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Abstract

Language proficiency tests are used to evaluate and
compare the progress of language learners. We
present an approach for automatic difficulty predic-
tion of C-tests that performs on par with human ex-
perts. On the basis of detailed analysis of newly
collected data, we develop a model for C-test dif-
ficulty introducing four dimensions: solution dif-
ficulty, candidate ambiguity, inter-gap dependency,
and paragraph difficulty. We show that cues from all
four dimensions contribute to C-test difficulty.

1 Introduction

In a labor market that is increasingly globalized, knowl-
edge of at least one foreign language is more relevant than
ever before. Due to increased mobility, multilingual skills
are also required for private communication as friend-
ships stretch across geographical and linguistic borders.
In order to provide adequate language learning support,
it is important to frequently evaluate learner progress on
the basis of language proficiency tests that enable a fair
comparison between learners.

The test difficulty needs to match the intended target
group as the test should be challenging for the learner
but not lead to frustration. According to Vygotsky’s zone
of proximal development (Vygotsky, 1978), the range
of suitable material is very small. Thus, creating a test
that fits this narrow target zone is a tedious and time-
consuming task. Teachers predict the difficulty of a test
based on their teaching experience. However, as they al-
ready know the solutions, they cannot always anticipate
the confusion a test might cause for learners. This results
in a subjective difficulty estimation that often lacks the
consistency required for comparing learners over differ-
ent tests.

The underlying principle of most language proficiency
tests is the concept of reduced redundancy testing (Spol-
sky, 1969). It is based on the idea that “natural language
is redundant” and that more advanced learners can be dis-

tinguished from beginners by their ability to deal with re-
duced redundancy. For language testing, redundancy can
be reduced by eliminating words from a text and asking
the learner to fill in the gap, also known as the cloze test.
The C-test is a variant of the cloze test which contains
more gaps but provides part of the solution as a hint and
has been found to be a good estimate for language profi-
ciency (Eckes and Grotjahn, 2006).

We present an approach for determining the difficulty
of C-tests that overcomes the mentioned drawbacks of
subjective evaluation by teachers. Our approach is based
on objective measurable properties and thus produces
consistent results. We show that our approach performs
on par with human experts and analyze to which extent C-
test difficulty is determined by individual gap properties
(micro-level processing) and higher level dependencies
(macro-level processing). On the theoretical level, our
model provides new insights into the factors that affect
difficulty in reduced redundancy testing. On the practical
level, our results may help teachers to precisely evaluate
the difficulty of a test and to foresee challenging parts.

2 The C-Test

The C-test is a form of reduced redundancy testing and
has been established as a standard entrance exam for
many language centers. It usually consists of five coher-
ent paragraphs or short texts. The example below consists
of a single paragraph.

The roots of humanity can be traced back to millions of
years ago. T primary evid comes fr fossils
- skulls, skel and bo fragments. Scien have
ma tools th allow th to ext subtle infor
from anc bones a their enviro settings. Mod
forensic wo in t field a in labora can n
provide a rich understanding of how our ancestors lived.1

1Solutions: The, evidence, from, skeletons, bone, Scientists, made,
that, them, extract, information, ancient, and, environmental, Modern,
work, the, and, laboratories, now
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After an unaltered introductory sentence, every second
word is transformed into a gap. When the intended num-
ber of gaps is reached (usually 20), the rest of the text
is left intact. For each gap, the smaller half of the word
is provided and the missing part has to be completed by
the learner. Since its introduction, the C-test has been re-
searched from many angles and has been adapted for over
20 languages (see Grotjahn et al. (2002) for an overview).

2.1 C-Tests vs Cloze Tests

The C in C-test stands for its origin in the cloze test. In
cloze tests, full words are transformed into gaps accord-
ing to a fixed deletion pattern (e.g. every 7th word).

The main problem with cloze tests is the ambiguity of
the solution. Unless function words are deleted, the gap
allows many alternative solutions such as synonyms and
hypernyms, but also entirely different words that change
the meaning of the text but also fit the context. Language
teachers have proposed two ways of dealing with this
ambiguity: the application of relaxed scoring schemes
and the use of distractors. In relaxed scoring, teachers
accept all tolerable candidates for a gap and not only
the intended solution as in exact scoring. Unfortunately,
this scoring method turned out to be quite subjective and
time-consuming as it is not possible to anticipate all toler-
able solutions (Raatz and Klein-Braley, 2002). The use of
distractors circumvents this open solution space by pro-
viding a closed set of candidates from which the solution
needs to be picked. Several approaches have been pro-
posed for automatic distractor selection (Sakaguchi et al.,
2013; Zesch and Melamud, 2014) to make sure that the
distractors are not too hard nor too easy and are not a
valid solution themselves. However, the presence of the
correct solution in the distractor set enables the option of
random guessing leading to biased results.

In order to overcome this and other weaknesses of the
cloze test, Klein-Braley and Raatz (1984) propose the C-
test as a more stable alternative. Thorough analyses fol-
lowing the principles of test theory indicate advantages of
the C-test over the cloze test regarding empirical valid-
ity, reliability, and correlation with other language tests
(Babaii and Ansary, 2001; Klein-Braley, 1997; Jafarpur,
1995). For automatic approaches, the following prop-
erties of the C-tests are beneficial: The given prefix re-
stricts the solution space to a single solution (in almost
all cases) which enables automatic scoring without pro-
viding a guessing option. In addition, the prefix hint al-
lows for a narrower deletion pattern (every second gap)
providing more empirical evidence for the students’ abil-
ities on less text.

As the given prefixes reduce the extent to which pro-
ductive skills are required, Cohen (1984) considers the C-
test to be a test of reading ability examining only recogni-
tion. However, Jakschik et al. (2010) transform the C-test

into a true recognition test by providing multiple choice
options and find that this variant is significantly easier
than open C-test gaps. This indicates that C-test solving
requires both, receptive and productive skills, and we re-
flect this in our feature choice.

2.2 Test Difficulty
Previous works in the field of educational natural lan-
guage processing approach language proficiency tests
from a generation perspective. The focus is on gener-
ating closed formats such as multiple choice cloze tests
(Mostow and Jang, 2012; Agarwal and Mannem, 2011;
Mitkov et al., 2006), vocabulary exercises (Skory and Es-
kenazi, 2010; Heilman et al., 2007; Brown et al., 2005)
and grammar exercises (Perez-Beltrachini et al., 2012).
The difficulty of these exercises is usually determined by
the choice of distractors as students have to discriminate
the correct answer from a provided set of candidates.

C-tests follow a fixed construction pattern and are
therefore easy to generate. As opposed to closed formats,
the candidate space is only limited by the provided pre-
fix and the length constraint. It is thus harder to deter-
mine the difficulty of a C-test because it is influenced by
a combination of many text- and word-specific factors.
The search for the factors that determine the difficulty of
C-tests is tightly connected to the question of construct
validity: “Which skills does the C-test measure?” While
advocates of the C-test argue that it measures general lan-
guage proficiency involving all levels of language (Eckes
and Grotjahn, 2006; Sigott, 1995; Klein-Braley, 1985)
others reduce it to a grammar test (Babaii and Ansary,
2001) or rather a vocabulary test (Chapelle, 1994; Single-
ton and Little, 1991).2 In our model, we aim at combining
features touching all levels of language. The earliest anal-
yses of C-test difficulty focused on the paragraph instead
of the gap level. Klein-Braley (1984) performs a linear
regression analysis with only two difficulty indicators –
average sentence length and type-token ratio – obtaining
good results for her target group. Eckes (2011) intend to
calibrate C-test difficulty using a Rasch model in order to
compare different C-tests and build a test pool.3

Kamimoto (1993) was the first to perform classical
item analysis on the gap level. He created a tailored C-test
that only contains selected gaps in order to better discrim-
inate between the students. However, the gap selection is
based on previous test results instead of specific gap fea-
tures and thus cannot be applied on new tests.

Previous work on gap difficulty is based on correlation
analyses. Brown (1989) identifies the word class, the lo-
cal word frequency, and readability measures as factors
correlating with cloze gap difficulty. Sigott (1995) exam-

2It should be noted, that their definition of “vocabulary” is very
wide.

3http://www.ondaf.de
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T1 T2 T3 T4

Participants 357 156 147 160
Mean error rate .31 .46 .37 .36
Standard deviation .21 .26 .24 .28

Table 1: Analysis of text-level test difficulty

ines word frequency, word class, and constituent type of
the gap for the C-test and finds high correlation only for
the word frequency. Klein-Braley (1996) identifies addi-
tional error patterns related to production problems (right
word stem in wrong form) and early closure, i.e. the solu-
tion works locally but not in the larger context. The cited
works focus on the correlation between gap features and
C-test difficulty but did not attempt to actually predict
difficulty. In the following section, we present the results
of our data analysis targeted towards building up a model
for C-test difficulty.

3 Data Analysis
For a better understanding of C-test difficulty, we need to
perform data analysis. As suitable data was not available
in digital form, we conducted a data collection study. In
cooperation with the language center at Technische Uni-
versität Darmstadt, we gathered data from 3 test sessions.
The C-tests are conducted in order to assign students to
courses matching their language proficiency. One test
consists of 5 paragraphs with 20 gaps each.

We created a web interface in which the test had to
be filled. Most students finished before the time limit of
20 minutes was reached. Weaker students left some gaps
unfilled but did not ask for more time. In the first ses-
sion, 357 participants filled in the same C-test (T1). In
the second session, three different test instances (T2, T3,
T4) were assigned randomly to 463 new participants. In
the third session, the tests were composed by randomly
choosing paragraphs from 5 groups, each consisisting of
5 paragraphs. A random combination of 5 paragraphs
(one from each group) was then assigned to 1050 new
participants. All participants are students enrolled at the
university. Our analysis is based on the first two sessions
and we use the data from the third session as test data.
As six paragraphs of the third session had already been
administered before, we remove these from the test data.

3.1 Text-level Analysis
As C-tests are designed mainly for the goal of comparing
students, the difficulty of different tests should be bal-
anced. The difficulty of a C-test is usually measured by
the mean error rate over all gaps. The error rate of a single
gap is the ratio of false answers to all answers. A higher
mean error rate thus indicates higher test difficulty.

As we see in Table 1, the mean error rate varies be-
tween the different tests, although they had been carefully
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Figure 1: Mean error rate and standard deviation for the para-
graphs 1–5 of the four tests
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Figure 2: Standard error averaged over all gaps for increasing
numbers of participants

(but manually) designed to be equally difficult. The first
session was generally easier than the second session, and
T2 stood out as particularly difficult. Within this test set-
ting, it is thus not fair to compare students by their overall
score, if they completed different tests. Automatic diffi-
culty prediction prior to the test session could improve
the comparability of test results.

Figure 1 additionally shows the results for each para-
graph. The teachers arrange the five paragraphs of a test
with assumed ascending difficulty. We see that this works
as a general tendency (paragraph 5 is more difficult than
paragraph 1), but a true ordering has not been achieved
for any test. In general, the high standard deviations in-
dicate that the mean error rate is not a very informative
measure, because each test contains very easy and very
difficult gaps. In the extreme case, half of the gaps can
be solved by all learners and the other half by almost no
one. The test is then assigned a medium difficulty, but the
results are not useful for discrimination between learners.
We therefore now analyze the difficulty on the gap-level.

3.2 Gap-level Analysis

Before we can further analyze single gaps, we need to
examine whether the number of participants in our study
was sufficient to obtain reliable error rates on the gap
level. We calculate the standard error for each gap with
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The roots of humanity can be traced back to millions of years

ago. T primary evid comes fr fossils - skulls, skel

and bo fragments. Scien have ma tools th allow

th to ext subtle infor from anc bones a their

enviro settings. Mod forensic wo in t field a

in labora can n provide a rich understanding of how

our ancestors lived.

Figure 3: Visualisation of error rates for each gap

increasing sample sizes.4 Figure 2 shows the results for
the first session (the results for the other three tests are
similar). We see that already with 50 participants, the
standard error is reduced to an acceptable level of 0.05.
As we obtained data from more than 140 participants for
each test, the obtained gap-level error rates are very reli-
able.

Range of error rates In our data, the error rates range
from 0.01 to 0.99 and are almost continuously distributed.
Figure 3 shows an example for the high variance of the
gap difficulty within a single paragraph. The error rates
in the example are indicated by the size of the circles.

Answer variety Even for the difficult gaps, the students
always tried to provide a solution5 because false answers
did not have a negative effect on the result. This behavior
leads to a high answer variety (19 different answers per
gap on average). The number of provided answers cor-
relates with the error rate (Pearson correlation of 0.57).
This indicates that harder gaps trigger more alternatives
and do not provoke the same mistake by everyone.

Spelling errors Many of the false answers are variants
of the correct solution. The students recognize the solu-
tion word but fail to produce it correctly. Unfortunately,
the line between a spelling error and a wrong solution
cannot be clearly drawn. If a plural s is missing we can-
not distinguish between a typo and lack of grammatical
understanding. Spelling errors often also form new words
e.g. of vs. off or then vs. than and we cannot decide
whether it is a spelling error or a wrong word choice. As
the generous time limit allows the students to revise their
solutions for typos, we consider them as normal errors in
line with Raatz and Klein-Braley (2002).

4 C-Test Difficulty Model
Natural languages are complex and constantly develop-
ing constructs that include many exceptions to the rules.

4For each size, we calculate the error rate based on three randomly
selected samples of participants and report the average result.

5Except for the weakest students who were not able to understand
the texts and left entire paragraphs empty.

Figure 4: C-Test Difficulty Model

Hence, the potential problems for foreign language learn-
ers are manifold and hard to anticipate. We took a closer
look at the false answers in order to gain deeper under-
standing of the dimensions that lead to wrong answers
and therefore to higher difficulty. We find that the diffi-
culty of C-tests is determined by a combination of many
factors.

In order to establish a shared terminology, learner
strategies for C-test solving have been categorized as
micro-level and macro-level processing strategies (Babaii
and Ansary, 2001). Psycholinguistic analyses (Sigott,
2006; Grotjahn and Stemmer, 2002) discuss in detail that
both strategies are required for successful C-test solv-
ing. Therefore, we developed a model for C-test diffi-
culty that incorporates features from both processing lev-
els (see Figure 4).

Micro-level processing only deals with the solution
of the gap and its surrounding micro context. The mi-
cro context consists of the word preceding the solution,
the solution, and the following word. Both, the preced-
ing and the following word are intact (i.e. not mutilated as
gap) and can be used as solution hints by every learner, in-
dependent of the performance on the other gaps. In order
to determine the difficulty of a gap based on micro-level
cues, we estimate two dimensions: the solution difficulty
and the candidate ambiguity.

Macro-level processing takes the wider context into
account and evaluates the gap in relation to other ele-
ments in the sentence and in the whole paragraph. The
difficulty of a gap on the macro-level is determined by
two dimensions: the inter-gap dependency and the para-
graph difficulty.

In the remainder of this section, we elaborate on the in-
dividual dimensions. We provide examples that illustrate
the described phenomena and introduce the features that
operationalize them.

4.1 Solution Difficulty

This micro-level dimension comprises features that ap-
proximate whether a learner knows the solution and can
correctly produce it in the context. We identified four im-
portant phenomena that contribute to the solution diffi-
culty: word familiarity, cognateness, inflection, and pho-
netic complexity.
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Word familiarity If we compare the solutions of the
easiest (example 1) and the most difficult gap (example
2), it is obvious that you is easier because it is more fa-
miliar to the participants than plentiful.6

1. If y are looking for new experiences, ... [you]
2. ..., people may try self-employment because the
opportunities seem plen and financing is easy to
get. [plentiful]

The probability that a learner knows a word is usually
estimated by the word frequency; more frequent words
are more likely to be known. We therefore calculate the
frequency of the solution and also its length as more fre-
quent words tend to be shorter in English. In previous
work, Brown (1989) calculates the frequency of the target
word on the basis of the current test text. This is clearly
a biased estimate of the frequency, but it is still identi-
fied as a good indicator for cloze gap difficulty. Sigott
(1995) calculates the frequency of the solution word us-
ing counts from the SUSANNE corpus.7 For our calcula-
tions, we use the larger Web1T corpus (Brants and Franz,
2006) and extract normalized probabilities instead of ab-
solute frequencies for better comparison.

Furthermore, a gap is easier to solve, if the solution
occurs in a very typical context, e.g. in the micro con-
text States o America, the candidate of is clearly fa-
vored, while in the context write o paper, the candidates
on, our and off are more probable. In order to account
for typical phrases, we calculate the normalized trigram
probability of the micro context.

Even if a word seems familiar to a learner, it might
be problematic when used in a compound (e.g. coastline)
because the prefix only provides information about the
first part of the word. In our approach, compounds are
detected using a word splitting algorithm with an English
dictionary.8

Another issue are polysemous words, as learners might
know one sense of a word but not be aware of the exis-
tence of a second sense. Polysemy interferes with fre-
quency, e.g. the word well has a high frequency, but it
occurs only rarely in its sense fountain. In order to ac-
count for polysemy, we count the number of represented
word senses for the solution in the lexical-semantic re-
source UBY (Gurevych et al., 2012).

The two senses of well also differ in their word class.
The word class has been studied as a difficulty indica-
tor by several researchers but with mixed results. Brown
(1989) finds that function words are easier to solve,
while Klein-Braley (1996) claims that prepositions are
often harder for learners. Sigott (1995) could not con-
firm any effect of the word class on C-test difficulty.

6In all examples, we only highlight a single gap to illustrate a certain
phenomenon.

7http://www.grsampson.net/RSue.html
8http://www.danielnaber.de/jwordsplitter/index en.html

The word class is determined by identifying the part-of-
speech (POS) tag. As additional feature, we calculate the
probability of the POS sequence of the micro context.

Cognateness Frequency is not the only indicator for
word familiarity and can sometimes even be misleading
(Beinborn et al., 2014). Many solution words are cog-
nates, i.e. they are very similar to words in other lan-
guages like information or laboratory. In reading com-
prehension, cognates are known as facilitators because
their meaning can be deducted from the form similarity to
a word in the mother tongue. We therefore assumed that
cognate gaps are easier to solve. However, we observe
that they are more likely to trigger production problems.
In the 20 gaps with the highest answer variety (33 or more
different answers), all solutions have a Latin stem.9 The
20 gaps with the lowest answer variety (5 or less different
answers) are very basic vocabulary.10

The production problems are related to the different
character combinations and the lower frequency of words
with Latin stem. In addition, these words might not
be part of the students active vocabulary and are only
guessed because they occur as cognates in the students
L1. This is supported by the fact that many of the cognate
answers resemble orthographic principles from other lan-
guages, e.g. for skeletons we find *skellets, *skelleton(s),
*skelets, *skelletts, *skeletton(s), *skeltons, *skeletes,
and *skelette(s).11

In order to account for this phenomenon, we estimate
the cognateness of words by gathering data from four
different lists. We retrieve cognates from UBY using
string similarity and from a cognate production algo-
rithm (Beinborn et al., 2013). In addition, we consult the
COCA list of academic words12 and a list of words with
latin roots.13

Inflection Many errors are caused by wrong morpho-
logical inflection as in this example:

And in har times like these, ... [harder]
The base form hard (72) is provided more often than the
correct comparative harder (48), although it is too short.
Other inflection errors are caused by singular/plural and
adjective/adverb confusion.

In order to account for this phenomenon, we test
whether the solution is in lemma form or carries any
inflection markers using a lemmatizer. We also check
whether the word occurs elsewhere in the text in full form

9appropriate, skeletons, tempting, extract, ancient, private, design,
concentrations, state-of-the-art, scientists, modern, examined, constant,
essential, stable, entering, basis, synthetic, cost, demands

10longer, coffee, coffee, in, water, very, give, you, for, people, living,
other, number, water, water, from, over, you, over

11DE: Skelett, FR: squelette, ES: esqueleto, NL: skelet
12http://www.academicvocabulary.info/
13http://en.wikipedia.org/wiki/List of Latin words with English derivatives
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(i.e. not as a gap) because it facilitates the correct pro-
duction for the student. This feature is comparable to the
semantic cache used by Brown (1989).

Phonetic complexity Wrong answer variants for C-test
gaps are often rooted in phonetic problems. The spelling
of a word is more difficult, if it contains a rare sequence
of characters. The word appropriate, for example, trig-
gers 69 different answers, 40 of them were provided only
once. In addition, a spelling error is more likely to oc-
cur, in words with rare grapheme-phoneme mapping as in
Wednesday. We build a character-based language model
that indicates the probability of a character sequence us-
ing BerkeleyLM (Pauls and Klein, 2011). In addition,
we build a phonetic model using phonetisaurus, a sta-
tistical alignment algorithm that maps characters onto
phonemes.14 Both models are trained only on words from
the Basic English list in order to reflect the knowledge of
a language learner.15 Based on this scarce data, the pho-
netic model only learns the most frequent character-to-
phoneme mappings and assigns higher phonetic scores
to less general letter sequences. We use this score as
a feature and additionally calculate the string similarity
between the output and the correct pronunciation in the
CMU dictionary.16

Another source for phonetic problems occurs, if the
prefix boundary splits the word in a way that leads to
another pronunciation pattern compared to the solution
word as in this example.

It is not easy to design and build a mac that is
both, efficient and durable. [machine]

Due to the syllable split, the prefix provokes answers with
the pronunciation [mac] such as macanics, mac(h)anism,
macanical, macbook, macphone, and macro instead of
the original pattern [maS]. A similar issue occurs when
the prefix splits a compound such as greenhouse. We
check if the prefix boundary occurs within a compound
or a syllable using a hyphenation dictionary.17

4.2 Candidate Ambiguity

This micro-level dimension examines whether a compet-
ing candidate is more accessible for the learner in the
given context. Even if the learner is familiar with the
solution word, she might still not be able to produce it,
because a competing candidate is stronger. For example,
in 42 gaps in our data, an alternative answer is provided
more frequently than the intended solution.

Some of these gaps actually have more than one possi-
ble solution as the following example:

14http://code.google.com/p/phonetisaurus/
15http://ogden.basic-english.org
16http://www.speech.cs.cmu.edu/cgi-bin/cmudict
17http://hindson.com.au/info/free/free-english-language-

hyphenation-dictionary/

Scientists have ma tools that allow them to ex-
tract subtle information from ancient bones and their
environmental settings. [many]

Instead of the correct solution many (89), most students
provided made (238) which can also be considered cor-
rect here. These cases had not been anticipated by the
language teachers, they only encoded one solution in the
system.

In other cases, alternative answers seem very probable
to the students but are nevertheless false.

A natural blanket of greenhouse gases in the atmo-
sphere keeps the planet warm enough for life as we
know it at a comfortable 15C today. Human-caused
emissions of greenhouse gases have made the blanket
thi , trapping heat and leading to a global warm-
ing. [thicker]

Instead of the correct solution thicker (12), the students
provided many alternative solutions more often: thinner
(31), thin (19), thick (18), this (14), thing (14). Thinner
fits syntactically but completely changes the semantics of
the sentences as it is the antonym of the correct solution.
The learner needs to apply world knowledge to under-
stand that a thinner blanket would not trap heat. In our
model, we want to account for both cases, as it would
be very helpful if ambiguous gaps could be automatically
detected. This aspect has been neglected in previous work
on C-test difficulty.

In order to account for competing candidates, we first
determine the candidate space and then describe our fea-
tures approximating the probability that a competing can-
didate confuses the student.

Candidate space Prior to the tests, the students are in-
formed about the quite restrictive length constraint. The
given prefix of C-test gaps consists always of the smaller
half of the solution: if 3 characters are provided as pre-
fix, the correct word can only consist of 6 or 7 charac-
ters. This can be a useful indicator for the solution, but
the data reveals that in approx. 40% of the false answers,
the length constraint is not respected. The absolute num-
ber of false length answers is higher for weaker students.
However, the proportion of false length answers relative
to all false answers is higher for stronger (0.45) than for
weaker (0.32) students.

Length violations can be caused by candidates that
seem viable for the context and are more accessible than
the solution or by wrong inflection of the word ending. In
other cases, it is obvious that the student does not find a
proper solution and provides just anything that remotely
fits. It would be interesting to repeat the test with the con-
straint that false answers have a negative influence on the
overall score in order to find out whether the students are
aware of the length violation.

Bresnihan and Ray (1992) show that students perform

522



better on the C-test, if the length of the solution is graph-
ically indicated by dashes or dots which supports the as-
sumption that length violations are often not noticed in
the standard C-test. As we want to account for this phe-
nomenon, we decide to relax the length constraint. We
only allow a length tolerance of 1, i.e. for a prefix of
length 3, we consider candidates with 5 to 8 (instead of
6 to 7) characters, as the candidate space would be too
large otherwise.

We noticed that even candidates with wrongly spelled
prefix can be competitors, e.g. some students provided
the answer *demage for the prefix dem instead of the cor-
rect solution demands. The word damage actually fits se-
mantically into the gap, but as the prefix is different, we
currently do not add such cases to the candidate space.

In order to account for candidate ambiguity, we rank
all candidates according to three criteria: the unigram fre-
quency, the trigram frequency of the micro context, and
the parse score. Statistical parsers usually provide parse
scores in order to determine the best variant. This score
cannot be used as an absolute value because it depends
on the sentence length but it helps to distinguish between
candidates. A candidate that produces another parse tree
than the solution is less likely to be correct. For each
ranking, we determine the rank of the solution and the
number of candidates above a fixed threshold.

In addition, we take the intersection of the best candi-
dates from the above rankings, combine them into a set
of top candidates that are likely to compete with the so-
lution and determine its size. Moreover, we calculate the
maximum string similarity of the candidates with the so-
lution in order to capture very close variants (e.g. base
and basis).

4.3 Inter-gap dependency

This macro-level dimension assesses the dependency of
the current gap on previous gaps: can it be solved, even if
the previous gap has not been solved? In previous work,
Harsch and Hartig (2010) examine dependencies between
individual gaps using a Rasch testlet model and find that
some gaps strongly depend on each other, while others
can be solved independently.

At the same time, fertility is set to fall as women leave
childbirth la and la . [later]

In these gaps, later is repeated which makes it easy to fill
in the second gap, if the first one is solved.

The dependency of a gap is related to its position and
the difficulty of the preceding word. If a gap is preceded
by a very difficult gap, the available context is damaged
which can have an effect on the difficulty of the following
gaps. A gap occurring towards the end of a sentence, is
also more likely to be influenced by limited context. We
thus calculate the position of the gap and the number of
previous gaps in the sentence and in the paragraph. We

check if the same solution also occurs in another gap to
account for repetition. In order to estimate the difficulty
of the previous gap, we calculate its unigram and trigram
probability. If we already had a good difficulty prediction
algorithm, we could perform incremental prediction and
use the difficulty label of the previous gap as a feature for
the current gap, but this is left to future work.

In addition, we check for gaps with the prefix th be-
cause they enable many reference words such as this,
that, there, then, these, those, they, and their. The stu-
dent needs to perform co-reference resolution in order to
select the correct word. These referential gaps usually
cannot be solved on the basis of the micro context.

4.4 Paragraph difficulty

This macro-level dimension determines whether the
learner is generally able to understand the text. The over-
all difficulty of a paragraph contributes to the difficulty
of the individual gaps because more complex texts are
harder to parse for language learners, especially when ev-
ery second word is a gap. Thus, the available context for
each gap is assumed to be lower in more difficult para-
graphs. As we have seen in Section 3.1, the difficulty of
the gaps within one paragraph varies strongly. We there-
fore assume that the paragraph difficulty only adds a con-
stant effect to the overall gap difficulty.

The difficulty of a paragraph is inversely related to its
readability. We calculate the following readability fea-
tures for the whole paragraph and for the sentence con-
taining the gap. Average word and sentence length are the
underlying basis of traditional readability measures such
as Flesch-Kincaid and Fry which correlate with cloze test
difficulty according to Brown (1989). We calculate both,
but do not find much variety as the paragraphs in our data
are all of comparable length (64-99 words, 3-7 sentences,
4.85 characters per word).

The type-token ratio, the verb variation, and the pro-
noun ratio are used as indicators for lexical diversity and
referentiality. Klein-Braley (1984) already determined
the type-token ratio as useful cue for paragraph difficulty
prediction. We also use syntactic readability features
such as the number of entity mentions, the number of
certain POS types (e.g. noun, determiner, adjective) and
the number of certain phrase patterns (e.g. verbal phrase,
noun phrase, subordinate phrase).

Having introduced all four dimensions of C-test dif-
ficulty, we now report on the results of the actual diffi-
culty prediction. Difficulty prediction of C-tests has up to
now only been performed on the paragraph level (Klein-
Braley, 1984; Traxel and Dresemann, 2010). In this arti-
cle, we go beyond paragraphs and predict the difficulty of
gaps. We first determine the human performance on the
task and use it as a reference for the performance of the
machine learning approach based on our difficulty model.
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A1 A2 A3 Median A1-A3

Correct Prediction 200 209 192 213
Overestimation 90 99 83 101
Underestimation 107 89 118 84
NA 2 2 6 1
Accuracy 0.50 0.52 0.48 0.53

Table 2: Results of the human annotations

5 Human Difficulty Prediction

Due to the high number of participants, we already have
precise gap-level error rates (cf. Figure 2) for our tests.
We now want to determine to what extent human annota-
tors are able to predict these error rates. For this purpose,
we asked three English language teachers to assign a dif-
ficulty category to each gap according to the following
scheme:

1: Very easy gap (error rate ≤ 0.25)
2: Easy gap (0.25 < error rate ≤ 0.5)
3: Medium gap (0.5 < error rate ≤ 0.75)
4: Difficult gap (error rate > 0.75)

The annotation was performed on the same 20 texts as de-
scribed in Section 3.1. The teachers were already familiar
with these texts, as they had chosen them for the testing
period. We consider a gap to be correctly annotated, if
the human-assigned class matches the actual error rate.

Given the highly experienced annotators, the predic-
tion accuracy is lower than expected. The three annota-
tors obtain comparable accuracy, each of them correctly
predicts approximately 50% of the gaps (see Table 2).
There is no obvious bias in the annotations, difficulty is
both under- and overestimated. If we combine the human
prediction by taking the median of the three annotators,
53.4% are annotated correctly. These results show that
even experienced teachers are not able to foresee all fac-
tors that influence the difficulty of a gap.

Somewhat surprisingly, the agreement between the an-
notators is also low. The Fleiss’ Kappa for the three anno-
tators is 0.36, the pairwise comparison ranges from 0.31
to 0.39. Only in 38.6% of the gaps, all three annotators
agreed with each other. For only 25.3%, all three annota-
tors agreed with each other and with the actual measured
error rate. This shows that human difficulty prediction is
quite subjective.

The mediocre human performance on the task reveals
the complexity of predicting the elements of language
that cause problems for foreign language learners. How-
ever, this strengthens the need for reliable prediction
methods like the one described in this paper. Note that
the automatic prediction is compared with the actual er-
ror rates, not the human predicated ones. Thus, it is pos-
sible to outperform human performance with automatic
methods and provide a very helpful tool.

Classification Regression
P R F1 Pearson’s r RMSE

Majority Baseline .19 .43 .26 .00 .25
Sigott (1995) .23 .40 .28 .34 .24
Our Approach .46 .48 .46 .64 .20
Human Median .56 .53 .54 - -

Table 3: Results for leave-one-out crossvalidation on the train-
ing set for regression and classification prediction (both trained
on support vector machines). Classification results are the
weighted average of precision (P), recall (R) and F1-measure
over all four classes.

6 Automatic Difficulty Prediction

Our difficulty prediction approach is based on the model
described in the previous section. We extract the features
using tools for natural language processing provided by
DKPro Core (de Castilho and Gurevych, 2014). We then
perform experiments with different datasets and classi-
fiers using Weka (Hall et al., 2009) through the DKPro
TC framework (Daxenberger et al., 2014).18

6.1 Classification vs Regression

For the human annotation, we used a classification
scheme because assigning difficulty scores on a fine-
grained numerical scale would be too challenging even
for experienced teachers. However, as the actual error
rates are continuously distributed, gaps that are close to
the class boundaries are more likely to be mislabeled.
Therefore we also test regression prediction using the
actual error rates instead of the artificially determined
classes. We perform leave-one-out testing on the train-
ing set in order to determine the best approach.

We compare our model against the human performance
and two baselines: A naive one that predicts the majority
class for classification and the mean value for regression
and one that only uses the features proposed by Sigott
(1995) (solution probability, word class of solution, and
constituent type of gap).

In Table 3, we report weighted precision, recall and
F1-measure over all classes for classification and Pearson
correlation and root mean squared error for regression.
It can be seen that our approach clearly outperforms the
baselines in both cases.

For classification, the human median annotation is bet-
ter than our approach. In order to also compare our
regression results to the human annotations, we map
the numerical predictions back into classes according to
the scheme explained in the previous subsection. The
quadratic weighted kappa considers the classes on an or-
dinal scale and thus gives a better impression of the use-
fulness of the prediction. The results in Table 4 show that

18More information on data and resources can be found at
http://www.ukp.tu-darmstadt.de/data/c-tests.
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q.w. κ

Human Median .59
SMO Classification .47
Mapped SMO Regression .58

Table 4: Quadratic weightedκ of difficulty class predictions

Figure 5: Regression results for leave-one-out testing on the
training data. The symbols indicate the difficulty class that was
annotated by the human experts.

the performance of the regression approach is almost on
the same level as the median of the human prediction.
Therefore, we will focus on regression prediction for the
remainder of the paper.

For a better understanding of the behaviour of human
and automatic predictions, the plot in Figure 5 combines
the two results. The position in the plot indicates the re-
lation between the true error rate and the prediction and
the symbols show the corresponding human annotation.
The plot reveals that the regression equation predicts the
right tendency but tends to slightly underestimate difficult
gaps and overestimate easy gaps. The human prediction
performs well for the easiest gaps (class 1, green circle)
while the other three classes are confused quite often.

6.2 Feature selection
For a deeper analysis of our difficulty model, we now
compare different feature groups.

Processing Levels The results in the first two rows
show that the gap difficulty is mainly determined by the
features representing micro-level processing. This is not
surprising, as these features are calculated for each gap,
while most of the macro-level features are constant for all
gaps in the paragraph. The predictive power on the micro-

Feature Group # Feat. Pearson’s r

Micro vs. Macro Micro-level Processing 51 .50**
Macro-level Processing 37 .24**

Dimensions
w/o Solution Difficulty 50 .42**
w/o Candidate Ambiguity 74 .54**
w/o Inter-Gap Dependency 79 .62*
w/o Paragraph Difficulty 59 .59**

All 87 .64

Table 5: Regression results for different feature groups. Signifi-
cant differences to the result with all features are indicated with
*(p<0.05) and **(p<0.01).

level of our approach is a strong improvement over previ-
ous prediction approaches that only attempted to predict
paragraph difficulty.

Dimensions The middle part of Table 5 shows that the
prediction results decrease significantly, if we exclude
features from one dimension. The effect is particularly
strong, if we exclude the features estimating the diffi-
culty of the solution, while the effect of the inter-item
dependency features is quite small. This supports previ-
ous theoretical research claiming that the solution word
itself and its micro context are most relevant for the solv-
ing processes. The dimensions candidate ambiguity and
inter-item dependency have been newly introduced, while
many of the features for solution and paragraph difficulty
are well established. We therefore assume that future
work on improved feature development for these dimen-
sions could lead to even better prediction results.

Selected Features As the results for the individual di-
mensions might be related to the number of features, we
additionally perform feature selection and reduce the set
to 21 features.19

The selection shows that the probability of the word,
the phrase and the character sequence play a major role
for prediction. However, it might be the case that the con-
tinuous values of these features are simply more suitable
for regression approaches than boolean features such as
the word class of the solution. In addition, the number
of available candidates plays an important role but prim-
ing effects also need to be considered (whether the solu-
tion occurs previously in the text or mutilated as another
gap). For the paragraph difficulty, the number of verbs
and embedded sentences seems to be a good indicator of
difficulty.20

Interestingly, features from all four dimensions are in-
cluded in the selection as can be seen in Table 7. This
indicates that the dimensions in our model represent the
factors that have an influence on the C-test difficulty quite

19We use the WrapperSubsetEval-evaluator with SMOreg and
BestFirst-search as implemented in Weka.

20The term CoverSentence in Table 6 refers to the sentence contain-
ing the gap.
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Dimensions Selected Features

SolutionDifficulty IsAdverb
IsPlural
CharacterLMProbabilityOfPrefix
UnigramProbability
LeftBigramProbability
RightBigramProbability
TrigramProbability
SolutionOccursAsText

CandidateAmbiguity NrOfCandidates
NrOfParseCandidates
RankOfSolutionInParseCandidates
MaxLCSRofCandidatesAndSolution

Inter-Item Dependency SolutionOccursInAnotherGap
PrefixIsTh
NumberOfPreviousGapsInCoverSentence
PositionOfGap

Paragraph Difficulty AvgWordLength
NounsPerSentence
VerbsPerSentence
VerbVariation
SBarsInCoverSentence

Table 6: Selected Features

All Features Selected Features

Solution Difficulty 37 (43%) 8 (38%)
Candidate Ambiguity 13 (15%) 4 (19%)
Inter-Gap Dependency 8 ( 9%) 4 (19%)
Paragraph Difficulty 28 (33%) 5 (24%)

Sum 87 21

Table 7: Proportion of dimensions in selected features and all
features

well. However, the solution difficulty dimension is by
far the most important one, while the other three dimen-
sions contribute fewer features. We include the predic-
tion results for the selected features in Table 8 which is
discussed in the following section.

6.3 Test results

In order to evaluate our model on unseen data, we test
it on a set of 375 additional gaps. The results on the
test set are substantially worse than in the leave-one-out
(LOOCV Train) setting. If we merge the two sets and per-
form leave-one-out testing on the whole data (LOOCV
All), the results get close to our training set again. This
indicates that the test set contains characteristics, that
have not been observed during training. It is also inter-
esting that using only the selected features yields better
results on the smaller training set, while the full model is
better on larger data. In order to support the assumption
that our model performs better with more data, we plot
a learning curve (see Figure 6). We calculated the Pear-
son correlation for increasing sample sizes of randomly
selected instances and average the results over 100 runs.
The anomaly for smaller sample sizes can be explained
by very high standard deviations. Starting from a sample
size of about 70 instances, the learning curve proceeds as

# LOOCV Train Train-Test LOOCV All

Mean Baseline 1 .00 .00 .00
Sigott (1995) 7 .34 .38 .36
Full Model 87 .64 .32 .60
Selected Features 21 .68 .44 .57

Table 8: Results on the train and the test set

expected and highlights the importance of a larger train-
ing set.
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Figure 6: Learning curve for 10-fold cross-validation with in-
creasing size of training data, results are averaged over 100 runs

6.4 Error Analysis
Figure 7 shows that our prediction approach produces
a few strong outliers for the test data. In particular, it
strongly underestimates the error rate for some very easy
gaps. We perform an error analysis on the 9 outliers.

Underestimation In two underestimated gaps, the so-
lution requires an apostrophe (Earth’s, world’s). This has
not been seen in the training data, and therefore we can-
not predict that the students have difficulties here. It is
debatable whether punctuation should be included into
the solution but the language teachers insisted on the im-
portance of these gaps. In two other cases, the students
systematically favour a wrong solution—one is due to

Figure 7: The prediction for the train-test setting produces more
outliers. Instances with an absolute difference of predicted and
actual error rate ≥ 0.5 are coloured red.
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spelling (of instead of off ) and the other due to refer-
entiality (the instead of this)—which our approach did
not anticipate correctly. The last two outliers occur in a
phrase that is very frequent for native speakers but nev-
ertheless unknown to the participants (cause untold dam-
age, the continental United States21).

Overestimation One of the items for which the error
rate is strongly underestimated is the compound carbon-
free. It can be seen, that the teachers deviated from the
original length constraint here and applied it only on the
second part of the component. As these kind of com-
pounds have not been seen in the training set, our ap-
proach estimates the difficulty for providing carbon-free,
while it should rather consider only free. The second
overestimation is due to the named entity Deutsche Bahn,
which is unlikely to occur in English text but very com-
mon for students living in Germany. The third overesti-
mated outlier is simply due to an unfortunate combina-
tion of a long word (dangerous) at the end of a difficult
sentence that is nevertheless easy for the students.

The errors due to apostrophes and hyphenated com-
pounds can be minimized by adapting the processing. In
order to also anticipate the other outlier phenomena, we
need more training data.

7 Conclusions
We introduce the first model for the automatic prediction
of gap-level difficulty of C-tests. We collected data from
real learners and find that the gap-level error rates are
quite stable. The prediction results of our approach are
on the same level as the performance of human experts.
The learning curve indicates that even better results are
possible with more training data. A higher number of
instances makes it easier to learn the nuances for the pre-
diction and this can help to improve the features.

Our work also sheds light on the question what C-tests
measure. The difficulty of a C-test gap is determined by
a combination of many factors. Our experiments have
shown that both, micro- and macro-level cues, contribute
to the gap difficulty: i) problems related to the solution
such as spelling, phonetic difficulties and morphological
derivation, ii) problems caused by competing candidates,
iii) problems caused by dependencies between gaps, and
iv) readability problems caused by text complexity. Even
the reduced set of selected features comprises features
from all introduced dimensions which shows that our
conclusions drawn from the data analysis led to a very
suitable model. However, the features measuring the dif-
ficulty of the solution and the probability of the micro
context seem most relevant. As a next step, we need to
improve the feature extraction for compound nouns and
named entities.

21The students provided only continent instead.

Our approach has already raised interest in language
teachers who see strong practical benefits. The automatic
difficulty prediction facilitates test selection, as teachers
can run our approach on a corpus and only inspect tests
with adequate difficulty. The system could also be tuned
towards the prediction of potentially ambiguous gaps so
that teachers become aware of the alternative solutions.
In addition, our approach can also be used productively
for the automatic test generation in platforms for self-
directed language learning.

Our model has been developed for the difficulty pre-
diction of English C-tests. However, it can also be gener-
alized to other languages and to test variants of reduced
redundancy testing. In future work, we aim at adapting
the difficulty of a given text by varying the gap place-
ment.
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