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Immune activation within the tumor microenvironment is one promising approach to

induce tumor regression. Certain viruses including oncolytic viruses such as the herpes

simplex virus (HSV) and non-oncolytic viruses such as the lymphocytic choriomeningitis

virus (LCMV) are potent tools to induce tumor-specific immune activation. However, not

all tumor types respond to viro- and/or immunotherapy and mechanisms accounting

for such differences remain to be defined. In our current investigation, we used the

non-cytopathic LCMV in different human melanoma models and found that melanoma

cell lines produced high levels of CCL5 in response to immunotherapy. In vivo, robust

CCL5 production in LCMV infected Ma-Mel-86a tumor bearing mice led to recruitment of

NK cells and fast tumor regression. Lack of NK cells or CCL5 abolished the anti-tumoral

effects of immunotherapy. In conclusion, we identified CCL5 and NK cell-mediated

cytotoxicity as new factors influencing melanoma regression during virotherapy.
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INTRODUCTION

Melanoma accounts for the great majority of skin cancer related deaths. However, over the past
few years, immunotherapy has dramatically changed the landscape of melanoma treatment. The
immune system can directly attack tumor cells via tumor antigen-specific cytotoxic CD8+ T
cells, activated natural killer (NK) cells or antibody-mediated cytotoxicity (1). CD8+ T cells are
considered to be the main anti-tumor effectors and their contribution to tumor regression has been
shown to be of relevance in patients withmelanoma and lung carcinoma (2, 3). In contrast to CD8+

T cells, the role of NK cells in tumor regression has not been as thoroughly studied. Interestingly,
there are some studies demonstrating that NK cells play critical roles in reducing lung metastases
in mouse models (4–6). NK cells are not frequently detected within tumor biopsies (7), and in
melanoma, high levels of NK cell infiltrates generally correlate with strong tumor regression (7, 8).
Once NK cells are recruited into the tumor microenvironment, NK activating NKp46, NKp30,
NKp44, NKG2D and inhibiting KIR, NKG2A receptors can recognize and be activated by tumor
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cells (9, 10), leading to NK cell mediated cytotoxicity. Thus,
NK cells might play a role in eliminating melanoma cells
that are refractory to CD8+ T cell recognition through down-
regulation of antigen presenting machinery and other escape
mechanisms (11–13). Activated NK cells kill the target cells with
cytolytic granules including perforin, granzyme (A and B), and
granulysin (14). Despite the strong potential of NK cells to lyse
tumor cells, NK cells barely infiltrate into solid tumors (15–18),
indicating that new strategies to attract NK cells into the tumor
microenvironment need to be developed.

The chemokine (C-C motif) ligand 5 (CCL5; RANTES) is
crucial for maintaining several functions of T cells such as
survival (19), migration (20), and differentiation (21). In the
absence of CCL5, CD8+ T cells undergo enhanced exhaustion
which can exacerbates viral infections and decrease virus specific
CD8+ T cells (22). CCL5 is expressed in a wide variety of
cell types including immune cells. CCL5 is also a potent
chemoattractant for many cell types including monocytes, NK
cells (23), memory T cells (24), eosinophils (25), and dendritic
cells (26, 27). In melanoma, NK cell infiltration was shown to
be driven by secretion of high levels of CCL5 (7). How CCL5
production is induced in tumor tissues and whether it can
be modulated therapeutically remains to be elucidated. CCL5
expression has been detected in several tumor types including
ovarian (28), prostate (29), pancreatic (30), andmelanoma cancer
(31). It therefore represents an important chemokine in the field
of cancer biology which warrants further investigation.

The arenavirus lymphocytic choriomeningitis virus (LCMV)
is a non-cytopathic virus with immune mediated anti-tumoral
effects (32). Additionally, LCMV is known to activate NK cell-
mediated cytotoxicity (33–35). Using an in vivomodel of human
melanoma, we found that LCMV treatment resulted in strong
CCL5 production, NK cell infiltration and CCL5-dependent
immune-mediated melanoma regression.

RESULTS

Human Ma-Mel-86a Melanoma Cell Line
Produces CCL5 Following LCMV Infection
To determine immunological signals influencing
immunotherapy, we first tested the response of different
melanoma cell lines to LCMV treatment in vivo. Comparing
the three human melanoma cell lines in a murine xenograft
model, Ma-Mel-86c Ma-Mel-86a and Ma-Mel-51 (36, 37),
we found that LCMV infection strongly suppressed growth of
Ma-Mel-86a tumors (Figure 1A) and regressed tumor outgrowth
in case of Ma-Mel-86c (Figure 1B). However, LCMV infection
did not lead to a significant reduction in Ma-Mel-51 tumor
growth (Figure 1C). The strong anti-tumoral effects observed
with the Ma-Mel-86a cells were recapitulated by intratumoral
and systemic LCMV application (Supplementary Figure 1).
However, neither intratumoral nor intravenous application of
LCMV led to a significant reduction inMa-Mel-51 tumor bearing
mice. We hypothesized that a differential chemokine expression
profile might be responsible for the observed differences in
treatment efficiency between these cell lines. CCL5 is one

important chemokine, which has been described to enhance
tumor formation and progression, but also to have important
immune activating features in melanoma (31). Furthermore,
expression of CCL5 can be induced by Type I Interferon
(IFN-I) (38), which is highly induced following LCMV infection
(39). We therefore wondered whether CCL5 expression would
change in our model upon LCMV-WE infection. In vitro, we
detected enhanced CCL5 protein expression in Ma-Mel-86a
cells when compared to Ma-Mel-51 cells (Figure 2A). Upon
LCMV infection, LCMV propagated similar in Ma-Mel-86a
and Ma-Mel-51 cells (Figure 2B), suggesting that there is
difference between these cell lines which may affect virus
infection, replication or budding. Infection with LCMV further
increased CCL5 in Ma-Mel-86a cells, but not in Ma-Mel-51
cells (Figure 2A). RT-PCR and immunofluorescence further
confirmed the increased CCL5 expression in Ma-Mel-86a cells
following LCMV infection (Figures 2C,D). No substantial
differences in type I interferon (IFN-I) responses and expression
of interferon stimulated genes (ISGs) were observed between
Ma-Mel-86a, Ma-Mel-51, and other melanoma cell lines in vitro
(Supplementary Figure 2).

CCL5 Is Produced in Ma-Mel-86a Tumors
in vivo Upon Infection With LCMV
Next, we investigated whether LCMV therapy also induced
CCL5 production in Ma-Mel-86a tumors in vivo. Intratumoral
LCMV administration in Ma-Mel-86a tumors established in
NOD/SCID mice led to a significant upregulation of CCL5 at
the transcriptional level, while in Ma-Mel-51 tumor bearing
mice the CCL5 mRNA levels remained unchanged (Figure 3A).
We confirmed this data using immunofluorescence (Figure 3B).
Murine and human CCL5 proteins show differences in homology
between species (40), and RT-PCR primers and primary
antibodies used to detect human CCL5 do not cross react with
murine CCL5. Therefore, these experiments clearly demonstrate
that CCL5 was produced intrinsically by the xenografted human
melanoma cells. We concluded that the strong anti-tumoral
effects of LCMV in Ma-Mel-86a melanoma cells correlated with
enhanced CCL5 production in vivo.

CCL5 Is Functionally Important for
Antitumoral Activity
Next we wondered whether CCL5 production is functionally
linked to the observed anti-tumoral activity following LCMV
treatment. Therefore, we blocked CCL5 with Maraviroc, a CCR5
inhibitor used for the treatment of human immunodeficiency
virus (HIV) infection. Mechanistically, Maraviroc binds
to the transmembrane pocket of CCR5 and is a slow-
offset functional antagonist that prevents internalization
(41, 42). We treated tumor-bearing NOD/SCID mice with
Maraviroc and subsequently infected them with LCMV.
Administration of Maraviroc led to a slightly increased tumor
volume and combination therapy with LCMV diminished
LCMV’s anti-tumoral activity whereas LCMV treatment
alone significantly decreased tumor growth (Figure 4A). To
molecularly corroborate the phenotype, we made use of the
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FIGURE 1 | Human Ma-Mel-86a melanoma cell line produces CCL5 after LCMV infection. NOD/SCID mice were injected with 2 × 106 melanoma cells

subcutaneously in the left flank and once the tumor diameter was about 5mm, mice were infected with 2 × 106 PFU LCMV WE intratumorally or left untreated. Tumor

growth of Ma-Mel-86a (A; n = 4–5), Ma-Mel-86c (B; n = 3), and Ma-Mel-51 (C; n = 4) was monitored at the indicated time points.

FIGURE 2 | Human Ma-Mel-86a melanoma cell line produces CCL5 after LCMV infection. Ma-Mel-51 and Ma-Mel-86a cells were cultured in a 24 well plate at a

density of 2 × 105 cells/well and infected with LCMV WE (multiplicity of infection [MOI] 1). (A) Expression of CCL5 in the culture supernatant was assessed by ELISA

(n = 6). (B) Expression of LCMV nucleoprotein (green) was stained and analyzed by fluorescent microscopy (n = 4). (C) Expression of different chemokines was

checked by qRT-PCR (n = 6). (D) Expression of CCL5 (red) was stained and analyzed by fluorescent microscopy (n = 3). Data are shown as mean ± s.e.m.

Significant differences between the two groups were detected by unpaired two-tailed t-tests and are indicated as follows: ns, not significant; *p < 0.05; **p < 0.01;

***p < 0.001; ****p < 0.0001.

B16-Ova murine melanoma cell line overexpressing CCL5
(B16-Ova-CCL5) and compared them to control cells (B16-Ova-
Empty) following LCMV therapy. We found that overexpression
of CCL5 as well as LCMV treatment alone resulted in slightly
decreased tumor growth and extended survival as in LCMV
only treated mice (Figures 4B,C). We speculate that LCMV
treatment alone is potentially not sufficient to upregulate CCL5

expression in the B16 syngeneic melanoma model. However, the
combination of CCL5 overexpression and LCMV treatment was
highly effective in restricting the tumor and increasing survival
of mice (Figures 4B,C). These findings further suggest that
CCL5 is a critical factor for anti-tumoral activity induced by
LCMV. However, additional and yet unknown parameters might
be altered by LCMV.
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FIGURE 3 | CCL5 is produced in Ma-Mel-86a derived tumors in vivo upon infection with LCMV. NOD/SCID mice were injected with 2 × 106 Ma-Mel-86a or

Ma-Mel-51 cells subcutaneously in the left flank and once the tumor diameter was about 5mm, they were infected with 2 × 106 PFU LCMV WE intratumorally or left

untreated. qRT-PCR for chemokine expression in the tumor was analyzed on day 10 (A; n = 4). The expression data for each gene and cell line was normalized to the

corresponding control measurement. Mice were sacrificed on day 5 and day 12 after LCMV intratumoral injection and the expression of CCL5 (red) was analyzed by

immunofluorescence (B; n = 4). Data are shown as mean ± s.e.m. and analyzed by unpaired Student’s t-test. *P < 0.05.

CCL5 Induces NK Cell Mediated
Cytotoxicity
NOD/SCID mice lack a adaptive as well as some innate immune
responses but do have NK cells. Previously, it was shown in
a melanoma model that NK cell infiltration into the tumor is
mediated via CCL5 (7). We therefore wanted to investigate the
NK cell dependent cytotoxicity in our tumor model. Indeed Ma-
Mel-86a tumors showed strong NK cell infiltrates during LCMV

immunotherapy (Figure 5A). In contrast, Ma-Mel-51 tumors
demonstrated only limited NK cell recruitment (Figure 5A).
Next, we treated NOD/SCID gamma (NSG) mice, which lack NK
cells, with LCMV. Without infection, Ma-Mel-86a melanomas
grew considerably faster in NSG mice when compared to
NOD/SCID mice (Figure 5B). This indicates that in the absence
of LCMV infection, NK cell-mediated cytotoxicity plays an
important role during Ma-Mel-86a melanoma growth. When

Frontiers in Immunology | www.frontiersin.org 4 August 2020 | Volume 11 | Article 1849

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bhat et al. Arenavirus in NK-Cell Melanoma Regression

FIGURE 4 | CCL5 is important for anti-tumoral activity. (A) 2 × 106 Ma-Mel-86a melanoma cells were injected subcutaneously in the flank of NOD/SCID mice. One

group was treated with Maraviroc (50 mg/kg body weight/mice), another with the combination of Maraviroc and 2 × 106 PFU LCMV WE, the third group treated with

LCMV only and the last group was left untreated. Tumor growth was followed as indicated (n = 3). (B,C) 2 × 106 B16-Ova empty vector or B16-Ova-CCL5 cells,

overexpressing CCL5, were injected subcutaneously in the flank of C57B6 mice. Once the tumor diameter was about 5mm, they were infected with 2 × 106 PFU

LCMV WE intratumorally or left untreated. Tumor growth (B) and survival (C) were monitored (n = 4).

Ma-Mel-86a bearing NSGmice were infected with LCMV, LCMV
did not demonstrate anti-tumoral effects (Figure 5C). This
suggests that in the absence of NK cells, LCMV was not effective
as a viro-therapeutic agent. Next we analyzed the role of NK cells
on tumor regression in Ma-Mel-51 melanomas. In line with the
CCL5 expression, Ma-Mel-51 melanomas grew similarly in NSG
mice compared to NOD/SCID mice (Figure 5D), suggesting
that NK cells do not affect Ma-Mel-51 growth. Taken together,
we conclude that NK cells are recruited into the tumor tissue
after LCMV mediated tumoral expression of CCL5 and that the
NK cells exert strong anti-tumoral effects in the Ma-Mel-86a
melanoma cells. Administration of LCMV was effective in Ma-
Mel-86a tumors following intratumoral as well as intravenous
injection (Supplementary Figure 1), while no substantial effect
on Ma-Mel-51 tumors could be observed.

DISCUSSION

Talimogene laherparepvec (T-VEC), is a herpes simplex based
oncolytic virus that was recently approved for the treatment of
advanced melanoma (43). While complete response rates were
found to be relatively low, at around 10.8% (44), combination

therapy with PD-1 for instance, appears to increase this rate to
around 33% (45). However, a disadvantage of T-VEC is that it has
to be applied several times intra-tumorally into each metastasis
(44). There is a high demand for novel immuno-therapeutic
approaches to treat melanoma. In our study we examined
the effect of the non-oncolytic arenavirus LCMV in a mouse
melanoma model. Recently, it was shown that treatment of
several syngeneic or spontaneous murine and human xenograft
tumor models with LCMV resulted in regression (29) or
complete elimination of tumors (32). LCMV preferentially
replicated in tumor cells and metastatic sites leading to robust
immune infiltration. Importantly, IFN-I did not interfere with
LCMV replication within a tumor allowing for sustained innate
immune activation and clearance of LCMV from other organs.
There is a heterogenous response within and between tumor
tapes in terms of response to LCMV therapy. In the present
study we identified CCL5 production as one important factor
determining the efficacy of treatment of melanoma with LCMV.
However, it should be mentioned that in other studies, using
breast cancer models, CCL5 was shown to exert an opposing role
(7, 46). Therefore, we cannot draw any conclusions on the role of
CCL5 in other non-melanoma tumors.
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FIGURE 5 | CCL5 induces NK cell mediated cytotoxicity. (A) NOD/SCID mice were injected with 2 × 106 Ma-Mel-86a or Ma-Mel-51 cells subcutaneously in the left

flank. Once the tumor diameter was about 5mm, they were infected with 2 × 106 PFU LCMV WE intratumorally or left untreated. Mice were sacrificed on day 4 and

day 10 after LCMV WE injection and infiltration of NK cells (blue) was analyzed by immunofluorescence (n = 4). (B) NOD/SCID (n = 4) or NSG (n = 5) mice were

injected with 2 × 106 Ma-Mel-86a cells subcutaneously in the left flank. Tumor growth was followed. (C) NSG mice were injected with 2 × 106 Ma-Mel-86a cells

subcutaneously in the left flank and once the tumor diameter was about 5mm, they were treated with 2 × 106 PFU LCMV WE intratumorally or left untreated. Tumor

growth was followed (n = 4). (D) NOD/SCID and NSG mice were injected with 2 × 106 Ma-Mel-51 cells subcutaneously in the left flank and left untreated. Tumor

growth was followed (n = 4).

A strong positive correlation between the expression of CCL5
and the infiltration of NK cells into human melanoma biopsies
as well as various other solid tumors (47) was previously
demonstrated. Survival of patients with melanoma with a high
expression of CCL5 was increased (7, 8). Additionally, infection
with arenaviruses activates NK cell mediated cytotoxicity (15, 16),
and NK cell deficiency promotes tumor outgrowth, whereas
upregulation of NK cells inhibits tumor growth in different
models (7, 48). Melanomas are especially very sensitive to
NK cell mediated cytotoxicity (7, 49). Here we observed that
LCMV replication in tumor cells induces CCL5 production,
which in turn leads to a strong and robust anti-tumoral NK
cell cytotoxicity. We demonstrate that induction of CCL5 by
LCMV is specific for a subgroup of melanomas and that
transgenic expression of CCL5 in a melanoma cell line enhances
the responsiveness of LCMV therapy. This indicates that

additional mechanisms influencing the responsiveness to LCMV
therapy, exist.

In conclusion, we generated insight into the treatment
efficiency of viro- and/or immunotherapy of human melanoma.
As a similar correlation between CCL5, NK cells and tumor
regression can exist in patients, we believe that LCMV-mediated
immunotherapy is a new promising therapeutic approach
in melanomas.

MATERIALS AND METHODS

Viruses
The LCMV strain WE was kindly provided by Rolf Zinkernagel
(Institute of Experimental Immunology, ETH, Zurich,
Switzerland). LCMV was propagated in L929 cells, which
were purchased from ATCC (CCL-1).
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Cell Lines
Human melanoma cells lines Ma-Mel-86a, Ma-Mel-86c and
Ma-Mel-51 (36, 37), UKE-Mel-118b and UKE-Mel-118c were
established from melanoma metastases after patient written
informed consent and institutional review board approval. B16-
Ova-CCL5 (50) were described previously.

Mice
All animals were housed in single ventilated cages. Animal
experiments were authorized by the Landesamt für Natur,
Umwelt und Verbraucherschutz (LANUV) Nordrhein-
Westfalen and in accordance with the German law for animal
protection and/or according to institutional guidelines at the
Ontario Cancer Institute of the University Health Network.

Histological Analysis and
Immunofluorescence
Histological analyses were done on snap frozen tissue harvested
from tumor bearing mice. Briefy, sections were fixed with
acetone for 10min and non-specific antigens were blocked in PBS
containing 2% FCS for 15min. Staining for CCL5/RANTES was
done using anti-RANTES (ab 9679; lot GR5419-63); VL-4 to stain
LCMV or anti-NK1.1 (Cat 4322177 eBioscience). Antibodies
were diluted 1:100. After 1 h of incubation, sections were washed
with PBS containing 2% FCS and incubated for 1 h with
secondary antibodies (dilution of 1:100). After mounting (S3023,
Dako), images were acquired with a fluorescence microscope
(KEYENCE BZ II analyser). Immunofluorescence was performed
using cells grown on coverslips. Different human melanoma
cells (Ma-Mel-86a, Ma-Mel-51 and Ma-Mel-86c) were grown (2
× 105 cells per well in a 24 well plate) on cover slips. After
fixation with 4% Formalin for 30min, Triton X solution (1%)
was added and incubated for 20min room temperature for
permeabilization. After washing, 10% FCS in PBS was added per
well to block non-specific binding followed by a 1 h incubation.
Primary antibodies were added and samples were incubated for
1 h at room temperature. After washing, secondary antibodies
were added (1:100 dilution) followed by a 1 h incubation, washing
and mounting (S3023, Dako). Images were acquired with a
fluorescence microscope (KEYENCE BZ II analyser).

Reverse Transcription and Quantitative
RT-PCR
Total RNA was isolated by using TRIzol (Ambion), reverse
transcribed into complementary DNA using Quantitect Reverse
Transcription Kit (Qiagen) and analyzed by qRT-PCR using
the SYBR Green Master Mix (Applied Biosystems, Darmstadt,
Germany) or using TaqMan gene expression assay (Life
Technologies) Relative gene expression levels were calculated
using the 11Ct method.

Tumor Induction
Patient derived melanoma cells were maintained at 37◦C
with 5% CO2 in DMEM medium supplemented with 10%
heat-in-activated fetal calf serum (FCS), and 1% penicillin,
streptomycin and glutamine. Cells were injected subcutaneously

on the left flank of mice. Tumor size was determined by the
formula (L×W×W)/2, with L = length, W = width, on the
indicated days.

Inhibitor Treatments
For the In vivo Maravoric treatment, Mice were treated twice
a week with 50 mg/kg/mouse via oral gavage for a period of
3 weeks.

Statistical Analysis
If not mentioned otherwise, data are expressed as the arithmetic
mean ± SEM and n represents the number of mice or
independent experiments. Student’s t-test (two-tailed, if not
indicated otherwise) in case of normal distribution or in
case of multiple comparisons ANOVA, were used to detect
statistically significant differences. P-values of 0.05 or less
were considered statistically significant. Statistical analyses and
graphical presentations were computed with Graph Pad Prism
software (Graph Pad, La Jolla, USA).
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