	1.0865	0.0503	64	4.1289	15.476	4.6065
H2	all 4 I	3	91	1.5	1.1355	0.0623	76	4.1289	15.476	4.6065
H2	all 4 I	4	3/2	35.3	6.4256	1.4568	1291	4.1289	15.476	4.6065
H2	all 4 I	5	540	42	5.2839	1.7339	2577	4.1289	15.476	4.6065
H2	all 4 I	6	843	13.9	1.1228	0.5758	643	4.1289	15.476	4.6065
H2	all 4 I	7	940	6.1	0.4218	0.2498	120	4.1289	15.476	4.6065
H2	all 4 I	8	1500		0.5513	0.5	10702	4.1289	15.476	4.6065
H3	all 3 I	1	35		30.2228	0.6289	5417	5.2873	23.7622	5.9813
H3	all 3 I	2	77	2	2.3092	0.107	74	5.2873	23.7622	5.9813
H3	all 3 I	3	82	2.5	2.5782	0.1304	61	5.2873	23.7622	5.9813
H3	all 3 I	4	90	3.8	3.6508	0.2024	117	5.2873	23.7622	5.9813
H3	all 3 I	5	372	30.5	7.1324	1.6127	817	5.2873	23.7622	5.9813
H3	all 3 I	6	540	33.1	5.329	1.752	1422	5.2873	23.7622	5.9813
H3	all 3 I	7	841	18.5	1.9089	0.9777	598	5.2873	23.7622	5.9813
H3	all 3 I	8	940	9.6	0.8537	0.5052	109	5.2873	23.7622	5.9813
H3	all 3 I	9	1500		0.5494	0.5	5835	5.2873	23.7622	5.9813
H4	all 5 ll	1	35		24.4308	0.5084	6596	4.1753	19.497	4.6875
H4	all 5 II	2	77	2.3	2.0969	0.0971	95	4.1753	19.497	4.6875
H4	all 5 II	3	82	2.2	1.8553	0.0938	69	4.1753	19.497	4.6875
H4	all 5 II	4	90	4	3.0121	0.167	136	4,1753	19.497	4.6875
H4	all 5 II	5	372	33.8	6.2494	1.4093	1091	4.1753	19.497	4.6875
H4	all 5 ll	6	539	35.3	4 5052	1 4729	1834	4 1753	19 497	4 6875
H4	all 5 ll	7	841	17 7	1 4386	0 7386	642	4 1753	19 497	4 6875
H4	all 5 ll	. 8	940	4 7	0.3396	0 1966	100	4 1753	19 497	4 6875
H4	all 5 ll	9	1500		0.5509	0.5	9096	4 1753	19 497	4 6875
H5	all 4 II	1	35		22 5319	0.4826	8410	8 1512	33 4275	8 5251
H5	all 4 II	2	68	1	1 9898	0.0825	73	8 1512	33 4275	8 5251
H5	all 4 II	3	77	2.5	4 1029	0.0020	124	8 1512	33 4275	8 5251
нь Ц5			01	2.0	3 2017	0.2	124	9 1512	33 4275	8 5251
н5 Ц5		4	374	30.0	11 0597	2 5206	2230	8 1512	33 4275	8 5251
		5	5/7	26.5	0.0006	2.0200	42230	0.1512	22 4275	0.0201
		7	943	10.0	9.0090	2.9704	4333	0.1312	22 4275	0.0201
		1	040	10.9	2.9910	1.0413	221	0.1312	22 4275	0.0201
		0	943	0	1.0733	0.0469	331	0.1512	33.4275	0.5251
HD		9	1500		0.5494	0.5	11503	8.1512	33.4275	8.5251
HO		1	35	4.0	22.0735	0.4593	6124	12.0206	44.5164	12.3904
Ho	ali 5 lli	2	82	1.2	2.8193	0.1409	86	12.0206	44.5164	12.3904
HO		3	91	2.5	5.3561	0.3001	191	12.0206	44.5164	12.3904
Hb	ali 5 III	4	143	0.4	0.5465	0.0472	57	12.0206	44.5164	12.3904
H6	all 5 III	5	374	29.5	15.5565	3.5458	2192	12.0206	44.5164	12.3904
H6	all 5 III	6	542	37.3	13.5904	4.4845	4553	12.0206	44.5164	12.3904
H6	all 5 III	7	682	0.3	0.0999	0.0414	53	12.0206	44.5164	12.3904
H6	all 5 III	8	777	0.7	0.1873	0.0877	66	12.0206	44.5164	12.3904
H6	all 5 III	9	843	22.4	5.22	2.6958	2111	12.0206	44.5164	12.3904
H6	all 5 III	10	943	4.8	0.9932	0.5775	367	12.0206	44.5164	12.3904
H6	all 5 III	11	1105	0.8	0.1472	0.0996	79	12.0206	44.5164	12.3904
H6	all 5 III	12	1500		0.5498	0.5	8877	12.0206	44.5164	12.3904
H7	all 4 III	1	35		23.0048	0.4787	5353	16.1496	59.8841	16.6375
H7	all 4 III	2	82	0.8	2.5147	0.1272	69	16.1496	59.8841	16.6375
H7	all 4 III	3	91	1.7	4.8726	0.2731	154	16.1496	59.8841	16.6375
H7	all 4 III	4	143	0.5	0.8982	0.0787	54	16.1496	59.8841	16.6375
H7	all 4 III	5	375	34.7	24.5151	5.6027	2656	16.1496	59.8841	16.6375
H7	all 4 III	6	543	43.7	21.3696	7.0515	5644	16.1496	59.8841	16.6375
H7	all 4 III	7	777	0.5	0.183	0.0863	58	16.1496	59.8841	16.6375
H7	all 4 III	8	843	14.2	4.4438	2.2869	1596	16.1496	59.8841	16.6375
H7	all 4 III	9	940	3.4	0.9467	0.547	304	16.1496	59.8841	16.6375
H7	all 4 III	10	1105	0.6	0.1404	0.0963	57	16.1496	59.8841	16.6375
H7	all 4 III	11	1500	0.0	0 5509	0.5	7423	16 1496	59 8841	16 6375
			1000		0.0000	0.0	1720		20.0041	10.0070

Table 5.4.2-9 | Raw data from electrophoresis on the fragment analyzer (26.09.2018) for mixed samples of strains.

6. Summary and outlook

The present study comprises three pathways in the nitrogen cycle, the nitrification, the denitrification and the anammox process in two different technical systems, an aquaponic system for sustainable food production and a bioelectrochemical system for bioremediation processes. Both systems provide great potential for the future, although many basic research questions still have to be addressed.

6.1. Aquaponic systems for food production

With the world's population growing the necessity of innovative food production systems increases to meet primary human needs. Moreover, climate changes will restrict agricultural areas additionally in the future. An aquaponic system fulfils the requirements as a system for sustainable fish cultivation and vegetable production. The efficiency of an aquaponic system relies on the productivity of the microorganisms that adapted to the system. They cycle the nitrogen species to avoid intoxication of the fish and to provide nutrients for the vegetables and fruits. In this study, it was shown that ammonium produced by fish can be converted by one single organism in the comammox process in an aquaponic system.

The results obtained in this study provide additional information, which were not further investigated. Sequencing data, for instance, revealed high abundances of *Verrucomicrobia*. *Verrucomicrobia* were described as aerobic mixotrophs using methane and hydrogen as electron donors (Carere *et al.*, 2017). Their role in the aquaponic system, however, remains rather unclear. The presence of methanotrophs indicate an influence of the carbon cycle on the efficiency of the system due to the degradation of organic matters. The question is to what extent other nutrient cycles affect the whole aquaponic system in general and the nitrogen turnover specifically. Studying these research questions could provide deep insights into the system and may lead to optimization of the system to meet the growing human needs in future (Eck *et al.*, 2019).

6.2. Denitrification in BES for drinking water production

The need for high crop yields for food production elucidated the usage of high amounts of (ammonium) nitrate on agricultural areas. The surplus of nitrate that contaminated the groundwaters turned out to be a major problem in the drinking water production. In this study, fundamental research was carried out to investigate nitrate in batch BES. It was shown that different potential settings, intermittently and continuously runs of BES, revealed different bacterial community compositions in the cathode biofilm. The findings support the assumption that the applied settings for the BES determine the community composition on the electrode (Rabaey *et al.*, 2007, Wrighton *et al.*, 2010). Understanding the community composition then may help to optimize the BES performance, for instance, identifying unwanted side reactions that occur during operation.

The major question that has to be addressed in future is the up-scaling of BES. Although, such systems work very well in laboratory scale, they fail the performance in large scale systems because in contrast to the material sizes the size of bacterial cells cannot be enlarged. The enrichment of bacteria in the medium to increase their concentration takes time. Nevertheless, large scale BES have been introduced as pilot plants already and showed promising results for bioremediation of waste waters (San-Martín *et al.*, 2018, Enzmann & Holtmann, 2019). In future, they may find application in drinking water production plants for the removal of nitrate and other contaminants. They may also be implemented directly in a groundwater aquifer as it was tested before (Zhang & Angelidaki, 2013, Nguyen *et al.*, 2016).

6.3. The anammox process in BES for wastewater treatment

Highly ammonium loaded wastewaters pose a major challenge to the performance of treatment plants. Bioelectrochemical systems can address the challenge due to the possibility of steering the reactions by specific potential or current settings towards an optimized bioremediation such as ammonium removal.

The batch reactor is a suitable system for the analysis of communities in BES because they are usually easier to maintain, and the laminar flow of the medium is

less strong than in the upflow BES supporting the adhesion of microorganisms on the electrodes. However, losses occur in these systems, such as activation and ohmic losses, decreasing the overall performance of the BES.

Future studies may focus on the application of upflow BES, where losses can be reduced more easily. This study also showed that the adjustment of specific oxygen concentrations was best achieved in upflow BES. Large electrode surfaces also provide the possibility of expanded biofilm layers to facilitate electron transfer from the bacterial cells to the anodes. It should also be considered whether stacked systems as investigated, for instance, by Aelterman *et al.* (2006) can be introduced to improve the ammonium removal process.

The enrichment of AerAOB and anammox bacteria in a double-layered biofilm on the anode could not be established adequately in this study. The idea of preconditioning the oxygen generating anode before adding oxygen sensitive microorganisms, however, seems to be the most promising approach to keep both processes running in a BES.

6.4. The RFLP technique for rapid in-house analysis

Next-generation sequencing methods became quite affordable over the past years. However, it still needs some time until results are available. The complete RFLP technique described in this study needs approximately eight hours depending on the kits used and the number of samples. If a fragment analyser is available, the number of samples is of minor importance. For sequencing, the sample preparation alone can last a whole day. Since many samples are usually comprised to lower costs for shipment to appropriate companies for processing, the samples may be stored for days until shipment. Sequencers are relative expensive and not present in many institutes. Furthermore, the results are not directly readable data which makes their processing inevitable. To simply check enrichment cultures and strains used in the laboratory, the costs of shipment, sample processing and data processing are incommensurate with the outcoming results. With the proposed RFLP technique, results are obtained directly after the electrophoresis. The RF patterns can be analysed quickly for low diverse samples.

In this study, however, some issues concerning the application were observed. To implement the technique as standard method, all technical parameters used in the PCR, in the restriction and for the electrophoresis run such as concentrations, temperatures, and incubation times have to be investigated to optimize the procedure concerning its susceptibility to interferences. The RFLP procedure is a first step to facilitate community analysis of very low diverse samples. Since capillary electrophoresis on a fragment analyser measures fragments based on their fluorescence intensity, one could take a step further to analyses only fluorescently labelled terminal RFs, called T-RFs. In this technique, fluorescently labelled primers are used to mark the last fragment of a restricted PCR amplicon. As a result, the RF patterns are thinned out and only the fluorescent T-RFs are visible in an electropherograms. The combination of the T-RFLP on a fragment analyser, therefore, shows promising potential for rapid in-house community analysis for samples that are slightly more diverse such as enrichment cultures used for instance in bioelectrochemical systems or comparable enrichment reactors.

7. Bibliography

Abraham ZH, Lowe D & Smith BE (1993) Purification and characterization of the dissimilatory nitrite reductase from *Alcaligenes xylosoxidans* subsp. *xylosoxidans* (NCIMB 11015): evidence for the presence of both type 1 and type 2 copper centres. *Biochem J* **295**: 587-593.

Aelterman P, Rabaey K, Pham HT, Boon N & Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. *Environ Sci Technol* **40**: 3388-3394.

Afkar E, Reguera G, Schiffer M & Lovley DR (2005) A novel *Geobacteraceae*-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe (III) and Mn (IV) oxides in *Geobacter sulfurreducens*. *BMC microbiology* **5**: 41.

Agnelli A, Ascher J, Corti G, Ceccherini MT, Nannipieri P & Pietramellara G (2004) Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. *Soil Biol Biochem* **36**: 859-868.

Alonso A & Camargo J (2003) Short-term toxicity of ammonia, nitrite, and nitrate to the aquatic snail *Potamopyrgus antipodarum* (Hydrobiidae, Mollusca). *Bull Environ Contam Toxicol* **70**: 1006-1012.

Anders H-J, Kaetzke A, Kämpfer P, Ludwig W & Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera *Thauera*, as *Thauera aromatica* sp. nov., and *Azoarcus*, as *Azoarcus evansii* sp. nov., respectively, members of the beta subclass of the *Proteobacteria*. *Int J Syst Evol Microbiol* **45**: 327-333.

Anderson DM, Glibert PM & Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. *Estuaries* **25**: 704-726.

Appelo CAJ & Postma D (2004) Geochemistry, groundwater and pollution. CRC press.

Arai H, Igarashi Y & Kodama T (1995) The structural genes for nitric oxide reductase from *Pseudomonas aeruginosa*. *Biochim Biophys Acta, Gene Struct Expression* **1261**: 279-284.

Arp DJ, Sayavedra-Soto LA & Hommes NG (2002) Molecular biology and biochemistry of ammonia oxidation by *Nitrosomonas europaea*. *Arch Microbiol* **178**: 250-255.

Arp DJ, Chain PS & Klotz MG (2007) The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. *Annu Rev Microbiol* **61**: 503-528.

Arrigo KR (2004) Marine microorganisms and global nutrient cycles. *Nature* 437: 349.

Avaniss-Aghajani E, Jones K, Chapman D & Brunk C (1994) A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences. *BioTechniques* **17**: 144-146, 148-149.

Avaniss-Aghajani E, Jones K, Holtzman A, Aronson T, Glover N, Boian M, Froman S & Brunk CF (1996) Molecular technique for rapid identification of mycobacteria. *J Clin Microbiol* **34**: 98-102.

Bäckman JS, Hermansson A, Tebbe CC & Lindgren P-E (2003) Liming induces growth of a diverse flora of ammonia-oxidising bacteria in acid spruce forest soil as determined by SSCP and DGGE. *Soil Biol Biochem* **35**: 1337-1347.

Bartelme RP, McLellan SL & Newton RJ (2017) Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing *archaea* and comammox *Nitrospira*. *Front Microbiol* **8**: 101.

Beeckman F, Motte H & Beeckman T (2018) Nitrification in agricultural soils: impact, actors and mitigation. *Curr Opin Biotechnol* **50**: 166-173.

Berks B, Richardson D, Reilly A, Willis A & Ferguson S (1995) The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. *Biochem J* **309**: 983-992.

Bio-Rad Laboratories Inc. (2006) Real-Time PCR - Applications Guide. <u>http://wwwbio-radcom/web/pdf/lsr/literature/Bulletin_5279pdf</u> Last access: 24-04-2020.

Black EM & Just CL (2018) The genomic potentials of NOB and comammox *Nitrospira* in river sediment are impacted by native freshwater mussels. *Front Microbiol* **9**: 2061.

Blasco F, Dos Santos JP, Magalon A, Frixon C, Guigliarelli B, Santini CL & Giordano G (1998) NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of *Escherichia coli*. *Mol Microbiol* **28**: 435-447.

Bock E, Koops H, Harms H & Ahlers B (1991) The biochemistry of nitrifying organisms. In: *Variations in autotrophic life*,(Shirley JM & Barton LL, eds.), 171-200. Academic Press, Ltd., London.

Boon N, De Windt W, Verstraete W & Top EM (2002) Evaluation of nested PCR– DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. *FEMS Microbiol Ecol* **39**: 101-112.

Boyle E (2017) Nitrogen pollution knows no bounds. Science 356: 700-701.

Braker G & Tiedje JM (2003) Nitric oxide reductase (norB) genes from pure cultures and environmental samples. *Appl Environ Microbiol* **69**: 3476-3483.

Braker G, Zhou J, Wu L, Devol AH & Tiedje JM (2000) Nitrite reductase genes (nirK andnirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. *Appl Environ Microbiol* **66**: 2096-2104.

Braker G, Ayala-del-Río HL, Devol AH, Fesefeldt A & Tiedje JM (2001) Community structure of denitrifiers, Bacteria, and Archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. *Appl Environ Microbiol* **67**: 1893-1901.

Breitburg D (2002) Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. *Estuaries* **25**: 767-781.

Brender JD, Olive JM, Felkner M, Suarez L, Marckwardt W & Hendricks KA (2004) Dietary nitrites and nitrates, nitrosatable drugs, and neural tube defects. *Epidemiology* **15**: 330-336.

Bridier A, Briandet R, Thomas V & Dubois-Brissonnet F (2011) Resistance of bacterial biofilms to disinfectants: a review. *Biofouling* **27**: 1017-1032.

Brown K, Tegoni M, Prudêncio M, Pereira AS, Besson S, Moura JJ, Moura I & Cambillau C (2000) A novel type of catalytic copper cluster in nitrous oxide reductase. *Nat Struct Mol Biol* **7**: 191.

Brown MN, Briones A, Diana J & Raskin L (2012) Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system. *FEMS Microbiol Ecol* **83**: 17-25.

Bruce KD (1997) Analysis of mer gene subclasses within bacterial communities in soils and sediments resolved by fluorescent-PCR-restriction fragment length polymorphism profiling. *Appl Environ Microbiol* **63**: 4914-4919.

Call D & Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. *Environ Sci Technol* **42**: 3401-3406.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA & Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. *Nat Methods* **13**: 581.

Camargo JA & Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. *Environ Int* **32**: 831-849.

Carere CR, Hards K, Houghton KM, Power JF, McDonald B, Collet C, Gapes DJ, Sparling R, Boyd ES & Cook GM (2017) Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. *ISME J* **11**: 2599-2610.

Carvajal-Arroyo JM, Sun W, Sierra-Alvarez R & Field JA (2013) Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents. *Chemosphere* **91**: 22-27.

Cecconet D, Devecseri M, Callegari A & Capodaglio A (2018) Effects of process operating conditions on the autotrophic denitrification of nitrate-contaminated groundwater using bioelectrochemical systems. *Sci Total Environ* **613**: 663-671.

Cho S-K, Lee M-E, Lee W & Ahn Y (2019) Improved hydrogen recovery in microbial electrolysis cells using intermittent energy input. *Int J Hydrogen Energ* **44**: 2253-2257.

Cissé IA & Mao X (2008) Nitrate: Health effect in drinking water and management for water quality. *Environ Res* **2**: 311-316.

Clauwaert P, Aelterman P, De Schamphelaire L, Carballa M, Rabaey K & Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. *Appl Microbiol Biotechnol* **79**: 901-913.

Clement BG, Kehl LE, DeBord KL & Kitts CL (1998) Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. *J Microbiol Methods* **31**: 135-142.

Coates JD, Chakraborty R, Lack JG, O'Connor SM, Cole KA, Bender KS & Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of *Dechloromonas*. *Nature* **411**: 1039-1043.

Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C & Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. *Science* **323**: 1014-1015.

Costa E, Pérez J & Kreft J-U (2006) Why is metabolic labour divided in nitrification? *Trends Microbiol* **14**: 213-219.

Curtis TP, Sloan WT & Scannell JW (2002) Estimating prokaryotic diversity and its limits. *PNAS* **99**: 10494-10499.

Daims H, Nielsen JL, Nielsen PH, Schleifer KH & Wagner M (2001) In situ characterization of *Nitrospira*-like nitrite-oxidizing bacteria active in wastewater treatment plants. *Appl Environ Microbiol* **67**: 5273-5284.

Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J & Bulaev A (2015) Complete nitrification by *Nitrospira* bacteria. *Nature* **528**: 504-509.

Damsté JSS, Rijpstra WIC, Geenevasen JA, Strous M & Jetten MSM (2005) Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). *FEBS J* **272**: 4270-4283.

Damsté JSS, Strous M, Rijpstra WIC, Hopmans EC, Geenevasen JA, Van Duin AC, Van Niftrik LA & Jetten MS (2002) Linearly concatenated cyclobutane lipids form a dense bacterial membrane. *Nature* **419**: 708.

De Beer D, Stoodley P, Roe F & Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. *Biotechnology and bioengineering* **43**: 1131-1138.

De Boer W, Gunnewiek PK, Veenhuis M, Bock E & Laanbroek H (1991) Nitrification at low pH by aggregated chemolithotrophic bacteria. *Appl Environ Microbiol* **57**: 3600-3604.

Deutsche Bundesregierung (2004) Verordnung über Anforderungen an das Einleiten von Abwasser in Gewässer, AbwV-Abwasserverordnung, Anhang 22 Chemische Industrie. BGBI.

Dodds WK, Smith VH & Lohman K (2002) Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. *Can J Fish Aquat Sci* **59**: 865-874.

Dong X, Kleiner M, Sharp CE, Thorson E, Li C, Liu D & Strous M (2017) Fast and simple analysis of MiSeq amplicon sequencing data with MetaAmp. *Front Microbiol* **8**: 1461.

Du Z, Li H & Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. *Biotechnol Adv* **25**: 464-482.

Eck M, Körner O & Jijakli MH (2019) Nutrient cycling in aquaponics systems. In: *Aquaponics Food Production Systems*,(Goddek S, Joyce A, Kotzen B & Burnell GM, eds.), 231-246. Springer Nature, Cham.

Edlund A, Soule T, Sjöling S & Jansson JK (2006) Microbial community structure in polluted Baltic Sea sediments. *Environ Microbiol* **8**: 223-232.

Egert M & Friedrich MW (2003) Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure. *Appl Environ Microbiol* **69**: 2555-2562.

Egli K, Fanger U, Alvarez PJ, Siegrist H, van der Meer JR & Zehnder AJ (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. *Arch Microbiol* **175**: 198-207.

Enzmann F & Holtmann D (2019) Rational Scale-Up of a methane producing bioelectrochemical reactor to 50 L pilot scale. *Chem Eng Sci* **207**: 1148-1158.

Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, Petrescu AR, Leach AM & de Vries W (2013) Consequences of human modification of the global nitrogen cycle. *Phil Trans R Soc B* **368**: 20130116.

Espejo-Herrera N, Gràcia-Lavedan E, Boldo E, Aragonés N, Pérez-Gómez B, Pollán M, Molina AJ, Fernández T, Martín V & La Vecchia C (2016) Colorectal cancer risk and nitrate exposure through drinking water and diet. *Int J Cancer* **139**: 334-346.

Espinal P, Marti S & Vila J (2012) Effect of biofilm formation on the survival of *Acinetobacter baumannii* on dry surfaces. *J Hosp Infect* **80**: 56-60.

European Commission (2018) Report from the Commission to the Council and the European Parliament on the implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports for the period 2012–2015. **COM/2018/257 final**, European Commission Brussels.

Fan AM & Steinberg VE (1996) Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. *Regul Toxicol Pharmacol* **23**: 35-43.

Fierer N & Jackson RB (2006) The diversity and biogeography of soil bacterial communities. *PNAS* **103**: 626-631.

Flemming H-C & Wingender J (2010) The biofilm matrix. *Nat Rev Microbiol* **8**: 623-633.

Foesel BU, Gieseke A, Schwermer C, Stief P, Koch L, Cytryn E, De La Torré JR, Van Rijn J, Minz D & Drake HL (2007) *Nitrosomonas* Nm143-like ammonia oxidizers and *Nitrospira marina*-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm. *FEMS Microbiol Ecol* **63**: 192-204.

Fowler SJ, Palomo A, Dechesne A, Mines PD & Smets BF (2018) Comammox *Nitrospira* are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. *Environ Microbiol* **20**: 1002-1015.

Francis CA, Beman JM & Kuypers MM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. *ISME J* **1**: 19.

Freguia S, Rabaey K, Yuan Z & Keller J (2008) Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. *Water Res* **42**: 1387-1396.

Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB & Cosby BJ (2003) The nitrogen cascade. *Bioscience* **53**: 341-356.

Gildemyn S, Verbeeck K, Slabbinck R, Andersen SJ, Prévoteau A & Rabaey K (2015) Integrated production, extraction, and concentration of acetic acid from CO₂ through microbial electrosynthesis. *Environ Sci Technol Lett* **2**: 325-328.

Goel RK & Flora JR (2005) Sequential nitrification and denitrification in a divided cell attached growth bioelectrochemical reactor. *Environ Eng Sci* **22**: 440-449.

Gonzalez-Martinez A, Rodriguez-Sanchez A, van Loosdrecht MM, Gonzalez-Lopez J & Vahala R (2016) Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. *Environ Sci Pollut Res* **23**: 25501-25511.

Gregory KB, Bond DR & Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. *Environ Microbiol* **6**: 596-604.

Gregory SP, Dyson PJ, Fletcher D, Gatland P & Shields RJ (2012) Nitrogen removal and changes to microbial communities in model flood/drain and submerged biofilters treating aquaculture wastewater. *Aquac Eng* **50**: 37-45.

Gudat JC, Singh J & Wharton DC (1973) Cytochrome oxidase from *Pseudomonas aeruginosa*. I. Purification and some properties. *BBA Bioenergetics* **292**: 376-390.

Guo K, Prévoteau A, Patil SA & Rabaey K (2015) Engineering electrodes for microbial electrocatalysis. *Curr Opin Biotechnol* **33**: 149-156.

Harnisch F & Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. *Chem Soc Rev* **39**: 4433-4448.

Harnisch F, Schröder U & Scholz F (2008) The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. *Environ Sci Technol* **42**: 1740-1746.

Harnisch F, Koch C, Patil SA, Hübschmann T, Müller S & Schröder U (2011) Revealing the electrochemically driven selection in natural community derived microbial biofilms using flow-cytometry. *Energy Environ Sci* **4**: 1265-1267.

Hayashi H, Sakamoto M, Kitahara M & Benno Y (2003) Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. *Microbiol Immunol* **47**: 557-570.

Heylen K, Vanparys B, Gevers D, Wittebolle L, Boon N & De Vos P (2007) Nitric oxide reductase (norB) gene sequence analysis reveals discrepancies with nitrite reductase (nir) gene phylogeny in cultivated denitrifiers. *Environ Microbiol* **9**: 1072-1077.

Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, Murata T, Iwata S & Shiro Y (2010) Structural basis of biological N_2O generation by bacterial nitric oxide reductase. *Science* **330**: 1666-1670.

Hochheimer JN & Wheaton F (1998) Biological filters: Trickling and RBC design. *Proc* 2nd Intl Conf Recirculating Aquaculture 291-318.

Hochmuth G (2001) Fertilizer management for greenhouse vegetables. *Florida Greenhouse Vegetable Production Handbook* **3**: 13-31.

Horn MA, Ihssen J, Matthies C, Schramm A, Acker G & Drake HL (2005) *Dechloromonas denitrificans* sp. nov., *Flavobacterium denitrificans* sp. nov., *Paenibacillus anaericanus* sp. nov. and *Paenibacillus terrae* strain MH72, N₂O-producing bacteria isolated from the gut of the earthworm *Aporrectodea caliginosa*. *Int J Syst Evol Microbiol* **55**: 1255-1265.

Hsu L, Mohamed A, Ha PT, Bloom J, Ewing T, Arias-Thode M, Chadwick B & Beyenal H (2017) The influence of energy harvesting strategies on performance and microbial community for sediment microbial fuel cells. *J Electrochem Soc* **164**: H3109-H3114.

Inoue-Choi M, Ward MH, Cerhan JR, Weyer PJ, Anderson KE & Robien K (2012) Interaction of nitrate and folate on the risk of breast cancer among postmenopausal women. *Nutr Cancer* **64**: 685-694.

International Agency for Research on Cancer (2010) Ingested nitrate and nitrite, and cyanobacterial peptide toxins. *IARC monographs on the evaluation of carcinogenic risks to humans* **94**.

IPCC Climate Change (2007) The physical science basis. *Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change* **996**.

Itoi S, Niki A & Sugita H (2006) Changes in microbial communities associated with the conditioning of filter material in recirculating aquaculture systems of the pufferfish *Takifugu rubripes*. *Aquaculture* **256**: 287-295.

Jetten MS, Niftrik Lv, Strous M, Kartal B, Keltjens JT & Op den Camp HJ (2009) Biochemistry and molecular biology of anammox bacteria. *Crit Rev Biochem Mol* **44**: 65-84.

Jetten MS, Strous M, Van de Pas-Schoonen KT, Schalk J, van Dongen UG, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MC & Kuenen JG (1998) The anaerobic oxidation of ammonium. *FEMS Microbiol Rev* **22**: 421-437.

Jetten MS, Sliekers O, Kuypers M, Dalsgaard T, van Niftrik L, Cirpus I, van de Pas-Schoonen K, Lavik G, Thamdrup B & Le Paslier D (2003) Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria. *Appl Microbiol Biotechnol* **63**: 107-114.

Jones DT, Taylor WR & Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. *Bioinformatics* **8**: 275-282.

Jones RR, Weyer PJ, DellaValle CT, *et al.* (2016) Nitrate from drinking water and diet and bladder cancer among postmenopausal women in Iowa. *Environ Health Perspect* **124**: 1751-1758.

Kamp A, Stief P & Schulz-Vogt HN (2006) Anaerobic sulfide oxidation with nitrate by a freshwater *Beggiatoa* enrichment culture. *Appl Environ Microbiol* **72**: 4755-4760.

Kartal B, Kuenen Jv & Van Loosdrecht M (2010) Sewage treatment with anammox. *Science* **328**: 702-703.

Kartal B, Van Niftrik L, Sliekers O, Schmid MC, Schmidt I, Van De Pas-Schoonen K, Cirpus I, Van Der Star W, Van Loosdrecht M & Abma W (2004) Application, ecophysiology and biodiversity of anaerobic ammonium-oxidizing bacteria. *Rev Environ Sci Bio* **3**: 255-264.

Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Damsté JS & Jetten MS (2007) *Candidatus* "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. *Syst Appl Microbiol* **30**: 39-49.

Kartal B, Maalcke WJ, de Almeida NM, *et al.* (2011) Molecular mechanism of anaerobic ammonium oxidation. *Nature* **479**: 127-130.

Kashima H & Regan JM (2015) Facultative nitrate reduction by electrode-respiring *Geobacter metallireducens* biofilms as a competitive reaction to electrode reduction in a bioelectrochemical system. *Enviro Sci Technol* **49**: 3195-3202.

Ke Y (2014) Simultaneous Anammox and Denitrification (SAD) Process with Anammox Granular Sludge. Dissertation Thesis, University of Duisburg-Essen.

Keeler BL & Polasky S (2014) Land-use change and costs to rural households: a case study in groundwater nitrate contamination. *Environ Res Lett* **9**: 074002.

Kelly JJ, Siripong S, McCormack J, Janus LR, Urakawa H, El Fantroussi S, Noble PA, Sappelsa L, Rittmann BE & Stahl DA (2005) DNA microarray detection of nitrifying bacterial 16S rRNA in wastewater treatment plant samples. *Water Res* **39**: 3229-3238.

Kemnitz D, Kolb S & Conrad R (2007) High abundance of *Crenarchaeota* in a temperate acidic forest soil. *FEMS Microbiol Ecol* **60**: 442-448.

Kern M & Simon J (2009) Electron transport chains and bioenergetics of respiratory nitrogen metabolism in *Wolinella succinogenes* and other Epsilonproteobacteria. *BBA Bioenergetics* **1787**: 646-656.

Khramenkov S, Kozlov M, Kevbrina M, Dorofeev A, Kazakova E, Grachev V, Kuznetsov B, Polyakov DY & Nikolaev YA (2013) A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge. *Microbiology* **82**: 628-636.

Kim JR, Cheng S, Oh S-E & Logan BE (2007) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. *Environ Sci Technol* **41**: 1004-1009.

Kim YM, Park D, Lee DS & Park JM (2007) Instability of biological nitrogen removal in a cokes wastewater treatment facility during summer. *J Hazard Mater* **141**: 27-32.

Kitzinger K, Koch H, Lücker S, Sedlacek CJ, Herbold C, Schwarz J, Daebeler A, Mueller AJ, Lukumbuzya M & Romano S (2018) Characterization of the first "*Candidatus* Nitrotoga" isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria. *MBio* **9**.

Klotz MG, Arp DJ, Chain PS, El-Sheikh AF, Hauser LJ, Hommes NG, Larimer FW, Malfatti SA, Norton JM & Poret-Peterson AT (2006) Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium *Nitrosococcus oceani* ATCC 19707. *Appl Environ Microbiol* **72**: 6299-6315.

Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, Nielsen PH, Wagner M & Daims H (2015) Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus *Nitrospira*. *PNAS* **112**: 11371-11376.

Konstantinidis K, Isaacs N, Fett J, Simpson S, Long D & Marsh T (2003) Microbial diversity and resistance to copper in metal-contaminated lake sediment. *Microb Ecol* **45**: 191-202.

Koops H-P, Purkhold U, Pommerening-Röser A, Timmermann G & Wagner M (2006) The lithoautotrophic ammonia-oxidizing bacteria. *The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses* 778-811. Koops H, Böttcher B, Möller U, Pommerening-Röser A & Stehr G (1991) Classification of eight new species of ammonia-oxidizing bacteria: *Nitrosomonas communis* sp. nov., *Nitrosomonas ureae* sp. nov., *Nitrosomonas aestuarii* sp. nov., *Nitrosomonas marina* sp. nov., *Nitrosomonas nitrosa* sp. nov., *Nitrosomonas eutropha* sp. nov., *Nitrosomonas oligotropha* sp. nov. and *Nitrosomonas halophila* sp. nov. *Microbiology* **137**: 1689-1699.

Kozich JJ, Westcott SL, Baxter NT, Highlander SK & Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. *Appl Environ Microbiol* **79**: 5112-5120.

Kraigher B, Kosjek T, Heath E, Kompare B & Mandic-Mulec I (2008) Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. *Water Res* **42**: 4578-4588.

Kuenen JG (2008) Anammox bacteria: from discovery to application. *Nat Rev Microbiol* **6**: 320-326.

Kuever J & Galushko A (2014) The family Desulfomicrobiaceae. In: *The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria*,(Rosenberg E, DeLong EF, Lory S, Stackebrandt E & Thompson F, eds.), 97-102. Springer Berlin Heidelberg.

Kuhn DD, Drahos DD, Marsh L & Flick Jr GJ (2010) Evaluation of nitrifying bacteria product to improve nitrification efficacy in recirculating aquaculture systems. *Aquacult Eng* **43**: 78-82.

Kumar M & Lin J-G (2010) Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal—strategies and issues. *J Hazard Mater* **178**: 1-9.

Kuypers MM, Sliekers AO, Lavik G, Schmid M, Jørgensen BB, Kuenen JG, Damsté JSS, Strous M & Jetten MS (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. *Nature* **422**: 608.

Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML & Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. *PNAS* **82**: 6955-6959.

LaPara TM, Nakatsu CH, Pantea LM & Alleman JE (2002) Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. *Water Res* **36**: 638-646.

Larminie J, Dicks A & McDonald MS (2003) *Fuel cell systems explained*. J. Wiley Chichester, UK.

Layer F, Ghebremedhin B, Moder K-A, König W & König B (2006) Comparative study using various methods for identification of *Staphylococcus* species in clinical specimens. *J Clin Microbiol* **44**: 2824-2830.

Lefebvre O, Nguyen TH, Al-Mamun A, Chang I & Ng H (2010) T-RFLP reveals high β -Proteobacteria diversity in microbial fuel cells enriched with domestic wastewater. *J Appl Microbiol* **109**: 839-850.

Li Y, Hodak M & Bernholc J (2015) Enzymatic mechanism of copper-containing nitrite reductase. *Biochemistry* **54**: 1233-1242.

Lindsay MR, Webb RI, Strous M, Jetten MS, Butler MK, Forde RJ & Fuerst JA (2001) Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. *Arch Microbiol* **175**: 413-429.

Liu D, Puigros MR, Caizan-Juanarena L, Geppert F, Ayudthaya N, Palakawong S, Buisman C & Ter Heijne A (2018) Granular carbon-based electrodes as cathodes in methane-producing bioelectrochemical systems. *Front Bioeng Biotechnol* **6**: 78.

Liu W-T, Marsh TL, Cheng H & Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. *Appl Environ Microbiol* **63**: 4516-4522.

Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. *Appl Microbiol Biotechnol* **85**: 1665-1671.

Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W & Rabaey K (2006) Microbial fuel cells: methodology and technology. *Environ Sci Technol* **40**: 5181-5192.

Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damsté JSS, Spieck E & Le Paslier D (2010) A *Nitrospira* metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. *PNAS* **107**: 13479-13484.

Lukow T, Dunfield PF & Liesack W (2000) Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. *FEMS Microbiol Ecol* **32**: 241-247.

Madigan M & Martinko J (2006) *Brock. Biology of Microorganisms: Pearson Prentice Hall.* Upper Saddle River, NJ.

Maier RM, Pepper IL & Gerba CP (2009) *Environmental microbiology*. Academic press.

Manassaram DM, Backer LC, Messing R, Fleming LE, Luke B & Monteilh CP (2010) Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study. *Environ Health* **9**: 60.

Mansouri A & Lurie AA (1993) Methemoglobinemia. Am J Hematol 42: 7-12.

Marger MD & Saier Jr MH (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. *Trends Biochem Sci* **18**: 13-20.

Marsh TL (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. *Curr Opin Microbiol* **2**: 323-327.

McHatton SC, Barry JP, Jannasch HW & Nelson DC (1996) High nitrate concentrations in vacuolate, autotrophic marine *Beggiatoa* spp. *Appl Environ Microbiol* **62**: 954-958.

McMurdie PJ & Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. *PloS one* **8**: e61217.

Mehta T, Coppi MV, Childers SE & Lovley DR (2005) Outer membrane c-type cytochromes required for Fe (III) and Mn (IV) oxide reduction in Geobacter sulfurreducens. *Appl Environ Microbiol* **71**: 8634-8641.

Meincke M, Bock E, Kastrau D & Kroneck PM (1992) Nitrite oxidoreductase from *Nitrobacter hamburgensis*: redox centers and their catalytic role. *Arch Microbiol* **158**: 127-131.

Michaud L, Lo Giudice A, Troussellier M, Smedile F, Bruni V & Blancheton J-P (2009) Phylogenetic characterization of the heterotrophic bacterial communities inhabiting a marine recirculating aquaculture system. *J Appl Microbiol* **107**: 1935-1946.

Mirvish SS (1977) N-Nitroso compounds: their chemical and in vivo formation and possible importance as environmental carcinogens. *J Toxicol Environ* **2**: 1267-1277.

Molin S & Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. *Curr Opin Biotechnol* **14**: 255-261.

Molognoni D, Devecseri M, Cecconet D & Capodaglio AG (2017) Cathodic groundwater denitrification with a bioelectrochemical system. *J Water Process Eng* **19**: 67-73.

Morales N, del Río ÁV, Vázquez-Padín JR, Méndez R, Mosquera-Corral A & Campos JL (2015) Integration of the Anammox process to the rejection water and main stream lines of WWTPs. *Chemosphere* **140**: 99-105.

Mueller DK, Hamilton PA, Helsel DR, Hitt KJ & Ruddy BC (1995) Nutrients in ground water and surface water of the United States: an analysis of data through 1992. *Water-Resources investigations report* **95**: 4031.

Mulder A, Van de Graaf AA, Robertson L & Kuenen J (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. *FEMS Microbiol Ecol* **16**: 177-183.

Mußmann M, Schulz HN, Strotmann B, Kjær T, Nielsen LP, Rosselló-Mora RA, Amann RI & Jørgensen BB (2003) Phylogeny and distribution of nitrate-storing *Beggiatoa* spp. in coastal marine sediments. *Environ Microbiol* **5**: 523-533.

Muyzer G, De Waal EC & Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. *Appl Environ Microbiol* **59**: 695-700.

Nadell CD, Xavier JB, Levin SA & Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. *PLoS biology* **6**: e14.

Nelson DC, Jørgensen BB & Revsbech NP (1986) Growth pattern and yield of a chemoautotrophic *Beggiatoa* sp. in oxygen-sulfide microgradients. *Appl Environ Microbiol* **52**: 225-233.

Nevin KP, Richter H, Covalla S, Johnson J, Woodard T, Orloff A, Jia H, Zhang M & Lovley D (2008) Power output and columbic efficiencies from biofilms of *Geobacter sulfurreducens* comparable to mixed community microbial fuel cells. *Environ Microbiol* **10**: 2505-2514.

Nguyen VK, Park Y, Yu J & Lee T (2016) Bioelectrochemical denitrification on biocathode buried in simulated aquifer saturated with nitrate-contaminated groundwater. *Environ Sci Pollut Res* **23**: 15443-15451.

Nguyen VK, Hong S, Park Y, Jo K & Lee T (2015) Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes. *J Biosci Bioeng* **119**: 180-187.

Nishigaki K, Kaneko Y, Wakuda H, Husimi Y & Tanaka T (1985) Type II restriction endonucleases cleave single-stranded DNAs in general. *Nucleic Acids Res* **13**: 5747-5760.

Noren D & Hoffman M (2005) Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models. *J Power Sources* **152**: 175-181.

Norton JM, Alzerreca JJ, Suwa Y & Klotz MG (2002) Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. *Arch Microbiol* **177**: 139-149.

Op den Camp H, Kartal B, Guven D, Van Niftrik L, Haaijer S, Van Der Star W, Van de Pas-Schoonen K, Cabezas A, Ying Z & Schmid M (2006) Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. *Biochem Soc Trans* **34**: 174–178.

Op den Camp HJ, Jetten MS & Strous M (2007) Anammox. In: *Biology of the nitrogen cycle*, (Bothe H, Ferguson SJ & Newton WE, eds.), 245-262. Elsevier.

Osborn AM, Moore ER & Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. *Environ Microbiol* **2**: 39-50.

Otte S, Kuenen JG, Nielsen LP, Paerl HW, Zopfi J, Schulz HN, Teske A, Strotmann B, Gallardo VA & Jørgensen BB (1999) Nitrogen, carbon, and sulfur metabolism in naturalthioploca samples. *Appl Environ Microbiol* **65**: 3148-3157.

Palleroni NJ (2015) Pseudomonas. In: *Bergey's Manual of Systematics of Archaea and Bacteria*,(Whitman WB, ed.) 323–379. John Wiley & Sons, Baltimore.

Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Pontén T & Smets BF (2018) Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox *Nitrospira*. *ISME J* **12**: 1779–1793.

Pantanella E, Cardarelli M, Colla G, Rea E & Marcucci A (2012) Aquaponics vs. hydroponics: production and quality of lettuce crop. *ActaHortic* **927**: 887-893.

Park DH & Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. *Appl Environ Microbiol* **66**: 1292-1297.

Patil SA, Harnisch F, Kapadnis B & Schröder U (2010) Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. *Biosens Bioelectron* **26**: 803-808.

Patil SA, Arends JB, Vanwonterghem I, Van Meerbergen J, Guo K, Tyson GW & Rabaey K (2015) Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO₂. *Environ Sci Technol* **49**: 8833-8843.

Patil SA, Harnisch F, Koch C, Hübschmann T, Fetzer I, Carmona-Martínez AA, Müller S & Schröder U (2011) Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. *Bioresour Technol* **102**: 9683-9690.

Pedersen L-F, Pedersen PB, Nielsen JL & Nielsen PH (2009) Peracetic acid degradation and effects on nitrification in recirculating aquaculture systems. *Aquaculture* **296**: 246-254.

Philippot L (2002) Denitrifying genes in bacterial and archaeal genomes. *BBA Gene structure and expression* **1577**: 355-376.

Pilloni G, von Netzer F, Engel M & Lueders T (2011) Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. *FEMS Microbiol Ecol* **78**: 165-175.

Pinto AJ, Marcus DN, Ijaz UZ, Bautista-de lose Santos QM, Dick GJ & Raskin L (2016) Metagenomic evidence for the presence of comammox nitrospira-like bacteria in a drinking water system. *Msphere* **1**: e00054-00015.

Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MA, Daebeler A, Steinberger M, Jetten MS, Lücker S & Wagner M (2017) AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox *Nitrospira* in the environment. *Front Microbiol* **8**: 1508.

Pous N, Puig S, Balaguer MD & Colprim J (2015) Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems. *Chem Eng J* **263**: 151-159.

Pous N, Puig S, Coma M, Balaguer MD & Colprim J (2013) Bioremediation of nitratepolluted groundwater in a microbial fuel cell. *J Chem Technol Biotechnol* **88**: 1690-1696.

Pous N, Koch C, Colprim J, Puig S & Harnisch F (2014) Extracellular electron transfer of biocathodes: Revealing the potentials for nitrate and nitrite reduction of denitrifying microbiomes dominated by *Thiobacillus* sp. *Electrochem Commun* **49**: 93-97.

Preisler A, De Beer D, Lichtschlag A, Lavik G, Boetius A & Jørgensen BB (2007) Biological and chemical sulfide oxidation in a *Beggiatoa* inhabited marine sediment. *ISME J* **1**: 341.

QIAGEN (2010) Critical Factors for Successful Real-Time PCR. <u>https://wwwgene-guantificationde/qiagen-qpcr-sample-assay-tech-guide-2010pdf</u> Last access: 24-04-2020.

QIAGEN Service & Support Centre (2013-2020) DNA. <u>https://wwwqiagencom/us/service-and-support/learning-hub/molecular-biology-</u> <u>methods/dna/</u> Last access: 22-01-2020.

Quan Z-X, Im W-T & Lee S-T (2006) *Azonexus caeni* sp. nov., a denitrifying bacterium isolated from sludge of a wastewater treatment plant. *Int J Syst Evol Microbiol* **56**: 1043-1046.

Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, Lee ST & Park YH (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. *Environ Microbiol* **10**: 3130-3139.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J & Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Res* **41**: D590-D596.

R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. *URL <u>http://wwwR-projectorg</u>*.

Rabaey K & Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. *Trends Biotechnol* **23**: 291-298.

Rabaey K, Boon N, Höfte M & Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. *Environ Sci Technol* **39**: 3401-3408.

Rabaey K, Boon N, Siciliano SD, Verhaege M & Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. *Appl Environ Microbiol* **70**: 5373-5382.

Rabaey K, Read ST, Clauwaert P, Freguia S, Bond PL, Blackall LL & Keller J (2008) Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. *ISME J* **2**: 519-527.

Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W & Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. *ISME J* **1**: 9-18.

Rakocy JE, Masser MP & Losordo TM (2006) Recirculating aquaculture tank production systems: aquaponics—integrating fish and plant culture. *SRAC Publication* **454**: 1-16.

Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT & Lovley DR (2005) Extracellular electron transfer via microbial nanowires. *Nature* **435**: 1098-1101.

Rich J, Heichen R, Bottomley P, Cromack K & Myrold D (2003) Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. *Appl Environ Microbiol* **69**: 5974-5982.

Röder B, Frühwirth K, Vogl C, Wagner M & Rossmanith P (2010) Impact of long-term storage on stability of standard DNA for nucleic acid-based methods. *J Clin Microbiol* **48**: 4260-4262.

Rosenbaum M, Aulenta F, Villano M & Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? *Bioresour Technol* **102**: 324-333.

Rosenbaum V & Riesner D (1987) Temperature-gradient gel electrophoresis: thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. *Biophys Chem* **26**: 235-246.

Rotaru A-E, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP & Lovley DR (2014) Direct interspecies electron transfer between *Geobacter metallireducens* and *Methanosarcina barkeri*. *Appl Environ Microbiol* **80**: 4599-4605.

Rozendal RA, Hamelers HV & Buisman CJ (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. *Environ Sci Technol* **40**: 5206-5211.

Rozendal RA, Hamelers HV, Rabaey K, Keller J & Buisman CJ (2008) Towards practical implementation of bioelectrochemical wastewater treatment. *Trends Biotechnol* **26**: 450-459.

San-Martín MI, Mateos R, Carracedo B, Escapa A & Morán A (2018) Pilot-scale bioelectrochemical system for simultaneous nitrogen and carbon removal in urban wastewater treatment plants. *J Biosci Bioeng* **126**: 758-763.

Sandaa R-A, Magnesen T, Torkildsen L & Bergh Ø (2003) Characterisation of the bacterial community associated with early stages of great scallop (Pecten maximus), using denaturing gradient gel electrophoresis (DGGE). *Syst Appl Microbiol* **26**: 302-311.

Sayama M, Risgaard-Petersen N, Nielsen LP, Fossing H & Christensen PB (2005) Impact of bacterial NO₃⁻ transport on sediment biogeochemistry. *Appl Environ Microbiol* **71**: 7575-7577.

Scala DJ & Kerkhof LJ (1999) Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. *Appl Environ Microbiol* **65**: 1681-1687.

Scala DJ & Kerkhof LJ (2000) Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. *Appl Environ Microbiol* **66**: 1980-1986.

Schauer R, Bienhold C, Ramette A & Harder J (2010) Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. *The ISME Journal* **4**: 159.

Schmautz Z, Graber A, Jaenicke S, Goesmann A, Junge R & Smits TH (2017) Microbial diversity in different compartments of an aquaponics system. *Arch Microbiol* **199**: 613-620.

Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW, Schleifer K-H & Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. *Syst Appl Microbiol* **23**: 93-106.

Scholten E, Lukow T, Auling G, Kroppenstedt RM, Rainey FA & Diekmann H (1999) *Thauera mechernichensis* sp. nov., an aerobic denitrifier from a leachate treatment plant. *Int J Syst Evol Microbiol* **49**: 1045-1051.

Schouten S, Strous M, Kuypers MM, Rijpstra WIC, Baas M, Schubert CJ, Jetten MS & Damsté JSS (2004) Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. *Appl Environ Microbiol* **70**: 3785-3788.

Schrope M (2001) Which way to energy utopia? *Nature* **414**: 682-684.

Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P & Kuypers MM (2006) Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). *Environ Microbiol* **8**: 1857-1863.

Schwieger F & Tebbe CC (1998) A new approach to utilize PCR–single-strandconformation polymorphism for 16S rRNA gene-based microbial community analysis. *Appl Environ Microbiol* **64**: 4870-4876.

Sebilo M, Mayer B, Nicolardot B, Pinay G & Mariotti A (2013) Long-term fate of nitrate fertilizer in agricultural soils. *PNAS* **110**: 18185-18189.

Shapleigh JP (2013) Denitrifying prokaryotes. In: *The Prokaryotes: Prokaryotic Physiology and Biochemistry*,(Rosenberg E, DeLong EF, Lory S, Stackebrandt E & Thompson F, eds.), 405-425. Springer Berlin Heidelberg.

Shuval HI & Gruener N (2013) Infant methemoglobinemia and other health effects of nitrates in drinking water. *Progr Water Technol* **8**: 183-193.

Simões M, Simões LC, Machado I, Pereira MO & Vieira MJ (2006) Control of flowgenerated biofilms with surfactants: evidence of resistance and recovery. *Food Bioprod Process* **84**: 338-345.

Siripong S & Rittmann BE (2007) Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. *Water Res* **41**: 1110-1120.

Sliekers AO, Third K, Abma W, Kuenen J & Jetten M (2003) CANON and Anammox in a gas-lift reactor. *FEMS Microbiol Lett* **218**: 339-344.

Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A & Tebbe CC (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? *J Microbiol Methods* **69**: 470-479.

Smith L, Benson D & Hiscock K (2015) Groundwater protection programmes in Denmark, Germany and the Netherlands. In: *Catchment and River Basin Management: Integrating Science and Governance*,(Smith L, Porter K, Hiscock K, Porter MJ & Benson D, eds.), 127-156. Routledge, London.

Smith RL, Bohlke J, Song B & Tobias CR (2015) Role of anaerobic ammonium oxidation (anammox) in nitrogen removal from a freshwater aquifer. *Environ Sci Technol* **49**: 12169-12177.

Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. *Environ Sci Pollut Res* **10**: 126-139.

Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM & Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". *PNAS* **103**: 12115-12120.

SooHoo CK & Hollocher T (1991) Purification and characterization of nitrous oxide reductase from *Pseudomonas aeruginosa* strain P2. *J Biol Chem* **266**: 2203-2209.

Spieck E, Aamand J, Bartosch S & Bock E (1996) Immunocytochemical detection and location of the membrane-bound nitrite oxidoreductase in cells of *Nitrobacter* and *Nitrospira*. *FEMS Microbiol Lett* **139**: 71-76.

Spieck E, Ehrich S, Aamand J & Bock E (1998) Isolation and immunocytochemical location of the nitrite-oxidizing system in *Nitrospira moscoviensi*. *Arch Microbiol* **169**: 225-230.

Spiro S (2012) Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors. *Philos Trans R Soc Lond B Biol Sci* **367**: 1213-1225.

Starkenburg SR, Chain PS, Sayavedra-Soto LA, Hauser L, Land ML, Larimer FW, Malfatti SA, Klotz MG, Bottomley PJ & Arp DJ (2006) Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium *Nitrobacter winogradskyi* Nb-255. *Appl Environ Microbiol* **72**: 2050-2063.

Stayner LT, Almberg K, Jones R, Graber J, Pedersen M & Turyk M (2017) Atrazine and nitrate in drinking water and the risk of preterm delivery and low birth weight in four Midwestern states. *Environ Res* **152**: 294-303.

Stein LY, Arp DJ, Berube PM, Chain PS, Hauser L, Jetten MS, Klotz MG, Larimer FW, Norton JM & Op den Camp HJ (2007) Whole-genome analysis of the ammoniaoxidizing bacterium, *Nitrosomonas eutropha* C91: implications for niche adaptation. *Environ Microbiol* **9**: 2993-3007.

Stormer J, Jensen FB & Rankin JC (1996) Uptake of nitrite, nitrate, and bromide in rainbow trout, (*Oncorhynchus mykiss*): effects on ionic balance. *Can J Fish Aquat Sci* **53**: 1943-1950.

Strous M, Kuenen JG & Jetten MS (1999) Key physiology of anaerobic ammonium oxidation. *Appl Environ Microbiol* **65**: 3248-3250.

Strous M, Van Gerven E, Kuenen JG & Jetten M (1997) Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. *Appl Environ Microbiol* **63**: 2446-2448.

Strous M, Van Gerven E, Zheng P, Kuenen JG & Jetten MS (1997) Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. *Water Res* **31**: 1955-1962.

Strous M, Fuerst JA, Kramer EH, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG & Jetten MS (1999) Missing lithotroph identified as new planctomycete. *Nature* **400**: 446.

Strycharz SM, Glaven RH, Coppi MV, Gannon SM, Perpetua LA, Liu A, Nevin KP & Lovley DR (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to *Geobacter sulfurreducens*. *Bioelectrochemistry* **80**: 142-150.

Sugita H, Nakamura H & Shimada T (2005) Microbial communities associated with filter materials in recirculating aquaculture systems of freshwater fish. *Aquaculture* **243**: 403-409.

Suharti, Strampraad MJ, Schröder I & de Vries S (2001) A novel copper A containing menaquinol NO reductase from *Bacillus azotoformans*. *Biochemistry* **40**: 2632-2639.

Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS & Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. *Science* **330**: 1413-1415.

Sundermeyer-Klinger H, Meyer W, Warninghoff B & Bock E (1984) Membrane-bound nitrite oxidoreductase of *Nitrobacter*: evidence for a nitrate reductase system. *Arch Microbiol* **140**: 153-158.

Sutherland IW (2001) The biofilm matrix-an immobilized but dynamic microbial environment. *Trends Microbiol* **9**: 222-227.

Sweerts J-PR, De Beer D, Nielsen LP, Verdouw H, Van den Heuvel JC, Cohen Y & Cappenberg TE (1990) Denitrification by sulphur oxidizing *Beggiatoa* spp. mats on freshwater sediments. *Nature* **344**: 762-763.

Takahashi S, Tomita J, Nishioka K, Hisada T & Nishijima M (2014) Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. *PLOS ONE* **9**: e105592.

Ter Heijne A, Hamelers HV, De Wilde V, Rozendal RA & Buisman CJ (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. *Environ Sci Technol* **40**: 5200-5205.

Teske A & Salman V (2014) The family Beggiatoaceae. In: *The Prokaryotes: Gammaproteobacteria,*(Rosenberg E, DeLong EF, Lory S, Stackebrandt E & Thompson F, eds.), 93-134. Springer Berlin Heidelberg.

Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. *Bacteriol Rev* **41**: 100.

Throbäck IN, Enwall K, Jarvis Å & Hallin S (2004) Reassessing PCR primers targeting *nirS*, *nirK* and *nosZ* genes for community surveys of denitrifying bacteria with DGGE. *FEMS Microbiol Ecol* **49**: 401-417.

Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. *Biology of anaerobic microorganisms* **717**: 179-244.

Tielen P, Strathmann M, Jaeger K-E, Flemming H-C & Wingender J (2005) Alginate acetylation influences initial surface colonization by mucoid *Pseudomonas aeruginosa*. *Microbiol Res* **160**: 165-176.

Tierling J & Kuhlmann H (2018) Emissions of nitrous oxide (N₂O) affected by pH-related nitrite accumulation during nitrification of N fertilizers. *Geoderma* **310**: 12-21.

Tokuyama T, Mine A, Kamiyama K, Yabe R, Satoh K, Matsumoto H, Takahashi R & Itonaga K (2004) *Nitrosomonas communis* strain YNSRA, an ammonia-oxidizing bacterium, isolated from the reed rhizoplane in an aquaponics plant. *J Biosci Bioeng* **98**: 309-312.

TrinkwV (2001) Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung) vom 21. *BGBI* **1**: 959-981.

Turner JA (2004) Sustainable hydrogen production. Science **305**: 972-974.

Umbreit J (2007) Methemoglobin—it's not just blue: a concise review. *Am J Hematol* **82**: 134-144.

USEPA (2013) Aquatic Life Ambient Water Quality Criteria for Ammonia - Freshwater. *Docket ID No EPA-HQ-OW-2009-0921*. Van De Graaf AA, De Bruijn P, Robertson LA, Jetten MS & Kuenen JG (1997) Metabolic pathway of anaerobic ammonium oxidation on the basis of ¹⁵N studies in a fluidized bed reactor. *Microbiology* **143**: 2415-2421.

Van de Graaf AA, Mulder A, de Bruijn P, Jetten M, Robertson L & Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. *Appl Environ Microbiol* **61**: 1246-1251.

Van der Star WR, Abma WR, Blommers D, Mulder J-W, Tokutomi T, Strous M, Picioreanu C & van Loosdrecht MC (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. *Water Res* **41**: 4149-4163.

Van Doan T, Lee TK, Shukla SK, Tiedje JM & Park J (2013) Increased nitrous oxide accumulation by bioelectrochemical denitrification under autotrophic conditions: kinetics and expression of denitrification pathway genes. *Water Res* **47**: 7087-7097.

Van Dongen U, Jetten MS & Van Loosdrecht M (2001) The SHARON®-Anammox® process for treatment of ammonium rich wastewater. *Water Sci Technol* **44**: 153-160.

van Kessel MA, Speth DR, Albertsen M, Nielsen PH, den Camp HJO, Kartal B, Jetten MS & Lücker S (2015) Complete nitrification by a single microorganism. *Nature* **528**: 555-559.

van Niftrik L & Jetten MS (2012) Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. *Microbiol Mol Biol Rev* **76**: 585-596.

van Niftrik L, Geerts WJ, van Donselaar EG, Humbel BM, Webb RI, Fuerst JA, Verkleij AJ, Jetten MS & Strous M (2008) Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome c proteins. *J Bacteriol* **190**: 708-717.

Van Niftrik L, Van Helden M, Kirchen S, Van Donselaar EG, Harhangi HR, Webb RI, Fuerst JA, Op den Camp HJ, Jetten MS & Strous M (2010) Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium '*Candidatus* Kuenenia stuttgartiensis'. *Mol Microbiol* **77**: 701-715.

Virdis B, Rabaey K, Yuan Z & Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. *Water research* **42**: 3013-3024.

Virdis B, Rabaey K, Rozendal RA, Yuan Z & Keller J (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. *Water research* **44**: 2970-2980.

Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH & Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. *Ecol Appl* **7**: 737-750.

Wallis P, Haynes R, Hunter C & Morris C (2010) Effect of land use and management on soil bacterial biodiversity as measured by PCR-DGGE. *Applied Soil Ecology* **46**: 147-150. Wan Y, Lean Zhou SW, Liao C, Li N, Liu W & Wang X (2018) Syntrophic growth of *Geobacter sulfurreducens* accelerates anaerobic denitrification. *Front Microbiol* **9**.

Wang X & Seed B (2006) High-throughput primer and probe design. *Real-time PCR* **1**: 93-106.

Wang Y, Chen Y & Wen Q (2018) Microbial fuel cells: enhancement with a polyaniline/carbon felt capacitive bioanode and reduction of Cr (VI) using the intermittent operation. *Environ Chem Lett* **16**: 319-326.

Wang Y, Ma L, Mao Y, Jiang X, Xia Y, Yu K, Li B & Zhang T (2017) Comammox in drinking water systems. *Water Res* **116**: 332-341.

Ward B (2015) Bacterial energy metabolism. In: *Molecular Medical Microbiology*, (Tang Y-W, ed.) 201-233. Elsevier.

Ward MH, DeKok TM, Levallois P, Brender J, Gulis G, Nolan BT & VanDerslice J (2005) Workgroup report: drinking-water nitrate and health—recent findings and research needs. *Environ Health Perspect* **113**: 1607-1614.

Ward MH, Jones RR, Brender JD, De Kok TM, Weyer PJ, Nolan BT, Villanueva CM & Van Breda SG (2018) Drinking Water Nitrate and Human Health: An Updated Review. *Innt J Environ Res Public Health* **15**: 1557.

Webster G, Yarram L, Freese E, Köster J, Sass H, Parkes RJ & Weightman AJ (2007) Distribution of candidate division JS1 and other Bacteria in tidal sediments of the German Wadden Sea using targeted 16S rRNA gene PCR-DGGE. *FEMS Microbiol Ecol* **62**: 78-89.

Wickham H (2017) ggplot2: elegant graphics for data analysis. J Stat Softw 77.

Wickham H (2019) stringr: Simple, Consistent Wrappers for Common String Operations. Vol. 1.4.0 p.^pp.

Wiegel J (2006) The genus Xanthobacter. The prokaryotes 5: 290-314.

Wieringa EB, Overmann J & Cypionka H (2000) Detection of abundant sulphatereducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. *Environ Microbiol* **2**: 417-427.

Wietz M, Hall MR & Høj L (2009) Effects of seawater ozonation on biofilm development in aquaculture tanks. *Syst Appl Microbiol* **32**: 266-277.

Wimpenny J (2000) An overview of biofilms as functional communities. In: *Community Structure and Co-operation in Biofilms*,(Allison D, Gilbert P, Lappin-Scott H & Wilson M, eds.), 1-24. Cambridge University Press, Cambridge.

Winiwarter W, Grizzetti B & Sutton MA (2015) Nitrogen pollution in the EU: best management strategies, regulations, and science needs. *AWMA EM magazine* **September 2015**: 18-23.
World Health Organization (2004) *Guidelines for drinking-water quality*. World Health Organization.

Wricke B (2014) Wasseraufbereitung. In: *Mutschmann/Stimmelmayr Taschenbuch der Wasserversorgung*,(Fritsch P, Knaus W, Merkl G, Preininger E, Rautenberg J, Weiß M & Wricke B, eds.), 237-397. Springer.

Wrighton KC, Virdis B, Clauwaert P, Read ST, Daly RA, Boon N, Piceno Y, Andersen GL, Coates JD & Rabaey K (2010) Bacterial community structure corresponds to performance during cathodic nitrate reduction. *ISME J* **4**: 1443-1455.

Xu G, Fan X & Miller AJ (2012) Plant nitrogen assimilation and use efficiency. *Annu Rev Plant Biol* **63**: 153-182.

Yang D-C, Im W-T, Kim MK & Lee S-T (2005) *Pseudoxanthomonas koreensis* sp. nov. and *Pseudoxanthomonas daejeonensis* sp. nov. *Int J Syst Evo Microbiol* **55**: 787-791.

Yang Y, Li X, Yang X & He Z (2017) Enhanced nitrogen removal by membrane-aerated nitritation-anammox in a bioelectrochemical system. *Bioresour Technol* **238**: 22-29.

YIImaz M, Ozic C & Gok İ (2012) Principles of nucleic acid separation by agarose gel electrophoresis. *Gel Electrophoresis–Principles and Basics* **33**.

Zekker I, Rikmann E, Tenno T, Loorits L, Kroon K, Fritze H, Tuomivirta T, Vabamäe P, Raudkivi M & Mandel A (2015) Nitric oxide for anammox recovery in a nitrite-inhibited deammonification system. *Environ Technol* **36**: 2477-2487.

Zhang Y & Angelidaki I (2013) A new method for in situ nitrate removal from groundwater using submerged microbial desalination–denitrification cell (SMDDC). *Water Res* **47**: 1827-1836.

Zumft WG (1997) Cell biology and molecular basis of denitrification. *Microbiol Mol Biol Rev* **61**: 533-616.

Zumft WG (2005) Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme–copper oxidase type. *J Inorg Biochem* **99**: 194-215.

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit mit dem Titel

"Nitrogen cycling in technical water systems"

selbst verfasst und keine außer den angegebenen Hilfsmitteln und Quellen benutzt habe und dass die Arbeit in dieser oder ähnlicher Form noch bei keiner anderen Universität eingereicht wurde.

Königstein, Oktober 2020

Danksagung

Mein besonderer Dank gilt Prof. Dr. Rainer Meckenstock, der mir die Möglichkeit gab, meine Arbeit in seiner neu etablierten Arbeitsgruppe in Essen zu schreiben. Danke, Rainer, dass du mich für diese spannenden Themen (vor allem dem Aquaponik) begeistert hast. Danke, für all die Diskussionen in unseren Science Meetings und die Ideen, die meine Arbeiten weiter vorangebracht haben.

Ich möchte der gesamten Arbeitsgruppe für die gemeinsame Zeit im Labor, im Büro und auch außerhalb der Uni danken! Ein ganz besonderer Dank geht dabei an Meike Arnold, Dr. Ivana Kraiselburd und Astrid Dannehl für ihre stetige Unterstützung. Ich konnte immer auf eure Hilfe zählen. Danke, Dr. Martin Mackowiak, Mark Pannekens, Dr. Philip Weyrauch und Dr. Janina Kölschbach für die wundervolle Atmosphäre im Büro. Unsere wissenschaftlichen Diskussionen beim Kaffee halfen mir sehr bei den Entwicklungen der Experimente. Auch die vielen privaten Gespräche und eure Späße werde ich sehr vermissen. Danke, Dr. Marcel Schulte, für deine Hilfe beim Aufbau der bioelektrochemischen Systeme und Dr. Verena Brauer, für deine Hilfe bei den Auswertungen der Sequenzierdaten.

Ihr alle seid nicht nur wundervolle Arbeitskollegen gewesen, sondern auch Freunde geworden. Vielen Dank dafür!

Prof. Dr. Martin Denecke möchte ich für die Übernahme des Zweitgutachtens danken. Martin, ich danke dir ebenfalls für die wissenschaftlichen Gespräche, auch wenn es leider nicht sehr viele waren. Thank you, Dr. Leon Steuernagel, Dr. Erika de León Gallegos, and Dr. Mohammad Azari for your technical and scientific support regarding the bioelectrochemical systems, the qPCR analyses and for providing the inoculums.

I also gratefully acknowledge Prof. Dr. Ir. Korneel Rabaey at the Center of Microbial Ecology and Technology (CMET) at Ghent University, Belgium, for his help and support. Special thanks are contributed to Dr. Sunil A. Patil, who designed the batch reactor systems used in this study and who helped me to build them up and to run the systems, as well as Dr. Kristof Verbeeck, who showed me to build and to run the upflow cells I worked with. I also would like to thank Dr. Antonin Prévoteau for his help in electrochemistry and Dr. Jan Arends for his support.

Während meiner Zeit in Essen konnte ich immer auf die Unterstützung meiner Familie bauen. Ich danke euch, Mama und Papa, für eure Geduld, für eure Aufmunterungen in stressigen Zeiten und dafür, dass ihr immer für mich da gewesen seid.

Zu guter Letzt möchte ich auch Stefanie Sand, Kira Giebler, Helena Pannekens, Julia Raab, and Annika Uphoff danken. Wir hatten eine wunderbare Zeit zusammen im Studium und ich bin froh, dass wir Freunde geworden sind, die versuchen, sich immer mal wieder zu treffen. Ein besonderer Dank geht an dich Steffi, dafür, dass du mich immer wieder aufgebaut hast, wenn alles einfach mal gar nicht lief.

Danke!