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Abstract

Motion planning for legged robots is a challenging problem and remains an open area
of research. Particular difficulties arise from effective underactuation, the mecha-
nism complexity, as well as nonlinear and hybrid dynamics. A common approach is
to decompose this problem into smaller sub-problems that are solved sequentially.
Recent research indicates that using a local optimal control solver, namely Differ-
ential Dynamic Programming (DDP), produces more efficient motions, with lower
forces and impacts.
This master’s thesis contributes in this direction by applying, evaluating and ex-

tending DDP-based whole-body trajectory optimization, pursuing three objectives.
First, we develop a method for constraining DDP-like solvers in order to generate
inherently balanced motion plans. Second, the proposed motion planning approach
is evaluated for quasi-static and dynamic motions in a real-time physics simula-
tion and in real-world experiments on the lightweight and biologically inspired RH5
humanoid robot. Finally, the limits of the approach and the system design are
examined by solving highly-dynamic movements.

Keywords: Differential Dynamic Programming, Dynamic Bipedal Walking, Hu-
manoid Robots, Motion Planning, Multi-Contact Optimal Control, Whole-Body
Trajectory Optimization



Kurzfassung

Die Bewegungsplanung für Laufroboter ist eine anspruchsvolle Aufgabe und bleibt
ein aktives Forschungsgebiet. Besondere Schwierigkeiten ergeben sich aus der ef-
fektiven Unteraktuierung, der Komplexität der Mechanismen sowie der nichtlin-
earen und hybriden Dynamik. Ein verbreiteter Ansatz besteht darin, das Prob-
lem in kleinere Teilprobleme zu zerlegen, die nacheinander gelöst werden. Neue
Forschungsergebnisse zeigen, dass Algorithmen aus dem Bereich der optimalen
Regelung, insbesondere der Differenziellen Dynamischen Programmierung (DDP),
effizientere Bewegungen mit geringeren Kräften und Stößen erzeugen.
Diese Masterarbeit leistet einen Beitrag in diese Richtung, indem eine DDP-

basierte Ganzkörper-Trajektorienoptimierung angewendet, bewertet und erweitert
wird, wobei drei Ziele verfolgt werden. Erstens entwickeln wir eine Methode zur
Beschränkung von DDP-artigen Algorithmen, um stabile Bewegungspläne zu erzeu-
gen. Zweitens wird der vorgeschlagene Ansatz zur Bewegungsplanung für quasi-
statische und dynamische Bewegungen in einer physikalischen Echtzeitsimulation
und in realen Experimenten mit dem leichten und biologisch inspirierten humanoiden
Roboter RH5 evaluiert. Schließlich werden die Grenzen des Ansatzes und des Sys-
temdesigns anhand hochdynamischer Bewegungen untersucht.

Stichworte: Bewegungsplanung, Differenzielle Dynamische Programmierung, Dy-
namisches Bipedales Laufen, Ganzkörper-Trajektorienoptimierung, Humanoide
Roboter, Optimale Regelung
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CHAPTER 1

Introduction

This introduction guides the reader to the goal of the master’s thesis. Beginning
with a motivation on humanoid robots a general problem statement is derived.
Thereupon, two approaches are presented for solving the motion planning problem
as well as the used framework and experimental platform. Building upon this related
work, the specific objectives of the thesis are defined and a brief overview of the
structure is provided.

1.1. Motivation

Robotics research is highly motivated by the idea of creating machines with the
ability to autonomously explore and interact with complex and dynamic environ-
ments. These intelligent agents can act in surroundings that are either inaccessible
or dangerous to humans or support us in everyday life tasks.
The key promise of using legs for locomotion is the improved mobility over wheeled

systems. Significant advantages are gained due to the ability of using isolated
footholds and active suspension, which effectively decouples the main body from
the roughness of the environment and allows e.g. to step over obstacles [1]. These
benefits come at the expense of a significant increase in complexity since there is a
need of ongoing, active balancing of the robot in order to avoid falling down [2].
Nature often plays a crucial rule and serves as source of inspiration in the design

process of such systems. This is especially true for the research field of humanoid
robots, which deals with robots that are generally inspired by human capabilities
and share similar kinematics, sensing and behavior. Many of the objects that we
interact with on a daily basis, are tailored to human form and human behavior,
e.g. doors, stairs or tools. The same also applies to the environment in which we
move around. Humans make use of their legs to climb stairs, lean towards difficult
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Figure 1.1.: Humanoid robots can interact with humans in a very intuitive manner since
they share similar kinematics, sensing and behavior. This opens up new
opportunities for the cooperation needed, e.g. when assembling and installing
infrastructure on foreign planets [4].

postures or traverse rough terrain [3]. These capabilities of humanoid robots have
the potential to benefit mankind. Walking robot nurses would have the ability to
freely move around and interact with the elderly. In disaster scenarios, humanoids
could be sent to check for rescue persons. When exploiting foreign planets, humanoid
robots have the ability to collaborate with humans in an intuitive and effective way
(see Fig. 1.1).
We perform all these tasks seemingly effortless. But compared to current robots,

the dynamic capabilities of humans and animals are still outstanding in terms of
versatility, speed, efficiency and robustness [5]. In order to further close the gap
between robots and their natural counterparts, current research is driving towards
exploiting the natural dynamics of robots. This implies mutually dependent changes
about how we think about the robots design [6] on the one hand and about ways of
controlling them, on the other hand, in order to move in a more dynamic, efficient
and natural way [7, 8, 9].
The specific difficulty of creating bipedal walking motions has several causes. The

first difficulty is due to the mechanism complexity, i.e. dealing with high-dimensional
degrees of freedom, leading to potentially expensive computations. Secondly, legged
locomotion is subject to different contact situations and impact collisions, resulting
in multi-phase models and hence hybrid dynamics. Finally, bipeds face the problem
of effective underactuation, further restricting the applicable control approaches.
Dynamic bipedal locomotion adds additional complexity to this problem. A cen-

tral characteristic of walking dynamically is that the Center of Mass (CoM) partially
leaves the biped’s support polygon. Furthermore, there is the need of generating
feasible, controllable limit cycles. When considering running motions, difficulties are
faced regarding the conservation of angular momentum, which implies restrictions
on the controllability during flight phases [10].
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Figure 1.2.: Traditional Legged Locomotion Planning [12]. The motion planning problem
is decomposed into subproblems that are solved sequentially: first, a contact
planner solves for feasible foothold positions, then a feasible base motion is
generated and finally a consistent whole-body trajectory is derived.

1.2. Related Work

There are existing different ways to generate feasible motion plans for robotic sys-
tems. Common approaches are relying on simplified dynamic models, while recent
ones make use of numerical optimization for generating efficient motion plans.

1.2.1. Traditional Legged Locomotion Planning

Previously we already discovered, why locomotion synthesis for legged robots is a
challenging problem. Solving this global problem typically is approached by splitting
it up into successive subproblems that are solved sequentially: (i) contact planner,
(ii) centroidal pattern generator, (iii) whole-body motion generator (Fig. 1.2) [11].
The first stage of traditional legged locomotion planning is a contact planner that

selects appropriate foothold position and step timings. In other words, this compo-
nent predefines where and when external forces can act on the system. Once these
force locations have been predetermined, the goal is to generate a body motion, i.e.
a CoM and end-effector trajectories, which can be created with the available forces.
A common approach is to model the robot as a Linear Inverted Pendulum (LIP) and
find a motion where the Center of Pressure (CoP) remains inside the Support Poly-
gon (SP). The LIP can be solved analytically and efficiently and consequently has
been used in a variety of approaches [13, 14, 15, 16]. From the contact sequence and
the centroidal trajectory, a dynamic-physical whole-body trajectory has to be found.
This often is done by solving the Inverse Kinematics (IK) [17] or operational-space
Inverse Dynamics (ID) [18] of the system and produces appropriate joint positions
or torques, respectively that can be applied to a physical system.
This approach is beneficial in terms of computation time but comes at the cost

of limited motion complexity and energy efficiency. The first limitation comes from
the underlying assumptions of the LIP model. More complex motions and terrains
might require to place feet at different heights, reorientation of the base or jumping
vertically [19]. Another limitation arises from the fact that whole-body planning
produces more efficient motions than a simple program such as an IK solver [20].
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1.2.2. Trajectory Optimization

Generating motion plans for dynamic systems is subject to Trajectory Optimization
(TO) algorithms that belong to the broader research field of Optimal Control (OC).
TO is a numerical optimization technique with the goal of finding a state-control

sequence, which locally minimizes a predefined cost function given a set of con-
straints. This approach allows to specify the behavior of a robot directly in the
task space, e.g. a desired end-effector trajectory, while reducing the amount of
hand-crafted components.
There are existing different methods to formulate a TO, namely direct and indi-

rect methods. Unlike direct methods which explicitly represent the state, indirect
methods only represent the control inputs while the state is obtained from forward
simulation of the system. In direct methods, the OC problem is transcribed into a
Sequential Quadratic Programming (SQP), which easily handles both equality and
inequality constraints and is implemented in generic off-the-shelf solvers. Conse-
quently, the direct approaches are forced to search in a constrained optimization
space which is slower but finds better optima. The indirect approaches are more
sensitive to local minima but are faster and better suited for warm-starting. For a
comprehensive overview and further information on TO methods see [21, 22, 23].
TO based on reduced centroidal dynamics [24] has become a popular approach

in the legged robotics community. In some approaches it is used after planning the
contacts [25, 26, 27] while other approaches simultaneously optimize the centroidal
trajectory and the contacts [28, 29, 30]. Either way, the transfer from centroidal
to whole-body dynamics is only achieved by instantaneous feedback linearization,
where typically quadratic programs with task-space dynamics are solved [31, 32, 33].
While TO based on reduced dynamics models has shown great experimental re-

sults, whole-body TO instead is proven to produce more efficient motions, with
lower forces and impacts [20]. Hence, we will focus on indirect methods, namely Dif-
ferential Dynamic Programming (DDP) to compute the whole-body motion. DDP
allows to efficiently solve nonlinear OC problems due to its intrinsic sparse structure
and is introduced in Sections 2.3 to 2.4 in more detail.

1.2.3. Crocoddyl Framework

Crocoddyl (Contact RObot COntrol by Differential Dynamic Library) is a recently
presented open-source framework for efficient multi-contact optimal control [34],
which is used within this thesis to plan whole-body motions.
The framework allows to efficiently compute optimal robot trajectories with pre-

defined contact phases. Its solver is based on various efficient DDP-like algorithms.
Along with Crocoddyl, a novel optimal control algorithm called Feasibility-driven
Differential Dynamic Programming (FDDP) is introduced. The FDDP algorithm is
an improved version of the classical DDP algorithm, which shows a greater global-
ization strategy. In the scope of this thesis all presented OC problems are solved
with the FDDP algorithm with box-constraints on the control inputs.

https://github.com/loco-3d/crocoddyl#contact-robot-control-by-differential-dynamic-programming-library-crocoddyl
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Crocoddyl allows the computation of highly-dynamic movements (e.g. jumping,
front-flip) within few milliseconds. However, these exemplary case studies do not
produce balanced motions, leading to motion plans that are hard to stabilize on a
real system [12]. To this end, we present a generic method for constraining DDP-like
solvers in order to generate inherently balanced, dynamic motions that are applicable
on real robots (see Chapter 3).

1.2.4. RH5 Humanoid Robot

The derived motion planning approach (see Chapter 3) has been tested both in
simulation and real-world experiments on a full-size humanoid robot (see Chapters 4
to 6. RH5 is a lightweight and biologically inspired humanoid that has recently been
developed at DFKI Robotics Innovation Center [35].
The RH5 humanoid robot (see Fig. 1.3) is designed to mimic the human anatomy

with a total size of 200 cm, a weight of 62 kg and a total of 32 Degrees of Freedom
(DoF). The two legs account for 12 DoF, the torso and neck kinematics each for
three and the arms and grippers of the robot for 14 DoF. In order to achieve a
dynamic walking speed of 1 m/s, the robot’s design follows a series-parallel hybrid
approach [36, Ch.2]. Consequently, linkages and parallel mechanisms are utilized
in most of the robot’s joints, e.g. the hip-flexion-extension, knee, ankle, torso and
wrist. A comparison of RH5 with other state of the art humanoid robots revealed
several advantages of this design approach, including increased maximum velocity
and torque of the ankle as well as an advantageous weight of the lower leg [37].
Within the analysis of the motion planning approach, the maximum performance
of the robot is evaluated in several case studies of highly-dynamic movements (see
Chapter 5).

Figure 1.3.: The recently presented RH5 is a lightweight and biologically inspired hu-
manoid used as experimental platform within this thesis.
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Trajectory
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Whole-Body 
Trajectory Optimization

Figure 1.4.: The motion planning approach proposed within this thesis. Based on prede-
fined foothold positions, step timings and stability constraints a DDP-based
whole-body TO is used to generate inherently balanced motion plans.

1.3. Contributions

The overall goal of this master’s thesis is to contribute to the research field of
humanoid robotics by applying, evaluating and extending recently presented whole-
body TO approaches on the RH5 humanoid robot.
The proposed motion planning approach (see Fig. 1.4) consists of a DDP-based

whole-body TO. Beneath the contact position and timings, it also considers a set
of contact stability constraints that allow computing inherently balanced motions.
Output of the OC problem is a feasible state trajectory X∗ with according optimal
control inputs U ∗. In contrast to many other motion planning concepts followed by
the legged robotics community, our approach (i) considers the full robot dynamics
instead of using a reduced dynamics model such as the LIP model and (ii) simul-
taneously optimizes for the centroidal motion, contact stability and whole-body
trajectory instead of a sequential optimization.
The specific contributions of this thesis are summarized below.

C1. A method for constraining DDP-like solvers in order to generate inherently
balanced dynamic motions. The results are integrated into the open-source frame-
work Crocoddyl.

C2. Evaluation of the stability of the proposed motion planning approach for
bipedal walking gaits of increasing complexity in simulation.

C3. An experimental pipeline for executing optimization-based whole-body mo-
tions on a series-parallel hybrid robot.

C4. Identification of physical limitations for the RH5 humanoid by performing
highly-dynamic movements as basis for future design iterations.

1.4. Structure

This thesis is organized in a total of 7 chapters (see Fig. 1.5). In the following, a
summary of each chapter is provided which allows the readers to easily navigate
through this document.
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Planning

Control

Approach

Research

Conclusion

Appendix

1 Introduction 2 Background
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4 Bipedal Walking 
Variants

5 Highly Dynamic 
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A1, A2 Open-Source 
Contributions

A3 Framework 
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Figure 1.5.: Thesis structure and interconnection of chapters.

Chapter 1 (Introduction) motivates the problem and presents the related work
and specific contributions. It also provides details on the structure of the thesis.

Chapter 2 (Mathematical Background) provides the reader with fundamental
background in bipedal locomotion and stability analysis. Furthermore, it introduces
the class of algorithms and relevant extensions used in this work.

Chapter 3 (Contact Stability Constrained DDP) presents a generic method for
integrating stability constraints into DDP-like solvers in order to generate inherently
balanced dynamic motions.

Chapter 4 (Bipedal Walking Variants) studies the proposed motion planning ap-
proach for bipedal walking gaits of increasing complexity and evaluates the resulting
contact stability.

Chapter 5 (Highly-Dynamic Movements) studies the proposed motion planning
approach for highly-dynamic movements and evaluates the performance limits of
the RH5 humanoid robot.

Chapter 6 (Validation of Planned Motions) validates the physical correctness
of the planned motions by stabilizing the OC trajectories with a simple control
architecture in a real-time physics simulation and in real-world experiments.

Chapter 7 (Conclusion and Outlook) presents the summary of the thesis and
identifies future research directions.
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Appendix A.1, A.2 (Open-Source Contributions) contains the implementation
of the CoP costs for contact and impulse dynamics, integrated into the open-source
framework Crocoddyl within the scope of this thesis.

Appendix A.3 (Framework Consistency) provides a proof for consistency be-
tween the used frameworks Pinocchio, Crocoddyl and HyRoDyn.

https://github.com/stack-of-tasks/pinocchio
https://github.com/loco-3d/crocoddyl#contact-robot-control-by-differential-dynamic-programming-library-crocoddyl
https://robotik.dfki-bremen.de/en/research/softwaretools/hyrodyn/


CHAPTER 2

Mathematical Background: Optimal
Bipedal Locomotion

The second chapter provides the reader with fundamentals regarding terminology,
modeling and stability analysis in the context of humanoid robotics and presents
the class of used algorithms with its relevant extensions used in the context of this
thesis.

2.1. Foundations of Bipedal Locomotion

2.1.1. Terminology

In order to describe the locomotion of a humanoid robot, specific terms are
required that are introduced within this section. Vukobratović et al. provide an
extensive introduction to the terminology related to bipedal walking [38], concisely
summarized by Dekker [39].

Walk
Walk can be defined as: “Movement by putting forward each foot in turn, not
having both feet off the ground at once”.

Run
Run is characterized by both feet partially leaving the ground at the same time.

Gait
The way each human walks and runs is unique, hence gait can be defined as:
“Manner of walking or running”.
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Periodic gait
If a gait is realized by repeating each locomotion phase in an identical 1 way, the
gait is referred to as periodic.

Symmetric gait
If the left and right leg move in an identical but time-shifted manner, the gait is
referred to as symmetric.

Double Support
A situation where the humanoid has two isolated contact surfaces with the ground.

Single Support
A situation where the humanoid has only one contact surface with the ground.

Support Polygon
The support polygon is formed by the convex hull about the ground contact points.

Swing foot
This term refers to the leg that is performing a step, i.e. moving through the air.

Supporting foot
This term refers to the leg that is in contact with the ground, supporting all the
weight of the humanoid.

2.1.2. Dynamic Modeling of Legged Robots

In the following, the dynamic model for floating base systems, such as legged robots,
is derived based on a general formulation. A concise introduction to dynamic mod-
eling is presented with [40], comprehensive studies can be found in [41, 42, 43].

General Formulation

Mathematical models of a robot’s dynamics describe the motion as a function of
time and control inputs. These models are the basis for both simulation and control
of robotic systems. In an abstract form, the Equations of Motion (EoM) can be
written as:

F (q(t), q̇(t), q̈(t),u(t), t) = 0, (2.1)
where

• t is the time variable,

1The locomotion phase can be identical w.r.t. the step size or the duration, depending on the
index.
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• q is the vector of generalized coordinates,

• q̇ is the first time derivative (velocity) of q,

• q̈ is the second time derivative (acceleration) of qand

• u is the vector of control inputs.

Consequently, the EoM provide a mapping between the control space on the one
hand and the state space of robot on the other hand. Typical methods for com-
puting the closed-form solution of the EoM are e.g. the classical Newton-Euler [44]
method or the Lagrange method [45], where the former is based on principles for
conservation of linear and angular momenta and the latter utilizes energy-based
functions expressed in generalized coordinates.

Fixed Base Systems

For applications with fixed-based robots, e.g. a robotic manipulator, the multi-body
dynamics can be formulated as

M (q)q̈ + q̇TC(q)q̇ = τ + τ g(q), (2.2)

where

• M (q) is the generalized inertia matrix,

• C(q) is the coriolis tensor,

• τ is the vector of actuated joint torques and

• τ g(q) is the vector of external joint torques caused by gravity.

In contrast to the general formulation in Eq. (2.1), this expression is time-invariant.
Hence, Eq. (2.2) can be used for computing the Forward Dynamics (FD), as well as
the ID of a robotic system.

Implicit and Explicit Constraints

The motion of a robot is constrained by it’s kinematics structure as well as additional
constraints that may arise from the environment. Fig. 2.1 provides a classification
of kinematic constraints, which are often found in the field of robotics [36, Ch.3].
While equality constraints arise from permanent physical contact between two bod-
ies, inequality constraints arise due to phenomena such as collision, bouncing or
loss of contact. Equality constraints can be further divided into holonomic and
non-holonomic constraints. The former constrain the position (e.g. fixed or slid-
ing contacts), the latter constrain the velocity (e.g. rolling contacts) of multi-body
systems.
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kinematic 

constraints

holonomic

inequalityequality

scleronomic rheonomic

e.g. collision, bouncing, loss of contact

non-holonomic

non-integrable, arises from rolling contact mobile robots

integrable, arises from sliding contact

loop closure constraints

parallel mechanisms

Figure 2.1.: Classification of kinematic constraints in multi-body systems [36].

In the scope of this thesis, we focus on mobile robots that contain parallel mech-
anisms. In contrast to serial manipulators, two additional scleronomic constraints
have to be actively enforced for this type of robotic systems:

• Internal loop closure constraints,

• Contact constraints.

The contact constraints are modeled explicitly as holonomic scleronomic con-
straints in the robot dynamics (see Section 2.4.1). Since the dynamics solvers inside
Crocoddyl do not allow computation for series-parallel mechanisms, a serialized
robot model is used as basis of the OC problem. Hence, the closed loop constraints
are only implicitly considered within the control architecture (see Section 6.2.1).
Although the usage of this simplified model reduces the accuracy, it is proven to be
sufficient for dynamic real-time control [46].

Floating Base Systems

As previously mentioned, the focus of this thesis is on mobile robots. These so-called
floating base systems are characterized by having a base that is free to move, rather
than being fixed in space. Consequently, the vector of generalized coordinates q not
only contains the joint’s angles, but also accounts for the position and orientation
of the floating base. Legged robots belong to this category of rigid-body systems as
they make and break contacts with their environment in order to move. Contrary
to manipulators, contacts need to be actively enforced by holonomic constraints for
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legged robots. There are namely two different types of contact constraints that can
be applied: point contacts (3D) or surface contacts (6D).
For the case of point contacts, the dynamics of the floating base system become

M (q)q̈ + q̇TC(q)q̇ = STτ + τ g(q) +
k∑
i=1

JT
Ci

f i,

where

• S is the selection matrix of actuated joints,

• JCi
is the Jacobian at the location of a contact point Ci and

• f i is the contact force acting at the contact point Ci.

For the case of surface contacts, such as a flat foot on a flat floor, modeling a point
contact is not sufficient since it only constrains the translation. In order to also
account for the rotational constraints enforced by the geometry one could take into
account multiple point contacts. A non-redundant alternative is to model more
general frame contact constraints as

M (q)q̈ + q̇TC(q)q̇ = STτ + τ g(q) +
k∑
i=1

JT
Ci

wi, (2.3)

where wi is referred to as the contact wrench acting on the contact link i. This
wrench stacks the resulting f i of contact forces and the moment τ i exerted by these
forces around the contact frame as

wi = (f i, τ i)6×1.

For more details on contact wrenches and spatial vector algebra in general, the
interested reader is referred to e.g. [43, Ch.2].

2.2. Stability Analysis: Not Falling Down

Humanoid robots are high-dimensional, constrained and nonlinear dynamical sys-
tems. In this section, the most common criteria for analyzing the long-term stability
behavior of such complex systems are presented. Exhaustive studies on stability cri-
teria and their relation can be found in [39, 47, 48].

2.2.1. Static Stability Criteria

Floor Projection of the Center of Mass (FCoM)

Consider the case of a robot that is not moving, i.e. a humanoid in static double
support. In that case, the only forces acting on the humanoid are the ones caused
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by gravity. These forces can be represented by a virtual force acting on the CoM of
the robot. The position of the CoM w.r.t. the base frame can be described by

pCoM =
∑n
i=1mipi∑n
i=1mi

,

where the robot has n links and pi indicate the according link distances of the
individual CoMs. The Floor Projection of Center of Mass (FCoM) equals the first
two components of the CoM position vector pCoM and the following relation holds:

n∑
i=1

((pFCoM − pi)×mig) = 0 .

The FCoM can be used as a static stability margin, ensuring the motionless robot
will not tip over or fall, if pFCoM always remains inside the SP. Note that this criteria
is also applicable in so called quasi-static movements, where static forces are still
dominating dynamic forces.

2.2.2. Dynamic Stability Criteria

In case of faster motions, dynamic forces will exceed the static forces and cannot
be neglected anymore. The acting forces can be divided into contact forces and
gravity/inertial forces, where the so called Zero-Moment Point (ZMP) is based on
the former, and the CoP on the latter. In the following, both concepts are introduced
according to the description in [49] with a nomenclature equivalent to [40].

Center of Pressure (CoP)

The CoP is defined as the point, where the field of pressure forces acting on the sole
is equivalent to a single resulting force where the resulting moment is zero. Hence
the CoP is a local quantity that is derived from the interaction forces at the contact
surface.
Considering the case of a foot contacting a plane surface, the resulting con-

tact force f c is exerted by the environment onto the robot. This force consists
of the resulting pressure force f p = (f c · n)n, as well as the resulting friction force
f f = f c − f p. Hence, the following conditions hold:

τ p
O = 0

pCoP × (f p · n)n = −τ P
O

(f p · n)n × pCoP × n = −n × τ p
O

Since both the sole point O and pCoP belong to the same plane, we get:

pCoP = n × τ p
O

f p · n
.
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Finally, friction forces are tangent to the contact surface and their moment is aligned
with n, so we equivalently can write this relationship as:

pCoP = n × τ c
O

f c · n
. (2.4)

Equation (2.4) can be used to compute the CoP expressed in the local contact frame.

Zero-Moment Point (ZMP)

The ZMP is defined as a point on the ground where the tipping moment acting
on the biped equals zero. This condition can be interpreted as a constraint on the
contact moments, which contains at least the roll and pitch direction. Originally, the
concept has been introduced in [50], it has been reviewed in [51] and made popular
with [13].
The concept is build upon two key assumptions:

• There exists one planar contact surface (i.e. no multiple surfaces like on rough
terrain)

• The friction is sufficiently high to prevent sliding of the feet

From the Newton-Euler equations, the motion of the biped can be written as

mp̈CoM = mg + f c

L̇O = pCoM ×mg + τ c
CoM,

where m denotes the total mass of the robot, g is the gravity vector, p̈CoM
the centroidal acceleration, L̇O the change of the angular momentum. wc

CoM =
(τ c

CoM, f c)6×1 denotes the sum of all contact wrenches in the CoM frame. The
gravito-inertial wrench of the robot can be defined as

f gi = m(g −mp̈CoM)
τ gi
O = pCoM ×mg − L̇O.

Using the wrench form of the Newton-Euler equations

wgi + wc = 0 , (2.5)

one can derive the ZMP, for the case of a planar surface, as

pCoM = n × τ gi
O

f gi · n
. (2.6)

In practice, one can use this formula to compute the ZMP from force sensors or from
an inertial measurement unit.
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Coincidence of ZMP and CoP

As Sardain and Bessonnet outline, both the ZMP and the CoP yield the same point
for the case of bipedal walking on a single plane surface [49]. Comparing Eq. (2.6)
with Eq. (2.4), we recognize the only difference is that the former is applied to the
(global) gravito-inertial wrench, while the latter is applied to the (local) contact
wrench. If we recall the Newton-Euler equations from Eq. (2.5), it becomes clear
why both points coincide when there is only one contact plane.

2.2.3. Stability Classification

There are existing several classifications of stability, which will be defined in the
following according to [10, Sec.1.2.1] and [47]. See Vukobratović et al. for more
details on differentiating the terms dynamic stability and dynamic balance [38].

Statically Stable Motion

The gait or movement of a humanoid is classified as statically stable if the FCoM
does not leave the SP during the entire motion or gait. Consequently, the humanoid
will remain in a stable position, whenever the movement is stopped. Typically, these
kinds of stability are only obtained with very low walking velocities or quasi-static
motions, where the static forces dominate the dynamic forces. To this end, the
FCoM stability criteria is used for the generation of balanced static walking gaits
(see Section 4.2).

Dynamically Stable Motion

If the FCoM partially leaves the SP at some point during the gait, but the CoP (or
ZMP) always remains within the SP, the gait or movement is classified as dynami-
cally stable. This stability margin is extremely useful for flat-foot dynamic walking
since it prevents the foot from rotating around the boundary of the SP. The CoP
is a central building block of the contact stability constrained DDP approach that
will be discussed in Chapter 3.

2.3. Differential Dynamic Programming (DDP)

This section describes the basics of DDP, which is an OC algorithm that belongs
to the TO class. The algorithm was introduced in 1966 by Mayne [52]. A modern
description of the algorithm using the same notations as below can be found in
[23, 53].
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2.3.1. Finite Horizon Optimal Control

We consider a system with discrete-time dynamics, which can be modeled as a
generic function f

xi+1 = f (xi,ui), (2.7)
that describes the evolution of the state x ∈ Rn from time i to i+1, given the control
u ∈ Rm. A complete trajectory {x,u} is a sequence of states x = {x0,x1, ...,xN}
and control inputs u = {u0,u1, ...,uN} satisfying Eq. (2.7). The total cost J of a
trajectory can be written as the sum of running costs l and a final cost lf starting
from the initial state x0 and applying the control sequence u along the finite time-
horizon:

J(x0,u) = lf (xN) +
N−1∑
i=0

l(xi,ui). (2.8)

As discussed in Chapter 1, indirect methods such DDP represent the trajectory
implicitly solely via the optimal control inputs u. The states x are obtained from
forward simulation of the system dynamics, i.e. integration Eq. (2.7). Consequently,
the solution of the optimal control problem is the minimizing control sequence

u∗ = argmin
U

J(x0,u).

2.3.2. Local Dynamic Programming

Let ui ≡ {ui,ui+1...,uN−1} be the partial control sequence, the cost-to-go Ji is the
partial sum of costs from i to N :

Ji(x,ui) = lf (xN) +
N−1∑
j=i

l(xj,uj). (2.9)

The Value function at time i is the optimal cost-to-go starting at x given the mini-
mizing control sequence

Vi(x) = min
ui

Ji(x,ui),

and the Value at the final time is defined as VN(x) ≡ lf (xN). The Dynamic Pro-
gramming Principle [54] reduces the minimization over an entire sequence of control
inputs to a sequence of minimizations over a single control, proceeding backwards
in time:

V (x) = min
u

[l(x,u) + V ′(f (x,u))]. (2.10)

Note that Eq. (2.10) is referred to as the Bellman equation for discrete-time opti-
mization problems [55]. For reasons of readability, the time index i is omitted and
V ′ introduced to denote the Value at the next time step. The interested reader
may note that the analogous equation for the case of continuous-time is a partial
differential equation called the Hamilton-Jacobi-Bellman equation [56, 57].
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2.3.3. Quadratic Approximation

DDP locally computes the optimal state and control sequences of the OC problem
derived with Eq. (2.10) by iteratively performing a forward and backward pass. The
backward pass on the trajectory generates a new control sequence and is followed by
a forward pass to compute and evaluate the new trajectory.
Let Q(δx, δu) be the variation in the argument on the right-hand side of Eq. (2.10)

around the ith(x,u) pair

Q(δx, δu) = l(x + δx,u + δu) + V ′(f (x + δx,u + δu)). (2.11)

The DDP algorithm uses a quadratic approximation of this differential change. The
quadratic Taylor expansion of Q(δx, δu) leads to

Q(δx, δu) ≈ 1
2


1
δx
δu


T 

0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu




1
δx
δu

 . (2.12)

The coefficients can be computed as

Qx = lx + f TxV ′
x, (2.13a)

Qu = lu + f TuV ′
x, (2.13b)

Qxx = lxx + f TxV ′
xxf x + V ′

xf xx, (2.13c)
Qux = lux + f TuV ′

xxf x + V ′
xf ux, (2.13d)

Qbu = luu + f TuV ′
xxf u + V ′

xf uu. (2.13e)

where the primes denote the values at the next time-step.

2.3.4. Algorithmic Steps

The first algorithmic step of DDP, namely the backward pass, involves computing
a new control sequence on the given trajectory and consequently determining the
search direction of a a step in the numerical optimization. To this end, the quadratic
approximation obtained from Eq. (2.12), minimized with respect to δu for some state
perturbation δx, results in

δu∗(δx) = argmin
δu

Q(δx, δu) = −Q−1
uu (Qu + Quxδx),

giving us an open-loop term k and a feedback gain term k:

k = −Q−1
uuQu and k = −Q−1

uuQux.
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The resulting locally-linear feedback policy can be again inserted into Eq. (2.12)
leading to a quadratic model of the Value at time i:

∆V = −1
2kTQuuk

V x = Qx − kTQuuk
V xx = Qxx − kTQuuk.

After computing the feedback policy in the backward pass, the forward pass com-
putes a corresponding trajectory by integrating the dynamics via

x̂0 = x0

ûi = ui + αki + ki(x̂i − xi)
x̂i+1 = f (x̂i, ûi),

where x̂i, ûi are the new state-control sequences. The step size of the numerical
optimization is described by the backtracking line search parameter α, which iter-
atively is reduced starting from 1. The backward and forward passes of the DDP
algorithm are iterated until convergence to the (locally) optimal trajectory.

2.4. Handling Constraints With DDP

By nature, the DDP algorithm presented in Section 2.3 does not take into account
constraints. Tassa et al. developed a control-limited DDP [23] that takes into ac-
count box inequality constraints on the control inputs allowing the consideration of
torque limits on real robotic systems. Budhiraja et al. proposed a DDP version for
the problem of multi-phase rigid contact dynamics by exploiting the Karush-Kuhn-
Tucker (KKT) constraint of the rigid contact model [20].
To begin with, this section provides details on the above mentioned approach,

since physically consistent bipedal locomotion is highly dependent on making con-
tacts with the ground. Finally, the integration of robot tasks and physical consis-
tency as additional constraints into the OC problem are explored.

2.4.1. DDP With Constrained Robot Dynamics

Contact Dynamics

In the case of rigid contact dynamics, DDP assumes a set of given contacts of
the system with the environment. Then, an equality constrained dynamics can be
incorporated by formulating rigid contacts as holonomic constraints to the robot
dynamics. In other words, the contact points are assumed to have a fixed position
on the ground.
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The unconstrained robot dynamics can be represented as

Mv̇free = Sτ − b = τ b, (2.14)

with the joint-space inertia matrix M ∈ Rn×n and the unconstrained acceleration
vector v̇free. The right-hand side of Eq. (2.14) represents the n-dimensional force-
bias vector accounting for the control τ , the Coriolis and gravitational effects b and
the selection matrix S of actuated joints.
In order to incorporate the rigid contact constraints to the robot dynamics, one

can apply the Gauss principle of least constraint [58]. The idea is to minimize the
deviation in acceleration between the constrained and unconstrained motion:

v̇ = arg min
a

1
2 ‖v̇ − v̇free‖M

subject to J cv̇ + J̇ cv = 0 ,
(2.15)

where M formally represents the inertia tensor over the configuration manifold q.
In order to express the holonomic contact constraint φ(q) in the acceleration space,
it needs to be differentiated twice. Consequently, the contact condition can be
seen as a second-order kinematic constraints on the contact surface position where
J c =

[
J c1 · · · J c

]
is a stack of f contact Jacobians.

Karush-Kuhn-Tucker (KKT) Conditions

The Gauss minimization in Eq. (2.15) corresponds to an equality-constrained
quadratic optimization problem. The optimal solutions (v̇,λ) must satisfy the so-
called KKT conditions given byM J>c

J c 0

  v̇
−λ

 =
 τb

−J̇ cv

 . (2.16)

These dual variables λk represent external wrenches at the contact level. For a
given robot state and applied torques, Eq. (2.16) allows a direct computation of the
contact forces. To this end, the contact constraints can be solved analytically at the
level of dynamics instead of introducing additional constraints in the whole-body
optimization [31].

2.4.2. KKT-Based DDP Algorithm

The KKT dynamics from Eq. (2.16) can be expressed as a function of the state xi
and the control ui:

xi+1 = f (xi,ui),
λi = g(xi,ui),

(2.17)
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where the concatenation of the configuration vector and its tangent velocity forms
the state x = (q, v), u is the input torque vector and g(·) is the optimal solution of
Eq. (2.16).
Supposing a sequence of predefined contacts, the cost-to-go of the DDP backward

pass and its respective Hessians (compare Eq. (2.9) and Eq. (2.13)) turn into:

Ji(x,ui) = lf (xN) +
N−1∑
j=i

l(xj,uj,λj)

with the control inputs ui acting on the system dynamics at time i, and first-order
approximation of g(·) and f (·) as

Qx = lx + gTx lλ + f Tx V ′
x ,

Qu = lu + gTu lλ + f Tu V ′
x ,

Qxx ≈ lxx + gTx lλλgx + f Tx V ′
xxf x ,

Qux ≈ lux + gTu lλλgx + f Tu V ′
xxf x ,

Quu ≈ luu + gTu lλλgu + f Tu V ′
xxf u .

(2.18)

Consequently, the KKT-based DDP algorithm utilizes the set of Eq. (2.18) inside
the backward pass to incorporate the rigid contacts forces, while the updated system
dynamics from Eq. (2.17) is utilized during the forward pass of the algorithm.

2.4.3. Task-Related Constraints

An important part of the motion generation is the execution of desired actions, e.g.
grasping an object, moving the CoM or performing a robot step. For formulating
these task-related constraints, we follow the notation used in [12].
An arbitrary task can be formulated as a regulator:

htaskk
(xk,uk) = sdtask − stask(xk,uk),

where the task is defined as the difference between the desired and current feature
vectors sdtask and stask(xk,uk), respectively. The task at each node can be added to
the cost function via penalization as:

lk(xk,uk) =
∑

j∈tasks
wjk || hjk(xk,uk) ||2,

where wjk assigned to task j at corresponding time k. The DDP algorithm utilizes
the derivatives of the regulator functions, namely computing the Jacobians and
Hessians of the cost functions.
In the scope of this thesis, the following tasks are handled

tasks ⊆ {CoM,LFSE(3), RFSE(3)},
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namely the CoM tracking (CoM) and the tracking of the left- and right-foot pose
LFSE(3), RFSE(3), respectively.

2.4.4. Inequality Constraints

Equally important for physically consistent motion planning is the consideration of
boundaries, such as robot limits and stability constraints. These inequality con-
straints can be included into DDP-like solvers using i.e. penalization, active-set [59]
and Augmented Lagrangian [60] strategies. In Crocoddyl, the penalization approach
is used to consider inequality constraints in the OC formulation. The mathematical
formulation is detailed in Section 3.3.
In the scope of this thesis, the following inequality constraints are utilized:

inequalities ⊆ {joint limits, friction cone, CoP}.

Further details on the constraints applied to the motion planning problems in the
context of this thesis are provided in Section 4.1. In the next chapter, we explore an
approach that combines multiple inequality constraints in order to embed contact
stability into DDP-like solvers.



CHAPTER 3

Contact Stability Constrained DDP

This chapter presents a generic method for integrating contact stability constraints
into DDP-like solvers. The key idea is to define inequality constraints for unilat-
erality, friction and the CoP of each contact surface with the goal of generating
inherently balanced motions.

3.1. The Idea

Stability of the contacts is an essential objective of motion planning since prevents
the robot from sliding and falling down. In Section 2.2 we have explored two different
criteria for ensuring contact stability for dynamic systems, namely the ZMP and
CoP. As outlined, the application of the ZMP is limited due to the assumptions of
sufficiently high friction and the existence of one planar contact surface. Since we
want to provide a generic method that can also be used for e.g. walking up stairs,
these simplifying assumptions do not hold anymore.
Consequently, we decide to model a 6D surface contact, as introduced in Eq. (2.3)

with dedicated constraints for (i) unilaterality of the contact forces (ii) Coulomb
friction on the resultant force, and (iii) CoP inside the support area. For the sake of
simplicity, we model a rectangular contact area. Nevertheless, this concept can be
extended to arbitrary feet designs. This approach can be compared to the concept of
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a b

Figure 3.1.: (a) Visualization of acting forces on a simple rigid body and (b) notation
used for the CoP definition in the contact surface plane [61].

contact wrench cone [61], without additionally enforcing the yaw torque constraint.
These inequality constraints for surface contacts can compactly be summarized as

f zi > 0, (3.1a)
| fxi | ≤ µf zi , (3.1b)
| f yi | ≤ µf zi , (3.1c)
| X | ≥ Cx, (3.1d)
| Y | ≥ Cy. (3.1e)

Let us now detail each line of the approach. The first inequality Eq. (3.1a) ac-
counts for the unilaterality of the contact force. By nature, contact forces always
have to be positive since the robot can only push from the ground, not pull to the
ground (Fig. 3.1a). Inequality Eqs. (3.1b) and (3.1c) corresponds to the Coulomb
friction, where µ denotes the static coefficient of friction. From a modeling per-
spective, this can be interpreted via the concept of spatial friction cones [62]. If,
and only if the distributed contact forces lie inside their respective friction cones,
these constraints are satisfied. Finally, inequality Eqs. (3.1d) and (3.1e) constrain
the CoP to lie inside the rectangular contact area of each foot (see Fig. 3.1b). Cx
and Cy denote the x and y position of pCoP , respectively. These CoP constraints
prevent the robot from tilting around the edges of the rectangular surface contact.
In particular, Eq. (3.1d) corresponds to a constraint of tilting around the pitch axis
and Eq. (3.1e) prevents tilting around the roll axis.
Both, the unilaterality of the contact forces and the friction cone constraints, are

already implemented inside Crocoddyl. However, the central component, bounding
the CoP to lie inside the support area of each contact foot, is missing. Therefore,
the rest of this chapter deals with the derivation of a set of implementable CoP
constraints and describes the integration of these constraints as a cost function into
the Crocoddyl framework.
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3.2. Center of Pressure (CoP) Constraints

In this section we will derive a universal set of implementable constraints that bound
the CoP to lie inside the rectangular contact area of each foot.

3.2.1. CoP Stability Conditions

Recapitulate the constraints from inequality Eqs. (3.1d) to (3.1e). Instead of using
the absolute value of X and Y , one can also formulate the constraints as

−X ≤ Cx ≤ X,

−Y ≤ Cy ≤ Y.
(3.2)

Based on this formulation it becomes evident that the CoP is constrained to lie
inside the foot geometry visualized in Fig. 3.1b. In fact, these conditions can be
represented via four single inequality equations as

X + Cx ≥ 0,
X − Cx ≥ 0,
Y + Cy ≥ 0,
Y − Cy ≥ 0.

(3.3)

These four inequality equations will be used in the following to formulate the CoP
constraints.

3.2.2. CoP Computation

Our goal is to determine explicit expressions for Cx and Cy for arbitrary floor ori-
entations, including inclined ground. To this end, consider the computation routine
for the CoP from Eq. (2.4)

pCoP = n × τ c
O

f c · n
.

For arbitrary orientations of the contact normal vector n, we obtain

pCoP = n × τ c
O

f c · n
=


nx

ny

nz

×

tx

ty

tz



fx

fy

fz

 ·

nx

ny

nz


=


nytz − nzty
nztx − nxtz
nxty − nytx

 · 1
fxnx + fyny + fzny

, (3.4)



3.3. Integration Into the Crocoddyl Framework 26

and solve for the desired position Cx and Cy of the CoP as

Cx = nytz − nzty
fxnx + fyny + fzny

, (3.5a)

Cy = nztx − nxtz
fxnx + fyny + fzny

. (3.5b)

3.2.3. CoP Inequality Constraints

Now that we have found explicit expressions for computing the CoP (Eqs. (3.5a)
to (3.5b)), we can insert them into Eq. (3.3), which gives a set of four CoP constraints
as

X + nytz − nzty
fxnx + fyny + fzny

≥ 0,

X − nytz − nzty
fxnx + fyny + fzny

≥ 0,

Y + nztx − nxtz
fxnx + fyny + fzny

≥ 0,

Y − nztx − nxtz
fxnx + fyny + fzny

≥ 0.

(3.6)

These conditions can be written in matrix form as:


Xn0 Xn1 Xn2 0 −n2 n1

Xn0 Xn1 Xn2 0 n2 −n1

Y n0 Y n1 Y n2 n2 0 −n0

Y n0 Y n1 Y n2 −n2 0 n0





fx

f y

f z

τx

τ y

τ z


≥


0
0
0
0

 , (3.7)

and finally yield an implementable set of inequality equations for constraining the
CoP to lie inside the rectangular contact area of each foot.

3.3. Integration Into the Crocoddyl Framework

This section presents the integration of the derived CoP inequality constraints from
Eq. (3.7) into the Crocoddyl framework.

3.3.1. Inequality Constraints by Penalization

In Section 2.4 we have discussed possible ways of incorporating inequality constraints
into DDP-like solvers. Crocoddyl handles inequality constraints, such as joint limits
or friction cone, via penalization. In numerical optimization, the goal is to minimize
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a given cost function. In Crocoddyl, an action model combines dynamics and cost
model for each knot of the discretized OC problem from Eq. (2.8). The cost function
for an action model at knot n can be written as:

ln =
C∑
c=1

αcΦc(q, q̇, τ ), (3.8)

where C different costs Φc are weighted by a respective coefficient αc ∈ R. The
goal of the following two parts is to demonstrate how the inequality Eq. (3.7) is
implemented inside a novel cost function into the framework.

3.3.2. Computation of Residual and Cost

In numerical analysis, the term residual corresponds to the error of a result [63].
For the sake of compactness, we abbreviate Eq. (3.7) as

Aw ≥ 0 , (3.9)

where A corresponds to a matrix of CoP inequality constraints and w is the contact
wrench acting on the according foot. The residual r ∈ R4×1 of the cost is retrieved
by a simple matrix-vector multiplication:

r = Aw. (3.10)

The residual vector depicted in Eq. (3.10) typically contains non-zero numbers.
The resulting scalar CoP cost value ΦCoP is computed via a bounded quadratic
activation as

ΦCoP =


1
2rTr | lb > r > ub

0 | lb ≤ r ≤ ub.
(3.11)

In order to account for the positiveness of r (see Eq. (3.9)), the bounds are set to
lb = 0 and ub =∞, respectively. Finally, this bounded quadratic activation of the
residual vector has the following implications:

• The CoP cost is zero, whenever pCoP lies inside or on the border of the foot
area spanned by X and Y .

• The CoP cost increases in a quadratic manner, when pCoP exceeds the foot
area spanned by X and Y .

Besides this formulation of the cost function also other designs are conceivable for
the future. For example, the Euclidean distance from the CoP to the coordinate
origin could be considered when computing the residual (see Eq. (3.11)).
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3.3.3. Basic Usage and Contributions

The cost function is implemented in C++, but can be accessed via Python bindings
for versatile and fast prototyping. In the following, a basic example is provided to
demonstrate the interface of the CoP cost function to the interested reader.

# 1. Creating the cost model container
costModel = crocoddyl.CostModelSum(state, actuation.nu)
# 2. Defining the CoP cost
footGeometry = np.array([0.2, 0.08]) # dim [m] of the foot area
CoPCost = crocoddyl.CostModelContactCoPPosition(state,
crocoddyl.FrameCoPSupport(footId, footGeometry), actuation.nu)
# 3. Adding the CoP cost term with assigned weight to the cost model
costModel.addCost("LF_CoPCost", CoPCost, 1e3)

The contributions of this thesis to the open-source framework Crocoddyl are sum-
marized in two main pull requests. The first one, #792 contains the basic formula-
tion of the CoP cost function for contact dynamics action models (see Appendix A.1).
With #830, an additional version of the cost function is implemented for impulse
dynamics action models (see Appendix A.2). A functional unit test that checks the
cost against numerical differentiation as well as accessible python bindings can be
found in the according directory of [64].

https://github.com/loco-3d/crocoddyl/pull/792
https://github.com/loco-3d/crocoddyl/pull/830


CHAPTER 4

Bipedal Walking Variants

This chapter studies the proposed motion planning approach for bipedal walking
gaits of the full-size humanoid RH5. It starts by describing the individual building
blocks of the optimization problem, then discusses the simulation results obtained for
increasing gait dynamics and finally provides an evaluation of the contact stability
of the dynamic motions.

4.1. Formulation of the Optimization Problem

This section gives information about the adopted contact and impact modeling
techniques and introduces the constraints used for generating physically consistent
walking trajectories. The core formulation is based on the legged gaits described in
[34] but contains various improvements necessary for application on real robots. All
motions presented in this chapter are solved for a predefined sequence of contacts
and step timings. Recapitulating Section 2.3, we formulate the optimization problem
as

X∗,U ∗ = arg min
X,U

lN(xN) +
N−1∑
k=0

∫ tk+∆t

tk

l(x,u)dt. (4.1)

4.1.1. Contact and Impact Modeling

During a walking motion, the body is always in contact with the ground either in
single support, or in double support. In Section 2.4 we have discovered, how rigid
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contacts can be expressed as a kinematic constraint on the EoM (see Eq. (2.14)).
Analogously, one can describe the impulse dynamics 1 of a multibody system asM J>c

J c 0

  v+

−Λ

 =
 Mv−

−eJ cv−

 , (4.2)

where Λ is the contact impulse, v− and v+ are the generalized velocities before and
after the impact and e ∈ [0, 1] is the restitution coefficient that accounts for the elas-
ticity of the collision. For all motions, we use this impulse model to account for the
infinitesimal short change in the contact situation. To improve the numerical inte-
gration stability, terms defined by Baumgarte Stabilization [65] are used along with
the rigid contact constraint described with Eq. (2.15). This numerical stabilization
on the constraints can be expressed as:

a0 = aλ(c) − αM ref
λ(c) 	Mλ(c) − βvλ(c), (4.3)

where a0 is the desired acceleration in the constrained space, vλ(c), aλ(c) are the
spatial velocity and acceleration of the contact λ(c), respectively, M ref

λ(c) 	Mλ(c) is
the inverse composition between the reference contact placement and the current
one [34]. The PD gains α and β enable an adequate numerical stabilization of the
constraints depending on the dynamics of the movement.

4.1.2. Robot Tasks

Robot tasks, such as grasping and object or performing a step, are an essential goal
of motion planning. As outlined in Section 2.4, these task-related constraints are
considered in the optimization process as regulator functions. In the context of this
thesis two tasks are of specific interest, namely the foot tracking and CoM tracking.

Foot Tracking Cost In order to perform a symmetric gait (see Section 2.1), the
design of dedicated foot trajectories is crucial. We use piecewise-linear functions to
describe the swing foot reference trajectory. Deviation from this time-depended ref-
erence foot trajectory is highly penalized. The foot tracking cost can be formulated
via the squared Euclidean norm (L2 norm) as

Φfoot =|| f (t)− f ref(t) ||22,

where f (t) is the actual CoM position at time-step t and f ref(t) is the according
reference. Start and end position as well as timings are predefined and combined
with a desired step height to shape the desired foot trajectory.

1Impulse dynamics account for the physical effects that occur at a switch from non-contact to
contact condition [43].
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CoM Tracking Cost In bipedal locomotion, the three-dimensional position of the
CoM of the whole-body turned out to be crucial [66]. This is especially true for
quasi-static motions, where the FCoM is used as static stability margin as explained
in Section 2.1. Analogously to the foot cost, the CoM tracking cost is formulated as

ΦCoM =|| c(t)− cref(t) ||22 .

In order to account for the static stability in these motions, we perform a dedicated
shifting of the FCoM to the foot center, before performing the swing-foot task.

4.1.3. Inequality Constraints for Physical Consistency

Essential demands on physically consistent motion planning are that (i) the robot
limits (torque, joints) are considered and (ii) the generated trajectories are inherently
balanced. To this end, we consider joint limits, friction cone and the novel CoP
bound as inequality constraints in our formulation, while torque constraints are
covered in the algorithm itself.

Contact Stability Constraints As detailed in Chapter 3 with the concept of con-
tact stability constrained DDP, we constrain unilaterality, friction and CoP for each
foot in contact. For the sake of clarity, Eq. (3.11) is again recalled as

ΦCoP =


1
2rTr | lb > r > ub

0 | lb ≤ r ≤ ub,

where the CoP position is bound to lie inside the foot contact area by the lower and
upper bounds lb and ub, respectively. In the same manner friction cone constraints
along with the unilaterality are considered as

Φfriction =


1
2rTr | lb > r > ub

0 | lb ≤ r ≤ ub,

where lb and ub bound the resulting contact force to lie inside a four-sided polygonal
approximation of the spatial friction cone [62].

Joint Limits Physical boundaries of the joints must not be exceeded to avoid
damage to the system. They are covered via a bounded quadratic activation as

Φjoints =


1
2rTr | lb > r > ub

0 | lb ≤ r ≤ ub,
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where lb and ub correspond to the lower and upper bounds for joint position and
velocities, respectively.

4.1.4. Further Regularization Terms

Additional to the described constraints for tasks and physical consistency, we opti-
mize for minimization of the torques and regularize the robot posture.

Torque Minimization In order to improve the energy efficiency of the motions and
maintain a human-like torque at the joints [67], we minimize the joint torques for
realistic dynamic movements via

Φtorque =|| τ (t) ||22 .

Posture Regularization Finally, we deal with the redundancy of multi-body dy-
namics by applying a weighted least-squares cost function to regularize the state
with respect to the nominal robot posture:

Φposture =|| q(t)− qref(t) ||22 .

4.2. Simulation Results for Increasing Gait Dynamics

This section presents the simulation results for bipedal walking motions obtained
by solving an optimization problem based on the described building blocks from the
previous section. It studies both static and dynamic walking gaits, respectively.

4.2.1. Static Walking

The analysis of static walking gaits provides detailed insights on the optimization
structure and allows a thorough experimental validation (see Chapter 7).
Focus of investigation is a slow two step walking motion. We assume a quasi-static

motion and hence deploy a static stability criterion as introduced in Section 2.2 by
following a dedicated FCoM trajectory. To this end, the optimization problem is
composed of a total of five locomotion phases visualized in Fig. 4.1. From (a) an
initial pose, (b) shift the FCoM above the Left Foot (LF), (c) perform a right step,
(d) shift the FCoM above the Right Foot (RF), (e) perform a left step and (f) shift
the FCoM to the half length of the line intersecting both feet center while returning
to the initial pose.
Additionally, the CoM is optimized for a constant height over the whole gait.

Table 4.1 gives a compact overview of the desired gait characteristics and the applied
constraints of the optimization. In order to comply with the quasi-static assumption,
the motion is performed about a time horizon of 15 s with a total stride length of
20 cm a robot model with fixed arms.
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Table 4.1.: Static walking gait characteristics and applied optimization constraints.

Gait Characteristics Optimization Constraints
Step length: 10 cm Tasks: Φfoot, ΦCoM

Step height: 5 cm Stability: Φfriction

Time: 3 s/phase Limits: Φjoint, torques
Step size: 0.03 s Regularization: Φposture, Φtorque

a b c d e f

Figure 4.1.: Static walking gait based on dedicated FCoM motion, consisting of the loco-
motion phases (a) initial pose, (b) FCoM shift above LF, (c) right step, (d)
FCoM shift above RF, (e) left step and (f) pose recovery. Significant lateral
shifts of the FCoM are required to establish the static stability. [Video]

The results of the optimization problem Eq. (4.1) are shown in Fig. 4.2 and
Fig. 4.3. Fig. 4.2 presents the resulting base and end-effector trajectories. As be-
comes clear, the FCoM tracking is sufficiently good and the CoM height remains in
a reasonable range of ± 1 cm. Equally, the desired foot trajectory is tracked with
adequate accuracy. Also, the foot velocities are reasonable with a maximum veloc-
ity of 0.1 m/s at the impact. The pursued step height is not reached exactly but is
about one centimeter less. This effect can be explained by the immediately reverse
direction at the vertex of the piecewise-linear trajectory, which is smoothened by
the solver.
Fig. 4.3 shows the resulting joint trajectories for the torso, LF and RF. Both the

joint position limits and the maximum permissible joint speeds remain far below
the limits due to the slow nature of the motion. Interestingly, the pursued FCoM
shifting turns out to be realized mostly based on a shift in the body roll activation
rather than on a shift in the hips. Furthermore, it becomes evident that the posture
regularization is effective since all joints end closely to the initial position.

4.2.2. Dynamic Walking

The analysis of a dynamic walking gait is concerned about generating efficient mo-
tions with higher velocities. This part forms the basis of the stability evaluation in
the next section.

https://github.com/julesser/ma-thesis-simulation-results/blob/master/HumanoidFixedArms/StaticWalking_NoCoPCost_ComHeightConstant/crocoddyl.mp4
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Figure 4.2.: Static walking gait solution in task space. Both the FCoM task and the swing
foot task are satisfied with acceptable accuracy.
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Figure 4.3.: Static walking gait solution of the joint states. Due to the slow nature of the
motion, joint limits are far from being reached and velocity discontinuities
remain within reasonable ranges.

Focus of investigation is a dynamic walking motion. Compared to the previously
studied static walking gait these motions are characterized by higher velocities and
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Table 4.2.: Dynamic walking gait characteristics and optimization constraints for a stance
to swing ratio of one to three.

Gait Characteristics Optimization Constraints
Step length: 40 cm Tasks: Φfoot

Step height: 5 cm Stability: ΦCoP, Φfriction

Time: 1.5 s/step Limits: Φjoint, torques
Step size: 0.03 s Regularization: Φposture, Φtorque

a b c d e f

Figure 4.4.: Dynamic walking gait based on the contact stability constrained DDP ap-
proach, consisting of the locomotion phases (a) initial pose, (b,c) right step,
(d,e) left step and (f) pose recovery. A natural CoM shifting emerges resulting
from the inequality constraints for the CoP of each foot. [Video]

dynamic forces exceeding the static ones. These characteristics imply that dynamic
stability criteria become necessary. To this end, we apply the proposed approach
of contact stability constrained DDP described in Chapter 3. Consequently, the
CoP of each foot is constrained instead of following a reference CoM trajectory. By
this, the solver is enabled to find an optimal, dynamic CoM shifting along with the
requested contact stability constraints.
Table 4.2 compactly summarizes the gait characteristics and applied optimization

constraints. The optimization problem is composed of a total of five locomotion
phases visualized in Fig. 4.4. From (a) an initial pose in Double Support (DS), (b,c)
perform a right step, (d,e) perform a left step and (f) recover to the initial pose.
In accordance with biomechanical findings [68], we choose a desired step length of
40 cm with 1.5 s per step and deliberately define a stance to swing ratio of one to
three.
As becomes clear from Fig. 4.5, a natural CoM shifting to the sides emerges

resulting from the inequality constraints for the CoP, which is about half of the
amount as for the static walking case. Although the CoM height is not explicitly
constrained, it stays in a reasonable range of about +3 cm, which may be caused from
the final posture regularization. The end-effector velocities in z-direction are about
twice as high as for the case of static walking, which is explained by the higher

https://github.com/julesser/ma-thesis-simulation-results/blob/master/DynamicWalking_LargeSteps_CoP100_ArmsFreed/crocoddyl.mp4
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walking speed. Fig. 4.6 shows the resulting joint states for the dynamic walking
gait. The velocity and acceleration contain higher peaks and the joint deflections
are stronger, which is reasonable due to the higher walking speed.
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Figure 4.5.: Dynamic walking gait solution in task space. It becomes evident that a
natural CoM shifting in y-direction emerges resulting from the inequality
constraints for the CoP of each foot.
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Figure 4.6.: Dynamic walking gait solution of the joint states. Both joint velocities and
acceleration show higher peaks along with higher joint deflections compared
to the static walking, which is reasonable due to the higher walking speed.
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4.3. Evaluation of Contact Stability

This section evaluates, based on the presented dynamic walking gait from the pre-
vious section, the proposed approach of contact stability constrained DDP (Chap-
ter 3).

4.3.1. Dynamically Balanced Walking Motion

As detailed in Section 2.2, the central characteristic for dynamically balanced mo-
tions is that the CoP or ZMP remains within the SP. The generic approach presented
in Chapter 3 has been applied to the dynamic walking gait presented in the previous
section. It utilizes the CoP criterion for each contact surface and hence the motion
can be called dynamically balanced only if the CoP of each foot in contact stays
within the according SP along the whole motion.
Fig. 4.7 shows the top view of the presented dynamic walking gait. The rectangles

correspond to the true-to-scale dimensions of the robot feet. For clarity, only the
first and last DS phase are visualized. The blue curve shows the time course of the
resulting CoM trajectory, with relevant points in time marked separately. Since the
CoM trajectory between lift-off and touch-down is largely outside the respective foot
area, no static stability can be present, as expected. The orange and green crosses
mark the time-dependent position of the CoPs for both feet. It is evident that
both CoPs remain within the corresponding SP over the entire time course of the
movement, which is why the movement can be classified as dynamically balanced.

4.3.2. Different Levels of CoP Restriction

Although the dynamic walking motion is inherently balanced, it becomes clear from
Fig. 4.7 that the CoP partly lies on or near the border of the respective foot area.
This effect can be attributed to the formulation of the CoP cost function (Eq. (3.11)),
which is defined to be zero whenever the CoP lies within the given foot area and a
quadratic penalization prevents the CoP to leave the SP. Theoretically, this formu-
lation is sufficient to generate balanced motions. In practice however, it might be
convenient for real-world experiments to consider a dedicated safety factor so that
the CoPs maintain a certain distance from the edge. With the presented CoP cost
function, this objective can be easily achieved by reducing the desired foot geome-
try. Fig. 4.8 shows the dynamic walking gait, where the CoP inequality constraints
are active for a SP reduced to 50 percent of the original foot geometry. It becomes
evident that also these more conservative contact stability constraints can be solved,
which might be useful for the purpose of experimental validation.
In this section we have seen that the proposed contact stability constrained DDP

produces motions that are dynamically balanced. In Chapter 6 we investigate if the
generated motions can be tracked by a simple online stabilizer based on position
control in joint space. Beforehand, in Chapter 5, we explore the effect of the motion
planning approach and physical system limits on highly dynamic movements.
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Figure 4.7.: Stability Analysis of the dynamic walking gait. As both CoPs remain within
the corresponding SP, the movement can be classified as dynamically bal-
anced. Hence, the functionality of the proposed contact stability constrained
DDP approach is verified.
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Figure 4.8.: Stability analysis of the dynamic walking gait with a CoP that is constrained
in a SP reduced by 50 percent. By this, the stability is more conservative,
which may be convenient for real-world experiments



CHAPTER 5

Highly-Dynamic Movements

This chapter presents an analysis of the proposed motion planning approach for
highly-dynamic movements of the full-size humanoid RH5. To begin with, the cen-
tral building blocks of the optimization problem are again briefly addressed. Then
the simulation results for jumping tasks of increasing complexity are presented. Fi-
nally, an analysis of the maximal system performance based on the allowed joint
and torque limits is presented.

5.1. Formulation of the Optimization Problem

This section concisely summarizes the constraints of the OC problem used to gen-
erate highly-dynamic movements as demonstrated in the following up section.
The vertical jump formulation follows an optimization problem of the form de-

scribed in Eq. (4.1). For performing multiple forward jumps over obstacles instead,
we successively solve P individual optimization problems of range N for each jump.
To this end, we formulate a multi-phase OC problem as follows:

X∗,U ∗ = arg min
X,U

P∑
p=0

N∑
k=0

∫ tk+∆t

tk

lp(x,u)dt. (5.1)

We constrain the optimization based on the building blocks introduced in Sec-
tion 4.1. Precisely, we define a foot tracking cost (Φfoot) based on piecewise-linear
functions to incorporate the basic jumping height and length. We apply the contact
stability constrained DDP (Chapter 3) with dedicated cost functions for CoP (ΦCoP)
and friction cone (Φfriction). Physical consistency is ensured via the torque bounds of
the solver and joint limits costs (Φjoints). Additionally, torque minimization (Φtorque)
and posture regularization (Φposture) are optimized.
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Table 5.1.: Vertical jump characteristics and applied optimization constraints.

Jump Characteristics Optimization Constraints
Jump length: 0 cm Tasks: Φfoot

Jump height: 10 cm Stability: ΦCoP, Φfriction

Total time: 0.9 s Limits: Torques
Step size: 0.01 s Regularization: Φposture, Φtorque

Biomechanical studies have shown that the effect of arm swinging is elementary
for the performance in human jumping [69]. To this end, we also include the arms
in the optimization for our jumping tasks. In order to account for the dynamic
nature of the movements, it turns out to be useful to reduce the integration step
size. We found a higher feasibility of the jumping tasks with an integration step
size of 10 ms compared to 30 ms for the bipedal walking gaits (see Section 4.2).
Since we do not use a contact planner along with this work, the contact timings had
to be chosen to approximately match the physic of flight phases. Highly-dynamic
movements are subject to higher impulse forces compared to walking movements.
As described in Section 2.3, DDP relies on integration of the system dynamics in
each step to obtain the states. The higher impulse forces then in turn cause nu-
merical drifts of higher order in the contact constraints. This effect is visible as
drifting of the support feet after touchdown. Through an extensive grid search,
we found a set of valid Baumgarte gains, namely α, β = [0, 100], that reduce these
numerical drifts for highly-dynamic movements (see Eq. (4.3)). In case the Baum-
garte stabilization is not sufficient for stabilizing the contact positions, we found
that further decreasing the integration step size also reduces the numerical drifts in
the holonomic constraints.

5.2. Simulation Results for Increasing Task Complexity

This section presents the simulation results for three case studies of highly-dynamic
movements obtained by solving an optimization problem based on the description
in the previous section. First, we study the task of vertically jumping upwards,
then we investigate forward jumping and finally we explore a challenging sequence
of multiple forward jumps over obstacles.

5.2.1. A Simple Vertical Jump

The analysis of a simple vertical jump is a good example to understand the under-
lying challenges highly-dynamic movements bring along in the context of numerical
optimization.
The vertical jumping task (see Table 5.1) consists of five phases as depicted in

Fig. 5.1. From the initial position (a), a descending into the jump (b) takes place.
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a b c d e f

Figure 5.1.: A simple vertical jump consisting of the locomotion phases (a) initial pose,
(b) descending, (c) take-off, (d) flight phase, (e) touchdown and (f) pose
recovery. [Video]

Then, an upward motions accelerates the base until the take-off (c). The symmetrical
flight phase (d) is ended with a touch down (e) followed by a pose recovery (f).
Fig. 5.2 provides insights in the dynamic nature of the motion. As can be seen,

the joint positions stay within reasonable ranges. However, velocity peaks at the
take-off exceed the maximum joint velocities of the body pitch and knee joints by
a factor of two and four, respectively. This effect is plausible, since both the knee
deflection as well as the torso swing are essential for a jump. Consequently, the
short time horizon of the jump requires high peak velocities in these task-relevant
joints.
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Figure 5.2.: Vertical jump solution of the joint states with according joint limits visualized
as dashed lines. The maximum velocities of the body pitch and knee joints
turn out to be insufficient for the highly-dynamic take-off.

https://github.com/julesser/ma-thesis-simulation-results/blob/master/Jump_Vertical_10cm_NoJLims/crocoddyl_side.mp4
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Figure 5.3.: Vertical jump solution of the joint torques with according motor limits visu-
alized as dashed lines. The solver prevents the body pitch and knee torques
to exceed the limits, but still maximum torques are required for these joints
over longer time horizons.

A similar observation applies to the joint torques as shown in Fig. 5.3. Although
the solver prevents the body pitch and knee torques from exceeding the limits in this
case, it becomes evident that maximum torques for these joints are necessary over
longer time horizons. Such continuous loads should be avoided as far as possible in
order to guarantee the durability of the robotic system.

5.2.2. A Simple Forward Jump

Focus of investigation is a more dynamic forward jump to study the effect of in-
creasing task complexity on the contact forces and stability.
Table 5.2 summarizes the characteristics and optimization constraints. The for-

ward jumping problem consists of the same five locomotion phases as the vertical
jump described previously (see Fig. 5.4). We can draw similar conclusions regarding
the physical consistency of the system, namely appropriate joint position ranges and
torque limits, but insufficient maximal velocities for the body pitch and knee joints.
Fig. 5.5 presents an overview about the solved optimal contact wrenches. When

the robot does not move, the sum of vertical forces Fz for left and right foot equals
the body’s weight, which is about 600 N. It becomes evident that about 4000 N (7 x
robot weight) are exerted to the ground at lift off and about 8000 N (14 x robot
weight) at touchdown, which is reasonable according to biomechanical findings [70].
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Table 5.2.: Forward jump characteristics and applied optimization constraints.

Jump Characteristics Optimization Constraints
Jump length: 30 cm Tasks: Φfoot

Jump height: 10 cm Stability: ΦCoP, Φfriction

Total time: 0.9 s Limits: Torques
Step size: 0.01 s Regularization: Φposture, Φtorque

a b c d e f

Figure 5.4.: A simple forward jump consisting of the locomotion phases (a) initial pose,
(b) descending, (c) take-off, (d) flight phase, (e) touchdown and (f) pose
recovery. In contrast to the vertical jump, a natural arm swinging effect
emerges to gain momentum for the forward acceleration of the body. [Video]
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Figure 5.5.: Forward jump solution of the contact wrenches. The orders of magnitude are
in accordance with biomechanical findings [70].

https://github.com/julesser/ma-thesis-simulation-results/blob/master/Jump_Forward_NoJLim/crocoddyl.mp4
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Figure 5.6.: Stability analysis of a simple forward jump shows that the motion is dy-
namically stable since the CoPs lie within the SP of the according foot.
Consequently, the contact stability constrained DDP method also holds for
highly-dynamic movements.

We have shown in Section 4.3 that the proposed motion planning approach allows
computation of dynamically balanced walking gaits. In the following, we want to
investigate the feasibility of contact stability for highly-dynamic movements. Fig. 5.6
shows the stability analysis for the forward jumping task. It becomes clear that the
CoPs lie within the desired contact area of the left and right foot, respectively.
Moreover, it can be observed that CoPs are located more in the rear area of the
sole of the foot before the jump or in the front area after landing. The first effect
can be explained due to the angular momentum gained during descending of the
base. The latter observation accounts for the rapid deceleration of the base motion
in x-direction resulting from the instantaneous impact after the flight phase.

5.2.3. Forward Jumping Over Multiple Obstacles

Finally, we want to further increase the task dynamics and investigate the proposed
motion planning approach for a challenging sequence of multiple forward jumps over
obstacles.
We build a sequence of OC problems, as introduced in Eq. (5.1), consisting of

multiple forward jumps with increased jumping height and length (see Table 5.3),
accordingly. Since the RH5 humanoid was not designed for tasks of this dynamics,
neither joint nor torque limits can be satisfied. In contrast to the simple vertical and
forward jumps, this case study is supposed to proof the flexibility of the proposed
motion planning approach rather than analyzing the system design.
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Table 5.3.: Multiple obstacles jumping characteristics and optimization constraints for a
sequence of three successive jumps.

Jump Characteristics Optimization Constraints
Jump length: 60 cm Tasks: Φfoot

Jump height: 25 cm Stability: ΦCoP, Φfriction

Total time: 0.9 s Limits: -
Step size: 0.01 s Regularization: Φposture, Φtorque

a b c

d e f

Figure 5.7.: Multi-phase OC problem of forward jumping over obstacles. Image order:
row-wise, from top to bottom and left to right. [Video]

Previously, we demonstrated that the contact stability constrained DDP allows
computation of a simple forward jump with dynamical balanced motions. Following
up, we want to study if the concept also holds for multiple forward jumps.
Fig. 5.8 shows the obtained results for stability analysis for sequentially solving

the sequence of optimization problems. The robot starts in an initial pose in DS,
performs a jump and recovers to the initial pose again. This OC problem is repeated
for three times with identical constraints and timings until the robot reaches the
final DS pose marked by red rectangles. As becomes evident, the contact stability
constrained DDP forces the CoPs of both feet to lie within the desired contact area,
which proves that the motions are dynamically balanced.

https://github.com/julesser/ma-thesis-simulation-results/blob/master/Jump_MultipleObstacles_NoJLimsNoTLims/crocoddyl.mp4
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Figure 5.8.: Stability analysis of forward jumping over multiple obstacle. The results
indicate that the motion is inherently balanced over the entire time horizon
of the sequentially solved OC problem.

Recapitulating the results for the simple forward jump, we identified that the
CoPs are located in the rear area of the foot sole during takeoff. We can draw
similar conclusions for the first jump of the multi-phase OC problem. However,
the CoPs for the second and third jump do not share this pattern. This effect can
be attributed to the dynamic forces already acting on the robot while the second
impact phase, respectively.

5.3. Evaluation of the System Design

This section presents an exhaustive study of the system limits of the RH5 humanoid
robot based on the case studies introduced in the last section. The motivation is to
form a basis of decision-making for future design iterations that allow the robot to
perform highly-dynamic movements in real-world experiments.
The evaluation of the system design is performed by iteratively increasing the task

complexity. We conduct multiple simulations with different jumping lengths l and
heights h for the presented vertical jump (h = 1 – 30 cm), forward jump (l = 10 – 50
cm, h = 10 cm) and forward jumping task over multiple obstacles (l = 60 cm, h =
25 cm), respectively (see Table 5.4). Of particular interest are the system-relevant
limits, namely the valid joint position and velocity ranges as well as the according
maximum motor torques.
A few notes on the used notation in Table 5.4: checkmarks and crosses indicate

whether the according limits are satisfied or not with the given movement. Check-
marks in brackets mean that a maximum torque needs to be applied for a period
longer than 50 , which can not necessarily be provided by the real actuators. Under-
scored numbers along with the crosses depict how many joints the according limit
is exceeded by.
In the following, the results of the study are presented in detail and design guide-

lines are derived based on the conducted experiments.
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Table 5.4.: Capabilities of the RH5 humanoid to perform various highly-dynamic jumps
(length l, height h) respecting the hardware limits, namely available motor
torque and valid joint position and velocity ranges. While position limits are
satisfied for all types of jumps, the velocity limits turn out to be insufficient.
Furthermore, most jumps require a maximum torque applied for a period
longer than 50 ms, which cannot necessarily be provided by the real actuators.

Position Limits Torque Limits Velocity Limits
Vertical Jump (l = 0 cm)

h = 1 cm X X X

h = 5 cm X X 53

h = 10 cm X (X) 53

h = 20 cm X (X) 55

h = 30 cm X (X) 57

Forward Jump (h = 10 cm)
l = 10 cm X (X) 57

l = 20 cm X (X) 57

l = 30 cm X (X) 57

l = 40 cm X (X) 57

l = 50 cm X (X) 57

Obstacle Jump (h = 25 cm)
l = 60 cm X 55 57

5.3.1. Design Guidelines derived from Vertical Jumping

The vertical jumping tasks already gives good insights in the dynamic capabilities
of the humanoid robot RH5. From Table 5.4 we can see that the smallest jump
with a height of 1 cm can be realized with the system. This is remarkable, since the
current design of the humanoid is not indented for the purpose of highly-dynamic
movements.
For jumps with a height of 5 cm or above we can draw the conclusion that velocity

limits cannot be satisfied anymore. In the first case, body pitch and knee velocities
are exceeded, which is reasonable since they form the main part of the motion. For
the highest jump on the other hand, additional limits for the ankle pitch joints and
the shoulder roll joints turn out to be not sufficient anymore. These violations can
be explained by the higher impact forces and increased arm swinging activities.

5.3.2. Design Guidelines derived from Forward Jumping

In comparison to the simple vertical jump, the forward jumping tasks involve higher
dynamic forces acting on the base and hence require even faster motions. To this
end, none of the forward jumping tasks turned out to be feasible with the currently
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implemented velocity limits. Interestingly, the ankle pitch velocity turned out to
be sufficient, while the hip joint velocity limits were exceeded. This effect may be
explained by the reduced impact forces in z-direction and the increased angular
momentum necessary to move the base forward.
Furthermore, we can draw similar conclusions for the torque feasibility from the

tasks of vertical, forward and multiple jumping over obstacles. Although the max-
imum torque available with the currently embedded motors are high enough, they
may not be feasible with the real actuators. For the body pitch, knee and ankle pitch
joints, these maximal torques have to be applied for a period longer than 50 ms.
To prevent long-term damage to the system, the corresponding actuators should be
redesigned with an appropriate safety factor.



CHAPTER 6

Validation of Planned Motions

This chapter presents a two-step validation of the physical consistency of the planned
motions where an online stabilization is applied to track the optimal trajectories.
At first, we prove the stability of the motions in a real-time physics simulation.
Following this, we explore the feasibility of the motions in real-world experiments
on a full-size humanoid robot.

6.1. Validation in Real-Time Physics Simulation

This section investigates the stability of the planned motions in a physics simulator
by applying an online stabilization based on joint space position control to track the
trajectories obtained from OC. To begin with, an overview of the simulation setup
is given, then the tracking results of the planned motions are discussed.

6.1.1. Simulation Setup

The optimal motions are tested in the dynamical simulation environment PyBullet
[71]. PyBullet is an open-source framework for robotics simulation that allows fast
computation of rigid-body dynamics along with collision detection. The motion
tracking in the simulator is set up in a similar way the motions would be tested
on a real robot, namely interpolating the trajectories and closing the loop on joint
position level.
The control loop on the real system (see Section 6.2) is running at a frequency

of 1 kHz. The generated bipedal walking variants and highly-dynamic movements
presented in Chapters 4 to 5 are generated with a discrete OC formulation at 30 Hz
and 10 Hz, respectively. To this end, the optimal trajectories are interpolated with
a cubic spline in order to realize an up-scaling of the reference data to 1 kHz.
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The control architecture consists of a simple PD-controller on joint space level.
The controller is supposed to track both position and velocity reference trajectories
with the standard PyBullet parameters in a real-time loop running at 1 kHz. In
this real-time simulation, the same URDF robot model is used as in the Crocoddyl
framework, including the same maximal motor torques. Furthermore, the param-
eters of the rigid contact models have been aligned between both frameworks to
ensure comparability.

6.1.2. Results

Following up, we investigate the capabilities of the presented control architecture
for tracking the planned motions. To this end, we study the control tracking per-
formance for the dynamic walking gait (Section 4.2) and a highly-dynamic forward
jump (Section 5.2).

Dynamic Walking

To begin with, we analyze the motion tracking for dynamic walking gait. Fig. 6.1
shows the tracking performance of the joint level control architecture. The reference
trajectories from OC are visualized as solid lines, while the resulting trajectories
of the real-time physics simulation are shown as dotted lines. It can be seen that
the controller follows the optimal trajectories well. Small deviations can be seen
around two seconds, which accounts for the lift off phase for the second robot step.
This effect can be explained by the apparent abrupt change in the joint space but is
found to be marginal for the overall tracking performance. As introduced previously,
the control architecture is solely based on joint space position and velocity level.
Although the tracking performance is good, this may not prove for the stability of
the motions. Similar to the definition of robot tasks, the evaluation of the motions
should be pursued in task space. To this end, Fig. 6.2 monitors the according motion
of the floating base. As can be seen, the floating base deviates about ± 10 mm in
x- and y-direction as well as + 5 mm in z-direction.
In this context, it is important to notice that no controller tracks these task space

quantities. Instead, they are merely the result of the joint space control performance.
The largest deviations in task space occur during the first step and the according
impact in the first two seconds of the motions. It becomes evident that these task
space errors do not correlate to the peaks discussed on joint space level. Furthermore,
one can observe oscillations in the stabilization phase at the end of the motion. This
effect can be attributed to the fact that the systems slightly starts to swing after the
second impact. This behavior could be compensated e.g. with a dedicated control
in task space instead of joint space.
Overall, it can be stated that the dynamic walking motion can be successfully

stabilized by the proposed control approach.
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Figure 6.1.: Control tracking performance on joint level for dynamic walking. The results
indicate that the control architecture follows the reference trajectories with
sufficiently good accuracy.
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Figure 6.2.: Motion of the floating base resulting from joint space control for the dynamic
walking gait. The results show a deviation of the floating base about ± 10 mm
in x- and y-direction, as well as + 5 mm in z-direction.
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Forward Jumping

To identify the limits of the control approach, we now study the online stabilization
for a highly-dynamic forward jump (Section 5.2). In addition to the previously
discussed dynamic walking, the jumping task introduces new challenges for the
controller in terms of speed and robustness that will be investigated in the following.
Fig. 6.3 shows the tracking performance of the joint level control architecture

for the forward jump. In contrast to the case of dynamic walking, the joint space
controller reveals larger tracking deviations. This is especially true for the most
dynamic part of the motion, namely the acceleration of the base and finally the
takeoff around 300 to 400 ms. Large deviations can be especially seen for body pitch,
and the knee joints, which turned out to be crucial for highly-dynamic movements.
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Figure 6.3.: Control tracking performance on joint level for a forward jump. The results
indicate that the control architecture also is suitable to track the reference
trajectories of highly-dynamic movements with sufficiently good accuracy.

In addition to these findings, Fig. 6.4 monitors the motion of the (uncontrolled)
floating base resulting from the joint space control performance. As becomes evi-
dent, the deviations in task space are also much higher compared to the dynamics
walking case. While the height of the floating base is reasonable, the x-position
shows tracking errors of about ± 5 cm. Errors of this magnitude inevitably lead
to instability of the movement to be performed. In this case, the strong deviation
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Figure 6.4.: Motion of the floating base resulting from joint space control for a forward
jump. Although the tracking in x- and y-direction is appropriate, the y-
direction of the floating base drifts about ± 10 mm apart.

in task space causes the robot to tilt around the rear edge of the foot after the
touchdown.
Consequently, it turned out that a mere control on a joint space basis is not

sufficient to track highly dynamic movements but is indeed appropriate to stabilize
a dynamic walking gait in real-time.

6.2. Validation in Real-World Experiments

This section investigates the stability of the planned motions in real-world experi-
ments on the full-size humanoid robot RH5 (see Section 1.2.4). Analogously to the
validation in PyBullet, the goal is to track the OC trajectories with a joint space
online stabilization on the real system.
A total of four experiments are conducted. The primary goal is to examine

whether the presented control architecture is sufficient to follow the static and dy-
namic walking trajectories (see Chapters 4 to 5). For a dedicated root cause analysis,
we test two additional motions on the real-system, namely one-legged balancing and
a sequence of dynamic squat movements. The respective goal is to identify potential
model deviations and to study the capabilities of the real-time controller.
Based on the simulation results from the last section, highly dynamic movements

are not evaluated on the real system in the context of this thesis. As discussed in
the last section, these motions definitely require more advanced control algorithms
in task space due to the dynamic nature of the movement.
The rest of this section is structured as follows. First, an overview of the ex-

perimental setup with the involved components is presented. Following up, the
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1. Offline Motion Planning

2. Online Stabilization

Contact Sequence

Constraints

Whole-Body 
Trajectory Optimization

Task Space 
Inverse Dynamics

Low-Level 
Actuator Control

Trajectory File

Figure 6.5.: Overview about the experimental pipeline. The offline planned motions are
tracked in real-time with a joint space online stabilization on the real system.

experiments are presented and discussed with respect to the tracking performance
and the stability of the motion.

6.2.1. Pipeline

The foundation for the experiments are the motion data generated offline with the
proposed whole-body TO. The planned motions are then tracked in real-time with a
joint space online stabilization on the real system. An overview of the experimental
pipeline is given in Fig. 6.5. In the following, details on the involved components
are provided. The presented motion planning approach computes inherently bal-
anced motions that are concisely captured in an appropriate file. This trajectory
file contains the optimal state trajectories X∗ = [q∗, v∗], optimal control inputs U ∗

and the resulting contact wrenches F∗ext acting on the feet. In order to minimize
the computational effort in the real-time loop, the file already encompasses data
discretized to the desired frequency of 1 kHz. As in the PyBullet validation, the
trajectories are interpolated using cubic splines in order to ensure smoothness and
differentiability.
As introduced in Section 1.2.4, the novel RH5 humanoid robot contains multi-

ple parallel mechanisms in order to achieve a high dynamic performance, superior
stiffness and payload-to-weight ratio. This leads to the presence of various closed
loops and hence a series-parallel hybrid robotic system, which is difficult to model
and control. In most multi-body dynamics libraries, e.g. RBDL [72] and Open-
Sim [73], these loop closure constraints are solved numerically. HyRoDyn (Hybrid
Robot Dynamics), is a recently presented modular software framework for solving
the kinematics and dynamics of these type of series-parallel hybrid robots analyti-
cally, leading to improved accuracy and computational performance [74].
The planned motions are computed based on a tree type robot model. For dy-

namic real-time control, this simplified model turns out to be sufficient, although
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Table 6.1.: Overview about the difficulty of the conducted experiments. Three out of four
planned motions could be successfully stabilized by the controller on the real
system.

Balancing Static Walk Fast Squats Dynamic Walk
Surface contacts X X X X

Base motion X X X X

Swing foot motion X X 5 X

Step sequence 5 X 5 X

Impacts 5 X 5 X

Dynamic forces 5 5 X X

Flight-phases 5 5 5 5

Success X (X) X 5

the accuracy is reduced [46]. Nevertheless, the problem remains on transforming
the results from the independent joint space, to the actuation space. In the context
of this thesis, HyRoDyn is used to map the trajectories generated for the serialized
robot model to compute the forces of the respective linear actuators.
Consistency of the frameworks involved in the motion planning and control

pipeline is an indispensable prerequisite for the following experiments. Hence, Ap-
pendix A.3 provides a brief verification of the notability consistency between HyRo-
Dyn and Pinocchio [75], which is used inside Crocoddyl for computation of robot
dynamics and their analytical derivatives.
Low-level actuator controllers are utilized to compensate deviations from the ref-

erence trajectories. Analogously to the PyBullet validation, this control approach
uses a cascaded feedback of position, velocity and an additional current control loop.

6.2.2. Experiments

We conduct a total of four experiments, gradually incorporating a new level of
difficulty (see Table 6.1), that are introduced in the following.

Experiment I: One-Leg Balancing

The goal of this first experiment is to test the ability of the control architecture
to track a slow balancing task. The quasi-static motion consists of five locomotion
phases as visualized in Fig. 6.6. From (a) a stable pose in DS, (b) shifting the CoM
above the LF (c) lifting the RF slightly up (d) and down and (e) returning to the
initial pose.
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a b c d e

Figure 6.6.: Experiment I: One-leg balancing from (a) an initial pose, (b) CoM shift above
the LF, (c) lifting the RF up and (d) down and (e) recovering to the initial
pose. [Video]

Experiment II: Static Walking

The second experiment deals with a stabilization of the static walking pattern dis-
cussed in Section 4.2 (see Fig. 6.7). The objective of this test is to analyze the effect
of more difficult swing-leg motions, a step sequence of two steps and the effect of
impacts.

a b c d e

Figure 6.7.: Experiment II: Static walking from (a) an initial pose, (b) CoM shift above
the LF, (c,d) performing a right step and (e) shifting the CoM to the center
of the SP. [Video]

Experiment III: Fast Squats

The objective of this third experiment is to evaluate the tracking performance in
the context of a dynamic motion. In contrast to the first two motions, the fast
squatting experiment (see Fig. 6.8) involves dynamic forces acting on the robot
resulting from a fast vertical base movement in the range of 15 cm within two
seconds. Analogously to the multiple forward jumps (see Section 4.2), the motion

https://github.com/julesser/ma-thesis-experimental-results/blob/master/balancing/balancing.mp4
https://github.com/julesser/ma-thesis-experimental-results/tree/master/walkStatic/walkStatic.mp4
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is composed of a sequence of three OC problems that are solved sequentially (see
Eq. (5.1)). This experiment can be seen as preliminary test for dynamic walking
following in the next experiment.

a b c d e f g

Figure 6.8.: Experiment III: Sequence of fast squats from (a) an initial pose over, (b,d,f)
descending the CoM by 15 cm and (c,e,g) recovering to the initial pose.
[Video]

Experiment IV: Dynamic Walking

This experiment investigates the capabilities of the control approach to follow the
dynamic walking gait trajectories presented in Section 4.2 (see Fig. 6.9). From a
perspective of complexity, it combines both the challenges of static walking, namely
dedicated swing-leg motions, step sequence and impacts, with the difficulty of dy-
namic forces acting on the robot as explored with the fast squats experiment. eo

a b c d e

Figure 6.9.: Experiment IV: Dynamic walking from (a) an initial pose, (b,c) performing
a right step and (e,f) a successive left step. [Video]

6.2.3. Discussion

The following section analyzes the experimental results, highlighting limits of the
utilized control architecture.

https://github.com/julesser/ma-thesis-experimental-results/blob/master/squats/squat15cm_2s.mp4
https://github.com/julesser/ma-thesis-experimental-results/blob/master/walkDynamic/walkDynamicFail.mp4
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Stability of the Motions

All in all, three out of four planned motions could be successfully stabilized by the
controller on the real system (see Table 6.1). Both the one-leg balancing experiment
(I) and the fast squats experiment (III) were stabilized with good accuracy. For
experiment II, static walking, only one step could be stabilized at a time. Further-
more, it could be shown that dynamic walking (IV) cannot be stabilized with the
present control approach. Possible root causes are outlined in the following.

Tracking Performance

As detailed in Section 6.2.1, the online stabilizer solely works in joint space. The
experimental results indicate that the overall joint space tracking for all four ex-
periments is satisfying. Fig. 6.10 exemplary shows the tracking performance for
the one-leg balancing experiment. It becomes evident that the control architecture
allows following the computed reference trajectory in actuator space (a,b) closely.
Furthermore, also the resulting tracking quality in the virtual joints (c,d) is appro-
priate. Similar conclusions hold for the other experiments. Even during critical
impulse phases the joint space tracking shows no abnormalities. This precise track-
ing is achieved with high-gain joint space control, which allows a quick compensation
of position differences that comes at the cost of lost compliance in the joints.
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Figure 6.10.: Tracking performance for the one-leg balancing experiment in actuator space
(a,b) and independent joint space (c,d). The reference position from OC in
orange and the measured position in blue are plotted against the time. The
results indicate that the control architecture tracks the reference trajectories
with sufficient accuracy.
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Handling Impulses

The impact phase turned out to be the main problem for the walking experiments.
This is reasonable since the utilized control approach only compensates for errors in
joint space, while errors in task space can arise quickly and are not compensated.
Deviations of the reference base motion only effect the static stability if the FCoM
leaves the support polygon. Differences from the foot position instead may cause
instability with a respective error in the range of a few millimeters. The same holds
for errors in the foot orientation. Consider for example the case in which the robot
only touches the ground with the rear part of the swing foot’s sole. Instead of the
assumed surface contact between the foot and the ground, a line contact appears
that causes the robot to fall in a combination with high-gain position control.

Model Discrepancies

The quasi-static experiments provide a good basis of analyzing the model accuracy.
Due to the small SP, model deviations inevitably lead to instability during the
single support phases. In the balancing and static walking experiments the motions
could be stabilized only if the FCoM was adjusted by about ± 7.5 mm. The found
model errors in the mass distribution, possibly combined with with errors in inertia
distribution, may also pose part of the problem for walking gait stabilization. In
order to compensate for these differences, an extensive system identification could
be performed to check the dynamic model against the real system.

Mechanical Deficiencies

Beneath the identified limits of the control approach and the modeling errors, also
mechanical weaknesses of the RH5 humanoid may contribute to the sim-to-real gap.
In the scope of the experiments, several issues have been revealed, namely joint
play, calibration errors and undesired structural flexibility in the ankle of the foot.
Furthermore, the rigid contact points on the sole of the feet are found to be not
the ideal solution, since small deviations can quickly lead to instability of the whole
system. Instead, it may be advantageous for dynamic movements of the humanoid
robot to use a planar sole, providing adequate damping properties.



CHAPTER 7

Conclusion and Outlook

7.1. Thesis Summary

This master’s thesis was motivated by the generation of physically consistent, effi-
cient motion plans for legged robots.
The premise of the investigation was that whole-body planning leads to more

efficient motions than a simple program such as an IK solver. Therefore, the core
algorithm of the proposed motion planning approach was a recently presented DDP-
based whole-body TO. Building upon this, a generic method for constraining DDP-
like solvers was presented to generate dynamically balanced motions. The results
were integrated into the recently presented open-source framework Crocoddyl.
Following this, we investigated the CoP-based contact stability of the proposed

motion planning approach for a wide range of motions with the biologically inspired
RH5 humanoid robot. We were able to demonstrate that the resulting motion plans
for both dynamic bipedal walking and various jumping tasks are inherently balanced.
Additionally, the analysis of highly-dynamic movements allowed the derivation of
useful guidelines for future design iterations of the humanoid robot.
Although the focus of this thesis was on motion planning, we evaluated the feasi-

bility of the generated trajectories with a simple online stabilizer. We demonstrated
in a real-time physics simulator that the motion plans can be stabilized by a sim-
ple control architecture solely based on joint-space position control. Furthermore,
it could be shown that for real-world experiments, a control in the task space is
indispensable to compensate for deviations between the model and reality.
The final result of this thesis is an efficient motion planning approach that pro-

duces inherently balanced motions. This algorithm efficiently generates highly-
dynamic movements with flight-phases for various legged systems.
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7.2. Future Directions

We see large potential in using DDP-based whole-body TO to generate motions for
legged systems. Motion planning based on numerical optimization clearly reduces
the number of hand-crafted components and allows the specification of high-level
tasks directly in the operational space of the robot. This is likely to become even
more important as legged robots tackle more difficult terrains that require higher
dynamic motions.
From an algorithmic perspective, the formulation can still be improved in a num-

ber of ways. The goal of the algorithm is to efficiently and accurately generate
physically consistent motions. Promising ways of simultaneously improving both
measures are seen by directly embedding inequality constraints as strict bounds
inside the DDP algorithm, instead of forcing them by penalization.
From a control perspective, two successive steps are of particular interest. First,

working on an improved online stabilization is a worthwhile undertaking. As dis-
cussed in the last chapter, operational space control is inevitable to compensate for
modeling errors directly in the task space. Following up, it would be interesting to
embed the motion planning inside a Model Predictive Control (MPC) formulation.
If the re-planning is quick enough, the robot will be enabled to act more robustly
to unpredicted situations.
This direction for future research, namely improving the motion planning algo-

rithm and embedding it in an MPC formulation on a real system, seems promising.
Intelligently combining optimization-based planning and control may be the key
to robots interacting with both the environment and humans in a more natural,
dynamic and autonomous way. With some work in this direction, we may soon
find legged robots crossing our daily paths or intuitively collaborating with us when
assembling infrastructures and exploring foreign planets.



APPENDIX A

Appendix

A.1. CoP Cost Implementation for Contact Dynamics

This section contains the implementation of the CoP cost for contact dynamics
action models, integrated into the open-source framework Crocoddyl within the
context of this thesis.
For space-saving reasons, only the two core files are presented, each with shortened

comments. The complete versions of these files, associated Python bindings, related
files and a functional unit test can be traced in the associated pull request (#792).

A.1.1. contact-cop-position.hpp

// //////////////////////////////////////////////////
// BSD 3-Clause License
//
// Copyright (C) 2020, University of Duisburg -Essen ,
// University of Edinburgh
// Copyright note valid unless otherwise stated in
// individual files.
// All rights reserved.
// //////////////////////////////////////////////////

#ifndef
CROCODDYL_MULTIBODY_COSTS_CONTACT_COP_POSITION_HPP_

#define
CROCODDYL_MULTIBODY_COSTS_CONTACT_COP_POSITION_HPP_

https://github.com/loco-3d/crocoddyl/pull/792
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#include "crocoddyl/multibody/fwd.hpp"
#include "crocoddyl/multibody/cost -base.hpp"
#include "crocoddyl/multibody/contact -base.hpp"
#include "crocoddyl/multibody/contacts/contact -3d.hpp"
#include "crocoddyl/multibody/contacts/contact -6d.hpp"
#include "crocoddyl/multibody/data/contacts.hpp"
#include "crocoddyl/multibody/frames.hpp"
#include "crocoddyl/multibody/data/multibody.hpp"
#include "crocoddyl/core/activations/quadratic -barrier.

hpp"
#include "crocoddyl/core/utils/exception.hpp"

namespace crocoddyl {

/**
* @brief Define a center of pressure cost function
*/

template <typename _Scalar >
class CostModelContactCoPPositionTpl : public

CostModelAbstractTpl <_Scalar > {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
typedef _Scalar Scalar;
typedef MathBaseTpl <Scalar > MathBase;
typedef CostModelAbstractTpl <Scalar > Base;
typedef CostDataContactCoPPositionTpl <Scalar > Data;
typedef StateMultibodyTpl <Scalar > StateMultibody;
typedef CostDataAbstractTpl <Scalar > CostDataAbstract;
typedef ActivationModelAbstractTpl <Scalar >

ActivationModelAbstract;
typedef ActivationModelQuadraticBarrierTpl <Scalar >

ActivationModelQuadraticBarrier;
typedef ActivationBoundsTpl <Scalar > ActivationBounds;
typedef DataCollectorAbstractTpl <Scalar >

DataCollectorAbstract;
typedef FrameCoPSupportTpl <Scalar > FrameCoPSupport;
typedef typename MathBase :: Vector2s Vector2s;
typedef typename MathBase :: Vector3s Vector3s;
typedef typename MathBase :: VectorXs VectorXs;
typedef typename MathBase :: MatrixXs MatrixXs;
typedef typename MathBase :: MatrixX3s MatrixX3s;
typedef Eigen::Matrix <Scalar , 4, 6> Matrix46;

/**
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* @brief Initialize the cop cost model
*/

CostModelContactCoPPositionTpl(boost :: shared_ptr <
StateMultibody > state , boost::shared_ptr <
ActivationModelAbstract > activation , const
FrameCoPSupport& cop_support , const std:: size_t& nu)
;

/**
* @brief Initialize the cop cost model
*/

CostModelContactCoPPositionTpl(boost :: shared_ptr <
StateMultibody > state , boost::shared_ptr <
ActivationModelAbstract > activation , const
FrameCoPSupport& cop_support);

/**
* @brief Initialize the cop cost model
*/

CostModelContactCoPPositionTpl(boost :: shared_ptr <
StateMultibody > state , const FrameCoPSupport&
cop_support , const std:: size_t& nu);

/**
* @brief Initialize the cop cost model
*/

CostModelContactCoPPositionTpl(boost :: shared_ptr <
StateMultibody > state , const FrameCoPSupport&
cop_support);

virtual ~CostModelContactCoPPositionTpl ();

/**
* @brief Compute the cop cost
*/

virtual void calc(const boost :: shared_ptr <
CostDataAbstract >& data , const Eigen ::Ref <const
VectorXs >& x, const Eigen ::Ref <const VectorXs >& u);

/**
* @brief Compute the derivatives of the cop cost
*/

virtual void calcDiff(const boost::shared_ptr <
CostDataAbstract >& data , const Eigen ::Ref <const
VectorXs >& x, const Eigen ::Ref <const VectorXs >& u);
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/**
* @brief Create the cop cost data
*/

virtual boost::shared_ptr <CostDataAbstract > createData(
DataCollectorAbstract* const data);

protected:
/**
* @brief Return the cop
*/

virtual void set_referenceImpl(const std:: type_info& ti
, const void* pv);

/**
* @brief Modify the cop
*/

virtual void get_referenceImpl(const std:: type_info& ti
, void* pv) const;

using Base:: activation_;
using Base::nu_;
using Base:: state_;
using Base:: unone_;

private:
FrameCoPSupport cop_support_; //!< frame name of the

contact foot and support region of the cop
};

template <typename _Scalar >
struct CostDataContactCoPPositionTpl : public

CostDataAbstractTpl <_Scalar > {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
typedef _Scalar Scalar;
typedef MathBaseTpl <Scalar > MathBase;
typedef CostDataAbstractTpl <Scalar > Base;
typedef DataCollectorAbstractTpl <Scalar >

DataCollectorAbstract;
typedef FrameCoPSupportTpl <Scalar > FrameCoPSupport;
typedef typename MathBase :: Vector3s Vector3s;
typedef typename MathBase :: VectorXs VectorXs;
typedef typename MathBase :: MatrixXs MatrixXs;
typedef typename MathBase :: Matrix3s Matrix3s;
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typedef typename MathBase :: Matrix6xs Matrix6xs;
typedef typename MathBase :: Matrix6s Matrix6s;
typedef typename MathBase :: Vector6s Vector6s;

template <template <typename Scalar > class Model >
CostDataContactCoPPositionTpl(Model <Scalar >* const

model , DataCollectorAbstract* const data)
: Base(model , data), Arr_Ru(model ->get_activation ()

->get_nr (), model ->get_state ()->get_nv ()) {
Arr_Ru.setZero ();

// Check that proper shared data has been passed
DataCollectorContactTpl <Scalar >* d = dynamic_cast <

DataCollectorContactTpl <Scalar >*>( shared);
if (d == NULL) {

throw_pretty("Invalid␣argument:␣the␣shared␣data␣
should␣be␣derived␣from␣DataCollectorContact");

}

// Get the active 6d contact (avoids data casting at
runtime)

FrameCoPSupport cop_support = model ->template
get_reference <FrameCoPSupport >();

std:: string frame_name = model ->get_state ()->
get_pinocchio ()->frames[cop_support.get_id ()].name
;

bool found_contact = false;
for (typename ContactModelMultiple ::

ContactDataContainer :: iterator it = d->contacts ->
contacts.begin ();

it != d->contacts ->contacts.end(); ++it) {
if (it->second ->frame == cop_support.get_id ()) {

ContactData3DTpl <Scalar >* d3d = dynamic_cast <
ContactData3DTpl <Scalar >*>(it->second.get());

if (d3d != NULL) {
throw_pretty("Domain␣error:␣a␣6d␣contact␣model␣

is␣required␣in␣" + frame_name +
"in␣order␣to␣compute␣the␣CoP");

break;
}
ContactData6DTpl <Scalar >* d6d = dynamic_cast <

ContactData6DTpl <Scalar >*>(it->second.get());
if (d6d != NULL) {

found_contact = true;
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contact = it ->second;
break;

}
}

}
if (! found_contact) {

throw_pretty("Domain␣error:␣there␣isn’t␣defined␣
contact␣data␣for␣" + frame_name);

}
}

pinocchio ::DataTpl <Scalar >* pinocchio;
MatrixXs Arr_Ru;
boost::shared_ptr <ContactDataAbstractTpl <Scalar > >

contact; //!< contact force
using Base:: activation;
using Base::cost;
using Base::Lu;
using Base::Luu;
using Base::Lx;
using Base::Lxu;
using Base::Lxx;
using Base::r;
using Base::Ru;
using Base::Rx;
using Base:: shared;

};

} // namespace crocoddyl

#include "crocoddyl/multibody/costs/contact -cop -position.
hxx"

#endif //
CROCODDYL_MULTIBODY_COSTS_CONTACT_COP_POSITION_HPP_

A.1.2. contact-cop-position.hxx

// //////////////////////////////////////////////////
// BSD 3-Clause License
//
// Copyright (C) 2020, University of Duisburg -Essen ,
// University of Edinburgh
// Copyright note valid unless otherwise stated in
// individual files.
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// All rights reserved.
// //////////////////////////////////////////////////

#include "crocoddyl/core/utils/exception.hpp"
#include "crocoddyl/multibody/costs/contact -cop -position.

hpp"

namespace crocoddyl {

template <typename _Scalar >
CostModelContactCoPPositionTpl <_Scalar >::

CostModelContactCoPPositionTpl(
boost::shared_ptr <StateMultibody > state , boost ::

shared_ptr <ActivationModelAbstract > activation ,
const FrameCoPSupport& cop_support , const std:: size_t

& nu)
: Base(state , activation , nu), cop_support_(

cop_support) {}

template <typename _Scalar >
CostModelContactCoPPositionTpl <_Scalar >::

CostModelContactCoPPositionTpl(
boost::shared_ptr <StateMultibody > state , boost ::

shared_ptr <ActivationModelAbstract > activation ,
const FrameCoPSupport& cop_support)
: Base(state , activation), cop_support_(cop_support)

{}

template <typename _Scalar >
CostModelContactCoPPositionTpl <_Scalar >::

CostModelContactCoPPositionTpl(boost :: shared_ptr <
StateMultibody > state , const FrameCoPSupport&
cop_support , const std:: size_t& nu)

: Base(state , boost :: make_shared <
ActivationModelQuadraticBarrier >( AtivationBounds(
VectorXs ::Zero (4), std:: numeric_limits <_Scalar >:: max()
* VectorXs ::Ones (4))), nu), cop_support_(cop_support)
{}

template <typename _Scalar >
CostModelContactCoPPositionTpl <_Scalar >::

CostModelContactCoPPositionTpl(boost :: shared_ptr <
StateMultibody > state , const FrameCoPSupport&
cop_support)
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: Base(state , boost :: make_shared <
ActivationModelQuadraticBarrier >( ActivationBounds(
VectorXs ::Zero (4), std:: numeric_limits <_Scalar >:: max()
* VectorXs ::Ones (4)))), cop_support_(cop_support) {}

template <typename Scalar >
CostModelContactCoPPositionTpl <Scalar >::~

CostModelContactCoPPositionTpl () {}

template <typename Scalar >
void CostModelContactCoPPositionTpl <Scalar >:: calc(const

boost::shared_ptr <CostDataAbstract >& data , const Eigen
::Ref <const VectorXs >&, const Eigen ::Ref <const
VectorXs >&) {
Data* d = static_cast <Data*>(data.get());

// Compute the cost residual r = A * f
data ->r.noalias () = cop_support_.get_A () * d->contact ->

jMf.actInv(d->contact ->f).toVector ();

// Compute the cost
activation_ ->calc(data ->activation , data ->r);
data ->cost = data ->activation ->a_value;

}

template <typename Scalar >
void CostModelContactCoPPositionTpl <Scalar >:: calcDiff(

const boost::shared_ptr <CostDataAbstract >& data , const
Eigen::Ref <const VectorXs >&, const Eigen::Ref <const

VectorXs >&) {
// Update all data
Data* d = static_cast <Data*>(data.get());

// Get the derivatives of the local contact wrench
const MatrixXs& df_dx = d->contact ->df_dx;
const MatrixXs& df_du = d->contact ->df_du;
const Matrix46& A = cop_support_.get_A();

// Compute the derivatives of the activation function
activation_ ->calcDiff(data ->activation , data ->r);

// Compute the derivatives of the cost residual
data ->Rx.noalias () = A * df_dx;
data ->Ru.noalias () = A * df_du;
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d->Arr_Ru.noalias () = data ->activation ->Arr * data ->Ru;

// Compute the first order derivatives of the cost
function

data ->Lx.noalias () = data ->Rx.transpose () * data ->
activation ->Ar;

data ->Lu.noalias () = data ->Ru.transpose () * data ->
activation ->Ar;

// Compute the second order derivatives of the cost
function

data ->Lxx.noalias () = data ->Rx.transpose () * data ->
activation ->Arr * data ->Rx;

data ->Lxu.noalias () = data ->Rx.transpose () * d->Arr_Ru;
data ->Luu.noalias () = data ->Ru.transpose () * d->Arr_Ru;

}

template <typename Scalar >
boost::shared_ptr <CostDataAbstractTpl <Scalar > >

CostModelContactCoPPositionTpl <Scalar >:: createData(
DataCollectorAbstract* const data) {
return boost:: allocate_shared <Data >( Eigen::

aligned_allocator <Data >(), this , data);
}

template <typename Scalar >
void CostModelContactCoPPositionTpl <Scalar >::

set_referenceImpl(const std:: type_info& ti , const void
* pv) {
if (ti == typeid(FrameCoPSupport)) {

cop_support_ = *static_cast <const FrameCoPSupport *>(
pv);

} else {
throw_pretty("Invalid␣argument:␣incorrect␣type␣(it␣

should␣be␣FrameCoPSupport)");
}

}

template <typename Scalar >
void CostModelContactCoPPositionTpl <Scalar >::

get_referenceImpl(const std:: type_info& ti , void* pv)
const {
if (ti == typeid(FrameCoPSupport)) {
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FrameCoPSupport& ref_map = *static_cast <
FrameCoPSupport *>(pv);

ref_map = cop_support_;
} else {

throw_pretty("Invalid␣argument:␣incorrect␣type␣(it␣
should␣be␣FrameCoPSupport)");

}
}

} // namespace crocoddyl

A.2. CoP Cost Implementation for Impulse Dynamics

This section contains the implementation of the CoP cost for impulse dynamics
action models, integrated into the open-source framework Crocoddyl within the
context of this thesis.
For space-saving reasons, only the two core files are presented, each with shortened

comments. The complete versions of these files, associated Python bindings, related
files and a functional unit test can be traced in the associated pull request (#830).

A.2.1. impulse-cop-position.hpp

// //////////////////////////////////////////////////
// BSD 3-Clause License
//
// Copyright (C) 2020, University of Duisburg -Essen ,
// University of Edinburgh
// Copyright note valid unless otherwise stated in
// individual files.
// All rights reserved.
// //////////////////////////////////////////////////

#ifndef
CROCODDYL_MULTIBODY_COSTS_IMPULSE_COP_POSITION_HPP_

#define
CROCODDYL_MULTIBODY_COSTS_IMPULSE_COP_POSITION_HPP_

#include "crocoddyl/multibody/fwd.hpp"
#include "crocoddyl/multibody/cost -base.hpp"
#include "crocoddyl/multibody/impulse -base.hpp"
#include "crocoddyl/multibody/impulses/impulse -3d.hpp"
#include "crocoddyl/multibody/impulses/impulse -6d.hpp"
#include "crocoddyl/multibody/data/impulses.hpp"
#include "crocoddyl/multibody/frames.hpp"

https://github.com/loco-3d/crocoddyl/pull/830
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#include "crocoddyl/multibody/data/multibody.hpp"
#include "crocoddyl/core/activations/quadratic -barrier.

hpp"
#include "crocoddyl/core/utils/exception.hpp"

namespace crocoddyl {

template <typename _Scalar >
class CostModelImpulseCoPPositionTpl : public

CostModelAbstractTpl <_Scalar > {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
typedef _Scalar Scalar;
typedef MathBaseTpl <Scalar > MathBase;
typedef CostModelAbstractTpl <Scalar > Base;
typedef CostDataImpulseCoPPositionTpl <Scalar > Data;
typedef StateMultibodyTpl <Scalar > StateMultibody;
typedef CostDataAbstractTpl <Scalar > CostDataAbstract;
typedef ActivationModelAbstractTpl <Scalar >

ActivationModelAbstract;
typedef ActivationModelQuadraticBarrierTpl <Scalar >

ActivationModelQuadraticBarrier;
typedef ActivationBoundsTpl <Scalar > ActivationBounds;
typedef DataCollectorAbstractTpl <Scalar >

DataCollectorAbstract;
typedef FrameCoPSupportTpl <Scalar > FrameCoPSupport;
typedef typename MathBase :: Vector2s Vector2s;
typedef typename MathBase :: Vector3s Vector3s;
typedef typename MathBase :: VectorXs VectorXs;
typedef typename MathBase :: MatrixXs MatrixXs;
typedef typename MathBase :: MatrixX3s MatrixX3s;
typedef Eigen::Matrix <Scalar , 4, 6> Matrix46;

CostModelImpulseCoPPositionTpl(boost :: shared_ptr <
StateMultibody > state ,

boost::shared_ptr <
ActivationModelAbstract
> activation ,

const FrameCoPSupport&
cop_support);

CostModelImpulseCoPPositionTpl(boost :: shared_ptr <
StateMultibody > state , const FrameCoPSupport&
cop_support);
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virtual ~CostModelImpulseCoPPositionTpl ();

virtual void calc(const boost :: shared_ptr <
CostDataAbstract >& data , const Eigen ::Ref <const
VectorXs >& x, const Eigen ::Ref <const VectorXs >& u);

virtual void calcDiff(const boost::shared_ptr <
CostDataAbstract >& data , const Eigen ::Ref <const
VectorXs >& x, const Eigen ::Ref <const VectorXs >& u);

virtual boost::shared_ptr <CostDataAbstract > createData(
DataCollectorAbstract* const data);

protected:
virtual void set_referenceImpl(const std:: type_info& ti

, const void* pv);
virtual void get_referenceImpl(const std:: type_info& ti

, void* pv) const;

using Base:: activation_;
using Base::nu_;
using Base:: state_;
// using Base:: unone_;

private:
FrameCoPSupport cop_support_; //!< frame name of the

impulse foot and support region of the cop
};

template <typename _Scalar >
struct CostDataImpulseCoPPositionTpl : public

CostDataAbstractTpl <_Scalar > {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
typedef _Scalar Scalar;
typedef MathBaseTpl <Scalar > MathBase;
typedef CostDataAbstractTpl <Scalar > Base;
typedef DataCollectorAbstractTpl <Scalar >

DataCollectorAbstract;
typedef ImpulseModelMultipleTpl <Scalar >

ImpulseModelMultiple;
typedef FrameCoPSupportTpl <Scalar > FrameCoPSupport;
typedef typename MathBase :: Vector3s Vector3s;
typedef typename MathBase :: VectorXs VectorXs;
typedef typename MathBase :: MatrixXs MatrixXs;
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typedef typename MathBase :: Matrix3s Matrix3s;
typedef typename MathBase :: Matrix6xs Matrix6xs;
typedef typename MathBase :: Matrix6s Matrix6s;
typedef typename MathBase :: Vector6s Vector6s;

template <template <typename Scalar > class Model >
CostDataImpulseCoPPositionTpl(Model <Scalar >* const

model , DataCollectorAbstract* const data)
: Base(model , data), Arr_Ru(model ->get_activation ()

->get_nr (), model ->get_state ()->get_nv ()) {
Arr_Ru.setZero ();

// Check that proper shared data has been passed
DataCollectorImpulseTpl <Scalar >* d = dynamic_cast <

DataCollectorImpulseTpl <Scalar >*>( shared);
if (d == NULL) {

throw_pretty("Invalid␣argument:␣the␣shared␣data␣
should␣be␣derived␣from␣DataCollectorImpulse");

}

// Get the active 6d impulse (avoids data casting at
runtime)

FrameCoPSupport cop_support = model ->template
get_reference <FrameCoPSupport >();

std:: string frame_name = model ->get_state ()->
get_pinocchio ()->frames[cop_support.get_id ()].name
;

bool found_impulse = false;
for (typename ImpulseModelMultiple ::

ImpulseDataContainer :: iterator it = d->impulses ->
impulses.begin ();

it != d->impulses ->impulses.end(); ++it) {
if (it->second ->frame == cop_support.get_id ()) {

ImpulseData3DTpl <Scalar >* d3d = dynamic_cast <
ImpulseData3DTpl <Scalar >*>(it->second.get());

if (d3d != NULL) {
throw_pretty("Domain␣error:␣a␣6d␣impulse␣model␣

is␣required␣in␣" + frame_name +
"in␣order␣to␣compute␣the␣CoP");

break;
}
ImpulseData6DTpl <Scalar >* d6d = dynamic_cast <

ImpulseData6DTpl <Scalar >*>(it->second.get());
if (d6d != NULL) {
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found_impulse = true;
impulse = it ->second;
break;

}
}

}
if (! found_impulse) {

throw_pretty("Domain␣error:␣there␣isn’t␣defined␣
impulse␣data␣for␣" + frame_name);

}
}

pinocchio ::DataTpl <Scalar >* pinocchio;
MatrixXs Arr_Ru;
boost::shared_ptr <ImpulseDataAbstractTpl <Scalar > >

impulse; //!< impulse force
using Base:: activation;
using Base::cost;
using Base::Lu;
using Base::Luu;
using Base::Lx;
using Base::Lxu;
using Base::Lxx;
using Base::r;
using Base::Ru;
using Base::Rx;
using Base:: shared;

};

} // namespace crocoddyl

#include "crocoddyl/multibody/costs/impulse -cop -position.
hxx"

#endif //
CROCODDYL_MULTIBODY_COSTS_IMPULSE_COP_POSITION_HPP_

A.2.2. impulse-cop-position.hxx

// //////////////////////////////////////////////////
// BSD 3-Clause License
//
// Copyright (C) 2020, University of Duisburg -Essen ,
// University of Edinburgh
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// Copyright note valid unless otherwise stated in
// individual files.
// All rights reserved.
// //////////////////////////////////////////////////

#include "crocoddyl/core/utils/exception.hpp"
#include "crocoddyl/multibody/costs/impulse -cop -position.

hpp"

namespace crocoddyl {

template <typename _Scalar >
CostModelImpulseCoPPositionTpl <_Scalar >::

CostModelImpulseCoPPositionTpl(boost :: shared_ptr <
StateMultibody > state , boost::shared_ptr <
ActivationModelAbstract > activation , const
FrameCoPSupport& cop_support)
: Base(state , activation , 0), cop_support_(

cop_support) {}

template <typename _Scalar >
CostModelImpulseCoPPositionTpl <_Scalar >::

CostModelImpulseCoPPositionTpl(boost :: shared_ptr <
StateMultibody > state , const FrameCoPSupport&
cop_support)
: Base(state ,

boost:: make_shared <
ActivationModelQuadraticBarrier >(
ActivationBounds(VectorXs ::Zero (4), std::
numeric_limits <_Scalar >:: max() * VectorXs ::
Ones (4))), 0), cop_support_(cop_support) {}

template <typename Scalar >
CostModelImpulseCoPPositionTpl <Scalar >::~

CostModelImpulseCoPPositionTpl () {}

template <typename Scalar >
void CostModelImpulseCoPPositionTpl <Scalar >:: calc(const

boost::shared_ptr <CostDataAbstract >& data , const Eigen
::Ref <const VectorXs >&, const Eigen ::Ref <const
VectorXs >&) {
Data* d = static_cast <Data*>(data.get());

// Compute the cost residual r = A * f
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data ->r.noalias () = cop_support_.get_A () * d->impulse ->
jMf.actInv(d->impulse ->f).toVector ();

// Compute the cost
activation_ ->calc(data ->activation , data ->r);
data ->cost = data ->activation ->a_value;

}

template <typename Scalar >
void CostModelImpulseCoPPositionTpl <Scalar >:: calcDiff(

const boost::shared_ptr <CostDataAbstract >& data , const
Eigen::Ref <const VectorXs >&, const Eigen::Ref <const

VectorXs >&) {
// Update all data
Data* d = static_cast <Data*>(data.get());

// Get the derivatives of the local impulse wrench
const MatrixXs& df_dx = d->impulse ->df_dx;
const Matrix46& A = cop_support_.get_A();

// Compute the derivatives of the activation function
activation_ ->calcDiff(data ->activation , data ->r);

// Compute the derivative of the cost residual
data ->Rx.noalias () = A * df_dx;

// Compute the first order derivative of the cost
function

data ->Lx.noalias () = data ->Rx.transpose () * data ->
activation ->Ar;

// Compute the second order derivative of the cost
function

data ->Lxx.noalias () = data ->Rx.transpose () * data ->
activation ->Arr * data ->Rx;

}

template <typename Scalar >
boost::shared_ptr <CostDataAbstractTpl <Scalar > >

CostModelImpulseCoPPositionTpl <Scalar >:: createData(
DataCollectorAbstract* const data) {

return boost:: allocate_shared <Data >( Eigen::
aligned_allocator <Data >(), this , data);

}
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template <typename Scalar >
void CostModelImpulseCoPPositionTpl <Scalar >::

set_referenceImpl(const std:: type_info& ti , const void
* pv) {
if (ti == typeid(FrameCoPSupport)) {

cop_support_ = *static_cast <const FrameCoPSupport *>(
pv);

} else {
throw_pretty("Invalid␣argument:␣incorrect␣type␣(it␣

should␣be␣FrameCoPSupport)");
}

}

template <typename Scalar >
void CostModelImpulseCoPPositionTpl <Scalar >::

get_referenceImpl(const std:: type_info& ti , void* pv)
const {
if (ti == typeid(FrameCoPSupport)) {

FrameCoPSupport& ref_map = *static_cast <
FrameCoPSupport *>(pv);

ref_map = cop_support_;
} else {

throw_pretty("Invalid␣argument:␣incorrect␣type␣(it␣
should␣be␣FrameCoPSupport)");

}
}

} // namespace crocoddyl

A.3. Consistency Between the Frameworks

This section contains a verification of the notability consistency between the novel
frameworks HyRoDyn and Pinocchio, both of which are used for computing of the
robot dynamics. To this end, both the IK and ID of the robot are recomputed
with HyRoDyn and compared with the original reference trajectories and torques,
respectively, of the OC solution obtained by Crocoddyl.

A.3.1. Inverse Kinematics

Fig. A.1 shows the comparison of the IK solution obtained from OC with the re-
computation from HyRoDyn. As becomes evident, both trajectories match, which
indicates that the kinematics notation between both frameworks is consistent.
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Figure A.1.: IK consistency check between the HyRoDyn and Pinocchio frameworks.

A.3.2. Inverse Dynamics

Fig. A.2 shows the comparison of the ID solution for optimal torque inputs from
Crocoddyl with the according recomputation from HyRoDyn. As becomes evident,
the torque inputs match, which proofs that also the dynamics notation between
both novel frameworks is consistent.

Figure A.2.: ID consistency check between the HyRoDyn and Pinocchio frameworks.
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