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Abstract: Members of the Candidate phylum Patescibacteria, also called Candidate Phyla Radiation
(CPR), are described as ultramicrobacteria with limited metabolic capacities. Wide diversity
and relative abundances up to 80% in anaerobic habitats, e.g., in groundwater or sediments are
characteristic for Candidatus Patescibacteria. However, only few studies exist for marine surface
water. Here, we report the presence of 40 patescibacterial candidate clades at air-sea interfaces,
including the upper water layer, floating foams and the sea-surface microlayer (SML), a < 1 mm
layer at the boundary between ocean and atmosphere. Particle-associated (>3 µm) and free-living
(3–0.2 µm) samples were obtained from the Jade Bay, North Sea, and 16S rRNA (gene) amplicons
were analyzed. Although the abundance of Cand. Patescibacteria representatives were relatively
low (<1.3%), members of Cand. Kaiserbacteria and Cand. Gracilibacteria were found in all samples.
This suggests profound aerotolerant capacities of these phylogenetic lineages at the air-sea interface.
The presence of ultramicrobacteria in the >3 µm fraction implies adhesion to bigger aggregates,
potentially in anoxic niches, and a symbiotic lifestyle. Due to their small sizes, Cand. Patescibacteria
likely become aerosolized to the atmosphere and dispersed to land with possible implications for
affecting microbial communities and associated processes in these ecosystems.

Keywords: Candidate phyla radiation; bacteria; sea-surface microlayer; neuston; foam; 16S rRNA
sequencing; aerosols; air-sea interface

1. Introduction

Ultra-small bacteria of the Candidate Phylum Patescibacteria [1] also called Candidate Phyla
Radiation (CPR) comprise a high biodiversity within the bacterial domain [2,3]. Cand. Patescibacteria
include Microgenomates (OP11), Parcubacteria (OD1), Dojkabacteria (WS6), Katanobacteria
(WWE3), Gracilibacteria, Berkelbacteria (ACD58), Peregrinibacteria (PER), Kazania, ABY1, CPR2,
and Saccharibacteria (TM7) [4]. Due to reduced cell and genome sizes only limited metabolic capacities
are hitherto described for these bacteria [5]. Therefore, Cand. Patescibacteria have been suggested to be
symbionts of other microbes [6–9] or even considered virus-like [10]. Because of the frequent lack of
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a respiratory chain [5,10] and their presence in oxygen-deprived and anaerobic ecosystems [11–14]
a fermentative-based lifestyle has been suggested for most Cand. Patescibacteria [10]. However,
Cand. Patescibacteria were also detected in oceans at a depth of 5 m [15], aerobic surface water of a
thermokarst lake ecosystem [16], deep oxic Lake Baikal [17], and oxic mixolimnion of Lake Parvin [18].
For their oxic lifestyle an unusual respiratory metabolism especially of Cand. Parcubacteria has been
proposed [19,20]. In addition, recent work suggested that nano-sized prokaryotes including Cand.
Patescibacteria could contribute to carbon cycling in the oceans [21] and supported by a high diversity
of Cand. Patescibacteria, important implications for exchange processes across the air-sea boundary
can be inferred [22].

Microorganisms populating the sea-surface microlayer (SML), a < 1 mm layer at the air-sea
boundary, are collectively referred to as neuston and encompass cell numbers of 2 × 1023 on Earth [23].
The biofilm-like, gelatinous nature of the SML [24] with its distinct physicochemical features compared
to the underlying water (reviewed by Cunliffe, et al. [25]) and spontaneously emerging surface
phenomena, such as slicks and foams found increasing research interest as bacterial habitats during
the last decade [24,26–29]. However, very little is known about the role of ultramicrobacteria in this
elusive ecotone between atmosphere and hydrosphere. In recent studies, Cand. Patescibacteria were
detected in freshwater SML in Lake Parvin, France with slight enrichments over the epilimnion [30].
Furthermore, Cand. Patescibacteria were present in air samples collected over the Southern Ocean [31],
but their origin remained unclear.

In this study, we hypothesize that also saltwater bacterial communities in 1 m deep water,
the SML, and foam harbor ultramicrobacteria of the phylum Cand. Patescibacteria, and that these are
potential components of aerosols. We differentiate the 0.2–3 µm (“free-living”) and the >3 µm fraction
(“particle-associated”) in floating foams, the SML and the underlying water since Cand. Patescibacteria
in the 0.2–3 µm fraction are rather objects for aerosolization due to their small size, while in the >3 µm
fraction they are more likely to live symbiotic or to adhere to organic material.

2. Experiments

Cell count and 16S rRNA amplicon data for this study were extracted and re-analyzed from
a previous study [27]. Samples of foam, SML and underlying, i.e., 1 m deep water were sampled
in the Jade Bay, North Sea, offshore Wilhelmshaven, Germany (Figure 1). SML and floating foams
(Figure 1) were collected using the glass plate method [32], and the glass plate rinsed with 70%
ethanol. Underlying water from 1 m depth was sampled with a syringe connected to a weighted
hose. For prokaryotic cell counts, samples were fixed with 1% final concentration of glutaraldehyde,
incubated for 1 h at room temperature and frozen at −80 ◦C until further processing. Due to their
sticky nature and particle content, foam samples were pre-filtered by gravity onto CellTrics® 50 µm
mesh-size filters (Sysmex Partec, Muenster, Germany). Cells were stained with SYBR® Green I Nucleic
Acid Gel Stain (9x in final concentration, Thermo Fisher Scientific, Darmstadt, Germany) and measured
on a flow cytometer (C6 Flow-Cytometer, BD Bioscience, San Jose, CA, USA) following a protocol by
Giebel, et al. [33]. Here, prokaryotes were gated/separated into high (HNA) and low (LNA) nucleic acid
content cells according to Proctor, et al. [34], assuming that the LNA type contains small genomes [35]
and thus includes Cand. Patescibacteria.
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Figure 1. (A) Sampling stations in the Jade Bay, North Sea/German Bight, Germany; (B) A whole 
sampling set refers to foam/sea-surface microlayer (SML)/1-m depth = underlying water (ULW). As 
indicated, on one occasion foam and SML/ULW were collected in different places. Coordinates for Set 
2 from 19th May 2016 are missing. (C) The occurrence of patchy sea foam floating at the sea surface 
(Photo: Janina Rahlff). Map was generated using Ocean Data View [36]. 

Samples were sequentially filtered onto 3 µm and 0.2 µm polycarbonate filter membranes 
(Merck Millipore, Darmstadt, Germany). Extraction of DNA and RNA were simultaneously 
performed using the DNA + RNA + Protein Extraction Kit (Roboklon, Berlin, Germany) with slight 
modifications from the manufacturer’s protocol [37]. Remaining genomic DNA in RNA samples was 
digested on-column with 3 U of DNase, and RNA was used in a PCR to check for further 
contamination with DNA. Synthesis of cDNA was performed using the NG dART Kit (Roboklon, 
Berlin, Germany), 10 ng of RNA and the primer 1492R (5′-GGTTACCTTGTTACGACTT-3′, [38]) in a 
run of 60 min. at 50 °C followed by 5 min. at 85 °C. Quantification of DNA and cDNA concentrations 
was done using the Quant-iTTM PicoGreenTM dsDNA assay (Thermo Fisher Scientific, Darmstadt, 
Germany). Amplicon and index PCR, subsequent quality checks, and sequencing of the bacterial 16S 
rRNA (gene) were conducted using Illumina MiSeq by a third-party service (Eurofins Genomics, 
Ebersberg, Germany). For amplicon PCR, 35 and 25 cycles were done for DNA and cDNA templates, 
respectively and by using the primer set Bakt_341F/805R [39]. 

Paired-end sequence reads were assembled using QIIME 1.9.1 [40] and evaluated using the 
SILVA NGS pipeline [41] including quality checks in compliance with SINA-based alignments [42], 
where PCR artifacts and non-SSU reads were excluded. Sequence reads were reanalyzed using 
SILVA SSU138 [4] as basis in ARB [43] and merging reads assigned to Cand. Patescibacteria without 
changing the global tree topology using the ARB parsimony tool. In the case of 98% sequence identity, 
classification of the ref sequence was mapped to all members of the respective cluster and to their 
replicates. The threshold for best BLAST hit acceptance was (sequence identity + alignment 
coverage)/2 ≥ 93%, and otherwise assigned to “unclassified”. Sequence reads were deposited in the 
European Nucleotide Archive (ENA) under accession number PRJEB34343. Representative 
assembled reads assigned to Cand. Patescibacteria were deposited at GenBank under accession 
number MW167660-MW167765. The number of Cand. Patescibacteria related OTUs was compared 
between the three different habitats, two nucleic acid types and two filtered fractions using a 
Kruskal–Wallis with a post hoc Tukey’s HSD test to find for significant differences at the 95% 
significance level using PAST [44]. 
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Figure 1. (A) Sampling stations in the Jade Bay, North Sea/German Bight, Germany; (B) A whole
sampling set refers to foam/sea-surface microlayer (SML)/1-m depth = underlying water (ULW).
As indicated, on one occasion foam and SML/ULW were collected in different places. Coordinates for
Set 2 from 19 May 2016 are missing. (C) The occurrence of patchy sea foam floating at the sea surface
(Photo: Janina Rahlff). Map was generated using Ocean Data View [36].

Samples were sequentially filtered onto 3 µm and 0.2 µm polycarbonate filter membranes
(Merck Millipore, Darmstadt, Germany). Extraction of DNA and RNA were simultaneously performed
using the DNA + RNA + Protein Extraction Kit (Roboklon, Berlin, Germany) with slight modifications
from the manufacturer’s protocol [37]. Remaining genomic DNA in RNA samples was digested
on-column with 3 U of DNase, and RNA was used in a PCR to check for further contamination with
DNA. Synthesis of cDNA was performed using the NG dART Kit (Roboklon, Berlin, Germany), 10 ng
of RNA and the primer 1492R (5′-GGTTACCTTGTTACGACTT-3′, [38]) in a run of 60 min. at 50 ◦C
followed by 5 min. at 85 ◦C. Quantification of DNA and cDNA concentrations was done using the
Quant-iTTM PicoGreenTM dsDNA assay (Thermo Fisher Scientific, Darmstadt, Germany). Amplicon
and index PCR, subsequent quality checks, and sequencing of the bacterial 16S rRNA (gene) were
conducted using Illumina MiSeq by a third-party service (Eurofins Genomics, Ebersberg, Germany).
For amplicon PCR, 35 and 25 cycles were done for DNA and cDNA templates, respectively and by
using the primer set Bakt_341F/805R [39].

Paired-end sequence reads were assembled using QIIME 1.9.1 [40] and evaluated using the SILVA
NGS pipeline [41] including quality checks in compliance with SINA-based alignments [42], where PCR
artifacts and non-SSU reads were excluded. Sequence reads were reanalyzed using SILVA SSU138 [4]
as basis in ARB [43] and merging reads assigned to Cand. Patescibacteria without changing the global
tree topology using the ARB parsimony tool. In the case of 98% sequence identity, classification
of the ref sequence was mapped to all members of the respective cluster and to their replicates.
The threshold for best BLAST hit acceptance was (sequence identity + alignment coverage)/2 ≥ 93%,
and otherwise assigned to “unclassified”. Sequence reads were deposited in the European Nucleotide
Archive (ENA) under accession number PRJEB34343. Representative assembled reads assigned to
Cand. Patescibacteria were deposited at GenBank under accession number MW167660-MW167765.
The number of Cand. Patescibacteria related OTUs was compared between the three different habitats,
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two nucleic acid types and two filtered fractions using a Kruskal–Wallis with a post hoc Tukey’s HSD
test to find for significant differences at the 95% significance level using PAST [44].

3. Results and Discussion

Several studies investigated the dominant bacterial community composition of the SML and
foam [45–48]. However, potentially due to their low abundance, patescibacterial ultramicrobacteria
have been neglected in marine neuston habitats to date. In this study, we use the name Cand.
Patescibacteria [49] to cover all sequences within the “superphylum” Candidate Phyla Radiation
(CPR) as classified in the 16S rRNA database SILVA SSU 138 [4,50]. This also includes the candidate
groups Microgenomates (OP11), Parcubacteria (OD1), WS6, WWE3, Candidatus Berkelbacteria,
Peregrinibacteria, and Saccharibacteria (TM7). The separation of >3 µm for particle-associated (PA)
and 0.2–3 µm filtration for free-living (FL) bacteria is common practice in microbial ecology, although
many ultra-small bacteria will pass 0.2 µm filter (reviewed by Nakai [51,52]). However, members of the
TM7 are described to change their cellular morphology from very small cocci to large filaments and are
thereby captured by >0.2 um filtration [53]. In our study, we found 15–369 different OTUs (Figure 2) of
40 different Cand. Patescibacteria clades across all samples in a relative abundance between 0–1.4% of
the total community (Figure 3).
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of small eukaryotic organisms, like phytoplankton in surface water, causes a high number of non-
target metagenomic sequences and an amplification of bacterial DNA therefore seemed feasible in 
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Figure 3. Heatmap showing relative abundance (%�) of patescibacterial candidate clades for cDNA
and DNA-derived amplicons in foam, sea-surface microlayer (SML) and underlying water (ULW).
Samples were further divided into free-living (FL) and particle-associated (PA) fractions. Only lineages
with >10 reads are shown.

Analysis of the flow cytometry samples, that are unfiltered, revealed an average LNA portion
of 38% (±16.8%), 60% (±24.2%), and 56% (±22.1%) in foams, SML and 1 m deep water, respectively
(Table A1 in Appendix A, Figure 4). Due to their small genomes, the LNA fraction probably comprised
Cand. Patescibacteria [34] suggesting a higher abundance in these fractions as detected by amplicon
sequencing. However, in addition to Cand. Patescibacteria other LNA bacteria like SAR11 might also
be present [54], and more detailed analyses will be necessary to estimate the total abundance of Cand.
Patescibacteria. In addition to the filtration bias, universal 16S RNA primer and protocols do not cover
the complete bacterial diversity and up to 20% of environmental bacterial sequences are missing [2,55].
Mismatch analyses of our primer set in ARB SILVA [56] revealed little coverage of the Microgenomates,
one of the major orders of Cand. Patescibacteria (Figure A1). In SILVA Ref NR 138 a total of
4543 sequences are assigned to the Cand. Patescibacteria, of which the primers Bakt_341F/805R [39]
used in this analysis matched 2618 of these sequences (58%, Figure A1). Bakt_341F/805R primers cover
Cand. Parcubacteria (OD1) sufficiently [57], but only a small set (37%) of the Cand. Kaiserbacteria
can be amplified (Figure A2). Interestingly, Cand. Kaiserbacteria were one of the most abundant
groups in our study. Cand. Gracilibacteria, the most diverse group in our analysis were fairly well
covered (81%) next to Cand. Peribacteria (Figure A3). Filtration and primer biases cause that the
presented Cand. Patescibacteria abundances and especially of Cand. Kaiserbacteria are probably
underestimated. Metagenomic sequencing approaches are advantageous concerning primer biases.
However, current sequencing depth in metagenomics only cover the most abundant bacterial lineages
and has only limited quantitative information. In addition, the presence of small eukaryotic organisms,
like phytoplankton in surface water, causes a high number of non-target metagenomic sequences and
an amplification of bacterial DNA therefore seemed feasible in this study.
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Figure 4. Representative example of high nucleic acid (HNA) and low nucleic acid (LNA) cells in
(A) foam, (B) sea-surface microlayer (SML), (C) 1-m depth samples from 21st April 2016 (Set 2). Here,
more than half of all bacterial cells belong to LNA cells and potentially include Cand. Patescibacteria
having small genomes.

In marine surface water at 1 m depth (total Cand. Patescibacteria abundance 2.1–13.6%� of
assigned bacterial reads), in the SML (total Cand. Patescibacteria abundance 2.4–12.6%� of assigned
bacterial reads), and in foams (total Cand. Patescibacteria abundance 2.4–9.7%� of assigned bacterial
reads) floating at the air-sea interface Cand. Nomurabacteria and Cand. Kaiserbacteria as well as JGI
0000069-P22 and unclassified Gracilibacteria were the most abundant phylogenetic lineages (Figure 3).
By clustering our sequences with the SILVA Ref seq database and considering the marine or aerosol
origin of deposited sequence information, we found similarities of assembled reads from this study to
previously detected sequences assigned to Cand. Patescibacteria (Table 1, Supplementary Figure S1).
Many sequences of marine origin were derived from meromictic waters, sampled in coastal proximity
or from a lagoon [58]. Generally, Cand. Patescibacteria are frequently described in stratified freshwater
lakes [18,57–59], suggesting that they might generally thrive in calmed water, where stagnant conditions
could favor facultative symbiotic attachment. This explains the relatively low abundance at the air-sea
interface where wind-wave dynamics often lead to profound mixing, which is known to inhibit
abundance and activity of certain SML-populating bacteria [37]. However, other studies reported that
Cand. Patescibacteria are quite responsive and adaptive to changing environments [10] a characteristic
favoring their presence at the air-sea boundary. In our study, more OTUs were present in the DNA
compared to cDNA-based samples (Figure 2), which is supported by statistical analysis (Table A2).
For instance, the number of patescibacterial OTUs was significantly different for DNA-based amplicons
of the free-living 1 m deep fractions compared to all cDNA-derived samples from all three habitats
(Tukey’s HSD, maximum p-value = 1.60 × 10−3). The minor detection of Cand. Patescibacteria
among the cDNA-derived amplicons suggests that most Cand. Patescibacteria are rather senescent
and have an inactive lifestyle. This especially applies to Cand. Nomurabacteria, which were more
abundant (range 2.0–5.1%�) based on 16S rRNA gene-based amplicons but hardly detectable among
rRNA-based amplicons.
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Table 1. Sequences related to Cand. Patescibacteria of marine surface water or atmospheric origin. Sequences were detected based on phylogenetic clustering with
samples from this study.

NCBI Accession # of
Sequences from This

Study

NCBI Accession # of
Phylogenetic Neighbor

from Surface
Water/Aerosol

Sequence Name Origin Phylogenetic Affiliation Reference

MW167728, MW167751 HQ691922 Uncultured bacterium, 1327,
stratified lagoon

Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine JGI 0000069−P22 [60]

MW167732, MW167737,
MW167759, MW167763 HQ691923 Uncultured bacterium, 1317,

stratified lagoon
Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine JGI 0000069−P22 [60]

MW167705, MW167707,
MW167722 HQ691924 Uncultured bacterium, 1276,

stratified lagoon
Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine Cand. Peregrinibacteria [60]

MW167672, MW167678,
MW167694 HQ691925 Uncultured bacterium, 1288,

stratified lagoon
Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine Cand. Peribacteria [60]

MW167669, MW167680,
MW167690 HQ691926 Uncultured bacterium, 1318,

stratified lagoon
Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine Cand. Peribacteria [60]

MW167660, MW167688,
MW167703 HQ691927 Uncultured bacterium, 1311,

stratified lagoon
Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine Cand. Peribacteria [60]

MW167675, MW167687,
MW167717 HQ691928 Uncultured bacterium, 1323,

stratified lagoon
Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine Cand. Buchananbacteria [60]

MW167683, MW167684,
MW167710, MW167736 HQ691929 Uncultured bacterium, 1317,

stratified lagoon
Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine Cand. Moranbacteria [60]

MW167686, MW167713 HQ691930 Uncultured bacterium, 1328,
stratified lagoon

Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine Cand. Magasanikbacteria [60]

MW167715, MW167719,
MW167721 HQ691931 Uncultured bacterium, 1359,

stratified lagoon
Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine Cand. Magasanikbacteria [60]

MW167673, MW167689 HQ691932 Uncultured bacterium, 1323,
stratified lagoon

Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine Cand. Komeilibacteria [60]

MW167674, MW167704,
MW167711 HQ691933 Uncultured bacterium, 1333,

stratified lagoon
Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine Cand. Komeilibacteria [60]

MW167671, MW167699 HQ691934 Uncultured bacterium, 1395,
stratified lagoon

Clipperton Island atoll, North Pacific Ocean,
Meromictic lagoon, marine Cand. Falkowbacteria [60]

MW167663, MW167666 AACY023814357
Marine metagenome, 1412,
predominantly from surface water
marine samples

Surface water samples, off the coast of
Bermuda, marine Cand. Falkowbacteria [61]

MW167720 AACY023758110
Marine metagenome, 1295,
predominantly from surface water
marine samples

Surface water samples, off the coast of
Bermuda, marine Cand. Kuenenbacteria [61]

MW167725, MW167733,
MW167749 AACY023749576

Marine metagenome, 1409,
predominantly from surface water
marine samples

Surface water samples, off the coast of
Bermuda, marine JGI 0000069−P22 [61]
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Table 1. Cont.

NCBI Accession # of
Sequences from This

Study

NCBI Accession # of
Phylogenetic Neighbor

from Surface
Water/Aerosol

Sequence Name Origin Phylogenetic Affiliation Reference

MW167667, MW167676,
MW167679, MW167691 AACY020292957

Marine metagenome, 1318,
predominantly from surface water
marine samples

Surface water samples, off the coast of
Bermuda, marine Cand. Kaiserbacteria [61]

MW167670, MW167692,
MW167695, MW167696 AACY023772748

Marine metagenome, 1245,
predominantly from surface water
marine samples

Surface water samples, off the coast of
Bermuda, marine Cand. Gracilibacteria [61]

MW167731, MW167744,
MW167765 GU235593

Uncultured marine bacterium, 1328,
Antarctic sea water collected from
5m

Antarctic sea water collected from 5 m,
coastal surface waters at Palmer Station,
on the west coast of the Antarctic Peninsula

JGI 0000069−P22 [62]

MW167727, MW167734,
MW167735, MW167747,
MW167748, MW167756

GU234860
Uncultured marine bacterium, 1316,
Antarctic sea water collected from
5m

Antarctic sea water collected from 5 m,
coastal surface waters at Palmer Station,
on the west coast of the Antarctic Peninsula

JGI 0000069−P22 [62]

MW167726, MW167740 LN681284 Bacterium RFB D08, 1233, marine
alga

Ria Formosa tidal pools close to the
Ramalhete Marine Station, marine JGI 0000069−P22 [63]

MW167668, MW167685,
MW167700 FJ744790

Uncultured bacterium, 1397,
surface water at the UGA Marine
Institute

Coastal water samples were collected high
tide from Sapelo Island, GA, marine Cand. Gracilibacteria [64]

MW167677, MW167701,
MW167716 DQ269061 Uncultured bacterium, 1342,

surface of marine macro−alga
One of three sampling sites, Sydney,
Australia, marine Cand. Gracilibacteria [65]

MW167739, MW167743,
MW167757 FJ826108 Uncultured marine bacterium, 1418,

filtered surface sea water
Filtered surface sea water in the decay period
after diatom bloom in the Yellow Sea, marine Cand. Peregrinibacteria [66]

MW167739, MW167743,
MW167757 FJ826198 Uncultured marine bacterium, 1442,

filtered surface sea water
Filtered surface sea water in the decay period
after diatom bloom in the Yellow Sea, marine Cand. Peregrinibacteria [66]

MW167681 KU578668 Uncultured bacterium, 1369,
ocean water Marine Cand. Magasanikbacteria unpublished

MW167681, MW167697,
MW167702, MW167712 FLOH01000114 Marine metagenome, 1479, water Marine Cand. Magasanikbacteria not specified

MW167664, MW167714,
MW167718 CEVN01160041

Marine metagenome, 1440, saline
water (ENVO:00002010), including
plankton (ENVO:xxxxxxxx)

Marine Cand. Kaiserbacteria not specified

MW167661, MW167665,
MW167698 JQ197106 Uncultured bacterium, 1330,

seawater; next to dolphin E Marine Cand. Nomurabacteria [67]

MW167693, MW167708,
MW167709 JQ198499 Uncultured bacterium, 1329,

seawater; next to dolphin K Marine Cand. Nomurabacteria [67]

MW167745, MW167746,
MW167753 JN981903

Uncultured beta proteobacterium,
1495, aerosols from orbal oxidation
ditch in a municipal WWTP

Aerosols from orbal oxidation ditch in a
municipal WWTP Cand. Gracilibacteria [68]
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In contrast to other studies reporting on >20% Cand. Patescibacteria in the 0.2 µm fraction for a
peatland permafrost thaw lake [16] or in the suboxic hypolimnion of boreal lakes [57], we detected a
maximum relative abundance of 1.2–1.4% of Cand. Patescibacteria in SML and surface water sample
filtered onto a 0.2 µm pore size filter membrane. Since marine surface water, the SML and foams
represent aerobic environments, and despite facultative anaerobic bacteria inhabiting the SML [69],
the Cand. Patescibacteria found in our study are most likely aerobic or at least aerotolerant. Considering
these differences in abundance, Cand. Patescibacteria are presumably better adapted to freshwater
ecosystems and low oxygen environments. The ultrasmall Cand. Patescibacteria were also detected on
>3 µm filter membranes (Figure 3). This suggests that members of this phylum may also adhere to
particles or are symbiotic with organisms on particles. Particles are especially enriched in the SML and
foams [28,70,71] and could serve Cand. Patescibacteria as a food source. Moreover, aggregates can form
low oxygen microenvironments [72,73] allowing Cand. Patescibacteria to thrive, though these anoxic
microzones might be too short-lived for slow-growing anaerobic microorganisms to take advantage [73].
Our results show that Cand. Kaiserbacteria and Cand. Gracilibacteria were metabolically active based
at the time of their detection as their respective 16S rRNAs were detected and thus represent potential
candidates for living in anoxic particles. However, the proposed restricted biosynthetic capabilities may
also favor a symbiotic lifestyle [20]. Searching the SILVA Ref 138 database for related sequences revealed
that several sequences of Cand. Patescibacteria were previously found on microbial communities
associated with marine algae, e.g., Cand. Gracilibacteria (Table 1). Since algae are integral parts of
marine foams in the >3 µm fraction [74], and can be trapped within them [75], members of Cand.
Patescibacteria may therefore be symbionts of eukaryotic hosts as described earlier [76].

Cand. Patescibacteria have been shown to scavenge organic compounds, e.g., lipids [10,77] or
nucleotides from external sources and other organisms [10,78], because they lack the required metabolic
pathways for de novo biosynthesis. In addition, Vigneron, Cruaud, Langlois, Lovejoy, Culley and
Vincent [16] suggested that they have the metabolic capacity for amylose and cellulose degradation
since the group of glycoside hydrolase enzymes are part of their metabolism. This supports their
role in the degradation of refractory organic matter and, therefore, in the marine carbon cycling.
Saccharibacteria, which have cultivated representatives [79,80], were predicted to utilize glucose,
amino acids and plant-derived carbon compounds [78,81], substances that are typically found in
foams [82–84]. Therefore, despite their low abundance, Cand. Patescibacteria might have a crucial
role as specialists in degradation processes at the ocean’s surface. Degradation of cells and matter
could be further enhanced in the SML, because higher bacterial production compared to underlying
water promotes lytic viral infections releasing carbon compounds [85]. Strong exposure to solar and
ultraviolet radiation is detrimental for bacterioplankton [86]. Even if compensated by some resistance
of the bacterioneuston to solar radiation [87], the high irradiance at the air-sea boundary will enhance
turnover of cells and release of their content. At the same time, photolysis increases the bioavailability of
recalcitrant dissolved organic matter [88]. All these processes support nutrient-scavenging organisms
such as Cand. Patescibacteria, which heavily rely on external sources for all sorts of molecular
building blocks, especially if these ultramicrobacteria do not parasitize a host [6]. In the marine
realm, genomic and proteomic approaches combined with cultivation attempts and microscopic
methods, e.g., by using organism-specific in situ probing, would be the best approaches to study
Cand. Patescibacteria, and most knowledge on the clades detected in this study originate from
genome-resolved metagenomics. Cultivation attempts of Cand. Patescibacteria have been rarely
successful for many reasons such as their complicated interactions with multiple eukaryotic hosts [76],
lethality to the host [89] or uncharacterized host ranges [90]. In addition, advanced techniques
at the single-cell level such as reverse genomics have to be considered for the establishment of
pure cultures [80].

Marine foams and the SML are both enriched in organic matter and nutrients [91–93], but can
also be considered as challenging habitats due to accumulating pollutants (reviewed by Wurl and
Obbard [91,94]) and prevailing effects of meteorological impacts [48,95]. Transport of living and
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non-living matter to the air-sea interface is mainly achieved by rising bubbles [96], mixing processes,
or the result of atmospheric deposition [97]. At the same time, the SML is a known source for
aerosolization of viruses and bacteria to the atmosphere [98] as reviewed by Rahlff [99]. Aerosolization
from the SML seems to be very taxon-specific [100]. Therefore, depending on their own and/or
their symbiotic partners aerosolization capacities, Cand. Patescibacteria might be transferred from
1 m depth to the SML by rising bubbles and from the SML to sea-spray aerosols. Observations on
many rare and uncultured OTUs among airborne bacteria in a coastal region of the Baltic Sea [101],
and higher contributions of less abundant seawater bacterial taxa being selectively transferred to
marine aerosols [102] make signatures of Cand. Patescibacteria in marine aerosols very likely. In fact,
preliminary data indicate the presence of Cand. Perigrinibacteria and Cand. Abscondibacteria
in aerosol samples, which were artificially generated in a tank experiment during the EMB184
cruise using Baltic Sea surface water (unpublished data). Previous studies showed that aerosols
produced by rotating brushes in a wastewater treatment plant were associated with a high portion of
uncultured bacteria [68] including a sequence assigned to Cand. Gracilibacteria (Table 1). Furthermore,
Cand. Patescibacteria were recently found in aerosols in the lower atmosphere of the Southern Ocean
(7.8%) [31], among aerosolized bacterial loads emitted by a green wall (dominated by the order
Saccharimonadales (56.6%)) [103], in blowing Arctic snow (0.2% of OD1) [104], snow layers over sea
ice (≤0.3% of TM7) [105], and Arctic air with terrestrial source (24% TM7) [106] and thus seem to
potentially resist environmental conditions of the troposphere. Considering the usually low biomass
associated with aerosol samples and the often-low portions of Cand. Patescibacteria in bacterial
communities of marine surface waters, Cand. Patescibacteria likely remain underexplored and highly
elusive components of the atmosphere. These ultra-small bacteria are rarely the target of sequencing
efforts of marine surface water applying filtration protocols on pore sizes >0.2 µm and, if found,
they are often not further classified [15,31]. Thus, here we can only speculate that Cand. Patescibacteria
might experience transfer to the atmosphere from SML via sea spray aerosols, while their presence in
foams suggests easy propagation to terrestrial ecosystems as foams get frequently dispersed to beaches
by strong winds [107,108].

4. Conclusions

Uncultivated bacteria of the Cand. Patescibacteria, also referred to as Candidate phyla radiation,
were detected in small (<1.3%) but probably underestimated quantities at the air-sea boundary (in the
SML and foams) as well as in 1 m deep seawater. These findings support previous sequencing results on
a diverse Cand. Patescibacteria bacterial community in the upper oceanic water column. Their peculiar
lifestyle as symbionts might influence microbial communities and carbon cycling in the surface ocean,
and by being further dispersed from these habitats, Cand. Patescibacteria might easily end up in the
atmosphere and on land. Future work pursuing in situ localization combined with genome analyses as
well as cultivation attempts are required to achieve a deeper understanding of the life strategies and
underlying metabolic capacities of Cand. Patescibacteria at the ocean’s surface.
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Appendix A

Table A1. Percentage (%) of high nucleic acid (HNA) and low nucleic acid (LNA) in different sample
sets. ULW = underlying water (refers to 1-m depth), SML = sea-surface microlayer.

Sample %LNA %HNA

ULW_21st_April_2016_set1 55.0 45.0
SML_21st_April_2016_set1 76.9 23.1
Foam_21st_April_2016_set1 42.5 57.5
ULW_21st_April_2016_set2 53.7 46.3
SML_21st_April_2016_set2 55.8 44.2
Foam_21st_April_2016_set2 52.0 48.0
ULW_19th_May_2016_set1 63.1 36.9
SML_19th_May_2016_set1 62.5 37.5
Foam_19th_May_2016_set1 32.5 67.5
ULW_19th_May_2016_set2 65.0 35.0
SML_19th_May_2016_set2 60.0 40.0
Foam_19th_May_2016_set2 24.9 75.1
ULW_19th_July_2016_set1 50.3 49.7
SML_19th_July_2016_set1 49.7 50.3
Foam_19th_July_2016_set1 39.8 60.2
ULW_19th_July_2016_set2 51.6 48.4
SML_19th_July_2016_set2 52.8 47.2
Foam_19th_July_2016_set2 39.2 60.8

Table A2. Results of statistical analysis for Figure 2. There was a significant difference between sample
medians (Kruskal–Wallis Test, chi-squared: 36.14, p-value = 1.6 × 10−4). In this table, the upper diagonal
reflects p-values after Tukey HSD test with significant results (p ≤ 0.05 indicated in orange) and Tukey’s
Q value in the lower diagonal. FL = free-living, PA = particle-associated, SML= sea-surface microlayer.

Foam SML 1-m depth
cDNA DNA cDNA DNA cDNA DNA
FL PA FL PA FL PA FL PA FL PA FL PA

Foam cDNA FL 1.00 0.90 0.03 1.00 1.00 0.04 0.89 1.00 1.00 5.43 × 10−4 0.97
PA 0.73 0.56 3.34 × 10−3 1.00 1.00 0.01 0.48 1.00 1.00 4.19 × 10−5 0.70

DNA FL 2.26 3.11 0.78 0.81 0.76 0.74 1.00 0.93 0.91 0.06 1.00
PA 5.10 6.24 2.63 0.02 0.01 1.00 0.56 0.07 0.02 0.77 0.34

SML cDNA FL 0.29 0.43 2.55 5.42 1.00 0.02 0.78 1.00 1.00 2.83 × 10−4 0.92
PA 0.28 0.47 2.66 5.75 0.02 0.01 0.71 1.00 1.00 1.19 × 10−4 0.89

DNA FL 4.97 5.97 2.71 0.35 5.26 5.52 0.55 0.08 0.03 0.94 0.35
PA 2.31 3.27 0.16 3.12 2.63 2.78 3.13 0.93 0.89 0.02 1.00

1-m depth cDNA FL 0.04 0.63 2.13 4.70 0.23 0.22 4.64 2.16 1.00 1.60 × 10−3 0.98
PA 0.14 0.93 2.24 5.28 0.45 0.45 5.10 2.31 0.18 3.16 × 10−4 0.98

DNA FL 7.07 8.18 4.81 2.64 7.36 7.73 2.10 5.43 6.58 7.31 0.01
PA 1.87 2.80 0.61 3.61 2.18 2.30 3.58 0.50 1.75 1.83 5.87
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