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Abstract 

In addition to the electrification of the drive train, the development and use of autonomous 

and highly automated vehicles is another important contribution to the future development 

of individual transport. The automation of vehicle guidance is seen as a means to avoid 

traffic accidents, to gain leisure time in automated driving phases, but especially to improve 

the traffic flow and to avoid traffic jams as far as possible. While there are many obstacles 

to the popularization of fully autonomous vehicles in most countries, vehicles with driver 

assistance systems up to level 2 are already very common in different regions. A better 

understanding of the effects of vehicles with higher levels of automation on traffic flow can 

provide positive impulses for political strategies, the expansion of urban infrastructure, and 

the development of individual vehicles. 

In this thesis, the most important driving differences between fully automated vehicles, 

semi-automated vehicles, and non-automated vehicles are investigated and corresponding 

vehicle driving models are developed. To compare the effects of these vehicle driving mod-

els in real traffic, four microscopic traffic simulation scenarios are created for two cities in 

two countries with different infrastructure. When comparing the simulation results for traf-

fic with vehicles of different degrees of automation, simulation results of vehicles with a 

high degree of automation show a better influence on traffic in terms of traffic density, 

average speed, and travel time. Vehicles with high automation degree can improve the traf-

fic situation from 3.7% to 57.4% in different aspects. Higher automation degree can bring 

greater impact on traffic. Based on the current development of automated vehicles in terms 

of technology, politics, price, and public opinion, this work estimates the penetration rate 

of auto-mated vehicles in the near and far future. The future traffic status is simulated based 

on the different penetration rates of automated vehicles. Even if only a part of the vehicles 

in the traffic flow is automated, this can have a positive effect on the traffic flow in many 

ways. 

The traffic scenarios of the German city of Duisburg and the Chinese city of Wuhan created 

in this thesis are based on real road networks and traffic data. The scenarios can realistically 

reflect real traffic conditions and can also be used for further work in traffic research. The 

vehicle guidance model built in this thesis is based on driving experiments in a driving 

simulator, but it can also be combined with different vehicle models to simulate the effect 

of combining different drivers and vehicle types. 
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Kurzfassung 

Neben der Elektrifizierung des Antriebsstrangs sind Entwicklung und Einsatz autonomer 

und hochautomatisierter Fahrzeuge ein weiterer wichtiger Beitrag für die zukünftige Ent-

wicklung des Individualverkehrs. Die Automatisierung der Fahrzeugführung wird als ein 

Mittel gesehen, um Verkehrsunfällen zu vermeiden, Freizeit in automatisierten Fahrphasen 

zu gewinnen, aber insbesondere auch, um den Verkehrsfluss zu verbessern, bis hin zu einer 

weitgehenden Vermeidung von Verkehrsstaus. Während es in den meisten Ländern viele 

Hindernisse für die Popularisierung vollständig autonomer Fahrzeuge gibt, sind Fahrzeuge 

mit Fahrerassistenzsystemen bis zum Level 2 in den verschiedenen Regionen bereits sehr 

verbreitet. Ein besseres Verständnis der Auswirkungen von Fahrzeugen höherer Automa-

tisierungsgrade auf den Verkehrsfluss kann positive Anregungen für politische Strategien, 

den Ausbau der städtischen Infrastruktur und die Entwicklung von Individualfahrzeugen 

bringen. 

In der vorliegenden Arbeit werden die wichtigsten fahrtechnischen Unterschiede zwischen 

vollautonomen Fahrzeugen, teilautomatisierten Fahrzeugen und nichtautomatisierten Fahr-

zeugen untersucht und entsprechende Fahrzeugführungsmodelle erstellt. Um die Auswir-

kungen dieser Fahrzeugführungsmodelle im realen Verkehr vergleichen zu können, werden 

vier mikroskopische Verkehrssimulationsszenarien für zwei Städte in zwei Ländern mit 

unterschiedlicher Infrastruktur erstellt. Beim Vergleich der Simulationsergebnisse bei Ver-

kehr mit Fahrzeugen unterschiedlichen Automatisierungsgrads zeigen Simulationsergeb-

nisse von Fahrzeugen mit hohem Automatisierungsgrad einen größeren Einfluss auf den 

Verkehr in Bezug auf Verkehrsdichte, Durchschnittsgeschwindigkeit und Fahrzeit. Fahr-

zeuge mit hohem Automatisierungsgrad können die Verkehrssituation in verschiedenen 

Aspekten von 3,7 % bis 57,4 % verbessern. Ein höherer Automatisierungsgrad kann grö-

ßere Auswirkungen auf den Verkehr haben.  Basierend auf der aktuellen Entwicklung von 

automatisierten Fahrzeugen in Bezug auf Technologie, Politik, Preis und öffentliche Mei-

nung schätzt diese Arbeit die Durchdringungsrate von automatisierten Fahrzeugen in der 

nahen und fernen Zukunft. Der zukünftige Verkehrsstatus wird auf der Grundlage der un-

terschiedlichen Penetrationsrate von automatisierten Fahrzeugen simuliert. Auch wenn nur 
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ein Teil der Fahrzeuge im Verkehrsfluss automatisiert ist, kann sich dies in vielerlei Hin-

sicht positiv auf den Verkehrsfluss auswirken. 

Die in dieser Arbeit erstellten Verkehrsszenarien der deutschen Stadt Duisburg und der 

chinesischen Stadt Wuhan basieren auf realen Straßennetzen und Verkehrsdaten. Die Sze-

narien können die realen Verkehrsbedingungen realistisch wiedergeben und können auch 

für weitere Arbeiten in der Verkehrsforschung verwendet werden. Das in dieser Arbeit auf-

gebaute Fahrerzeugführungsmodell basiert auf Fahrexperimenten in einem Fahrsimulator, 

es kann aber auch mit verschiedenen Fahrzeugmodellen kombiniert werden, um den Effekt 

der Kombination verschiedener Fahrer und Fahrzeugtypen zu simulieren. 
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1 Motivation and instruction 

This Chapter describes motivation and structure of this work. The current 

state of the art in the field and the research questions to be answered in this 

thesis are presented. 

1.1 Motivation 

As the urban population grows continuously, traffic jams, traffic accidents and other 

negative effects of the traffic are getting more and more attention. The United Na-

tions predicts that, the proportion of global urban population will increase from 55% 

in 2018 to 68% in 2050 (United Nations). The development of urbanization not only 

increases the residents’ demand of urban mobility, which burden the urban trans-

portation system, but also brings traffic safety issues to mind. Each year about 1.2 

million people die in vehicle-related traffic accidents (Kalra and Groves 2017). The 

resulting medical, legal, property, insurance and quality of life losses exceed 1 tril-

lion US dollars (Blincoe et al. 2015). Most traffic accidents can be attributed to hu-

man error, e.g. driving under drunk, drowsiness or distraction. A study by the Uni-

versity of Indiana showed that in a sample of 2,258 cases, 93% of accidents were 

mainly due to human error (Treat et al. 1979). Another study has shown that 95% 

of traffic accidents are at least partially attributable to human error, while 65% of 

traffic accidents can even be attributed entirely to human error (Sabey and Taylor 

1980).  

With the expansion of driving assistance technology, autonomous driving will be-

come an option, which may offer the prospect of reducing the accident rate in road 

traffic. Autonomous vehicles replace fallible human drivers with sensors, cameras 

and radars, which cannot be drunk, do not burn out and cannot be distracted. Auton-

omous vehicles or intelligent vehicles can be of great importance for the develop-

ment of public health. Autonomous driving systems do not only reduce fatalities of 

traffic accidents, but they can also improve human’s quality of life (Fagnant and 
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Kockelman 2015; Kalra and Groves 2017). In energy consumption, partial auto-

mated vehicles might reduce greenhouse gas emissions and energy consumption by 

nearly half (Wadud et al. 2016). 

Before the realization of fully autonomous vehicles, many challenges are still faced 

by the development of autonomous technology (Marshall 2017). The new technol-

ogy needs extra new sensors, communications and software for each automobile, 

which increase the vehicle costs significantly. An estimation shows that, most cur-

rent civilian and military applications cost of autonomous vehicles are over 100,000 

US dollars (Dellenback 26.May.2013). Comparing to the price of top selling vehi-

cles, the cost of autonomous vehicle is unaffordable for most consumers. From a 

technological point of view, improving the visual capabilities of autonomous vehi-

cles is one of the biggest challenges besides the required algorithms. In harsh envi-

ronment such as rain, fog and snow, it is hard for autonomous cars to detect sur-

rounding vehicles, lanes, pedestrians, traffic signs, etc. (Rasshofer et al. 2011). In 

terms of social acceptance of autonomous driving, the acceptance differs with var-

ying levels of automation levels (Rödel et al. 2014). The acceptance rates for fully 

autonomous cars are around 68% (Payre et al. 2014; Schoettle and Sivak 2014a). 

Moreover, there are still many ethical and legal dilemmas that have not yet been 

resolved. Laws in related fields are not yet mature. These ethical and legal dilemmas 

have considerably prolonged the market penetration of autonomous vehicles. 

Although accompanied by many difficulties, many simulation experiments and field 

trials are implemented to promote the development of autonomous driving technol-

ogy. By August 2019, 90 cities worldwide had pilot projects for autonomous vehi-

cles (Philanthropies). So far, investments in the development of autonomous driving 

technologies have exceeded 80 billion US dollars and are likely to show an further 

upward trend (Kerry, Karsten 2017). Nevertheless, it can be concluded from the 

significant advances in automotive technology that the widespread use of autono-

mous vehicles will come at least in the medium to long term. Thus, an early under-

standing of the impact of new driving technologies on transportation can give trans-

portation planning departments the opportunity to prepare.  
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The applications of advanced technologies have never been done overnight, as is the 

application of autonomous driving technology. For over a century, automobile tech-

nology is evolving gradually. Vehicle automation has been around with the first au-

tomatic gearboxes since 1940s (Young et al. 2007). However, the relationship be-

tween the driver and the automation technologies will not always be supporting each 

other. Shladover compares automation technologies according to different ap-

proaches (Figure 1.1).  

With the help of modern assisted driving technology, we have already found that 

our driving behavior has changed (Jamson et al. 2013b). In fact, increasingly ad-

vanced automotive technologies influence far more than just the driver itself. Fur-

thermore, the impact of different degrees of automation on traffic flow cannot be 

ignored. Knowing beforehand of the impact of these technologies on traffic flow 

would have multiple advantages. In this work, the vehicle technologies commonly 

used for assisting, the technologies to be applied in the future for assisting and the 

autonomous driving technologies are discussed. This research may have positive 

impact on political strategies such as road planning, urban infrastructure construc-

tion and industrial applications such as vehicle design and product development. 

 
Figure 1.1: Degrees of automation and cooperation (Shladover 2009) 



1   Motivation and instruction 

4 
 

According to the different aggregation levels, traffic simulation can be categorized 

into macroscopic simulation, mesoscopic simulation and microscopic simulation. 

While microscopic models describe the traffic flow from the perspective of the in-

dividual driver and vehicle, macroscopic models reflect the collective state. That is 

to say, macroscopic models have a holistic view in spatiotemporal fields and focus 

on the local density, speed, and flow (Treiber and Kesting 2013). In order to analyze 

the behavior of each vehicle, this work focuses on the microscopic simulation level.  

1.2 Objective of the work 

Many manufacturers are developing autonomous vehicles and highly automated ve-

hicles. At the same time, the influence of these emerging technologies on traffic 

flow have not been comprehensively researched.  

In order to research the influence of vehicles with different automation levels on 

traffic flow, traffic simulation models with different degrees of automation need to 

be established. A classification system based on different degrees of automation was 

first published by the SAE (Society of Automotive Engineer) International in 2014, 

this classification system is based on the amount of driver intervention and atten-

tiveness required, rather than the vehicle capabilities. In 2016, SAE updated its clas-

sification (Automated Driving 2014). In the current work, three levels of automation 

are selected: level 5 (full automation) presents vehicles in the future, level 2 (partial 

automation) presents vehicles that are mature in technology but do not have been 

widely used on road and level 0 (no automation) presents most vehicles currently 

running on the road. With different percentage of the vehicles in these three auto-

mation levels, future traffic flow changes in 2030 and 2050 due to vehicle technol-

ogy upgrades are investigated in simulations.  

The scenarios in the simulation are extracted from the present real world, including 

real lane distribution, the location of traffic lights and actual amount of traffic flow 

recorded by detectors. Furthermore, simulated road conditions are also compared 

with real data collected from detectors including inductive loops and cameras in 

certain points of the simulated area and the accuracy of the simulation is ensured 

from the comparison.  
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This work may offer a new perspective to automobile manufacturers and suppliers, 

political and government institutions and other related personnel in automobile in-

dustry. 

1.3 Structure of the work 

In the first chapter of this work, motivation and structure are introduced. Beginning 

with Chapter 2, this work is divided into two main parts, one related to the simula-

tion scenario and the other related to the driver model in the simulation. Finally, 

these two parts are put together to run the simulation. The structure can also be seen 

in Figure 1.2. 

 

Figure 1.2: Chapter distribution of the work 

The second chapter introduces the fundamentals and the current state of research in 

this field. In Section 2, 2.1 introduces the evolution and classification of different 

traffic simulation models from the past to the present. Section 2.2 introduces the 

traffic simulation software commonly used worldwide. These two sections are re-

lated to the simulation scenario part. Section 2.3 introduces the definition and cur-

rent development of vehicles with different degrees of automation. In this section, 

the three studied degrees of automation are also determined, representing the pre-

sent, the near future, and the long distant future respectively. This section is the basis 

of the driver model part. 

Chapter 3 introduces the simulation scenarios in this work, the selection, construc-

tion and comparison of four different simulation scenarios in two cities. In Chapter 
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4, the process of establishing a driver model for each studied degree of automation 

is introduced in detail and implemented in the MATLAB.    

Chapter 5 to Chapter 7 describe the simulation results of vehicles in different sce-

narios and conditions. In Chapter 5 the simulation results of ordinary cars without 

automation in four different scenarios are presented. Since this represents the current 

automation level on the road, the actual data from detectors are used to calibrate the 

driver model built in Chapter 4. Next, in chapter 6, the vehicles with the three in-

vestigated degrees of automation (representing the current state, the state of near 

future or in the far future) are simulated on the basis of two different scenarios. The 

effects on the traffic flow are then analyzed by comparing the results. In chapter 7, 

the mixing of the vehicle stock with partially and fully automated vehicles in the 

years 2030 and 2050 is simulated. In this chapter, the vehicles with different degrees 

of automation are simulated with different penetration rate of the traffic flow. Fi-

nally, in Chapter 8, a conclusion with scientific contribution and limitation of this 

work is given. 
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2 Fundamentals and state of research 

This Chapter introduces first the macroscopic and microscopic simulation 

models used in traffic simulation. Next, the software systems widely used by 

researchers worldwide are presented and compared. The current state of re-

lated work using these software packages is also presented. Finally, the last 

part of this chapter introduces the classification of level for automation of 

motor.  

2.1 Traffic simulation models 

Road traffic is a dynamic problem with a multitude of system components that in-

teract in a rather complex manner. It is obvious that a variety of factors will influ-

ence traffic flow. The basic purpose of a traffic flow simulation is to predict the 

effects on traffic of changes in the behavior of road users and the surrounding traffic 

infrastructure. The accuracy of the traffic simulation directly determines whether 

the simulation results are reliable enough to base decisions on them or not. Depend-

ing on the knowledge to be gained from the simulation, different software systems 

are used. Among all these simulation software packages, the evaluation criteria are 

the same. That is, the more similar it is to actual traffic, the more reliable the results 

of the simulation are. According to the different aggregation levels, traffic simula-

tions can be categorized into macroscopic scale simulation, mesoscopic scale simu-

lation and microscopic scale simulation, respectively. 

2.1.1 Macroscopic traffic flow models  

In the case of a macroscopic modeling, traffic flow models formulate the relation-

ships among traffic flow characteristics and no distinction can be made between the 

individual vehicles. Only the macroscopic quantities resulting from the vehicle dy-

namics are considered. These are essentially the global traffic flow , the global den-

sity  and the mean velocity  on a road section of given length. The size is linked 

by the hydrodynamic relation.  

.                                                    (2.1) 
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This class of simulation approaches includes hydrodynamic and gas kinetic ap-

proaches. The basis of the models here is the equation of continuity, which describes 

the number of vehicles. The mathematical foundations of this approach originate 

from hydrodynamics and gas theory: 

.                                         (2.2) 

The spatial change of the local flow  causes a temporal change of the local 

density  (Neubert 2000). Other extensions are also made by lots of research-

ers, for example the propagation of kinematic waves (Lighthill and Whitham 1955), 

discontinuous density change (Prigogine and Herman 1971) and detailed applica-

tions (Lee et al. 1998). 

2.1.2 Microscopic traffic flow models  

Microscopic models are the dynamic and stochastic modeling of individual vehicle 

movements within a system of transportation facilities. To analyze the behavior or 

reactions of a single vehicle, the use of microscopic models is appropriate. There 

are lots of microscopic traffic flow models which describe different aspects of vehi-

cle behavior. All these models can be divided into four main categories: route choice 

models, lane change models, gap acceptance models and car following models (Ber-

thaume 2015).  

 

Figure 2.1: Four main categories of microscopic traffic flow models 

These models present different aspects working together, simulating human drivers’ 

behavior. Route choice models decides which road to go, guide lane change models 

take actions to choose another lane or stay in the same lane. Gap acceptance models 
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are prerequisites to lane change models. When a driver tries to change to another 

lane, the gap on the target lane becomes a critical parameter for gap acceptance 

models. After determining if the driver accepts the gap or not (by the gap acceptance 

model), the lane change models describe the next step. Although all four models 

work together during the simulation, it is the car-following model that is active most 

of the time. From this perspective, car following models are the most important.  

General Motors (GM) model 

As early as in the 1950s, the study of car following models have started (Bengtsson 

2001). The general form was based on the assumption that the behavior of a driver 

 is determined by the driver in front .  Initial approaches have been proposed 

as a distance and speed difference perceived model (Pipes 1953). On the assumption 

that the driver is able to percept the space headway and the relative speed difference, 

a linear car-following based on general stimulus-response relationship was intro-

duced (Chandler et al. 1958). The model can be mathematically expressed as: 

                             (2.3) 

where  

                   acceleration of the following car, 

                          sensitivity factor of the control mechanism, 

                         vehicle mass, 

                            reaction time of the following car, 

                     velocity of the leading car, 

                         velocity of the following car. 

Based on (2.3), the General Motors (GM) nonlinear model was developed (Gazis et 

al. 1961). This model can be expressed as 

                       (2.4) 

where  

                           constant, 
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                           model parameter, 

                            model parameter, 

             the space headway at time . 

At low traffic densities, this model performs better because of the relationship be-

tween the space headway of the vehicles and a sensitivity factor was introduced. In  

the following research, the GM model has been improved by determining parame-

ters (May and Keller 1967), adding an alternative approach based on the visual angle 

(Pipes 1953), extend to a nonlinear headway-dependent term (Addison and Low 

1998). After all, the GM car following models are still based on the relationship 

between the space headway and the vehicle speed. These insurmountable character-

istics bring some flaws. At low speed or when traffic stops, some models do not 

work. Besides, GM models ignore any unsatisfied desires for mobility (Berthaume 

2015).  

Wiedemann’s model 

After the GM model dominated in the 1960s, the German psychologist Rainer 

Wiedemann developed an advanced model in the early 1970s with the so-called 

psycho-physical spacing model.  

  
Figure 2.2: Wiedemann’s psycho-physical spacing model (Wiedemann 1974) 
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Figure 2.2 shows Wiedemann’s model on a graph depending on relative velocity 

and relative distance. Wiedemann divided driver behavior into four driving situa-

tions, uninfluenced driving (desired speed), approaching (consciously influenced 

driving), braking (consciously influenced driving) and car following (unconsciously 

influenced driving). Individual driving parameters are introduced in different driv-

ing situations, desired speed, desire for safety and reaction time, these driving pa-

rameters are used to determine the levels of perception of drivers. 

Wiedemann’s model is still in use today, e.g., the microscopic traffic simulation 

software VISSIM (VISION 2014) is based on this model. PELOPS (Program for the 

dEvelopment of Longitudial microscOPic traffic process in a System relevant envi-

ronment) created by IKA (Institute for Automotive Engineering Aachen) and BMW 

AG is also using Wiedemann’s car following model (Neunzig et al. 1998). 

Although Wiedemann’s model is proven to be an improvement in microscopic car 

following models, the calibration of so many coefficients make it difficult in using. 

The perceptual threshold may change with different driving behaviors. Lots of fac-

tors can have influence on this threshold, such as driver gender, age, residential 

country, vehicle type, the presence of passengers and so on. A comprehensive, reli-

able, robust database based on lots of surveys is required in using Wiedemann’s 

model. 

Gipps’ model 

In the 1980s Gipps employed an assumption that the driver sets a safety rule to de-

termine vehicle spacing. The desired speed of a driver should ensure that he can 

perform a safe stop even if the leading car stops suddenly (Gipps 1981). The Gipps 

model is an optimistic model, if everyone drives like the description in this model, 

there will be no rear-end collisions. However, in reality, not all drivers will leave 

enough room for safety. Especially in the city center with high vehicle density, the 

gaps between vehicles are hard to reach the ideal level in Gipps’ model. Mathemat-

ically, the model can be expressed as: 

                          (2.5) 

where 
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                 , 

                  , 

                                   vehicle position, 

                                 maximum desired acceleration of the following car, 

                                 desired speed of the following car, 

                                maximum deceleration of the following car, 

                             effective size of the leading car, 

                             estimate of maximum deceleration of the following car. 

Although it is introduced that the vehicle space is changeable, Gipps’ model does 

not accurately reflect driving behavior of most drivers on the road. 

Krauss’ model 

In the 1990s, car following models developed rapidly. Like Gipps’ model, Krauss’ 

model is also based on safety distance. It is assumed that, the following vehicle will 

maintain a safe distance from the leading vehicle and select its speed to avoid colli-

sion (Krauss). Mathematically, the model can be expressed as: 

                             (2.6)  

                                (2.7) 

where 

                               safe speed of the vehicle, 

                           maximum allowed velocity, 

                                 maximum deceleration for , 

                                 noise amplitude, 

                                 random number in , 

                          gap between the leader and the follower, 

                   the speed of follower after the reaction time of . 
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Krauss’ model can be seen as a variant of Gipps’ model. It defines the amount of 

noise  that introduces stochastic behavior to the model. The safe velocity  is also 

the maximum velocity that the follower can drive when he/she wants to be sure to 

avoid a crash. It is assumed that neither the leader nor the follower will ever decel-

erate faster than . The desired velocity  is the minimum out of: current velocity 

plus acceleration, safe speed, maximum allowed velocity. 

IDM (Intelligent Driver Model) 

The Intelligent Driver Model (IDM) (Treiber et al. 2000) is a continuous function 

incorporating different driving models for all velocities in freeway as well as city 

traffics. In addition of vehicle gap and actual speed, IDM puts velocity differences 

 on an important position. In the case of approaching to the leading car or keep-

ing safe distance, it provides a relative more accurate model (Kesting et al. 2009). 

The model does not consider a reaction time, so its expression is an ordinary differ-

ential equation. In the IDM, acceleration of the following car can be calculated as: 

 

where 

                 , 

                              maximum acceleration, 

                          speed difference from the leading car, 

                            distance to the leading car, 

               desired minimum gap, 

                              desired time gap, 

                             comfortable deceleration, 

                              acceleration exponent, 

                            minimum distance to the leading car. 

After all, although the car following models are becoming increasingly complex, 

with more and more parameters, many models even involve complex machine learn-

ing methods like the neural network structures, and the advanced algorithms, etc. 
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However, complex models do not automatically mean higher accuracy. For example, 

in a comparison of four models (Newell’s, Gipps’, IDM, MITSIM) with real traffic 

data, the simplest Newell’s model (Newell 2002) performed the best (Punzo and 

Simonelli 2005). Without large database support, lots of models cannot reach high 

accuracy. 

2.2 Traffic simulation software 

A reliable description of traffic flow is a really important topic. So far, there are lots 

of models present. Unfortunately, none of them can be considered as an ideal or, at 

least universal one (Maciejewski 2010). 

2.2.1 SUMO 

SUMO (Simulation of Urban MObility) is an open source microscopic traffic flow 

simulation system developed by German Aerospace Center (DLR) since 2001 

(Krajzewicz et al. 2012). In SUMO, multimodality is concerned. That is to say, in a 

city where public transportation is very convenient and fast, people will choose a 

multimodal transportation. For example, walking to the bus station, drive to the train 

station or continue travel by other means of transport. 

The simulation of vehicles in SUMO is time discrete and space continuous. Moreo-

ver, its car following models are all continuous. In the traffic simulation models 

introduced above, it includes the safe distance Krauss’ model and the IDM model. 

The routing model in SUMO follows Dijkstra routing algorithm, which means the 

vehicles compute the nearest way from the origin to the destination through the net-

work. To make up the defects of all vehicles going to the same road and generate 

congestion, Dynamic User Equilibrium (DUE) developed by Christian Gawron 

(Gawron 1998) are recommended to be used in SUMO.  

SUMO provides 2D graphical visualization of microscopic traffic simulation (Fig-

ure 2.3), it also enables various vehicle types, driver models, traffic signal plans and 

choices of public transportation. In the new version SUMO 1.6.1, more functions 

like Traffic Assignment Zone (TAZ), pedestrians, visible routes in network, etc. are 

added to the software package. 

SUMO is conceived to simulate a traffic road network of the size of a city and ca-

pable to read different source formats (origin destination matrices, traffic counts, 
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etc.). So far, traffic simulations of some cities have been made. Berlin was simulated 

by the developer of SUMO as an example of city traffic simulation. In project ITS 

(Intelligent Transport Systems) Austria West, a scenario of Upper Austria was built 

(Kastner et al. 2014). Because of the efficiency of SUMO decreased below real time, 

they tried to build a parallelization of SUMO. Then they made some improvements, 

including an online monitoring system and real floating car data comparison (Kast-

ner and Pau 2015). Meanwhile, a traffic scenario of city Bologna in Italy was built 

(Bieker et al. 2015). Combined by three small scenarios, the simulation was in the 

end compared to the real-world measurements. Due to the small size of network, 

route choice in the scenarios are very limited, that leads to an inaccuracy. After-

wards, a 24-hour scenario of Luxembourg City was built (Codeca et al. 2015), the 

system called LuST (LUxembourg SUmo Traffic) contained morning and evening 

rush hours, buses and bus stations. In addition to Europe, city simulation in Asia 

were subsequently emerged. A simulation of Kobe-city in Japan was carried out 

(Yuta et al. 2015). In this simulation, because of the lack of government help, origin 

destination matrices data source was not available for the simulation, so a sub-pro-

gram in SUMO called ActivityGen was used to generate traffic demand. They also 

found, by changing the speed limit of the road, the simulated data will be closer to 

the traffic census data than default setting. 

2.2.2 VISSIM 

VISSIM is a commercial behavior-based system developed by PTV Group (Fellen-

dorf 1994). It has been used worldwide for over 25 years (Fellendorf and Vortisch 

2010). Users from consultancies, industry, public agencies and academic institutions 

find it suited for traffic engineering. VISSIM provides multimodal traffic flow sim-

ulation contains cars, trucks, buses, trams, rails and even pedestrian, bicyclists and 

motorcycles. 

In the car following model, which is based on the VISSIM model, the psycho-phys-

ical  model by Wiedemann is used (Wiedemann 1991). The same applies to the lane 

change model. VISSIM has a structure of one-way links connected with connectors, 

instead of nodes and links. This allows the representation of almost any structure of 

the road systems.  
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Figure 2.3: A screenshot of SUMO Interface 

 

Figure 2.4: Simulation of mixed traffic with PTV VISSIM (from PTV website) 

As can be seen in Figure 2.4, VISSIM provides a variable 3D visualization which 

has quite a high degree of reproduction of traffic condition. It provides not just pre-

cise modeling of vehicles but also road infrastructure with a high level of detail, 

which makes the realism level of vehicle dynamic in VISSIM higher than in most 

traffic simulation software packages. 

At the same time, VISSIM is also an expensive commercial software and the simu-

lation speed is relatively low. From a user’s point of view, VISSIM is very user-

friendly, and therefore suitable for beginners. The powerful and intuitive graphical 
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environment also helps for government report, corporate project promotion and so 

on.  

2.2.3 TRANSIMS 

TRANSIMS (Transportation Analysis and SIMulation System) is an open-source, 

regional analytical traffic simulation system (Smith et al. 1995). It is a complete 

modeling and simulation system which contains population synthesis, activity gen-

eration, route plan, and microsimulation.  

The Microsimulator is the last module of the process in TRANSIMS. It is based on 

cellular automata (CA) theory and uses the commonly recognized Nagel-Schrecken-

berg model (Nagel and Schreckenberg 1992) which is time and space discrete. For 

this reason, each road is divided into small cells of the same size, the default size in 

TRANSIM is 7.5 m. The cells can be in one of the two states: occupied or empty. 

TRANSIMS offers large scope area, but the precision is limited. For the reason of 

cellular automata, a lot of emphasis was laid on the adjustment of cell size. But by 

changing the cell size from default 7.5 m to 3.75 m and 1.5 m, the decrease of the 

cell size causes impreciseness in simulations (Maciejewski 2010).  

Because of the simplicity of the CA theory, the calculation speed of TRANSIMS is 

fast. At the same time, TRANSIMS presents not only macroscopic characteristics 

of traffic flow, but also microscopic characteristics like velocity, displacement and 

headway of each vehicle. It is also possible to obtain the state of all cells at a speci-

fied time. Although TRANSIMS can express some properties of microscopic traffic 

flow models, compared to other microscopic models, TRANSIMS is not suitable 

for small area traffic simulation. The driving behavior simulated with TRANSIMS 

significantly differs from human driving behavior. The simulation rule set of 

TRANSIMS knows only three categories: free driving, following and rapid decel-

eration. Although some random conditions are developed, the inherent nature of the 

model leads to software inadequacies and makes it impossible to reproduce complex 

driving behavior. However, traffic simulation of an extreme large area, for example 

a whole country is possible with TRANSIMS. There is experience of simulating the 

complete road network of Switzerland (Raney et al. 2002). 
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2.2.4 AIMSUN 

AIMSUN (Advanced Interactive Micro-Simulation for Urban and non-urban Net-

works), developed by University of Catalonia (UPC), Barcelona, Spain, is primarily 

a microscopic traffic simulation package. For different traffic networks, AIMSUN 

is capable to reproduce real traffic on a computer (Barceló and Casas 2005).The 

software now includes macroscopic, mesoscopic and microscopic models. 

The microscopic car following and lane changing model implemented in AIMSUN 

are both proposed by Gipps. The car following model in AIMSUN can be consid-

ered as an evolution of this empirical model because the model parameters are not 

global. Local parameters depending on the type of driver, the road characteristics, 

the influence of vehicles on adjacent lanes, etc., have impact on model parameters 

(Barceló and Casas 2005). The model is based on an assumption that the driver 

would try to drive at his maximum desired speed when he drives freely without any 

other vehicle affecting his behavior. Unlike Gipps’ one-dimensional model that con-

siders only the vehicle and its leader, AIMSUN also considers the influences of ad-

jacent lanes. The car following model in AIMSUN determines a new maximum de-

sired speed of a vehicle in the section, and allows a maximum difference of speed. 

AIMSUN provides a basic three-dimensional preview of the simulation and the user 

can add as many cameras as needed to capture all the points of interest of the traffic 

network, as in Figure 2.5. At the same time, when three-dimensional preview with 

multiple viewpoints are used together, the simulation dropped in frames per second 

rapidly. What’s more, AIMSUN can function as either a stochastic model with ve-

hicles based on turning probabilities, or a traffic assignment model using origin des-

tination matrices. Dynamic traffic assignment and ITS are also available in 

AIMSUN.  

2.2.5 PARAMICS 

PARAMICS (PARAllel MICroscopic Simulation) is a three dimensional micro-

scopic traffic simulation suite developed by Quadstone Limited, a Scottish company 

(Cameron and Duncan 1996). Unlike the other microscopic simulation programs, 

PARAMICS is UNIX-based. But through the use of a Microsoft Windows-based 

software Called Exceed by Hummingbird, the X-Windows platform can be emu-

lated on a standard Workstation computer. 
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Figure 2.5: Multiple views of AIMSUN traffic simulation package (Kotusevski and Hawick 2009) 

 
Figure 2.6: Three-dimensional representation in PARAMICS (from PARAMICS website) 

Interfaces from PARAMICS to urban traffic systems are available which allow the 

simulation models to be used to develop ITS control strategies. Since the interac-

tions between vehicles are modelled, the application of microsimulation to large 

area models is also possible. 
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The PARAMICS modeler has the best graphics representation of all packages. As 

in Figure 2.6, a complex 3D model is presented including vehicles, pedestrians, city 

buildings, traffic lights, etc., with lots of details. Libraries of textures are included 

in PARAMICS, which makes the simulation look much more realistic than the other 

packages. Like AIMSUN, PARAMICS users can also add as many cameras as 

needed to view the simulation from different points of reference. The detailed three-

dimensional representation of PARAMICS and VISSIM make them always being 

compared with each other. In simulation accuracy, PARAMICS uses link-based 

routing which can result in inaccurate lane utilization for closely-spaced intersec-

tions. The path-based routing in VISSIM eliminates this problem (Choa et al. 2004). 

2.2.6 Selection of the software utilized for this thesis 

For the purpose of simulating the effects of vehicles’ different degrees of automation 

on traffic flow, a basic scenario with detailed characteristics will be used. Consider-

ing simulation accuracy, scalability, model adjustability, input data extensiveness, 

verification convenience, microscopic traffic simulation package SUMO is chosen 

in building the scenario in this work. 

Since the car following model will be used in SUMO, interaction between the car 

following model and other models (lane changing model, dynamic assignment 

model, etc.) must be considered. Models with high complexity would have negative 

impacts which are not easy to resolve (Bjärkvik et al. 2017), Krauss’ model was 

chosen as the basic car following model in this work, and the following driver mod-

els based on different automation level will be modified on this basic model. 

2.3 Current status of vehicles’ automation level 

2.3.1 Definition of level of automation 

The tasks allocation between human and machine is probably the most important 

step in human-machine systems design (Wei et al. 1998), and it has early been con-

sidered by Sheridan (Sheridan 1992). Rouse described the process as three stage 

interactive design process: allocation, design and evaluation (Rouse et al. 1992). 

Several approaches have defined the assignment of functions to people and automa-

tion in terms of a more integrated team approach. One of them seeks to optimize the 

assignment of control between the human and automated system by keeping both 
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involved in system operations, which has been labelled Level of Automation (LOA) 

(Draper 1995). Another recognized that control must be passed back and forth be-

tween the human and the automation over time, depending on the situation needs, 

and seek ways to use this understanding in improving human performance. This is 

marked as Adaptive Automation (AA) or Dynamic Function Assignment (DFA) 

(Corso and Moloney 1996). These can be seen as the most basic classification prin-

ciples of automation. 

Subsequently, the automation levels are defined by the amount of automation au-

tonomy and the amount of human activity (Kaber and Endsley 2004). Ten automa-

tion levels were proposed as the basis of the classic man-machine task distribution 

principle (Sheridan and Verplank 1978). A four-stage model of human information 

processing was connected to automation classification (Parasuraman et al. 2000), 

for each stage of information processing/each function in model, either human or 

machine or some combination was held responsible for the effects on task perfor-

mance due to the automation (Jeong et al. 2017). This can be seen as the theoretical 

basis for the widely recognized classification of automation. 

A classification system based on six different levels was published in 2014 by SAE 

International, an automotive standardization body, as J3016 (Automated Driving 

2014). This classification system is based on the amount of driver intervention and 

attentiveness required, rather than the vehicle capabilities. It is meanwhile widely 

accepted by researchers and automotive industry. This classification was updated 

by SAE in 2016, called J3016_201609, and in 2018, called J3016_201806. Basi-

cally, vehicle automation has been categorized from Level 0, corresponding to no 

automation, to Level 5, corresponding to full automation. The five levels of auto-

mation are depicted as follows. 

Level 0 – No Automation: 

In this level, human driver is responsible for all aspects of driving tasks for 

the full-time including control of the car as well as monitoring the road and 

environment around the car. Automated system issues warning and may mo-

mentarily intervene but has no sustained vehicle control.  

Level 1 – Driver Assistance (hands on): 
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In this level, the execution of either steering or acceleration/deceleration is 

done by driver assistance system but not both. It uses information about the 

driving environment and the human driver is expected to perform all remain-

ing aspects of the dynamic driving task. For example, systems like Adaptive 

Cruise Control (ACC), Parking Assistance, Lane Keeping Assistance 

(LKA), etc. are classified in Level 1. 

Level 2 – Partial Automation (hands off): 

In this level, the execution of both acceleration/deceleration and steering 

control are done by a driver assistance system, while the human driver mon-

itors the road and environment around the car. All the remaining aspects of 

the dynamic driving task are still performed by the human driver and contin-

uous supervision of the human driver is also required. The human driver 

must be prepared to intervene immediately at any time if the automated sys-

tem fails to work properly. 

Level 3 – Conditional Automation (eyes off): 

In this level, all aspects of the dynamic driving task are taken by the auto-

mated driving system and the driver can safely turn their attention away from 

the driving tasks. For situations that call for an immediate response, the au-

tomated driving system will handle. But the driver must still properly re-

sponse to a request to intervene within limited time. Therefore, it requires 

partial supervision of the driver. 

Level 4 – High Automation (mind off): 

In this level, the automated driving system takes on all aspects of the dy-

namic driving task, even if a human driver does not respond appropriately to 

the intervention request. This level is basically unsupervised, the driver may 

safely go to sleep or leave the driver’s seat. However, the automated driving 

system supports only limited spatial areas or special circumstances. Outside 

of these areas or circumstances, the system will safely abort the trip. 

Level 5 – Full Automation (steering wheel optional): 

In this level, the automated driving system takes place on all aspects of the 

dynamic driving tasks under all road and environmental conditions. This 
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level does not require a driver at all, the full automation vehicles can also be 

called self-driving vehicles. An example would be a robotic taxi. 

2.3.2 Current automation level of vehicles on road  

Although autonomous assisted driving technologies have developed into a relatively 

high level in the mass production process, consumer enthusiasm is not high due to 

factors such as price. Among the 20 best-selling vehicle models worldwide in 2018 

(excludes LCV, includes pickups), published by Jato, the highest level of automa-

tion that can be selected is Level 2. Eight of the 20, Honda Civic (No.3), Honda CR-

V (No.6), VW Golf (No.7), VW Passat (No.8), Chevrolet Silverado (No.9), Ford 

Escape (No.18), Hyundai Tucson (No.19) and Honda Accord (No.20) have the op-

tion of Level 2 automation and none of them is equipped Level 2 as a standard con-

figuration. Only 5 of the 20 best-selling models are equipped with Cruise Control 

(CC), (the basic driving assistance technology) as standard configuration: Ford F-

Series (No.1), Honda CR-V (No.6), VW Passat (No.8), Chevrolet Silverado (No.9) 

and VW Polo (No. 14). CC makes these five models’ automation level at least at 

Level 1 for certain road conditions.  

If passenger cars are divided into four categories, A-segment/city cars, B-seg-

ment/small cars, C-segment/medium cars and D-segment/large cars, most A and B 

segment cars stay with no automation or just Level 1 and some of them have an 

option to reach automation Level 2. For C and D segment cars for example BMW 5 

Series, Audi A8, Mercedes-Benz S-Class, driving assistance technologies like ACC 

and LKS are in standard configuration, which make these cars’ automation level at 

least at Level 2.  

Level 3 is a relative dangerous automation level because it needs driver observe 

traffic situation for all the time without driving the vehicle. In this situation, drivers 

tend to pay attention on other aspects, such as replying messages or even watching 

movies. When the vehicle needs the driver to intervene, it needs it without any time 

delay. The reaction time of the driver in a higher-level automation vehicle may be 

even longer than in a no automation vehicle. From this perspective, driving assis-

tance technology may even cause danger. This possibility of danger is difficult for 
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consumers and transportation department to accept, so most automobile manufac-

turers do not focus on Level 3. Some manufacturers have already claimed to skip 

Level 3, including Google, Ford and Volvo. 

 

Figure 2.7: SAE defined level of vehicle automation 

 

Figure 2.8: Waymo autonomous car Firefly and Chysler Pacifica minivan equipped Waymo technology. 
(Source: waymo.com) 

2.3.3 Autonomous car 

The difference between Level 4 (high automation) and Level 5 (full automation) is 

whether the vehicle can drive autonomously in all driving modes. This “all” driving 

modes require to cover a wide range and are therefore difficult to meet. Manufac-

turers who research autonomous driving always focus on the Level 4 and are com-

mitted to increasing driving modes. 

Waymo is the leader in American autonomous driving technology. From December 

2018, Waymo has launched a commercial autopilot service called Waymo One, and 
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give passengers ride experience in form of self-driving taxi in Phoenix, USA 

(LeBeau 2018).  

In the current autonomous driving research, the road test distance can be said to be 

one of the most important indicators for the recognition of system stability. Waymo 

announced in October 2018 that it has completed 10 million miles on the roads of 

25 cities in USA. Of all the companies that tested autonomous vehicles in California, 

Waymo’s detachment rate (the number of times a driver needs to take over the steer-

ing wheel when the vehicle itself is inoperable) is by far the lowest. 

Other traditional automobile manufacturers are also interested in autonomous cars, 

Cruise Holding from General Motors developed a Level 4 autonomous vehicle 

which has been tested in New York, and will provide Level 5 full autonomous cars 

without steering wheels and drive pedals (Rocco 2014). Nissan Infiniti Q50 Proto-

type claims to have Level 4 automation degree and will be tested in 2020 (Greimel 

2019). BMW claims that their Vision iNEXT will achieve Level 3 in 2021 and Level 

4 in 2024 (Etherington 2019). Daimler and Volkswagen believes that Level 4 and 

Level 5 automatic driving will be released in 2025 (Shepardson 2014; Volkswagen 

AG 2019).  

Of course, with the development of autonomous driving technology, many barriers 

have followed, for example the safety issues. The driver’s death and pedestrian 

death caused by the detection problem in self-driving mode made the public feel 

that the technology is not yet mature. Besides, the transport laws and division of 

responsibility also slows down the popularization of autonomous driving technol-

ogy. However, the problem will always be solved and the technology will always 

improve. We are getting closer and closer to the realization of autonomous driving. 

2.3.4 Studied LOA in this work 

In order to compare the different effect of vehicles with different degrees of auto-

mation, three categories of automation level will be studied in this work, represent-

ing the present, near future and long distant future, respectively. 

Even though most new car buyers have the option of equipping basic driving assis-

tance technologies like CC or ACC to make it Level 1, lots of them will choose not 

to because of some factors like extra cost. Considering of the percentage of old cars, 
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trucks and the limited driving scenarios of these basic assistance technologies, ordi-

nary driving in cities for most drivers stays no automation at all. Hence, Level 0 (no 

automation) is chosen to present the current automation level on road. 

For most manufactures, Level 2 are easy to achieve. The technologies are already 

mature, the time of popularization is just depending on the price. For some countries, 

some automation functions (such as cruise control, lane keeping systems) have al-

ready been or will be required by law in the near future. Thus, it is not hard to believe, 

in the near future, Level 2 will be a standard configuration for most cars. Level 2 

(partial automation) is chosen to present the automation level on road in the near 

future.  

In the end, although nobody knows how long it will take, autonomous cars will be 

mature and eventually drive into everyone’s garage. For that time, Level 5 (full au-

tomation) is chosen to present the automation level on road in the long distant future. 
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3 Establishment of simulation scenarios 

The simulation scenario is an important part of traffic simulation and is crit-

ical to the accuracy of the simulation. This Chapter introduces the process of 

creating a simulation scenario and the selection of a simulation scenario pro-

totype. Two cities in different countries are selected as scenario prototypes 

and their maps are extracted into SUMO for simulation.  

3.1 Extraction of real scenes 

3.1.1 Open Street Map 

There are many ways to import maps from actual cities into SUMO, the easiest and 

most convenient way is through OSM (Open Street Map). OSM is a volunteered 

geographic system to create a free editable map of the world. With over two million 

registered users (Neis and Zipf 2012), OSM collects data using manual survey, GPS 

devices, aerial photography and other free sources. Compared with other volun-

teered geographic information systems like WikiMapia, Google Map Maker, Yan-

dex Map editor, OSM provides a free and relatively comprehensive map for cities. 

Compared with proprietary data sources, such as TomTom, NAVTEQ, and ATKIS, 

OSM is also favorable (Zielstra and Hochmair 2012). 

However, OSM also has uneven quality across the world. Figure 3.1 describes OSM 

GPS point’s distribution map, as can be seen in the picture, Europe has much more 

points than the rest of the world.  

3.1.2 Network verification and calibration 

Even in Germany, where OSM data is comprehensive, OSM data may differ from 

real situations. Thus, a street view map is needed for verification.  

In most districts of Europe and the America, Google map provides frequently up-

dated street view map covering most parts of the streets. But Google doesn’t have 

accurate streetscapes of all parts of the world, sometimes local map companies have 

an advantage in getting more accurate map data. For example, in China, Baidu’s 

streetscape is more accurate than Google’s, the covered area are larger and map 
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updates are more frequent. With the help of the street view maps, real street scenar-

ios are compared and corrected. 

Inaccurate intersections 

Among all the inaccuracies of the map exported from OSM, errors in intersections 

are the most common errors and have the biggest impact on traffic simulation. Es-

pecially the OSM in China, the wider roads lead to larger intersections, these inter-

section areas are often marked by OSM as several different intersections. If a viaduct 

is passing by above the intersection, possible errors will be more. These extra inter-

sections block vehicles in all directions. Therefore, intersections are also the key 

point of map verification and correction.  

Normally all the intersections will be numbered after selection of simulated area in 

order to facilitate later verifications. Numbers of lanes, direction of each lane, al-

lowed vehicle type of each lane, speed limit of each road section, etc. will be com-

pared between OSM and street view.  

Figure 3.2 is an example of OSM deviation in an intersection in Wuhan, China. The 

upper left picture shows the original map of this intersection in SUMO imported 

from OSM. There are five small intersections with five unrelated traffic lights. In 

simulation, these redundant intersections create unrealistic congestion problems. 

As in the upper left picture of Figure 3.2, all vehicles are stuck in this intersection, 

their red color represents their low speed. In the satellite image of this intersection 

(in upper right in Figure 3.2), only one large intersection can be seen. Then, at the 

street view (lower left), at this 360-degree panorama, it is very obvious that there is 

only one intersection. The two north-south roads are viaducts and cannot be directly 

connected to the intersection on the ground level. Based on the street view, network 

in SUMO has been modified. The final version of the intersection can be seen in the 

lower right image. With the same traffic demand, adjusted network of the same in-

tersection has a smooth traffic. 
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Figure 3.1: OSM GPS points map (Source: wiki.openstreetmap.org) 

Figure 3.2: An example of OSM intersection deviation and correction. 

Extra roads 

In some cases, extra roads may appear in maps exported by OSM. These road areas 

are usually non-motorized roads or dedicated roads. In this work, non-motorized 

roads in the parks, by the rivers and in residential areas are often found. And also 

dedicated roads including tanker roads, driveway inside the zoo, farm interior roads 
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and so on are sometimes considered as public roads on the map. An effective way 

to identify these extra roads is through the street view map provided by map com-

panies. 

Figure 3.3 shows an example of extra roads, which is found during the establishment 

of the city of Duisburg scenario. The upper left picture is a screenshot of the original 

road network in SUMO, the roads in black are imported directly from OSM. The 

blue lane in the picture is found unreachable while generating trips for vehicles. 

Therefore, the real scene from satellite image (upper right) and street view map  

It can be seen in the lower left picture of Figure 3.3, that two barricade pillars in red 

and white are placed at the intersection entering this road. Obviously, the blue road 

in the upper left picture is a non-motorized road, for the other road entering from 

this intersection, the case is the same. After removing the extra roads, the adjusted 

road network of this area is shown in the lower right picture of Figure 3.3. 

Missing roads 

The missing roads also need to be manually added in the network imported from 

OSM. The most common of these are the two-way roads that are widespread in 

residential areas. Many people’s houses have a single lane road leading to their gar-

age. This single lane road is responsible for both the incoming and outgoing direc-

tions. However, in SUMO, there is only one direction for each lane. And the single 

lane leading to the houses with two driveways does not exist. Therefore, in the pro-

cess of importing road structures from OSM into SUMO, one of the driving direc-

tions is missing. In this case, a reverse lane will be added manually in SUMO. 

(lower left) are checked.  

In addition, some special road sections may also have missing paths. Figure 3.4 

shows an example of a dead-end road leading to a parking lot in the city of Duisburg. 

The upper left picture is the original network of SUMO. The light blue road leads 

to the green lane, but the reverse direction of the green lane only has a dead end. 

The satellite image (upper right) of this region shows that inside the parking lot there 

is a ring road. In the street view (lower left), it can be seen that there is a blue circle 

on the map and the vehicles can drive on the ring road. Thus, the missing road is 

added manually in SUMO and the result can be seen on the lower right picture. From 
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the blue road, both of the two green roads are available, and there is no dead-end 

road in the picture. 

Figure 3.3: An example of extra roads inside a park in Duisburg. 

Figure 3.4: An example of missing roads in a parking lot in Duisburg. 
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Reverse direction roads 

In addition to the general errors mentioned above, there are a few individual errors. 

Figure 3.5 shows a particular error near an intersection. The blue road in the upper 

left picture shows that it goes through the intersection, but cannot lead to other roads 

of the intersection. Driving directions are marked by red arrows. The upper right 

picture shows the further connected sections. The roads shown in the picture have 

two completely different directions: the road on the upper right (in blue) goes up 

and the road on the lower left goes down. Street view (lower left) helps in finding 

the right direction for this weird road and the reversed road is eventually turned over 

(lower right). 

Map comparison and calibration is a very time-consuming task. Due to the different 

size of the maps, the numbers of intersections needed to be calibrated are huge. But 

at the same time, this work has to be done. Accuracy is the core of traffic simulation, 

and carefully restored map has a major impact on the accuracy. Hence, if time is 

limited, it is better to build a relatively small scenario and calibrate than to handle a 

big scenario without calibrating each intersection. 

3.1.3 Visualization of scenarios 

In the establishment of simulation scenarios, in addition to the roads themselves, 

there are roadside buildings, rivers, mountains, meadows and so on. The shapes and 

locations of these other scenes are described in detail in OSM and can be easily 

edited in Java program. But unfortunately, most of these scenes are lost in the pro-

cess of importing into SUMO. Importing OSM into SUMO requires separate intro-

duction of road information and other information such as buildings, rivers, etc. 

Road information can be completely imported into SUMO without being affected, 

but only some of the other information can be identified. Most of this information 

is lost because SUMO does not recognize it. 

By adding the other missing information to SUMO, manual operation is needed. 

Basically, it is drawing all the edge points of a building or a lake and then connect 

them into a polygon. The time spent on this work is not worth the benefits it brings. 

Therefore, in the establishment of scenarios, it is decided to use a background pic-

ture under the SUMO road information. To make a better visualization, satellite map 

is selected. 
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Figure 3.5: An example of the opposite direction of a road. 

  

Figure 3.6: An example of map visualization in SUMO. 

Figure 3.6 describes a visualization example using satellite map as background in 

SUMO. The selected area is in Wuhan, China. From the road map (upper left) it can 

be seen that this area contains several lakes and parks in blue and green, respectively. 

In the Java program, the OSM contains all the information (upper right). Only the 

road information from OSM is imported into SUMO. The lower left picture is the 
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network from SUMO. Without other information, the road sections look clear but 

not that intuitive. The lower right screenshot is after putting a satellite map as a 

background behind the roads. This method brings a better visualization even with a 

facile progress.  

Placing a background image is not the perfect method, if the simulated area is large 

enough. The background picture will be hard to match all the roads in simulation. 

One of the possible reasons is that the satellite view has a slight spherical deviation. 

When the sphere is turned into a plane, the deviation between OSM and the satellite 

map is different, and making the background difficult to match. Therefore, in the 

case of a large simulation scenario area, multiple background images can be used 

separately. Although the inevitable map seam will be generated, the matching de-

gree between the roads and the background will be improved. 

3.2 The city of Wuhan Scenario  

3.2.1 Natural conditions of the city of Wuhan 

Located in the middle of China, the city of Wuhan is the capital of Hubei Province. 

It has a reputation of “nine-province thoroughfare (  in Chinese)” means 

an important transportation hub in China. As of 2018, the city of Wuhan has 13 

districts with a total area of 8494.41 square kilometers and a resident population of 

11.081 million. The population and location of the city of Wuhan are representative 

of major cities in China. Therefore, the traffic scenario of the city of Wuhan can 

represent the traffic scenarios in major cities in China. 

Wuhan is located in the eastern part of the Jianghan Plain, and is in the middle of 

the Yangtze River, the longest river in Asia. The Yangtze River and the Han River 

traverse the center of city Wuhan and divide the city into three parts. There are many 

rivers in Wuhan, and the water area accounts for about one quarter of the city’s total 

area. Because of its special location and topography, the city of Wuhan is the largest 

water, land and air transportation hub and shipping center in the interior part of 

China. 

Like many metropolises, Wuhan is also facing traffic jams, especially in densely 

populated areas. Figure 3.7 is a spatial distribution of population density in Wuhan, 

the degree of red in the picture represents the degree of population density (deeper 
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red = denser population). The population data source is street population in China’s 

sixth population census in 2010. As can be seen in the figure, the most densely pop-

ulated area is Jianghan Zone ( ) on the left side of the river. According to the 

data of Wuhan Municipal Transportation Bureau, the most serious traffic jam hap-

pens also in Jianghan Zone. 

3.2.2 Scenario of Jianghan Zone 

Jianghan Zone is an old district in Wuhan with over 500 years of history. It is also 

the earliest formed business district. Until now, it is still the largest and most pros-

perous commercial district in the city of Wuhan. With the development of the econ-

omy, the price of land in this area is getting more and more expensive, which makes 

it more and more difficult to widen and change roads. Therefore, it is particularly 

important for a scientific road planning in this region. This is also one of the reasons 

why Jianghan Zone was chosen for building scenario in this work. 

As mentioned in 3.1.2, the accuracy of OSM data in China is poor. The directions 

of lanes, number of lanes, intersection construct, and speed limit of roads can be to 

a large extend wrong. As a result, to ensure the accuracy of network in SUMO, long 

time has been spent in the calibration process. For the scenario of Jianghan Zone, 

Baidu map was used because of its comprehensive street view data.  

The planning of traffic lights also plays an important role in the accuracy of the 

scenario. Unfortunately, there is no official cooperation with the government of the 

city of Wuhan and the data on traffic light planning is not available. Thus, the traffic 

light plan in this scenario is the default setting of SUMO. 

At the beginning, bus lines and bus stations are added into the scenario. But due to 

the computing capability of SUMO and the large population in this area, calculating 

private cars and public transportations in the same time will make later iterations 

impossible. As a result, in this scenario, the bus lines are not included and only the 

private cars are simulated. 
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Figure 3.7: Spatial distribution of population density in Wuhan (Xu et al. 2017). 

  
Figure 3.8: Original Map and abstracted road network of Jianghan Zone. 

 

            (a) Locations of schools and kindergarten                                  (b) Roads for vehicles 

Figure 3.9: Selected school intensive area in Jianghan zone, Wuhan. 
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3.2.3 School intensive area 

One feature of the city of Wuhan and even whole China is the uneven distribution 

of high-quality educational resources. From a national perspective, high-quality ed-

ucational resources are gathered in big cities. But from a city’s point of view, out-

standing teachers and schools are located in the city center. In order to give their 

children a better educational environment, parents are willing to spend a high price 

for a small and old houses in the city center. In this way, their children are able to 

gain admission into a great school. Meanwhile, the living environment of good 

school districts is usually very limited. So many parents choose to live in the suburbs 

and drive their children to school every day. In order to analyze the extra traffic 

brought by key schools, the intensive part of educational resources in Jianghan Zone 

of Wuhan is selected as a scenario. 

Figure 3.9 is the map of the school intensive area. Figure 3.9 (a) shows the distribu-

tion of schools and kindergarten in the selected area. The locations and shapes of 

schools are marked and numbered in red, kindergarten locations are marked and 

numbered in pink points. Figure 3.9 (b) shows all the vehicle roads of this area in 

green. The selected area has only 2.45 square kilometers, but there are 21 primary 

schools and 16 kindergartens in this area. As the scenario of Jianghan Zone, traffic 

light data is the default setting from SUMO. For the bus lines, there is no practical 

significance because the small size of this area. 

3.3 The city of Duisburg Scenario  

3.3.1 Natural conditions of the city of Duisburg 

The city of Duisburg is located in the northwestern German state Nord Rhine-West-

phalia. Lying on the confluence of the Rhine and the Ruhr rivers, Duisburg is one 

of the largest cities in the Ruhr area. Its 498,110 (2017) inhabitants make it Ger-

many’s 15th largest city. The city of Duisburg lies on both sides of the Rhine, with 

the city center and most boroughs on the river’s right bank. What is more, Duisburg 

has the world’s largest inland port. The city of Duisburg is a type of medium-large-

scale European city, which is also the most important class of cities in Europe in 

demographic terms (Giffinger et al.). Therefore, the traffic scenarios of city Duis-

burg is built to represent common cities in Europe.  
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As the first pair of sister cities between China and Germany, Duisburg and Wuhan 

have established their friendly relations since 1982. These two cities have many 

similarities: both cities are steel centers, both cities are located at the river junction 

and are divided into two parts by a major river, the automotive industries of both 

cities are well developed. Since 2015, the starting and arriving stations of the new 

China Europe train are exactly the city of Wuhan and the city of Duisburg. For these 

reasons, it is interesting to build and compare two scenarios of two cities with sim-

ilarities while in different continents. 

As shown in Table 3.1, there is a huge difference in population between Duisburg 

and Wuhan. Unlike Europe, where population is generally used as a standard for 

ranking large cities, Wuhan, with a population of more than 10 million, is not a first-

tier city in China. Wuhan has a population density six times more than Duisburg, 

which can be horrible for city traffic. Fortunately, Wuhan has a higher public trans-

portation sharing rate. According to the data from Wuhan Municipal Transportation 

Commission, the public transportation sharing rate is 58.6% (2016), much higher 

than most cities in China (Wen et al.) and Europe cities like Berlin (26%), Vienna 

(39%), and Prague (43%) (Land Transport Authority 2014). This means that more 

than half of all the travel in Wuhan is carried out by public transport, which greatly 

reduces the traffic pressure.  

3.3.2 Scenario of the whole city of Duisburg 

Since the urban area of the city of Duisburg is not very large, it is possible to estab-

lish a traffic scenario of the whole city. In Duisburg, there are two horizontal (east-

west) expressways namely A 42 and A 40, and two vertical (north-south) express-

ways A 59 and A3. The expressways, also known as Autobahn or Bundesautobahn, 

are federal controlled-access highway system in Germany. 

These 4 expressways can be seen in Figure 3.10, A42 (horizontal, upper, more north) 

connects Kamp-Lintfort as west end with Castrop-Rauxe as east end, A40 

(horizontal, lower, more south) connects Straelen as west end with Dortmund as east 

end. A59 (vertical, left, more west) connects Dinslaken and Bonn, A3 (vertical, right, 

more east) links the German border with Netherlands to the south at the Austrian 

border. The highway A3 is a major connection between the Rhine-Ruhr area and 

southern Germany, resulting in heavy traffic.  
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Thanks to the support of the City of Duisburg and WBD (Wirtschaftsbetriebe 

Duisburg),  OD (Origin-Destination) matrix data, and detector data (including 

inductive loops and cameras) are provided for this thesis. The OD matrix data 

consists of two parts, the first part is the selected area which will be divided in many 

sections, and these sections are considered as points where traffic starts and ends. 

The other part is a matrix that describes the traffic volume from each section/point 

to another in a certain time. According to the provided OD matrix data, the city of 

Duisburg is divided into 596 inner city traffic sections and there are 153 outer city 

traffic sections around the city of Duisburg. The outer city traffic sections contain 

city Mülheim an der Ruhr, Oberhausen, Dinslaken, Hünxe, Wesel, Rheinberg, 

Kamp-Lintfort, Neukirchen-Vlyn, Moers, Krefeld, the northern area of city 

Düsseldorf und Ratingen. The OD matrix data was calibrated to an average working 

day with the reference year 2015. 

In Figure 3.11(a), the boundary of these inner and outer city traffic sections can be 

seen in shapefile software QGIS, and the red points are the center points of the traffic 

sections. Each point represents a traffic section in OD matrix data, but not each point 

has its boundary on Figure 3.11(a). Some points describe more peripheral areas of 

the city of Duisburg, whose exact boundary are not given. Therefore, on the edge of 

the outer city traffic sections, there are many points in one traffic section. Besides, 

the Düsseldorf airport is separately defined as a traffic section without boundary in 

Figure 3.11. Therefore, the total number of traffic sections defined by OD matrix 

data are 908, including 596 inner city traffic sections with boundaries, one inner city 

traffic section without boundary, 153 outer city traffic sections with boundaries and 

158 outer city traffic sections without boundaries. The matrix contains the traffic 

volume between these 908 sections/points in 24 hours of a day. 

Coordinate transformation 

The Duisburg city netfile mentioned above is extracted by OSM, and the OD matrix 

data is given in shapefile. As a result, a unification and transformation of the two 

coordinates is needed. In order to transfer the OD matrix traffic section data into 

SUMO, the polygons are exported from the shapefile with all sections described by 

geo-coordinates (latitude and longitude). There are two methods of performing 

coordinate transformations in SUMO, one is using TraCI (Traffic Control Interface) 
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and the other is using sumolib. In this work, TraCI is used for transforming the geo-

coordinates into network-coordinates (horizontal meters and vertical meters).  

Table 3.1: Comparison of population and area between Wuhan and Duisburg 

Cities City area Population Population density 

Wuhan 8,494.41 km² 11,081,000 1,282.36 /km² 

Duisburg 232.82 km2 498,110 2,100/km2 

 

Figure 3.10: Map, extracted network and OD matrix partition of the city of Duisburg. 

  

            (a) Traffic sections in QGIS                                             (b) Traffic sections in SUMO 

Figure 3.11: Distribution of traffic sections of the city of Duisburg. 
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By means of transforming coordinates with TraCI, the OD matrix traffic section data 

are shifted to polygons in SUMO netfile. Figure 3.11(b) shows these 

polygons/traffic sections in different colors. The olive color area are outer city traffic 

sections and the inner city traffic sections are in five different colors (red, green, 

blue, yellow and purple), and the black lines in the picture represent the roads. As 

can be seen, the sections are not divided into the same size, while the areas with 

more roads are divided into smaller traffic sections. This kind of segmentation for 

traffic sections can reflect the traffic volume more accurately between each traffic 

section/point and another. 

Road mapping 

The new version of SUMO (Version 1.6.1) unifies polygons and traffic sections into 

TAZ (Traffic Assignment Zone/Traffic Analysis Zone). A TAZ in SUMO is de-

scribed by its ID and its corresponding streets/edges. In the process of coordinate 

transformation, the original IDs of the traffic sections are kept, so the IDs of TAZs 

can be consistent with the IDs in the OD matrix. Figure 3.12(a) shows the area of 

each TAZ in red boxes in SUMO. Each red box represents a traffic section in Figure 

3.12(a), and Figure 3.12(b) shows a selected TAZ in black dotted box, and the streets 

in this box is marked in various colors.  

Through a python tool in SUMO called edgesInDistricts.py, the streets/edges in a 

TAZ are written into the description file of this TAZ. As the TAZs or so-called 

traffic sections are seen as points in OD matrix, in this part the allocation of vehicles 

is also considered. In other words, the OD matrix just describes the traffic volume 

from one TAZ to another, but in the simulation, the vehicles do not start from one 

point, but from different roads. Therefore, the length of each street in a TAZ is also 

recorded into the TAZ file, and according to the length, the weight of road allocation 

in one TAZ will be decided. 
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                         (a) TAZ regions in SUMO                                   (b) A TAZ and its streets 

Figure 3.12: TAZ sections and its corresponding streets. 

Traffic demand 

Different from the traffic demand source mentioned in 3.2.2 and 3.2.3 for the city 

of Wuhan, in the city of Duisburg, traffic demand is defined by the OD matrix. The 

OD matrix data given by the city include Duisburg and the surrounding areas, and 

at the same time our simulation area is only the city of Duisburg. In order to resolve 

this difference, four cases of the simulation of the city of Duisburg were imple-

mented and compared. For Case A, only the traffic inside the city is considered. This 

means that extra-urban traffic and traffic between surrounding areas is ignored. Only 

the traffic with both the starting point and the ending point inside the city is included. 

In Case B, all the trips of the city of Duisburg and the surroundings are included, 

but the scope of simulation has not been expanded. In other words, the outermost 

streets of the city of Duisburg carry the traffic of surrounding area. In this case, if a 

vehicle’s starting point is at the surrounding area of the city of Duisburg (not in the 

map), it will start from a road nearest its starting point in the map. In Case C, only 

the trips with either the starting point or the ending point inside the city are included. 

That is, Case C does not contain the trips with both starting point and ending point 

outside the city. And in Case D, the simulation scope is expanded into the city and 

its surrounding areas and all trips are included. A comparison of these four cases is 

summarized in Table 3.2.  
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In all the four simulations, the OD matrix traffic demand is assigned to trips for 24 

hours in a day with a sub-program in SUMO called od2trips. Then, another sub-

program in SUMO called DUAROUTER is used to generate the exact route for each 

vehicle from the trip file. All the four cases have been simulated separately, the 

results of the four simulations are presented in 5.3.  

Table 3.2: Scope of map and traffic of 4 different simulation cases of the city of Duisburg. 

Simulation Scope Case A Case B Case C Case D 

Traffic 

Inner city Yes Yes Yes Yes 

In to out/ 
out to in No Yes Yes Yes 

Out to out No Yes No Yes 

Map 
Inner city Yes Yes Yes Yes 

Outer city No No No Yes 

 

 

Figure 3.13: Location and range of inner ring Duisburg. (Source: Here map) 

3.3.3 Scenario of Duisburg inner ring 

Like many big cities, Duisburg city center is the most bustling and densely popu-

lated area. Figure 3.13 shows the range of the inner ring. The yellow roads are the 

main roads of this zone and the red road is a part of the highway A 59. The inner 

ring contains several shopping malls and is passed by all three subways in Duisburg. 
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The main railway station of the city of Duisburg is also located next to the inner ring. 

After the re-planning of the bus lines in 2019, there are 25 bus lines in the city of 

Duisburg, 9 of them pass the inner ring area. Therefore, the inner ring area bears 

multiple functions of transportation hub, shopping and entertainment.  

Besides the quick bus line SB 40 (Schnellbus 40 in German) that only has one stop 

in the inner ring, the other eight bus lines (920, 921, 926, 928, 930, 931, 933, 934) 

can all transport passengers within the 16 bus stations of the inner ring. The locations 

of bus stations and time plan are from public information of local transport company: 

DVG (Duisbruger Verkehrsgesellchaft) and VRR (Verkehrsverbund Rhein-Ruhr). 

The information of traffic detectors is also supported by WBD, including data col-

lected from induction loops and cameras. Different from the scenario of the whole 

city of Duisburg introduced in the previous section, all the detectors with valid data 

in the inner ring are reproduced in this scenario. Moreover, traffic demand of this 

scenario is also provided by the detector data. On one hand, the OD matrix data has 

already divided the city into zones, and for a small area like the inner ring, the zones 

of OD matrix are too large to describe the traffic demand. On the other hand, data 

from traffic detectors can describe the traffic activities more precisely, it is more 

useful for accurate simulation in a small area. 

The traffic light plan of the inner ring area is not provided; however, the locations 

of traffic lights are provided by WBD. All the 21 intersections with traffic lights are 

shown in Figure 3.14. The blue numbers are traffic lights with static plans and the 

red numbers (606, 701, and 727) are traffic lights with dynamic plans, which change 

with the wishes of pedestrians. The public transport stations are also shown in Figure 

3.14, bus stations are marked with the H sign in yellow and green, and subway sta-

tions are marked with the U sign in blue and white. 

3.4 Comparison of city Scenarios  

In this chapter, four scenarios for two different cities in China and Germany are built. 

Scenario 1 is based on the Jianghan area in Wuhan, China. Although no real traffic 

light map was accessible, information about bus lines and train stations was incor-

porated in this scenario. Scenario 2 is based on a small section of Jianghan area, 

which is heavily polluted by school traffic. Due to its small size, no bus lines were 



3.4  Comparison of city Scenarios 

45 
 

added in this scenario. Scenario 3 and 4 are based on the traffic plan of the city of 

Duisburg, Germany. Scenario 3 covers the entire city, while scenario 4 covers the 

inner part of the city. 

 

Figure 3.14: Location of traffic lights in Duisburg inner ring. 

Table 3.3: Comparison of four scenarios built in SUMO. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

City Wuhan Wuhan Duisburg Duisburg 

Area 33.43 km2 2.45 km2 232.82 km2 ca. 0.7 km2 

Number of lanes 1243 445 23758 369 

Number of junctions 562 193 9736 167 

Number of residents 683,500 ca. 70,000 498,100 - 

Real traffic light plan no no yes yes 

Bus lines and stations yes no no yes 

Comparison of the four investigated scenarios is shown in Table 3.3. The number 

of lanes, and the number of nodes is counted in the SUMO network. Based on these 

four scenarios, simulations are performed in the following chapters. 
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4 Driver models with different degrees of au-
tomation 

In this chapter, the driver-vehicle separated models are first introduced and 

the advantages and possibilities brought by these models are discussed. The 

mathematical expressions of the driver models are then introduced. Finally, 

parameters of different automation levels are incorporated in the driver model 

to represent the driver behavior of different automation levels. 

4.1 Driver-vehicle separated models 

4.1.1 Traditional driver-vehicle unit model 

In traffic simulation, the traditional vehicle guidance model considers driver and 

vehicle as a whole, and studies the overall characteristics. As shown in Figure 4.1, 

the driver and the vehicle are treated as a unit and all internal interactions are ignored. 

In this model, the input is the parameter of the leading car and the output is the status 

of the following car, including the speed, the acceleration, etc. 

The advantages of building a unit model are obvious. Since human drivers and ve-

hicles are complex simulation objects, the driver-vehicle unit model greatly reduces 

the complexity of the simulations. However, the interaction between the driver and 

the vehicle cannot be reflected in the simulation. Therefore, the accuracy of the sim-

ulation is diminished. In order to conduct a more accurate simulation, in this thesis, 

driver model and vehicle model are separated, as shown in Figure 4.2.  
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Figure 4.1: Structure of traditional driver-vehicle unit model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Structure of driver-vehicle separated models. 
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In driver-vehicle separated models, the input of the driver model are the parameters 

of the leading vehicle, including the position, the velocity, and the acceleration, etc. 

The outputs of the driver model are operating parameters of the following car, such 

as the drive pedal/clutch position, the gear shift level, the steering wheel angle, etc. 

For the vehicle model, the output of the driver model is exactly its input, which are 

the operating parameters. The output of the vehicle model is the status of the fol-

lowing car, including the velocity, the acceleration, the yaw angle, etc. 

The separated models of driver and vehicle are better suited to examine the effects 

of different drivers and vehicle types on the overall vehicle behavior.  

4.1.2 Possible classification of the driver model 

With the deepening of research on driving behavior in recent years, drivers have 

been classified according to various methods. Therefore, the corresponding driver 

models also need to be established.  

One classification method is to distinguish driver models by age and gender of the 

drivers, and sometimes their ethnicities (Tillyer and Engel 2013). Therefore, one 

driver classification method is to classify the drivers by physiological characteristics 

(age, gender, race, etc.), and the corresponding driver model can also cover elderly 

men, middle-aged women, young black men, etc. 

Another more scientific classification is to classify through the driver’s driving be-

havior. The categories may vary depending on the purpose of studies, but basically 

drivers are divided into aggressive drivers, normal drivers, timid drivers, and slow 

drivers. Sometimes distracted drivers are also placed in a separate category, e.g. with 

regard to calls, SMS or makeup.  

With the development of automotive technology, the type of driver is not limited to 

human drivers. In today’s situation where autonomous driving is not yet widely used, 

co-driving of human driver and vehicle brain also creates a new driving mode that 

requires new driver models. Co-driving drivers can be divided into different driver 

types according to the level of automation. In this work, three driver models are 

focused according to SAE classification, automation Level 0 driver model for the 

present driving status, automation Level 2 driver model representing the near future 

and automation Level 5 driver model representing the long distant future.  
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Due to the great discrepancy between the vehicle’s control intelligence and the hu-

man brain, the differences in the driving style of different human driver types with 

different personalities traits are less obvious. As a result, the drivers’ own charac-

teristics such as age, gender, preferences, etc., are no longer considered in this work. 

4.1.3 Possible classification of vehicle model 

Compared to the relatively ambiguous classifications of driver models, the classifi-

cations of vehicle models are specific and clear, and the main reason is the clear 

classifications of vehicles themselves.  

The most basic vehicle model classification is to divide it into passenger car models 

and truck models. Due to the significantly difference between the two categories in 

terms of driving capability, braking force, etc., same vehicle model cannot be used  

for both, passenger cars and trucks in traffic simulations. Of course, passenger car 

models can be further classified into more categories according to the type of cars: 

city car, mid-size car, full-size car, sport car, SUV, etc. Due to the differences in 

wheelbase and engine displacement, different types of passenger cars will have dif-

ferent feedbacks for the same commands given by driver, so in a more detailed sim-

ulation, it is also necessary to build a vehicle model separately. 

According to the type of fuel sources used, vehicle models can also be divided into 

traditional fuel vehicles and new alternative vehicles. Traditional fuel vehicles are 

gasoline vehicles and diesel vehicles. Obtained through petroleum refining, gasoline 

and diesel are very suitable for spark ignition engines and compression ignition en-

gines due to their high energy density, low price, non-perishable, and easy transpor-

tation. Until now, they are indispensable fuel for motor vehicles. However, because 

of the energy crisis and environmental issues, new alternative fuel vehicles have 

gained in importance. Electric vehicles, hybrid vehicles, LNG (Liquefied Natural 

Gas) vehicles, LPG (Liquefied Petroleum Gas) vehicles, alcohol fuel vehicles, and 

fuel cell vehicles have emerged. The fundamental differences in engines make the 

dynamics of these new fuel vehicles different from those of the traditional fuel ve-

hicles. Therefore, vehicle models that differ depending on different fuel source can 

better reflect the different characteristics of vehicles. 

In today’s society, vehicles are often modified to suit different special uses in urban 

cities, which makes their characteristics different. Ambulances, fire trucks, tank 
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trucks, bulletproof cars, construction vehicles, and even buses and taxis bear im-

portant responsibilities for the normal functioning of our society. Their special con-

struction and different driving rules also require separate vehicle models in traffic 

simulation. 

4.1.4 Advantages of driver-vehicle separated model 

The biggest advantage of a separated model of driver and vehicle is that it enables 

to have different combinations of drivers and vehicles. For instance, the elderly 

driver model and the electric vehicle model can be matched to simulate the differ-

ence between the elder driving the electric vehicles and the traditional fuel vehicles. 

Another example can be the combination of an aggressive driver model and rela-

tively slow speed truck to simulate the impact of aggressive drivers driving vehicles 

with different speed limit. Separated models for driver and vehicle can also make it 

possible to investigate specific issues. The combination of an aggressive driver 

model and an ambulance vehicle model can be used to find out if a specific driver 

is more qualified for this type of work or not. The combination of different automa-

tion level driver models and special purpose vehicle models can also simulate 

whether autonomous vehicles are more suitable for dangerous vehicles such as fire 

trucks and tank trucks. This may provide effective advices for government procure-

ment. For ordinary people, classifying themselves according to driving behavior and 

combining their own driver model with different vehicle models will also provide a 

reference for their car purchase or job selection. 
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Figure 4.3: Examples of different combination of driver models and vehicle models. 
 

4.2 Driver model algorithmic expression 

4.2.1 Original Krauss model and its implementation in SUMO 

As introduced in 2.1.2, there are many microscopic car following models that can 

be used in traffic simulation. Based on multiple considerations of robustness, stabil-

ity and accuracy aspects, the Krauss’ model is chosen as the basic car following 

model in this thesis.  

Equation (2.6) describes the core of the Krauss model: the desired velocity  is 

defined to be the minimum of the three velocities, i.e. the safe speed of the following 

vehicle , the speed limit of the following car , and the maximum achievable 

speed , respectively. This means that a driver’s expected speed in the 

Krauss’ model is the maximum speed that can be obtained under safe conditions and 

respecting the speed limit. The safe velocity  is calculated from the leading vehicle 

velocity , the following vehicle velocity , the gap between them , 

the maximum deceleration  and the reaction time .  

In Krauss’ first paper related to his car following model, lots of parameters were 

simplified, for example, time step and reaction time were both set to 1s. Later in his 

dissertation in 1998, to achieve better universality, these parameters were redefined 

and listed as variable parameters. The safe velocity can be regarded as the key point 
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of Krauss’ model. In his first model (Krauss et al. 1997), the safe speed is expressed 

as: 

                                          (4.1) 

where  is given by 

                                    (4.2) 

and  denotes the integer part of the number,  is the braking distance of the 

leading vehicle. One year later, Krauss gave a more specific expression of the safe 

speed in his dissertation (Krauss): 

                                                                         (4.3) 

At such a safe velocity, even if the front car suddenly decelerates, the following car 

could remain safe. The maximum acceleration and the maximum deceleration were 

first set equal to the maximum achievable speed , but then were distinguished by 

 and . Thus, the maximum achievable speed has changed. And the expression of 

desired speed has also changed from  to

. 

the velocity of the next time step has 

also been changed to 

                                (4.4) 

where  is a random perturbation to allow for deviations from optimal driving. The 

random perturbation was assumed by Krauss based on that the driver does not have 

sufficient proficiency to adjust the vehicle to the desired speed. 

In the SUMO platform, there are also modifications in the implementation of the 

Krauss’ model, the car following model called MSCFModel_KraussOrig1 is based 

on the work of Krauss in 1998 (Lopez et al. 2018). The random perturbation was 

split into three parts: and . Parameter  is set as noise amplitude, representing 

the deviation of imperfections when the driver handles the desired speed. , 

the larger value of  means the less driving skill the driver has, and the greater dif-
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ference between the actual velocity and the desired velocity. Parameter  is the ac-

celeration ability of the following car type and  is a random number between 0 and 

1. Under these circumstances, the velocity of the next time step in SUMO is: 

                                (4.5) 

In the original Krauss car following model, the safe speed is formulated as:  

                     (4.6) 

(4.7)

                                (4.8)

(4.9) 

4.2.2 Extension of the Krauss model 

In addition to the original Krauss model, there are other improved models given in 

the SUMO platform. Firstly, a model named MSCFModel_Krauss in SUMO im-

proved the case of faster start. If the driver wants a faster start, when high accelera-

tion is required at a low speed, equation (4.9) will change to 

(4.10) 

Another improvement is in the minimum velocity part. Instead of being calculated 

from the normal deceleration, the deceleration in emergency was introduced for the 

minimum velocity. These two improvements make the Krauss model suitable for 

more circumstances. 

Considering the role of the vertical direction, the model called MSCFModel_ 

KraussPS changed the acceleration and the velocity by slope. The maximum veloc-

ity  is calculated in the situation of vehicles driving on the slope.  
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Some drivers would like to choose to start slowly, this condition is concerned in the 

model named MSCFModel_KraussX. In this model, two new parameters represent-

ing imperfect driving are involved. They replace the original imperfection driving 

parameter in two situations (start slowly and over braking) respectively.  

In addition to the developers of the SUMO software, other researchers also contrib-

ute in optimizing the Krauss model. For example, the acceleration and deceleration 

of the vehicle in the Krauss’ model takes the form of abrupt changes, that is, when 

the driver decides to accelerate, the vehicle speed reaches the maximum velocity 

instantaneously. Of course, the sudden acceleration capabilities are highly unrealis-

tic, not only because they do not fit the laws of vehicle dynamics, but rather, because 

everyday’s experience tells us that we must slowdown in advance to avoid a colli-

sion.  

Considering that the deceleration operation of the leading and following vehicle is 

a gradual process, the Krauss’ model was improved by Han et al. (Han et al. 2012). 

The improved safe speed expression is 

    (4.11) 

where  is the time the vehicle needs to accelerate from 0 to its maximum velocity. 

Except for the algorithmic change of the safe speed, other expressions are the same 

as in the Krauss’ model. 

More complex models have more advantages at the microscopic level. However, 

traffic simulation cannot be based on a single model, conversely, it needs the coor-

dination of multiple models. Therefore, more complex models are more likely to 

cause conflicts with other models, leading to more unrealistic simulation results. In 

this work, the complexities with less impact on the simulation results are discarded 

and the MSCFModel_Krauss in SUMO is taken as the basic model. To make the 

Krauss’ model coincide with different degrees of automation, some adjustments of 

parameters in the Krauss’ model will be made in 4.3. 

4.2.3 Fuzzy control model 

If a model is seen as a black box and more attention is paid to the input and output 

of the model, big differences will be found between the driver-vehicle separated 
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model and the driver-vehicle unit model. For the driver-vehicle unit model, as can 

be seen in Figure 4.4, the input and output parameters are all vehicle external pa-

rameters, which means, the overall vehicle data such as speed, position, acceleration, 

etc. are all outside the black box. The interaction between the driver and the vehicle 

is ignored. 

For driver-vehicle separated models, driver model and vehicle model are separated 

boxes with their separate inputs and outputs, and the output of the driver model is 

the input of the vehicle model. As in Figure 4.5, the communication between these 

two boxes are vehicle internal parameters, which means, these parameters can be 

directly read by the vehicle, including the drive pedal position, the steering direction, 

turning light on or off, etc.  

 
Figure 4.4: Input and output of driver-vehicle unit model. 

 

 
Figure 4.5: Input and output of driver-vehicle unit model. 

 

 
Figure 4.6: Fuzzy control model system. 
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To adjust the output to the vehicle internal parameters mentioned above, a fuzzy 

control model is used. The fuzzy method is a type of uncertainty reasoning and fuzzy 

control is a control method that uses the control rules of fuzzy reasoning theory to 

control systems. Unlike the precise mathematical model control theory, fuzzy con-

trol uses non-precise mathematical models to achieve adaptive control and the con-

trolled object can be a non-time invariant system.  

Usually Fuzzy control is used for two purposes, apart from constructing nonlinear 

controllers, there is also one for adding human intelligence to the controllers. Under 

these circumstances, fuzzy control is a kind of bionic method, which simulates the 

abstract thinking level of human brain. For example, when a human driver drives a 

car, he does not accurately measure how much the current speed is, how many me-

ters from the obstacle ahead, but simply divides into levels like “fast, middle or slow 

speed”, “far, not far, near”. And based on this inaccurate information, the driver 

makes inferential decisions, decides “light step, no step or heavy step” on drive or 

brake pedal. Fuzzy control is a process of simulating human thinking in mathematics, 

it is also often listed as a branch of artificial intelligence. Due to the effectiveness 

and convenience of fuzzy control, it is very suitable for our conversion model for 

drive pedal and clutch position. 

Among the parameters that the driver model transmits to the vehicle model, the drive 

pedal position and the clutch position are the most important ones. Depending on 

the difference between the desired velocity  and the actual velocity  of the 

following car, the fuzzy control model determines a desired acceleration .  

As shown in Figure 4.6, the fuzzy control model is a function with two inputs (de-

sired velocity , current velocity ) and two outputs (drive pedal position  

and brake pedal position ). The implementation through programming and the 

verification of the fuzzy control model will be described in 4.4.6. 

4.3 Parameterization of different degrees of automation 

Over the last thirty years, studies and experiments on the driving behavior of auto-

mated vehicles have led to the discovery of various types of specific variations of 

driving behavior. For example, it is revealed that drivers using high automation level 

vehicles prefer less lane changing in order overtake slower moving traffic than when 



4.3  Parameterization of different degrees of automation 

57 
 

driving manually (Jamson et al. 2013a). Another study revealed that the distance 

between an autonomous car and the leading car is obviously smaller than that of a 

human driver, the time headway of automatic driving can reach 0.3-0.5s. At the 

same time, the human driver’s time headway is 0.9 to 2s (Wagner 2015). Different 

degrees of automation affect driving behavior in many ways. In our model, the main 

influenced parameters are reaction time and imperfection factor. In this section, how 

to determine these parameters for the chosen levels of automation are discussed. 

4.3.1 Reaction time  

The driver’s reaction time is relatively difficult to model because there are too many 

factors associated with the reaction time. These factors all have a large impact on 

the reaction time, so from this point of view, these are all important factors. More-

over, the total reaction time averaged only two seconds, and the reaction time cal-

culated by the complex model has little effect on the overall simulation. Sometimes, 

in a vehicle platoon, the order of braking is not completely in accordance with the 

sequence, from the front to the back. Too precise reaction time does not represent 

the exact actual action time. Therefore, in this work, the reaction time is determined 

with parametric approach.  

The research on human driver response time has long been an object in the field of 

physiology and psychology. A summary in 1954 shows that, reaction time can be 

affected by age, gender, sleep loss, drugs, temperature, altitude, acceleration, vigi-

lance, etc. (Teichner 1954). A 321 drivers’ measurement of brake reaction time re-

veals that, in an anticipated situation on the road, the estimated brake reaction time 

should be 0.9s. For all sudden accident situations, the reaction time would be longer, 

about 1.2s (Johansson and Rumar 1971).  

In recent years, research has often set the reaction time in a range, such as 0.5s to 2s 

(Orosz et al. 2004). In traffic simulation, the reaction time is usually reduced to 1s, 

which is the same as the simulation step time. For autonomous cars, setting the re-

action time to 0.5s can not only fit the simulation step in SUMO, but also reduce the 

simulation time (Wagner 2015). 

For the degree of automation of this thesis, the reaction time of Level 0 (no automa-

tion) is the reaction time of human driver, consequently  is set. For Level 5 

(full automation), which presents the long distant future, reaction time is set as 
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 representing the rapid response of mechanical brain. For Level 2 (partial auto-

mation) stands for the near future, the automatic driving can only be used in specific 

scene as an aid to the human driver, the car is mainly controlled by the driver. If 

some kind of danger suddenly occurs, it is also the human driver who is reacting. 

Therefore, the reaction time of Level 2 automation is set as  , same as that of 

Level 0. 

4.3.2 Imperfection factor  

The imperfection factor  was originally proposed by Krauss in his model (Krauss 

et al. 1997). This parameter represents the proficiency of the driver. The more qual-

ified the driver’s driving skills are, the smaller the difference between his actual 

speed and his desired speed is. Conversely, the less driving skills the driver has, the 

greater is the difference between his actual and his desired speed.  

The reasons for the speed deviation are manifold. First, as stated in 4.2.3, human 

drivers do not accurately calculate the distance to the leading vehicle and then de-

cides how many angles of pedal to step on, but use a fuzzy concept as “not far” or 

“hard step”. These fuzzy concepts create the possibility that the human driver does 

not reach his desired speed. Next, the irregular reaction points of humans also con-

tribute to imperfect driving. Research on human drivers found that the important 

difference between human and machine driving lies in the action point mechanism 

(Todosiev and Barbosa 1963). The action points of human drivers are abruptly 

changing, and the machine action points are always the same (Wagner 2011). The 

action points at different time of course have impact on the final actual speed, which 

is one of the reasons for imperfect driving of human drivers. With these differences, 

Krauss suggests that the imperfection factor should be chosen to be  for nor-

mal human drivers. 

In this thesis, the imperfection factor of Level 0 (no automation) is chosen to be the 

same as normal human driver, which is . For autonomous vehicles, which is 

level 5 of automation, the electronic brain’s control of the vehicle is not affected by 

human imperfect driving, so the desired speed of the vehicle will be reached under 

the vehicle’s control. Hence, for vehicles of automation level 5, the imperfection 

factor is . In automatic driving modes, partial automated vehicles can also 

avoid the disadvantages of human imperfection driving. For example, when the 
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driver wants to accelerate his/her car to 200 km/h, but he/she does not know exactly 

how many angles of the drive pedal should be stepped on, and because he/she is 

unskilled, he/she may have just accelerated to 150 km/h. Vehicles in automatic driv-

ing modes can accurately control the pedal position without the influence of human 

irregular action points. Therefore, automation level 2 vehicles can also avoid the 

errors mentioned above, as the fully automated vehicles, the imperfection factor of 

automation level 2 vehicles is also chosen as . 

4.3.3 Randomness of fuzzy control model  

The fuzzy control model generated in this thesis represents an average driving be-

havior of the participants in driving experiment. Therefore, the fuzzy control model 

can represent the driving behavior of machine drivers better than human drivers. In 

order to imitate human drivers better, a randomness factor  has been used to de-

scribe the randomness in fuzzy control model. The output pedal position of fuzzy 

control model  can be represented as 

 

where  is drive pedal position and  is brake pedal position.  

The automation level 0 group is driven by human drivers. According to the analysis 

of experimental data from different participants,   0%~50% randomness of pedal 

position had been set for the automation level 0 group. For level 2 and level 5 groups, 

randomness is set to 0.  

4.3.4 Other parameters 

The many differences between human driving and machine driving can of course 

not be fully summarized by three parameters. In this work, only the most important 

parameters for the difference between autonomous driving and human driving are 

distinguished and assigned. For vehicles with different levels of automation, there 

are more characteristics that are different from human drivers. 

Smaller time headway of automated driving is one of these characteristics. The dis-

tance control between the autonomous car and the front car is implemented through 

autonomous intelligent speed control (AIC) (Kesting 2008). There are a variety of 

adaptive distance adjustment and open control algorithms for autonomous vehicles 
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that are currently in use (Urmson et al. 2008; Levinson et al. 2011; Campbell et al. 

2010). Although technically speaking, these control systems are not perfect, there is 

still room for progress, because of the huge difference in maximum deceleration 

between human and machine, the time headway of autonomous vehicles are still 

much smaller than that of human drivers (Wagner 2015).  

However, these characteristics are difficult to quantify according to different levels 

of automation, so they are not considered in this work. In addition to the input pa-

rameters, other parameters of the driver model are listed in Table 4.1.  

Table 4.1: Parameters of different degrees of automation models. 

Parameter name 
and symbol 

Level 0 
No automation 

Level 2 
Partial automation 

Level 5 
Full automation 

Reaction time  1 1 0.5 

Imperfection factor  0.4 0 0 

Time step  1 1 0.5 

Randomness of 

fuzzy control model 
 [0, 0.5] 0 0 

 

4.4 Programming and verification of Driver model 

4.4.1 Driver model and vehicle model 

Through the several sections described above, a complete driver model is obtained, 

the overall flow chart can be seen in Figure 4.7. First, the driving data is extracted 

from SUMO and transmitted to the modified Krauss model, including the ego vehi-

cle data (current velocity, acceleration, deceleration, etc.), the leading vehicle data 

(current velocity, gap between the leading vehicle and the following vehicle, etc.) 

and the road information (maximum allowed velocity of the road). After the calcu-

lation in the Krauss model, desired velocity and current velocity are transmitted to 

the fuzzy control model. Here, the drive and brake pedal positions are calculated by 

a fuzzy control model verified by the real data. Together with the lane change re-

quest, drive and brake pedal positions are transmitted to the vehicle model. 
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Figure 4.7: Driver model and vehicle model system. 

 

 

Figure 4.8: Overall structure of driver model. 
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In the vehicle model, the control unit receives the data and distributes them to the 

individual vehicle components according to the logical processing of the vehicle 

model. Different vehicle models will also have great impact on traffic simulation in 

various aspects, such as fuel economy, travel time, average speed, etc. Since the 

vehicle model is not the focus of this work, the relevant description will not be de-

tailed here. To highlight the impact of different driver models on the traffic simula-

tion, the vehicle model used in this work is a simple driving force-driving resistance 

model. 

4.4.2 Structure of the driver model 

The driver model in this work consists of two parts: one is the modified Krauss 

model and the other is the fuzzy control model. The inputs and outputs of the two 

parts can be seen in Figure 4.8. Firstly, according to many inputs, the modified 

Krauss model generates the desired velocity .  These inputs include the parameters 

from the ego vehicle (acceleration , velocity , acceleration time , etc.), 

the parameters from the leading vehicle (velocity , gap between the leading 

vehicle and the ego vehicle ), the parameter of the road (maximum veloc-

ity ), and the parameters determined by the different degrees of automation (re-

action time , imperfection factor ). 

Next, the velocity of the ego vehicle  and the desired velocity  are entered 

into the fuzzy control model, based on a fuzzy control strategy described in the next 

section, the drive pedal position  and the brake pedal position  are determined. 

Along with lane change intention of the driver, drive and brake pedal positions will 

be transmitted to the vehicle model as input for subsequent simulations. 

Determination of the parameters in the driver model is also divided into two parts 

as above. The Krauss model is already a mature model in microscopic traffic simu-

lation, and many works have proven its rationality and accuracy. With the adjust-

ment in 4.2.2, there are good reasons to believe that the modified Krauss model can 

well express the human process of generating desired speed from external driving 

environmental parameters. For the fuzzy control model, used for transforming the 

desired speed and current speed into pedal position, an experiment is used to deter-

mine the parameters, which is described in detail in the next section. 
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4.4.3 Driving experiment 

In order to obtain the real data for fuzzy control model of human driver, a driving 

experiment was performed in a dynamic driving simulator. In the experiment, 37 

drivers with valid driver license took part in, and the age range of the subjects were 

23 to 40. All subjects were informed beforehand that they could end it any time 

without reprisal. During the experiment, the adaptation of the simulator and comfort 

of the subjects were also asked, in case of a physical discomfort occurred by the 

participants (Ma et al. 2021a). 

Driving simulator 

The dynamic driving simulator used in this work is a human-centered driving sim-

ulator which is capable of giving a tactile feedback to the driver to increase the de-

gree of immersion. (Maas et al. 2014).  Thus, the driver’s cabin is mounted on a 

motion platform to realize the movements of the cabin. In this way, the driver gets 

a dynamic feedback for his/her inputs to the simulator. In addition to the cabin and 

the platform, there is also a round screen drawn around the vehicle with an angle of 

250 °, so that the driver’s field of vision is completely covered. The schematic struc-

ture of the driving simulator is illustrated in Figure 4.9 (Maas 2017). 

Actuated by three electromechanical linear actors, the motion platform can repro-

duce the dynamic properties of real driving operations up to a frequency of 40 Hz 

with an acceleration of up to 2g. Thus, working with a reduced weight cabin, the 

motion platform covers a large range of acceleration behaviors. 

The interior of the cabin is modelled as a real vehicle in order to achieve the highest 

possible degree of reality. Figure 4.10 presents the interior environment of the cabin, 

the fuel gauge/odometer display and the rear-view mirrors are shown by three digital 

displays. Near the steering wheel, another display is used in showing driving task in 

the present study. 

The virtual scenario in this study is an area with inner-city sub-areas, rural routes 

and highways (Schweig et al. 2018). The scenario covers an area of 3×3 km, due to 

the changeable driving task, the subjects are asked to drive only on the highways. 

The highways of this scenario are infinite (without dead-ends), this characteristic 

supports the realistic impression.  
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Figure 4.9: Schematic structure of dynamic driving simulator. 

Figure 4.10: Interior of the simulator cabin. 

Experimental arrangement 

The driving experiment in this work is aimed to find out how the human drivers 

react according to a target/desired speed. The design of this experiment comes from 

the speed limit board on roads. When a driver comes across a speed limit board on 

road, his desired speed will be adjusted to the limit speed. If the driver is speeding, 

he will slow down to drive below the speed limit, and when a higher speed is al-

lowed, he tries to reach the limit speed. In this study, the target speed is given to the 
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participants on the display near the steering wheel. The participants are asked to 

achieve this target speed, and their driving behaviors including drive and pedal po-

sition are recorded by the simulator. 

In addition to longitudinal driving task, the participants also need to keep the ego 

vehicle in lane without collision to other traffic users (including vehicles and pedes-

trians). In the experiment, 1 from 37 subjects could not accomplish the driving task 

because of the control problem of the simulator. He could either accomplish the 

longitudinal or the lateral driving task, that is to say, either keeping the ego vehicle 

in lane, or achieving the target speed is possible for the participant. Because normal 

vehicle driving is not a problem for him, it is considered that his control problem of 

the driving task comes from the minor adaptation to the simulator. Another two sub-

jects encountered physical discomfort by driving the simulator at the beginning of 

their experiment, and they interrupted their tests at their requests. Finally, 34 sub-

jects accomplished the driving test.  

The process of an experiment is as follows: the participant first familiarize him/her-

self with the driving simulator system through a test drive. There are 86 steps of the 

experiment, i.e., 86 target speeds are provided to the participant in order. When the 

actual speed of the simulator stays in ±2 km/h of the desired speed for 5 seconds, 

the next step/target speed is shown on the display with a “Beep” sound. Therefore, 

the time taken by each participant depends on the ability of their driving behavior. 

The drivers who have difficulty in maintaining the target speed take longer time. 

The total time is from 18.5 min to 64.3 min for the 34 subjects with valid experi-

mental data. 

Data analysis 

From the driving simulator, numerous data were recorded, including the simulator 

time, target/desired speed, actual speed, drive pedal position and brake pedal posi-

tion. MATLAB was used to analyze the recorded datasets. Each dataset of one par-

ticipant was split up into 86 segments and each segment described one target/desired 

speed. Two sub-segments from each segment were extracted according to driving 

situation. First sub-segment described the velocity change, from which the pedal 

position causing the velocity change can be determined. The other sub-segment de-

scribed the steady velocity, in other words, what pedal position made the velocity 
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steady. For example, if the segment is a driving task from 40 to 70 km/h, the first 

speed rise from 42 to 68 km/h was extracted as sub-segment 1, and the last 5 seconds 

for keeping velocity between 68 to 72 km/h was recorded as sub-segment 2. After 

all parts of each segment were processed separately, data from the same sub-seg-

ment of different participants were averaged. 

4.4.4 Fuzzy control model rules 

As discussed in 4.2.3, two inputs and one output were determined for the fuzzy con-

trol model. According to the driving experiment, the rules of fuzzy control model 

were determined as in Table 4.2, and the corresponding inputs and outputs are 

shown in Figure 4.11.  

Depending on the difference between the desired speed  (input 1) and the actual 

speed  (input 2), the fuzzy controller determines a target pedal position (output). 

The positive pedal position means accelerating and the negative pedal position 

means braking. The driving experiment has covered all the driving situations listed 

in Table 4.2, and the generated rules in the table are also based on actual driving 

experiment. The rules marked in grey are manually added rules, these are the im-

possible driving situations, such as negative speed or speed out of the range of the 

simulator. 

Table 4.2: Fuzzy control model rules based on driving experiment. 

   

 & NC NG NE NB NM NS NJ N Z P PJ PS PM PB PE PC 

 

EM C0 C1 C1 C1 C2 C3 C8 C10 C10 C11 C12 C14 C17 C17 C18 C18 

EL C0 C1 C1 C1 C2 C3 C8 C10 C10 C11 C13 C14 C14 C17 C18 C18 

VL C0 C1 C1 C1 C3 C3 C10 C10 C11 C11 C13 C14 C15 C17 C18 C18 

L C0 C1 C1 C1 C2 C3 C10 C10 C11 C11 C13 C14 C16 C16 C18 C19 

MED C0 C1 C1 C2 C2 C3 C10 C10 C11 C12 C13 C14 C16 C17 C18 C19 

H C0 C1 C1 C2 C2 C4 C11 C11 C11 C12 C13 C14 C16 C17 C18 C19 

VH C0 C1 C1 C2 C3 C4 C11 C12 C13 C13 C14 C15 C16 C17 C18 C19 

EH C0 C1 C2 C2 C3 C4 C11 C12 C13 C13 C14 C15 C16 C17 C18 C19 

C C0 C1 C1 C2 C3 C5 C11 C12 C14 C13 C14 C15 C16 C17 C18 C19 
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a). Input 1:actual velocity 

b). Input 2: velocity difference 

c). Output: pedal position 

Figure 4.11: Inputs and outputs of fuzzy control model. 

4.4.5 Verification of fuzzy control model 

To verify the reproduction of the fuzzy control model, a comparison test was carried 

out in MATLAB. The fuzzy control model is considered as a driver to finish the 86 

steps driving experiment, and the vehicle model used in this test has been adjusted 

based on the driving simulator. To imitate the human driver better, randomness was 

introduced to the fuzzy control model. Based on the driving behavior analyses of 

the participants, up to plus and minus 50% randomness of pedal position has been 

added as the randomness in the fuzzy control system. Under the same driving situa-

tion, i.e., same initial speed and target speed, a comparison between a human driver 

and the fuzzy model driver has been made through MATLAB simulation.  
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Figure 4.12: Comparison result of fuzzy control model and real data. 

Figure 4.12 compares four exemplary diagrams of the experimental results of par-

ticipants and fuzzy model simulation in the same driving situation characterized by 

the same initial velocity and target velocity. The black lines are the target speed of 

the situation, and the human driver (red lines) and the machine driver (blue lines) 

react according to the given target respectively. From the selected four driving seg-

ments, it was proved that the fuzzy control model can well represent the driving 

behavior of the driver in various driving situations, including the continuous accel-

eration, the high velocity, the deceleration and the low velocity situations. 

In terms of total time, the fuzzy control model always takes a shorter time than the 

human drivers because the machine driver doesn’t have problems of faulty manip-

ulation. In terms of driving behavior, there are hardly any significant differences in 

the deceleration characteristics between human and model. On the contrary, the ac-

celeration characteristics of the two had relatively large differences. In general, the 

fuzzy control model has a smoother acceleration curve during acceleration. Moreo-

ver, when the actual speed is closer to the target speed, the acceleration value is 

smaller. However, the human drivers are less sensitive to the difference between the 

current speed and the desired speed. In general, the driving behaviors of the fuzzy 

control model are close to the human driver and the former can reflect the driving 

behaviors of the latter greatly. 

4.4.6 Driver models used in this work 

As discussed in section 4.3, different degrees of automation are distinguished by 

parameters. Figure 4.13 shows the overall driver model with different degrees of 

automation. The driver model consists of model K (modified Krauss model) and 

model F (fuzzy control model). Model K receives traffic data and generates desired 
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speed , then model F generates pedal position  with randomness of fuzzy con-

trol model. At last, VM (Vehicle Model) generates vehicle speed based on vehicle 

parameters and gives it back to the simulation. The vehicle model (VM) with differ-

ent levels of automation used in this work are the same, but model K and model F 

were set with different parameters for different automation levels. 

Figure 4.13: Driver model with different degrees of automation. 

For the convenience of programming, MATLAB is used to write the driver model 

and assign the parameters of different automation levels to the corresponding model. 

Due to the simulation scenario is still implemented in SUMO, TraCI is used as an 

interface between MATLAB and SUMO.  
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5 Traffic flow of no automation group 

In order to test SUMO’s ability of reproducing traffic and provide a no auto-

mation control group for different levels of automation vehicles, in this chap-

ter, several simulations are implemented. The simulation results are com-

pared with the real traffic data and the reliability of the results derived by 

SUMO is discussed. 

5.1 Simulation of Jianghan Zone in Wuhan 

5.1.1 Traffic demand 

Traffic demand determines the number and path of vehicles in reality and simulation. 

There are many ways to describe the traffic demand. The best source to get such 

information is the OD matrix. It presents the volume of traffic flowing from one 

point/region to another over a certain period of time. As long as the simulation area 

are divided into enough small regions, OD matrix can reproduce the traffic flow 

with high accuracy. Otherwise, if the simulated area is divided into few or even 

several small areas, the accuracy of the OD matrix will be greatly affected. However, 

the acquisition of the OD matrix is not very convenient. First, the city needs to be 

divided into several regions, then the traffic volume between each region in a certain 

period of time needs to be detected. Moreover, the acquisition of the OD matrix 

requires professional traffic statistics, along with the assistance of lots of hardware 

equipment, including the induction loops, the cameras, etc. Therefore, lots of work 

and financial support are required. 

Since there was no official cooperation with Wuhan Municipal Government to 

achieve the traffic data, the OD matrix in Wuhan was not available for this study. 

For the traffic needs of Jianghan Zone in this study, ActivityGen is used to generate 

the traffic demand. 

ActivityGen is a sub software in SUMO. The main idea of this software is compu-

ting the activities happening in the city including the commuting demand, the shop-

ping demand, the entertainment demand etc., through detailed city information such 

as residence location, work location, number of workers and so on. Fortunately, all 

this information of Jianghan area can be found in a Chinese website. Table 5.1 lists 
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all the information needed in ActivityGen, and the data sources. Unlike in Europe, 

China’s privacy policy is not comprehensive, and the public is not as concerned 

about privacy as Europeans, that makes it possible to acquire these kinds of infor-

mation on the websites of the data sources in Table 5.1. The open information pro-

vides the possibility to generate traffic demand of Jianghan Zone. 

Table 5.1: Information for generating traffic demand in ActivityGen. 

Item Amount Data Sources 

Inhabitants 683,500 Jianghan District People’s Government 

Number of households 154,850 Hubei Provincial Bureau of Statistics 

Retirement age 50-60 State Council of China 

Car rate 0.28 Hubei Provincial People’s Government 

Unemployment rate 0.02 
Human Resources and Social Security 

Department of Wuhan 

Primary school age limit 6-11 Ministry of Education of China 

Primary school students’ number 30,531 Hubei Provincial Bureau of Statistics 

Middle school age limit 12-14 Ministry of Education of China 

Middle school students’ number 13,420 Hubei Provincial Bureau of Statistics 

High school age limit 15-17 Ministry of Education of China 

High school students’ number 7,537 Hubei Provincial Bureau of Statistics 

Vocational school students’ number 5,527 Hubei Provincial Bureau of Statistics 

 

 

Figure 5.1: Duration and simulation time for Jianghan Zone iteration with all residents. 
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In addition to the basic data about the simulated zone listed in Table 5.1, there are 

also some parameters that need to be set. In this part of the simulation, in SUMO 

default settings, foot distance limit is set to 1000 meters, car preference is set to 

30%, free time activity rate is set to 0.3, random traffic rate is set to 0.05, and de-

parture variation is set to 600 seconds.  

The most important part of using ActivityGen to generate traffic demand is to assign 

the quantity of residents and the job positions on each road in the program. In the 

urban areas of China, especially in big cities, there are all kinds of real estate agents. 

They open detailed statistics on all the communities in the urban area, including the 

number of buildings, the number of households in each building, the area of apart-

ments, the apartment floor plan, etc. Using these data, knowing the number of resi-

dents on each road becomes possible. For the acquisition of the number of workers 

on each road, the method used in this work is to find out the name of the respective 

enterprise on the map, and then query the number of registered employees on the 

website of the Industry and Commerce Bureau. School information and public trans-

portation information are also obtained online. 

After all the needed data has been acquired, each path in SUMO was linked to the 

actual path, and the numbers of residents and workers were written into the statistic 

file. A route file based on the network file and the statistic file was generated through 

ActivityGen. This route file describes when and where each car does depart in the 

simulation, which path it goes through, and where it finally arrives.  

5.1.2 Dynamic route planning 

The route planning using ActivityGen in SUMO is based on the Dijkstra algorithm, 

also known as the shortest path method (Dijkstra 1976). This means that for each 

vehicle, once its starting and destination points are known, the shortest route to the 

destination can be calculated, which the vehicle can then follows. If the vehicles in 

the simulation do not interfere with each other, the shortest path results in the short-

est travel time. But in the case of mutual intervention, travel time of each vehicle 

running in the simulation depends on the number of vehicles in the network. Some-

times from the starting point to the destination are two parallel roads and the distance 

difference is quite small, but based on this method, all vehicles will choose the 

slightly shorter route, and thus cause unrealistic congestion. 
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To avoid the unrealistic traffic congestion caused by this algorithm, SUMO provides 

a solution called Dynamic User Equilibrium (DUE). DUE uses iterative assignment 

to calculate a user equilibrium, i.e., it tries to find a route for each vehicle such that 

each vehicle cannot reduce its travel time by using a different route. Therefore, the 

more iterations are implemented, the more possibilities are given to find the shortest 

travel time for all vehicles. For the simulation of Jianghan Zone, although it is only 

a district in the city of Wuhan, there are still more than 680,000 residents inside. 

The excessive population makes SUMO take too long a time in the interactive pro-

cess. In the first 50 times iterations, the average duration time is 44,334,028 ms, 

which means, each iteration needs more than 5 days. Even worse, the simulation 

time for the 24-hour simulation has not significantly reduced. 

Figure 5.1 also shows that the simulation time is initially reduced from 553,391 to 

299,476 s, but then increases again. Even the lowest simulation time in these 50 

times iterations is far more than 82,800 seconds, for the normal 24 hours simulation 

time. This iteration failure caused by overpopulation can only be solved by reducing 

the population in the simulation. 

It is interesting that although in the simulation the congestion does not dissolve be-

cause of the large population, in the real world of the Jianghan zone, no congestion 

develops that cannot be dissolved. After detailed research, it is found that the share 

of public transportation in Wuhan is very high, reaching almost 60%. This means 

that nearly 60% travel in this district is carried out by public transportation systems, 

and the map temporarily does not include the public transportation systems such as 

subways (underground) and light rails (elevated) that are not on the ground level. 

Therefore, in the following simulation of Jianghan Zone, by adjusting the population, 

only those who travel by private cars are simulated. 

5.1.3 Verification of traffic data 

In order to verify the accuracy of the generated simulation, a comparison of the 

simulated results and the real traffic conditions was carried out. For the simulation 

in Jianghan Zone, a local Chinese map called AutoNavi map was selected to provide 

actual traffic conditions in the real world. AutoNavi map (also known as Gaode Map) 

is a map website controlled by Alibaba Group, which provides detailed map data in 

China and also provides map data of China for Apple Maps and Google. With over 
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100 million users, AutoNavi is one of the most popular map softwares in China. 

Furthermore, AutoNavi Navigation occupies the largest share in the market. With a 

large number of data from mobile phone users, private car users, taxi users, rides-

haring users like Uber, and some fixed monitoring points to provide traffic data, it 

is possible for AutoNavi to provide accurate real-time traffic conditions on its map.  

AutoNavi users provide 85% real time traffic data; they upload their current speed 

while using the navigation system from AutoNavi. The remaining 15% data are col-

lected from the cooperation with local traffic departments of the local cities, who 

control the fixed-point detections like cameras and induction loops. The detections 

can provide a more accurate data to calibrate the user uploaded data. In some cities, 

AutoNavi also cooperates with taxi companies. The floating car data (FCD) from 

taxis upload detailed data including speed, acceleration, etc. in real time. The emerg-

ing network transportation companies such as Uber and Didi also contribute to real 

time traffic state map. From the amount of travel point of view, with 550 million 

users, Didi is the world’s largest travel service platform. By putting all these data 

together with a sophisticated algorithm, AutoNavi can get high accuracy and fidelity 

real time traffic status map in most cities of China. 

The traffic conditions displayed on AutoNavi’s map are indicated by three different 

colors: red means traffic congestion and the average speed in this road section is less 

than 5 km/h; yellow represents slow driving with an average speed between 5 and 

30 km/h; green means smooth traffic and the average speed is over 30 km/h. It is 

not possible to verify the simulation results and actual traffic conditions at all points 

on the map, so eight representative road sections are chosen for verification. 
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Figure 5.2: Locations and features of eight selected road sections. 

The eight verification sections are shown in Figure 5.2, which are numbered in a 

way from north to south. Road section 1 is a part of a horizontal road called Fazhan 

Road, the selected section is just in front of the Hankou Railway Station. As one of 

the three main railway stations in Wuhan, Hankou Railway Station has 18 platforms. 

In 2006, Hankou Railway station sent over 9 million passengers throughout the year. 

The huge passenger flow makes the traffic near the train station always congested. 

Therefore, road section 1 is also one of the most congested area in Jianghan Zone.  

Road section 2 is a part of Wuhan’s second ring road. Like some cities with rela-

tively flat terrain and relatively balanced development in all directions, Wuhan is 

also wrapped in several ring roads. The first ring road is also known as Wuhan inner 

ring road, the length is 28 kilometers and the first ring road surrounds the most cen-

tral area of Wuhan. Although the first ring road is more central, the second ring road 

carries most of the cross-zone traffic in the city because of its larger traffic capacity. 

There is also the third ring road in Wuhan, but its connections are all suburbs, usu-

ally the traffic on it is not dense. As a representation of the traffic entering and leav-

ing Jianghan Zone, the road section of two main road intersections on the second 

ring road is selected as our verification road section 2. 
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Section 3 and section 4 are located in the central area of the entire Jianghan Zone. 

Both sections are located at important intersections. Section 3 is on a vertical road, 

Qingnian Road while section 4 is on a horizontal road, Jianshe Road. As intersec-

tions of two main roads, they have a lot of traffic load when the morning and evening 

peaks arrive. These two sections become verification sections as representatives of 

ordinary traffic in the city. 

Road sections 5 and 6 are located close to two different hospitals. Section 5 is on a 

horizontal road called Yinsong Road, in front of a specialist hospital, Tongsheng 

Zhenggu Hospital. It is a Chinese medicine hospital specializing in orthopedics, at-

tracting many patients because it is known for treating without surgeries. Section 6 

is on a horizontal road called Jiefang Avenue. To the north of Jiefang Avenue is one 

of the most famous hospitals in Wuhan, Wuhan Union Hospital. It is a large hospital 

that occupies an entire block, and it has more than 5,000 patient beds and over 8,000 

employees. These two verification road sections are selected under the consideration 

of traffic status in front of the hospitals. 

Road section 7 and 8 are located in two most densely populated areas. Section 7 is 

a part of Hualou Street, a vertical street in the middle of several large communities. 

On the east side of Hualou Street are two communities, Wannian community with 

3,987 households, 7,726 inhabitants, and Tujia community with 1,778 households, 

4,213 inhabitants. On the west side of Hualou Street is one community called 

Dadong community with 1,447 households, 4,653 inhabitants. Hualou Street is be-

tween these three large communities and many residents drive through this road 

every day. Therefore, this street is often in congestion. A section near the intersec-

tion of this road is chosen as the verification road section 7. The surrounding condi-

tion of road section 8 is similar to section 7, the location of section 8 is close to two 

large communities with a total of 15,218 inhabitants. These two verification points 

represent the traffic conditions in densely populated areas. 

5.1.4 Comparison of simulated and real traffic status 

In order to verify whether the simulation is accurate at each time period, the current 

traffic condition of each hour in each road section of the simulation is recorded and 

expressed in red, yellow and green. The speed interval of these three colors are the 

same as the average speed intervals displayed in AutoNavi map. For the real traffic 
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data, the prediction function in AutoNavi map is used. The prediction function of 

AutoNavi map is generated based on the hourly average values of each day of the 

week. For example, the traffic prediction of Monday 8:00 of a road segment is the 

average condition of each Monday 8:00 of this road segment. By using the predic-

tion function, special situation on a certain day can be avoided and more universal 

traffic situation can be shown.  

The comparison of actual and simulated traffic condition of road section 1 can be 

seen in Figure 5.3. The number on the first line indicates at which hour the traffic 

condition is recorded, the first column is in which day of the week and the last line 

is the simulated data. This section represents the traffic near the railway station. 

However, because there is no separate treatment of the railway station and the ordi-

nary work place in SUMO, the congested traffic conditions of road section 1 are not 

reflected in the simulation.  

Road section 2 is a part of Wuhan second ring road, undertakes traffic pressure be-

tween regions. In Figure 5.4, the real traffic status on weekdays and weekends show 

a big difference. The morning peaks of working days occur at 8-9 a.m., and there 

are no early peak on weekends. The evening peak of the working day usually ap-

pears at 18 o’clock, on Friday it is especially long, while the evening peak of the 

weekend is two hours earlier. It can be said that the simulation results average the 

real traffic conditions on weekdays and weekends and in most time periods. From a 

macroscopic prospect, the simulation has well reproduced the real traffic situation. 

Road section 3 and 4 can also represent the ordinary traffic conditions in a city and 

the comparison is in Figure 5.5. Although they are at two different intersections, and 

one is a north-south road, the other is an east-west road, the actual traffic conditions 

and simulation results are very similar. Like the real traffic of road section 2, road 

conditions on weekdays and weekends also vary widely on section 3 and 4. There 

are no obvious traffic jams at the weekend, but the morning and evening peaks of 

the working days are obvious. The simulation averaged these two situations, making 

the traffic in the simulation neither as busy as the working day nor as smooth as the 

weekend. 
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Figure 5.3: Comparison of actual and simulated traffic conditions of road section 1 (red for congestion, 
yellow for low speed, green for smooth traffic). 

 

Figure 5.4: Comparison of actual and simulated traffic conditions of road section 2. 

 

Figure 5.5: Comparison of actual and simulated traffic conditions of road section 3 and 4. 
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For section 5 and 6, the simulation results are not as representative as above. These 

two sections are near the hospital and the comparison is shown in Figure 5.6. It is 

seen from the actual road conditions that from 7:00 a.m. to 8:00 p.m. the roads are 

mostly in yellow (slow speed) state, sometimes even in red (congestion) state, on 

weekdays or weekends.  

Unlike the blockage of road section 1, section 5 and 6 are only in slow speed status, 

but the reasons are similar, the hospitals are also not treated as a special model in 

SUMO. The traffic near the hospital is not just caused by doctors and nurses working 

in the hospital, the patients who go to the hospital and the family members or friends 

of the patients who accompany the patient cause most of the traffic needs. In China, 

the medical system is different from that in Europe, and the family doctors and com-

munity doctors are not common. Therefore, the patients will go to the hospital re-

gardless of the severity of the illness. This causes huge amounts of people in Chinese 

hospitals. Another reason for the amount of people in hospitals is cultural differ-

ences. Many people in Europe are willing to go to see a doctor by themselves. They 

don’t want their family members or friends to know they are sick and what sickness 

they have. In contrast, in China, people think it is miserable for a person to go to the 

hospital alone. Most people are willing to accompany their family member or friends 

to hospitals. And it is also necessary in China to have accompany in hospital, be-

cause the doctors will tell the relatives about the patient’s condition instead of the 

patient him/herself when the illness is severe. 

These differences make the traffic situation near hospitals in China problematic, and 

the lack of hospital models makes the simulation results not reflecting the actual 

situation of section 5 and 6. 

In the simulation of Jianghan Zone, the most troublesome thing is the huge popula-

tion. The most important manifestation is the community with the hugest popula-

tion. Section 7 and 8 represent the traffic conditions in the most densely populated 

area, and the comparison results can be seen in Figure 5.7. In section 7, almost every 

day during the daytime there is a traffic jam, and on weekends the situation is even 

worse. The simulation result of section 7 is similar to the actual situation, it is also 

almost in congestion state throughout the daytime. 
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Figure 5.6: Comparison of actual and simulated traffic conditions of road section 5 and 6. 

 

Figure 5.7: Comparison of actual and simulated traffic conditions of road section 7 and 8. 

For road section 8, the congestion degree is not as serious as for section 7, but it is 

still either red or yellow. Residents near section 8 are not much less than those near 
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section 7, but they have more roads to choose when going out from the community. 

Between 13:00 and 15:00, the simulation results show smooth traffic while actual 

traffic are yellow or red. In addition, the simulation result of section 8 can basically 

represent the actual traffic situation during the week.  

In general, the simulation results in Jianghan Zone are basically consistent with the 

actual traffic status in Jianghan Zone, especially on ordinary urban roads and roads 

near residential areas. For special places such as railway stations and hospitals, ac-

curate simulation could be conducted by establishing special models. The results of 

5.1 can also prove that for ordinary urban roads, SUMO is capable of reproducing 

real traffic conditions through simulation. 

5.2 Simulation of school intensive area in Wuhan 

5.2.1 Distribution of schools 

The special traffic demand in school intensive area is caused by special social phe-

nomena. In China, due to the uneven distribution of educational resources, the con-

cept of “school district housing” has emerged. Of course, all housing can be assigned 

to schools, but only the housing around key schools are called “school district hous-

ing”. All parents want their children to enroll in schools with better teachers and 

facilities, so the price of “school district housing” may be several times that of the 

non-school district in the same grade. As a result, many parents choose to purchase 

a small dilapidated apartment in a key school district to get the enrollment, but live 

in other areas. 

This kind of choice of parents has greatly affected the traffic condition in school 

intensive areas, which are often in the city center. Figure 5.8 shows all the schools 

and kindergartens in the south part of Jianghan Zone. The red numbers and shapes 

represent the schools in this area, 21 in total; the pink numbers and dots represent 

the kindergartens in this area, a total of 16. 

The total area of the region in Figure 5.8 is only 2.45 square kilometers (land area), 

but there are 13 primary schools, 7 middle schools and one high school in this region. 

Just the total number of students in these schools exceeds 18,000, not to mention the 

many kindergartens. For this area, whether the schools are in vacation or not has a 
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great impact on the traffic of particular roads. In order to find out whether SUMO 

can reproduce the traffic near the schools well, this simulation is carried out. 

 

Figure 5.8: Distribution of schools and kindergartens of simulated area. 

a). Situation A 

b). Situation B 

Figure 5.9: Iteration result of situation A and B. 
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5.2.2 Network and traffic demand 

Like the simulation of Jianghan Zone in 5.1, the network in this section is also de-

rived from OSM and manually corrected according to the street view in Baidu map. 

For traffic demand, ActivityGen is used to generate two different situations for dur-

ing school semester (Situation A) and during school vacation (Situation B), respec-

tively. In programming, the two-statistic files are represented with and without 

school information. In order to avoid congestion caused by the same algorithm, 

DUE is used, and the iteration results are in Figure 5.9. 

In the iterations of the two situations, the simulation time and performance duration 

(iteration time) both drop sharply in the first few simulations and stabilize later. 

Finally, the group with the shortest simulation time in situation A and B are respec-

tively selected as the route file for the simulations A (during school semester) and 

B (during school vacation). 

5.2.3 Real data from semester and school vacation 

As this simulation is to verify the school’s impact on traffic flow, the road sections 

selected for comparison are all closely related to schools. As can be seen in Figure 

5.10, a total of 6 road sections are selected as segments for comparing and verifying 

the traffic conditions. Road section 1 is on Dandong Road, on the south side of sec-

tion 1 are two schools, Wuhan No. 1 Middle School with ca. 1500 students and 

Dandong Xincun Primary School with ca. 1300 students. Section 2 is on Qianjin 

fifth road, there is a school gate on the south side of section 2. Every school day, 

there are about 1,450 students coming in and out to Wuhan No. 19 Middle School. 

Road section 3 is on Qianjin second road nearby Yichu Huiquan Secondary School 

with over 2,000 students. Section 4 is a one-way road and Wuhanguan Primary 

School with about 370 pupils is on the east side. Road section 5 is in the middle of 

three schools, on the west side are Fujian Street Primary School with 630 students 

and Hankou Huimin Primary School with 380 students. On the other side of section 

5 is Wuhan No. 7 Secondary School with over 1000 students. Section 6 is between 

residential areas, what’s more, there are two schools on the south side of it, Wuhan 

Renmin Secondary School with 750 students and Daxing Road Primary School with 

about 1,600 students. 
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To gather the real traffic condition of the above six road sections, real time traffic 

screenshots on AutoNavi map are taken. In a day that all schools in this simulation 

map are during semester, the screenshots for every hour in the day were taken. And 

in a day that all schools in the simulation map are during school vacation, also 24 

screenshots were made. To make the traffic data of these two days more comparable, 

other variables are controlled to have the same values. The weather was sunny on 

both days. Both days were not holiday and there were no special events in the area. 

 

Figure 5.10: Six verification road sections of school intensive area. 

5.2.4 Comparison of simulated and real traffic status 

For each road section, there are four types: type 1 represents the simulation result 

during school semester, type 2 is real data during school semester, type 3 represents 

the simulation result during school vacation days and type 4 is real data during 

school vacation days. Figure 5.11 shows the comparison of road conditions at each 

hour of the six road sections. 

In the comparison of type 2 and type 4 of each road section, the traffic situation of 

type 4 is obviously better than that of type 2. This means that in actual conditions, 

the schools produce extra traffic pressure during school semesters. In comparison of 

type 1 and 2, type 3 and 4, traffic status of simulated and actual situation, simulation 

is basically accurate most of the time. Only at noon time, about 12 to 15 o’clock, the 
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simulated traffic is smoother than the actual one. The reason could be that the traffic 

demand caused by the parents delivering meals to their children at noon is not taken 

into account. In general, simulation can represent the impact of schools on traffic in 

various road sections. The results in section 5.3 can also be seen in (Ma et al. 2020). 

 

Figure 5.11: Comparison of simulation result and real data in 6 verification road sections. 
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5.3 Simulation of the city of Duisburg 

The simulation of the city of Duisburg uses the traffic demand generated from OD 

matrix. Since the OD matrix only depicts the traffic volume from one area/point to 

another area/point in 24hours, a timeline that allocated the traffic volume of a day 

to each hour is required. In the simulation of the city of Duisburg, common daily 

time lines retrieved from cities in West Germany are used (Schmidt and Thomas 

1996). For passenger cars, a time line called TGw2_PKW is used to describe the 

traffic distribution of a normal workday (Tuesday to Thursday). For trucks, a time 

line called TGw_LKW is used for the hourly traffic distribution. Figure 5.12 shows 

the hourly percentage of the two used time lines for passenger cars and trucks. 

5.3.1 Four simulation scopes of the city of Duisburg 

As described in 3.3.2, there are 4 variants for the simulation of the whole city of 

Duisburg. The four cases are compared in Figure 5.13, the arrow in Case C repre-

sents the trips with either departure or destination points outside the city of Duisburg 

are included. The other arrow in Case B represents the trips with both departure and 

destination points outside the city included. 

The scope of the network of Case A, B and C are the same. However, with different 

traffic demand, the total amount of simulated vehicles differs among the three cases. 

In Case A, there are 756,885 vehicles in the simulation. In Case B, the total amount 

of vehicles is 4,338,202. In Case C, the total amount has been reduced to 1,397,578 

(Ma et al. 2021b). The traffic volume of Case C is almost twice that of Case A, that 

means, the extra inter-city traffic demand of Case C is almost the same as the inner-

city traffic demand of the city of Duisburg. The traffic volume of Case B is more 

than six times that of Case A, and also much more than that of Case C. This means, 

of all the traffic demand, the traffic outside the city still accounts for the majority. 

Case B and Case D share the same traffic demand with different scope of network. 

Therefore, the traffic volumes of Case B and Case D are quite close. 
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Figure 5.12: Hourly traffic distribution of passenger cars and trucks. 

 

Figure 5.13: Four simulations with different scope of the city of Duisburg (olive area represents the out 
of city parts, other five colors represent the distribution parts of the city of Duisburg, and black lines 
represent the road networks). 

   

Figure 5.14: Traffic volumes of two induction loops in 24 hours. 

In the four simulation scenarios, Case B has the largest traffic demand with limited 

network scope. Therefore, the road in the simulation of Case B is seriously over-

loaded. First the traffic jam happens in the sections of the city’s edge, then spreads 

to the whole city. The simulation could hardly run after 40,000 seconds simulation 

time because of the large-scale traffic jam in the whole city. In addition to Case B, 

large-scale traffic jam also happens in the simulation of Case A and Case C. With 
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the huge traffic volume of morning peak at around 8 o’clock, the simulated network 

gradually starts to congest.  

The reasons for the congestion are mainly in two aspects: First, the planning data of 

all the traffic light in the city of Duisburg were not available for this work. In real 

world, traffic light plans have been modified according to the traffic volume in the 

years of transportation development. In some intersections in the city of Duisburg, 

smart traffic lights are also used. However, in the simulations, traffic lights plan still 

uses the default settings of SUMO. The non-optimized traffic lights make the wait-

ing time allocation in all directions inappropriate, and cause traffic jams in some of 

the intersections, then spread the congestion to the entire city. Second, the path al-

location algorithm used in this section is the shortest path algorithm, i.e. vehicles 

will use the shortest path from the departure road/edge to the destination road/edge. 

This means, if the departure and destination points are the same for different vehi-

cles, they will use the same route. However, in reality, drivers with the same depar-

ture and destination points would probably not use the same route. Some drivers 

prefer the shortest route, some choose route for shorter time of driving according to 

the broadcast, and some may prefer less traffic lights, while others would choose to 

drive in roads with higher speed limit. In simulations, these characteristics of per-

sonalization are ignored. Therefore, there are more possibilities for the vehicles in 

the simulation to have traffic congestions. Due to the two reasons mentioned above, 

the simulated large highly-meshed road networks are prone to have traffic conges-

tions. For Case D, the road network is much larger and more complex, therefore, the 

traffic congestion problem is much more severe. The simulation of Case D in 24 

hours cannot be finished neither. Therefore, in the next section, only the simulation 

results of Case A to C are compared. 

5.3.2 Verification points of the city of Duisburg 

In order to verify the accuracy of the traffic volume generated from the OD matrix 

data, detector data collected from the real roads are used. The spread of distributed 

verification points can make the results more objective, therefore, nine verification 

points intersections in the north, south, west, east and middle of the city of Duisburg 

are selected. Figure 5.14 shows the traffic volume of two induction loops in 24 

hours. In these two examples, the highest traffic volumes are in the morning peak 
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and the afternoon peak, respectively. Figure 5.15 shows the location of the nine ver-

ification intersections. There are multiple induction loops at each intersection, some 

of them are in different lanes of the same road.  

Intersection No. 116 is located in the northern part of the city of Duisburg, it is the 

intersection of Stockholmer Street and Duisburger Street. The induction loops are 

located in all four directions of the intersection, there are in total 13 induction loops 

in this intersection. Intersection No. 834 represents the road condition of the west 

side of the city. It is located at the intersection of Moerser Street and Friedrich-Ebert 

Street. It has two groups of induction loops on all the four directions to the intersec-

tion. Intersection No. 903 is located at the junction of Duesseldorfer Land Street and 

Roemer Street in the south side of the city. It is a T-junction with only two groups 

of detectors on the two lanes of Roemer Street. No. 656 represents the road condition 

on the east. Located at the junction of Kalkweg Street and Sternbuschweg Street, 

the T-junction No. 656 has six groups of intersection loops in all the three directions. 

Each direction has two lanes and there is one group of intersection loops on each 

lane. Intersection No. 751 represents the middle of the city. It is one of the main 

intersections of the city, and is located at the junction of Rheinhauser Street and 

Rudolf-Schock Street. In this intersection, there are over 30 camera detectors, only 

14 of them on the 14 lanes are used in this work. Intersection No. 721, 723, 726 and 

742 are in the inner ring area of the city, they are also selected for the verification. 
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Figure 5.15: Locations of verification points for the simulation of the city of Duisburg. 

Due to the non-replicability characteristic of traffic, it is impossible to reproduce all 

the real routes of vehicles in one day. The traffic volume recorded by a single de-

tector may have a large difference due to the drivers’ choices of lanes. Therefore, 

the traffic volumes of detectors on different lanes of the same road are summed. In 

the next section, all the simulation results compare the traffic volume of one road, 

instead of one detector on a lane. The real data of a week are also processed in this 

way. 

5.3.3 Simulation results and discussion 

The simulations of different cases are launched respectively, and the detectors on 

the network are set to record the traffic volume every 600 seconds. The simulation 

time step is set to 1 second. In addition to traffic demand generated from OD matrix, 
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all other parameters in the simulation of different cases are the same. Figure 5.16 

shows the simulation results of Case A, B and C with the real traffic volume col-

lected in one week. The box graphs in dark green represent the real traffic volume 

in 7 days of a week. The green plus symbols represent the outliers. The black, blue 

and red lines represent the traffic volume of a certain detector in the simulation of 

Case A, B and C, respectively. The graphs only show the simulation of 8 hours, 

when the citywide traffic jam that affects the traffic volume in the simulations of all 

the cases are not severe. 

In Figure 5.16, comparison graphs of four representative road sections are displayed. 

From all the four graphs, it can be obviously seen that the traffic volume of Case B 

(blue line) is larger than in all other cases, especially at the beginning of the simu-

lations.  For Intersection No. 751 and 656, the traffic volume of Case B is also much 

higher than the real traffic volume. However, after some time, the traffic volume of 

Case B decreases rapidly. The reason of this phenomenon is that, the traffic demand 

generated for Case B has already exceeded the total capability of the road network, 

and after some time, the traffic jam at the intersection makes the traffic volume re-

duced. Therefore, the accuracy of the simulation of Case B in reproducing the traffic 

situation of the city is lower than in Cases A and C. 

In the comparison of case A and case C, the total vehicle quantity of the city in Case 

C are almost twice than Case A. From Figure 5.16 it can also be seen that the vehicle 

quantity of Case C (red lines) are more than that of Case A (black lines) in the four 

intersections. Comparing with the real data (green boxes), the vehicle quantity of 

Case C is closer, and the vehicle quantity of Case A is about to stay at the minimum 

value of the real data of the recorded week. From the comparison results of Inter-

section No. 727, it can be seen that the traffic volume of the three simulations de-

creases rapidly in the end. First the blue line represents Case B, then the red line 

represents Case C, at last the black line representing Case A. Because of the com-

plexity and large scope of this traffic scenario, traffic jam happens eventually. In 

general, Case C reproduces the traffic situation closer to reality. 
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Figure 5.16: Simulation results of Case A, B and C and real traffic data in a week. 
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To verify the matching degree of the simulated results and the real recorded data, 

the proportion of the simulated data in real range is calculated. The real traffic data 

are recorded for one week, therefore there is a range for the real data. Figure 5.17 

shows the proportion of the simulation vehicle quantity in the real recorded data 

range. The accuracies of Case A, B and C all increase in the first three hours, and 

decrease after the fourth hour. For the first two hours, Case B shows a better accu-

racy than Case A, but from the third hour, Case A shows better results. Of all the 

hours, Case C has the best reproduction rate, up to 72.22% proportion vehicle quan-

tity are in the real recorded range. 

 

Figure 5.17: The proportion of simulated data in real range for the three cases. 

 

Figure 5.18: Zoning of OD matrix in Duisburg inner ring. 

5.4 Simulation of the inner ring in the city of Duisburg 

5.4.1 Traffic demand generated from OD matrix 

The inner ring area of the city of Duisburg is zoned into several parts, which are 

marked with different colors in Figure 5.18. According to the lengths of the roads, 
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the traffic demand of OD matrix is assigned to the roads within their ranges with 

different weights.  

The traffic demand generated from OD matrix in the Duisburg inner ring scenario 

has certain limitations. Since the OD matrix only describes the trips with origins and 

destinations, specific routes of vehicles are not included. Only the trips within the 

inner ring area are researched. The trips from the inner ring to other parts of the city 

are not considered in the simulation. Furthermore, the inner ring area can also be 

seen as a transportation hub, and there are lots of trips passing by this area; neither 

the departure nor the destination point is in the inner ring area. These trips can only 

be simulated in a larger scope. 

5.4.2 Traffic demand generated from detectors 

To simulate the traffic scenario with more realistic traffic volume, detector data of 

Duisburg inner ring area are used in generating the traffic demand. Figure 5.19 is a 

comparison of one intersection in layout figure (left) and in simulation (right). The 

intersection has both induction loops and cameras as traffic detectors. Induction 

loops are marked with boxes and named with D plus numbers in the layout figure 

on the left, and marked in pink boxes in the simulation on the right. Cameras are 

marked with dashed circles and named with K plus number in the layout figure, and 

in simulation marked in yellow boxes. 

In the simulated range, there are 21 intersections with traffic lights. However, only 

12 intersections have valid detector data in the given time period. In total, 76 detec-

tors in 12 intersections are studied in this work. 53 of them are used to generate 

traffic demand, and 8 are used in verifying the precision of the generated traffic flow. 

Another 15 detectors are not used because of their unrealistic data or closeness to 

other detectors. Distribution of the 61 studied detectors are marked in Figure 5.20. 

The green arrows represent the detectors used in generating the traffic demand, and 

the pink arrows represent the ones used in verification. Direction of the arrow rep-

resents the direction of the recorded traffic flow. 
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Figure 5.19: Layout (left) of an intersection with detectors and in simulation (right). 

 

Figure 5.20: Locations of detectors and recorded traffic directions of Duisburg inner ring. 

All the detectors are reproduced in SUMO as shown in Figure 5.19. The traffic vol-

ume files of the 12 intersections are modified and rewritten in a csv format file with 

MATLAB. Then, a sub-program in SUMO called flowrouter is used in generating 

the traffic flow. The detectors of four verification points recorded the traffic volume 

and average velocities of the vehicles in the simulation. 

5.4.3 Verification results of Duisburg inner ring 

The four verification points have 8 detectors in total. Except V1 in intersection 727, 

the other three verification points are roads with multiple lanes. In order to reduce 
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the impact of different lanes on traffic flow verification, the data of multiple lanes 

are summed.  

Figure 5.21 compares the real data and the simulation results for the four verification 

points in Duisburg inner ring. The upper four images are vehicle number and the 

lower four images are vehicle velocity of the 24 hours of a day. The black lines 

represent the simulation results using OD matrix as traffic demand (described in 

5.4.1), the blue lines represent the simulation results using detector data as traffic 

demand (described in 5.4.2), and the red lines represent the real data collected from 

the traffic detectors.  

 

Figure 5.21: Comparison of real data and simulation results of different data sources. 

As discussed in 5.4.1, the traffic volume generated from OD matrix is obviously 

smaller than the real data, which means, the passing-by traffic occupies a large pro-

portion in all traffic in this area. This phenomenon is especially obvious on V2 and 

V3; the reason could be that, these two verification points bear more in-ring and out-

ring traffic for connectivity. Meanwhile, the traffic volume generated from detectors 

are close to the real data. For the aspect of average velocity of the vehicles, both 

simulation from OD matrix and simulation from detectors are close to the real aver-
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age velocity. To better reproduce the traffic status in Duisburg inner ring, the fol-

lowing simulation of Duisburg inner ring will use the data from detectors as traffic 

demand. 

5.5 Discussion of simulation of different scenarios 

Traffic simulations of four different scenarios are implemented in this chapter. The 

scenarios from the two cities in two countries show many differences in road net-

work, population, distribution of public facilities, etc. Due to different data sources, 

different methods of generating traffic demand in SUMO are used. In 5.1 and 5.2, 

traffic demand is calculated from the geographic population information. In 5.3 and 

5.4, OD matrix is used for generating the traffic demand. Traffic volume data from 

detectors on roads are also used for generating traffic demand in 5.4. In general, the 

third simulation (the whole city of Duisburg) has the largest simulated scope, while 

the last simulation (Duisburg inner ring) has the most accurate source data. From 

the comparison with verification data, a higher accuracy of simulation results can 

also be observed in the simulation of Duisburg inner ring. 

From the simulation results of different scenarios, SUMO shows a great reliability 

of various simulated scopes and traffic demand sources. Whether compared with 

real-time traffic conditions or detector data, the traffic status generated by SUMO 

can reproduce the real traffic status with a high accuracy. 
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6 Simulation of different degrees of vehicle 
automation 

In this chapter, vehicles with different degrees of automation are simulated in 

different traffic scenarios. First, a scenario of a single intersection is simu-

lated with vehicles of automation level 0, level 2 and level 5, respectively. 

Then, a real traffic scenario of the inner ring area of the city of Duisburg is 

simulated with real traffic demand of the three automation levels.  

6.1 Simulation of an intersection 

6.1.1 Scenario and verification of an intersection 

To distinguish the effects of different degrees of automation on traffic flow, a simple 

traffic scenario is needed. In this section, a simple intersection scenario is chosen 

for simulation. The scenario consists of two roads and one intersection, the length 

of east-west road is 363 meters, and the north-south road is 298 meters. There are 

203 vehicles departing from the four terminal points (north, south, east and west end 

point) of the roads, and drive to different destinations. Figure 6.1 shows the 

simulation of this scenario, the yellow boxes on the three lane of roads are the 

induction loops in simulation, which record the amount of vehicle passing by every 

60 seconds.  

Three models of different degrees of automation (Level 0, Level 2 and Level 5) are 

simulated separately in this scenario. Apart from the driver model, all other 

parameters of the three simulations are the same. 

6.1.2 Simulation results of the intersection scenario 

The simulation results can be seen in Figure 6.2, the traffic volume of the recorded 

three lanes are summed and represented in three different colors. Since the induction 

loops in the simulation record every minute, the traffic volume corresponds to the 

passing number of vehicles during each minute. All vehicles depart in 660 seconds 

of simulation time, but in these three simulations, the respective simulation ends at 
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different times. To be able to better compare the differences between the three sim-

ulations, scales of the horizontal and the vertical axes of the bar charts in Figure 6.2 

were set the same for all cases.  

 

Figure 6.1: Traffic simulation of a single intersection. 

 

Figure 6.2: Traffic volume of vehicles with different degrees of automation in a single intersection sce-
nario. 
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The simulation with Level 0 automation driver model takes the longest time (1,920 

seconds) that all vehicles have left the track section of the three simulations. The 

second simulation with Level 2 automation driver model ends at 1,745 seconds, but 

the maximum traffic volume per minute remains the same with Level 0. The third 

simulation with Level 5 (fully autonomous/machine driver) driver model only took 

1,540 seconds, and the maximum traffic volume per minute has a significant in-

crease. Vehicles of automation Level 2 finish the driving task 9.1% faster than the 

no automation group, and the vehicles of automation Level 5 finish it 19.8% sooner 

than the no automation group. 

From this simulation, the effects of different degrees of automation on traffic flow 

are proved in the simple intersection scenario. For a traffic scenario with heavy traf-

fic, the differences of vehicles with different automation levels are apparent. Vehi-

cles with a higher degree of automation facilitate a better vehicle throughput per 

time unit. The shorter reaction time and less randomness of operation all have a 

positive impact on heavy traffic scenario like in the intersection. 

6.2 Simulation of Duisburg inner ring 

6.2.1 Real traffic demand simulation 

In this section, vehicles with different degrees of automation are simulated with real 

traffic demand of the Duisburg inner ring scenario. As compared and discussed in 

5.4.3, traffic demand data from road detectors can represent the traffic volume in 

Duisburg inner ring with a higher precision. Therefore, in this section, traffic de-

mand data are generated with road detectors. In the simulation, in total 20,952 vehi-

cles are loaded during the simulation. Vehicles with automation Level 0, Level 2 

and Level 5 are simulated separately in the scenario and road detectors in the veri-

fication points have recorded the traffic volume. 
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Figure 6.3: Real traffic volume simulation of different automation levels in four verification points. 

 

Figure 6.4: Travel time of vehicles with different automation levels in real traffic volume. 

 

Figure 6.5: Time loss of vehicles with different automation levels in real traffic volume. 
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Figure 6.3 shows the traffic volume (vehicle number) of the vehicles with three dif-

ferent automation levels in the simulation. The red lines represent the simulation of 

Level 0 (no automation) vehicles, and the Level 2 and Level 5 simulations are shown 

in black and blue lines, respectively. The simulation is for a whole day (24 hours) 

and only slight differences can be seen from the traffic volume recorded by the de-

tectors. For the same traffic volume input, the vehicles with higher automation level 

finish the traffic tasks earlier than the vehicles without automation. This indicates 

that automated vehicles have a positive impact on traffic flow, but on the condition 

of current traffic demand of Duisburg inner ring, the extent of impact is minor. 

From the perspective of travel time, simulation of vehicles with a higher automation 

level tends to have shorter travel time on average. Figure 6.4 shows a comparison 

of travel time of a 24 hour simulation in real traffic demand. For the real traffic 

volume of the scenario of the inner ring area of the city of Duisburg, the median 

value of simulation of vehicles with automation Level 0, Level 2 and Level 5 are 

1.70, 1.38 and 1.36 min, respectively. The simulations of Level 2 and Level 5 have 

an 18.8 % and 20% shorter median value of travel time than the simulation of Level 

0 vehicle. However, the difference between Level 2 and Level 5 on the real traffic 

demand is not significant. 

The vehicles’ time loss contains vehicles’ waiting time at traffic jam and approach-

ing intersections. Figure 6.5 shows the time loss of vehicles in real traffic volume. 

The median of time loss of vehicles of Level 0, Level 2 and Level 5 are 44.8s 32.4s 

and 32.1s, respectively. From the perspective of time loss, vehicles with automation 

Level 2 and Level 5 can reduce the time loss by 27.7% and 28.3%, respectively. 

Figure 6.6 shows the average speed of vehicles and the running vehicle numbers in 

the 24h simulation. The average speed fluctuates sharply at the beginning, when 

there is just a few vehicles in simulation, but it tends to be stable as the running 

vehicles in simulation increases.  

Figure 6.7 shows the comparison of average speed of the vehicles with different 

degrees of automation. The average speed of simulation of vehicles with Level 5 

automation is 21.57 km/h, better than the average speed of simulation with Level 2 

vehicles (20.77 km/h), and simulation with Level 0 vehicles (18.58 km/h). From the 
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perspective of average speed, Level 2 and Level 5 vehicles can increase average 

speed by 3.7% and 20.7%, respectively. 

 

Figure 6.6: Average speed of vehicles with different automation levels in real traffic volume. 

 

Figure 6.7: Comparison of average speed of vehicles with different automation levels in real traffic vol-
ume. 

6.2.2 Heavy traffic simulation 

In order to test the effect of vehicles with different degrees of automation more com-

prehensively, a heavy traffic situation is created based on the real traffic demand in 

the city of Duisburg inner ring. An extra 50% traffic volume is added to the flow in 

the simulation, and this time, 31,430 vehicles are loaded in the simulation. 

Figure 6.8 shows the simulation results of the vehicles with three different automa-

tion levels in a heavy traffic simulation. Compared with Figure 6.3, the traffic vol-

ume of the three different automation Levels have a lager difference with each other. 

In general, the red and black lines (representing vehicles with Level 0 and Level 2, 

respectively) have less difference with each other. The Level 2 vehicles only finish 

the driving task slightly sooner than the vehicles of Level 0. However, the blue lines 

represent the Level 5 vehicles finish the driving task much sooner than the other 

situations.  
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Figure 6.8: Heavy traffic simulation of different automation levels in four verification points. 

 

Figure 6.9: Travel time of vehicles with different automation levels in heavy traffic volume. 

 

Figure 6.10: Time loss of vehicles with different automation levels in heavy traffic volume. 
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Figure 6.9 shows the travel time distribution of three simulations in heavy traffic 

volume. The median value of the simulation with Level 0, Level 2, and Level 5 

vehicles are 1.88, 1.60, and 1.52, respectively. In the simulation with more traffic 

demand, the travel time of the vehicles becomes longer. The simulation of automa-

tion Level 5 vehicles shows a greater advantage, reducing the median value of travel 

time at Level 0 vehicles by 19.1%. The median of Level 2 vehicles travel time is 

14.9% shorter time than Level 0 vehicles (Ma et al. 2021c). 

With more traffic demand, time loss and average speed of the simulations with ve-

hicles with different levels of automation has larger differences. Figure 6.10 shows 

the time loss of the simulation with heavy traffic volume. Compared with Figure 

6.5, the time loss increased generally. The median value of time loss of simulation 

of Level 0, Level 2 and Level 5 vehicles are 56.82 s, 41.72 s and 37.67 s, respec-

tively. In heavy traffic volume, Level 2 and Level 5 vehicles can reduce time loss 

by 26.6% and 33.8%. Figure 6.11 shows the relationship of average speed and run-

ning vehicle number of the three simulations. In heavy traffic volume scenario, 

Level 0 vehicles received the most impact comparing to Level 2 and Level 5 vehi-

cles. As the number of running vehicles in the simulation increases, the average 

speed also decreases.  

Figure 6.12 shows the comparison of average speed of Level 0, Level 2 and Level 

5 vehicles in heavy traffic demand. The average speed of simulation with Level 0, 

Level 2 and Level 5 vehicles are 13.76 km/h, 20.65 km/h, and 21.66 km/h. Under 

heavy traffic conditions, Level 2 and Level 5 vehicles can increase the average speed 

by 50.1% and 57.4%. 

Figure 6.13 shows the average speed of vehicles with different degrees of automa-

tion in real and heavy traffic demand scenarios. Compared with real traffic scenar-

ios, the average speed of Level 2 and Level 5 vehicles are slightly decreased in heavy 

traffic scenario, however, the average speed of Level 0 vehicles are greatly impacted 

by the heavy traffic. Under today’s traffic demand, higher level automated vehicles 

will have a more positive impact on traffic (increase average speed by 3.7% and 

20.7%). If our traffic become more congested in the future, under heavier traffic 

demand, higher levels of automated vehicles will have greater impact on traffic (will 

increase average speed by 50.1% and 57.4%).  
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Figure 6.11: Average speed of vehicles with different automation levels in heavy traffic volume. 

 

 

Figure 6.12: Comparison of Average speed of vehicles with different automation levels in heavy traffic 
volume. 

 

Figure 6.13: Comparison of Average speed of vehicles in real and heavy traffic scenarios. 

6.3 Comparison and Discussion 

In this chapter, three different simulations were carried out for vehicles with differ-

ent degrees of automation. First in a simple scenario of a single intersection, vehicles 
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with automation Level 0, Level 2 and Level 5 are simulated with the same traffic 

flow, respectively. Though simulation results, higher automation level has signifi-

cant impact on the traffic under heavy traffic. In the scenario of the city of Duisburg 

inner ring, simulations with two different traffic demands are carried out. In the 

simulation with real traffic demand, the difference of traffic volume caused by ve-

hicles with different degrees of automation is not obvious. In the simulation with 

50% extra traffic, Level 5 vehicles finish the driving tasks much sooner than Level 

0 and Level 2, and the performance of Level 2 is also better than Level 0. 

From the median of travel time, Level 5 vehicles finish the driving task 20% and 

19% faster than Level 0 vehicles in real and heavy traffic demand. And Level 2 

vehicles have a 19.1% and 14.9% shorter travel time than Level 0 vehicles. This 

shows that under real traffic of inner ring area of the city of Duisburg, Level 2 ve-

hicles can speed up traffic and shorten travel time almost as well as Level 5 vehicles. 

However, under heavier traffic demand, the positive impact of Level 2 vehicles is 

not as good as under real traffic demand. The Level 5 vehicles can shorten the travel 

time in both traffic demand situations by around 20% in the scenario of Duisburg 

inner ring. Table 6.1 shows the difference of simulation of Level 2 and Level 5 

vehicles with the simulation of Level 0 vehicles. Generally, in the scenario of heavy 

traffic volume, all evaluations (trip time, time loss and average speed) of higher 

automation vehicles are better with under real traffic volume. This means, vehicles 

with higher degree of automation have more positive impact on traffic, the differ-

ences are greater in congestion. 

Table 6.1: Effects of vehicles with higher degree of automation on the scenario Duisburg inner ring (Com-
pared with simulation of Level 0 vehicles). 

 Trip time Level 2 Level 5 

Real traffic 

volume 

 

Trip time 18.8% shorter 20.0% shorter 

Time loss 27.7% less 28.3% less 

Average speed 3.7% faster 20.7% faster 

Heavy traffic 

volume 

Trip time 14.9% shorter 19.1% shorter 

Time loss 26.6% less 33.8% less 

Average speed 50.1% faster 57.4% faster 
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In conclusion, the automated vehicles have positive impact on traffic in the simula-

tions, fully autonomous vehicles have the best results, and the effect of vehicles with 

partial automation systems on traffic flow are better than the vehicles without them. 

The effects of different degrees of automation are more obvious when the traffic is 

heavier. For the traffic situation now in the city of Duisburg inner ring, the differ-

ence is not obvious. However, if the traffic increases by 50%, the difference will be 

significant.  
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7 Simulated traffic flow for mixed traffic 

In this chapter, different penetration rates of vehicles with different degrees 

of automation are simulated in the mixture scenario according to the estima-

tion of near and far-distant future distribution on a time horizon up to 2030 

and 2050. The most optimistic situation of the estimation is simulated, with 

11% and 61% fully autonomous vehicles and 40% and 30% partial automated 

vehicles. 

7.1 Estimation of penetration rate of automated vehicles 

Before the achievement of fully autonomous mobility, there is a phase of evolution, 

the vehicles on the road will be described as ‘mixed equipage’, the combination of 

automated and manually controlled vehicles on road is the common situation and 

the percentage changes dynamically (Hancock 2015). This chapter focuses on the 

mixed scenario of vehicles with different degrees of automation. 

7.1.1 Influence factors of estimation 

Automated vehicles could have significant impacts on the transport system (Correia 

and van Arem 2016; Milakis et al. 2015; Fagnant and Kockelman 2015). However, 

many obstacles are still on the way to popularizing automated vehicles. The changes 

of these barriers in the future will also greatly affect the large-scale market adoption, 

and thereby affect the penetration proportion of automated vehicles. 

Policies  

Public road testing is an important step before large-scale application of automated 

vehicles. In the U.S., California (SB 1298) and Nevada (AB 511) have enacted leg-

islation for automated vehicles before 2013 (Fagnant and Kockelman 2015). After 

2016, driverless vehicles can also be tested in California. As of 2018, from the an-

nual reports of the Department of Motor Vehicles (DMV), there are over 80 manu-

factures testing over 1400 automated vehicles in at least 36 states in the U.S. (Ether-

ington 11 June). As a country with the largest concentration of EU vehicle manu-

factures, Germany approved testing of automated vehicles within small areas since 

2010 (Nothdurft et al. 2011). In 2015, the A9 highway was opened for automated 
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vehicles’ testing. In 2017, the German Federal Council (Bundesrat) issued a law, 

which provides that fully autonomous driving system may take over the control of 

vehicles (Hey 2019). This law makes Germany one of the first countries worldwide 

to create a legal framework for autonomous driving. In China, some cities (including 

Beijing, Guangzhou, Hangzhou and Shenzhen) have also started allowing road test-

ing for automated vehicles. 

Many insurance and liability issues are opened up for the driverless vehicles. Until 

now, many crashes have occurred in the tests of automated vehicles of Tesla, 

Waymo, Uber, etc. Some of the accidents were fatal, drivers and even one pedestrian 

were killed by the automated vehicles. Who is responsible for vehicle accidents is a 

problem which must be solved for automated vehicles. In 2017, the UK government 

has issued the Automated and Electric Vehicles Bill (AEV). This new law modified 

the terms of mandatory liability insurance for motor vehicles, so that automated ve-

hicles can be covered by the insurance like traditional vehicles. When an accident 

occurs in an automated vehicle, the victim will be compensated by the insurance 

company first. The insurance company has the right to recover from the vehicle 

manufacture in accordance with the current legal provisions. It is a major step in 

legal policy of automated vehicles, and the steadily updating laws make the society 

prepared for bigger transport revolution in the future (Schramm et al. 2020). 

Technological development 

Even though many manufactures announced that they have already finished the 

technological developments for vehicles with automation Level 4 or even Level 5, 

automated vehicles need many different systems’ help. These systems still need 

technological improvements, including the navigation system, the map matching, 

the global path planning, the environment perception, and the vehicle control, etc. 

The accurate detection of other road users in real-time is a challenge for automated 

vehicles (Zhu et al. 2014). Some accidents of the automated vehicles are attributed 

to inaccurate detection. 

In addition to the technologies to realize fully autonomous driving, safety technolo-

gies are also a problem that must be solved. Electronic security should always be 

worried about. Like in many movies and fictions, bad guys like terrorist organiza-

tions, computer hackers, disgruntled employees, and hostile nations may control 
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driverless vehicles or even transportation systems to disturb the traffic order. Future 

automated vehicles will have the support from V2V (Vehicle to Vehicle) and V2I 

(Vehicle to Infrastructure) communications. Large-scale mesh communication sys-

tem also gives more possibilities for virus-like attacks. 

Vehicle cost 

The cost of automated vehicle platforms is also a barrier to large-scale market adop-

tion. Even though 20% of consumers would definitely/probably be willing to pay as 

much as $3,000 for autonomous driving applications (Power 2013), the more ad-

vanced sensors, such as LIDAR, cost tens of thousands of dollars (Silberg et al. 

2012). Additional costs like other sensors, software, and communication and guid-

ance technology would accrue the total cost of automated vehicles. An estimation 

about the most current civilian and military automated vehicle applications shows 

that the cost is over $100,000 (Dellenback 26.May.2013), which is unaffordable for 

most consumers.  

However, the cost may be reduced through technological advances and large-scale 

production in the future. The added costs per automated vehicle may fall to $25,000 

to $50,000 with mass production, and for at least 10 years, it will not fall to $10,000 

(Dellenback 26.May.2013). Electric vehicle costs have been declining by 6% to 8% 

annually (Hensley et al. 2009). If the automated vehicles’ cost decline by 8% annu-

ally, the cost would decline to $3,000 after 20 to 22 years (Fagnant and Kockelman 

2015). Eventually the additional cost of automated vehicles may reach $1,000 to 

$1,500 per vehicle (Silberg et al. 2012). 

Public opinion 

Globally, lots of studies have investigated the public opinion on automated vehicles. 

In general, male and younger adults show greater interest on autonomous technol-

ogy (Hulse et al. 2018). People who are highly educated, and live in large urban 

areas are more enthusiastic about autonomous vehicles (Nielsen and Haustein 2018). 

Public perception of automated vehicles might vary widely between countries 

(Haboucha et al. 2017; Lang et al. 2016; Schoettle and Sivak 2014b). In developing 

countries with lower GDP per capita, higher income inequality, lower vehicle usage 

and ownership, and greater numbers of road deaths, the respondents are more opti-

mistic about current and future automated vehicles (Green et al.). 
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In addition to public concerns about safety and legal issues, the concern about pri-

vacy has raised because of the data sharing in automated vehicles. The travel data 

of automated vehicles, such as routes, destinations, and times of day, are likely be 

provided to central control system, to assist transportation planners evaluating future 

improvements. The data could be misused by relative employees for tracking, mon-

itoring and surveillance (Fagnant and Kockelman 2015).  

7.1.2 Penetration rate estimation 

Several studies have tried to predict the time course of the spread of automated ve-

hicles in a more general context. The public’s opinions differ between different gen-

ders, income levels and current commuting methods (Howard and Dai 2014). Dur-

ing the Automated Vehicles Symposium 2014, a survey was held among the experts. 

They expected Level 3 and Level 5 vehicle would reach the market in 2019 and 

2030 respectively (Underwood 2014). In an Internet-based questionnaire survey 

with 5000 respondents from 105 countries, 69% of the respondents estimate that 

vehicles with automation Level 5 would reach 50% penetration rate by 2050 (Kyri-

akidis et al. 2015). 

As the penetration rate of automated vehicles is affected by the development of 

many factors mentioned in last section, the estimation should be divided into opti-

mistic estimation and pessimistic estimation. Milakis et al. (2017) developed four 

scenarios of estimating the penetration rate for year 2030 and 2050. The four sce-

narios are constructed assuming combinations of supportive or restrictive policies 

and high or low technological development for automated vehicles. In the most op-

timistic scenario (supportive policies and high technological development), the 

share of vehicles with automation Level 3 to 5 reached 11% in 2030 and 61% in 

2050. In this scenario, the assumption is that, technological between 2015 and 2025 

is fast, and first vehicles with Level 3 launched in the market in 2018 and Level 4 

or 5 vehicles reach the market in 2025.  

As of 2020, the assumption of the most optimistic scenario has already been realized. 

In 2017, Audi launched the first Level 3 (conditional automation) system – the Audi 

AI traffic jam pilot. It is even one year earlier than the assumption in the most opti-

mistic scenario. In 2018, Google Waymo launched driverless taxis in a roughly 100-

mile (160 km) zone in four Phoenix suburbs. This means vehicles with automation 
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level 4 do not have to wait until 2025 as the assumption, but have already come to 

our roads.  

The technological development of autonomous driving is faster than the estimation 

of the experts. Other relative aspects such as policies, public opinions, are also de-

veloping in a better direction with the rapid progress of technologies. There are great 

reasons to believe that, the most optimistic scenario is credible. In this work, the 

penetration rate of Level 5 vehicles is set to 11% and 61% for the scenario in 2030 

and 2050 respectively.  

The vehicles with automation Level 2 have already reached the market for many 

years. Many automobile manufactures have launched their models with optional 

Level 2 driver assistance systems, including Tesla Autopilot, Cadillac Super Cruise, 

Mercedes-Benz Drive Pilot, Nissan Pro Pilot Assist, Volvo Pilot Assist, etc. These 

systems work under certain road conditions (such as highway over 80 km/h, urban 

congestion). For safety reasons, the systems cooperate with frequent driver reminder 

to prevent the driver from distracting. For example, in the Cadillac CT6, when the 

Super Cruise system is working and the driver looks away from the dashboard, the 

Super Cruise mode will be exited automatically. And with the Drive Pilot System 

in the Mercedes-Benz E-Class, the driver has to operate the steering wheel at short 

intervals, depending on speed and road conditions. If this is not accomplished, the 

system switches off automatically after several warnings. Nissan’s Leaf requires the 

driver to have at least one hand on the steering wheel all the time when the Pro Pilot 

Assist system is working, otherwise after warning, it will slow down until stop. 

These safety assurance systems make the Level 2 vehicles reliable and stable, and 

alleviate the drivers’ concerns about safety. 

Because there are no policies or technical restrictions like fully autonomous vehicle, 

most of the reasons that prevent people from buying a vehicle with Level 2 assis-

tance system are the prices. The driver assistance systems are mostly optional, Tesla 

Autopilot system costs four thousand Euro to add when order a vehicle, and 5 thou-

sand as a post-purchase upgrade. Cadillac Super Cruise is a 4 thousand Euro extra 

available on the CT6 model, for just highway scenario. Mercedes-Benz Drive Pilot 

came as a part of an 8 thousand Euro options package for E400 Coupé and Volvo 

Pilot Assist costs only about 2 thousand Euro (for only highway scenario). The 

Level 2 automation vehicles have relatively less barriers and would be a common 
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configuration in the near and far-distant future. Therefore, in this work, the assump-

tion of the penetration rate of vehicles with automation Level 2 on road in 2030 and 

2050 is 40% and 30%, respectively. In total, the automated vehicles (including Level 

2 and Level 5) have the share of 51% in the near future (2030) and 91% in the far-

distant future (2050) in the simulation below (Ma et al. ). 

7.2 Simulation of the city of Duisburg in 2030 and 2050 

To find out the effects of mixture situation of automated vehicles on traffic flow in 

a larger range, the largest scope of traffic scenario in this work, Scenario 3 (the 

whole city of Duisburg) is chosen for the simulations in this chapter. To achieve a 

more realistic traffic flow situation, the traffic demand of Case C in 3.3.2 is used in 

this section. Because the road network and traffic light plans have some differences 

with the real ones, the traffic capacity of the simulation road network is lower than 

that of the real road network. Therefore, the traffic demand is lowered in the same 

proportion to the extent that the road network can carry. The general network is the 

same as in chapter 5, and the driver models used in representing vehicles with dif-

ferent degrees of automation are the same as in chapter 6. Because of the different 

penetration rate of automated vehicles, a sub-program must judge the degree of au-

tomation of the vehicle and decide the appropriate driver model for each vehicle in 

each simulation step. The whole process makes the simulation slower than all the 

simulations in previous chapters. Even with the reduced traffic demand of Case C, 

a simulation of 24 hours takes 4 to 8 days, depending on the computer performance. 

On one hand, the huge simulation scenario and numerous vehicles slow down the 

simulation speed. On the other hand, the communication speed of TraCI (between 

SUMO and MATLAB) also limits the overall speed of the simulation. 

As a control group, the traffic situation of year 2020 is also simulated for the same 

scenario. As discussed in 2.3.2, the vehicles in scenario 2020 are set to automation 

Level 0, all other parameters of simulation remain the same as in scenario 2030 and 

2050. Figure 7.1 shows the simulated vehicle quantity of the scenario 2020, 2030, 

and 2050 in black, blue and red lines, respectively. From the traffic volume recorded 

by most detectors, such as LSA751L, LSA724 and LSA834U in Figure 7.1, the dif-

ferences between the three scenarios are not large.  
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Figure 7.1: Traffic volume of the simulation scenario of year 2020, 2030 and 2050. 

The red lines representing the scenario of 2050 have similar performance with the 

blue lines representing the scenario of year 2030, and both of them perform better 

than the black lines representing the scenario of 2020. For some detectors such as 

LSA116D in Figure 7.1, the differences are obvious. The traffic volume of the sce-

nario of year 2050 is more than that of 2030 and much more than that of 2020. 
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Moreover, the simulation time of scenario 2050 is also shorter than the other two 

scenarios. 

The differences between detectors could result in different traffic volumes. For more 

intensive traffic areas with more traffic jams, the scenario with higher percentage of 

vehicles with higher automation levels (Scenario of year 2050) have more ad-

vantages than other scenarios. For normal traffic demand such as the area of other 

three intersections, the positive effects of automated vehicles on traffic flow is not 

obvious. 

The average travel time of all the trips in the simulations is another representative 

statistic. Figure 7.2 shows the comparison of average travel time of a six hour 

simulation in scenario 2020, 2030 and 2050. The median of the travel time are 8.37 

min, 7.24 min, and 7.00 min, respectively. From the perspective of travel time, the 

vehicles in scenario 2030 can reduce the travel time by 13.5%, and the higher 

porportion automated vehicles in scenario 2050 can reduce the travel time by 16.4% 

than the scenario in 2020. 

In addition to trip time, another indicator of concern is traffic jam time. In this thesis, 

it is expressed as time loss. Time loss refers to the time lost due to driving below the 

desired speed, including the time lost in traffic jams and approaching intersections. 

Figure 7.3 shows the time loss of all trips in the scenario 2020, 2030 and 2050. The 

median time loss of the three scenarios are 1.78 min (scenario 2020), 1.01 min (sce-

nario 2030) and 0.86 min (scenario 2050). From the perspective of time loss, the 

vehicles in scenario 2030 can reduce time loss by 43.3%. With a higher penetration 

rate of automated vehicles, the vehicles in scenario 2050 can reduce time loss by 

51.7% than scenario 2020. 

The average speed of all vehicles in the three simulation scenarios is also analyzed, 

and the result is shown in Figure 7.4. The vehicles’ speed is mainly limited by the 

speed limit of the road. In Germany, the maximum permitted speed for all motor 

vehicles within a built-up area is 50 km/h, as in most European countries. Outside 

built-up areas, it is generally to drive faster than built-up areas. And there is no speed 

limit for cars on the highways in Germany. The vehicles’ average is 19.51 km/h in 

scenario 2020, 44.09 km/h in scenario 2030, and 50.69 km/h in scenario 2050. The 

vehicles in scenario 2050 drives closest to the speed limit of the road (it is also the 
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desired speed of the driver) comparing to in the other two scenarios. As shown in 

Figure 7.4, the average speed remains high when there is less traffic in the simula-

tion, and decreases as the traffic increases. It can also be seen in Figure 7.5, under 

the same traffic demand, traffic congestion has the greatest impact on scenario 2020, 

and has less impact on scenario 2030 and 2050.  

 

Figure 7.2: Vehicles’ travel time of scenario 2020, 2030 and 2050. 

 

Figure 7.3: Vehicles’ time loss of scenario 2020, 2030 and 2050. 
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Figure 7.4: Vehicles’ average speed and running vehicle number of scenario 2020, 2030 and 2050. 

 

Figure 7.5: Comparison of vehicles’ average speed and running vehicle number of scenario 2020, 2030 
and 2050. 

7.3 Comparison and Discussion 

Based on the current development status of automated vehicles, this chapter predicts 

the future penetration rate of partial automated vehicles and fully autonomous vehi-

cles in traffic flow in 2030 and 2050. The assumed penetration rate is then simulated 

in the traffic scenario of the whole city of Duisburg. The simulation results show 

that, if the traffic demand remains the same as nowadays, traffic intensive areas can 

enjoy huge advantages on traffic flow brought by automated cars, while some areas 

with less traffic pressure have not many differences.  

For the existing traffic demand of the city of Duisburg, the proportion of automated 

vehicles in 2030 can reduce travel time by 13.5%, and the proportion of automated 

vehicles in 2050 can reduce travel time by 16.4%. The time loss of scenario 2030 

and 2050 can be reduced by 43.3% and 51.7% comparing to scenario 2020.  
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8 Conclusions and future aspects 

Automated vehicles will enter the vehicle fleet progressively. They could be 

the new revolution of the transportation system. The following effects of the 

automated vehicles on traffic are a noteworthy issue. This chapter concludes 

the work and discuss the limitations and future aspects of this work. 

8.1 Conclusions 

This thesis focuses on the effects of vehicles with different degrees of automation 

on traffic flow. The motivation and fundamentals of the research in this field have 

been introduced in Chapter 1 and 2, respectively.  

Establishment of simulation scenarios 

Four simulation scenarios of different scopes and cities in two different countries 

have been established in Chapter 3. The largest scope of simulation scenario covers 

a whole city. The process of generating simulation scenarios in Germany and China 

shows many differences. This applies to the providing of the input data for the sim-

ulation as well as to the validation of the simulation results. Due to different national 

conditions, road usage habits are also very different.  

Establishment of driver model with different degree of automation 

 A vehicle guidance model with a close-to-reality driver model and different levels 

of vehicle automation has been built with real data of driver experiment in Chapter 

4. The driver models and vehicle model used in this work have been determined and 

the models of vehicles with different degrees of automation have also been set with 

different parameters. It is also verified in this chapter that the driver models used in 

this work can well reproduce the human driving activities. 

Simulation of non-automation vehicles in different scenarios 

Based on the simulation scenarios and driver-vehicle-separate models, traffic flow 

of no automation group is simulated in different simulation scenarios and compared 

with real traffic data in Chapter 5. Simulations in the city of Wuhan were performed 

by using the traffic demand of geographical population distribution information and 
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verified with average velocity ranges. By contrast, simulations in the city of Duis-

burg were conducted by using the traffic demand of OD matrix data or detector data 

and verified with precise detector data. For the relatively ambiguous traffic demand 

of geographical population distribution information, special public facilities such as 

train station, hospital and schools are considered. For relatively precise traffic de-

mand of OD matrix, even more accurate data is used for verification. From the sim-

ulations results and comparisons in chapter 5, SUMO shows a great reliability, and 

the simulations can reproduce real traffic status with high accuracy. 

Simulation of vehicles with different degrees of automation in scenario 4 

Chapter 6 focuses on the comparison of vehicles with different degrees of automa-

tion. In the scenario of a single intersection, vehicles of automation Level 2 finish 

the driving task 9.1% faster than the no automation group, and vehicles with auto-

mation Level 5 finish it 19.8% sooner than the no automation group. In the scenario 

of Duisburg inner ring, vehicles with different degrees of automation show little 

difference in respond to the current traffic demand, however, on more 50% traffic 

status, vehicles with higher automation level have more positive effects on traffic. 

In the scenario of Duisburg inner ring, vehicles with automation Level 2 and Level 

5 have 19% and 20% shorter travel time comparing to Level 0 on real traffic de-

mand, respectively. For heavy traffic status, Level 2 and Level 5 vehicles have 11% 

and 19% shorter travel time.  

Simulation of mixture situation in scenario 3 

Chapter 7 makes a more specific analyses of the development of future automated 

vehicles, and assume that in 2030, the penetration rate of vehicles with automation 

Level 2 and Level 5 is 40% and 11%, respectively. Moreover, the penetration rate 

will become 30% and 61% in 2050, respectively. Based on the assumption, the sim-

ulations of the city of Duisburg in year 2030 and 2050 are launched, and for the 

traffic demand now in the city of Duisburg, a greater proportion of higher levels 

automated vehicles will have positive effect on traffic. In particular, the traffic in-

tensive areas can gain more positive effects from the automated vehicles than other 

areas of the city. With such penetration rate of automated vehicles, the vehicles in 

scenario 2030 and 2050 can reduce the travel time by 13.5% and 16.4% respectively. 
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8.2 Scientific contribution of this work 

Traditional driver-vehicle models for traffic simulation always regard the driver and 

vehicle as a unit. This kind of method has the advantages such as simple, easy to 

use, and less interference. However, with more and more technological innovations 

in modern automotive industry, the disadvantages of the traditional approach of 

treating the driver and the vehicle as a unit have begun to appear. This work sepa-

rates the driver model from the vehicle model and focuses on the driver model. The 

driver/vehicle separate models make it possible to combine different types of vehi-

cles and drivers in traffic simulations. For example, the performance of self-driving 

vehicle with electrical power vehicle can be simulated with the driver/vehicle sepa-

rate models. For the future simulation of vehicles with more technological innova-

tions, driver/vehicle separate models can bring more possibilities. 

In this work, vehicles with different degrees of automation are modeled and simu-

lated in different scenarios of real cities. Based on the major differences between 

human driving and machine driving, the model in this paper uses different parame-

ters to distinguish the driver models. The vehicle guidance model of vehicles with 

different automation levels is established, including no automation group represent-

ing the present state, partial automation group representing the state of the near fu-

ture, and fully automated group representing the state of the far future. The compar-

ison of these three models are simulated in real traffic scenarios in Duisburg inner 

ring respectively. The three models are also simulated with different penetration 

rates in Duisburg whole city scenario for year 2030 and 2050. 

The large-scale simulation scenario of the city of Duisburg is another contribution 

of this work. This work establishes the scenario in four cases and affirm the relative 

most accurate case through comparison with real detector data. The scenario of the 

city of Duisburg can also be used in other traffic simulations. 

8.3 Limitations and future work 

Even though the factors that may cause imprecision are avoided as much as possible, 

this work still has some limitations. In the fuzzy control model built in chapter 4, 

the data from a driving experiment are used. The fuzzy control rules in this work is 

impacted by the subjects in the driving experiment. The subjects have not covered 
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all the age ranges, countries, driving behaviors, etc. Therefore, the driving charac-

teristic extracted from the driving experiment cannot represent all the human drivers. 

The driver model with different degrees of automation in this work concentrates on 

the parameters that have the main influences, many other differences are not con-

sidered. For example, the simulation does only consider accident-free traffic, but in 

reality, the accident rate of autonomous vehicles and non-automated vehicles is dif-

ferent, which is ignored in the simulations. 

The road network of the traffic scenarios in this work also have some limitations. 

The traffic light plan of all the road networks are not available, therefore, only de-

fault traffic light plan was used. Moreover, the road structures of the city of Duis-

burg were verified in Google street view, however, the street view of the city of 

Duisburg has not been updated since August 2008. In 12 years, many road structures 

have already been changed. These two aspects may cause inaccuracy of road net-

works. 

As a prospect of the future work, the effects on traffic flow and fuel economy of 

self-driving electric vehicles can be studied. Electric vehicles have their own driving 

characteristics, and the combination of self-driving technology and electrical power 

may be interesting. If there is a chance, more accurate traffic scenarios can also be 

built, of course more data like traffic light plan, road network map are needed.  
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