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Background: Cases of excessive neutrophil counts in the blood in severe coronavirus

disease (COVID-19) patients have drawn significant attention. Neutrophil infiltration

was also noted on the pathological findings from autopsies. It is urgent to clarify the

pathogenesis of neutrophils leading to severe pneumonia in COVID-19.

Methods: A retrospective analysis was performed on 55 COVID-19 patients classified as

mild (n= 22), moderate (n= 25), and severe (n= 8) according to the Guidelines released

by the National Health Commission of China. Trends relating leukocyte counts and

lungs examined by chest CT scan were quantified by Bayesian inference. Transcriptional

signatures of host immune cells of four COVID19 patients were analyzed by RNA

sequencing of lung specimens and BALF.

Results: Neutrophilia occurred in 6 of 8 severe patients at 7–19 days after symptom

onset, coinciding with lesion progression. Increasing neutrophil counts paralleled lesion

CT values (slope: 0.8 and 0.3–1.2), reflecting neutrophilia-induced lung injury in severe

patients. Transcriptome analysis revealed that neutrophil activation was correlated with

17 neutrophil extracellular trap (NET)-associated genes in COVID-19 patients, which

was related to innate immunity and interacted with T/NK/B cells, as supported by a

protein–protein interaction network analysis.

Conclusion: Excessive neutrophils and associated NETs could explain the

pathogenesis of lung injury in COVID-19 pneumonia.

Keywords: coronavirus, COVID-19, neutrophil extracellular trap, pneumonia, neutrophilia, lymphopenia

INTRODUCTION

As of early May 2020, more than 3 million cases of coronavirus disease 2019 (COVID-19) have
been confirmed worldwide, resulting in hundreds of thousands of deaths (1). According to the
Guidelines of the Diagnosis and Treatment of New Coronavirus Pneumonia (version 7) published
by the National Health Commission of China, COVID-19 patients can be classified as mild,
moderate, and severe cases. Severe patients easily develop acute respiratory distress syndrome
(ARDS) or multiple organ failure, with a 4–15% death rate (2, 3)

It is not well-understood what drives the exacerbated host response involving a cytokine
storm in severe COVID-19 (4). Specifically, it is unclear what initiates and propagates the
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cytokine storm. Neutrophil infiltration was noted in three
recent reports on the pathological findings from autopsied
COVID-19 patients (5–7). Neutrophil infiltration in pulmonary
capillaries, acute capillaritis with fibrin deposition, extravasation
of neutrophils into the alveolar space, and neutrophilic mucositis
were observed. Similarly, increased neutrophil counts were
reported to occur simultaneously in the peripheral blood of
severe and non-surviving COVID-19 patients (3, 8). Neutrophilia
predicts poor outcomes in patients with COVID-19, and our
previous research also indicated the neutrophil-to-lymphocyte
ratio (NLR) is an independent risk factor for severe disease (8, 9).

Recently, two serum markers of neutrophil extracellular traps
(NETs), myeloperoxidase (MPO)-DNA, and citrullinated histone
H3 (Cit-H3) levels were found to be elevated in the serum
of COVID-19 patients (10). This suggested that neutrophilia
and excessive NETs may contribute to cytokine release and
respiratory failure. As a contributor to pathological inflammation
of pneumonia, excessive neutrophils lead to tissue injury by
oxidative burst, phagocytosis, and the formation of neutrophil
NETs, known as NETosis. NETs are composed of extracellular
webs of DNA, histones, microbicidal proteins, and oxidative
enzymes that are released by neutrophils to corral infections (11–
15). The ability of NETs to damage tissues is well-documented
in infection and sterile disease. NETs directly kill epithelial
and endothelial cells (16, 17), and excessive NETosis damages
the epithelium in pulmonary fungal infection (18) and the
endothelium in transfusion-related acute lung injury (19).

In the present study, first, the dynamics of neutrophil
counts in COVID-19 patients (n = 23) during hospitalization
were examined, together with the corresponding lung injury,
to clinically define the relationship between lung injury and
leukocyte counts. Second, transcriptional signatures of host
immune cells from COVID-19 patients (n = 4) were analyzed
by RNA sequencing of lung specimens or bronchoalveolar
lavage fluids (BALF). Immune cell frequency was analyzed by
MCPcouter. We used average expression of genes enriched
in neutrophil degranulation and activation to screen highly
correlated genes and further identified NET associated genes in
the correlated gene list to construct an interactive network from
the STRING database.

METHODS

Participants and Study Design
The study was approved by the Ethics Committee of the Fifth
People’s Hospital, Wuxi (No. 2020-006-1). The 55 confirmed
COVID-19 patients were enrolled in this retrospective study
from January 23 to March 15, 2020. Written informed consent
was obtained from all patients from the Fifth People’s Hospital,
Wuxi, China.

The clinical handling of COVID-19 patients was performed
according to the Guidelines of the Diagnosis and Treatment
of New Coronavirus Pneumonia (version 7) published by the
National Health Commission of China. Mild, moderate, and
severe cases were defined by the following conditions: (1)
epidemiological history, (2) fever or other respiratory symptoms,
(3) frequency of typical CT image abnormalities of viral

pneumonia, and (4) positive RT-PCR result for SARS-CoV-2
RNA. In addition, mild cases were diagnosed if no typical CT
image abnormality of viral pneumonia (#3 above) was seen and
severe patients also met at least one of the following conditions:
(1) shortness of breath, respiratory rate (RR) ≥30 times/min, (2)
oxygen saturation (resting state) ≤93%, or (3) PaO2/FiO2 ≤300
mm Hg.

Data Collection
All medical records including epidemiological, demographic,
clinical manifestation, laboratory data, radiological
characteristics, treatment, and outcome data were reviewed
and collected. Laboratory confirmation of SARS-CoV-2 infection
was performed by real-time RT-PCR (Bojie Ltd, 119 Shanghai,
China) according to Chinese CDC approval. Five sets of RNA-
seq data from BALF of two COVID-19 patients were acquired
from BIG Data Center (accession number CRA002390), and
corresponding data of three healthy controls were from the NCBI
SRA database (accession numbers SRR10571724, SRR10571730,
and SRR10571732). Four RNA-seq data from lung specimens of
two COVID-19 patients and two healthy controls were acquired
from the GEO database (accession numbers GSM4462416,
GSM4462415, GSM4462414, and GSM4462413).

Chest CT Protocols
All images were obtained on the CT system (SomatomDefinition
AS+, Siemens Healthineers, Germany) with patients in supine
position. The main scanning parameters were as follows: tube
voltage = 120 kV, automatic tube current modulation (about 95
mAs), pitch = 1.2mm, slice thickness = 7mm, field of view =

350mm × 350mm. All images were then reconstructed with a
slice thickness of 0.6mm with the same increment.

Image Analysis
Two professional radiologists (Y.M.Y. and X.M.L.), who were
blinded to the laboratory test data, reported chest CT features and
assessed the CT features by consensus. The lesion CT values were
assessed using the Skyview pacs system. The region-of-interest
was selectedmanually marking the area of highest intensity (most
restricted area) of the lesion in CT images.

RNA-Seq Library Sequencing and Analysis
Kallisto was used to pseudoalign the RNA-seq reads and perform
bootstrap analysis using an index based on the ENSEMBL
GRCh38 Homo sapiens release 99 transcriptomes (20). Gene
expression levels were then calculated as transcripts per million
(TPM). Sleuth (version 0.30.0) (21) was used to perform
differential gene expression (DEGs) analysis with the Wald test.
Benjamini-Hochberg-adjusted false discovery rate (q < 0.1) was
used to correct for multiple comparisons.

To compare lung and BALF samples of COVID-19 patients
with healthy controls, differentially expressed genes were
exhibited in a scaled heatmap using pheatmap (22).MCP-counter
was used to characterize immune cell subpopulations (23).
The MCP-counter scores obtained from the three underlying
transcriptome platforms (Affymetrix Human Genome U133 Plus
2.0, Affymetrix 133A, and Illumina HiSeq) were used to estimate
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the expression of each cell population. Functional enrichment
analysis of the 29 upregulated marker genes of neutrophils was
conducted with Metascape (http://metascape.org/) (24). Gene set
enrichment analysis (GSEA) was performed in pre-ranked list
mode with 1,000 permutations and weighted enrichment statistic
(25). The gene interaction was analyzed by STRING (26). Gene
interaction networks were visualized with eXamine (27).

Statistical Analyzes
Quantitative parameters are described as the median value
followed by the inter-quartile range (IQR) in parentheses.
Principal component analysis was performed with R package
“FactoMineR” to identify those clinical parameters that
contribute most to distinguishing severe, moderate, and mild
cases of COVID-19 (28). Figures were produced with R package
“ggplot2” (29). Logistic regression was conducted with R package
“rstanarm” (30) to identify associations of laboratory parameters
with severity of cases.

Severe cases were typed as severe and others (moderate and
mild cases) as non-severe. The generalized linear model was
then used to calculate coefficients (mean value with 5%, 95%
confidence interval) of all parameters for severe. Finally, we
used the function of exp [exp(x) = ex] for coefficients. The
results were an odd’s ratio (mean, 5–95% credible interval).
Receiver operating characteristic curves (ROC) were calculated
by R package “pROC.” The area under the ROC curve (AUC)
and cut-off values of selected parameters were used to distinguish
mild and severe cases (31). Numerical Bayesian linear regression
was carried out with Stan using Hamiltonian Monte Carlo
(Supplemental Materials; Supplementary Figure 1) (32).

RESULTS

Characteristics of COVID-19 Patients
Fifty-five confirmed COVID-19 patients were hospitalized in
The Fifth People’s Hospital of Wuxi from Jan 23 to Mar 15,
2020. The median age of patients was 45 years (IQR 25–61),
and 27 (49%) were male. Based on the previously described
guidelines, 22 (40%), 25 (45%), and 8 (15%) of the 55 COVID-
19 patients were classified as mild, moderate, and severe cases,
respectively. There were five patients with diabetes (9%), 13 with
hypertension (24%), eight with surgical history (15%), and two
with co-infections (4%). The most common symptoms at onset
were fever in 28 cases (51%), sputum production in 13 cases
(24%), cough in 22 cases (40%), and fatigue in 17 cases (31%)
(Table 1).

The clinical handling and relevant time-points of 33 patients
including eight severe and 25 moderate cases are shown in
Figure 1. The median time from the date of onset of symptoms
to hospital admission, lymphopenia, ARDS, and neutrophilia was
3, 7, 8, and 9 d, respectively. Lymphopenia occurred in seven
of eight severe patients and 11 of 25 moderate cases within 7
d, ARDS occurred in all eight severe patients within 8 d, and
neutrophilia occurred in six of eight severe patients and one of
25 moderate cases within 9 d (Figure 1).

The laboratory test of each patient on the day of hospital
admission showed that the median neutrophil count in severe

TABLE 1 | Demographic and clinical characteristics of 55 COVID-19 patients.

Variable Value

Age (year) 45.0 (25.0–61.0)

Gender—no./(%)

Male 27 (49.1)

Female 28 (50.9)

Clinical diagnosis—no./(%)

Severe 8

Moderate 25

Mild 22

Initial symptoms—no./(%)

Fever (>38◦C) 28 (50.9)

Sputum production 13 (23.6)

Headache 5 (9.1)

Chill 7 (12.7)

Shivering 2 (3.6)

Nausea or vomiting 1 (1.8)

Diarrhea 13 (23.6)

Fatigue 17 (30.9)

Cough 22 (40)

Pharyngalgia 2 (3.6)

Rhinorrhea 6 (10.9)

Chest pain 1 (1.8)

Shortness of breath 5 (9.1)

Chest tightness 9 (16.4)

Chronic disease—no./(%)

Diabetes 5 (9.1)

Hypertension 13 (23.6)

Thyroid disease 2 (3.6)

Malignant tumor 2 (3.6)

Gastritis 2 (3.6)

Coronary artery disease 1 (1.8)

Surgical history 8 (14.5)

Co-infection—no./(%)

Initial 0

Progressive 2 (3.6)

COVID-19 patients (3.4, IQR: 1.8–6.7) was higher than in
the moderate (3.0, 2.4–3.6) and mild (2.9, 2.3–3.5) groups. In
contrast, lymphocyte and monocyte counts in severe COVID-
19 patients were lower than in the other two groups (Table 2).
By logistic regression, the following ORs for effects on having
a severe case were obtained: neutrophil counts (1.5, 95% CI:
1.0–2.1), ratio of neutrophil to lymphocyte (NLR; 1.2, 95% CI:
1.1–1.4), C-reactive protein (CRP; log-scaled; 2.6, 95% CI: 1.6–
4.7), Fibrinogen (FIB, 2.6, 95% CI: 1.5–4.9), and thrombin time
(TT, 2.5, 95% CI: 1.4–5.0). These findings suggest that higher
neutrophil counts, the NLR, and CRP, FIB, and TT levels as
potential prognostic factors. The ORs of lymphocyte (0.28, 95%
CI: 0.08–0.85) and monocyte (0.02, 95% CI: 0.00–1.16) counts
suggest an association of lower lymphocyte and monocyte counts
with severe pneumonia.
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FIGURE 1 | Clinical courses of the study patients. The time lines showed the

days of hospital admission, lymphopenia, acute respiratory distress syndrome,

neutrophilia, and discharge from symptom onset for each case. The median

time from onset of symptoms to hospital admission and discharge was 3, 22

days, respectively. Among the 33 patients (black), eight cases were severe

cases (red). A total of 18 cases exhibited lymphopenia within 7 days, including

seven severe patients. All eight patients presented with acute respiratory

distress syndrome within 8 days. Seven cases presented with neutrophilia,

including six severe cases within 9 days.

Principal Component Analysis and
Dynamic Monitoring of Laboratory
Parameters
Principal component analysis was performed to visualize the
contribution of all mentioned clinical parameters on disease
severity (Figure 2A). Nine variables contributed most strongly.
Among them, higher CRP, FIB, neutrophil count, and NLR, and
lower lymphocyte count were associated with increased disease
severity. These parameters may therefore be used for prognosis.
To assess the diagnostic value of the top two contributors,
CRP and lymphocytes, the AUC and cut-off values from the
ROC curves were calculated for the severe and mild cases,
respectively (Supplementary Figure 2B). The cut-off values for
severe patients were CRP (26.1) and lymphocytes (1.0), and for
mild patients the values were CRP (2.2) and lymphocytes (1.4)
(see dashed lines in Figure 2B).

Next, dynamic changes of neutrophil, lymphocyte, and
monocyte counts in the peripheral blood of COVID-19 patients
were monitored (Figure 2C). Dramatically increased neutrophil
counts were found in severe COVID-19 patients in comparison
to the other two groups. In contrast, lymphocyte counts persisted
at lower values in severe COVID-19 patients. Monocyte counts
were lower in severe cases, although the monocyte count
fluctuated over a wide range. Timing of the occurrence of
maximum neutrophil, minimum lymphocyte, and minimum
monocyte counts, and the corresponding counts in COVID-19
patients, during hospitalization are shown in Figure 2D. From
day 7 to day 9 after symptom onset, neutrophil counts erupted
(>7.7 × 109/L) and peaked in six of eight severe COVID-
19 patients. In contrast, only one moderate (1/26) COVID-19
patient was found with neutrophilia. Lymphopenia occurred
in seven of eight severe patients but only in four mild (4/22)
COVID-19 patients. Monopenia (<1 × 108/L) was found in

three moderate (3/25) and four severe (4/8) COVID-19 patients.
Overall, monitoring blood cell parameters revealed neutrophilia
as a characteristic of severe COVID-19 patients.

Bayesian Linear Regression of CT Values
and Changing Neutrophil and Lymphocyte
Counts
Neutrophilia and lymphopenia obviously occurred in severe
COVID-19 patients during hospitalization. Here was a case of
severe patient. The CRP level remained low when neutrophilia
occurred, and the D-dimer levels increased after neutrophilia.
Series of chest CT images exhibited enlarged patches and ground-
glass nodules in the sub-pleura area of both lungs during
neutrophilia. Interestingly, all observed lesions were reduced
or gradually absorbed along with the return of neutrophils to
normal levels after neutrophilia (Figures 3A,B). The CT value
of lesions, reflecting lung lesions, was further demonstrated to
have the same trend with neutrophils but the opposite trend with
lymphocytes (Figure 3C).

To estimate the overall correlation of CT value with
neutrophil and lymphocyte counts across patients with a visual
inspection of possible trends, linear models were fitted to
summarize the dependency of z-values of CT value (CTz, see
Supplementary Information) of neutrophil and lymphocyte
counts. Thus, Bayesian linear regression was used to quantify
the observed trends of CTz values as a function of parameters
mentioned above. For log-transformed neutrophil counts, a slope
for the moderate cases of 0.3 [−0.3, 0.9] (0.05 and 0.95 quantiles
in square brackets) was obtained, i.e., with a slope that could
be flat. For the severe cases, the mean slope was 0.8 [0.3, 1.2],
i.e., clearly positive. Thus, no clear trend for moderate cases
was visible, whereas an increase in CTz value with neutrophil
counts was significantly correlated for severe cases. For CTz as
a function of lymphocyte counts, the slope was −0.1 [−0.4, 0.6]
for moderate cases and −0.3 [−0.5, 0.0] for the severe cases,
supporting the trends in Figure 3D. Overall, the results showed
that the CTz value has no average trend with changing neutrophil
and lymphocyte counts for moderate cases (green). However,
for the severe cases (red), there are clear trends for CTz value
with changing cell counts; specifically, CTz value increased for
increasing neutrophil counts, whereas CTz value decreased for
increasing lymphocyte counts (Figure 3D).

Immune Cell Transcriptional Signatures of
the Lung and BALF in COVID-19 Patients
Immune cell transcriptional signatures were established
from RNA-seq data of BALF and lung specimens of
COVID-19 patients and healthy controls. Marker genes of
neutrophils, T cells, monocytes, and B cells were identified from
Microenvironment Cell Populations-counter (MCP-counter).
Their representation in the RNA-seq data were exhibited using
a scaled heatmap by comparing both lung and BALF samples of
COVID-19 patients to healthy controls (Figure 4A).

The results revealed that 112 marker genes represented
four immune populations: neutrophils (46 genes), T cells (13
genes), monocytes (10 genes), and B cells (43 genes). For lung
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TABLE 2 | Laboratory parameters of mild, moderate, and severe COVID-19 cases.

Baseline variables Reference

range

Severe cases

(n = 8)

Moderate cases

(n = 25)

Mild cases

(n = 22)

*Odds ratio for

severe (95% CI)

Age (year) 59 (50–73) 45 (30–60) 39.5

(22.3–52)

1.07

(1.02–1.12)

Female (%) 3 (37.5) 11 (44) 14

(64)

1.90

(0.57–7.34)

Blood routine

White blood cell

(×109/L)

3.5–9.5 5.4

(3.4–7.6)

4.8

(4.1–5.7)

5.3

(4.7–6.8)

1.23

(0.86–1.78)

Neutrophil (×109/L) 1.8–6.3 3.4

(1.8–6.7)

3.0

(2.4–3.6)

2.9

(2.3–3.4)

1.47

(1.05–2.14)

Lymphocyte

(×109/L)

1.1–3.2 1.0

(0.7–1.6)

1.3

(0.9–1.5)

1.9

(1.1–2.8)

0.28

(0.08–0.85)

Monocyte (×109/L) 0.1–0.6 0.4

(0.2–0.6)

0.5

(0.4–0.6)

0.5

(0.4–0.6)

0.02

(0.00–1.16)

Platelet (×109/L) 125.0–350.0 154.0

(121.0–182.8)

191.0

(156.5–213.5)

194.5

(163.8–214.5)

0.98

(0.97–1.01)

PDW (CV %) 15.5–18.1 15.4 (11.4–16.6) 14.2

(13.7–15.9)

12.8

(11.1–14.0)

1.12

(0.83–1.50)

Red blood cell

(×1012/L)

4.30–5.80 4.3

(4.0–4.9)

4.8

(4.1–5.0)

4.4

(4.0–4.7)

0.48

(0.15–1.50)

RDW (CV %) 11.5–14.9 12.9

(12.1–13.9)

12.4

(11.7–13.6)

11.9

(11.6–12.3)

1.91

(1.19–3.41)

Ratio of neutrophils

to lymphocytes

2.4

(1.4–16.2)

2.3

(1.7–2.9)

1.8

(0.9–2.8)

1.21

(1.06–1.42)

Ratio of monocytes

to lymphocytes

0.3

(0.3–0.8)

0.4

(0.2–0.5)

0.3

(0.2–0.4)

2.86

(0.28–27.0)

C-reactive protein

(mg/L)

0.0–10.0 41.1

(13.8–139.9)

6.2

(1.1–12.7)

2.1

(0.5–17.7)

2.64

(1.64–4.65)

Biochemical indicators

ALT (U/L) 4.0–44.0 17.0

(14.0–60.0)

19.0

(16.0–35.3)

26.0

(14.0–43.3)

1.02

(0.99–1.04)

AST (U/L) 8.0–38.0 28.0

(23.0–49.0)

23.5

(20.8–31.3)

24.5

(19.0–31.0)

1.04

(0.99–1.09)

Total bilirubin

(µmol/L)

2.0–21.0 7.0

(3.0–12.0)

5.0

(2.8–9.0)

6.5

(4.8–10.3)

1.01

(0.87–1.16)

Direct bilirubin

(µmol/L)

2.0–7.0 0.1

(0.1–1.0)

0.1

(0.1–1.8)

0.1

(0–1.4)

0.99

(0.67–1.37)

Serum total protein

(g/L)

67.0–83.0 68.0

(65.0–75.0)

69.5

(65.0–73.3)

69.0

(65.0–71.3)

0.98

(0.87–1.16)

Serum albumin (g/L) 35.0–50.0 39.0

(34.0–43.0)

43.5

(38.8–47.3)

41.5

(38.8–45.0)

0.85

(0.73–1.00)

Creatine kinase (U/L) 0.0–171.0 101.0

(54.0–151.0)

69.0

(53.8–106.8)

68.0

(46.8–102.0)

1.000

(0.99–1.01)

Creatine kinase MB

(U/L)

0.0–12.0 11.0

(10.0–13.0)

10.0

(9.0–12.5)

10.0

(7.8–14.8)

0.97

(0.79–1.17)

Blood urea nitrogen

(mmol/L)

3.1–8.0 5.9

(3.3–10.1)

4.2

(3.5–4.9)

4.0

(3.0–4.6)

1.60

(1.18–2.31)

Serum creatinine

(µmol/L)

53.0–97.0 64.0

(38.0–88.0)

54.5

(43.5–64.5)

48.5 (39.3–58.5) 1.04

(1.01–1.08)

Serum potassium

(mmol/L)

3.8–5.0 3.8

(3.2–4.2)

4.1

(3.8–4.2)

4.0

(3.9–5.0)

0.24

(0.06–0.79)

Serum sodium

(mmol/L)

136.0–149.0 140.0

(13.9.0–141.0)

142.0

(141.0–143.0)

142.0

(140.0–143.0)

0.59

(0.38–0.89)

Serum chlorine

(mmol/L)

98.0–106.0 105.0

(103.0–106.0)

104.0

(102.8–106.0)

105.0

(103.0–106.0)

0.72

(0.95–1.25)

(Continued)
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TABLE 2 | Continued

Baseline variables Reference

range

Severe cases

(n = 8)

Moderate cases

(n = 25)

Mild cases

(n = 22)

*Odds ratio for

severe (95% CI)

Blood coagulation function

D-dimer (mg/L) 0.0–0.5 0.6

(0.3–1.2)

0.3

(0.2–0.6)

0.3

(0.2–0.5)

1.314

(0.579–2.986)

PT (s) 11.5–15.5 13.2

(12.2–13.4)

13.2

(12.9–13.6)

13.2

(13.2–13.5)

0.22

(0.05–0.90)

APTT (s) 26.0–40.0 37.5

(35.5–42.3)

38.2

(36.3–42.9)

41.3

(37.6–44.3)

0.93

(0.79–1.09)

Fibrinogen (g/L) 2.0–4.0 4.9

(4.4–5.9)

3.6

(2.9–4.8)

3.6

(2.7–4.1)

2.61

(1.52–4.87)

TT (s) 14.0–21.0 17.1

(16.2–18.2)

16.2

(15.8–16.8)

16.2

(15.9–17.4)

2.46

(1.35–4.97)

Blood gas analysis

PaCO2 (mm Hg) 35.0–48.0 42.5

(39.3–44.0)

43.0

(40.5–47.0)

42.0

(40.3–45.0)

0.92

(0.76–1.09)

PaO2 (mm Hg) 83.0–108.0 83.0

(64.5–00.5)

106.0

(93.5–134.0)

103.5

(93.3–124.3)

0.95

(0.91–0.98)

PaO2/FiO2 (mm Hg) 400.0–500.0 395.2

(300.0–478.6)

504.8

(445.2–632.6)

461.9

(395.6–591.7)

0.99

(0.98–1.00)

Lactic acid (mmol/L) 0.5–2.2 1.9 (1.3–3.4) 1.6

(1.3–1.9)

1.7

(1.1–2.3)

2.44

(1.07–5.93)

*The Odd Ratio of log normalization.

tissue, the most up-regulated marker genes were enriched in
neutrophils, second in monocytes, and only a small proportion
were enriched in B cells. Marker genes of T cells were almost all
lowly expressed. For BALF, the most upregulated marker genes
were similarly enriched in neutrophils, but more up-regulated
genes in monocytes and B cells were observed in COVID-19
patients compared to healthy controls, which is different from the
lung samples.

Functional enrichment analysis of the 27 upregulated marker
genes of neutrophils were further conducted withMetascape. The
enrichment analysis revealed that five gene sets with lowest q-
value were related to neutrophil degranulation and activation
(Figure 4B) and there were 15 marker genes involved. Then, we
calculated the average expression of these genes as an evaluating
score for neutrophil activation (NAS).

To further assess the abundance of infiltrating immune cells
of the lung and BALF in COVID-19 patients, the MCP-counter
score was used to quantify the absolute abundance of immune cell
subpopulations. Notably, the neutrophil scores were higher and T
cell scores were lower in lung samples of COVID-19 patients. The
higher abundance of cytotoxic T lymphocytes contributed for cell
injury, not for anti-virus. Due to the marker genes for cytotoxic
T lymphocytes was KLRC1 (Killer Cell Lectin Like Receptor
C1). For the BALF samples, the score of neutrophils, cytotoxic
lymphocytes, B cells, monocytes, and dendritic cells were found
to be higher in one of the COVID-19 patients compared to the
three healthy controls (Figure 4C).

Neutrophil Activation Related Genes
Enrichment Analysis
To explore the outcome of neutrophil activation in COVID-19,
we further analyzed the correlation of NAS with 1,363 DEGs that

overlapped in both the lung and BALF samples. The spearman
correlation was used separately for COVID-19 patients and
healthy controls. Then, the R value for every single gene was
acquired for COVID-19 patients (R1) and healthy cases (R2).
All DEGs were ranked based on 1R (R1-R2). The “R value” of
the top 84 genes (R1 > 0) in the two groups are displayed in
Figure 5A. Of these 84 genes, 16 genes were NETs associated
genes (Figure 5B; Table 3) (33–46) Of the 16 genes, LGALS9,
HCK, LCP1, CEACAM1 were involved in the cytokine-mediated
signaling pathway. S100A8, LGALS9, and CTSC were involved in
regulation of apoptotic signal by enrichment annotation from the
Metascape tool (Figure 5B; Table 3) (33–46).

To further investigate the role of NETs in COVID-19, we

generated a gene set termed “NET-associated genes” based on

genes coding for proteins enriched in NETs released from human

neutrophils with mass spectrometry (Supplementary Table 1).
Pre-ranked GSEA by 1R resulted in significant enriched

gene sets of “NET-associated genes” (Enrichment Score =

0.80) and “Regulation of inflammatory response” (Enrichment
Score= 0.72) (Figure 5C).

NETs Associated Genes From RNA-Seq
Data in COVID-19 Patients
As known, the formation of NETs could induce direct lung
injury (17). There were 16 NETs associated genes related
with neutrophils activation in COVID-19 patients. To further
illustrate the interaction between these NETs associated genes
with other neutrophils activation related genes, we constructed
a protein-to-protein interaction network from the STRING
database (Figure 6). We found that the NETs interacted with
STAT1 induced Interferon stimulated genes by IL2RG, implying
that NETs associated genes may be triggered by IFN signaling.
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FIGURE 2 | Principal component analysis of laboratory parameters and dynamic monitoring of blood cells in the peripheral blood of COVID-19 patients. (A) Principal

component analysis to identify variables for distinguishing the disease severity of COVID-19 patients. The nine variables that contributed mostly to distinguishing the

disease severity were white blood cell counts (WBC), neutrophil counts, neutrophil-to-lymphocyte ratio (NLR), C-reactive protein (CRP), FIB, ALT, Total Bilirubin (TB),

Direct Bilirubin (DB), and lymphocyte counts. (B) CRP levels and lymphocyte counts in 55 cases with the cut-off values CRP = 26.1 and lymphocyte = 1.0 for eight

severe cases (brown) and the cut-off values CRP = 4.3 and lymphocyte = 1.4 for 22 mild cases (green). (C) The dynamic change of neutrophil, lymphocyte and

monocyte counts over time in COVID-19 patients in mild (cyan), moderate (blue), and severe (red) groups, circled dots: mean value; colored background area: IQR

(interval quartile range). The (D) Time points of maximum neutrophil, minimum lymphocyte, and minimum monocyte counts, and the corresponding counts in mild

(cyan), moderate (blue), and severe (red) COVID-19 patients during hospitalization.

Besides, NETs in turn may activate B cells via TNFSF13B and
inhibit the function of T and NK cells via LGAS9 and CEACAM1,
which are negative regulators for T and NK cells. LGAS9 is a
possible promoter of protein-arginine deiminase type 4 (PAD4).
PAD4, a key NETs associated gene, lies downstream of ROS and
promotes chromatin decondensation (47, 48). Of note, we also
observed ROS related genes including HCK, RAC2, and NCF2
among NETs associated genes (Figure 6).

To annotate the function of NETs associated genes, they
were categorized as metabolic enzymes (RAC2, NCF2), structural
proteins (LCP1), anti-microbial related (TREM1), peroxisomal
(SH3BGRL3), and others (C1QC, LGALS9, SERPINA1, C1QB,

CCL7, CCL8, CEACAM1,HCK, andCXCL16) (Table 3). Thus, we
speculate that NETs may be activated by innate immunity such
as IFN signaling, in COVID-19 patients. NETs may negatively
regulate the immune function of T cells and NK cells via LGAS9
and CEACAM1, respectively, leading to insufficient anti-viral
immunity and injuring the lung tissue directly.

DISCUSSION

In this study, a set of laboratory test parameters and the
corresponding chest CT images of 55 COVID-19 patients
were collected during hospitalization. Among these variables,
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FIGURE 3 | Kinetics of laboratory parameters and serial chest CT images of severe COVID-19 patient with the development of neutrophilia. (A) Normal chest CT with

axial planes at indicated time point. (B) The dynamics of neutrophil counts (blue line), lymphocyte counts (red line) with log2 scaling, and CRP (gray line) and D-dimer

(cyan line) levels at indicated time point. (C) CT value of lesions and its correlation with log2 scaled neutrophil and lymphocyte counts at indicated time point. (D)

Least-square fits of linear models to summarize the z-values of CT values as a function of log-transformed neutrophil counts for 23 patients. Points are pairs of CTz

values (z-values of individual CT measurements) and log-neutrophil counts, colored according to severity of COVID-19. Colored lines are the corresponding

least-square fits to the data form each severity group. Gray areas are 95% confidence intervals.
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FIGURE 4 | Transcriptome analysis of the lung and BALF in COVID-19 patient. (A) Marker genes from Microenvironment Cell Populations-counter (MCP-counter)

were used to identify of Neutrophils, T cells, Monocytes, and B cells in both Lung and BALF samples of COVID-19 patients and healthy controls, respectively. The

RNA-seq data TPM are shown in a scaled heatmap. (B) Circle plots for functional enrichment analysis of 29 marker genes of Neutrophils. (C) The absolute abundance

of immune cell subpopulations as scores in COVID-19 patients and healthy cases.

excessive neutrophils were associated with disease severity, as
shown by principal component analysis. Bayesian inference
across patients quantified that the increased trend of pneumonia
lung injury, as represented by CT values, was in accord with
the increased trend in neutrophil counts. Transcriptome analysis

of lung specimens and BALF from COVID-19 patients also
indicated the most up-regulated marker genes were neutrophil
related. Importantly, many neutrophil activation genes were
categorized as NET-associated genes. These genes were further
assessed to interact with T and NK cells via negative regulatory
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FIGURE 5 | Gene enrichment analysis of neutrophil activation related genes. (A) The 15 annotated genes of neutrophils activation were calculated the average

expression of every single samples as neutrophils activation score, and the correlation of the score with overlapped 1,363 differently expressed genes both in

COVID-19 and Healthy control were analyzed. The selected 84 genes were ranked based on 1R (R1-R2, R1 from COVID-19 patients, R2 from healthy control). (B)

Functional enrichment analysis of these 84 genes, of which 16 genes were NETs associated genes. (C) Nets associated genes set (Enrichment Score, 0.80) and the

GO term of regulation of inflammatory (Enrichment Score, 0.72) by GSEA with DEGs from pre-ranked by 1R.
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molecules in COVID-19 patients leading to insufficient anti-viral
response and lung injury (Figure 6).

Our previous study also found an increased neutrophil-to-
lymphocyte ratio in the most severe disease cases (9). Recently,
neutrophil infiltration was also noted in the lung tissue of
autopsied COVID-19 patients (5–7). Since neutrophilia predicts
poor outcomes in patients with COVID-19 (8), we propose that
the change in neutrophil counts in peripheral blood or tissues
may be closely associated with pathological injury in COVID-19
patients. We demonstrated here that the dynamics of neutrophil
counts in COVID-19 patients during hospitalization exhibited
the same trend as the corresponding lung injury.

TABLE 3 | Annotation of Nets associated genes.

Function Gene name References

Metabolic enzymes RAC2; NCF2 (33, 34)

Structural proteins LCP1 (35)

An-microbial related proteins TREM1; S100A8;

C1QB; C1QC

(35–37)

Peroxisomal enzyme SH3BGRL3 (38)

Not classified LGALS9; SERPINA1;

CEACAM1; HCK;

CXCL16; CLEC4E;

CTSC; SIGLEC14

(39–46)

NETs, as confirmed contributors to pathological inflammation
of pneumonia, can damage tissues by killing epithelial and
endothelial cells (16, 17) of pulmonary tissue in infection and
sterile disease. Recently, two elevated NETs markers have been
observed in serum from COVID-19 patients, which suggests
that neutrophilia and excessive NETs may contribute to cytokine
release and respiratory failure in COVID19 patients (10).
However, evidence is still lacking regarding NETosis in lungs.
We analyzed the differentially expressed genes in lung tissue
and BALF samples from COVID-19 patient in comparison to
healthy controls. Among all up-regulated genes in neutrophil
modules in COVID-19 patients, we found 17 genes derived from
the neutrophil activation pathway were NETs associated genes.
Thus, NETs may be activated in the lung of COVID-19 patients.
It is also poorly understood how NETosis induces the cytokine
storm or modulates the host immune response. Our STRING
analysis suggests that NETs associated genes could interact with
T, NK, and B cells through regulation of LGALS9, CEACAM1,
and TNFSF13B expressions, respectively. We suspect that the
progression of lesions in COVID-19 patients may be induced by
NETs as well as NETs-T/NK/B cell interactions.

In conclusion, the clear trend of lung injury in accord with
the trend of increasing neutrophils was quantified by Bayesian
inference analysis in COVID-19 patients. The transcriptome
signature of immune cells also indicated elevated neutrophil
markers in the lung and BALF samples of COVID-19 patients.

FIGURE 6 | PPI network of NETs associated genes in COVID-19 patients. The interaction between NETs associated genes with other neutrophil activated genes.
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Importantly, among the excessive neutrophil activated genes,
17 were NETs associated genes and these genes interacted with
T cells and NK cells through negative regulation. Therefore,
we posit that NETosis in lung tissue leads to an insufficient
anti-viral response in COVID-19 patients. We hope that future
studies will investigate the predictive power of circulating NETs
in well-phenotyped longitudinal cohorts.
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