
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 37–42,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

DKPro WSD – A Generalized UIMA-based Framework
for Word Sense Disambiguation

Tristan Miller1 Nicolai Erbs1 Hans-Peter Zorn1 Torsten Zesch1,2 Iryna Gurevych1,2

(1) Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universität Darmstadt

(2) Ubiquitous Knowledge Processing Lab (UKP-DIPF)
German Institute for Educational Research and Educational Information

http://www.ukp.tu-darmstadt.de/

Abstract

Implementations of word sense disam-
biguation (WSD) algorithms tend to be
tied to a particular test corpus format and
sense inventory. This makes it difficult to
test their performance on new data sets, or
to compare them against past algorithms
implemented for different data sets. In this
paper we present DKPro WSD, a freely
licensed, general-purpose framework for
WSD which is both modular and exten-
sible. DKPro WSD abstracts the WSD
process in such a way that test corpora,
sense inventories, and algorithms can be
freely swapped. Its UIMA-based architec-
ture makes it easy to add support for new
resources and algorithms. Related tasks
such as word sense induction and entity
linking are also supported.

1 Introduction

Word sense disambiguation, or WSD (Agirre and
Edmonds, 2006)—the task of determining which
of a word’s senses is the one intended in a par-
ticular context—has been a core research problem
in computational linguistics since the very incep-
tion of the field. Despite the task’s importance
and popularity as a subject of study, tools and re-
sources supporting WSD have seen relatively little
generalization and standardization. That is, most
prior implementations of WSD systems have been
hard-coded for particular algorithms, sense inven-
tories, and data sets. This makes it difficult to com-
pare systems or to adapt them to new scenarios
without extensive reimplementation.

In this paper we present DKPro WSD, a
general-purpose framework for word sense disam-
biguation which is both modular and extensible.
Its modularity means that it makes a logical sep-
aration between the data sets (e.g., the corpora

to be annotated, the answer keys, manually anno-
tated training examples, etc.), the sense invento-
ries (i.e., the lexical-semantic resources enumerat-
ing the senses to which words in the corpora are
assigned), and the algorithms (i.e., code which ac-
tually performs the sense assignments and prereq-
uisite linguistic annotations), and provides a stan-
dard interface for each of these component types.
Components which provide the same functional-
ity can be freely swapped, so that one can easily
run the same algorithm on different data sets (irre-
spective of which sense inventory they use), or test
several different algorithms on the same data set.

While DKPro WSD ships with support for a
number of common WSD algorithms, sense inven-
tories, and data set formats, its extensibility means
that it is easy to adapt to work with new meth-
ods and resources. The system is written in Java
and is based on UIMA (Lally et al., 2009), an
industry-standard architecture for analysis of un-
structured information. Support for new corpus
formats, sense inventories, and WSD algorithms
can be added by implementing new UIMA com-
ponents for them, or more conveniently by writing
UIMA wrappers around existing code. The frame-
work and all existing components are released un-
der the Apache License 2.0, a permissive free soft-
ware licence.

DKPro WSD was designed primarily to support
the needs of WSD researchers, who will appre-
ciate the convenience and flexibility it affords in
tuning and comparing algorithms and data sets.
However, as a general-purpose toolkit it could also
be used to implement a WSD module for a real-
world natural language processing application. Its
support for interactive visualization of the disam-
biguation process also makes it a powerful tool for
learning or teaching the principles of WSD.

The remainder of this paper is organized as fol-
lows: In §2 we review previous work in WSD file
formats and implementations. In §3 we describe

37

our system and further explain its capabilities and
advantages. Finally, in §4 we discuss our plans for
further development of the framework.

2 Background

In the early days of WSD research, electronic
dictionaries and sense-annotated corpora tended
to be small and hand-crafted on an ad-hoc ba-
sis. It was not until the growing availability of
large-scale lexical resources and corpora in the
1990s that the need to establish a common plat-
form for the evaluation of WSD systems was rec-
ognized. This led to the founding of the Sens-
eval (and later SemEval) series of competitions,
the first of which was held in 1998. Each com-
petition defined a number of tasks with prescribed
evaluation metrics, sense inventories, corpus file
formats, and human-annotated test sets. For each
task it was therefore possible to compare algo-
rithms against each other. However, sense inven-
tories and file formats still vary across tasks and
competitions. There are also a number of increas-
ingly popular resources used outside Senseval and
SemEval, each with their own formats and struc-
tures: examples of sense-annotated corpora in-
clude SemCor (Miller et al., 1994), MASC (Ide et
al., 2010), and WebCAGe (Henrich et al., 2012),
and sense inventories include VerbNet (Kipper et
al., 2008), FrameNet (Ruppenhofer et al., 2010),
DANTE (Kilgarriff, 2010), BabelNet (Navigli and
Ponzetto, 2012), and online community-produced
resources such as Wiktionary and Wikipedia. So
despite attempts at standardization, the canon of
WSD resources remains quite fragmented.

The few publically available implementa-
tions of individual disambiguation algorithms,
such as SenseLearner (Mihalcea and Csomai,
2005), SenseRelate::TargetWord (Patwardhan et
al., 2005), UKB (Agirre and Soroa, 2009), and
IMS (Zhong and Ng, 2010), are all tied to a partic-
ular corpus and/or sense inventory, or define their
own custom formats into which existing resources
must be converted. Furthermore, where the al-
gorithm depends on linguistic annotations such as
part-of-speech tags, the users are expected to sup-
ply these themselves, or else must use the anno-
tators built into the system (which may not always
be appropriate for the corpus language or domain).

One alternative to coding WSD algorithms from
scratch is to use general-purpose NLP toolkits
such as NLTK (Bird, 2006) or DKPro (Gurevych

et al., 2007). Such toolkits provide individual
components potentially useful for WSD, such as
WordNet-based measures of sense similarity and
readers for the odd corpus format. However, these
toolkits are not specifically geared towards devel-
opment and evaluation of WSD systems; there is
no unified type system or architecture which al-
lows WSD-specific components to be combined or
substituted orthogonally.

The only general-purpose dedicated WSD sys-
tem we are aware of is I Can Sense It (Joshi et al.,
2012), a Web-based interface for running and eval-
uating various WSD algorithms. It includes I/O
support for several corpus formats and implemen-
tations of a number of baseline and state-of-the-
art disambiguation algorithms. However, as with
previous single-algorithm systems, it is not possi-
ble to select the sense inventory, and the user is
responsible for pre-annotating the input text with
POS tags. The usability and extensibility of the
system are greatly restricted by the fact that it is a
proprietary, closed-source application fully hosted
by the developers.

3 DKPro WSD

Our system, DKPro WSD, is implemented as a
framework of UIMA components (type systems,
collection readers, annotators, CAS consumers,
resources) which the user combines into a data
processing pipeline. We can best illustrate this
with an example: Figure 1 shows a pipeline for
running two disambiguation algorithms on the Es-
tonian all-words task from Senseval-2. UIMA
components are the solid, rounded boxes in the
lower half of the diagram, and the data and algo-
rithms they encapsulate are the light grey shapes
in the upper half. The first component of the
pipeline is a collection reader which reads the
text of the XML-formatted corpus into a CAS (a
UIMA data structure for storing layers of data
and stand-off annotations) and marks the words
to be disambiguated (the “instances”) with their
IDs. The next component is an annotator which
reads the answer key—a separate file which as-
sociates each instance ID with a sense ID from
the Estonian EuroWordNet—and adds the gold-
standard sense annotations to their respective in-
stances in the CAS. Processing then passes to
another annotator—in this case a UIMA wrap-
per for TreeTagger (Schmid, 1994)—which adds
POS and lemma annotations to the instances.

38

corpus
reader

answer key
annotator

linguistic
annotator

WSD
annotator

WSD
annotator

simplified
Lesk

evaluator

sense
inventory

Senseval-2
Estonian
all-words

test corpus

Senseval-2
Estonian
all-words

answer key
results and

statistics JMWNL

Estonian
Euro-

WordNet

degree
centrality

Tree-
Tagger

Estonian
language

model

Figure 1: A sample DKPro WSD pipeline for the Estonian all-words data set from Senseval-2.

Then come the two disambiguation algorithms,
also modelled as UIMA annotators wrapping non-
UIMA-aware algorithms. Each WSD annotator it-
erates over the instances in the CAS and annotates
them with sense IDs from EuroWordNet. (Euro-
WordNet itself is accessed via a UIMA resource
which wraps JMWNL (Pazienza et al., 2008) and
which is bound to the two WSD annotators.) Fi-
nally, control passes to a CAS consumer which
compares the WSD algorithms’ sense annotations
against the gold-standard annotations produced by
the answer key annotator, and outputs these sense
annotations along with various evaluation metrics
(precision, recall, etc.).

A pipeline of this sort can be written with just
a few lines of code: one or two to declare each
component and if necessary bind it to the appro-
priate resources, and a final one to string the com-
ponents together into a pipeline. Moreover, once
such a pipeline is written it is simple to substitute
functionally equivalent components. For example,
with only a few small changes the same pipeline
could be used for Senseval-3’s English lexical
sample task, which uses a corpus and sense inven-
tory in a different format and language. Specif-
ically, we would substitute the collection reader
with one capable of reading the Senseval lexical
sample format, we would pass an English instead
of Estonian language model to TreeTagger, and
we would substitute the sense inventory resource
exposing the Estonian EuroWordNet with one for
WordNet 1.7.1. Crucially, none of the WSD algo-
rithms need to be changed.

The most important features of our system are

as follows:

Corpora and data sets. DKPro WSD currently
has collection readers for all Senseval and Sem-
Eval all-words and lexical sample tasks, the AIDA
CoNLL-YAGO data set (Hoffart et al., 2011), the
TAC KBP entity linking tasks (McNamee and
Dang, 2009), and the aforementioned MASC,
SemCor, and WebCAGe corpora. Our prepack-
aged corpus analysis modules can compute statis-
tics on monosemous terms, average polysemy,
terms absent from the sense inventory, etc.

Sense inventories. Sense inventories are ab-
stracted into a system of types and interfaces ac-
cording to the sort of lexical-semantic information
they provide. There is currently support for Word-
Net (Fellbaum, 1998), WordNet++ (Ponzetto and
Navigli, 2010), EuroWordNet (Vossen, 1998), the
Turk Bootstrap Word Sense Inventory (Biemann,
2013), and UBY (Gurevych et al., 2012), which
provides access to WordNet, Wikipedia, Wik-
tionary, GermaNet, VerbNet, FrameNet, Omega-
Wiki, and various alignments between them. The
system can automatically convert between vari-
ous versions of WordNet using the UPC mappings
(Daudé et al., 2003).

Algorithms. As with sense inventories, WSD
algorithms have a type and interface hierarchy ac-
cording to what knowledge sources they require.
Algorithms and baselines already implemented in-
clude the analytically calculated random sense
baseline; the most frequent sense baseline; the
original, simplified, extended, and lexically ex-
panded Lesk variants (Miller et al., 2012); various

39

graph connectivity approaches from Navigli and
Lapata (2010); Personalized PageRank (Agirre
and Soroa, 2009); the supervised TWSI system
(Biemann, 2013); and IMS (Zhong and Ng, 2010).
Our open API permits users to program support
for further knowledge-based and supervised algo-
rithms.

Linguistic annotators. Many WSD algorithms
require linguistic annotations from segmenters,
lemmatizers, POS taggers, parsers, etc. Off-the-
shelf UIMA components for producing such an-
notations, such as those provided by DKPro Core
(Gurevych et al., 2007), can be used in a DKPro
WSD pipeline with little or no adaptation.

Visualization tools. We have enhanced some
families of algorithms with animated, interactive
visualizations of the disambiguation process. For
example, Figure 2 shows part of a screenshot from
the interactive running of the degree centrality al-
gorithm (Navigli and Lapata, 2010). The system is
disambiguating the three content words in the sen-
tence “I drink milk with a straw.” Red, green, and
blue nodes represent senses (or more specifically,
WordNet sense keys) of the words drink, milk,
and straw, respectively; grey nodes are senses of
other words discovered by traversing semantic re-
lations (represented by arcs) in the sense inven-
tory. The current traversal (toast%2:34:00:: to
fuddle%2:34:00::) is drawn in a lighter colour.
Mouseover tooltips provide more detailed infor-
mation on senses. We have found such visualiza-
tions to be invaluable for understanding and de-
bugging algorithms.

Parameter sweeping. The behaviour of many
components (or entire pipelines) can be altered ac-
cording to various parameters. For example, for
the degree centrality algorithm one must specify
the maximum search depth, the minimum vertex
degree, and the context size. DKPro WSD can
perform a parameter sweep, automatically running
the pipeline once for every possible combination
of parameters in user-specified ranges and con-
catenating the results into a table from which the
optimal system configurations can be identified.

Reporting tools. There are several reporting
tools to support evaluation and error analysis. Raw
sense assignments can be output in a variety of for-
mats (XML, HTML, CSV, Senseval answer key,
etc.), some of which support colour-coding to

Figure 2: DKPro WSD’s interactive visualization
of a graph connectivity WSD algorithm.

highlight correct and incorrect assignments. The
system can also compute common evaluation met-
rics (Agirre and Edmonds, 2006, pp. 76–80) and
plot precision–recall curves for each algorithm in
the pipeline, as well as produce confusion matri-
ces for algorithm pairs. Users can specify backoff
algorithms, and have the system compute results
with and without the backoff. Results can also be
broken down by part of speech. Figure 3 shows
an example of an HTML report produced by the
system—on the left is the sense assignment table,
in the upper right is a table of evaluation metrics,
and in the lower right is a precision–recall graph.

DKPro WSD also has support for tasks closely
related to word sense disambiguation:

Entity linking. Entity linking (EL) is the task of
linking a named entity in a text (e.g., Washington)
to its correct representation in some knowledge
base (e.g., either George Washington or Washing-
ton, D.C. depending on the context). EL is very
similar to WSD in that both tasks involve connect-
ing ambiguous words in a text to entries in some
inventory. DKPro WSD supports EL-specific
sense inventories such as the list of Wikipedia
articles used in the Knowledge Base Population
workshop of the Text Analysis Conference (TAC
KBP). This workshop, held annually since 2009,
provides a means for comparing different EL sys-
tems in a controlled setting. DKPro WSD contains
a reader for the TAC KBP data set, components
for mapping other sense inventories to the TAC
KBP inventory, and evaluation components for the

40

Figure 3: An HTML report produced by DKPro WSD.

official metrics. Researchers can therefore miti-
gate the entry barrier for their first participation at
TAC KBP and experienced participants can extend
their systems by making use of further WSD algo-
rithms.

Word sense induction. WSD is usually per-
formed with respect to manually created sense in-
ventories such as WordNet. In word sense induc-
tion (WSI) a sense inventory for target words is
automatically constructed from an unlabelled cor-
pus. This can be useful for search result cluster-
ing, or for general applications of WSD for lan-
guages and domains for which a sense inventory
is not yet available. It is usually necessary to per-
form WSD at some point in the evaluation of WSI.
DKPro WSD supports WSI by providing state-of-
the art WSD algorithms capable of using arbitrary
sense inventories, including induced ones. It also
includes readers and writers for the SemEval-2007
and -2013 WSI data sets.

4 Conclusions and future work

In this paper we introduced DKPro WSD, a Java-
and UIMA-based framework for word sense dis-
ambiguation. Its primary advantages over exist-

ing tools are its modularity, its extensibility, and
its free licensing. By segregating and providing
layers of abstraction for code, data sets, and sense
inventories, DKPro WSD greatly simplifies the
comparison of WSD algorithms in heterogeneous
scenarios. Support for a wide variety of commonly
used algorithms, data sets, and sense inventories
has already been implemented.

The framework is under active development,
with work on several new features planned or in
progress. These include implementations or wrap-
pers for further algorithms and for the DANTE
and BabelNet sense inventories. A Web inter-
face is in the works and should be operational
by the time of publication. Source code, bi-
naries, documentation, tutorials, FAQs, an issue
tracker, and community mailing lists are avail-
able on the project’s website at https://code.
google.com/p/dkpro-wsd/.

Acknowledgments

This work has been supported by the Volkswagen
Foundation as part of the Lichtenberg Professor-
ship Program under grant No

¯ I/82806.

41

References
Eneko Agirre and Philip Edmonds, editors. 2006.

Word Sense Disambiguation: Algorithms and Appli-
cations. Springer.

Eneko Agirre and Aitor Soroa. 2009. Personalizing
PageRank for word sense disambiguation. In Proc.
EACL, pages 33–41.

Chris Biemann. 2013. Creating a system for lexi-
cal substitutions from scratch using crowdsourcing.
Lang. Resour. and Eval., 47(1):97–122.

Steven Bird. 2006. NLTK: The natural language
toolkit. In Proc. ACL-COLING (Interactive Presen-
tation Sessions), pages 69–72.

Jordi Daudé, Lluı́s Padró, and German Rigau. 2003.
Validation and tuning of WordNet mapping tech-
niques. In Proc. RANLP, pages 117–123.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press.

Iryna Gurevych, Max Mühlhäuser, Christof Müller,
Jürgen Steimle, Markus Weimer, and Torsten Zesch.
2007. Darmstadt Knowledge Processing Reposi-
tory Based on UIMA. In Proc. UIMA Workshop at
GLDV.

Iryna Gurevych, Judith Eckle-Kohler, Silvana Hart-
mann, Michael Matuschek, Christian M. Meyer, and
Christian Wirth. 2012. UBY – A large-scale unified
lexical-semantic resource. In Proc. EACL, pages
580–590.

Verena Henrich, Erhard Hinrichs, and Tatiana Vodola-
zova. 2012. WebCAGe – A Web-harvested corpus
annotated with GermaNet senses. In Proc. EACL,
pages 387–396.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named
entities in text. In Proc. EMNLP, pages 782–792.

Nancy Ide, Christiane Fellbaum, Collin Baker, and Re-
becca Passonneau. 2010. The Manually Annotated
Sub-Corpus: A community resource for and by the
people. In Proc. ACL (Short Papers), pages 68–73.

Salil Joshi, Mitesh M. Khapra, and Pushpak Bhat-
tacharyya. 2012. I Can Sense It: A comprehensive
online system for WSD. In Proc. COLING (Demo
Papers), pages 247–254.

Adam Kilgarriff. 2010. A detailed, accurate, exten-
sive, available English lexical database. In Proc.
NAACL-HLT, pages 21–24.

Karin Kipper, Anna Korhonen, Neville Ryant, and
Martha Palmer. 2008. A large-scale classification of
English verbs. Lang. Resour. and Eval., 42(1):21–
40.

Adam Lally, Karin Verspoor, and Eric Nyberg, editors.
2009. Unstructured Information Management Ar-
chitecture (UIMA) Version 1.0. OASIS.

Paul McNamee and Hoa Trang Dang. 2009. Overview
of the TAC 2009 knowledge base population track.
In Proc. TAC.

Rada Mihalcea and Andras Csomai. 2005. Sense-
Learner: Word sense disambiguation for all words
in unrestricted text. In Proc. ACL (System Demos),
pages 53–56.

George A. Miller, Martin Chodorow, Shari Landes,
Claudio Leacock, and Robert G. Thomas. 1994. Us-
ing a semantic concordance for sense identification.
In Proc. HLT, pages 240–243.

Tristan Miller, Chris Biemann, Torsten Zesch, and
Iryna Gurevych. 2012. Using distributional similar-
ity for lexical expansion in knowledge-based word
sense disambiguation. In Proc. COLING, pages
1781–1796.

Roberto Navigli and Mirella Lapata. 2010. An experi-
mental study of graph connectivity for unsupervised
word sense disambiguation. IEEE Trans. on Pattern
Anal. and Machine Intel., 32(4):678–692.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
An overview of BabelNet and its API for multilin-
gual language processing. In Iryna Gurevych and
Jungi Kim, editors, The People’s Web Meets NLP:
Collaboratively Constructed Language Resources.
Springer.

Siddharth Patwardhan, Satanjeev Banerjee, and Ted
Pedersen. 2005. SenseRelate::TargetWord – A gen-
eralized framework for word sense disambiguation.
In Proc. ACL (System Demos), pages 73–76.

Maria Teresa Pazienza, Armando Stellato, and Alexan-
dra Tudorache. 2008. JMWNL: An extensible mul-
tilingual library for accessing wordnets in different
languages. In Proc. LREC, pages 28–30.

Simone Paolo Ponzetto and Roberto Navigli. 2010.
Knowledge-rich word sense disambiguation rivaling
supervised systems. In Proc. ACL, pages 1522–
1531.

Josef Ruppenhofer, Michael Ellsworth, Miriam R. L.
Petruck, Christopher R. Johnson, and Jan Schef-
fczyk. 2010. FrameNet II: Extended Theory and
Practice. International Computer Science Institute.

Helmud Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In Proc. NeMLaP.

Piek Vossen, editor. 1998. EuroWordNet: A Multi-
lingual Database with Lexical Semantic Networks.
Springer.

Zhi Zhong and Hwee Tou Ng. 2010. It Makes Sense:
A wide-coverage word sense disambiguation system
for free text. In Proc. ACL (System Demos), pages
78–83.

42

This text is made available via DuEPublico, the institutional repository of the University of
Duisburg-Essen. This version may eventually differ from another version distributed by a
commercial publisher.

DOI:
URN:

10.17185/duepublico/72178
urn:nbn:de:hbz:464-20211026-171324-1

This work may be used under a Creative Commons Attribution -
NonCommercial - ShareAlike 3.0 License (CC BY-NC-SA 3.0).

Miller, T., et al. (2013) DKPro WSD: A Generalized UIMA-based Framework for Word Sense Disambiguation.
In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstration,
pp. 37-42. Association for Computational Linguistics. https://aclanthology.org/P13-4007

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/72178
https://nbn-resolving.org/urn:nbn:de:hbz:464-20211026-171324-1
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://aclanthology.org/P13-4007

