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Kurzfassung

In der Regelungstechnik stützen sich traditionelle Methoden grundsätzlich auf das
mathematische Modell eines Systems, um geeignete Kontrollschemata zu entwerfen.
Zunächst muss das Modell erfolgreich entwickelt werden, dass das dynamische Ver-
halten des Systems unter bestimmten Betriebsbedingungen genau beschreibt. The-
oretisch können auf der Grundlage des angenommenen Modells der Reglerentwurf
und die Systemstabilitätsanalyse durchgeführt werden. In den letzten Jahrzehn-
ten wurde eine alternative Regelungsstrategie entwickelt, die die verfügbaren Input-
Output-Messungen des geschlossenen Regelkreises zur Analyse und zum Entwurf
von Reglern verwendet. Durch diese neuartige datengetriebene bzw. modellfreie
Regelungsmethode lässt sich der Aufwand für die Systemmodellierungsaufgaben
deutlich reduzieren. Darüber hinaus werden durch die direkte Verwendung der aktu-
alisierten Systemdaten die unbekannten zeitveränderlichen Parameter des gegebenen
Systems bzw. Prozesses in jedem Betriebspunkt kontinuierlich ermittelt. Diese ak-
tualisierten Parameter sind notwendig, um den erforderlichen Eingang für das zu
regelnde System zu bestimmen.

In dieser Arbeit wird eine in letzter Zeit entwickelte, datengetriebene Regelungsmeth-
ode, die als modellfreie adaptive Regelung (MFAC) bezeichnet wird, intensiv un-
tersucht, um weitere Verbesserungen der Regelungsleistung durch Anwendung der
Methode auf dem Gebiet der Schwingungsreduktion zu erzielen. Das Hauptprinzip
von MFAC ist der Ersatz der unbekannten komplizierten dynamischen Eigenschaften
des ursprünglichen (nichtlinearen) Systems durch ein äquivalentes linearisiertes Mod-
ell, dass auf den online aktualisierten Input-Output-Daten des Systems basiert. Da-
her wird das angenommene Systemmodell zu jedem diskreten Zeitpunkt während des
Systembetriebs aufgebaut. Um die Regelung zu entwerfen, sollten die identifizierten
Parameter aus dem lokalen dynamischen Modell explizit verwendet werden. In dieser
Arbeit werden verschiedene modifizierte/verbesserte MFAC-Strategien entwickelt,
die effektiv auf eine Klasse komplexer mechanischer Systeme zur Schwingungsre-
duktion angewendet werden können.

Herkömmliche MFAC-Verfahren verwenden oft einen konventionellen Projektionsal-
gorithmus, um die unbekannten Systemparameter des linearisierten Datenmodells
zu schätzen und zu aktualisieren. Um die Genauigkeit der Online-Ermittlung zu
verbessern, wird in dieser Arbeit der rekursive Algorithmus der kleinsten Quadrate
(RLSA) angewendet. Weiterhin kann die Nachlaufregelung des MFAC verbessert
werden, indem nicht nur die aktuellen Ausgangsfehleramplituden, sondern auch die
Fehlerschwankungen innerhalb eines Zeitintervalls fester Länge aus der Vergangen-
heit minimiert werden. Als Ergebnis wird eine modifizierte Regelung erzeugt.

Dabei wurde die dynamische Linearisierung in kompakter Form (CFDL) im MFAC-
Design auch als eine vereinfachte Technik für die Systemlinearisierung in Betracht
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gezogen. Das CFDL-Konzept wird in dieser Arbeit nicht nur auf das unbekan-
nte (nichtlineare) System, sondern auch auf einen angenommenen nichtlinearen
Regler angewendet werden. Anschließend wird eine linearisierte Reglerstruktur
abgeleitet, in der eine Matrix von unbekannten Reglerparametern geschätzt wird.
Durch den Vorschlag einer modifizierten Zielfunktion der Reglerparametermatrix
wird ein verbesserter Schätzalgorithmus für die Online-Aktualisierung dieser Pa-
rameter eingeführt. Darüber hinaus werden auf den Grundlagen der MFAC und der
verallgemeinerten Modellvorhersage-Regelung ein modifiziertes modellfreies adap-
tives prädiktives Regelungsprogramm erstellt, in dem RLSA und seine Modifikation
zur Parameterermittlung anstelle des traditionellen Projektionsalgorithmus imple-
mentiert wird.

Eine weitere dynamische Linearisierungstechnik heißt Partial-Form Dynamic Lin-
earization (PFDL), die im MFAC-Design für multivariable Systeme implementiert
ist. In dieser Arbeit wird eine verbesserte PFDL-basierte datengetriebene
Regelungsstrategie entwickelt. Es wird lokal ein Partialform-Datenmodell des Orig-
inalsystems konstruiert, das einen Satz unbekannter Parametermatrizen, also die
Pseudo-Jacobi-Matrix, enthält. Diese Matrizen werden rekursiv unter Verwendung
der gemessenen Eingangs-/Ausgangssignale des Systems aktualisiert. Zusätzlich
zu den bekannten Ansätzen wird in dieser Studie die Verwendung der Online-
Parameterschätzung auf der Grundlage der rekursiven Methode der kleinsten Quadrate
auf das PFDL-Modell umgesetzt. Zur Realisierung der Regelung wird eine modi-
fizierte PFDL-basierte Regelungseingangsgleichung vorgestellt, wobei die Minimierung
der Schleppfehlerdifferenz berücksichtigt wird.

Um die Wirksamkeit der Kontrolle zu verifizieren, werden die vorgeschlagenen Regler
verwendet, um die freien Schwingungen eines elastischen Schiffskrans zu reduzieren,
die durch die von Null abweichende Anfangserregung der Nutzlast verursacht wer-
den. Der Kran wird als ein typisches komplexes und flexibles System angesehen,
bei dem die Schwingungen des elastischen Auslegers und der Nutzlast in der Ebene
reduziert oder eliminiert werden müssen, um die Sicherheit des Kranbetriebs zu
erhöhen. Simulationsergebnisse zeigen, dass die Winkelverschiebungen der Aus-
gangssignale sowie die Nutzlast durch den Einsatz der modifizierten modellfreien
Regler innerhalb kurzer Zeit deutlich reduziert werden. Darüber hinaus arbeiten
die vorgestellen MFAC-Programme effektiv, und es werden bessere Regelungsergeb-
nisse erzielt, wenn mehrere Designreglerparameter im Vergleich zu konventionellen
Methoden variiert werden.
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Abstract

In control theory, traditional methods are basically relied on the mathematical model
of a plant to design suitable control schemes. First, the model has to be success-
fully developed which reflects precisely the system dynamic behaviors within certain
operating conditions. Theoretically, based on the true assumed plant model, the
controller design and system stability analysis can be carried out. On the other
hand, since the last few decades an alternative control strategy, which only utilizes
the available input-output information from the closed-loop system to analyze and
design controllers, has been proposed. This novel data-driven or model-free control
method can reduce efforts spending on the system modeling tasks. In addition, by
using directly the updated system data the unknown time-varying parameters of the
given system/process and design controller are estimated and corrected continuously
at each operating point. These updated parameters are necessary to determine the
required control input energy.

In this thesis, a recently developed data-driven control method called model-free
adaptive control (MFAC) will be intensively investigated to acquire further con-
trol performance improvements by applying the method to the field of vibration
reduction. The main principle of MFAC is replacement of the unknown complicated
dynamical characteristics of the initial (nonlinear) system by an equivalent linearized
model based on the on-line updated system input-output data. Hence, the assumed
system model is built up at each discrete-time instant during the system operation.
To design control, the identified parameters from the local dynamic model should
be utilized explicitly. This research will develop different modified/improved MFAC
strategies which can be effectively applied to a class of complex mechanical systems
for vibration reduction purpose.

Traditional MFAC often uses conventional projection algorithm to estimate and
update the unknown system parameters of the linearized data model. To improve
on-line estimation accuracy, in this thesis, recursive least-squares algorithm (RLSA)
will be applied. Furthermore, the tracking control performance of MFAC can be
improved by minimizing not only the current output error amplitudes, but also the
error variations within a fixed-length of time window from the past. As a result, a
modified control input law will be generated.

In addition, compact-form dynamic linearization (CFDL) has been considered in
MFAC design as a simplified technique for system linearization. In this work, the
CFDL concept will be applied not only to the unknown (nonlinear) plant but also to
an assumed nonlinear controller. Subsequently, a linearized controller structure is
derived, in which a matrix of unknown controller parameters needs to be estimated.
By proposing a modified objective function of the controller parameter matrix, an
improved estimation algorithm for updating these parameters on-line is introduced.
Moreover, based on the fundamentals of MFAC and generalized model predictive
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control, modified model-free adaptive predictive control programs are proposed, in
which RLSA and its modification can be implemented for parameter estimation
instead of using traditional projection algorithm.

Another dynamic linearization technique called partial-form dynamic linearization
(PFDL) is implemented to the MFAC design for multivariable systems. In this con-
tribution, an improved PFDL-based data-driven control strategy will be developed.
A partial-form data model of the original system is constructed locally which con-
tains a set of unknown parameter matrices namely pseudo-jacobian matrix. These
matrices are recursively updated by using the measured system input-output sig-
nals. In addition to known approaches, in this study, on-line parameter estimation
based on the recursive least-squares method is applied to the PFDL model. For
control realization, a modified PFDL-based control input equation is proposed by
considering minimization of the tracking error differences.

To verify control effectiveness, the proposed controllers will be executed to reduce the
free-vibrations of an elastic ship-mounted crane due to the non-zero initial excitation
of the payload. The crane is represented as a typical complex and flexible system, in
which the in-plane oscillations of the elastic boom and the payload must be reduced
or eliminated to increase the crane safety operation. Simulation results demonstrate
that, the angular displacements of the output signals as well as the payload are
reduced significantly within a short length of time by using the modified model-free
controllers. Additionally, the proposed MFAC programs work effectively and better
control results are obtained when varying several design controller parameters in
comparison with conventional methods.
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W Constant coefficient matrix
x,x1,x2 State vectors of the crane
∆x2 Global position of the payload in x-direction
y System output signal (scalar)
y System output signals (vector)
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ym Model system outputs (vector)
yd Desired system outputs (vector)
ym Measured system outputs (vector)
Y Vector of available output values
∆y2 Global position of the payload in y-direction

YNy , ỸNy Ny-step-ahead output prediction vector

Ȳ, Ỹ Matrices of unknown time-varying parameters
Yd
Ny

Predicted desired output vector within output prediction
horizon

α Design positive constant
α2 Angular displacement of the upper cable
β, β0 Orientation of the boom axis
γ Step-size constant
∆ Increment unit
ε Tracking error variations (vector)
η Step-size constant
δ Positive constant
θ Known linear or nonlinear data function
θ6 Angular displacement of the boom at node 6
λ, λk, λc1, λc2, λp Constant weighting factors
µ Step-size constant
∆δ Ship rolling
ρ, ρk, ρ1, ρp Step-size constants
∆ρ Displacement of the luff angle

φ, φ̂ System parameters (scalar)

Φ,Φp, Φ̂ Pseudo-Jacobian Matrix

Φp,L, Φ̂p,L Sets of Pseudo-Jacobian Matrices
Φc Pseudo-Gradient
φ2 Angular displacement of the payload cable

φ0
2, φ̇

0
2 Initial payload position and velocity

Γ Set of model coefficients
τ Constant design parameter

Υ̂ Vector of previous parameter PJM (PFDL)
ψ̄ Regression vector
ψ Vector of parameters

Ψ, Ψ̂ Pseudo-Partial Derivative
ω6 Angular displacement of the boom at node 6
Ω Vector of previous parameter PJM (CFDL)
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Abbreviations

CFDL Compact-Form Dynamic Linearization
CFDLc Controller-based Compact-Form Dynamic Linearization
DDC Data-Driven Control
FFDL Full-Form Dynamic Linearization
FIR Finite Impulse Response
FNN Feedforward Neural Network
iPID Intelligent Proportional-Integral-Derivative
IFT Iterative Feedback Tuning
ILC Iterative Learning Control
IIR Infinite Impulse Response
I/O Input/Output
iP Intelligent Proportional
iPI Intelligent Proportional-Integral
LLC Lazy Learning Control
MBC Model-based Control
MFAC Model-free Adaptive Control
MFAPC Model-free Adaptive Predictive Control
MFC Model-free Control
MFSMC Model-free Sliding Mode Control
MIMO Multi-Input Multi-Output
MISO Multi-Input Single-Output
MSE Mean Square Error
MPC Model Predictive Control
PA Projection Algorithm
PFDL Partial-Form Dynamic Linearization
PFDLc Controller-based Partial-Form Dynamic Linearization
PG Pseudo-Gradient
PI Proportional Integral
PID Proportional-Integral-Derivative
PJM Pseudo-Jacobian Matrix
PPD Pseudo-Partial Derivative
RLSA Recursive Least-Squares Algorithm
RNN Recurrent Neural Network
SISO Single-Input Single-Output
SMC Sliding Mode Control
SPSA Simultaneous Perturbation Stochastic Approximation
UC Unfalsified Control
VRFT Virtual Reference Feedback Tuning
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1 Introduction

1.1 Motivation and problem statement

In different fields of industry, automatic control techniques are necessary and have
gained many achievements with well-developed theories as well as broad successful
applications. The design of an appropriate controller satisfying some criteria like
high performance, simple structure, and robustness in sense of external disturbance
effects is extremely important with any modern industrial processes. Tradition-
ally, to design a control scheme for any unknown plant, modeling of the system
using first-principles, e.g., physical or chemical laws as well as dynamic identifica-
tion has to be done firstly. When the mathematical model of the considered system
is fully developed, many existing linear or nonlinear control methods including pole-
zero assignment control, linear quadratic regulator, optimal control, Lyapulov-based
control, etc. can be applied properly. However, in reality, most of practical systems
or processes are nonlinear under the impact of unknown perturbations. In addition,
many inevitable challenges still remain, so that control engineers have to encounter
in system modeling procedure such as unmodeled dynamics, high-order model, or
uncertainties. This leads to the emergence of robust/advanced or intelligent control
methodologies.

As a branch of advanced control theory, adaptive control has become one of the most
effective solutions to deal with dynamical changes or unknown internal/external dis-
turbances acting on the system. According to [ÅW08], an adaptive control struc-
ture has the ability of adjusting the controller or system parameters to adapt with
variations of the system operating conditions. Therefore, parameter adjustment
mechanisms have to be present in the adaptive control topology which are able to
estimate and update unknown controller parameters continuously (see Figure 1.1).
Several well-known adaptive control schemes, in which the adjustment mechanism is
explicitly implemented (model-reference adaptive control), or implicitly integrated
(self-tuning regulators) in the controller structure have been introduced [ÅW08].
Nowadays, adaptive control together with robust control are the two advantageous
tools to cope with parameter variations.

In recent years, due to the fact that the scale of actual industrial processes has been
enlarged, control design of such complicated systems might be a challenging task.
Additionally, with the enhancement of information technology, a very huge amount
of the system input-output (I/O) information which is generated and stored in the
system database during operation, is available. This brings to an innovative idea of
using the valuable knowledge from the closed-loop system I/O data to analyze and,
consequently, design a suitable control scheme. Therefore, a novel method so-called
data-driven control (DDC) [HW13] has been introduced and received increasingly
attention because by applying that, many efforts spending on modeling procedure
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Figure 1.1: Block diagram of an adaptive control system (redrawn based on
[ÅW08]).

can be avoided. To design a suitable controller for unknown (nonlinear) systems,
only the measured (or calculated) system I/O signals are utilized. This means
that every related model-based control difficulties, e.g., unmodeled dynamics, model
uncertainties, nonlinearities, might be ignored in DDC. As discussed in [HJ13], the
DDC strategies can be applied in case when the desired system dynamic model is
extremely complicated with very high order, or involved nonlinearities. Furthermore,
the control method is particularly useful when the plant model is not available (see
Figure 1.2). Up to now, several data-driven control strategies have been proposed for
both single-input single-output (SISO) and multiple-input multiple-output (MIMO)
nonlinear systems such as model-free adaptive control [HH97], iterative learning
control [BTA06], virtual reference feedback tuning control [GS00], etc. Further
details related to the mentioned DDC methodologies are discussed in Chapter 2.

Vibrations often occur in mechanical flexible structures, and they are normally dis-
advantageous. To reduce or eliminate undesirable vibrations, especially for complex
mechanical systems, modified or novel control strategies need to be investigated. In
active vibration control, controller design methods are implemented to provide exter-
nal control input signals acting on the vibrating systems via actuators [WN15]. On
the other hand, another method to reduce unexpected vibrations in flexible systems
is using additional damping or changing the stiffness of the system configurations.
This method is known as passive vibration control [WN15].

As a typical flexible system, cranes are commonly used for lifting, lowering, or
transferring cargo in many fields of industry like factories, ports, or construction.
They can boost the performance of cargo transportation as well as reducing involved
human activities. Cranes often operate under undesirable working conditions, e.g.,
heavy load, varied cable length, wind force. Structural oscillations are frequently
observable, particularly in boom cranes which might lead to dangerous situations in
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Figure 1.2: Objectives of data-driven control (redrawn based on [HJ13]).

the system operation. Therefore, research in vibration control with applications to
elastic crane systems is highly motivated. Generally speaking, in most of the existing
vibration control approaches for cranes, establishment of an accurate mathematical
model which is assumed to reflect precisely the crane dynamic behaviors should be
the initial step. Afterwards, a suitable control scheme can be designed depending
on the true developed model. As discussed before, DDC or model-free control shows
advantages which can be applied to crane control for reduction of the modeling task.
Up to now, lack of model-free-oriented researches have been considered for vibration
control problems of mechanical flexible systems, in particular for cranes.

Model-free adaptive control (MFAC) [HJ13] is represented as an effective DDC
method. The key idea of this approach is linearization of the unknown system
dynamics by an input-output related system model. This kind of local linearized
model contains unknown time-varying parameters which can be adaptively adjusted.
The system parameters are estimated and updated on-line by using only the avail-
able I/O data, and therefore, the assumed model is corrected consequently. Detail
discussion regarding this kind of DDC control will be further illustrated in Chapter
2. From the author’s point of view, potential aspects for modification of the MFAC
design are related to on-line parameter estimation and control input calculation.
Therefore, development of the modified/improved MFAC methods with application
to vibration control of complex and flexible systems is crucial to guarantee the con-
trol expectations, e.g., satisfied efficiency, easy implementation, or low price.
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1.2 Aims of this work

Motivated by several prospective aspects of DDC and MFAC as analyzed in the
preceding section, this work aims to develop different data-driven control schemes
based on the main theory of MFAC, and apply to vibration control of multivari-
able flexible systems. In general, MFAC often utilizes on-line parameter estimation
algorithms to estimate and update unknown system parameters. Projection al-
gorithm has been commonly applied to parameter estimation because of its simple
structure. Beside that, other optimal on-line estimation algorithms such as recursive
least-squares and its modifications can be further investigated to improve estimation
accuracy of the model-free adaptive controllers. Moreover, to linearize the nonlinear
system, the compact-form or partial-form dynamic linearization techniques can be
implemented. The task of system identification is transferred into the adaptation
of linearized model parameters to cope with the system dynamic changes based on
the updated system I/O values. For control realization, traditional model-free con-
trol design uses the criteria of future output error minimization considering control
input limitation. In this contribution, the output error variations within a prede-
fined length of time window are considered in the control input objective function
to improve overall tracking control performance. With respect to the intended elas-
tic crane example as mentioned earlier, vibrations in cranes should be reduced or
eliminated for safety reasons. To this end, the proposed control approaches will be
applied to the elastic ship-mounted crane which is represented as a typical flexible
system. The control target would be reduction of the in-plane vibrations of the
elastic boom and the payload due to the non-zero initial excitation of the payload.

1.3 Thesis organization

This thesis consists of six chapters. Some main parts of the thesis have been pub-
lished in the following conference proceedings [PS19a], [PS19b], [PS20a], [PS20c],
[PS20d], or preparing as journal contributions [PS20b], [PS20e].

In the current chapter, introduction to traditional model-based control as well as
data-driven control have been presented. The main control target of the work is vi-
bration reduction of complex mechanical systems, specifically a ship-mounted crane
using the modified MFAC methods. Therefore, several existing challenges in the
field of vibration control related to cranes were illustrated.

In the next chapter, fundamental theories and literature review of different model-
free control methods are discussed in detail. Four categories of the data-driven
control principle are considered which cover most of the existing model-free control
approaches. In addition, a variety of vibration control techniques focusing on cranes
as well as some detail discussions with respects to data-driven and vibration control
are given.
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Chapter three dedicates to design of improved MFAC schemes for MIMO nonlinear
systems using recursive least-squares estimation algorithm and the modification of
control input calculation.

Chapter four concentrates on design of modified CFDL- and PFDL-based model-
free adaptive controllers. A linearized controller structure is established, in which
the unknown time-varying controller parameters can be recursively estimated via
a modified algorithm which is proposed to improve on-line estimation accuracy.
Furthermore, based on the principles of MFAC and model predictive control, modi-
fied/improved model-free adaptive predictive control programs will be discussed by
utilizing explicitly the CFDL and PFDL concepts.

In the fifth chapter, an improved MFAC structure which applies the PFDL technique
to the unknown nonlinear system will be introduced. The recursive least-squares
approach can improve the estimation performance of a set of unknown system pa-
rameter matrices. As an illustrative example, the proposed control strategies in this
thesis are implemented to a ship-mounted crane for vibration reduction purpose.

Finally, some main control ideas and conclusions from the discussed results together
with suggested future works are outlined in the last chapter.
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2 Fundamental theories and literature review

This chapter1provides the theoretical background and literature review of model-free
or data-driven control. Four categories of data-driven control are known including
on-line, off-line, or hybrid data usage together with model-based in combination with
model-free control. Several vibration control approaches of flexible structures with
the focus on crane control will be briefly discussed. A literature research in various
control design techniques for different types of crane will be conducted. Furthermore,
discussion about the selected model-free and vibration control methodologies are
presented. Finally, the main ideas illustrated in this chapter are summarized in the
last section.

The content, figures, and tables in this chapter are mainly based on the prepared
journal papers [PS20b, PS20e] as well as the peer-reviewed conference papers [PS19b,
PS20a, PS20c, PS20d]. Some of them in the conference papers have been partly
modified in this chapter after previous publications.

2.1 Introduction to model-free/data-driven control

Design of automatic control systems has been extremely important in any field of
science and technology since many decades. Nowadays, most of common control the-
ories applied in control engineering can be divided into three classes namely classical
control, modern control, and robust or advanced control [Oga10]. In modern control
theory, modeling or identification of a linear/nonlinear object and its (time-varying)
parameters can be conducted by using the first principles or the available system I/O
data [Kir04]. Based on physical or chemical principles, a mathematical model of the
considered system can be successfully achieved through the establishment of system
dynamic equations. On the other hand, most of existing system identification tools
rely entirely on the observed system data information to develop an I/O related
plant model. Many well-known techniques for system identification can be found in
the following textbooks [GS14, Lju99, VV07]. In general, the aforementioned con-
trol method is known as model-based control (MBC), in which a relatively accurate
global dynamic model of the plant needs to be established firstly. Then, a suitable
controller can be analyzed and designed depending on the assumed true dynamic
model of the original system. With the development of science and engineering, the
scale of industrial systems/processes is significantly enlarged, and becoming more
complicated. In addition, due to the fact that most of systems in reality are highly
nonlinear in the presence of unmodeled dynamics, uncertainties, or unknown ex-
ternal disturbances. Consequently, control of such systems is really a challenging

1Mathematical symbols are exclusively implemented to illustrate the content of the current
chapter and will not be commonly applied to further chapters.
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task. This leads to the next generation of control technology called robust/advanced
control [SL91, Kha02]. From the 1950s up to now, many useful robust or advanced
control methods have been proposed and applied successfully to both academia as
well as industry such as adaptive control [ÅW08, IS12], model predictive control
[CBA04, GP11], sliding mode control [Utk77, You78], etc. By applying the above
model-based advanced control theories, the design closed-loop system can guarantee
the two following properties: robust stability and robust performance [Oga10].

Since the last few years, because of the enhancement of information technology as
well as industrial processes, e.g., chemical industry, machinery, mechatronics, trans-
portation, a very huge amount of off-line or on-line I/O data which reflect precisely
dynamical behaviors of the controlled process during operation can be generated and
stored. This arises the idea of using directly these valuable data collected from the
system to design suitable controllers. Therefore, an alternative solution to deal with
control design, especially for unknown nonlinear systems has been explored recently
called data-driven control (DDC) or model-free control (MFC). The fundamentals
of MFC/DDC2is that, the desired controller can be completely investigated and im-
plemented by using only on-line or off-line I/O signals from the closed-loop system
without any explicit information related to model structure or modeling process.
Hence, the unexpected model-based characteristics such as unmodeled dynamics,
uncertainties, or nonlinearities that have to be addressed in MBC, are completely
disappeared in MFC or DDC.

Regarding to the state-of-the-art MFC, to give an overview in terms of definition,
classification, and discussion about some of the existing MFC approaches as well as
related applications, a brief survey from MBC to MFC has been comprehensively
reviewed in [HW13]. In addition, two effective DDC strategies namely model-free
adaptive control and iterative learning control were discussed in [HCG17] includ-
ing different dynamic linearization techniques. Moreover, many other data-driven
control methods have been proposed since years to illustrate their potential feasibil-
ity. For example, in [YTY09, FJ13] novel intelligent proportional-integral-derivative
(iPID) controllers were designed which shown improved control effectiveness in com-
parison with traditional PID control because the design controller parameters are
changeable. Another branch of DDC which uses the stochastic approximation algo-
rithm to estimate unknown system parameters based on the system measurements
was introduced in [SC93, SC98]. Some further innovations in modification and de-
sign of DDC algorithms were presented. For instance, in [BWHQ18] the problem of
control design for non-affine nonlinear systems with output saturation has been an-
alyzed and solved. To cope with the linear quadratic tracking problem with delays,
a data-driven adaptive dynamic programming algorithm was proposed in [LZYQ18]
which explicitly uses the system input, output, and the reference trajectory to realize
controllers. Regarding to tracking control problem of linear discrete-time systems,

2Model-free control and data-driven control are with the same meaning from now.
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the idea of data-driven predictive control has been intensively discussed in [IFH01].
By using numerical iteration method, optimal controllers were designed in [ZXW15].
In the field of control design for marine systems, a MFC approach called unfalsified
control [HPO18] has been applied to deal with the problems of dynamic positioning
of marine vessels affected by unknown external disturbances. Regarding to vibra-
tion control of flexible structures, several novel data-driven control strategies have
been proposed in [XSBS18, XWSS18]. Beside applications to control design, data-
driven methods can be implemented to process monitoring and fault diagnosis for
large-scaled industrial processes [YDXL14].

From the above literature observation, one conclusion can be drawn that, DDC/MFC
might be applied in cases when the mathematical model of a system is with very
high order, and contains unknown nonlinearities or uncertainties. Other situations,
in which using DDC/MFC would be beneficial, are when establishment of a global
dynamic model of the plant is very challenging or even not possible.

Data-driven control

On-line data usage

MFAC UC

Off-line data usage

iPID IFT VRFT

Hybrid data usage MBC combined MFC

ILC LLC MFAPC MFSMCSPSA

Figure 2.1: Classification of the discussed model-free control methods

MFAC: Model-free Adaptive Control
SPSA: Simultaneous Perturbation Stochastic Approximation
UC: Unfalsified Control
iPID: Intelligent Proportional-Integral-Derivative
IFT: Iterative Feedback Tuning
VRFT: Virtual Reference Feedback Tuning
ILC: Iterative Learning Control
LLC: Lazy Learning Control
MFAPC: Model-free Adaptive Predictive Control
MFSMC: Model-free Sliding Mode Control

Up to now, different ways to classify MFC/DDC exist, such as according to which
kind of data usage [HJ13], the analyzed control algorithms, or the structure of the
model-free controller used [HW13]. Within the main contexts of this thesis which
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are primarily related to the modified/improved MFAC strategies, and a combina-
tion of model-based predictive control and model-free adaptive control as well as
to provide a comprehensive overview of MFC based on off-line or on-line data from
the system, the selected MFC methods are categorized into four classes as illus-
trated in Figure 2.1. Regarding to on-line MFC, three outstanding methods will
be addressed including model-free adaptive control [HH97], simultaneous perturba-
tion stochastic approximation data-driven control [Spa92], and unfalsified control
[ST97], in which the main theory of model-free adaptive control and related appli-
cations will be mainly focused. In off-line DDC, the representative methods include
PID/iPID [ÅH95], iterative feedback tuning control [Hja02], and virtual reference
feedback tuning control [GS00]. The other MFC strategies which require both on-
line and off-line system data (so-called hybrid data usage) compose of iterative
learning control [ACM07], and lazy learning control [SA94]. Finally, based on the
author’s observation from recent publications in the model-free control field, the
last group would be the combination of MBC and MFC which is represented by
model-free adaptive predictive control [Ste99], and model-free sliding mode control
[LY18]. In the next sections, discussion about the main principle, characteristics,
and well-known applications of the mentioned MFC/DDC approaches will be illus-
trated. Based on that, a research gap between the current developed researches and
the remaining open points in MFC/DDC can be recognized. As a result, proposed
ideas for control improvements are mentioned. Detail discussion about the literature
analysis is described in Section 2.7 of this chapter.

2.2 On-line data-driven control

The on-line DDC methods require the updated system I/O values which are deter-
mined up to the current time instant to estimate the unknown parameters of the
linearized system model or the design controller. As illustrated in [GS14], the on-line
data-driven algorithms often deal with sequential data. Therefore, these unknown
(time-varying) parameters are recursively estimated within a sampling period of
time. Some of the effective control approaches belonged to this group, including
model-free adaptive control, SPSA-based model-free control, and unfalsified control
will be briefly reviewed in this section.

2.2.1 Model-free adaptive control

One of the most outstanding MFC approaches namely model-free adaptive control
(MFAC), which is based merely on the usage of on-line measurable data from the
controlled process to realize control action, has been widely investigated in recent
years. The main principle of MFAC is replacement of the complicated dynamical
characteristics of the unknown nonlinear system by an equivalent linearized model
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based on the closed-loop system I/O data [HH97]. In more detail, at every sam-
pling instant during the system operation (in discrete-time) a virtual local dynamic
model of the system is assumed to be established which contains unknown param-
eters. Up to now, different dynamic linearization techniques such as compact-form,
partial-form, or full-form dynamic linearization [HJ13] have been developed to dy-
namically improve the quality of the assumed data model. The model parameters
are time-varying, and can be estimated or updated recursively at each time instant
by using the previous system input and output values. For control implementation,
an objective function with respect to minimization of the future output tracking er-
rors should be considered. Subsequently, based on the corrected system parameters
and the current control errors, the control input signals are computed analytically.
As mentioned before, several dynamic linearization techniques for system approxi-
mation in MFAC design have been introduced. In the compact-form dynamic lin-
earization (CFDL) data model, all nonlinear properties and model estimation errors
are fused into a scalar parameter (pseudo-partial derivative) for SISO systems, or a
parameter matrix (pseudo-jacobian matrix) for MIMO systems. On the other hand,
by applying the partial-form dynamic linearization (PFDL), or full-form dynamic
linearization (FFDL) techniques, a set or different sets of unknown system parame-
ter matrices (see Chapter 5 for the PFDL concept) have to be identified. Therefore,
compared to the CFDL model, the system dynamic behaviors in the last two cases
may not be extremely complicated. As discussed in [HJ13], MFAC possesses sev-
eral attractive properties compared to MBC. First, only the available closed-loop
system I/O data are used to analyze and design controllers. There is no informa-
tion about structural model or involved model uncertainties. Second, MFAC does
not require any external testing signals as well as training processes. Furthermore,
MFAC may have simple structures leading to low computational load. Finally, the
I/O stability, output error convergence, and robustness of the MFAC algorithms can
be guaranteed under some reasonable pre-required assumptions.

In this thesis, different modified model-free adaptive control algorithms will be de-
signed to control a class of discrete-time MIMO nonlinear systems. A general I/O
description of the unknown system is written as

y(k+1) = g (y(k),y(k − 1), . . . ,y(k −my),u(k),u(k − 1), . . . ,u(k −mu)) , (2.1)

where y(k) ∈ Rr,u(k) ∈ Rm are the current system output and control input
vectors, respectively. Here, my and mu denote the unknown system orders. The
number of system inputs and outputs are indicated as m and r, correspondingly;
whilst g(. . .) is an unknown nonlinear vector-valued function. The nonlinear system
(2.1) which satisfies some preliminary assumptions as mentioned in [HJ13], with
‖∆u(k)‖ 6= 0,∆u(k) = u(k) − u(k − 1) or ‖∆U(k)‖ = ‖U(k)−U(k − 1)‖ 6=
0, where ∆U(k) = [∆u(k),∆u(k − 1), . . . ,∆u(k − L+ 1)]T and a control input
linearization length constant L ≥ 1, can be linearized locally at each time-step
during the system operation as the CFDL and PFDL models [HJ11a], or the FFDL
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model [YHZ18]. Based on the CFDL concept, the obtained linearized data model
is described as

∆y(k + 1) = Φ(k)∆u(k), (2.2)

which contains the unknown time-varying parameter matrix Φ(k) called pseudo-
jacobian matrix (PJM), with ∆y(k + 1) = y(k + 1) − y(k). The structure of the
PJM in MIMO case is written as

Φ(k) =


φ11(k) φ12(k) φ13(k) . . . φ1m(k)
φ21(k) φ22(k) φ23(k) . . . φ2m(k)

...
...

...
. . .

...
φr1(k) φr2(k) φr3(k) . . . φrm(k)


r×m

, (2.3)

assuming ‖Φ(k)‖ ≤ b according to assumption 2 (see Chapter 3), with b > 0; that
means the PJM Φ(k) is upper bounded at any time instant k.

According to [HJ13, HJ11a], to design a MFAC program for MIMO nonlinear sys-
tems the following steps have to be implemented:

• Step 1: Select one of the three existing dynamic linearized data models or three
aforementioned dynamic linearization techniques including CFDL, PFDL, and
FFDL

• Step 2: Estimate and update the unknown system parameters of the linearized
data model (2.2) by using only the available system I/O data

• Step 3: Design MFAC algorithms based on the estimated model parameters
and the current control errors

• Step 4: Calculate the time-varying system parameters repeatedly from step 2
by utilizing the updated system I/O information

A general MFAC scheme for unknown MIMO systems is shown in Figure 2.2 [PS19b].
In literature, a variety of MFAC strategies have been proposed together with many
successful applications in control of both SISO and MIMO (nonlinear) systems. The
state-of-the-art MFAC including different dynamic linearization techniques were pre-
sented in [HX19]. The authors focused on design of a FFDL-MFAC scheme with
the closed-loop system stability analysis for a class of SISO nonlinear systems. In
[HB11], the problem of data dropout which possibly occurs when implementing
MFAC experiments was investigated. In addition, design of a receding horizon
near-optimal tracking control program considering full unknown system dynamics
in both of the state feedback and input channels was introduced in [ZLL18]. Fur-
thermore, several novel MFAC approaches have been published in recent years such
as [LHT+19, BHZ18, ZH14, XJL16, JLT17, LY17, LDJ19, TBT18]. In [CPSC10,
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Figure 2.2: General model-free adaptive control scheme [PS19b]

CC09], model-free learning adaptive controllers based on pseudo-gradient concepts
and optimization were designed for SISO nonlinear systems. By using the PFDL
technique, many improved MFAC schemes have been proposed with experimental
verification as given in [HJ11b, HJ08]. In term of MFAC design for MIMO sys-
tems, by using multi-observer models to linearize the unknown nonlinear system, a
novel MFAC program has been discussed in [XJS14] with Lyapunov-based stability
analysis. Additionally, by applying the CFDL and PFDL concepts not only to the
nonlinear process but also to an assumed ideal controller, novel MFAC algorithms
denoted as CFDLc or PFDLc-MFAC have been proposed in [ZH12, ZH15, HZ13]
for SISO nonlinear systems in the presence of unknown disturbances.

2.2.2 Simultaneous perturbation stochastic approximation-based (SPSA)
model-free control

To deal with the problem of finding optimal roots in the minimization procedure
of a loss (cost) function, J. C. Spall et al. [Spa92, SC98] have proposed a novel
method called simultaneous perturbation gradient approximation in the presence of
noisy measurements. For adaptive control design of a class of unknown nonlinear
systems, only the available system I/O data are utilized to approximate the non-
linear system dynamics via neural network or polynomial as well as to estimate the
time-varying controller parameters [HJ13]. Since the optimal controller parameters
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derived from minimization of a control performance criteria, an adaptive control law
can be defined from the knowledge of the system I/O information.

To give an overview of the SPSA-based control method, as discussed in [SSSN08] a
MIMO nonlinear system description is considered in discrete-time as

y(k) = f(k − 1) + u(k − 1) + d(k), (2.4)

where y(k),u(k) ∈ Rm are the system output and control input vectors, respec-
tively, and m is indicated as the dimension of the system I/O variables. Here
f(k − 1) = f (y(k − 1),y(k − 2), . . . ,y(k − p),u(k − 2),u(k − 3), . . . ,u(k − q), θ∗)
is a dynamical nonlinear function of the previous system I/O signals, with p, q are
the numbers of time-delayed plant outputs and inputs, correspondingly. The vector
of ideal weighting parameters is denoted as θ∗. The overall bounded noise vector of
the system is indicated as d(k). According to [SSSN08], the control input vector is
defined as

u(k − 1) = −f̂(k − 1) + yd(k) + ςs(k − 1), (2.5)

where f̂(k − 1) = f̂(k− 1, θ̂(k− 1)) is an approximation of the unknown nonlinear
function f(k− 1) by using the estimated parameter vector θ̂(k− 1). The reference
output vector is denoted as yd(k), while s(k−1) is the output tracking error vector,
with s(k − 1) = y(k − 1)− yd(k − 1). The design control parameter is denoted as
ς. The estimation error vector of the SPSA-based model is defined as follows

e(k) = s(k)− ςs(k − 1), (2.6)

e(k) = f(k − 1)− f̂(k − 1) + d(k). (2.7)

The target is to find the closest root θ̂(k− 1) that is an approximation of the ideal
weighting vector of the following gradient equation

min g(θ̂(k − 1)) = min
∂L(θ̂(k − 1))

∂θ̂(k − 1)
, (2.8)

where

L(θ̂(k − 1)) =
1

2

∥∥∥f(k − 1)− f̂(k − 1)
∥∥∥2

, (2.9)

is the cost function of the SPSA.

The SPSA algorithm for updating θ̂(k) is written in a recursive formula according
to [SSSN08] as

θ̂(k) = θ̂(k − 1)− α(k)ĝ(θ̂(k − 1)), (2.10)
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Figure 2.3: Block diagram of the SPSA-based model-free control (redrawn based
on [SSSN08])

where α(k) is denoted as an adaptive learning rate, and ĝ(θ̂(k − 1)) is a gradient
approximation of the cost function L(θ̂(k−1)) in (2.9). The given control method is
called simutaneous perturbation stochastic approximation-based model-free control.
A block diagram of MFC using the SPSA approach is shown in Figure 2.3 [SSSN08].

Some of successful applications using the SPSA-based control method can be men-
tioned such as [SS98], in which the authors proposed a SPSA-based optimal distri-
bution to deal with the problem of the optimal choice of random perturbations. In
[MC08], J. L. Maryak et al. considered the theoretical and numerical global opti-
mal convergence of the SPSA algorithm. Two novel theorems have been introduced
which can lead the SPSA to a global optimizer. Furthermore, O. Granichin et al.
[GA15] discussed the challenging problems of non-stationary optimization under ob-
servations with unknown but bounded noise. The obtained results reveal a finite
bound of the differences between estimates and unknown time-varying parameters.

2.2.3 Unfalsified control

An adaptive robust control method called unfalsified control, in which only the plant
I/O data are needed to determine an appropriate control law for unknown dynamic
systems, will be briefly reviewed. This novel control approach was firstly developed
by M. G. Safonov et al. in [ST97, ST95].
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For a set of system measurement information M, with M ⊂ U×Y, that contains
a measured point of the system I/O data (u0, y0) ∈M, a control law K∗ ∈ KOK is
said to be an unfalsified control law with the knowledge of (u0, y0) ∈M if and only
if, for any system data point (u1, y1) ∈M

(K∗ ∩ {(r, y, u) ∈ R×Y×U|r ∈ R, y = y1, u = u1}) ⊂ T̃spec, (2.11)

where r, y, u are indicated as the reference, output, and demanded control input
which belong to the corresponding R,Y,U-planes. A performance specification set
is denoted as T̃spec ⊂ R × Y ×U. Here, KOK ⊂ K0 is a subset of those control
laws K∗ whose ability to meet the specification T̃spec is unfalsified by the given
measurement data M according to [ST95]. A general feedback control scheme is
depicted in Figure 2.4. The control goal here is to determine the control law K∗ for
the unknown plant P, so that the closed-loop system response satisfies the special
performance requirement T̃spec. The theoretical idea behind of unfalsified control
is that, sets of controller parameters and/or control laws are falsified recursively by
using only the system I/O data without any information related to the plant model.
At each time instant k, the updated system I/O values will be utilized to evaluate
the controller set before it can be inserted into the closed-loop system. Further detail
information related to the control theorem and its proof can be found in [ST97].

Based on the fundamentals of unfalsified control above, several improvements of the
method in terms of adaptive and robust control problems have been discussed in
literature. For example, a data-driven robust control design was proposed in [Saf03]
by applying the basis of the unfalsified control principle. In [CS04], an ellipsoid
algorithm has been applied to approximate an unfalsified set. As a result, a set of
unfalsified controller candidates could be found because of decreasing the volume
ellipsoid. Furthermore, in [PS03] a general model reference adaptive control problem
was illustrated using the unfalsification approach. A switch controller model-based
system was generated for selection of candidate controller set. Regarding to input-
output stability of a closed-loop system, an unfalsified adaptive switching control law
under some environmental noises has been introduced in [BMST10]. In addition, an
unfalsified control-based application to nonlinear robot manipulator was presented
in [TS99]. Here, a novel control law has been designed to adaptively adjust different
unknown time-varying parameters of the robot arm, especially in case of sudden
changes in mass or load values of the system. A robust switching missile autopilot
was investigated in [BFS98] by using the concept of unfalsified control. Hence, a
novel algorithm to compute the fictitious reference signal has been proposed that
leaded to the reduction of some mathematical calculations.

2.3 Off-line data-driven control

In the group of off-line data-driven control, the controller parameter estimation algo-
rithms utilize explicitly the calculated or measured I/O data which have been stored
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Figure 2.4: General feedback control scheme (redrawn based on [ST95])

in the system database. Therefore, a complete block of data information which is
available for analysis, and no strict time limit on the process of analysis [GS14],
are defined. In this section, three well-known off-line data-driven control methods
including: i) traditional/intelligent PID, ii) iterative feedback tuning control, and
iii) virtual reference feedback tuning control, are discussed.

2.3.1 Traditional/intelligent PID control

Nowadays, in most of actual controlled systems more than 95% of control loops are
related to PID types. As introduced in [ÅH95], the PID controller possesses several
advantageous properties. First, it provides feedback, and has the ability to eliminate
steady-state offsets because of its integral part. Second, the control method can an-
ticipate the future through derivative action. In addition, the controller structure
is quite simple, and easy to be applied in most of practical applications. Finally,
the PID controller can be implemented by using only the system I/O information.
In PID control design, the optimization of parameter tuning process is highly mo-
tivated. Up to now, there is a plenty of analytical and practical methodologies for
automatic tuning PID controller parameters as well as for adaptive adjustment cor-
responding with the variations of the system operation conditions. Regarding to
the state-of-the-art PID control, the authors in [ÅH01] have discussed some main
issues with respect to PID control problems such as specifications, stability, de-
sign, and applications as well as proposing several alternatives for PID control in
the future. In [ACL05], K. H. Ang et al. presented an overview of the three-term
functionalities for design and tuning PID control in patents, software packages,
and commercial hardware modules. It provided a standardizing and modularizing
PID control scheme for practical implementations. Furthermore, a survey of dif-
ferent adaptive techniques for tuning single-loop PID controller parameters such as
gain scheduling, automatic tuning, or continuous adaptation has been introduced in
[ÅHHH93]. Moreover, a survey of current tuning methods focusing on some novel
auto-tuning procedures of PID controllers was presented by R. Gorez [Gor97]. In
addition, in [LD01] three strategies for optimal-tuning of PID controller parame-
ters were proposed. The controlled system was considered in cases of appearing
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time-varying dynamics, or changing the system operating points. As an example
of parameter-adaptive digital controller applications, a novel adaptive self-tuning
PID control program [RI87] has been introduced which is based on a microprocessor
controller. In [SDPB05], a robust PID control program was developed and applied
to a programmable logic controller. The results of the paper demonstrated that
the proposed method could be used as an effective solution for control design of
nonlinear systems with perturbed parameters.

A standard PID control algorithm is illustrated in the following formula

u(t) = K

e(t) +
1

Ti

t∫
0

e(τ)dτ + Td
de(t)

dt

 , (2.12)

where u(t) is the control variable, and e(t) is the control error, with e(t) =
yd(t) − y(t). The reference and system output are denoted as yd(t) and y(t), re-
spectively. The standard PID controller can be divided into three parts: the P-part
(proportional to the error), the I-part (proportional to the integral of the error),
and the D-part (proportional to the derivative of the error). The functionalities of
these terms have been summarized in [ACL05]. The controller parameters in (2.12)
include the proportional gain K, integral time Ti, and derivative time Td.

Recently, intelligent PID (iPID) control which is relied on the main theory of model-
free control has been introduced [FJ08]. The fundamental idea of iPID control is
replacement of unknown (nonlinear) system dynamics by an equivalent local model
which is only valid during a very short time interval. By applying the DDC theory,
in [YTY09] a novel data-driven PID controller was proposed for on-line automatic
tuning control parameters by using the available system I/O data. Compared to
other data-driven PID control approaches, the given method could reduce compu-
tation burdens effectively because of removed redundant data. As introduced in
[FJ09], a linearized local dynamic model of a SISO nonlinear system is described as

y(υ) = F + αu, (2.13)

where α is a constant design parameter. The function F = y(υ)−αu is determined
by using the updated system input u and output derivative y(υ). Therefore, the
dynamical behavior of F can be complicated because the unknown system non-
linearities or complex time-varying phenomena might be included. The derivation
order υ is often equal to 1 or 2 [FJ09]. In case of υ = 2, the following iPID control
law is obtained as

u = −F
α

+
ÿd

α
+Kpe+Ki

∫
e+Kdė, (2.14)

where yd is the desired system output, and the tracking control error is defined as
e = yd − y. The usual tuning parameters of the PID controller are given as Kp, Ki,
and Kd.
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2.3.2 Iterative feedback tuning control

One of the most effective tuning strategies among adaptive and iterative control
algorithms namely iterative feedback tuning (IFT) control has been introduced in
[Hja02]. The key idea of the IFT approach is that, the unknown (time-varying)
controller parameters can be updated recursively by using only I/O information
from closed-loop system experiments. At each iteration, the gradient-based objective
function of the controller parameters should be estimated. According to [Hja02], a
SISO closed-loop system in discrete-time domain is considered as

y(k) = P (q)u(k) + vy(k), (2.15)

u(k) = C(q, ρ) [r(k)− y(k)] + vu(k), (2.16)

where P (q) is an unknown SISO operator with the shift operator q. The system
input and output signals are denoted as u(k) and y(k), respectively. The transfer
function of an appropriate controller is indicated as C(q, ρ) with respect to the
unknown parameters ρ. The reference signal of the closed-loop system is r(k);
while v(k) = [vy(k) vu(k)] is a vector of unknown process disturbances.

The following steps will explain how the above mentioned gradient-based cost func-
tion can be approximated:

• Step 1: N measurements of the system output y1(ρ) are collected by carrying
out normal experiments. Hence, the ouput is calculated as

y1(ρ) = T0(ρ)r + PS0(ρ)vu + S0(ρ)vy, (2.17)

where T0(ρ) and S0(ρ) are the achieved closed-loop response and sensitivity
function with the controller C(ρ).

• Step 2: New experiment is conducted by injecting the error signal r−y1(ρ) as
an input to the process P . This new experiment is called gradient experiment
as illustrated in Figure 2.5 with the presence of disturbances denoted as v2

y

and v2
u.

• Step 3: The gradient approximation

∂ŷ

∂ρ
(ρ) =

∂C

∂ρ
(ρ)y2(ρ) =

∂y

∂ρ
(ρ) + w(ρ), (2.18)

w(ρ) =
∂C

∂ρ
(ρ)S(ρ)

(
v2
y + Pv2

u

)
, (2.19)

is taken, where w(ρ) is introduced as the perturbation. Hence, the estimated
gradient of the cost function J(ρ) is defined as

dĴ(ρ)

dρ
=

1

N

N∑
k=1

ỹ(k, ρ)
∂ŷ

∂ρ
(k, ρ), (2.20)
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where the error between the achieved y(ρ) and desired response yd is com-
puted as ỹ(ρ) = y(ρ)− yd.

• Step 4: The adaptive controller parameter ρ in the next iteration is updated
as

ρ(i+ 1) = ρ(i)− γiR−1(i)
dĴ(ρ(i))

dρ
, (2.21)

where the gradient approximation is determined in (2.20); whereas γi > 0 is
a step-size constant, and R(i) denotes as a positive definite matrix.

In literature, different IFT-based control methods are developed in the last decades.
In [HPJ09], the convergence properties of the IFT control algorithm were improved
by achieving informative data. Furthermore, the total number of necessary system
experiments has been reduced significantly even in case of disturbed appearance.
Moreover, in [HGG94] the authors proposed a local optimization approach which
only needed the measured closed-loop system data to obtain the local minimum
point of a cost function at each iteration. An objective function of the design adap-
tive controller parameters was considered which consists of two terms. The first
term is related to minimization of the error between the achieved system response
and the reference signal. Meanwhile, in the second term, the quadratic norm of the
input signal should be optimized. The simulation results showed that, under the
bounded signal assumption in the loop, a local minimum point of the cost function
could be obtained. The optimal tuning algorithm (IFT-based algorithm) is also
particularly useful for simple control loops such as PID control loop as mentioned
in [HGGL98]. However, this method still requires more data and experiments. In
addition, the problem of optimal tuning controller parameters applied to strongly
nonlinear systems has been addressed in [Hja98]. It can be concluded that, the
IFT-based tuning control method could be applicable for some kinds of system with
non-smooth nonlinearities. In [RPP+11], a new approach for design of a convergent
IFT-based control algorithm for second-order state feedback systems has been dis-
cussed, while the robustness constraint ability of the IFT controller was considered
in [HVO16].

2.3.3 Virtual reference feedback tuning control

A direct data-driven control approach called virtual reference feedback tuning (VRFT)
was firstly presented by G. O. Guardabassi et al. [GS00], in which the unknown
controller parameters could be estimated directly by using off-line system I/O data
with the introduction of a virtual reference signal. The data-driven control strategy
was discussed for a class of linear time-invariant systems without any information
about system model or system identification. As described in [GS00], three steps to
conduct the VRFT control program are known:
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Figure 2.5: Gradient experiment (redrawn based on [Hja02])

• Step 1: A SISO plant G that needs to be controlled with a set of I/O open-
loop measurements is considered in discrete-time as {ũ(k), ỹ(k)}k=1,2,...,N . The

reference model F 0 which consists of a single-input y0(k) and a single-output
yM(k) is given. The measured system output ỹ(.) is assumed to be matched
with the reference model output yM for the same virtual reference input ỹ0(.).

• Step 2: Based on the reference model F 0, the virtual reference input ỹ0(.) as
the counterimage of ỹ(.) could be found [GS00].

• Step 3: A feedback controller R could be designed, in which its output value
indicated as ˆ̃u(.) gets as close as possible to ũ(.) driven by the signals ỹ0(.)
and ỹ(.).

A control scheme of a deterministic system G is considered in Figure 2.6 without
the effect of external disturbances. The reference model F 0 is written as

yM(k) = F 0(z−1)y0(k), (2.22)

where z is the z-transform variable. The controller R of the system G is designed
as

u(k) = R
(
z−1, θ

)
e(k), (2.23)

e(k) = y0(k)− y(k), (2.24)

where R (z−1, θ) is the controller transfer function depending on the vector of con-
troller parameters θ. Based on the VRFT control method, with a given single I/O
pair {ũ(k), ỹ(k)}k=1,2,...,N the estimated controller parameters θ̂ can be determined
by minimizing the following objective function

J(θ) =
1

N

N∑
k=1

(
ũ(k)− ˆ̃u(k, θ)

)2

, (2.25)
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Figure 2.6: VRFT-based control structure for a deterministic system (redrawn
based on [GS00])

where

ˆ̃u(k, θ) = K
(
z−1, θ

)
ỹ(k), (2.26)

K
(
z−1, θ

)
= R

(
z−1, θ

) [
F 0(z−1)

−1 − 1
]
. (2.27)

In literature, the idea of VRFT has been used to control design of SISO and MIMO
(nonlinear) systems. In [CS06], the given control method was applied to SISO
nonlinear systems. The authors stated that, a global model reference optimization
procedure has been implemented. As a result, there was no need to conduct many
process experiments as well as to estimate the control cost gradient. In addition, the
VRFT method has been extended to a two degree-of-freedom controller configuration
[LCS02]. Particularly, in [PSSH04] both of the linear and nonlinear VFRT-based
controllers were designed, and the improved control results could be observed in
tracking assigned knee angle trajectories. In [RRPP17], a novel combination of
MFC and VRFT methods, that leads to three different types of intelligent PID
control algorithms namely VRFT-iP, VRFT-iPI, and VRFT-iPID, was introduced.
The proposed controllers were implemented experimentally to the angular speed
control of servo systems. Regarding to control design of MIMO nonlinear systems,
several data-driven control schemes including MFAC, MFC, and VRFT have been
designed, and applied successfully to the twin rotor aerodynamic system [RRP16].

2.4 Hybrid data-driven control

Several MFC methods use both on-line system I/O signals calculated at each time
step during the system operation as well as the available previous I/O data stored
in the database to realize control actions. This group of DDC is called hybrid data-
driven control. In this section, two well-developed approaches known as iterative
learning control and lazy learning control will be briefly discussed.
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2.4.1 Iterative learning control

Iterative learning control (ILC) is an intelligent control approach which can be ap-
plied to a class of unknown/uncertain systems. The control objects of ILC are the
dynamic systems that operate repetitively over a specified time interval. The fun-
damentals of ILC is that, based on the tracking control errors and the control input
values from previous iterations, the required input in the next iteration-step can be
determined. By using only the knowledge from the system data, the learning error
convergence can be guaranteed when the total iteration numbers are big enough.
The ILC methods utilize both on-line and off-line I/O data to calculate the optimal
control input values. The structure of an ILC scheme is relatively simple which
includes an integrator in the iteration domain [HJ13].

Regarding design of the basic ILC algorithm, a class of linear continuous-time sys-
tems can be represented as

ẋi(t) = Axi(t) +Bui(t), (2.28)

yi(t) = Cxi(t), (2.29)

where A,B, and C are the system, control input, and output matrices, respectively;
whilst t is the time-domain variable and i is the iteration-domain variable. Under
several prerequisite assumptions as given in [ACM07], the first-order ILC algorithm
is defined as

ui+1(t) = ui(t) + Γėi(t), (2.30)

where the tracking control error at the iteration i is computed as ei(t) = yd(t)−yi(t).
The reference output is denoted as yd(t), and Γ is a diagonal learning gain matrix.
This matrix satisfies the following condition [ACM07]

‖I − CBΓ‖j < 1, (2.31)

where j ∈ {1, 2, . . . ,∞}, and ‖.‖j is an operator norm.

A PID-like structure of the ILC algorithm can be written as

ui+1(t) = ui(t) + Φei(t) + Γėi(t) + Ψ

∫
ei(t)dt, (2.32)

where Φ,Γ, and Ψ are the design learning gain matrices. A basic ILC scheme is
illustrated in Figure 2.7.

Many researches related to design of improved ILC strategies for different types
of linear or nonlinear systems, have been introduced during the past decades. In
[BTA06], a comprehensive review of ILC including the control algorithms, stabil-
ity, performance, learning transient behavior, and the robustness was provided with
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Figure 2.7: Basic ILC scheme (redrawn based on [ACM07])

respect to four ILC design techniques. In addition, three learning-type control ap-
proaches namely iterative learning control, repetitive control, and run-to-run control
have been discussed by Y. Wang et al. [WGD09]. Learning-type control methods can
be classified into two categories: direct-form and indirect-form. Discussions about
main theories and how to design controllers were mentioned. Another illustrative
example of ILC combined with a conventional feedback controller to improve motion
control performance of direct-drive robotic manipulators was presented in [BKdS05].
The authors have considered the flexible dynamics of a robot in the design of ILC
algorithm. Additionally, various novel ILC-based programs were proposed on the
basis of the standard ILC principle. For example, the main contribution in [Saa05]
was related to optimal forgetting matrix and learning gain matrix estimations of a P-
type ILC algorithm in the presence of random disturbances and measurement noises.
Furthermore, in [XXL05] an unknown system with input deadzone which could be
nonlinear and state-dependent was considered. A novel ILC scheme has been de-
signed which can achieve uniform learning convergence. In [JPS13], a norm-optimal
iterative learning controller has been investigated for linear time-invariant systems,
in which by using the system I/O data from previous iterations, the system impulse
response can be estimated and integrated into the controller design. For sampled-
data systems, ILC can be applied in the time and frequency domains [AX11]. In
[HYY18], a novel ILC approach was proposed by applying the iterative dynamic lin-
earization technique to an unknown ideal nonlinear controller. Hence, an adaptive
learning controller with a learning gain, which can be tuned automatically at each
system iteration, was conducted. For applications of ILC to nonlinear systems, in
[Xu11] the ILC method has been discussed for two categories of nonlinear systems
called global and local Lipschitz continuous functions. It can be noted that several
open control problems such as observer-based ouput tracking control, ILC applied
to infinite-dimensional systems, or partial differential equations are still highly mo-
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tivated. When the control systems are nonlinear with unknown parameters which
might vary at each iteration, a high-order internal model-based ILC program was
presented in [YXH10]. Compared to other existing ILC approaches, the proposed
method showed significant improved results. Recently, a high-order optimal itera-
tive learning controller was designed for a class of nonlinear discrete-time systems
[CHJH18]. To improve control performance, both of on-line and historical I/O data
were used effectively.

2.4.2 Lazy learning control

In 1994, S. Schaal et al. [SA94] designed an intelligent learning control method
which is based on system data set (system I/O information) to implement robot
learning for challenging dynamic tasks. This control approach utilizes explicitly the
system trained data set to build a local dynamic model which contains unknown
parameters. In more detail, at every operating point (or query) of the system oper-
ation, a subset of data points are used to design a local linearized model. Therfore,
different local models are created, and they have to memorize all data. Each local
model will be implemented to design of a local controller at every time instant. The
mentioned control method is often called memory-based learning control or lazy
learning control. One type of the lazy learning techniques namely locally weighted
learning, which is based on a locally weighted linear regression, was presented in
[Aha97, AMS97]. This local model only requires a subset of training data in a re-
stricted region around the location of the system operating point or a query. It can
be noted that, several types of local models for lazy learning control design such as
nearest neighbor, weighted average, or locally weighted regression were proposed.
Different lazy learning control techniques were also reviewed in [BB04] to deal with
the control problems of nonlinear systems. In the group of learning approaches,
the lazy learning method requires the I/O data from the controlled system to es-
timate an approximate system model for control design. Recently, in [HLT17] a
novel model-free adaptive predictive controller has been designed by using the lazy
learning concept. The unknown time-varying controller parameters can be adjusted
adaptively based on on-line and off-line data measurements in the system database.

2.5 Combination of model-based and model-free control

Model-free control can be combined with the well-developed MBC methods to design
advanced/robust controllers. In this section, MFAC in combination with the two
optimal and robust model-based control strategies namely model predictive control
and sliding mode control will be briefly discussed.
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2.5.1 Model-free adaptive predictive control

In control engineering theory, to design an appropriate controller for linear or nonlin-
ear systems, the first step should be modeling or identification of the global dynamics
of the plant. Then, based on the obtained system mathematical model, many ex-
isting control design techniques ranging from classical control to advanced/robust
control theories can be applied to generate different control algorithms. This is the
fundamentals of MBC theory. On the other hand, MFC or DDC can be an alter-
native solution to deal with control design of complex and highly nonlinear systems
when the system I/O data can be easily measured or calculated. Up to now, many
effective MFC approaches for control design of both linear or nonlinear systems have
been proposed as reviewed in the preceding sections. Therefore, from the author’s
point of view, it could be helpful to combine several appealing MBC approaches with
MFC to develop advanced and robust model-free control algorithms as well as to im-
prove the model-free control performance. One possibility would be a combination
of model predictive control (MPC) and model-free adaptive control (MFAC). In the
following texts, several successful examples for a novel kind of MFC called model-free
adaptive predictive control (MFAPC) will be briefly reviewed. In [GHLJ19], Y. Guo
et al. proposed a novel MFAPC program based on the CFDL concept for a class of
MIMO nonlinear systems in discrete-time. By using the MPC theory, the predicted
system ouput and control input signals within a finite prediction time horizon were
realized. Finally, the required control input values which were implemented to the
system have been computed by using only the available system I/O data. Further-
more, based on the main theory of generalized predictive control, an adaptive PI
control algorithm was proposed in [THLL99] for SISO nonlinear systems. The un-
known controller parameters were estimated by applying a standard recursive least
squares identification algorithm. In addition, the author in [Ste99] proposed the
concept of model-free predictive control to cope with the existing nonlinear model-
based predictive control challenges. The key idea of the proposal is that, instead
of identifying a global dynamic model of the controlled plant, the system dynamics
could be linearized locally based on the available process data from the database.
In [WZWC18], an extended CFDL-based MFAPC has been designed and applied
successfully to a MIMO nonlinear system. The experimental results demonstrated
that better control performance of the proposed method was derived in comparison
with traditional MPC and CFDL-MFAC.

2.5.2 Model-free sliding mode control

In actual control problems, unmodeled dynamics and model uncertainties often lead
to a mismatch between the real controlled process and the developed mathemati-
cal model [ES98]. To deal with these difficulties, in modern control design many
robust/advanced control techniques have been proposed since decades. One of the
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most attractive robust control approaches is called sliding mode control (SMC). As
introduced in [ES98], variable structure control systems need to be designed properly
in SMC via a switching function. Then, a suitable control law is generated to ensure
that the system states are attracted by this sliding function. Furthermore, with the
development of MFC theories in recent years, it is possible to develop other novel
control methods by combination of SMC and MFC. For example, a novel model-free
adaptive sliding mode controller was designed in [XSJ18] concerning control input
constraints for autonomous car parking systems. In the proposed control program,
an on-line model identification strategy based only on the system I/O data, integral
SMC algorithm, and dynamic antiwindup compensation algorithm were included to
solve integral and actuator saturation problems in the controlled system. Moreover,
different adaptive integral sliding mode control schemes subjected to tracking er-
ror constraints have been investigated for nonlinear systems [LY19b, LY19a, LY18].
By proposing a new transform error strategy, smaller steady-state errors can be
achieved. Furthermore, the overall maximum overshoot was not smaller than a pre-
defined value, and the convergence rate was less than a pre-selected constant. In
[WLW+16], SMC and MFAC were combined to constitute a data-driven model-free
sliding mode control program for the robotic exoskeleton. To design controller, only
the measured input torque and output velocity were implemented to obtain a sliding
mode reaching law. Recently, MPC and SMC in combination with the CFDL-based
MFAC approach have been proposed for control design of nonlinear discrete-time
processes in the presence of unknown disturbances [WH19]. A perturbation esti-
mation technique was applied to estimate the unknown disturbances. It is obvious
that, no information about the system dynamic model need to be addressed in the
control design of the aforementioned approaches.

2.6 Vibration control of flexible structures

Undesirable vibrations often occur in mechanical flexible structures such as elastic
cranes, wind turbines, etc. due to the effects of both internal or external distur-
bances. These unwanted oscillations may reduce the system performance or even
damage the structures if the amplitude and frequency of the disturbance signals
are big enough. Therefore, research in different control strategies to suppress or
eliminate vibrations in vibrating systems is highly motivated. This section will re-
view several vibration control methods which have been widely applied by control
engineers. In particular, a vital vibration control approach namely active vibration
control is reviewed. Furthermore, the main context in this section is dedicated to
discussion about different control approaches applied to cranes which are represented
as a typical mechanical flexible system.
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2.6.1 General vibration control methodologies

Generally, three approaches are well-known for vibration mitigation in mechanical
flexible systems including: passive, semi-active, and active vibration control. Pas-
sive vibration control is normally related to the concepts of isolation and absorption
[WN15]. By doing vibration control in passive ways, the process properties, e.g.,
geometrical parameters (thickness, length, etc.), or material properties (Young mod-
ulus, density, etc.), are often modified [Luu15]. Moreover, additional supplement
devices called vibration absorbers could be appropriately attached into vibrating
systems to reduce their oscillations. In semi-active vibration control, no control
actuators are utilized. However, a semi-active element, i.e., a damper is typically
applied. It can be interesting to note that, no external energy has to be added to
the controlled systems by using the semi-active methods [WN15]. Active vibration
control is the method of using design controllers (feedback or feed-forward) to mit-
igate unwanted vibrations actively; that means, external energy will be provided
to the system via actuator devices. As discussed in [Luu15], an active vibration
control topology generally includes three separate elements: sensors (to measure the
system responses), actuators (to supply necessary external energy to the system),
and controllers (to calculate the required input signals to control the system based
on the received information from the sensors). Once the controllability and observ-
ability of the system are guaranteed, a suitable control algorithm can be designed
by using various traditional and modern control approaches. The most important
requirements for a vibration controlled system are stability, robustness, and high
performance [WN15].

Regarding the state-of-the-art vibration control in flexible systems, some review
contributions can be taken into account. To get an overview of vibration mitiga-
tion techniques and their applications to a variety of marine offshore structures,
a comprehensive review paper has been published recently by R. Kandasamy et
al. [KCT+16]. The authors concluded that, semi-active and hybrid vibration con-
trol (combining the robustness of the passive and active control methods) were
preferable because of their potential implementation. Furthermore, different con-
trol approaches for vibration suppression of wind turbines have been discussed in
literature. For instance, according to [ROC+15, XA20] vibration control strategies
for wind turbine systems can be divided into three categories as mentioned earlier.
Moreover, different types of damper devices and system controllers were illustrated
in [ROC+15]. In [ZBH20], a review of vibration control methods which are being
widely used in engineering structures with a dedication to anti-swing control of wind
turbines has been intensively discussed.

2.6.2 Review of active vibration control for cranes

Cranes are machines which have been commonly used to transfer cargo (lifting and
moving) from one place to another in ports, factories, building construction, etc.
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They also can be equipped in large vessels (normally called ship-mounted cranes)
for supporting cargo transportation to smaller ships in open sea. Cranes can be
considered as typical flexible systems, in which vibrations are frequently generated
due to structure themselves or external disturbance impacts. Crane vibrations are
undesirable because they might lead to the system operation suspension. There-
fore, development of effective vibration control strategies for cranes is essential. In
[RMA+17], a variety of crane types and their configurations together with different
control methods which have been widely applied to vibration control and (payload)
tracking control within the last two decades were comprehensively reviewed. Estab-
lishment of a global crane model is necessary for control design, and this task should
be done before a suitable control solution can be proposed. Normally, crane model-
ing is divided into two groups: single-pendulum and double-pendulum. In term of
controller design, many effective strategies were developed and applied successfully
to various types of crane systems, e.g., boom cranes, tower cranes, or bridge/gantry
cranes [RMA+17]. The developed control approaches can be generally separated into
three categories including open-loop, closed-loop, and hybrid-loop (a combination
of open-loop and closed-loop), in which model-free or data-driven control should be
integrated as a branch of closed-loop control. According to [RMA+17], several well-
known control methods for a crane system are illustrated in Figure 2.8. Open-loop
control strategies are relatively easy to implement. In contrast, the crane control
performance of an open-loop system may be significantly reduced because of exter-
nal disturbance effects, e.g., wind force or wave motion. Typical open-loop control
techniques are selected as input shaping, filtering, and command smoothing. On the
other side, nowadays most of common control methods applied to cranes are related
to closed-loop control. There is a plenty of linear control techniques such as PID,
linear quadratic regulation, state feedback control, etc. as well as nonlinear and/or
advanced approaches, e.g., sliding mode control, adaptive control, intelligent con-
trol, which achieve high control efficiency, and are able to cope with uncertainties or
unknown system perturbation. In recent years, MFC or DDC has been introduced
to reduce the efforts of system modeling assignment. Therefore, novel MFC methods
can be further investigated and/or combined with other effective MBC approaches
to deal with the existing challenges in crane control such as strongly nonlinearities,
system uncertainties, disturbance rejection, or computational complexity.

In literature, up to now many existing MBC strategies were utilized to deal with the
problems of tracking and anti-sway control for different types of cranes. To control of
overhead cranes, in [LFS19] an enhanced-coupling adaptive control program was dis-
cussed, in which payload hoisting/lowering as well as uncertain system parameters
were integrated in the control algorithm. In [LYZW05, YY07], the adaptive sliding
mode fuzzy and nonlinear adaptive controllers were designed, in which the linearized
system model was transformed into two submodels for position and vibration con-
trol purposes [LYZW05]. In addition, the authors in [SWFC18] proposed a novel
adaptive anti-swing control strategy for cranes with double-pendulum swing effects
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Figure 2.8: Control methods for a crane system (redrawn based on [RMA+17])

and system uncertain/unknown parameters. To design controller, the full nonlinear
dynamic equations of the crane system have to be established. However, it was
not required to simplify the system dynamics by doing linearization. Moreover, a
study on robust model-based control to eliminate structural vibrations of an elastic
gantry crane was presented in [GP19]. For control implementation, the crane math-
ematical model with additional uncertainty models need to be constructed firstly.
Then, a robust controller was designed by using the H∞-loop shaping procedure.
In [CFS19], an efficient adaptive control method was introduced, in which a shaped
energy-like function has been designed to ensure the closed-loop system stability
and robustness in cases of parameter uncertainties and external noise. To study the
actual dynamic behavior of a container crane, Z. N. Masoud et al. [MN03] developed
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a mathematical model of the crane. Subsequently, a simplified version was used to
design a delay feedback controller for the full nonlinear system model. As a robust
control technique - sliding mode control (SMC) has been applied to crane control
since years. In 2013, Le et al. [LL13] designed two robust controllers to carry out the
assignments of payload tracking and anti-swing control of double-pendulum over-
head cranes based on the conventional and modified SMC approaches. In addition,
a second-order SMC scheme has been proposed by G. Bartolini et al. [BPU02] to
deal with the problems of model uncertainties and unmodeled dynamic actuators of
container cranes. Furthermore, a novel SMC strategy was discussed in [NH12] for
an offshore container crane. The control objective is to suppress oscillations in the
crane during its operation. A full dynamic model of the crane system needs to be
firstly analyzed. A sliding mode anti-sway control scheme is then developed using
the discussed model. Ship-mounted container cranes are represented as a highly
under-actuated nonlinear machine. To design robust control for such a system, a
novel adaptive control approach which includes a combination of second-order SMC
and radial basis function network has been proposed in [LHP+18]. Additionally, the
input-shaping control method can also be utilized in crane control, such as for tower
crane control [VKS10], or overhead crane control [MA14]. Offshore boom cranes are
often mounted on large ships to transfer cargo. Design of controllers for this type of
crane normally encounters with some challenges such as unknown system parameters
(length cable changes) or external disturbances (wind or sea wave). In [QFL19], an
offshore ship-mounted crane was considered for both adaptive and robust tracking
control purposes. An accurate mathematical model which concerns wave distur-
bance effects has been developed successfully. The controlled system was asymp-
totically stable based on Lyapunov analysis. Vibration control of offshore boom
cranes was investigated in [LFSW18, FWSZ14], in which a system model has to
be implemented, e.g., by conducting state transformation [LFSW18], or by applying
Lagrange’s method [FWSZ14]. A novel fuzzy robust control method for offshore ship
cranes was introduced in [GC20]. The authors designed a fuzzy composite observer
considering actuator fault and lumped disturbance. Based on estimated values, an
adaptive control law was generated by applying the SMC technique. As discussed
before, MFC/DDC is an intelligent control method which can be applied to crane
control. However, from the author’s point of view, not so many researches based
on this kind of control were conducted in literature. One example is [RPP+19], in
which a data-driven MFAC based on the CFDL concept has been proposed. The
novel idea in the design control algorithm is that, a proportional-derivative com-
ponent has been added into the standard MFAC law to improve overall tracking
control performance. Another control approach called adaptive repetitive learning
control was introduced for an offshore boom crane in [QFL17] which consists of
an adaptive law and a learning mechanism. The control results in this contribu-
tion demonstrated that, the controlled system stability was guaranteed despite of
unknown system parameters as well as external disturbances.
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2.7 Discussion from literature review

For the above theoretical background and literature review, several discussions re-
lated to different MFC/DDC and vibration control approaches for cranes will be
presented in this section.

2.7.1 Discussion about different model-free control methods

In the preceding sections, general information about MBC, MFC/DDC as well as a
brief review of different MFC strategies have been discussed. It can be concluded
that, the fundamental principle of the data-driven control can be regarded as design
of a suitable control scheme for unknown (linear or nonlinear) plants without us-
ing any information related to the modeling process, but requiring available system
I/O data. That means, in the design controller structure, no information about the
system dynamic behaviors is required. However, as mentioned in [HJ13], controller
structure is assumed to be known in advance in some methods, e.g., iPID, UC,
SPSA, IFT, and VRFT. In these MFC approaches, the controller parameters are
typically unknown and time-varying. They should be estimated by using the off-line
or on-line I/O data from the controlled system. Therefore, the main difficulties in
design of such controllers are parameter identification problem and optimization.
They can be solved by a combination of control principles and mathematics. On
the other side, in several MFC strategies establishment of a proper controller struc-
ture for a given unknown (nonlinear) system is particularly challenged because no
system model is involved. However, thank to dynamic linearization techniques in-
cluding CFDL, PFDL, and FFDL, local linearized data models of the process can
be constructed under some pre-required assumptions. MFAC and LLC are two
outstanding methods, in which their controller structures are relied on linearized
dynamic models as well as certain optimization criterions [HJ13]. In addition, the
unknown parameters in the assumed local models should be estimated and updated
recursively based on the on-line system data (MFAC) or the off-line system data
(LLC).

In Table 2.1, a summary of the introduced MFC/DDC approaches with respects
to main characteristics, pre-required assumptions, and applications is illustrated. It
can be noted that, for the on-line data-driven control methods such as MFAC, SPSA,
UC, and LLC, the controller parameters can be updated adaptively. Conversely, for
the other MFC strategies, e.g., iPID, IFT, VRFT, and ILC, no adaptive mecha-
nism in the control structure is given. Furthermore, MFC strategies comparison
is presented in Table 2.2 in terms of several major properties. Not many model-
free control methods, in which stability analysis has been fully investigated such as
MFAC, UC, or ILC. There is lack of closed-loop system stability analysis in most of
the off-line data-based DDC approaches until now. Additionally, gradient approx-
imation is explicitly required in MFAC, SPSA, UC, IFT, and LLC. Otherwise, in
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Table 2.1: Summary of several MFC approaches with applications

Control
method

Reference Application Pre-required
assumptions

Main properties

MFAC [HCG17,
HX19]

Industrial pro-
cesses; Motor
control; Power
control

Smooth system non-
linear function; Gen-
eralized Lipschitz
condition

Applied dynamic linearization
techniques; Local system model
established; Gradient estimation;
Adaptation of system/controller
parameters

SPSA [Spa92,
GA15]

Traffic signal con-
trol; Wastewater
treatment

Fixed controller struc-
ture; Global Lipschitz
condition

Gradient approximation of control
parameters required; Recursively
update control parameters; Heavy
computation; Slow convergence

UC [ST97,
ST95]

Robot manipu-
lator; Industrial
processes

Measurement infor-
mation; Performance
specification; A set of
admissible controllers

Controller switching implementa-
tion; Controller structure is fixed;
Adaptive and robust control
strategy

iPID [ACL05,
FJ09]

95% industrial
processes

Unknown Unknown system dynamics re-
placed by local linearized model;
Nonadaption and low computa-
tion; Fixed controller structure

IFT [Hja02,
HPJ09]

DC-servo with
backlash; Flexible
arm; Ball-on-
beam; Inverted
pendulum; Heli-
copter model

Fixed controller struc-
ture; Closed-loop
system is assumed
stable

Gradient-based approximation
using trial signal; Recursive es-
timate control parameters; Non-
adaption and heavy computation

VRFT [GS00,
CS06]

Robot manip-
ulator; Motion
control

Fixed linear controller
structure; Reference
model is inverse

Global minimization of standard
model-reference performance;
Controller parameter identifica-
tion with prescribed structure; No
iterations required

ILC [ACM07,
BTA06]

Industrial robots;
Induction mo-
tors; Autonomous
vehicles

Systems operate repet-
itively; Identical initial
conditions; Global
Lipschitz condition

Using previous actual system data
to improve transient response
performance; At each iteration,
error information incorporated
into control algorithm; Low com-
putation

LLC [SA94,
Aha97]

Robot control;
Three-tank liquid
level control

Unknown Local system linearized model es-
tablished at each operating point;
Local controller also designed;
Estimated controller parameters
adaptively
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Table 2.2: Property comparison of different MFC/DDC methods

Properties MFAC SPSA UC iPID IFT VRFT ILC LLC

Data used On-line On-line On-line Off-line Off-line Off-line On/Off-
line

On/Off-
line

Trial signal required No Yes No No Yes No No No

Time domain Discrete Discrete Continuous Discrete Discrete Discrete Discrete Discrete

Gradient estimation
required

Yes Yes Yes No Yes No No Yes

Stability analysis Yes No Yes No No No Yes No

Application to MIMO SISO SISO SISO MIMO MIMO MIMO SISO

Adaptive property Yes Yes Yes No No No No Yes

System type Nonlinear Nonlinear Nonlinear Linear Linear Linear Nonlinear Nonlinear

Known controller
structure

No Yes Yes Yes Yes Yes Yes No

Combination with
MBC

Yes Unknown Unknown Yes Unknown Unknown Yes Unknown

other approaches like iPID, VRFT, and ILC, the control input signals or controller
parameters can be determined directly based on the available system information.

From the observed literature study, MFAC witnesses as one of the most effective
data-driven control methods which can be designed properly to adapt with MIMO
and nonlinear plants. A systematic framework of MFAC has been developed for both
controller design and performance analysis [HJ13]. Moreover, the MFAC method
can be combined with other useful MBC strategies, e.g., model predictive control or
sliding mode control, that have been discussed in Section 2.5 with successful applica-
tions. However, some open points for research in the field of MFC/DDC, particularly
in MFAC are still remaining. For example, on-line parameter estimation algorithms
could be further investigated to improve estimation accuracy. To improve the MFAC
tracking control performance, modifications are possibly implemented such as con-
sidering minimization of the control error variations in the control objective function.
MFAC and MPC can also be considered together for development of modified model-
free adaptive predictive control strategies by using different dynamic linearization
techniques. Finally, as discussed in Section 2.2 MFAC has not been widely applied
to MIMO (nonlinear) systems/processes, in particular to mechanical flexible struc-
tures for vibration reduction purpose. From the aforementioned reasons, a research
gap between the current developed MFAC and a high performance oriented-MFAC
to deal with vibration mitigation of MIMO flexible systems is defined. This thesis
will concentrate on development of different improved MFAC schemes which can
be effectively applied to vibration control of complex and flexible systems such as
cranes. The recursive least-squares method which has not been widely considered
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in literature will be intensively discussed in MFAC. In addition, design of modified
MFAPC based on the CFDL and PFDL concepts for a class of MIMO nonlinear
systems is motivated. Furthermore, modified control input calculation can be done
by minimizing not only the upcoming output errors, but also the error variations
within a fixed length of time interval in the past. Therefore, research in MFAC and
its modifications could be an interesting topic.

2.7.2 Discussion about vibration control methods for cranes

As mentioned before, crane is represented as a typical flexible structure, in which
vibrations of the elastic boom (for boom cranes) and/or the payload normally oc-
cur during its operation. These oscillations are unwanted because they might lead
to suspension of the system. In Section 2.6, general information about (active) vi-
bration control, especially a review of different control design methods applied to
various types of crane have been addressed. For active vibration control of cranes,
many approaches have been proposed since decades ranging from open-loop control
to closed-loop control. Additionally, both of the traditional control approaches such
as PID, linear quadratic regulation, etc. as well as the robust/advanced control
strategies, e.g., adaptive control, sliding mode control, model predictive control, are
briefly discussed. A comparison of the given vibration control methods for cranes
is summarized in Table 2.3. Generally speaking, the open-loop control schemes
such as input shaping, filtering, and command smoothing are with relatively sim-
ple structures, and easy to be implemented in practice. In addition, because of no
feedback signals required for control design, they are also cheaper than others. How-
ever, to deal with several challenges in reality of the crane operation, e.g., model
uncertainties, parameter changing, or unknown external perturbations, an adaptive
mechanism could be integrated in the design robust open-loop controller [RMA+17].
For the closed-loop vibration control of cranes, it can be seen that most of the dis-
cussed approaches require a global mathematical model of the system dynamics. For
instance, in the linear quadratic regulator method, a linearized crane model (i.e.,
a state-space model) has to be derived. Afterwards, a suitable control law will be
designed properly. Other advanced control methods namely adaptive control, model
predictive control, or sliding mode control can deal with the problems of system pa-
rameter variations as well as unknown disturbance effects. However, in all of them
a fully investigated (nonlinear) system model is necessary. For future research, the
mentioned well-developed advanced control methodologies can be combined with
other control theories, possibly in MBC or MFC, to improve vibration control and
tracking control performance. Recently, intelligent control methods are quickly de-
veloped. Some of them are summarized in Table 2.3 including neural network and
fuzzy logic control. It can be noted that, an accurate model of the controlled crane
is assumed to be unknown when using intelligent control. Thus, a fuzzy model or
a neural network model should be created instead. Therefore, they can be used for
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control design of nonlinear systems. Additionally, the intelligent control approaches
can be incorporated with other robust control strategies such as sliding mode control
to obtain high efficiency and robustness. From the author’s point of view, the dis-
cussed MFC/DDC methods in this chapter have not been widely applied to crane
control, particularly in vibration reduction/suppression of cranes. In this thesis,
MFAC with several feasible architectures shall be further explored, and applied to
vibration reduction of elastic cranes. This is also the main objective of the thesis.

2.8 Summary

In this chapter, the fundamentals of several MFC/DDC approaches with classifi-
cation have been reviewed. Four separate categories related to MFC including the
on-line, off-line, hybrid data usage, and MBC combined with MFC groups, with
the total of ten control strategies are briefly surveyed. In each of the selected MFC
method, main (original) control ideas behind, control design strategies together with
several outstanding applications or related works have been illustrated. In addition,
vibration control of mechanical flexible systems dedicated to active vibration control
methodologies for cranes are discussed carefully. Finally, discussion based on the
literature review has been made. The model-free adaptive control approach with
its dominated advantages have been selected for further research. Several improved
model-free adaptive controllers can be designed and applied to reduce the undesir-
able vibrations of an elastic ship-mounted crane represented as a typical boom crane
topology [PS19a].

3Finite Impulse Response
4Infinite Impulse Response
5Recurrent Neural Network
6Feedforward Neural Network



36 Chapter 2. Fundamental theories and literature review

Table 2.3: Comparison of existing control approaches for cranes

Control
method

Reference Application Control
type

Disadvantages Main features/advantages

Input
shaping

[Sin09] Gantry crane;
Overhead
crane; Tower
crane; Con-
tainer crane

Open-
loop

Sensitive to exter-
nal disturbances;
Affected by sys-
tem parameter
variations

Convolving command input
signal with impulses; Measure
sensors not required; Fast to
suppress vibration

Filtering [GA07] Rotary crane;
Gantry crane;
Boom crane;
Overhead
crane

Open-
loop

IIR filters are dif-
ficult to control;
Sensitive to exter-
nal disturbances

Filters used for precondition-
ing input command signals;
Including FIR3 and IIR4 fil-
ters; Real-time applications
are possible

Command
smoothing

[XHL13] Bridge crane;
Tower crane;
Overhead
crane

Open-
loop

Cannot reject
external distur-
bances; Only op-
erating by human
operator

Reduce vibrations by smooth-
ing original command; Design
a smoother based on system
natural frequency and damp-
ing ratio

Linear
quadratic
regulator

[SOYU11] Overhead
crane; Boom
crane

Closed-
loop

Required lin-
earized crane
mathematical
model; Nonlinear
factors, e.g. wind,
load mass not
included

Simple control algorithms;
Robustness of controller can
be guaranteed

Model
predictive
control

[WXZ15] Overhead
crane; Boom
crane; Tower
crane

Closed-
loop

Accurate system
model required;
System uncertain-
ties are challenged

Optimal control input de-
rived in case of constraints;
Closed-loop stability assur-
ance; Robustness against
parametric uncertainties

Adaptive
control

[ZMR+16] Overhead
crane; Tower
crane

Closed-
loop

System dynamic
model has to be
fully described;
Complexity of
control algorithms

Ability to estimate unknown
parameters; System is asymp-
totically stable even with
external disturbances

Neural
network

[DUKY12] Overhead
crane; Tower
crane; Ship-
board crane

Closed-
loop

Hard to develop
convenient learn-
ing algorithm
by using RNN5;
FNN6 is static
network and lack
of dynamic mem-
ory

Good nonlinear processing
ability and robustness; Suit-
able to utilize global optimiza-
tion

Fuzzy logic
control

[Smo14] Gantry crane;
Overhead
crane; Tower
crane

Closed-
loop

Lack of imple-
mentations in
large-scale cranes

Accurate system model is not
required; A fuzzy model is
established; Ability to deal
with unstable and nonlinear
systems

Sliding
mode
control

[LL13] Overhead
crane; Con-
tainer crane;
Offshore crane

Closed-
loop

Chattering might
occur; Accurate
mathematical
model is required

Effective under uncertain con-
ditions; Accurate and robust
method; Could be combined
with other methods for more
precision and robustness
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3 On-line parameter estimation-based model-free

adaptive control

The MFAC approach has been selected for further research in this thesis. In this
chapter, the main theory of MFAC which was initially developed by Z. Hou et al.
[HJ13] for a class of SISO and MIMO nonlinear systems is discussed. Additionally, in
this work, several MFAC modifications with respects to on-line parameter estimation
and control input calculation are proposed. Furthermore, to demonstrate control
effectiveness, application of the design MFAC strategies to a crane for vibration
control purpose will be presented.

In Section 3.1, MFAC based on the projection algorithm will be briefly discussed for
a general SISO nonlinear system. Then, the obtained algorithm is extended to the
linearized data model of a class of MIMO nonlinear systems. To improve the per-
formance of the parameter estimation process, the recursive least-squares algorithm
is applied to both SISO and MIMO systems in Section 3.2. Moreover, an improved
model-free controller is designed by proposing a modified objective function of the
control input. Subsequently, in Section 3.3, vibration control results and discussion
of an elastic ship-mounted crane subjected to the non-zero initial excitation of the
payload are presented in case of using the proposed control programs. Finally, the
main ideas of the chapter will be summarized in the last section.

The content, figures, and tables in this chapter are mainly based on the peer-reviewed
conference papers [PS19a], [PS19b], and [PS20a]. Some of them have been partly
modified in this chapter after previous publications.

3.1 Model-free adaptive control using projection algorithm

This section reviews the standard MFAC which is based on the projection algorithm
[GS14]. First, the given on-line parameter estimation method is discussed for general
unknown SISO systems. Then, the approach will be applied to a local linearized
model of a class of MIMO nonlinear systems. Finally, the recursive least-squares
algorithms of the system parameters as well as control input calculations are also
presented.

3.1.1 On-line parameter estimation algorithms

As discussed in Chapter 2, accurate parameters of an unknown (nonlinear) dynamic
system are normally difficult to be determined by using the first-principle meth-
ods (the laws of physics, chemistry, etc.) due to unknown disturbances, unmodeled
dynamics, or nonlinearities. Another strategy to identify system dynamics is called
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parameter estimation [GS14], in which a variety of on-line or off-line estimation algo-
rithms can be implemented depending on the available system I/O data. In off-line
parameter estimation, all of the system data should be collected and stored for the
system dynamic analysis. There is no strict time limit on the process of analysis.
Conversely, in on-line case, the unknown system parameters will be updated recur-
sively by applying the newly calculated or measured system I/O information to the
estimation algorithms. In model-free (adaptive) control, on-line parameter estima-
tion methods are necessary, in which the unknown system parameters of a linearized
dynamic model should be estimated and updated repeatedly within a specified sam-
pling interval (or step-size). The sequential system input-output values will be used
with the parameter estimation algorithms.

According to [GS14], a general structure of on-line parameter estimation for SISO
nonlinear systems can be described in a recursive formula as

φ̂(k) = f
(
φ̂(k − 1), D(k), k

)
, (3.1)

where f(. . .) is an algebraic function. Different structures of f(. . .) lead to different
parameter estimation algorithms; while φ̂(k), φ̂(k−1) indicate the estimated system
parameters at discrete-time step k and k−1, respectively. The previous system I/O
data are denoted as D(k) which consists of the available inputs U(k) and outputs
Y (k) from initial step ( k = 1) up to current step ( k)

D(k) = {y(k), y(k − 1), . . . , u(k), u(k − 1), . . .} . (3.2)

A typical form of (3.1) that is generally used in practice is

φ̂(k) = φ̂(k − 1) +G(k − 1)ψ̄(k − d)ē(k), (3.3)

where G(k − 1) indicates an algorithm gain (or a gain matrix); whereas ψ̄(k −
d) represents a regression vector composed of the input and output information
from D(k − d) in (3.2), with an integer d. Meanwhile, ē(k) denotes a modeling
error or the difference between the actual system output and the model output
resulted by using the previous estimated parameter φ̂(k−1). Based on the simplified
equation 3.3, several on-line parameter estimation algorithms will be investigated in
the upcoming sections.

In literature, an input-output description for a class of SISO linear or nonlinear
dynamic systems can be written as

y(k) = θT (k − 1)φ0, (3.4)

where y(k) denotes the current system output (scalar); while θ(k− 1) denotes the
known linear or nonlinear data function of the previous input and output values

Y (k − 1) = {y(k − 1), y(k − 2), . . .} , (3.5)

U(k − 1) = {u(k − 1), u(k − 2), . . .} ,
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and φ0 is a vector of unknown model parameters. To establish a parameter estima-
tion algorithm for the linearized model (3.4), the following objective function [GS14]
needs to be considered as

J =
1

2

∥∥∥φ̂(k)− φ̂(k − 1)
∥∥∥2

+ λ
[
y(k)− θT (k − 1)φ̂(k)

]
, (3.6)

where the term of
[
y(k)− θT (k − 1)φ̂(k)

]
denotes the modeling error, and λ is

a design weighting parameter. To minimize function J , the necessary conditions
[GS14] are fulfilled as

∂J

∂φ̂(k)
= 0, (3.7)

∂J

∂λ
= 0. (3.8)

Therefore, by taking the partial derivatives of J , the above equations become

φ̂(k)− φ̂(k − 1)− λθ(k − 1) = 0, (3.9)

y(k)− θT (k − 1)φ̂(k) = 0. (3.10)

By substituting (3.9) into (3.10), the following equations are obtained as

y(k)− θT (k − 1)
[
φ̂(k − 1) + λθ(k − 1)

]
= 0, (3.11)

λ =
y(k)− θT (k − 1)φ̂(k − 1)

θT (k − 1)θ(k − 1)
. (3.12)

From equations (3.12) and (3.9), a recursive parameter estimation equation called
projection algorithm for unknown SISO systems is derived as

φ̂(k) = φ̂(k − 1) +
θ(k − 1)

[
y(k)− θT (k − 1)φ̂(k − 1)

]
θT (k − 1)θ(k − 1)

. (3.13)

In practice, to avoid the denominator of (3.13) equals to zero, an alternative algo-
rithm is normally used as

φ̂(k) = φ̂(k − 1) +
ηθ(k − 1)

[
y(k)− θT (k − 1)φ̂(k − 1)

]
µ+ θT (k − 1)θ(k − 1)

, (3.14)

where 0 < η < 1 and µ > 0 are step-size constants. The known initial system
parameter is denoted as φ̂(0). The estimation equation (3.14) has the same structure
as (3.3). In the next subsection, the projection algorithm will be discussed for a class
of unknown MIMO nonlinear systems by introducing another dynamic linearization
technique.
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3.1.2 Compact-form dynamic linearization technique

The main idea of the model-free adaptive control method is that, instead of modeling
or identifying a precise mathematical model of the unknown system dynamic behav-
iors, different dynamic linearization techniques including CFDL, PFDL, or FFDL
(as interpreted in Chapter 2) can be applied to establish equivalent linearized plant
models. In this subsection, the existing MFAC approach based on the CFDL con-
cept [HJ13] is reviewed for MIMO (nonlinear) systems. The core idea is that, at
every sampling interval k of the system operation, a linearized data model of the
original nonlinear system will be established which contains a matrix of unknown
time-varying parameters. These parameters can be corrected and updated contin-
uously by using only the closed-loop system I/O data. Subsequently, the discussed
results will be utilized to design a modified MFAC scheme for a class of MIMO
nonlinear systems in the upcoming section.

Considering a class of unknown MIMO nonlinear systems, a general I/O represen-
tation can be described in discrete-time as

y(k+1) = g (y(k),y(k − 1), . . . ,y(k −my),u(k),u(k − 1), . . . ,u(k −mu)) , (3.15)

where y(k) ∈ Rr,u(k) ∈ Rm denote the actual system outputs and control inputs
at current step k, respectively. Here, the unknown system orders are symbolized
as the two positive integers my and mu. Meanwhile, the number of system inputs
and outputs are the two known integers denoted as m and r, correspondingly. The
unknown nonlinear vector-valued function g(. . .) consists of the previous system
inputs and outputs.

Following [HJ11a], two reasonable assumptions have to be considered for the system
(3.15) to generate an equivalent dynamical form of the original nonlinear system.

Assumption 3.1 : The partial derivatives of g(. . .) with respect to the control
input vector u(k) exist and are considered as smooth.

Assumption 3.2 : The generalized Lipschitz condition

‖y(k + 1)− y(k)‖ ≤ b ‖u(k)− u(k − 1)‖ , (3.16)

is satisfied for the system (3.15) at each sampling time k with ‖∆u(k)‖ 6= 0, where
∆y(k+1) = y(k+1)−y(k), ∆u(k) = u(k)−u(k−1), and b as a positive constant.
Assumption 3.2 defines an upper limitation on the change rate of the system outputs
driven by the change rate of the control inputs.

Theorem 3.1 Based on the aforementioned assumptions, the unknown system
(3.15) can be linearized locally at every step of the system operation. The simplified
model called compact-form dynamic linearization (CFDL) data model is described
as

∆y(k + 1) = Φ(k)∆u(k), (3.17)
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where the matrix of unknown time-varying system parameters Φ(k) or pseudo-
jacobian matrix (PJM) can be estimated and updated repeatedly.

The structure of the PJM in MIMO case is given as

Φ(k) =


φ11(k) φ12(k) φ13(k) . . . φ1m(k)
φ21(k) φ22(k) φ23(k) . . . φ2m(k)

...
...

...
. . .

...
φr1(k) φr2(k) φr3(k) . . . φrm(k)


r×m

, (3.18)

assuming ‖Φ(k)‖ ≤ b according to assumption 3.2; that means the PJM Φ(k) is
upper bounded at any time-step k. It can be seen that each element value φij(k) in
(3.18), with i ∈ [1, r] ; j ∈ [1,m] is the pseudo-partial derivative (PPD) as discussed
in [Mad19] for SISO nonlinear systems. In case of the sampling interval and control
input increment vector ∆u(k) are not too large, the PJM Φ(k) can be considered
as slowly time-varying.

Proof 3.1 As already discussed for SISO case (see [Mad19]), based on the definition
of ∆y(k+1) and the system (3.15), the system output increment vector is expressed
as

∆y(k + 1) = g(y(k), . . . ,y(k −my),u(k),u(k − 1), . . . ,u(k −mu)) (3.19)

− g(y(k), . . . ,y(k −my),u(k − 1),u(k − 1), . . . ,u(k −mu))

+ g(y(k), . . . ,y(k −my),u(k − 1),u(k − 1), . . . ,u(k −mu))

− g(y(k − 1), . . . ,y(k −my − 1),u(k − 1),u(k − 2), . . . ,u(k −mu − 1)).

By denoting

Υ(k) = g(y(k), . . . ,y(k −my),u(k − 1),u(k − 1), . . . ,u(k −mu)) (3.20)

− g(y(k − 1), . . . ,y(k −my − 1),u(k − 1),u(k − 2), . . . ,u(k −mu − 1)),

(3.19) is rewritten as

∆y(k + 1) =
∂g

∂u(k)
∆u(k) + Υ(k), (3.21)

according to assumption 3.1 and the differential mean value theorem [HJ11a]. The
partial derivative values of g(. . .) with respect to the control input u(k) are de-
scribed as

∂g/∂u(k) =


∂g1

∂u1(k)
∂g1

∂u2(k)
∂g1

∂u3(k)
. . . ∂g1

∂um(k)
∂g2

∂u1(k)
∂g2

∂u2(k)
∂g2

∂u3(k)
. . . ∂g2

∂um(k)
...

...
...

. . .
...

∂gr
∂u1(k)

∂gr
∂u2(k)

∂gr
∂u3(k)

. . . ∂gr
∂um(k)

 . (3.22)
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For every fixed step k, the following equation should be considered by using a
numerical matrix M(k) with r rows and m columns

Υ(k) = M(k)∆u(k). (3.23)

Considering the condition ‖∆u(k)‖ 6= 0, (3.23) must have at least one solution
M∗(k). Therefore, the obtained equation (3.21) can be rewritten as

∆y(k + 1) = (
∂g

∂∆u(k)
+ M∗(k)︸ ︷︷ ︸

Φ(k)

)∆u(k), (3.24)

where ‖Φ(k)‖ ≤ b as the result of assumption 3.2. Hence, the theorem 3.1 has been
proven.

When the original system is multi-input single-output (MISO) with u(k) ∈ Rm, y(k) ∈
R, the I/O system description can be expressed as

y(k + 1) = g∗(y(k), . . . , y(k −my),u(k),u(k − 1), . . . ,u(k −mu)), (3.25)

where g∗(. . .) is an unknown nonlinear function.

The system (3.25) satisfying two additional assumptions as introduced in [HJ13],
with ‖∆u(k)‖ 6= 0 could be expressed in the following CFDL data-driven structure
as

∆y(k + 1) = Φc(k)∆u(k), (3.26)

where the time-varying parameter vector Φc(k) ∈ Rm called pseudo-gradient (PG).
It is interesting to note that the PG Φc(k) in MISO case is a special case of the
PJM Φ(k) in the MIMO linearization data model (3.17).

As discussed in [HJ13], the dynamics of the PJM matrix Φ(k) in (3.17) could not
be interpreted mathematically because of a variety of possible complicated charac-
teristics such as nonlinearities, unmodeled dynamics, or time-varying structure. On
the other hand, the PJM behavior is easy to be determined numerically. Therefore,
it can be estimated by using different existing parameter estimation algorithms. In
Figure 3.1, an explanation of the PJM is illustrated graphically for the simple MIMO
nonlinear system y(k+ 1) = g(u(k)) [HJ13]. It can be seen that the derivative val-
ues of the nonlinear function g(. . .) are assumed to be represented by the PJM Φ(k)
at a certain time-step between u(k) and u(k−1). The unknown dynamic behavior
of the original system is approximated by the blue-dashed line at every sampling
period during the system operation (see Figure 3.1). The necessary condition is
that, the derivative values of the nonlinear function g(. . .) do not change quickly;
that means the PJM values are bounded.
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Figure 3.1: Geometric interpretation of the system parameters PJM (redrawn
based on [HJ13])

3.1.3 Projection algorithm-based MFAC design

To design MFAC for a class of unknown MIMO nonlinear systems, the CFDL tech-
nique as discussed in the previous subsection can be applied to linearize the system
dynamics. In addition, the unknown time-varying parameter matrix Φ(k) in the
CFDL data model (3.17) needs to be updated continuously. In this subsection, the
discussed projection algorithm in (3.13) or (3.14) will be extended to the MIMO
nonlinear system (3.15). Based on the estimated PJM Φ̂(k), a standard projection
algorithm-based MFAC scheme can be designed. The stability and convergence of
the closed-loop system are guaranteed under several reasonable assumptions [HJ13].

In case the number of control inputs and system outputs are identical (m = r = n∗),
the PJM Φ(k) in (3.17) becomes a squared matrix. For system stability analysis,
another assumption [HJ11a] has to be satisfied as

Assumption 3.3 : The matrix PJM Φ(k) satisfies the diagonally dominant con-
dition with the following boundaries |φij(k)| ≤ c1; c2 ≤ |φii(k)| ≤ αc2, with i, j =
1, 2, . . . , n∗; i 6= j; α ≥ 1, and the sign of all elements in Φ(k) is fixed. The two
positive constants c1, c2 satisfy c2 > c1 (2α + 1) (n∗ − 1). As interpreted in [HJ13],
assumption 3 illustrates the relationship between the input and output data of the
closed-loop system in case of the input coupling is not too large. When the I/O
data of the controlled system are rich and accurate enough, the coupling among the
system variables can be described via the diagonal dominant matrix Φ(k).
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CFDL-based projection algorithm

The on-line parameter estimation algorithm of the PJM Φ(k) can be derived by
minimizing the modeling errors between the actual (calculated or measured) system
outputs y(k) and the model outputs ym(k). To restrict a large variation of Φ(k),
a constant weighting factor µ > 0 is added. The objective function of the PJM is
written as

J (Φ(k)) = ‖y(k)− ym(k)‖2 + µ‖Φ(k)− Φ(k − 1)‖2, (3.27)

where the model output vector ym(k) can be replaced by the linearized CFDL data
model

ym(k) = y(k − 1) + Φ(k)∆u(k − 1). (3.28)

The control input increment vector in (3.28) is defined as ∆u(k − 1) = u(k − 1)−
u(k − 2). Substituting (3.28) in (3.27) leads to the cost function

J (Φ(k)) = ‖y(k)− y(k − 1)− Φ(k)∆u(k − 1)‖2 + µ‖Φ(k)− Φ(k − 1)‖2.
(3.29)

By minimizing (3.29) with respect to Φ(k), the following equations

∂J

∂(Φ(k))
= [y(k)− y(k − 1)− Φ(k)∆u(k − 1)]

(
−∆uT (k − 1)

)
(3.30)

+ µ [Φ(k)− Φ(k − 1)] = 0,

Φ̂(k) = Φ̂(k − 1) (3.31)

+
[
∆y(k)− Φ̂(k − 1)∆u(k − 1)

]
∆uT (k − 1)

[
µI + ∆u(k − 1)∆uT (k − 1)

]−1
,

are derived, where the output increment vector is ∆y(k) = y(k)− y(k − 1), and I
is an identity matrix.

Equation (3.31) can be simplified by the following equation

Φ̂(k) = Φ̂(k − 1) +
η
[
∆y(k)− Φ̂(k − 1)∆u(k − 1)

]
∆uT (k − 1)

µ+ ‖∆u(k − 1)‖2 , (3.32)

where η ∈ (0, 1] denotes a step-size constant, and Φ̂(k) as described in (3.18)
is the estimated PJM of Φ(k). Equation (3.32) is called CFDL-based projection
algorithm (CFDL-PA) [HJ13] which can be used to recursively update the system
parameters Φ(k) at every sampling instant k. It should be noted that the algorithm
(3.32) has the same structure with (3.3), in which the modeling error is denoted as
ē(k) = ∆y(k)− Φ̂(k − 1)∆u(k − 1), and a regression vector of the previous system
I/O data is ψ̄(k − d) = ∆u(k − 1).
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Design of CFDL-PA-based MFAC

For control realization, the goal here is to minimize the upcoming tracking errors
between the desired output values (or references) yd(k + 1) and the actual system
outputs y(k + 1) considering input energy limitation by introducing a weighting
factor λ. Therefore, the objective function of the control input u(k) is considered
as

J(u(k)) =
∥∥yd(k + 1)− y(k + 1)

∥∥2
+ λ‖u(k)− u(k − 1)‖2. (3.33)

A constant parameter λ > 0 needs to be added to limit the change rate of the
required control inputs. To calculate u(k), the upcoming system output vector
y(k + 1) in (3.33) should be replaced by the linearized CFDL data model (3.17)

y(k + 1) = y(k) + Φ(k)∆u(k). (3.34)

Hence, the above cost function can be rewritten as

J(u(k)) =
∥∥yd(k + 1)− y(k)− Φ(k)∆u(k)

∥∥2
+ λ‖∆u(k)‖2. (3.35)

By minimizing (3.35) with respect to ∆u(k), the following equations

∂J

∂∆u(k)
=
[
yd(k + 1)− y(k)− Φ(k)∆u(k)

] (
−ΦT (k)

)
+ λ∆u(k) = 0, (3.36)

u(k) = u(k − 1) +
[
Φ̂T (k)Φ̂(k) + λI

]−1

Φ̂T (k)
[
yd(k + 1)− y(k)

]
, (3.37)

are obtained. In practical applications, to avoid matrix inversion calculation in
(3.37) which could be challenging when the system input and output dimensions are
big enough, a simplified control input law [HJ13] is considered as

u(k) = u(k − 1) +
ρΦ̂T (k)

[
yd(k + 1)− y(k)

]
λ+

∥∥∥Φ̂(k)
∥∥∥2 , (3.38)

where ρ ∈ (0, 1] is a step-size constant. The unknown system parameter matrix
Φ(k) can be estimated continuously by using the discussed CFDL-PA (3.32). As
mentioned in [HJ11a], suitable choice of parameters λ and ρ in (3.38) can improve
the model-free control performance and guarantee the closed-loop system stability
as well.

3.2 Recursive least-squares-based model-free adaptive con-
trol

In this section, first another well-known on-line parameter estimation method namely
recursive least-squares algorithm [GS14, ÅW08] is discussed for both unknown SISO
and MIMO systems. Then, the idea of a modified model-free adaptive controller for
a class of MIMO nonlinear systems is proposed. Finally, steps for the MFAC design
are given.
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3.2.1 Recursive least-squares estimation algorithm

Parameter estimation plays an important role in system identification. A variety of
parameter estimation methods have been widely investigated since the last decades.
To design adaptive controllers, unknown system and controller parameters should
be estimated and updated automatically by using mathematical algorithms. As a
fundamental technique, least-squares method can be applied effectively in case of
the system model is linear in parameters [ÅW08]. According to the least-squares
principle of Gauss [ÅW08], the unknown system parameters of a determined mathe-
matical model should be chosen to minimize the sum of the squares of the differences
between the real system outputs and the modeling outputs (or calculated outputs)
which are generated by the system model. Based on this principle, in this subsec-
tion, an on-line parameter estimation algorithm for a general model of a class of
SISO systems is discussed. Next, the derived algorithm will be applied to estimate
the unknown system parameters for a class of MIMO nonlinear systems.

As discussed in [ÅW08], a general model of SISO systems can be represented as

y(k) = θ1(k)φ1
0 + θ2(k)φ2

0 + . . .+ θn(k)φn0 = θT (k)φ0, (3.39)

where y(k) is the system output at time-step k. The known I/O data functions
generated from the system model are denoted as θT (k) = [θ1(k) θ2(k) . . . θn(k)],
with n is the number of unknown parameters. The model parameter vector is
denoted as φ0 = [φ1

0 φ
2
0 . . . φn0 ]

T
. The model (3.39) is normally called regression

model with the regression variables θ.

Under the sense of the least-squares theory, the optimal parameters φ should be
defined to minimize the difference between the model output (estimated) and the
actual output (measured). To this end, the following least-squares objective function
is considered at each step k as

J(φ, k) =
1

2

k∑
i=1

(
y(i)− θT (i)φ

)2
, (3.40)

where i = 1, 2, . . . , k is the discrete-time variable of the model (3.39). By differenti-
ating function (3.40) with respect to φ and letting it zeros, the following equations
are obtained

∂J

∂φ
=
[
y(i)− θT (i)φ

]
(−θ(i)) = 0, (3.41)

φ̂ =
[
θT (i)θ(i)

]−1
θT (i)y(i), (3.42)

where φ̂ is denoted as the estimated value of φ.
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With the notations

Y (k) = [y(1) y(2) . . . y(k)]T , (3.43)

ψ(k) = [θ(1) θ(2) . . . θ(k)]T , (3.44)

P (k) =
[
ψT (k)ψ(k)

]−1
=

[
k∑
i=1

θT (i)θ(i)

]−1

, (3.45)

(3.42) can be rewritten as

φ̂ =
[
ψT (k)ψ(k)

]−1
ψT (k)Y (k). (3.46)

From (3.46), the derived system parameter φ̂ at step k is calculated as

φ̂(k) =

[
k∑
i=1

θT (i)θ(i)

]−1 [ k∑
i=1

θ(i)y(i)

]
. (3.47)

Substituting (3.45) into (3.47) gives

φ̂(k) = P (k)

[
k∑
i=1

θ(i)y(i)

]
. (3.48)

In addition, (3.48) can be rewritten as

φ̂(k) = P (k)

[
k−1∑
i=1

θ(i)y(i) + θ(k)y(k)

]
. (3.49)

Therefore, the estimated parameter φ̂(k − 1) at previous step k − 1 is computed
according to (3.48) as

φ̂(k − 1) = P (k − 1)
k−1∑
i=1

θ(i)y(i), (3.50)

k−1∑
i=1

θ(i)y(i) = P−1(k − 1)φ̂(k − 1). (3.51)

Moreover, parameter P−1(k) is calculated from (3.45) as follows

P−1(k) =
k∑
i=1

θT (i)θ(i) =
k−1∑
i=1

θT (i)θ(i) + θT (k)θ(k), (3.52)

P−1(k) = P−1(k − 1) + θT (k)θ(k). (3.53)
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Based on the equations (3.49), (3.51), and (3.53) the following algorithm is estab-
lished for the SISO system described in (3.39) as

φ̂(k) = P (k)
[
P−1(k − 1)φ̂(k − 1) + θ(k)y(k)

]
, (3.54)

φ̂(k) = P (k)
[
P−1(k)φ̂(k − 1)− θT (k)θ(k)φ̂(k − 1) + θ(k)y(k)

]
, (3.55)

φ̂(k) = φ̂(k − 1) +K(k)
[
y(k)− θT (k)φ̂(k − 1)

]
, (3.56)

where K(k) = P (k)θ(k) is a vector of unknown parameters. To calculate P (k)
and K(k), by using the matrix inversion lemma [ÅW08] the following equations are
achieved

P (k) =
[
P−1(k − 1) + θT (k)θ(k)

]−1
, (3.57)

P (k) = P (k − 1)− P (k − 1)θ(k)
[
I + θT (k)P (k − 1)θ(k)

]−1
θT (k)P (k − 1),

(3.58)

K(k) = P (k)θ(k) = P (k − 1)θ(k)
[
I + θT (k)P (k − 1)θ(k)

]−1
. (3.59)

The discussed equations (3.56), (3.58), and (3.59) with an assumption that the
matrix ψ(k) in (3.44) has full rank have been called recursive least-squares algorithm
(RLSA), in which the initial parameters are denoted as φ̂(1) and P (0).

Now the above RLSA will be applied to a class of unknown MIMO systems. As
discussed in the preceding subsections, the unknown system (3.15) can be linearized
locally and reformulated as a CFDL data model as

∆y(i) = Φ(i)θT (i), (3.60)

where i = 1, 2, . . . , k is denoted as the system discrete-time variable. The unknown
system parameter matrix is Φ(i). The known I/O data function indicated as θT (i)
is equivalent with the known data functions θT (k) in (3.39) for the SISO case.

To establish the estimation algorithm of the matrix Φ, considering the following
objective function

J(Φ, k) =
1

2

k∑
i=1

(
∆y(i)− Φ(i)θT (i)

)2
+

1

2
γ

k∑
i=1

∆Φ2(i), (3.61)

where γ ≥ 0 is a step-size constant, and the variation of the parameters PJM Φ is
represented as ∆Φ(i) = Φ(i)−Φ(i− 1). Minimization of (3.61) can be executed by
taking ∂J

∂Φ
= 0 as

∂J

∂Φ
=
[
∆y(i)− Φ(i)θT (i)

]
(−θ(i)) + γ (Φ(i)− Φ(i− 1)) = 0. (3.62)
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As a result, the estimated parameter matrix Φ̂(k) at current step k is calculated
as

Φ̂(k) = Φ̂(k − 1) (3.63)

+

[
k∑
i=1

∆y(i)θ(i)− Φ̂(k − 1)
k∑
i=1

θT (i)θ(i)

][
γI +

k∑
i=1

θT (i)θ(i)

]−1

.

Moreover, the following results achieved from the SISO case in (3.52), (3.53) can be
easily applied to MIMO systems

P−1(k) =
k∑
i=1

θT (i)θ(i), (3.64)

P−1(k − 1) = P−1(k)− θT (k)θ(k). (3.65)

Substituting (3.64) into (3.63), gives

Φ̂(k) = Φ̂(k − 1) (3.66)

+

[
k−1∑
i=1

∆y(i)θ(i) + ∆y(k)θ(k)− Φ̂(k − 1)P−1(k)

] [
γI + P−1(k)

]−1
.

In addition, the PJM values Φ̂(k − 1) at previous step k − 1 are computed as

Φ̂(k − 1) = Φ̂(k − 2) (3.67)

+

[
k−1∑
i=1

∆y(i)θ(i)− Φ̂(k − 2)P−1(k − 1)

] [
γI + P−1(k − 1)

]−1
,

k−1∑
i=1

∆y(i)θ(i) = ∆Φ̂(k − 1)
[
γI + P−1(k − 1)

]
+ Φ̂(k − 2)P−1(k − 1), (3.68)

with ∆Φ̂(k − 1) = Φ̂(k − 1)− Φ̂(k − 2).
Substituting (3.68) into (3.66), yields

∆Φ̂(k) =
[
∆Φ̂(k − 1)γ + Φ̂(k − 1)P−1(k − 1) + ∆y(k)θ(k)− Φ̂(k − 1)P−1(k)

]
(3.69)[

γI + P−1(k)
]−1

,

with ∆Φ̂(k) = Φ̂(k) − Φ̂(k − 1). The parameter matrix P−1(k − 1) in (3.69) can
be replaced by (3.65). Finally, the following equations are derived

∆Φ̂(k) =
[
∆y(k)− Φ̂(k − 1)θT (k)

]
θ(k)

[
γI + P−1(k)

]−1
+ γ∆Φ̂(k − 1)

(3.70)[
γI + P−1(k)

]−1
.



50 Chapter 3. On-line parameter estimation-based model-free adaptive control

In this case, computational burden can be reduced by considering the constant
parameter γ = 0, that means (3.70) becomes

Φ̂(k) = Φ̂(k − 1) +
[
∆y(k)− Φ̂(k − 1)θT (k)

]
K(k), (3.71)

where K(k) = θ(k)P(k) is a matrix of unknown parameters.

Based on the matrix inversion lemma [ÅW08], the unknown parameter matrices
P(k) and K(k) are determined as

P(k) = P(k − 1)−P(k − 1)θ(k)
[
I + θT (k)P(k − 1)θ(k)

]−1
θT (k)P(k − 1),

(3.72)

K(k) = θ(k)P(k) = θ(k)P(k − 1)
[
I + θT (k)P(k − 1)θ(k)

]−1
. (3.73)

It is interesting to note that, the known I/O data function θT (k) in (3.71) of the
CFDL model is defined as

θT (k) = ∆u(k − 1). (3.74)

Therefore, the obtained parameter estimation algorithm called CFDL-based recur-
sive least-squares algorithm (CFDL-RLSA) for a class of unknown MIMO nonlinear
systems is written as

Φ̂(k) = Φ̂(k − 1) +
[
∆y(k)− Φ̂(k − 1)∆u(k − 1)

]
K(k), (3.75)

K(k) = ∆uT (k − 1)P(k) (3.76)

= ∆uT (k − 1)P(k − 1)
[
I + ∆u(k − 1)P(k − 1)∆uT (k − 1)

]−1
,

P(k) = P(k − 1)−P(k − 1)∆uT (k − 1) (3.77)[
I + ∆u(k − 1)P(k − 1)∆uT (k − 1)

]−1
∆u(k − 1)P(k − 1).

3.2.2 Modified MFAC for MIMO nonlinear systems

As discussed in the previous subsections, for a class of unknown MIMO nonlin-
ear systems (3.15) by utilizing the CFDL technique, an equivalent linearized data
model (3.17) can be assumed to be established virtually. The unknown time-varying
parameter matrix Φ(k) in (3.17) should be estimated and updated recursively
by using the discussed CFDL-PA (3.32) or the CFDL-RLSA (3.75), (3.76), and
(3.77). In this part, the estimated parameters PJM are used to design a modified
MFAC for multivariable systems. The key new idea is that, to improve track-
ing control performance not only the output tracking errors, but also the track-
ing error variations within a specified length of time window should be minimized.
Therefore, the control goal is to minimize the upcoming tracking errors between
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the desired output values yd(k + 1) and the actual system outputs y(k + 1), de-
noted as e(k + 1) = yd(k + 1) − y(k + 1) as well as the control error differences
∆e(k) = e(k) − e(k − 1) = ∆yd(k + 1) − ∆y(k). To restrict the control input
variation, a weighting factor λ is used. The control input law can be established
by proposing a modified objective function of u(k) as

J(u(k)) =
∥∥yd(k + 1)− y(k + 1)

∥∥2
+ j
∥∥∆yd(k + 1)−∆y(k + 1)−∆y(k)

∥∥2

(3.78)

+ λ‖u(k)− u(k − 1)‖2,

where λ > 0, j > 0 are the design weighting parameters. Compared to (3.33), here
the term of

∥∥∆yd(k + 1)−∆y(k + 1)−∆y(k)
∥∥ is added representing the varia-

tions of the output tracking errors.

The actual system outputs y(k+ 1) in (3.78) can be approximated by applying the
CFDL model outputs (3.17)

∆y(k + 1) = Φ(k)∆u(k), (3.79)

y(k + 1) = y(k) + Φ(k)∆u(k). (3.80)

Substituting (3.79) and (3.80) into (3.78), yields the following cost function

J(u(k)) =
∥∥yd(k + 1)− y(k)− Φ(k)∆u(k)

∥∥2
(3.81)

+ j
∥∥∆yd(k + 1)− Φ(k)∆u(k)−∆y(k)

∥∥2
+ λ‖∆u(k)‖2.

By differentiating (3.81) regarding to ∆u(k), the following equations are derived

∂J

∂∆u(k)
=
(
−ΦT (k)

) [
yd(k + 1)− y(k)− Φ(k)∆u(k)

]
(3.82)

+ j
(
−ΦT (k)

) [
∆yd(k + 1)− Φ(k)∆u(k)−∆y(k)

]
+ λ∆u(k) = 0,

∆u(k) =
[
Φ̂T (k)Φ̂(k) (1 + j) + λI

]−1

Φ̂T (k)
[
yd(k + 1)− y(k)

]
(3.83)

+
[
Φ̂T (k)Φ̂(k) (1 + j) + λI

]−1

jΦ̂T (k)[
yd(k + 1)− yd(k)− (y(k)− y(k − 1))

]
.

Equation (3.83) requires the calculation of matrix inversion which might be compli-
cated if the system input and output dimensions are large. Therefore, a simplified
control input equation is rewritten as

u(k) = u(k − 1) +
ρΦ̂T (k)

[
yd(k + 1)− y(k)

]
λ+ (1 + j)

∥∥∥Φ̂(k)
∥∥∥2 (3.84)

+
jΦ̂T (k)

[
yd(k + 1)− yd(k)− (y(k)− y(k − 1))

]
λ+ (1 + j)

∥∥∥Φ̂(k)
∥∥∥2 ,
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where ρ ∈ (0, 1] is a step-size constant.

The control input equation (3.84) is slightly different compared with (3.38). As
discussed in [PS19b], the term of

[
yd(k + 1)− yd(k)− (y(k)− y(k − 1))

]
in (3.84)

only considers the minimization of the tracking error variations within one step
from previous steps with very small amplitudes. Therefore, to improve control per-
formance the extended error differences within a predefined length of time window
N > 0 are taken into account. Finally, the following modified control input law is
achieved [PS20a] by taking the same procedure as the establishment of (3.84)

u(k) = u(k − 1) +
ρΦ̂T (k)

[
yd(k + 1)− y(k)

]
λ+ (1 + j)

∥∥∥Φ̂(k)
∥∥∥2 +

jΦ̂T (k) [ε(k)− ε(k −N)]

λ+ (1 + j)
∥∥∥Φ̂(k)

∥∥∥2 ,

(3.85)

where ε(k) = yd(k + 1)− y(k); ε(k −N) = yd(k −N + 1)− y(k −N) are denoted
as the error variations at sampling intervals k and k−N , respectively. Meanwhile,
Φ̂(k) is the estimated PJM by using the discussed CFDL-PA (3.32) or the CFDL-
RLSA (3.75), (3.76), and (3.77). In MIMO case, an improved model-free controller
which applies the CFDL-RLSA and modified control law (3.85) has been discussed
in [PS20a]. The control law (3.85) contains several design parameters such as λ, ρ,
and j. Suitable choices of them can improve the model-free control performance.

3.2.3 Steps for model-free controller design using the CFDL technique

The MFAC design can be applied to control a class of unknown MIMO nonlinear
systems, in which the system I/O data have to be directly measured or calculated.
In Figure 3.2 [PS20a], a modified MFAC scheme using the CFDL-RLSA for on-line
parameter estimation is shown. To realize MFAC program, the following steps have
to be implemented:

• Step 1: Based on the CFDL technique as well as the available I/O informa-
tion from the controlled system, the unknown time-varying parameter matrix
PJM Φ̂(k) is estimated and updated recursively. Different on-line estimation
algorithms such as CFDL-PA or CFDL-RLSA as discussed previously can be
utilized. According to [HJ13] and assumption 3.3, to improve the ability in on-
line tracking time-varying parameters, a reset condition needs to be considered
as follows

φ̂ii(k) = φ̂ii(1) if
∣∣∣φ̂ii(k)

∣∣∣ < c2 or
∣∣∣φ̂ii(k)

∣∣∣ > αc2 (3.86)

or sgn
(
φ̂ii(k)

)
6= sgn

(
φ̂ii(1)

)
,

φ̂ij(k) = φ̂ij(1) if
∣∣∣φ̂ij(k)

∣∣∣ > c1 (3.87)

or sgn
(
φ̂ij(k)

)
6= sgn

(
φ̂ij(1)

)
,
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Figure 3.2: Modified MFAC scheme using CFDL-based RLS estimation algorithm
[PS20a]

where φ̂ii(1), φ̂ij(1) are the given initial values of the PJM, with i, j = 1, 2, . . . , n∗

and i 6= j according to assumption 3.3 (see Section 3.1).

• Step 2: Based on the estimated PJM Φ̂(k) and the current output track-
ing errors ε(k) (see Figure 3.2), the required control input values u(k) are
computed via (3.38). In addition, by considering minimization of the control
errors within a suitable length of time window N > 0, the improved control
input signals are determined by using (3.85) for the overall model-free control
performance improvement.

• Step 3: Next, the calculated control inputs u(k) are implemented to the
system to fulfill the initial control requirements. Finally, the upcoming outputs
y(k + 1) are measured or calculated directly, and the given procedure will be
carried out repeatedly.

3.3 A case study: vibration control of an elastic crane

In this section, an application of the proposed CFDL-based model-free adaptive
controllers to vibration control of an elastic ship-mounted crane represented as a
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typical flexible system is discussed. The crane with an elastic part of the boom was
initially developed in Y. M. Al-Sweiti et al. [AS07] for cargo transportation pur-
pose. First, the crane configuration and its related mathematical model are briefly
introduced. Subsequently, simulation results of the crane in cases of without- and
with controllers will be illustrated. Additionally, control performance is evaluated
in both transient and stationary phases by varying the design controller parameters.

3.3.1 Crane configuration and related mathematical model

As an example of mechanical flexible systems, this subsection discusses the config-
uration and related model of the elastic ship-mounted crane. The crane with an
elastic light-weight boom is normally equipped in large ships to transfer cargo from
one ship to another in an open sea. During the crane operation particularly in the
cargo transfer process, due to the effects of undesirable environmental conditions
such as wave-induced motions or strong wind force represented as unknown external
disturbances, large vibrations can be produced in the crane system. In addition,
because of the non-zero initial excitation of the payload, in-plane vibrations of the
elastic boom as well as the payload and upper cables may appear that might lead
to suspension of the crane operation. Therefore, it is necessary to implement the
design controllers to guarantee the crane safety.

The crane configuration is depicted in Figure 3.3, whereas its boom has been divided
into two parts: rigid part (BC) including a movable suspension point B’ of the upper
cable and elastic part (AB). The rotational moment MA is assumed to be applied
to the lower point A (at node 1) of the boom which is mounted with the ship. The
crane is represented as a double pendulum system. The upper pendulum includes
a frictionless pulley m1 riding on the upper cable suspended from two different
points of the boom: a fixed point C and a movable point B’ along the rigid part
BC. Meanwhile, the lower pendulum consists of the payload m2 suspended by the
payload cable l from the pulley m1. The control target is to suppress the vibrations
of the elastic part (AB) represented by the angle θ6 (at node 6) of the boom with
respect to the x-axis (see Figure 3.3), the angular displacements of the payload
cable φ2 and the upper cable α2. The system output vector is written as

ym(k) = [∆θ6(k) ∆α2(k) ∆φ2(k)]T , (3.88)

where k is the discrete-time variable, and ∆ indicates the increment unit.

In this contribution, in-plane oscillations of the crane are mainly considered which
could be more dangerous in practical applications rather than heave and pitch
motion-induced vibrations. To ensure the controllability of the elastic boom and
the payload, as discussed in [Al-06], three control input variables are defined includ-
ing the displacements of the luff angle ∆ρ, the total length of the upper cable ∆L
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Figure 3.3: Configuration of the elastic ship-mounted crane with the “Maryland
Rigging” [Al-06]

with L = L1 + L2, and the lower suspension point position ∆D of the upper cable
(see Figure 3.3). Hence, the control input vector is described as

u(k) = [∆ρ(k) ∆L(k) ∆D(k)]T . (3.89)

In model-free adaptive control, to estimate and update the unknown system param-
eters PJM at current step, the available system I/O data from previous steps must
be used. For this purpose, the mathematical dynamic model of the crane has to
be investigated, and therefore needs to be transformed in discrete-time domain. As
illustrated in [Al-06], by applying the finite element method to analysis of the kine-
matics and kinetics of the elastic boom, the pulley, and the payload, the nonlinear
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equation of motion of the crane is obtained as

M0q̈ + K0q = B1u + B2ü + B3∆δ + B4∆δ̈ + B5p2 + n. (3.90)

The generalized displacement vector is denoted as

q = [∆ω2 ∆θ2 . . . ∆ω6 ∆θ6 ∆α2 ∆φ2]T , (3.91)

where ωi and θi denote the nodal transitional and rotational displacements at node
i of the boom with respect to the x-axis (see Figure 3.3). The control input vector
in (3.90) is represented by

u = [∆ρ ∆L ∆D]T . (3.92)

The total mass and stiffness matrices are indicated as M0 and K0, respectively. The
system input matrices are B1 and B2; whereas B3, B4, and B5 are the disturbance
matrices. All of the nonlinear terms of the system dynamics are integrated in the
vector n. As mentioned earlier, the external disturbance signals acting on the crane
include the ship rolling ∆δ and the unknown wind force p2. Further detail about
the structures of M0,K0,B1,B2,B3,B4, and B5 can be found in [Al-06].

The measurement output vector ym and the interested outputs y are described as

ym = [∆θ6 ∆α2 ∆φ2]T = C1q, (3.93)

y = [∆x2 ∆y2]T , (3.94)

where ∆x2,∆y2 are the differences of the global position of the payload with re-
spect to the x0y0-coordinate system. The measurement matrix, which describes the
positions of the sensors on the crane, is symbolized as C1.
By checking the influence of different nonlinear terms n in (3.90) on the dynamic
behaviors of the crane under various initial conditions and excitations [Al-06], it can
be concluded that the nonlinear terms n have no significant effects on the crane
responses. Therefore, the system model (3.90) can be illustrated in a linearized form
by setting n = 0.

By denoting

x1 = M0q−B2u−B4∆δ, (3.95)

x2 = M0q̇−B2u̇−B4∆δ̇, (3.96)

the state-space representation of the crane at the current equilibrium point is written
as

ẋ = Ax + Bu + E∆δ + Np2, (3.97)
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where x = [x1 x2]T is the state vector; whilst the system and input matrices are
described as

A =

[
0 I

−K0M
−1
0 0

]
, B =

[
0

B1 −K0M
−1
0 B2

]
, (3.98)

respectively. Furthermore,

E =

[
0

B3 −K0M
−1
0 B4

]
, N =

[
0

B5

]
, (3.99)

are the disturbance matrices due to the ship rolling ( ∆δ) and the wind force ( p2),
correspondingly.

The measurement output equation is expressed as

ym = Cx + Du + F∆δ, (3.100)

where

C =
[
C1M

−1
0 0

]
, (3.101)

is the system output matrix, and

D = C1M
−1
0 B2, F = C1M

−1
0 B4, (3.102)

are denoted as the input and disturbance direct transmission matrices, respectively.

To design MFAC, the above state-space equations (3.97), (3.100) have to be repre-
sented in discrete-time domain as

x(k + 1) = Gx(k) + Hu(k) + J∆δ(k) + Qp2(k), (3.103)

ym(k) = Cx(k) + Du(k) + F∆δ(k),

where the recalculated system and input matrices are denoted as G and H, while
J and Q are represented as the disturbance matrices.

3.3.2 Simulation results

Uncontrolled case

In this work, no external disturbances are considered, that means ∆δ(k) = p2(k) = 0
in (3.103). However, because of the non-zero initial position of the payload m2

denoted by φ0
2, significant undesirable oscillations can be observed in the crane if

no controller is used. In Figure 3.4, the simulated system outputs are shown from
the beginning up to t = 20 [s] of the simulation due to the non-zero initial angular
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Table 3.1: Initial parameters of the lab-scaled elastic crane [PS20a]

Parameter Description Value [Unit]

β0 Orientation of the boom axis π/4 [rad]

D0 Low-point suspension cable 0.55 [m]

L0 Length of the upper cable 1.6 [m]

l Length of the payload cable 0.5 [m]

m1 Mass of the pulley 0.5 [kg]

m2 Mass of the payload 5.0 [kg]

φ̇0
2 Initial payload angular velocity 5.0 [rad/s]

φ0
2 Initial payload angular displacement 1.0 [rad]

velocity of the payload φ̇0
2 = 5.0 [rad/s]. In addition, the displacements of the

payload with respect to the x0- and y0-axis in uncontrolled case are described in
Figure 3.5. It can be seen that, in case no controller is used, large oscillations arise
which could be dangerous and might suspend the cargo transportation of the crane.
Furthermore, to simulate different dynamic behaviors of the crane under a variety
of initial excitation conditions, the system output signals as well as the payload
vibration results with respect to the non-zero initial angle of the payload φ0

2 = 1.0
[rad] are given in Figure 3.6 and Figure 3.7, respectively, within t = 20 [s]. In
this thesis, the lab-scaled boom crane system which was established in [Al-06] is
considered for numerical simulations. Several initial parameters of the crane are
given in Table 3.1.

Simulation results by using the modified PA-MFAC

In Section 3.2, a modified MFAC has been proposed to control of a class of unknown
MIMO nonlinear systems. By considering minimization of the upcoming output
tracking errors as well as the error variations, a modified control input law has been
established in (3.85). To realize control action, the system unknown time-varying
parameters (PJM) should be estimated at every sampling interval during the system
operation. Two on-line parameter estimation strategies have been discussed includ-
ing the CFDL projection algorithm (3.32) in Section 3.1, and the CFDL recursive
least-squares algorithm (3.75), (3.76), and (3.77) in Section 3.2. Here, the discussed
modified MFAC which utilizes the standard CFDL-PA will be applied to reduce
the vibrations of the ship-mounted crane. Different control input equations are im-
plemented to fulfill control requirements including the standard CFDL-PA-based
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Table 3.2: Parameters of the design model-free and PI controllers [PS19b]

Parameter Meaning Value

η Step-size constant 0.55

µ Constant weighting factor 15

ρ Step-size constant 0.005

λ1 Weighting factor of the modified MFAC 0.5

λ2 Weighting factor of the normal MFAC 1.25

j Design weighting parameter 0.035

kp PI control parameter 0.002

ki PI control parameter 0.1

MFAC in (3.38) and the modified one in (3.85). First, tracking control evaluation
regarding to the system outputs as well as the payload displacement is illustrated.
Then, to evaluate the control performance of the design method subjected to vary-
ing controller parameters, control input energy-based evaluation will be discussed.
The proposed approach is compared with the normal CFDL-MFAC (3.38) [PS19a],
and industrial PI control.

The vibration control results of the two angular displacements ∆α2 and ∆φ2 of
the upper cable and payload cable, respectively, are shown in Figure 3.8 in case
no external disturbance effects are considered. In uncontrolled case (red dash line),
the crane shows vibrations only because of the non-zero initial angular velocity of
the payload φ̇0

2 = 5.0 [rad/s]. In case of using controllers, it can be seen that the
vibrations of the upper and payload cables are reduced by using the modified CFDL-
PA controller (orange line). Better results of the modified MFAC are observed
in comparison with the normal CFDL-MFAC (green dot line) as well as the PI
controller (blue dash line). Vibration control results of the payload position are
illustrated in Figure 3.9. The controllers are turned on from t = 30 [s], and in
uncontrolled case, the simulation stops at t = 100 [s]. Better control performance
can be observed according to smaller control errors when using the modified model-
free controller compared to the other conventional approaches. In Table 3.2 [PS19b],
several design parameters of the model-free and PI controllers are given.

To evaluate control performance of the discussed methods when varying controller
parameters, the relationship between the control input energy

∫ t2
t1

u2(t)dt and the

output tracking error or the payload transition
∫ t2
t1

e2(t)dt is considered within a
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Figure 3.4: Vibration results of the output vector ym with respect to the initial
condition φ̇0

2 = 5.0 [rad/s]

specified length of time window T = [t1, t2] [s] as

PK∗ =

[∫ t2

t1

u2(t)dt,

∫ t2

t1

e2(t)dt

]
K∗
, (3.104)

where K∗ = {λ1, λ2, kp, ki} is a set of parameters of the modified CFDL-MFAC
(λ1), normal CFDL-MFAC (λ2), and PI control, respectively. To obtain the best
illustration of different trajectories PK∗ , via trial simulations the control param-
eter intervals can be designed. Here, the important parameters which can im-
prove the model-free control performance are considered as λ1 ∈ [0.1, 7.5] and
λ2 ∈ [0.5, 25.0]; whereas the varied PI controller parameters are kp ∈ [0.0005, 0.06]
and ki ∈ [0.0001, 0.20]. The trajectory of the control input energy u = [∆L ∆D]
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Figure 3.5: Vibration results of the payload m2 with respect to the initial condi-
tion φ̇0

2 = 5.0 [rad/s]

and the control errors e = [∆x2 ∆y2] is denoted as PK∗ . In Figure 3.10, control
performance evaluation with respect to the criteria (3.104) within the simulation
interval T1 = [30, 180] [s] (transient phase) is shown. The trajectory PK∗ of the
modified model-free controller (violet dot) is closer to the origin (0, 0) than that
of the normal MFAC (blue dot) and PI control (red dot). In addition, the control
quality in stationary phase T2 = [140, 180] [s] is graphically presented in Figure
3.11. In general, the improved MFAC (violet dot) shows better results regarding
obtained smaller control errors than the others. In Table 3.3, control performance
comparison is illustrated numerically in transient phase. The mean squared error
(MSE) as well as the consumed input energy (Einput) of different control approaches
are calculated within the total length of simulation time T [steps] as follows

MSE =
1

T

T∑
k=1

e2(k), (3.105)

Einput =
1

T

T∑
k=1

u2(k). (3.106)

It can be seen from the Table 3.3 that, in transient phase T1, the modified MFAC
obtains smallest control errors with

∫
e2(t)dt ( 45.3190) and MSE ( 0.0251). The

standard MFAC requires less input energy according to
∫

u2(t)dt ( 0.0493) and
Einput ( 2.7444e−5). In stationary phase T2, the control comparison results are
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Figure 3.6: Vibration results of the output vector ym with respect to the initial
condition φ0

2 = 1.0 [rad]

given in Table 3.4. Generally, the modified CFDL-MFAC achieves smaller control
errors; whereas the normal CFDL-MFAC possesses less input energy consumption
among the discussed controllers.

Simulation results by using the modified RLSA-MFAC

In this part, the improved MFAC which utilizes the CFDL recursive least-squares
algorithm (3.75), (3.76), and (3.77) is applied to vibration control of the elastic crane.
Vibration control results are derived in case no external disturbance is considered.
However, large unexpected in-plane oscillations might occur in the system due to the
non-zero initial excitation of the payload ( φ̇0

2 = 5.0 [rad/s] in Table 3.1). To evaluate
control efficiency, the standard PA-MFAC in (3.38) (see [PS19a]) and traditional PI
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Figure 3.7: Vibration results of the payload m2 with respect to the initial condi-
tion φ0

2 = 1.0 [rad]

Table 3.3: Parameter-based control performance comparison in transient phase

Control method
∫

e2(t)dt
∫

u2(t)dt MSE Einput

PI control 98.5515 0.2768 0.0547 1.5381e−4

Normal CFDL-MFAC 61.4639 0.0493 0.0341 2.7444e−5

Modified CFDL-MFAC 45.3190 0.0989 0.0251 5.4962e−5

control are used for comparison. In Figure 3.12, the results of vibration suppression
with respect to the payload position are shown in x0- and y0-direction. Compared to
the standard PA-MFAC (yellow line) and PI control (blue dash line), the proposed
RLSA-MFAC (green line) has significant improvement in the results of payload
vibration reduction. The control part of the simulation starts from t = 30 [s], and
it can be seen from Figure 3.12 that it takes only ∆t = 10 [s] to suppress the
payload swings in case of using the modified model-free controller. In Table 3.5
[PS20a], several design parameters of the modified RLSA-MFAC and PI controller
are illustrated. The uncontrolled case (red dash line) is also simulated within t = 50
[s] to observe the system dynamic behavior. Furthermore, Figure 3.13 presents
comparison of vibration control regarding the system outputs ∆α2 and ∆φ2. It is
clear that the proposed control method (green line) performs better results compared
to the other conventional approaches.
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Figure 3.8: Vibration control results with respect to the outputs ∆α2 and ∆φ2

[PS19b]

Next, the control input energy-based evaluation which uses the criteria (3.104) is
carried out. A set of controller gains K∗ is defined as K∗ = {λ1, λ2, kp, ki}, in
which the constant weighting factors of the modified RLSA-MFAC and the normal
PA-MFAC are λ1 and λ2 as mentioned in Table 3.5, respectively, with λ1, λ2 ∈
[1.0, 45.0]; whereas the design PI controller parameters are kp ∈ [0.0005, 0.08] and
ki ∈ [0.0001, 0.25]. It can be observed from Figure 3.14 that, in case of considering
the interval length of time for simulation T1 = [t1, t2] = [30, 140] [s] (transient phase)
by varying the controller gains K∗, the proposed RLSA-MFAC (green dot) has the
trajectory PK∗ closer to the origin (0, 0) in comparison with the normal PA-MFAC
(blue dot) and PI control (red dot). In stationary phase T2 = [110, 140] [s], the
trajectories PK∗ of the design controllers are depicted in Figure 3.15. Generally
speaking, by changing parameters K∗ the modified RLSA-MFAC results (green
dot) seem to be closer to the origin with respect to smaller control errors. On the



3.3 A case study: vibration control of an elastic crane 65

-1

-0.5

0

0.5

1

Uncontrolled case

PI control

Normal CFDL-MFAC

Modified CFDL-MFAC

-0.1

0

0.1

0.2

0.3

0.4

-0.05
0

0.05

-0.01

0

0.01

2xD

2yD

Figure 3.9: Vibration control results with respect to the payload position ∆x2

and ∆y2 [PS19b]

other hand, the modified model-free controller consumes more input energy than
the other approaches.

In addition, the control effectiveness of the three discussed methods are compared
numerically in Table 3.6 and Table 3.7 for both transient and stationary phase,
correspondingly. In general, the RLSA-MFAC achieves the smallest numbers of the
total control errors

∫
e2(t)dt in transient phase ( 6.3008) as well as in stationary

phase ( 0.0265). Furthermore, it is interesting to note that in stationary period,
the improved model-free controller requires less control input energy

∫
u2(t)dt (

9.9073e−4) than the other two controllers. However, in transient phase the smallest
numbers of

∫
u2(t)dt ( 0.0473), and Einput ( 3.3792e−5) belongs to the normal PA-

MFAC (see Table 3.6).
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Table 3.4: Parameter-based control performance comparison in stationary phase

Control method
∫

e2(t)dt
∫

u2(t)dt MSE Einput

PI control 1.4330 0.0605 7.9616e−4 3.3646e−5

Normal CFDL-MFAC 2.0882 0.0020 0.0011 1.1637e−6

Modified CFDL-MFAC 0.3294 0.0145 1.8303e−4 8.1105e−6
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Table 3.5: Design parameters of the model-free and PI controllers [PS20a]

Parameter Meaning Value

ρ Step-size constant 0.6

λ1 Weighting factor of the modified RLSA-MFAC 2.4

λ2 Weighting factor of the normal PA-MFAC 1.25

j Design weighting parameter 0.06

kp PI control parameter 0.002

ki PI control parameter 0.1
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Table 3.6: Comparison of control input energy-based evaluation in transient phase

Control method
∫

e2(t)dt
∫

u2(t)dt MSE Einput

PI control 97.1267 0.2163 0.0693 1.5457e−4

Normal PA-MFAC 59.3759 0.0473 0.0424 3.3792e−5

Modified RLSA-MFAC 6.3008 0.7179 0.0045 5.1281e−4
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Table 3.7: Comparison of control input energy-based evaluation in stationary
phase

Control method
∫

e2(t)dt
∫

u2(t)dt MSE Einput

PI control 3.4127 0.0414 0.0024 2.9631e−5

Normal PA-MFAC 2.2092 0.0016 0.0015 1.2084e−6

Modified RLSA-MFAC 0.0265 9.9073e−4 1.8979e−5 7.0766e−7
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3.4 Summary

In this chapter, two innovative ideas for MFAC modification have been proposed
and intensively discussed for a class of discrete-time MIMO nonlinear systems.

First, based on the fundamental theory of the conventional MFAC method, an im-
proved control input algorithm was developed. The control target is not only min-
imizing the output tracking errors but also the error variations within a specified
length of time window. The modified model-free controller was designed using the
concept of compact-form dynamic linearization.

Second, different from traditional MFAC which utilizes projection algorithm for
unknown parameter estimation, this study proposed the method of using recursive
least-squares algorithm to improve parameter estimation accuracy. Based on the
corrected system parameters and the current tracking errors, the updated control
input signals can be calculated by applying the modified control input law.

To verify control performance, the proposed control programs have been imple-
mented to vibration reduction of an elastic ship-mounted crane via simulations.
The discussed crane is represented as a typical flexible system with known orders.
Vibration control results of the elastic boom and the payload position were clearly
shown and compared with the standard MFAC as well as an industrial PI controller.
The results indicated that significant improvement in oscillation elimination of the
crane was obtained with respects to smaller vibrating amplitudes and faster control
responses in comparison with the traditional methods. Moreover, the performance
evaluation of the considered model-free control strategies have been analyzed in case
of varying a set of the design controller parameters. Both of transient and stationary
phases are considered. The relationship between the control input energy and the
total derived tracking errors was judged. The simulation results demonstrated that
the modified controllers show better tracking control efficiency regarding small con-
trol errors. However, the improved data-driven controllers still require more control
input energy, particularly in transient phase compared to the other approaches.
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4 Design of modified model-free adaptive control

based on CFDL and PFDL techniques

Different modified MFAC strategies are proposed in this chapter. By using the
CFDL concept, a linearized controller structure is assumed to be constructed, in
which the unknown time-varying parameters of the local controller can be updated
continuously. A modified objective function of the controller parameter matrix is
proposed to improve estimation accuracy. Furthermore, improved model-free adap-
tive predictive control schemes are presented for a class of MIMO nonlinear systems.
Based on the fundamentals of model predictive control, the generalized compact-
form and partial-form predictive equations of the system outputs as well as ap-
propriate control input algorithms will be designed. The recursive least-squares
algorithm and its modification are used for system parameter estimation and pre-
diction. Vibration control of an elastic ship-mounted crane is addressed by utilizing
the proposed control schemes.

This chapter is organized as follows. In Section 4.1 and Section 4.2, a modified
MFAC program is designed by using the CFDL concept not only for system lin-
earization but also for the structural establishment of a linear controller. Section 4.3
and Section 4.4 discuss different model-free adaptive predictive control algorithms
which can be implemented to reduce the vibrations of an elastic crane. Vibration
control results and discussion are given in Section 4.5. Finally, some main ideas of
the chapter are summarized in the last section.

The content, figures, and tables in this chapter have been accepted for publication
in the following conference papers [PS20c, PS20d] or prepared as a journal article
[PS20b]. Some of them are partly modified in this chapter after previous reviews and
before final submission.

4.1 Model-free adaptive control using CFDL technique

In this section, MFAC design based on the CFDL concept is discussed. First, the
mentioned dynamic linearization technique which can be applied to MIMO nonlin-
ear systems is briefly reviewed. To estimate the unknown system parameters (PJM),
the CFDL-PA or CFDL-RLSA (see Chapter 3) can be used properly. In addition, a
compact-form linearized controller structure, which is assumed to be established at
each sampling instant during the system operation, will be designed. Then, a stan-
dard controller parameter estimation equation is reviewed in case of multivariable
systems.
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PFDL techniques

4.1.1 CFDL-based parameter estimation algorithms

First, the CFDL technique [HJ13], which has been applied to establish a local lin-
earized data model of unknown MIMO nonlinear systems and the on-line parameter
estimation algorithms as discussed in the previous chapter will be briefly reviewed in
this subsection. Then, by using the same idea of implementing the CFDL concept to
the original system, this technique can be applied to an assumed unknown (nonlin-
ear) controller based on some reasonable pre-required assumptions. Consequently,
a linearized controller structure is established locally at every sampling interval to-
gether with the linearized system model. In addition, the unknown time-varying
parameters of the design controller are estimated repeatedly by using the updated
parameters from the local system model.

For a class of unknown MIMO nonlinear systems, a general I/O description can be
written in discrete-time as

y(k+1) = g (y(k),y(k − 1), . . . ,y(k −my),u(k),u(k − 1), . . . ,u(k −mu)) , (4.1)

where my and mu are two undefined positive integers indicating the unknown
system orders. The unknown nonlinear function g(. . .) consists of the previous
available control inputs and system outputs.

With the two reasonable assumptions as mentioned in Section 3.1, a linearized data-
driven model or a CFDL model of the system (4.1) is given as

∆y(k + 1) = Φ(k)∆u(k), (4.2)

in which the pseudo-jacobian matrix or PJM Φ(k) is unknown and time-varying.
The system model (4.2) is virtually built by applying the CFDL concept. The matrix
PJM appears as

Φ(k) =


φ11(k) φ12(k) φ13(k) . . . φ1m(k)
φ21(k) φ22(k) φ23(k) . . . φ2m(k)

...
...

...
. . .

...
φr1(k) φr2(k) φr3(k) . . . φrm(k)


r×m

, (4.3)

where the size of the PJM depends on the number of system inputs (m) and outputs
( r). To design suitable controllers for the original system (4.1), the parameter matrix
Φ(k) in (4.2) needs to be estimated and updated repeatedly via the discussed CFDL-
PA as

Φ̂(k) = Φ̂(k − 1) +
η
[
∆y(k)− Φ̂(k − 1)∆u(k − 1)

]
∆uT (k − 1)

µ+ ‖∆u(k − 1)‖2 , (4.4)
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or the CFDL-RLSA as

Φ̂(k) = Φ̂(k − 1) +
[
∆y(k)− Φ̂(k − 1)∆u(k − 1)

]
K(k), (4.5)

K(k) = ∆uT (k − 1)P(k) (4.6)

= ∆uT (k − 1)P(k − 1)
[
I + ∆u(k − 1)P(k − 1)∆uT (k − 1)

]−1
,

P(k) = P(k − 1)−P(k − 1)∆uT (k − 1) (4.7)[
I + ∆u(k − 1)P(k − 1)∆uT (k − 1)

]−1
∆u(k − 1)P(k − 1).

From the above algorithms, to estimate the PJM at current step k, the closed-loop
I/O data of the controlled system from the previous steps k− 1 and k− 2 have to
be directly utilized. In the next subsection, the CFDL concept is used to linearize
an assumed unknown nonlinear controller.

4.1.2 CFDL concept applied to an assumed nonlinear controller

As introduced in [HZ13], it is assumed that an unknown data-driven controller which
can stabilize the original nonlinear system (4.1) can be represented in discrete-time
as

u(k) = h (u(k − 1),u(k − 2), . . . ,u(k − nc), e(k + 1), e(k), . . . , e(k − ne)) , (4.8)

where h(. . .) is a smooth unknown nonlinear vector-valued function, and e(k) =
yd(k)−y(k) is denoted as a vector of current tracking errors with the desired outputs
(references) yd(k) and the actual outputs y(k). Here nc and ne are two positive
integers indicated as the unknown orders of the assumed controller (4.8). It can
be noted that since the nonlinear function h(. . .) and the upcoming output control
errors e(k+ 1) are not available up to current step k, the desired controller is only
theoretically described in (4.8).

As mentioned earlier, the CFDL concept can be used to obtain a compact-form
linearized controller structure. To this end, the two following assumptions [HZ13]
need to be considered as

Assumption 4.1 : The controller (4.8) is a smooth nonlinear function, and its
partial derivatives ∂h/∂e are continuous.

Assumption 4.2 : The generalized Lipschitz condition

‖u(k)− u(k − 1)‖ ≤ c ‖e(k + 1)− e(k)‖ , (4.9)

has to be fulfilled for the controller (4.8), with c > 0 and ‖e(k + 1)− e(k)‖ 6= 0.
This assumption imposes an upper limitation on the change rate of the controller
outputs u(k) driven by the change rate of the tracking errors e(k).
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Theorem 4.1 Based on the aforementioned assumptions, the unknown nonlinear
controller (4.8) can be linearized locally as a CFDL-based data model (CFDLc)

∆u(k) = Ψ(k)∆e(k + 1), (4.10)

where Ψ(k) is an unknown time-varying parameter matrix of the design controller
called pseudo-partial derivative (PPD) which should be estimated and updated con-
tinuously, and ‖Ψ(k)‖ ≤ c for any step k according to assumption 4.2. In addi-
tion, the control input and tracking error increment vectors are defined as ∆u(k) =
u(k)− u(k − 1),∆e(k + 1) = e(k + 1)− e(k) with ‖∆e(k + 1)‖ 6= 0.

Proof 4.1 Based on the definition of ∆u(k) and the controller structure (4.8), the
control input increment vector is illustrated as

∆u(k) = u(k)− u(k − 1) (4.11)

= h (u(k − 1),u(k − 2), . . . ,u(k − nc), e(k + 1), e(k), . . . , e(k − ne))
− h (u(k − 1),u(k − 2), . . . ,u(k − nc), e(k), e(k), . . . , e(k − ne))
+ h (u(k − 1),u(k − 2), . . . ,u(k − nc), e(k), e(k), . . . , e(k − ne))
− h (u(k − 2),u(k − 3), . . . ,u(k − nc − 1), e(k), e(k − 1), . . . , e(k − ne − 1)) .

The first two items in (4.11) can be represented based on Cauchy’s mean value
theorem as

= h (u(k − 1),u(k − 2), . . . ,u(k − nc), e(k + 1), e(k), . . . , e(k − ne)) (4.12)

− h (u(k − 1),u(k − 2), . . . ,u(k − nc), e(k), e(k), . . . , e(k − ne))

=
∂h

∂e(k + 1)
[e(k + 1)− e(k)]

=
∂h

∂e(k + 1)
∆e(k + 1).

By denoting

Λ(k) = h (u(k − 1),u(k − 2), . . . ,u(k − nc), e(k), e(k), . . . , e(k − ne)) (4.13)

− h (u(k − 2),u(k − 3), . . . ,u(k − nc − 1), e(k), e(k − 1), . . . , e(k − ne − 1)) ,

(4.11) can be rewritten as

∆u(k) =
∂h

∂e(k + 1)
∆e(k + 1) + Λ(k), (4.14)

where ∂h
∂e(k+1)

are the partial derivative values of h(. . .) with respect to tracking

errors at a certain mean point within the interval [e(k) e(k + 1)].

For every fixed step k, the following equation can be given by using a numerical
matrix H(k) as

Λ(k) = H(k)∆e(k + 1). (4.15)
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Considering the condition ‖∆e(k + 1)‖ 6= 0, (4.15) must have at least one solution
H∗(k) at each sampling interval k. Hence, the obtained equation (4.14) is equivalent
to

∆u(k) = (
∂h

∂e(k + 1)
+ H∗(k)︸ ︷︷ ︸

Ψ(k)

)∆e(k + 1), (4.16)

where ‖Ψ(k)‖ ≤ c holds due to the result of assumption 4.2. Hence, theorem 4.1 has
been proven. In case of SISO systems, the corresponding proof has been discussed
in [ZH12].

Theoretically, it can be assumed that the unknown controller (4.8) can generate per-
fect control input signals to derive perfect control performance [ZH12]; that means
the upcoming output tracking errors e(k + 1) = [0]. From practical point of view,
however, the tracking errors e(k+1) will not vanish completely at sampling instant
k+ 1 because of system uncertainties or parameter estimation errors. Therefore, in
practical applications, the re-defined actual control error vectors should be consid-
ered as

ε(k + 1) = yd(k + 1)− y(k + 1), (4.17)

ε(k) = yd(k)− y(k). (4.18)

Hence, the practical control law based on the CFDL controller model (4.10) is de-
rived as

∆u(k) = −Ψ(k)ε(k), (4.19)

u(k) = u(k − 1)−Ψ(k)ε(k). (4.20)

From the equivalent dynamic data model of the controlled system in (4.2), assum-
ing yd(k + 1) = yd(k) = const (regulator problem), the following error dynamic
equations are illustrated as

yd(k + 1)− y(k + 1) = yd(k)− y(k)− Φ(k)∆u(k), (4.21)

ε(k + 1) = ε(k)− Φ(k)∆u(k). (4.22)

Substituting (4.19) into (4.22), results in

ε(k + 1) = ε(k) + Φ(k)Ψ(k)ε(k), (4.23)

ε(k + 1) = [I + Φ(k)Ψ(k)] ε(k), (4.24)

where Φ(k) and Ψ(k) are the unknown PJM and PPD parameter matrices of the
original system (4.1) and the assumed nonlinear controller (4.8), respectively.



78
Chapter 4. Design of modified model-free adaptive control based on CFDL and

PFDL techniques

The unknown controller parameter matrix Ψ(k) should be estimated to calculate
the required control input u(k) in (4.20). Therefore, the following objective function
with respect to the PPD matrix needs to be minimized

J (Ψ(k)) =
∥∥yd(k + 1)− y(k + 1)

∥∥2
+ λk‖Ψ(k)−Ψ(k − 1)‖2, (4.25)

where λk > 0 is a weighting factor which has been added to limit the change rate
of Ψ(k). Based on the CFDL data model of the plant as

y(k + 1) = y(k) + Φ(k)∆u(k), (4.26)

y(k + 1) = y(k)− Φ(k)Ψ(k)ε(k), (4.27)

(4.25) becomes

J (Ψ(k)) =
∥∥yd(k + 1)− y(k) + Φ(k)Ψ(k)ε(k)

∥∥2
+λk‖Ψ(k)−Ψ(k − 1)‖2. (4.28)

By minimizing (4.28) in term of Ψ(k), the following equations are obtained

∂J

∂Ψ(k)
=
[
yd(k + 1)− y(k) + Φ(k)Ψ(k)ε(k)

] [
ΦT (k)εT (k)

]
(4.29)

+ λk [Ψ(k)−Ψ(k − 1)] = 0,

Ψ̂(k) = Ψ̂(k − 1)−
ρk

[
yd(k + 1)− y(k) + Ψ̂(k − 1)Φ̂(k)ε(k)

]
Φ̂T (k)εT (k)

λk +
∥∥∥Φ̂(k)ε(k)

∥∥∥2 ,

(4.30)

where ρk > 0 denoted as a step-size constant. The system parameter matrix Φ̂(k)
in (4.30) could be estimated via the CFDL-PA (4.4) or the CFDL-RLSA (4.5), (4.6),
and (4.7). Finally, the updated control input vector u(k) is calculated recursively
via (4.20) by using the actual control errors ε(k) in (4.18) and the estimated PPD
parameters Ψ̂(k) in (4.30).

4.2 Modified CFDLc-based model-free adaptive control

In this section, a modified estimation algorithm of the controller parameter matrix or
PPD Ψ(k) in the control law (4.20) is proposed. The key idea of modification is that,
the actual tracking errors ε(k+ 1) as well as the error variations ∆ε(k−N) within
a specified length of sampling interval N > 0 are minimized to improve control
performance. The modified control approach has been implemented successfully to
an inverted elastic cantilever beam as an example of SISO nonlinear systems [MS18].
A modified objective function of the PPD matrix is firstly introduced in this study.
As a result, by minimizing this cost function, a novel parameter estimation algorithm
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of the design controller is generated which allows to update the parameters Ψ(k)
recursively. Based on the updated controller parameters and the current output
tracking errors, the required control input signals u(k) is computed. Explanation
of how to apply the proposed method to control a class of unknown MIMO nonlinear
systems as well as several necessary steps to execute the design control scheme will
be addressed at the end of the section.

4.2.1 Modified controller parameter estimation algorithm

Based on the existing objective function of Ψ(k) as given in (4.25), here a modified
one is proposed as

J (Ψ(k)) =
∥∥yd(k + 1)− y(k + 1)

∥∥2
+ τ
∥∥∆yd(k + 1)−∆y(k + 1)−∆y(k)

∥∥2

(4.31)

+ λk‖Ψ(k)−Ψ(k − 1)‖2,

where τ > 0 denotes a constant design parameter. To minimize the tracking error
variations, the term of

∥∥∆yd(k + 1)−∆y(k + 1)−∆y(k)
∥∥ is added into (4.31).

The actual system output vector y(k + 1) and output increment vector ∆y(k + 1)
in (4.31) can be replaced by the system CFDL data model as follows

y(k + 1) = y(k)− Φ(k)Ψ(k)ε(k), (4.32)

∆y(k + 1) = −Φ(k)Ψ(k)ε(k), (4.33)

where the system parameter matrix is denoted as Φ(k) or PJM.

Substituting (4.32) and (4.33) into (4.31), yields the following cost function

J (Ψ(k)) =
∥∥yd(k + 1)− y(k) + Φ(k)Ψ(k)ε(k)

∥∥2
(4.34)

+ τ
∥∥∆yd(k + 1) + Φ(k)Ψ(k)ε(k)−∆y(k)

∥∥2
+ λk‖Ψ(k)−Ψ(k − 1)‖2.

Differentiating (4.34) with respect to Ψ(k) and letting it zero, the following equa-
tions

∂J

∂Ψ(k)
=
[
yd(k + 1)− y(k) + Φ(k)Ψ(k)ε(k)

] [
ΦT (k)εT (k)

]
(4.35)

+ τ
[
∆yd(k + 1) + Φ(k)Ψ(k)ε(k)−∆y(k)

] [
ΦT (k)εT (k)

]
+ λk [Ψ(k)−Ψ(k − 1)] = 0,

Ψ̂(k) = Ψ̂(k − 1) (4.36)

−
ρk

[
yd(k + 1)− y(k) + (1 + τ) Ψ̂(k − 1)Φ̂(k)ε(k)

]
Φ̂T (k)εT (k)

λk + (1 + τ)
∥∥∥Φ̂(k)ε(k)

∥∥∥2

−
τ
[
yd(k + 1)− y(k)−

(
yd(k)− y(k − 1)

)]
Φ̂T (k)εT (k)

λk + (1 + τ)
∥∥∥Φ̂(k)ε(k)

∥∥∥2 ,
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are derived. The estimation algorithm (4.36) is slightly different with the stan-
dard algorithm (4.30). As discussed in [PS19b, MS18], the output error differences
determined as

[
yd(k + 1)− yd(k)− (y(k)− y(k − 1))

]
in (4.36) only consider min-

imizing one step of the tracking errors from previous steps with relatively small
amplitudes. Therefore, to improve tracking control performance the extended error
variations within a length of N > 0 sampling instants are considered as[
yd(k + 1)− y(k)−

(
yd(k −N + 1)− y(k −N)

)]
, resulting in the modified recur-

sive estimation equation

Ψ̂(k) = Ψ̂(k − 1) (4.37)

−
ρk

[
yd(k + 1)− y(k) + (1 + τ) Ψ̂(k − 1)Φ̂(k)ε(k)

]
Φ̂T (k)εT (k)

λk + (1 + τ)
∥∥∥Φ̂(k)ε(k)

∥∥∥2

− τ [ε(k)− ε(k −N)] Φ̂T (k)εT (k)

λk + (1 + τ)
∥∥∥Φ̂(k)ε(k)

∥∥∥2 ,

where ε(k) = yd(k+ 1)− y(k); ε(k−N) = yd(k−N + 1)− y(k−N) are indicated
as the actual output tracking errors at step k and k−N , respectively. Here ρk > 0
is a step-size constant. The system parameter matrix Φ̂(k) in (4.37) should be
estimated by using the CFDL-PA (4.4) or the CFDL-RLSA (4.5), (4.6), and (4.7).

4.2.2 Control scheme for application to unknown MIMO systems

The proposed method can be applied to control a class of unknown MIMO (nonlin-
ear) systems. The modified control scheme is illustrated in Figure 4.1. To design
the CFDLc-based model-free controller, the following steps have to be considered:

• Step 1: Based on the CFDL data model and the available I/O data from
the system, the unknown PJM parameters Φ̂(k) are estimated and updated
continuously by using different on-line parameter estimation algorithms. Ac-
cording to [HJ13] and assumption 3.3 in Section 3.1, to improve the ability in
tracking time-varying parameters a reset condition is defined as

φ̂ii(k) = φ̂ii(1) if
∣∣∣φ̂ii(k)

∣∣∣ < c2 or
∣∣∣φ̂ii(k)

∣∣∣ > αc2 (4.38)

or sgn
(
φ̂ii(k)

)
6= sgn

(
φ̂ii(1)

)
,

φ̂ij(k) = φ̂ij(1) if
∣∣∣φ̂ij(k)

∣∣∣ > c1 (4.39)

or sgn
(
φ̂ij(k)

)
6= sgn

(
φ̂ij(1)

)
,
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where φ̂ii(1), φ̂ij(1) are the initial values of the PJM, with i, j = 1, 2, . . . , n∗

and i 6= j (according to assumption 3.3). The two positive constants are c1, c2

with c2 > c1 (2α + 1) (n∗ − 1) ;α ≥ 1.

• Step 2: By using the updated PJM Φ̂(k) and the actual tracking errors ε(k),
the time-varying controller parameters Ψ̂(k) can be estimated via (4.37). To
increase the on-line tracking ability of the matrix PPD, another reset condition
[HZ13] should be considered as∥∥∥Ψ̂(k)

∥∥∥ = −b1 if
∥∥∥Ψ̂(k)

∥∥∥ > b1 or
∥∥∥Ψ̂(k)

∥∥∥ < −b1, (4.40)

where b1 > 0 is a small constant. It can be noted that the sign of all elements
of the matrix Ψ̂(k) is always negative, whereas that of the matrix Φ̂(k) is
positive (according to the reset conditions (4.38), (4.39), and (4.40)), that
means the future tracking errors ε(k + 1) converge to zero according to the
error dynamic equation (4.24).

• Step 3: Based on the corrected PPD Ψ̂(k) and actual output tracking errors
ε(k), the current control input vector u(k) is updated via (4.20). Then, the
system output values y(k + 1) in the next sampling instant k + 1 will be
measured or computed, and the given process is carried out repeatedly.

4.3 Compact-form dynamic linearization-based model-free
predictive control

Model predictive control (MPC) has become more attractive in control engineering
for the last decades because of its efficiency and robustness. In this study, an effective
control strategy is proposed for vibration reduction of mechanical flexible systems,
in which establishment of a global dynamic model of the controlled system is not
necessary. A modified model-free adaptive predictive controller will be designed by
combination of the MPC and MFC theories. The control idea is that, based on
the CFDL technique [HJ13], the future system outputs within a finite prediction
horizon can be predicted in sequence. The data-driven predictive model of the sys-
tem only requires the closed-loop I/O information, and therefore the future control
input increments as well as the unknown time-varying system parameters namely
pseudo-jacobian matrix (PJM) can be estimated. To improve parameter estimation
accuracy, in this work, the recursive least-squares algorithm (see Section 3.2) and
its modification will be utilized instead of using conventional projection algorithm
[HJ13]. In the current section, a general compact-form of Ny-step-ahead predictive
equation is established based on the CFDL concept. This linearized dynamical for-
mula contains a set of the unknown parameter matrices which need to be estimated
and predicted repeatedly. The updated PJM will be implemented to define the
required control inputs, and therefore to fulfill the initial control requirements.
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Figure 4.1: Modified CFDLc-based model-free control scheme for unknown MIMO
systems [PS20c]

4.3.1 General compact-form predictive equation

As discussed in Section 4.1, for a class of unknown MIMO nonlinear systems a
general I/O description can be illustrated in (4.1). Based on the two reasonable
assumptions as mentioned in Section 3.1, the original system (4.1) can be linearized
locally at each sampling time as a CFDL data model

∆y(k + 1) = Φ(k)∆u(k), (4.41)

where Φ(k) is the unknown system parameter matrix described in (4.3). The CFDL
model (4.41) also describes one-step-ahead prediction equation of the system outputs

y(k + 1) = y(k) + Φ(k)∆u(k). (4.42)
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According to (4.42), Ny-step-ahead prediction equations of the system dynamics
can be virtually established as follows

y(k + 1) = y(k) + Φ(k)∆u(k)
y(k + 2) = y(k + 1) + Φ(k + 1)∆u(k + 1)
y(k + 2) = y(k) + Φ(k)∆u(k) + Φ(k + 1)∆u(k + 1)
...
y(k +Nu) = y(k +Nu − 1) + Φ(k +Nu − 1)∆u(k +Nu − 1)
...
y(k +Ny) = y(k +Ny − 1) + Φ(k +Ny − 1)∆u(k +Ny − 1)
y(k +Ny) = y(k) + Φ(k)∆u(k)
+...+ Φ(k +Nu − 1)∆u(k +Nu − 1)
+...+ Φ(k +Ny − 1)∆u(k +Ny − 1)

, (4.43)

where Ny, Nu are denoted as the finite prediction horizons of the system output
and control input, respectively, with 1 ≤ Nu ≤ Ny.

Let the following notations

YNy(k + 1) = [y(k + 1), ...,y(k +Nu), ...,y(k +Ny)]
T , (4.44)

∆UNy(k) = [∆u(k), ...,∆u(k +Nu − 1), ...,∆u(k +Ny − 1)]T , (4.45)

E(k) = [Ir×m, Ir×m, ..., Ir×m]T , (4.46)

D(k) =



Φ(k) 0 0 . . . 0 0
Φ(k) Φ(k + 1) 0 . . . 0 0

...
...

. . . . . . . . .
...

Φ(k) Φ(k + 1)
... Φ(k +Nu − 1) 0 0

...
...

. . .
...

. . .
...

Φ(k) Φ(k + 1) . . . Φ(k +Nu − 1) . . . Φ(k +Ny − 1)


Ny×Ny

,

(4.47)

where YNy(k+1) denotes Ny-step-ahead prediction output vector; whilst ∆UNy(k)
represents the predicted control input increment vector along the output prediction
horizon k = 1, 2, . . . , Nu, . . . , Ny. Here Ir×m and 0r×m are indicated as the identity
and zero matrices, correspondingly, with the number of control inputs m and system
outputs r.

Consequently, (4.43) can be rewritten in a general compact-form of Ny-step-ahead
prediction equation as

YNy(k + 1) = E(k)y(k) + D(k)∆UNy(k). (4.48)

It can be assumed that the predicted control inputs will not change at a certain
sampling interval, that means if j > Nu leading to ∆u(k + j − 1) = [0] in (4.45),
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with j = 1, 2, . . . , Nu, . . . , Ny. Therefore, the predictive equation (4.48) becomes

YNy(k + 1) = E(k)y(k) + D1(k)∆UNu(k), (4.49)

where the predicted control input increment vector is written as

∆UNu(k) = [∆u(k),∆u(k + 1), ...,∆u(k +Nu − 1)]T , (4.50)

and a set of the unknown time-varying parameter matrices PJM are denoted as

D1(k) =



Φ(k) 0 0 0
Φ(k) Φ(k + 1) 0 0

...
...

. . .
...

Φ(k) Φ(k + 1) . . . Φ(k +Nu − 1)
...

... . . .
...

Φ(k) Φ(k + 1) . . . Φ(k +Nu − 1)


Ny×Nu

. (4.51)

Based on the output predictive equation (4.49), the future control input increment
vector ∆UNu(k) as well as the current control input vector u(k) will be calculated
in the next sections.

4.3.2 Parameter estimation and prediction

The general compact-form Ny-step-ahead predictive model of the system output
(4.49) contains a set of the unknown time-varying parameter matrices Φ(k),Φ(k +
1), . . . ,Φ(k+Nu− 1) as illustrated in (4.51). These matrices can be estimated and
predicted continuously based on the available system I/O data to determine the
predicted system inputs and outputs. To estimate the PJM at current step Φ(k),
instead of using traditional projection algorithm [HJ13], this study considers the
CFDL-RLSA and its modification as discussed in Section 3.2 for estimation accuracy
improvement. Furthermore, the other unknown PJM matrices Φ(k + 1),Φ(k +
2), . . . ,Φ(k + Nu − 1) can be predicted according to the existing (available) values
Φ̂(1), Φ̂(2), . . . , Φ̂(k) by applying the multilevel hierarchical forecasting algorithm
[HJ13].

The recursive least-squares estimation method as introduced in [GS14, ÅW08] has
been applied to the equivalent linearized CFDL data model (4.41) of an unknown
MIMO plant. As a result, the unknown parameters Φ(k) is estimated and updated
recursively via the obtained CFDL-RLSA in (4.5), (4.6), and (4.7). To improve the
performance of the least-squares algorithm, a modified CFDL-RLSA as presented in
[HJ13] is considered in this contribution, and could be applied to the CFDL system
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model which results in the following equations

Φ̂(k) = Φ̂(k − 1) +
[
∆y(k)− Φ̂(k − 1)∆u(k − 1)

]
∆uT (k − 1)P(k) (4.52)

− γP(k)
[
Φ̂(k − 1)− Φ̂(k − 2)

]
,

P(k) = P(k − 1)−P(k − 1)∆uT (k − 1) (4.53)[
I + ∆u(k − 1)P(k − 1)∆uT (k − 1)

]−1
∆u(k − 1)P(k − 1),

where γ > 0 is a constant design parameter.

To predict the future PJM Φ(k + 1),Φ(k + 2), . . . ,Φ(k + Nu − 1) in (4.51), the
available estimated values Φ̂(1), Φ̂(2), . . . , Φ̂(k) calculated in (4.52), (4.53) will be
used explicitly. Based on the multilevel hierarchical forecasting method [HJ13], an
auto-regressive prediction model of the PJM in the next sampling instant k + 1 is
given as

Φ̂(k + 1) = θ1(k)Φ̂(k) + θ2(k)Φ̂(k − 1) + . . .+ θnp(k)Φ̂(k − np + 1), (4.54)

where θi, i = 1, 2, . . . , np are the model coefficients, and np ∈ [2, 7] as recommended
in [GHLJ19] is denoted as the fixed model order. In general, the prediction equation
of the PJM can be written as

Φ̂(k + j) = θ1(k)Φ̂(k + j − 1) (4.55)

+ θ2(k)Φ̂(k + j − 2) + . . .+ θnp(k)Φ̂(k + j − np),

where j = 1, 2, ..., Nu − 1. Let the following values

θ(k) =
[
θ1(k), θ2(k), . . . , θnp(k)

]T
, (4.56)

Ω̂(k − 1) =
[
Φ̂(k − 1), Φ̂(k − 2), . . . , Φ̂(k − np)

]T
, (4.57)

Φ̂(k) = Ω̂(k − 1)θT (k). (4.58)

The unknown parameters θ1(k), θ2(k), . . . , θnp(k) in (4.54) and (4.55) can be defined
by minimizing the following objective function [GHLJ19]

J(θ(k)) =
∥∥Φ(k)− Ω(k − 1)θT (k)

∥∥2
+ δ‖θ(k)− θ(k − 1)‖2. (4.59)

Differentiating (4.59) with respect to θ(k) and letting it zero, hence the optimal
parameters

θ(k) = θ(k − 1) +

[
Φ̂(k)− θT (k − 1)Ω̂(k − 1)

]
Ω̂T (k − 1)

δ +
∥∥∥Ω̂(k − 1)

∥∥∥2 , (4.60)

where δ ∈ (0, 1] is a positive constant. Based on the vector of parameters θ(k)
which are recursively calculated in (4.60) and the old PJM values up to current
step as Φ̂(1), Φ̂(2), . . . , Φ̂(k), the upcoming PJM matrices Φ̂(k + j) at steps j =
1, 2, . . . , Nu − 1 are predicted via (4.55).
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4.3.3 Control input calculation

A model-free adaptive predictive controller (MFAPC) based on the CFDL concept
will be designed in this subsection. The proposed method can be applied to vibra-
tion control of a class of mechanical flexible systems. Based on the estimated and
predicted system parameter matrices Φ̂(k), Φ̂(k + 1), . . . , Φ̂(k + Nu − 1) as well as
the predicted output tracking errors denoted as eNy(k+ 1) within the finite output
prediction horizon Ny, the required control input vector u(k) can be calculated.

The future control input increment vector ∆UNu(k) in (4.49) can be predicted at
each step of the control input prediction horizon k = 1, 2, . . . , Nu. The control goal
is to minimize the predicted tracking errors between the future references yd(k+ i)
and the predicted system outputs y(k + i) considering input energy limitation by
adding a weighting factor λ into objective function, where i = 1, 2, ..., Nu, ..., Ny.
Hence, the cost function with respect to the control input increment vector ∆u(k)
is considered as

J (∆u(k)) =

Ny∑
i=1

∥∥yd(k + i)− y(k + i)
∥∥2

+ λ
Nu−1∑
j=0

‖∆u(k + j)‖2, (4.61)

where λ > 0 is a constant design parameter which is used to restrict the change
rate of the future control inputs. The desired system outputs yd(k + i) in (4.61)
along the given output prediction horizon Ny is written as

Yd
Ny

(k + 1) =
[
yd(k + 1), . . . ,yd(k +Nu), . . . ,y

d(k +Ny)
]T
. (4.62)

By substituting (4.44), (4.50), and (4.62) into (4.61), the above objective function
is rewritten as

J (∆UNu(k)) =
[
Yd
Ny

(k + 1)−YNy(k + 1)
]T [

Yd
Ny

(k + 1)−YNy(k + 1)
]

(4.63)

+ λ∆UNu

T (k)∆UNu(k).

The future output vector YNy(k+ 1) in (4.63) can be approximated by the general
compact-form predictive model (4.49). Therefore, substituting (4.49) into (4.63)
leads to the following function

J (∆UNu(k)) =
[
Yd
Ny

(k + 1)− E(k)y(k)−D1(k)∆UNu(k)
]2

(4.64)

+ λ∆UT
Nu(k)∆UNu(k).

Solving the optimal problem by differentiating (4.64) in term of ∆UNu(k) and
letting it zero, yields

∂J

∂∆UNu(k)
=
[
Yd
Ny

(k + 1)− E(k)y(k)−D1(k)∆UNu(k)
] (
−DT

1(k)
)

(4.65)

+ λ∆UNu(k) = 0.
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Finally, the predicted control input increment vector is derived as

∆UNu(k) =
[
DT

1(k)D1(k) + λI
]−1

DT
1(k)

[
Yd
Ny

(k + 1)− E(k)y(k)
]
, (4.66)

where the unknown time-varying parameter PJM in D1(k) are estimated and pre-
dicted by using the discussed algorithm (4.52), (4.53), (4.55), and (4.60). The
updated control input vector at current step u(k) is computed by utilizing the
receding horizon principle [HJ13] as

u(k) = u(k − 1) + gT∆UNu(k), (4.67)

with g =
[
Ir×m,0r×m, . . . ,0r×m

]T
; whereas r,m are indicated as the number of

system outputs and inputs, respectively.

4.4 Model-free adaptive predictive control using PFDL tech-
nique

In this section, the design of MFAPC based on the partial-form dynamic linearization
(PFDL) technique [HJ13] is investigated for a class of unknown MIMO nonlinear
systems. The key idea of PFDL is that, the upcoming system outputs are also af-
fected by the previous control inputs within an interval determined by the constant
L. Therefore, a linearized data-driven model of the unknown system is established
which contains a set of time-varying parameter matrices or PJM. Based on this
model, compared to [PS20d] a general partial-form predictive equation of the sys-
tem outputs is constructed within a finite output prediction horizon. The system
predictive model needs to be corrected continuously via estimation and prediction of
the unknown parameters PJM. In this contribution, the PFDL-based recursive least-
squares algorithm is firstly discussed and applied to the MFAPC design. Then, the
control input calculation as well as several steps for this kind of data-driven control
implementation are illustrated.

4.4.1 Partial-form output predictive model

According to [HJ13], to establish a linearized model for the given system (4.1), every
control input or control input increment vectors within a fixed-moving time window
or linearization length constant L ≥ 1 are taken into account. The control input
increment vector is described as

∆U(k) = [∆u(k),∆u(k − 1), . . . ,∆u(k − L+ 1)]T , (4.68)

where ∆u(k) = u(k) − u(k − 1); ∆u(k − L + 1) = u(k − L + 1) − u(k − L) are
denoted as the control input increments at instants k and k − L+ 1, respectively.
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As introduced in [HJ11a], the original system (4.1), which satisfies two reasonable
assumptions (see Chapter 5), is able to be approximated as the PFDL data model

∆y(k + 1) = Φp,L(k)∆U(k), (4.69)

where a set of unknown system parameter matrices or PJM at current step k is
indicated as Φp,L(k) = [Φ1(k),Φ2(k), . . . ,Φp(k), . . . ,ΦL(k)], with p = 1, 2, . . . , L.
According to [PS20e], the structure of each element matrix Φp(k) in MIMO case is
written as

Φp(k) =


φ11p(k) φ12p(k) φ13p(k) . . . φ1mp(k)
φ21p(k) φ22p(k) φ23p(k) . . . φ2mp(k)

...
...

...
. . .

...
φr1p(k) φr2p(k) φr3p(k) . . . φrmp(k)


r×m

, (4.70)

assuming ‖Φp(k)‖ ≤ b [PS20e]. This means that the component matrix Φp(k) is
bounded at every instant k.

The PFDL model (4.69) also describes one-step-ahead predictive equation of the
system outputs as

y(k + 1) = y(k) + Φp,L(k)∆U(k). (4.71)

By denoting the constant matrices

V =



0r×m 0r×m 0r×m . . . 0r×m 0r×m
Ir×m 0r×m 0r×m . . . 0r×m 0r×m
0r×m Ir×m 0r×m . . . 0r×m 0r×m
0r×m 0r×m Ir×m . . . 0r×m 0r×m

...
...

...
. . .

...
...

0r×m 0r×m 0r×m 0r×m Ir×m 0r×m


rL×mL

,W =



Ir×m
0r×m
0r×m
0r×m

...
0r×m


rL×m

,

(4.72)

(4.71) can be rewritten as

y(k + 1) = y(k) + Φp,L(k)V∆U(k − 1) + Φp,L(k)W∆u(k). (4.73)

As discussed in [HJ13] for SISO systems, in this thesis along a limited output predic-



4.4 Model-free adaptive predictive control using PFDL technique 89

tion horizon Ny, the system output predictive equations are established as follows

y(k + 2) = y(k + 1) + Φp,L(k + 1)∆U(k + 1)
y(k + 2) = y(k) + Φp,L(k)V∆U(k − 1) + Φp,L(k)W∆u(k)
+Φp,L(k + 1)∆U(k + 1)
y(k + 2) = y(k) + Φp,L(k)V∆U(k − 1) + Φp,L(k)W∆u(k)
+Φp,L(k + 1)V2∆U(k − 1) + Φp,L(k + 1)VW∆u(k)
+Φp,L(k + 1)W∆u(k + 1)
...
y(k +Nu) = y(k)

+
Nu−1∑
q=0

Φp,L(k + q)Vq+1∆U(k − 1) +
Nu−1∑
q=0

Φp,L(k + q)VqW∆u(k)

+
Nu−1∑
q=1

Φp,L(k + q)Vq−1W∆u(k + 1) +
Nu−1∑
q=2

Φp,L(k + q)Vq−2W∆u(k + 2)

+ . . .+ Φp,L(k +Nu − 1)W∆u(k +Nu − 1)
...
y(k +Ny) = y(k)

+
Ny−1∑
q=0

Φp,L(k + q)Vq+1∆U(k − 1) +
Ny−1∑
q=0

Φp,L(k + q)VqW∆u(k)

+
Ny−1∑
q=1

Φp,L(k + q)Vq−1W∆u(k + 1) +
Ny−1∑
q=2

Φp,L(k + q)Vq−2W∆u(k + 2)

+ . . .+
Ny−1∑
q=Nu−1

Φp,L(k + q)Vq−Nu+1W∆u(k +Nu − 1)

.

(4.74)

The following values are defined

ỸNy(k + 1) = [y(k + 1),y(k + 2), . . . ,y(k +Nu), . . . ,y(k +Ny)]
T , (4.75)

S = [Ir×m, Ir×m, ..., Ir×m]T , (4.76)

Ȳ(k) =



Φp,L(k)V
1∑
q=0

Φp,L(k + q)Vq+1

...
Nu−1∑
q=0

Φp,L(k + q)Vq+1

...
Ny−1∑
q=0

Φp,L(k + q)Vq+1


rNy×mL

, (4.77)
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∆U(k − 1) = [∆u(k − 1),∆u(k − 2), . . . ,∆u(k − L+ 1)]T , (4.78)

Ỹ(k) =



Φp,L(k)W 0 0
1∑
q=0

Φp,L(k + q)VqW 0 0

...
. . .

...
Nu−1∑
q=0

Φp,L(k + q)VqW . . . Φp,L(k +Nu − 1)W

...
. . .

...
Ny−1∑
q=0

Φp,L(k + q)VqW . . .
Ny−1∑
q=Nu−1

Φp,L(k + q)Vq−Nu+1W


r×m

,

(4.79)

∆ŨNu(k) = [∆u(k),∆u(k + 1), . . . ,∆u(k +Nu − 1)]T . (4.80)

Therefore, (4.73) and (4.74) can be summarized as

ỸNy(k + 1) = Sy(k) + Ȳ(k)∆U(k − 1) + Ỹ(k)∆ŨNu(k). (4.81)

Equation (4.81) is called general partial-form predictive equation of the system out-
puts which contains a set of unknown time-varying parameter matrices (PJM) de-
noted as Φp,L(k + q), with q = 0, 1, . . . , Nu − 1, . . . , Ny − 1 as given in (4.77) and
(4.79). To determine Φp,L(k + q), only the available system I/O data from initial
step ( k = 1) up to step ( k − 1) are required.

4.4.2 PFDL-based parameter estimation and prediction

To design the PFDL-based model-free adaptive predictive control, the time-varying
parameter matrices Φp,L(k + q) in (4.77) and (4.79) have to be identified. In this
study, the recursive least-squares algorithm (RLSA) [GS14, ÅW08] is utilized. Theo-
retically speaking, RLSA shows improved on-line estimation accuracy in comparison
with the traditional projection algorithm [GS14]. Similar to estimation of the PJM
Φ(k) in SISO case [PS20d], by applying the RLS estimation method to the PFDL
model (4.69), the following recursive algorithm called PFDL-RLSA is derived

Φ̂p,L(k) = Φ̂p,L(k − 1) +
[
y(k)− y(k − 1)− Φ̂p,L(k − 1)∆U(k − 1)

]
K1(k),

(4.82)

K1(k) = ∆UT (k − 1)P1(k) (4.83)

= ∆UT (k − 1)P1(k − 1)
[
I + ∆U(k − 1)P1(k − 1)∆UT (k − 1)

]−1
,

P1(k) = P1(k − 1)−P1(k − 1)∆UT (k − 1) (4.84)[
I + ∆U(k − 1)P1(k − 1)∆UT (k − 1)

]−1
∆U(k − 1)P1(k − 1),
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where P1(k),K1(k) are unknown time-varying parameter matrices, and P0
1 = P1(0)

is a positive definite matrix. The initial parameters PJM is given as Φ̂p,L(0).

To predict the future PJM Φp,L(k + q) within a fixed-length of prediction horizon
q = 1, 2, . . . , Nu − 1, . . . , Ny − 1, the estimated/known parameters from initial step
(k = 1) up to current step (k) should be used explicitly. Based on the multilevel
hierarchical forecasting method [HJ13], an auto-regressive prediction model of the
PJM at step (k + 1) is considered as

Φ̂p,L(k + 1) = G1(k)Φ̂p,L(k) +G2(k)Φ̂p,L(k − 1) + . . .+Gnp(k)Φ̂p,L(k − np + 1),
(4.85)

where Gv(k), with v = 1, 2, . . . , np are the unknown time-varying model coefficients,
and np ∈ [2, 7] as recommended in [HJ13] is the fixed model order. In general, the
prediction equation of the PJM is written as

Φ̂p,L(k + q) = G1(k)Φ̂p,L(k + q − 1) +G2(k)Φ̂p,L(k + q − 2) (4.86)

+ . . .+Gnp(k)Φ̂p,L(k + q − np),

where q = 1, 2, . . . , Nu − 1, . . . , Ny − 1. Let the following values

Γ(k) =
[
G1(k), G2(k), . . . , Gnp(k)

]T
, (4.87)

Υ̂(k − 1) =
[
Φ̂p,L(k − 1), Φ̂p,L(k − 2), . . . , Φ̂p,L(k − np)

]T
, (4.88)

Φ̂p,L(k) = Υ̂(k − 1)ΓT (k). (4.89)

Instead of using traditional projection algorithm [GHLJ19], this contribution consid-
ers application of the recursive least-squares method [GS14] to estimate the unknown
coefficients Gv(k) in (4.85) and (4.86). By applying RLSA to (4.89), after several
calculations the following equations are obtained

P2(k) = P2(k − 1)−P2(k − 1)Υ̂T (k − 1) (4.90)[
I + Υ̂(k − 1)P2(k − 1)Υ̂T (k − 1)

]−1

Υ̂(k − 1)P2(k − 1),

K2(k) = Υ̂T (k − 1)P2(k − 1)
[
I + Υ̂(k − 1)P2(k − 1)Υ̂T (k − 1)

]−1

, (4.91)

Γ(k) = Γ(k − 1) +
[
Φ̂p,L(k)− ΓT (k − 1)Υ̂(k − 1)

]
K2(k), (4.92)

where P2(k),K2(k) are the unknown time-varying parameter matrices, and
P0

2 = P2(0) is an initial positive definite matrix. The initial coefficients of the
prediction models (4.85) and (4.86) are given as Γ(0) = Γ0. Based on the calculated
parameters Γ(k) or Gv(k) in (4.90), (4.91), and (4.92) as well as the available PJM
Φ̂p,L(1), Φ̂p,L(2), . . . , Φ̂p,L(k), the future system parameter matrices Φ̂p,L(k+q) with
q = 1, 2, . . . , Nu − 1, . . . , Ny − 1 in (4.77) and (4.79) are predicted via (4.86).
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4.4.3 Control input calculation

To calculate the required control input vector u(k), the input objective function, in
which the future output tracking errors should be minimized within the length of
prediction steps Ny considering input energy limitation, is described as

J (∆u(k)) =

Ny∑
i=1

∥∥yd(k + i)− y(k + i)
∥∥2

+ λ

Nu−1∑
j=0

‖∆u(k + j)‖2, (4.93)

where λ > 0 is a constant design parameter. The desired system output vector in
future yd(k + i), with i = 1, 2, . . . , Nu, . . . , Ny is illustrated in (4.62). Meanwhile,
the upcoming outputs y(k+i) in (4.93) can be approximated by the general PFDL-
based predictive model (4.81). Substituting (4.80), (4.81), and (4.62) into (4.93),
results in

J
(

∆ŨNu(k)
)

=
[
Yd
Ny

(k + 1)− Sy(k)− Ȳ(k)∆U(k − 1)− Ỹ(k)∆ŨNu(k)
]2

(4.94)

+ λ∆Ũ
T

Nu
(k)∆ŨNu(k).

Minimizing (4.94) with respect to ∆ŨNu(k) by taking ∂J
∂∆ŨNu (k)

= 0, leads to the

predicted control input increment vector

∆ŨNu(k) =
[
Ỹ
T

(k)Ỹ(k) + λI
]−1

Ỹ
T

(k) (4.95)[
Yd
Ny

(k + 1)− Sy(k)− Ȳ(k)∆U(k − 1)
]
,

where the composed matrices Ỹ(k) and Ȳ(k) described in (4.79) and (4.77), re-
spectively, contain a set of the estimated parameter matrices Φ̂p,L(k + q), with
q = 0, 1, 2, . . . , Nu − 1, . . . , Ny − 1.

Finally, by applying the receding horizon principle [HJ13] the update control inputs
are computed as

u(k) = u(k − 1) + gT∆ŨNu(k), (4.96)

with g =
[
Ir×m,0r×m, . . . ,0r×m

]T
.

4.4.4 Steps for model-free adaptive predictive control design

The proposed MFAPC methods can be applied to a class of unknown MIMO nonlin-
ear systems. A general CFDL-based MFAPC scheme of a MIMO crane representing
a mechanical flexible system is depicted in Figure 4.2. To design control, the follow-
ing steps have to be implemented:
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• Step 1: Based on the CFDL or PFDL concepts, different predictive models
of the system outputs are constructed which contain unknown time-varying
parameter matrices (PJM). At current step k, the PJM matrices Φ̂(k) or
Φ̂p,L(k) are estimated and updated recursively by using the modified CFDL-
RLSA (4.52), (4.53) or PFDL-RLSA (4.82), (4.83), and (4.84). According
to [HJ13], to improve the ability in tracking time-varying parameters a reset
condition is considered as given in (4.38), and (4.39).

• Step 2: The current PJM Φ̂(k) or Φ̂p,L(k) as well as the available parameter

matrices from previous steps are utilized to predict the future PJM Φ̂(k+j) in
(4.55), with j = 1, 2, . . . , Nu− 1 or a set of future PJM Φ̂p,L(k+ q) in (4.86),
with q = 1, 2, . . . , Ny−1. Therefore, the composed parameter matrices D1(k),
Ỹ(k), and Ȳ(k) are completely determined. To improve the tracking ability
of the PJM prediction algorithms, another reset condition [HJ13] has to be
fulfilled as

φ̂ii(k + j) = φ̂ii(1) if
∣∣∣φ̂ii(k + j)

∣∣∣ < c2 or
∣∣∣φ̂ii(k + j)

∣∣∣ > αc2 (4.97)

or sgn
(
φ̂ii(k + j)

)
6= sgn

(
φ̂ii(1)

)
,

φ̂ij(k + j) = φ̂ij(1) if
∣∣∣φ̂ij(k + j)

∣∣∣ > c1 (4.98)

or sgn
(
φ̂ij(k + j)

)
6= sgn

(
φ̂ij(1)

)
.

• Step 3: Based on the estimated/predicted PJM and the future output control
errors, the control input increment vectors ∆UNu(k) and ∆ŨNu(k) are de-
fined. Hence, the updated control input vector u(k) is computed according to
(4.67) and (4.96). Finally, the next system outputs from the controlled system
need to be collected, and the given procedure is executed repeatedly.

4.5 Vibration control results and discussion

Based on the CFDL and PFDL concepts, different model-free control strategies in-
cluding the modified CFDLc-MFAC, RLS-based MFAPC, and PFDL-based MFAPC
have been developed in the preceding sections. To verify control effectiveness, the
design controllers will be applied to reduce the in-plane vibrations of an elastic ship-
mounted crane [AS07]. Introduction to the crane system and related configuration
have been reviewed in Section 3.3. The crane is represented as a typical flexible
system. In the following subsections, simulation results including system output
and control input energy-based evaluation of the proposed approaches will be given.
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Figure 4.2: General model-free adaptive predictive control scheme of a MIMO
crane [PS20d]

4.5.1 Modified CFDLc-MFAC results

The improved CFDLc-MFAC, which uses the modified controller parameter esti-
mation algorithm (4.37) to update the unknown time-varying controller parameters
Ψ(k) and the CFDL-RLSA (4.5), (4.6), and (4.7) to estimate the unknown system
parameters Φ(k), is applied to control of the elastic boom crane. Simulation re-
sults are obtained in case the effects of the unknown external disturbances such as
ship rolling and wind force ( ∆δ(k) = p2(k) = 0 in (3.103)) are ignored. However,
because of the non-zero initial excitation of the payload, large vibrations occur in
the system that might lead to dangerous situations in the crane operation. Sev-
eral initial operating conditions of the crane have been already given in Table 3.1.
The design model-free controller so-called modified CFDLc-MFAC is compared with
the normal MFAC which utilizes the traditional projection algorithm (4.4) [PS19a]
and industrial PI control. In Table 4.1, several design parameters of the model-free
controllers are shown.
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Figure 4.3: Vibration control comparison with respect to the payload position
∆x2 and ∆y2 [PS20c]

The vibration control results of the payload displacement in x0- and y0-direction
are described in Figure 4.3. Compared to the normal MFAC (red line) and the PI
control (blue-dot line), the proposed controller (green line) obtains better control
performance with respects to smaller tracking errors and faster control response.
The design controllers are activated from t = 30 [s] and stopped at t = 160 [s]. To
simulate the system dynamic behaviors due to the non-zero initial condition of the
payload ( φ̇0

2 = 5.0 [rad/s]), the uncontrolled case results (pink-dash line) are also
presented. In addition, comparison of vibration control regarding the angular dis-
placements of the upper and payload cables ( ∆α2 and ∆φ2) is illustrated in Figure
4.4. It can be seen that these angular oscillations are reduced considerably from
around ∆α2 = 30 [deg] and ∆φ2 = 50 [deg] to nearly zero at the end of the sim-
ulation by using the modified CFDLc-MFAC. Furthermore, the proposed controller
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Figure 4.4: Vibration control comparison with respect to the output values ∆α2

and ∆φ2 [PS20c]

gets faster control adaptation in comparison with other conventional approaches.
In Figure 4.5, the estimated system parameters PJM Φ̂(k) and controller parame-
ters PPD Ψ̂(k), when the proposed controller is switched on between T = [30, 160]
[s], are shown. From the beginning period of the simulation (up to t = 30 [s]),
the parameter trajectories depend on their initial values. Because of the recursive
estimation algorithms as well as the reset conditions (4.38), (4.39), and (4.40), the
estimated parameters need time for adaptation and will converge to their true values
when the simulation ends. Additionally, the sign of all elements of the PJM and
PPD matrices is unchanged as discussed previously. In Figure 4.6, the calculated
control input values of the modified model-free controller are shown.

To evaluate the control performance of the discussed methods when varying con-
troller parameters, the control input energy-based evaluation according to the cri-
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Figure 4.6: Calculated control input values of the modified CFDLc-MFAC

teria (3.104) is considered within a specified length of time T = [t1, t2] [s] as

PK∗ =

[∫ t2

t1

u2(t)dt,

∫ t2

t1

e2(t)dt

]
K∗
, (4.99)
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Table 4.1: Several design parameters of the model-free controllers [PS20c]

Parameter Meaning Value

ρk Step-size constant 0.01

λk Weighting factor of the CFDLc-MFAC 4.0

τ Constant design parameter 0.02

b1 Small positive constant 0.009

λ Weighting factor of the normal MFAC 1.25

η Step-size constant 0.20

µ Constant weighting factor 15

ρ Step-size constant 0.15

where a set of controller parameters is denoted as K∗ = {λk, λ, kp, ki}, in which the
constant weighting factors of the modified CFDLc-MFAC and the normal MFAC
are λk and λ, respectively, with λk, λ ∈ [2.0, 70.0]. The PI control parameters
are chosen as kp ∈ [0.0005, 0.008] and ki ∈ [0.0001, 0.25]. Here, λk and λ are
the important parameters which can improve the model-free control performance.
The model-free and PI control parameters are selected to perform the best control
effectiveness via simulation. In Figure 4.7, control performance comparison with
respect to the criteria (4.71) within the sampling interval T1 = [30, 160] [s] (transient
phase) is shown. The trajectory PK∗ of the modified CFDLc-MFAC (violet dot) is
closer to the origin (upper figure) than that of the normal MFAC (blue dot) and
the PI control (red dot) when changing the parameters K∗. However, the improved
model-free controller still consumes more input energy (lower figure) compared with
other controllers. In stationary phase T2 = [120, 160] [s], the trajectories PK∗ of
three controllers are depicted in Figure 4.8. Generally speaking, the modified model-
free controller always derives small tracking control errors. In addition, the results
of total tracking errors and control input energy of the different approaches are
numbered in Table 4.2 and Table 4.3 for transient and stationary phase, respectively.
In transient phase, the modified MFAC achieves smallest tracking control errors∫

e2(t)dt ( 15.2362); whereas the normal data-driven controller requires less control
input energy

∫
u2(t)dt ( 0.0483) in total. In stationary phase, it is clear that the

proposed controller has better control performance according to the numbers of
MSE ( 9.8256e−6) and Einput ( 3.2442e−7).
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Figure 4.7: Control performance evaluation in transient phase regarding the crite-
ria (4.71) [PS20c]

4.5.2 Modified RLS-based MFAPC results

The discussed modified model-free adaptive predictive control (4.66), (4.67) is ap-
plied to reduce the free vibrations of the flexible crane [AS07]. The design controller
requires the estimated parameters Φ̂(k) which are recursively updated from the al-
gorithm (4.52), (4.52), and the predicted PJM values Φ̂(k+ 1), Φ̂(k+ 2), . . . , Φ̂(k+
Nu− 1) calculated via (4.55), (4.60). In the simulation, the tracking control ability
of different approaches will be evaluated in case no external disturbance is con-
sidered. In this subsection, the recursive least squares-based model-free adaptive
predictive control (RLS-MFAPC) results are illustrated and compared with those
of the projection algorithm-based MFAC (PA-MFAC) (3.38) and (4.4) [PS19a], as
well as standard PI control. In Figure 4.9, comparison of vibration control results
with respect to the payload position is depicted. The control part of the simula-
tion starts from t = 30 [s]. It can be observed that, the RLS-MFAPC (green line)
has better tracking control performance regarding to smaller error amplitudes in
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Figure 4.8: Control performance evaluation in stationary phase regarding the cri-
teria (4.71)

comparison with the PA-MFAC (blue line) and PI control (red-dot line). It takes
approximately ∆t = 15 [s] to suppress the payload swings in case of utilizing the
improved model-free controller. The system dynamic behaviors in uncontrolled case
are also simulated (pink-dash line). The design parameters of the RLS-MFAPC and
PA-MFAC are chosen in Table 4.4. Furthermore, the vibration control results of the
upper cable ( ∆α2) and payload cable ( ∆φ2) are shown in Figure 4.10. It is obvi-
ously seen that, the cable angular displacements are reduced significantly to nearly
zero at the end of the simulation by using the modified controller (green line).

In term of control input energy-based evaluation, the criteria (4.99) is applied,
in which a set of controller gains K∗ = {λ1, λ2, δ, kp, ki} should be varied. The
design parameters of the RLS-MFAPC indicated as λ1, δ are chosen as λ1 ∈
[73.0, 79.0], and δ ∈ [0.005, 0.95]; whereas the PA-MFAC parameter is designed
as λ2 ∈ [0.5, 30.0]. The PI controller parameters include kp ∈ [0.0005, 0.005], and
ki ∈ [0.0001, 0.25]. In Figure 4.11, the trajectories PK∗ of the design control meth-
ods according to the criteria (4.71) are shown in transient phase T1 = [30, 160]
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Table 4.2: Comparison of different control methods in transient phase

Control method
∫

e2(t)dt
∫

u2(t)dt MSE Einput

PI control 98.0669 0.2459 0.0612 1.5374e−4

Normal MFAC 60.5173 0.0483 0.0378 3.0229e−5

Modified CFDLc-MFAC 15.2362 0.2665 0.0095 1.6657e−4

Table 4.3: Comparison of different control methods in stationary phase

Control method
∫

e2(t)dt
∫

u2(t)dt MSE Einput

PI control 2.8061 0.0580 0.0017 3.6276e−5

Normal MFAC 2.5286 0.0021 0.0015 1.3623e−6

Modified CFDLc-MFAC 0.0157 5.1907e−4 9.8256e−6 3.2442e−7

[s]. In general, the trajectory PK∗ of the RLS-MFAPC (black dot) is closer to the
origin (0, 0), that means the proposed controller achieves better control efficiency
compared to the conventional PA-MFAC (blue dot) and PI control (red dot). Within
the stationary phase T2 = [130, 160] [s], the results of control input energy-based
evaluation are presented in Figure 4.12. Basically, the RLS-MFAPC indicates better
control performance regarding to smaller control error amplitudes than the others.
The numerical illustrations of the design controller evaluation are also given in Table
4.5, and Table 4.6 for transient and stationary phases, correspondingly. In general,
the modified MFAPC derives the smallest control error values

∫
e2(t)dt in both

transient phase ( 12.0811), and stationary phase ( 0.0038). Meanwhile, the standard
MFAC consumes less input energy

∫
u2(t)dt according to transient phase ( 0.0483)

as well as stationary phase ( 0.0015).

4.5.3 PFDL-based MFAPC results

The introduced PFDL-based MFAPC program is applied to vibration control of
a ship-mounted crane [AS07] with the initial crane parameters as given in Table
3.1. To calculate the update control inputs in (4.96), the time-varying parameter
matrices Φ̂p,L(k + q) with q = 0, 1, 2, . . . , Ny − 1 have to be estimated and pre-
dicted continuously via (4.86). The obtained results are compared with those from
our previous publications including the CFDL-MFAPC [PS20d] (or RLS-MFAPC as
mentioned in the previous subsection), conventional PA-MFAC [PS19a], and indus-
trial PI control. In Figure 4.13, comparison of vibration control results with respect
to the output values ∆φ2 and ∆α2 is shown. It can be seen that the upper and
payload cable displacements are reduced significantly by using the proposed model-
free controller (green line). Better control results are observed in comparison with
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Figure 4.9: Comparison of vibration control with respect to the payload position
∆x2 and ∆y2 [PS20d]

that of the CFDL-MFAPC (yellow line), conventional PA-MFAC (red line), and
PI control (blue-dot line). The system dynamic behaviors in uncontrolled case are
simulated (pink-dash line) in Figure 4.13 with the non-zero initial excitation of the
payload ( φ̇0

2 = 5.0 [rad/s]). Furthermore, the calculated control input signals and
estimated parameters PJM are illustrated in Figure 4.14. The system parameters
converge to their true values at the end of the simulation. In Table 4.7, several design
parameters of the proposed model-free adaptive predictive controller are given.

For control input energy-based evaluation, this work uses the criteria (4.99), in
which a set of controller parameters K∗ = {λ1, λ2, λ3, δ, kp, ki} will be varied. The
design parameters of the data-driven controllers are chosen as λ1 ∈ [10, 130] for the
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Figure 4.10: Comparison of vibration control with respect to the output values
∆α2 and ∆φ2 [PS20d]

PFDL-MFAPC, λ2 ∈ [73.0, 79.0] and δ ∈ [0.005, 0.95] for the CFDL-MFAPC, and
λ3 ∈ [0.5, 30.0] for the conventional PA-MFAC. The selected PI controller parame-
ters are kp ∈ [0.0005, 0.005] and ki ∈ [0.0001, 0.25]. In Figure 4.15, the trajectories
PK∗ of different control methods are presented within a pre-defined length of time
window T1 = [30, 120] [s] or transient phase. It can be observed that the PFDL-
MFAPC results (green dot) are distributed closer to the origin (0, 0); that means
better control performance is achieved in comparison with the CFDL-MFAPC (black
dot), traditional MFAC (blue dot), and PI control (red dot). In addition, in station-
ary phase T2 = [90, 120] [s] the control performance evaluation is described in Figure
4.16. Generally, the proposed MFAPC (green dot) shows better control results in
terms of smaller control errors and less control input energy consumption compared
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Table 4.4: Several design parameters of the model-free controllers [PS20d]

Parameter Meaning Value

λ1 Weighting factor of the RLS-MFAPC 75

δ Design positive constant 0.75

Ny Output prediction horizon 6

Nu Input prediction horizon 2

γ Constant design parameter 0.75

np Predictive model coefficient 2

λ2 Weighting factor of the PA-MFAC 1.25

Table 4.5: Control input energy-based comparison in transient phase

Control method
∫

e2(t)dt
∫

u2(t)dt MSE Einput

PI control 98.0669 0.2459 0.0612 1.5374e−4

PA-MFAC 60.5173 0.0483 0.0378 3.0229e−5

RLS-MFAPC 12.0811 0.3219 0.0075 2.0123e−4

with traditional methods. Moreover, the control input energy-based results are illus-
trated numerically in Table 4.8 (transient phase) and Table 4.9 (stationary phase).
The design PFDL-MFAPC achieves the smallest numbers of the total tracking errors
in both transient phase ( 11.3931) and stationary phase ( 0.0261).

4.6 Summary

In this chapter, several improved/modified model-free adaptive controllers have been
designed for unknown MIMO systems. The first control strategy is based on the
CFDL technique which can be applied not only to the unknown plant but also to
an assumed nonlinear controller. As a result, a linearized controller structure is
established, in which the unknown time-varying parameters namely pseudo-partial
derivative of the controller need to be estimated and updated at each system oper-
ating point. In addition, an equivalent linearized data-driven model of the original
plant is designed. The system model contains unknown parameters which are locally
estimated by utilizing the RLS algorithm. To improve tracking control performance,
a modified objective function of the controller parameter matrix (or PPD) is pro-
posed by considering minimization of the current control errors and its variations
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Figure 4.11: Control input energy-based evaluation regarding to the criteria (4.71)
within T1 = [30, 160] [s] [PS20d]

within a pre-defined length of time window. Hence, the estimation algorithm of the
controller parameters has been generated with a modified part.

In the second control strategy, based on the main theories of MFAC and MPC, im-
proved model-free adaptive predictive controllers have been proposed. The compact-
form and partial-form dynamic linearization techniques are used to construct the
system output predictive models. The recursive least-squares method has been ap-
plied to estimate and predict the unknown time-varying parameter matrices (or
PJM) in the prediction models. The obtained system parameters are necessary for
the calculation of the future control input increment vectors and the updated con-
trol input signals. To reduce unexpected oscillations in mechanical flexible systems,
the discussed control methods have been applied to an elastic ship-mounted crane
as an illustrative example. The simulation results indicated that, in case without
considering external disturbance effects, the in-plane vibrations of the elastic boom



106
Chapter 4. Design of modified model-free adaptive control based on CFDL and

PFDL techniques

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

20

40

60

80

0.02 0.04 0.06 0.08 0.1 0.12 0.14

2

4

6

8

0.01 0.02 0.03 0.04 0.05 0.06

2

4

6

8

10

12

0.01 0.02

0.5

1

1.5
PI control

PA-MFAC

RLS-MFAPC

Figure 4.12: Control input energy-based evaluation regarding to the criteria (4.71)
within T2 = [130, 160] [s]

and the payload are reduced considerably, and better control performance could be
observed when using the modified/improved model-free controllers in comparison
with traditional approaches.

The design model-free adaptive controllers utilize recursive algorithms to estimate
and predict the unknown system and controller parameters at current and during a
limited future time period, as well as to compute the required control input signals.
In addition, the considered crane system showed fast dynamical behavior variations.
Therefore, large sampling time has been used in the numerical simulations. For
future works, the proposed control programs could be implemented experimentally
with a lab-scaled crane test rig to validate the achieved simulation results.
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Table 4.6: Control input energy-based comparison in stationary phase

Control method
∫

e2(t)dt
∫

u2(t)dt MSE Einput

PI control 1.7203 0.0435 0.0010 2.7216e−5

PA-MFAC 1.8014 0.0015 0.0011 9.9542e−7

RLS-MFAPC 0.0038 0.0071 2.3794e−6 4.4609e−6
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Figure 4.13: Comparison of vibration control with respect to the output values
∆φ2 and ∆α2 [PS20b]
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Table 4.7: Several design parameters of the PFDL-MFAPC [PS20b]

Parameter Meaning Value

L Linearization length constant 3

λ Constant weighting factor 110

Ny Output prediction horizon 3

Nu Input prediction horizon 3

np Predictive model coefficient 3
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Table 4.8: Control input energy-based evaluation in transient phase [PS20b]

Control method
∫

e2(t)dt
∫

u2(t)dt MSE Einput

PI control 95.2777 0.1880 0.0793 1.5671e−4

Conventional PA-MFAC 57.9982 0.0461 0.0483 3.8495e−5

CFDL-MFAPC 12.0748 0.3126 0.0100 2.6057e−4

PFDL-MFAPC 11.3931 0.0729 0.0094 6.0797e−5
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Figure 4.16: Control input energy-based evaluation regarding to the criteria (4.99)
within T2 = [90, 120] [s] [PS20b]

Table 4.9: Control input energy-based evaluation in stationary phase [PS20b]

Control method
∫

e2(t)dt
∫

u2(t)dt MSE Einput

PI control 7.0399 0.0409 0.0058 3.4165e−5

Conventional PA-MFAC 3.0055 0.0020 0.0025 1.7111e−6

CFDL-MFAPC 0.0271 0.0061 2.2614e−5 5.0954e−6

PFDL-MFAPC 0.0261 0.0030 2.1824e−5 2.5167e−6
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5 Improved model-free adaptive control using re-

cursive least-squares algorithm

This chapter discusses the design of an effective MFAC scheme, in which only the
measured system I/O signals are required for unknown parameter identification.
The novel idea of this contribution is based on the concept of partial-form dynamic
linearization (PFDL). An equivalent linearized model structure of the plant is es-
tablished at every operating point of the system dynamics. The obtained virtual
model contains a set of unknown time-varying parameter matrices (or PJM) which
could be estimated and updated recursively. To improve on-line parameter estima-
tion accuracy, recursive least-squares algorithm is firstly applied to the partial-form
system model instead of using traditional projection algorithm. Furthermore, for
control implementation a modified model-free adaptive controller is designed for the
purpose of tracking control improvement. Vibration control simulations of an elastic
crane are conducted to verify the effectiveness of the design controllers.

This chapter is structured as follows. In Section 5.1, the partial-form dynamic lin-
earization concept will be illustrated. Based on this linearization technique, different
on-line parameter estimation approaches, i.e., projection algorithm and recursive
least-squares algorithm are discussed. The model-free adaptive control design based
on the PFDL concept including the standard and modified control input calculations
will be explained in Section 5.2. Simulation results and discussion about oscillation
mitigation of an elastic ship-mounted crane are given in Section 5.3. Finally, the
chapter summary is mentioned in the last section.

The content, figures, and tables in this chapter have been prepared as a journal article
[PS20e]. Some of them are partly modified in this chapter before final submission.

5.1 Partial-form dynamic linearization-based MFAC

As presented in Chapter 3, to design MFAC, the CFDL technique has been ap-
plied to a class of unknown MIMO nonlinear systems. An equivalent dynamic data
model of the controlled system was established locally. To estimate the unknown
time-varying system parameters PJM, two well-known on-line estimation methods
including the CFDL-PA (3.32) and CFDL-RLSA (3.75), (3.76), and (3.77) have
been discussed in detail. For control design, instead of using the standard control
input law (3.38), the modified control input equation (3.85) was proposed to improve
tracking control performance. In this section, the main contribution of this chapter
will be presented. The concept of partial-form dynamic linearization which considers
the effect of the previous control input values within a linearization length constant
L ≥ 1 on the upcoming system outputs y(k+1) is discussed. Therefore, a linearized
partial-form data model of the original system can be generated which contains a
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set of unknown parameters PJM denoted as Φp,L(k) = [Φ1(k),Φ2(k), . . . ,ΦL(k)].
To estimate these time-varying parameter matrices, the given projection algorithm
and recursive least-squares algorithm can be applied explicitly. To compute the
control signals u(k), a modified objective function of the control input is proposed
by considering minimization of the output tracking errors and its variations within
a pre-defined simulation interval N > 0. This modified control idea was initially
introduced in [MDS18], and applied successfully to a three-tank system as a SISO
example. In this study, different adaptive controllers are designed and applied to
vibration control of a flexible crane. The results are compared with that of the
existing approaches from our previous publications [PS19a, PS19b].

5.1.1 Partial-form dynamic linearization-based projection algorithm

Different from the CFDL concept in Section 3.1, here another dynamic linearization
technique namely partial-form dynamic linearization (PFDL) will be investigated.
Compared to CFDL, the main difference of this concept is that, to establish a
linearized data model of the controlled system, every control input signal or control
input increment within a fixed-moving time window (L) is considered explicitly.
That means the previous input values also have impact on the future system outputs.
The control input increment vector is described as

∆U(k) = [∆u(k),∆u(k − 1), . . . ,∆u(k − L+ 1)]T , (5.1)

where ∆u(k) = u(k) − u(k − 1); ∆u(k − L + 1) = u(k − L + 1) − u(k − L) is
denoted as the control input increment vector at sampling instants k and k−L+1,
respectively.

Considering a general I/O description for a class of unknown MIMO nonlinear sys-
tems as given in (3.15), to establish the equivalent PFDL model, two reasonable
assumptions according to [HJ13] need to be fulfilled as

Assumption 5.1 : The partial derivatives of g(. . .) in (3.15) with respect to dif-
ferent control input values u(k),u(k− 1), . . . ,u(k−L) exist and are considered as
smooth.

Assumption 5.2 : The system (3.15) satisfies the following general Lipschitz con-
dition

‖y(k + 1)− y(k)‖ ≤ b ‖U(k)−U(k − 1)‖ , (5.2)

at each sampling interval k with ‖∆U(k)‖ = ‖U(k)−U(k − 1)‖ 6= 0, and b > 0 is
a small constant. The system output increment vector is defined as y(k+1)−y(k) =
∆y(k + 1). The original system (3.15) satisfying the above-mentioned assumptions
can be formulated in the following PFDL model

∆y(k + 1) = Φp,L(k)∆U(k), (5.3)
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where the model (5.3) contains a set of unknown time-varying parameter matrices
(PJM) denoted as Φp,L(k) = [Φ1(k),Φ2(k), . . . ,Φp(k), . . . ,ΦL(k)], with p ∈ [1, L].
The structure of each element matrix Φp(k) in MIMO case is written as

Φp(k) =


φ11p(k) φ12p(k) φ13p(k) . . . φ1mp(k)
φ21p(k) φ22p(k) φ23p(k) . . . φ2mp(k)

...
...

...
. . .

...
φr1p(k) φr2p(k) φr3p(k) . . . φrmp(k)


r×m

, (5.4)

assuming ‖Φp(k)‖ ≤ b according to assumption 3.2 (see Section 3.1), and therefore
the composed matrix Φp,L(k) is bounded at every time instant k. The number
of system inputs and outputs are indicated as m and r, correspondingly. In Fig-
ure 5.1, a graphical interpretation of the PJM within a length of time window
L is depicted for a simple MIMO nonlinear system y(k + 1) = f1 (U(k)), with
U(k) = [u(k),u(k − 1), . . . ,u(k − L)]T [PS20e]. Here, the effect of the previous
control inputs from step k to step k − L (L ≥ 1) on the future outputs is illus-
trated. At each sampling instant, a linearized data model denoted in green dash

lines which include a set of the PJM Φ̂p,L(k) =
[
Φ̂1(k), Φ̂2(k), . . . , Φ̂p(k), . . . , Φ̂L(k)

]
is established. Each of the component matrix Φ̂p(k) (red dash line) is bounded and
can be considered as the derivative value of the function f1(.). In addition, a graph-
ical explanation of the PFDL concept is shown in Figure 5.2 [PS20e]. The control
target is minimization of the control errors between the actual outputs y and the
references yd or e = yd − y during the whole simulation time T .

It can be noted that, in case of L = 1, the PFDL data model (5.3) becomes the
CFDL data model (3.17), and therefore the system parameters PJM Φp,L(k) =
Φ1(k). Furthermore, for a class of MIMO nonlinear systems with the number of
system inputs and outputs are identical (m = r = n∗) the following assumption
[HJ11a] is essential for system stability analysis.

Assumption 5.3 : The first element matrix Φ1(k) of Φp,L(k) satisfies the di-
agonally dominant condition with the following boundaries |φij1(k)| ≤ c1; c2 ≤
|φii1(k)| ≤ αc2, whereas i, j = 1, 2, . . . , n∗; i 6= j; α ≥ 1, and the sign of all ele-
ments in Φ1(k) are unchanged. The two positive constants c1, c2 should be chosen
with the condition c2 > c1 (2α + 1) (n∗ − 1) [HJ11a].

To estimate the unknown system parameters Φp,L(k), in this contribution the fol-
lowing cost function is considered

J (Φp,L(k)) = ‖y(k)− y(k − 1)− Φp,L(k)∆U(k − 1)‖2 (5.5)

+ µ‖Φp,L(k)− Φp,L(k − 1)‖2,

where µ > 0 is a weighting factor utilized to limit the large changes of Φp,L(k).
The known input increment vector ∆U(k − 1) in (5.5) is given as

∆U(k − 1) = [∆u(k − 1),∆u(k − 2), . . . ,∆u(k − L+ 1)]T . (5.6)
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Figure 5.1: Graphical interpretation of the PJM within a linearization length con-
stant L [PS20e]

Minimizing (5.5) with respect to Φp,L(k) by taking ∂J
∂Φp,L(k)

= 0, yields the following

equations

∂J

∂Φp,L(k)
= [y(k)− y(k − 1)− Φp,L(k)∆U(k − 1)]

(
−∆UT (k − 1)

)
(5.7)

+ µ [Φp,L(k)− Φp,L(k − 1)] = 0,

Φ̂p,L(k) = Φ̂p,L(k − 1) +
[
∆y(k)− Φ̂p,L(k − 1)∆U(k − 1)

]
∆UT (k − 1)

(5.8)[
µI + ∆U(k − 1)∆UT (k − 1)

]−1
,

where the output increment vector is denoted as ∆y(k) = y(k) − y(k − 1), and I
is an identity matrix.

To avoid matrix inversion calculation, (5.8) can be rewritten in a simplified formula
as

Φ̂p,L(k) = Φ̂p,L(k− 1) +
η
[
∆y(k)− Φ̂p,L(k − 1)∆U(k − 1)

]
∆UT (k − 1)

µ+ ‖∆U(k − 1)‖2 , (5.9)

where Φ̂p,L(k) indicates the estimated value of Φp,L(k), and η ∈ (0, 1] is a step-size
constant. Equation (5.9) is called partial-form dynamic linearization-based projec-
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Figure 5.2: Graphical explanation of the PFDL concept [PS20e]

tion algorithm (PFDL-PA) which is implemented to update the system parameters
Φp,L(k).

5.1.2 Partial-form dynamic linearization-based RLS algorithm

In Section 3.2, the on-line parameter estimation method namely recursive least-
squares algorithm (RLSA) has been applied successfully to the CFDL data model
of a MIMO system. In this chapter, the discussed RLSA (3.56), (3.58), and (3.59)
for SISO nonlinear systems will be implemented to the virtual PFDL data model of
an unknown MIMO (nonlinear) system (3.15). The local dynamic model is given as

∆y(k) = Φp,L(k − 1)∆U(k − 1), (5.10)

where Φp,L(k − 1),∆U(k − 1) are denoted as the available model parameters and
control input increment vector from the initial step up to the ( k − 1)-th step, re-
spectively.

By taking the same procedure as presented for the CFDL-RLSA establishment (see
Section 3.2) and after several calculations, another RLS algorithm for estimation of
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the unknown time-varying parameters Φp,L(k) is derived as follows

Φ̂p,L(k) = Φ̂p,L(k − 1) +
[
∆y(k)− Φ̂p,L(k − 1)∆U(k − 1)

]
K(k), (5.11)

K(k) = ∆UT (k − 1)P(k) (5.12)

= ∆UT (k − 1)P(k − 1)
[
I + ∆U(k − 1)P(k − 1)∆UT (k − 1)

]−1
,

P(k) = P(k − 1) −P(k − 1)∆UT (k − 1) (5.13)[
I + ∆U(k − 1)P(k − 1)∆UT (k − 1)

]−1
∆U(k − 1)P(k − 1),

where the unknown system parameter matrix is determined as K(k) = ∆UT (k −
1)P(k), and P0 = P(0) denotes an initial positive definite matrix. The above
algorithm (5.11), (5.12), and (5.13) is called PFDL-based recursive least-squares
algorithm (PFDL-RLSA).

5.2 MFAC design based on PFDL concept

By applying the discussed parameter estimation algorithms, the estimated PJM
Φ̂p,L(k) can be utilized to compute the required control inputs u(k). Two control
input equations are designed in this section including the standard and modified
PFDL-based model-free control laws.

5.2.1 Standard control input calculation

The design of standard control input law based on the PFDL concept is similar to
the case of using CFDL as presented in Chapter 3. The control target is to minimize
the future tracking errors between the references and actual system outputs. Hence,
the control input objective function is considered as

J (u(k)) =
∥∥yd(k + 1)− y(k + 1)

∥∥2
+ λ‖u(k)− u(k − 1)‖2, (5.14)

where yd(k+ 1),y(k+ 1) are the desired and actual system output vectors, respec-
tively. To limit the change rate of the required control inputs, a constant weighting
parameter λ > 0 has been added. By using the PFDL concept, the upcoming out-
puts y(k + 1) in (5.14) are substituted by the equivalent model outputs in (5.3),
that means y(k + 1) = y(k) + Φp,L(k)∆U(k). Therefore, the above cost function
becomes

J (u(k)) =
∥∥yd(k + 1)− y(k)− Φp,L(k)∆U(k)

∥∥2
+ λ‖∆u(k)‖2, (5.15)
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where the unknown time-varying parameters Φp,L(k), and the control input incre-
ment vector ∆U(k) are described as

Φp,L(k) = [Φ1(k),Φ2(k), . . . ,Φp(k), . . . ,ΦL(k)] , (5.16)

∆U(k) = [∆u(k),∆u(k − 1), . . . ,∆u(k − L+ 1)]T . (5.17)

Minimizing (5.15) in term of ∆u(k), results in the optimal control input values

u(k) = u(k − 1) +
ρ1Φ̂1(k)

[
yd(k + 1)− y(k)

]
λ+

∥∥∥Φ̂1(k)
∥∥∥2 (5.18)

−
Φ̂1(k)

L∑
p=2

ρpΦ̂p(k)∆u(k − p+ 1)

λ+
∥∥∥Φ̂1(k)

∥∥∥2 ,

where ρ1, ρp ∈ (0, 1] are step-size constants, with p ∈ [2, L]. The time-varying

parameter matrices PJM Φ̂1(k), . . . , Φ̂p(k), . . . , Φ̂L(k) in (5.18) are estimated con-
tinuously by using the PFDL-PA (5.9) or the PFDL-RLSA (5.11), (5.12), and (5.13).

5.2.2 Modified control input calculation

Not only the tracking error amplitudes but also the error variations within a fixed-
length of time window N > 0 can be minimized to improve the model-free control
performance. Therefore, in this work the proposed objective function of u(k) is
written as

J (u(k)) =
∥∥yd(k + 1)− y(k + 1)

∥∥2
+ j
∥∥∆yd(k + 1)−∆y(k + 1)−∆y(k)

∥∥2

(5.19)

+ λ‖u(k)− u(k − 1)‖2,

where j > 0 is a constant weighting factor. The next system outputs y(k + 1) are
assumed to be approximated by the PFDL model outputs (5.3). By substituting
(5.3) into (5.19) and taking ∂J

∂∆u(k)
= 0, the following equation

u(k) = u(k − 1) +
ρ1Φ̂1(k)

[
yd(k + 1)− y(k)

]
λ+ (1 + j)

∥∥∥Φ̂1(k)
∥∥∥2 (5.20)

+
Φ̂1(k)j

[
yd(k + 1)− yd(k)− (y(k)− y(k − 1))

]
λ+ (1 + j)

∥∥∥Φ̂1(k)
∥∥∥2

−
(1 + j) Φ̂1(k)

L∑
p=2

ρpΦ̂p(k)∆u(k − p+ 1)

λ+ (1 + j)
∥∥∥Φ̂1(k)

∥∥∥2 ,
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is derived. To improve control performance, the extended error variations within a
fixed-length of time window N > 0 represented by [ε(k)− ε(k −N)], with ε(k) =
yd(k + 1)− y(k); ε(k −N) = yd(k −N + 1)− y(k −N) are also minimized. As a
result, the final control input vector is calculated as

u(k) = u(k − 1) +
ρ1Φ̂1(k)

[
yd(k + 1)− y(k)

]
λ+ (1 + j)

∥∥∥Φ̂1(k)
∥∥∥2 (5.21)

+
Φ̂1(k)j [ε(k)− ε(k −N)]

λ+ (1 + j)
∥∥∥Φ̂1(k)

∥∥∥2

−
(1 + j) Φ̂1(k)

L∑
p=2

ρpΦ̂p(k)∆u(k − p+ 1)

λ+ (1 + j)
∥∥∥Φ̂1(k)

∥∥∥2 .

A block diagram of the modified PFDL-RLSA-based model-free adaptive controller
for unknown MIMO systems is shown in Figure 5.3.
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Figure 5.3: Modified PFDL-RLSA-based MFAC structure for unknown MIMO
systems [PS20e]
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5.3 Simulation results and discussion

In this section, the effectiveness of the proposed PFDL-MFAC is verified numeri-
cally. As an illustrative example, vibration control of an elastic ship-mounted crane
[AS07] representing a typical flexible system is studied. Introduction to the crane
system and its configuration have been briefly reviewed in Section 3.3. The design
model-free adaptive controller, which utilizes the PFDL technique, requires the es-
timated system parameters Φ̂p,L(k). First, different on-line estimation algorithms
such as the PFDL-PA (5.9) or the PFDL-RLSA (5.11), (5.12), and (5.13) can be
applied to update the PJM Φ̂p,L(k) recursively. Then, the required control input
values u(k) are computed by using the standard control input (5.18) or the modi-
fied control input (5.21) equations. In the following parts, output tracking control
and control input energy-based evaluation regarding to different control approaches
will be presented.

5.3.1 Tracking control evaluation

The proposed MFAC which applies the PFDL-RLSA and improved control input
law namely modified RLS-MFAC is implemented to the crane. The control method
is compared with the modified PA-MFAC [PS19b], standard PA-MFAC [PS19a], and
industrial PI control.
In this study, the simulations are conducted in case no external disturbance is consid-
ered. However, due to the non-zero initial excitation of the payload ( φ̇0

2 = 5.0 [rad/s]
in Table 3.1), significant undesirable oscillations in the crane are observed. In Figure
5.4, vibration control comparison of the payload position in x0- and y0-direction
is presented. When the controllers start from t = 30 [s], it can be seen that the
modified RLS-MFAC (green line) indicates better tracking control results according
to smaller displacement amplitudes as well as faster control response compared to
the modified PA-MFAC (violet line), standard PA-MFAC (red line), and PI control
(blue-dot line). By using the improved model-free controller (green line), it takes
approximately ∆t = 15 [s] to reduce the payload displacement from ∆x2 = 0.6
[m] and ∆y2 = 0.3 [m] to nearly zero (see Figure 5.4). In addition, the system
dynamic behaviors due to the initial payload excitation is simulated in uncontrolled
case (pink-dash line) within the whole simulation time T = 140 [s]. Several design
parameters of the modified RLS-MFAC are shown in Table 5.1 [PS20e].
The output results including vibration control of the upper cable ∆α2 and payload
cable ∆φ2 are illustrated in Figure 5.5. The angular displacements in the crane
are reduced significantly from ∆α2 = 30 [deg] and ∆φ2 = 50 [deg] to nearly zero
after around ∆t = 20 [s] by applying the modified RLS-MFAC (green line). The
modified RLS-based controller results are improved in terms of control response and
error amplitude in comparison with that of the conventional approaches.
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In Figure 5.6, the calculated control input values u(k) and estimated system pa-
rameters Φ̂p,L(k) of the modified RLS-MFAC are presented. Since the controller

activated (from ∆t = 30 [s]), the sign of all elements in the PJM parameters Φ̂p,L(k)
are unchanged, and the updated PJM converge to their true values at the end of
the simulation.
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Figure 5.4: Vibration control comparison with respect to the payload position
∆x2 and ∆y2 [PS20e]

5.3.2 Control input energy-based evaluation

To evaluate control performance when varying design controller parameters, the
control input energy-based criteria (4.71) is implemented within a specified length
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of simulation time T = [t1, t2] [s] as

PK∗ =

[∫ t2

t1

u2(t)dt,

∫ t2

t1

e2(t)dt

]
K∗
, (5.22)

where K∗ = {λp, λc1, λc2, kp, ki} is a set of tuning parameters of the different model-
free and PI controllers. Here, λp, λc1, λc2 ∈ [0.5, 40.0] are chosen as the important
weighting factors of the modified RLS-MFAC (λp in (5.21)), modified PA-MFAC
(λc1 in (3.85)), and standard PA-MFAC (λc2 in (3.38)). Suitable choices of them
can improve the model-free control efficiency. The variation of PI control param-
eters are given as kp ∈ [0.0005, 0.008] and ki ∈ [0.0001, 0.25]. In Figure 5.7, the
trajectories PK∗ of the discussed control approaches are illustrated when altering
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the parameter set K∗ in transient phase T1 = [30, 140] [s]. It can be observed
that, the modified RLS-MFAC results (green dot) are distributed closer to the ori-
gin (0, 0), and smaller control errors are derived in comparison with the modified
PA-MFAC (violet dot), standard PA-MFAC (blue dot), and PI control (red dot)
results. Furthermore, the control input-tracking error relation in stationary phase
T2 = [110, 140] [s] is presented in Figure 5.8. Generally, the improved PFDL-based
model-free controller (green dot) seems to show improved results in term of obtained
smaller payload displacements in both x0- and y0-direction than other methods. Fi-
nally, the control results calculated in (3.105), and (3.106) are described numerically
in Table 5.2 and Table 5.3 for transient and stationary phase, subsequently. In tran-
sient phase T1 (see Table 5.2), the modified RLS-MFAC derives the smallest control
errors according to

∫
e2(t)dt ( 8.1852) and MSE ( 0.0058), but still requires more
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Table 5.1: Design parameters of the modified RLS-MFAC [PS20e]

Parameter Meaning Value

L Linearization length constant 6

ρ1 Step-size constant 0.25

ρp Step-size constant 0.25

λ Constant weighting factor 1.20

j Design weighting parameter 0.03

P0 Positive definite parameter 1.90

Table 5.2: Control performance evaluation in transient phase [PS20e]

Control method
∫

e2(t)dt
∫

u2(t)dt MSE Einput

PI control 97.1267 0.2163 0.0693 1.5457e−4

Standard PA-MFAC 59.3759 0.0473 0.0424 3.3792e−5

Modified PA-MFAC 44.9898 0.0843 0.0321 6.0265e−5

Modified RLS-MFAC 8.1852 0.5116 0.0058 3.6546e−4

input energy with
∫

u2(t)dt ( 0.5116). On the other hand, in stationary phase T2

(see Table 5.3), the novel control method achieves less control error amplitudes∫
e2(t)dt ( 0.0144) as well as the total control input energy

∫
u2(t)dt ( 2.9983e−4).

5.4 Summary

In this chapter, an improved MFAC scheme for a class of unknown MIMO systems,
in which only the available system I/O measurements are necessary for feedback, is
discussed. To linearize the unknown system dynamics, beside CFDL this chapter
considers the PFDL concept. A local linearized data model has been constructed
which contains a set of unknown time-varying parameter matrices (PJM). To im-
prove the PJM estimation accuracy, the recursive least-squares method is applied
firstly to the virtual PFDL model instead of using traditional projection algorithm.
For control realization, standard and modified PFDL-based model-free control input
algorithms are designed for tracking control improvement. The proposed data-driven
control schemes have been implemented to an elastic boom crane for vibration reduc-
tion purpose. The simulation results indicate that the modified RLS-MFAC which
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Figure 5.7: Control performance evaluation in transient phase regarding the crite-
ria (5.22) [PS20e]

is based on the PFDL concept generates improved results for both tracking control
and control input energy-based evaluation in comparison with traditional methods.
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Table 5.3: Control performance evaluation in stationary phase [PS20e]

Control method
∫

e2(t)dt
∫

u2(t)dt MSE Einput

PI control 3.4127 0.0414 0.0024 2.9631e−5

Normal CFDL-MFAC 2.2092 0.0016 0.0015 1.2084e−6

Modified CFDL-MFAC 0.5653 0.0107 4.0381e−4 7.6549e−6

Modified CFDL-MFAC 0.0144 2.9983e−4 1.0313e−5 2.1416e−7
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6.1 Summary and conclusion

In this research, the main theory of MFAC has been investigated in detail. Several
modified/improved control ideas were proposed focusing on the improvements of
on-line parameter estimation accuracy and tracking control performance. To give
an overview of model-free or data-driven control, the selected methods were clas-
sified into four categories including: on-line, off-line, hybrid data usage, and MBC
in combination with MFC. In each category, some of the existing data-driven con-
trol approaches which are primarily concerned in literature have been discussed in
terms of fundamental theory, important characteristics, and impressive applications.
The last MFC group presented two innovative methods by combining MFAC with
the other robust MBC theories namely model predictive control and sliding mode
control. This work concentrates on vibration reduction of a class of complex and
flexible mechanical systems represented by an elastic offshore boom crane. There-
fore, vibration control problems and a variety of existing solutions to deal with
oscillation mitigation in vibrating structures were discussed carefully. In particular,
a review of vibration and tracking control for different types of crane, e.g., boom
crane, tower crane, overhead crane, or container crane has been illustrated in the
theoretical chapter. From literature analysis, it can be seen that, many effective con-
trol strategies have been successfully developed for cranes ranging from open-loop
control to closed-loop control systems. Recently, intelligent control and data-driven
control have become more attractive, and these modern/advanced control techniques
can be considered as the innovative solutions to design active controllers for com-
plicated industrial machines, especially for cranes. From the discussion about the
given model-free control as well as the crane control methodologies, MFAC has been
selected for further development because the approach shown the ability in control
design modifications, and potential applications in vibration control of complicated
and flexible systems. Furthermore, MFAC can also be easily combined with other
traditional MBC methods to improve the overall control system performance. The
novel MFAC strategies are also expected to deal with unknown external disturbances
as most of actual processes have to encounter in reality.

Conventional CFDL-based MFAC normally utilizes projection algorithm for estima-
tion of the unknown time-varying system parameters (or PJM). In this contribution,
the recursive least-squares method is firstly applied, in which the estimated param-
eters shown faster in estimation convergence to their correct values. The discussed
RLS method was initially implemented to a general SISO system. Then, the ob-
tained results can be extended to a class of MIMO nonlinear systems, in which
the unknown system parameters could be identified continuously by using only the
available system I/O data. Moreover, regarding to control realization, the modified
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control input calculation was proposed for the tracking control improvement. The
idea of modification has been utilized previously to control simple SISO and MIMO
systems. In this research, novel control input laws have been proposed, and the
design control schemes were applied to reduce the in-plane vibrations of a multi-
variable elastic ship-mounted crane represented as a typical complex and flexible
machine. The design controllers have been verified via simulations. Due to the non-
zero initial excitation of the payload, large oscillations might occur in the crane if
no controller is used. It can be concluded from the simulation results that, the im-
proved CFDL-based MFAC approaches which relied on the RLS algorithm and/or
modified control input law, obtained better control performance with respects to
smaller output control errors and required less control input energy (particularly in
stationary phase) compared to the other traditional methods.

As a simplified dynamic linearization technique, CFDL has been widely applied
in MFAC design because of the obtained simple linearized system model. In this
contribution, by using the CFDL concept not only for linearization of the original
unknown plant but also for the assumed nonlinear controller, a simplified controller
structure for a MIMO (nonlinear) system was established. Afterwards, a modified
estimation algorithm of the unknown controller parameter matrices (or PPD) was
proposed by considering minimization of the output tracking error variations into its
objective function. Furthermore, different modified/improved model-free adaptive
predictive control schemes have been presented and applied to reduce the unex-
pected vibrations of the elastic crane. Based on the CFDL and PFDL concepts,
general system output predictive equations, which are linearized and contain the
future unknown time-varying parameter matrices (or PJM) within a finite predic-
tion horizon, were generated. To estimate and predict the PJM, the standard and
modified recursive least-squares algorithms were firstly implemented. The design
model-free control programs have been verified numerically, in which the introduced
ship-mounted crane was considered. The simulation results indicated that, in case of
without considering external disturbances, e.g., wave motion or wind force, the pro-
posed controllers derived better control performance in comparison with the normal
CFDL-PA-based MFAC and industrial PI control. The control effectiveness might
be enhanced by choosing appropriate controller parameters. Hence, the trajectory
PK∗ of the relationship between the total output control errors and the consumed
input energy was considered. From the simulation results, the modified model-free
controllers performed better control efficiency regarding smaller numbers of the total
control error amplitudes.

When constructing a linearized system dynamic model, the effects of previous con-
trol input signals to the upcoming system output values can be integrated explicitly.
This is the key idea of the PFDL concept. In this work, an improved model-free
adaptive controller structure based on the PFDL data model of the original sys-
tem and RLS algorithm for on-line parameter estimation has been introduced. The
obtained linearized system model contains a set of unknown parameter matrices
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(PJM) which can be updated/corrected recursively by using directly the measured
or calculated system I/O signals. Based on the estimated system parameters and the
current control errors, the required control input vector was determined by imple-
menting a novel control input equation. The design RLSA-MFAC based on PFDL
has been applied to the elastic crane for vibration reduction purpose. For control
performance evaluation, the proposed approach was compared with three other types
of traditional model-free control methods including the standard CFDL-PA-MFAC,
modified CFDL-PA-MFAC, and industrial PI control. The simulation results shown
that, the vibrations of the elatic boom and the payload in the crane were reduced
considerably at the end of the simulation by using the modified controllers. In ad-
dition, when varying the design control parameters, the improved data-driven con-
trollers obtained smaller tracking errors, and the trajectories PK∗ were distributed
closer to the origin compared to the conventional approaches. However, in most of
the proposed MFAC methods, more input energy has been consumed to drive the
output signals converge to their desired values, particularly in transient phase.

From the above analysis, the main contributions and new results in this thesis can
be pointed out as follows:

• Improved MFAC schemes by applying firstly the recursive least-squares estima-
tion method to the linearized CFDL system model are designed. In addition,
a modified CFDL-based control input law is proposed to control a class of
unknown MIMO systems.

• Based on the CFDL concept, a modified CFDLc-MFAC program is proposed
by considering minimization of the tracking error differences into its objective
function.

• Model-free adaptive control has been combined with model predictive con-
trol to design improved data-driven control systems. Recursive least-squares
method has been applied to the compact-form and partial-form output pre-
dictive models which shows improved results in parameter estimation.

• Not only using CFDL, the concept of PFDL is investigated for control of
MIMO (nonlinear) systems. An improved model-free controller which applies
the RLS-based estimation algorithm and modified control input equation has
been proposed.

• As a case study of vibration control of complex and flexible systems, simulation
results of an elastic ship-mounted crane are shown. In case of using the pro-
posed controllers, better control performance can be observed in comparison
with other conventional methods.
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6.2 Future work

For further research in the future, the following ideas can be considered to develop
robust/advanced model-free adaptive controllers:

• Robust/advanced MFAC should be designed to get faster control response.
Improved MFAC programs to deal with control of practical systems, in which
the dynamics change quickly, could be motivated. Furthermore, in actual con-
trol problems of complex and flexible mechanical systems, unknown external
perturbations are inevitable which might deteriorate the model-free control
performance. Therefore, the development of advanced MFAC strategies to
derive disturbance rejection could be interested for further studies.

• Beside using the CFDL and PFDL concept for system linearization, the full-
form dynamic linearization technique may be utilized explicitly to fully de-
scribe the system dynamic behaviors, particularly in complicated industrial
machines/processes.

• Model-free adaptive control can be combined with other well-developed MBC
methods such as sliding mode control, observer-based control for vibration
control purpose. Additionally, the combined model-free control schemes may
be applied to other classes of nonlinear system.

• The simulation control results in this thesis verified the effectiveness of the
proposed data-driven control algorithms. For future works, experimental im-
plementation of the design control programs can be executed. The real-time
control problems of the elastic lab-scaled crane can be further investigated and
compared with the derived simulation results.



130

Bibliography

[ACL05] Ang, K. H. ; Chong, G. ; Li, Y.: PID control system analysis, design,
and technology. In: IEEE Transactions on Control Systems Technology
13 (2005), No. 4, pp. 559–576

[ACM07] Ahn, H. ; Chen, Y. ; Moore, K. L.: Iterative Learning Control: Brief
Survey and Categorization. In: IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 37 (2007), No. 6,
pp. 1099–1121
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