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Ildikó Pilán, Elena Volodina
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Abstract

The lack of a sufficient amount of data tailored for a task is a well-recognized problem for many
statistical NLP methods. In this paper, we explore whether data sparsity can be successfully
tackled when classifying language proficiency levels in the domain of learner-written output
texts. We aim at overcoming data sparsity by incorporating knowledge in the trained model
from another domain consisting of input texts written by teaching professionals for learners. We
compare different domain adaptation techniques and find that a weighted combination of the two
types of data performs best, which can even rival systems based on considerably larger amounts
of in-domain data. Moreover, we show that normalizing errors in learners’ texts can substantially
improve classification when in-domain data with annotated proficiency levels is not available.

1 Introduction

Data sparsity is a recognized problem in many machine learning based NLP approaches since the creation
of data specifically collected and annotated for a certain task or language is time-consuming and costly.
Previous attempts to overcome data sparsity include transferring knowledge between different types of
data through the application of models from languages and tasks where sufficient data exists to the ones
where data is unavailable or sparse (Daumé III and Marcu, 2006). A common case of such a transfer
learning scenario is domain adaptation, where training and test data belong to different domains (e.g.
text genres) referred to as source domain and target domain respectively.

In our experiments, we aim at exploring the plausibility of domain adaptation as a strategy for over-
coming data sparsity in the context of foreign and second language (L2) learning. More specifically, we
operationalize domain as the type of text involved in the language learning process: on the one hand,
texts from coursebooks intended for L2 learners (referred to as L2 input texts in this paper), and on the
other hand, essays created by learners (L2 output texts). Our goal is to predict L2 language development
stages in terms of linguistic complexity in the latter category, i.e. learner-produced texts. These stages
are commonly referred to as proficiency levels in second language acquisition and language testing. Lev-
els range from ‘absolute beginner’ to ‘advanced language user’ with increasing linguistic complexity as
learners progress with the levels. A scale of such levels, very influential both in Europe and outside, is
the CEFR – Common European Framework of Reference for Languages (Council of Europe, 2001).

In previous work, NLP methods have been successfully applied to both assessing proficiency levels
in L2 input texts collected from coursebooks and output texts written by learners (see section 2). How-
ever, the two text types have always been considered separately, while we argue that there is a shared
linguistic content between the two that can be used for knowledge transfer. Specifically, the output of
learners is a subset of the linguistic input that they are able to understand (Barrot, 2015). Thus, in-
corporating knowledge from coursebook texts representing L2 input may improve the classification of
proficiency levels in L2 output text. Decreasing the need for a large amount of L2 output data is particu-
larly appealing since acquiring this type of text poses a number of challenges including copyright issues,
anonymization of sensitive information, and often even digitizing hand-written material (Megyesi et al.,
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2016; Mendes et al., 2016; Volodina et al., 2016). Since an increasing amount of people learn foreign
languages worldwide either out of necessity or as a personal interest, systems targeting the needs of this
user group are especially valuable. Within this context, the automatic assessment of proficiency levels
in learner-produced texts would be a powerful tool for increasing both learners’ autonomy and teaching
professionals’ efficiency.

Research Questions In particular, this paper aims at answering the following research questions: (i)
Can we overcome the lack of a sufficient amount of learner output data by incorporating knowledge
from L2 input texts when performing proficiency level classification? (ii) What kind of domain adapta-
tion technique performs best in this context? (iii) Does normalizing errors in L2 learner output benefit
proficiency level classification in a domain adaptation setting?

The motivation behind error normalization is that learner output typically contains errors which may
influence the performance of automatic taggers and parsers and thus, classification performance. There-
fore, error normalization may allow for a more precise calculation of feature values and a more successful
transfer from and to a non error-prone domain. The amount and type of errors, i.e. degree of incorrect-
ness, however, is not explicitly considered as an indicator of proficiency for L2 learner output in our
experiments in order to keep comparability with coursebook texts. Unlike linguistic complexity, incor-
rectness is not a relevant aspect for L2 input texts as these are authored by teaching professionals and are
supposed to be relatively error-free examples of language use.

Our target language of choice is Swedish, a language considerably less resource-rich than English and
for which a CEFR-level classification model of L2 learners’ writing is not available yet, despite the clear
need for breaking down CEFR descriptors into linguistic constituents that characterize proficiency levels
for each individual language (Little, 2011; North, 2007).

Main Findings We find that, in the absence of annotated learner-written data, using a classification
model trained only on coursebook texts is a viable alternative if learner errors are normalized. Further-
more, if a small amount of learner output data is available and it is combined with L2 input texts, it can
even outperform a model trained only on the few in-domain instances, resulting in a prediction quality
matching that of in-domain state-of-the-art systems for other languages. In a domain adaptation set-
ting, normalizing learner errors proved to yield a substantial improvement for features based on token,
character and sentence counts as well as for features based on the CEFR-level distribution of tokens.

2 Text Categorization in the Language Learning Context

The automated evaluation of learner output is primarily a text classification task which aims at determin-
ing the quality of writing and assigning an appropriate label from a given set, for example a score or grade
on the continuum between pass-fail (essay scoring) or a level indicating learning progress (proficiency
level classification). In a L2 learning scenario, a longer piece of learner-written text is a popular means
to assess learners’ proficiency level. The human assessment of learner output, however, is both time-
consuming and prone to subjectivity. Different linguistic dimensions need to be taken into consideration
usually requiring several iterations of re-reading and different factors may influence the decision, such
as negative attitude to a learner, hunger, bad mood, and boredom. Therefore, the number of initiatives
to complement (or even replace) human assessment with a more objective and more efficient supervised
machine learning system has been increasing the past years, with essay grading (Burstein and Chodorow,
2010) as an important application field.

2.1 Automatic Essay Scoring

Automatic essay scoring (AES) has been an active research area since 1990s, targeting mostly English
(Burstein and Chodorow, 2010; Miltsakaki and Kukich, 2004; Page, 2003). Recently, with the availabil-
ity of annotated learner corpora for other languages, automatic essay grading has expanded to cover also
other languages, e.g. German (Zesch et al., 2015) and Swedish (Östling et al., 2013), to name just a few.

In its nature, AES has mostly relied on machine learning approaches, exploring both supervised (Yan-
nakoudakis et al., 2011) and unsupervised methods (Chen et al., 2010) with different degrees of success.
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Östling et al. (2013) have looked at Swedish upper secondary school essays, i.e. first language learner
essays, and automatically assessed them in terms of a four-point scale of performance grades with an
accuracy of 62%. The authors found that this result exceeded the agreement rate between two human
assessors which was as low as 45.8% which might indicate that human-like performance is a rather un-
certain goal. Linguistic parameters that have over time been presumed to be strong predictors of writing
quality have varied from shallow ones like text and word length (Page, 2003; Östling et al., 2013) to more
sophisticated features using Latent Semantic Analysis (Landauer et al., 2003), cosine similarity (Attali
and Burstein, 2006), discourse structure and stylistic features (Attali and Burstein, 2006).

2.2 Proficiency Level Classification

A closely related task to AES is classifying texts into L2 proficiency levels which consists of predicting
at which language learning stage a text can be produced or understood by a L2 learner, rather than
assigning a grade within a pass-fail range. The CEFR, the scale of proficiency levels adopted in our
experiments, contains guidelines for the standardization of language teaching and assessment across
languages and countries (Council of Europe, 2001). It provides a common metalanguage to talk about
objectives, assessment, (Little, 2011), and it defines language competences at six proficiency levels (A1,
A2, B1, B2, C1, C2) where A1 is the beginner level. Since the publication of the CEFR guidelines in
2001, several countries have adopted the system, but its practical application has proven to be rather
non-straightforward since the descriptions of the competences at each level remain vague (Little, 2011;
North, 2007).

The past few years have seen an increasing interest in the CEFR-level classification of both L2 input
and output texts. In the case of coursebook texts such a classification has also been referred to as L2 read-
ability and it has been investigated for, among others, French (François and Fairon, 2012), Portuguese
(Branco et al., 2014), Chinese (Sung et al., 2015), Swedish (Pilán et al., 2015), and English (Xia et al.,
2016).

Apart from L2 input texts, CEFR-level annotated L2 learner corpora are also available for a number
of languages including but not limited to English (Nicholls, 2003), Estonian (Vajjala and Lõo, 2014)
and German (Hancke and Meurers, 2013). Moreover, MERLIN (Wisniewski et al., 2013) is a trilingual
learner corpus comprised of written productions of L2 learners of Czech, German, and Italian also linked
to CEFR levels. Despite the availability of annotated corpora for several languages, the number of
projects targeting the automatic CEFR-level classification of learner essays has remained rather limited.
Previously reported results for this task in terms of accuracy include 61% for German (Hancke and
Meurers, 2013) and 79% for Estonian (Vajjala and Lõo, 2014).

2.3 Domain Adaptation for Tasks Related to L2 Learning

While there is a lot of previous work on domain adaptation in general, relatively few approaches exist in
the field of assessing learner output texts. Previous applications of domain adaptation to learner essays
focused on exploring the transfer of models between different writing tasks that prompted students to
produce the essays, e.g. expressing an opinion on a topic vs. summarizing a news article (Zesch et al.,
2015; Phandi et al., 2015). Zesch et al. (2015) explore which features are transferable from one essay
grading task to another task based on a different prompt. They find that by excluding some highly
domain-specific features, the transfer loss can be reduced significantly without noticeable differences in
overall performance.

A popular domain adaptation approach is EASYADAPT (Daumé III, 2007) that augments the orig-
inal feature space with source- and target-specific versions. Phandi et al. (2015) successfully applied
EASYADAPT for automatic essay scoring and Xia et al. (2016) for the CEFR-level classification of L2
input texts with native language texts as source domain.

3 Datasets

For our experiments, we use L2 Swedish data including learners’ output, i.e. error-prone essays written
by learners, as well as L2 input data for learners, i.e. relatively error-free texts written by experts for
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CEFR Levels
A2 B1 B2 C1 Total

Learner Output Texts 83 75 74 88 320
Tokens 18,349 29,814 32,691 60,095 140,949

Expert Input Texts 157 258 288 115 818
Tokens 37,168 79,124 101,297 71,723 289,312

Table 1: Overview of CEFR-level annotated Swedish datasets.

L2 learners primarily intended as reading material. Both types of data are manually labeled for CEFR
levels and automatically annotated across different linguistic dimensions including lemmatization, part-
of-speech (POS) tagging, and dependency parsing using the Sparv (previously known as ‘Korp’) pipeline
(Borin et al., 2012).

3.1 L2 Output Texts

Our source of output texts is SweLL (Volodina et al., 2016), a corpus consisting of L2 Swedish learner
essays on a variety of topics, manually linked to CEFR levels. The essays also contain meta-information
on learners’ mother tongue(s), age, gender, education level, the exam setting, and, in certain cases, topic
and genre. The distribution of essays per level is given in Table 1.

The corpus includes some essays at A1 and C2 levels, but these classes were too under-represented to
be included in our experiments. As for A1 level, this may depend on learners’ limited ability to write
due to the lack of familiarity with many linguistic constructs. In fact, the CEFR contains no descriptor
for writing essays and reports at A1 level (Council of Europe, 2001, 62). C2 is lacking since courses at
this level are not provided, and it is in general characterized as a near-native language competence.

Since SweLL consists of learner-produced texts, it is likely that it contains some errors which, how-
ever, have not been annotated or normalized yet in the resource. The number of non-lemmatized tokens in
the resource (i.e. tokens that could not be assigned baseforms during automatic annotation), which could
indicate spelling errors or creative compounding at more advanced levels is higher at lower proficiency
levels, but their amount always remains within a range of 5% and 8%.

3.2 L2 Input Texts

Our L2 input texts were collected from COCTAILL, a corpus of coursebooks used for teaching CEFR-
based courses of L2 Swedish (Volodina et al., 2014). The coursebooks are divided into lessons (book
chapters), each of which is labeled for the CEFR level it is aimed at. Each lesson contains a variety of
elements including reading texts, exercises, lists, etc. Out of these only the texts intended for reading
have been included in our dataset, whose CEFR level was derived from the level of the lesson they
occurred in. Table 1 gives an overview of the distribution of these texts per level. For the same reasons
as in section 3.1, C2 was not included in this dataset and A1 level has been omitted to keep the classes
consistent between the two datasets.

4 Feature Set

We use the feature set presented in Pilán et al. (2015) designed for modeling linguistic complexity in
input texts for L2 Swedish learners. These features rely on morpho-syntactic tags, information about the
CEFR level of tokens, and aspects inspired by L2 Swedish curricula. Five sub-group of features can be
distinguished in this set: length-based, (weakly) lexical, morphological, syntactic, and semantic features.
The detailed list of features is presented in Table 2.

Count-based features rely on the number of characters and tokens (tkn), extra-long words being
tokens longer than 13 characters. LIX (Läsbarhetsindex) is a traditional Swedish readability formula
corresponding to the sum of the average number of words per sentence in the text and the percentage of
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Count Lexical Syntactic Morphological

Sentence length A1 lemma IS Avg DepArc length Modal V to V Verb IS
Avg token length A2 lemma IS DepArc Len > 5 Particle IS V variation
Extra-long token B1 lemma IS Max length DepArc 3SG pronoun IS Function W IS

Nr characters B2 lemma IS Right DepArc Ratio Punctuation IS Lex tkn to non-lex tkn
LIX C1 lemma IS Left DepArc Ratio Subjunction IS Lex tkn to Nr tkn

Bilog TTR C2 lemma IS Modifier variation PR to N Neuter N IS
Square root TTR Difficult W IS Pre-modifier IS PR to PP CJ + SJ IS

Semantic Difficult N&V IS Post-modifier IS S-VB IS Past PC to V

Avg senses per token OOV IS Subordinate IS S-V to V Present PC to V
N senses per N No lemma IS Relative clause IS ADJ IS Past V to V

Avg. KELLY log freq PP complement IS ADJ variation Present V to V
ADV IS Supine V to V

ADV variation Relative structure IS
N IS Nominal ratio

N variation N to V

Table 2: Feature set.

tokens longer than six characters (Björnsson, 1968). Rather than a simple type-token ratio (TTR), we
use a bi-logarithmic and a square root equivalent following Vajjala and Meurers (2012).

Lexical features incorporate information from the KELLY list (Volodina and Kokkinakis, 2012), a
frequency-based word list compiled using a corpus of web texts (thus completely independent of our
datasets), which also provides a suggested CEFR level per each lemma based on frequency bands. For
some feature values, incidence scores (IS) are computed, in other words, instead of absolute counts,
normalized values per 1000 tokens are considered to reduce the influence of sentence length. Lexical
complexity is modeled with a set of weakly lexicalized features, i.e. we do not use word forms or lemmas
themselves as features, but the IS of their corresponding CEFR levels instead. This aspect is especially
important considering the limited size of our learner essay data. Difficult tokens are those that belong to
levels above the overall CEFR level of the text. Moreover, we consider the IS of tokens not present in
KELLY (OOV IS), the IS of tokens for which the lemmatizer could not identify a corresponding lemma
(No lemma IS), as well as average KELLY log frequencies.

Morphological features include not only IS but also variational scores, i.e. the ratio of a category
to the ratio of lexical tokens: nouns (N), verbs (V), adjectives (ADJ) and adverbs (ADV). The IS of all
lexical categories as well as the IS of punctuation, particles, sub- and conjunctions (SJ, CJ) are taken into
consideration. Nominal ratio (Hultman and Westman, 1977) is another readability formula proposed for
Swedish that corresponds to the ratio of nominal categories, i.e. nouns, prepositions (PP) and participles
to the ratio of verbal categories, namely pronouns (PR) adverbs, and verbs. Relative structures consist
of relative adverbs, determiners, pronouns and possessives. Some features are inspired by L2 teaching
material (Fasth and Kannermark, 1997) and they are based on fine-grained inflectional information such
as the IS of neuter gender nouns and the ratio of different verb forms to all verbs.

Syntactic features are based, among others, on the length (depth) and the direction of dependency arcs
(DepArc). Within this feature group, we consider also relative clauses as well as pre- and post-modifiers,
which include, for example, adjectives and prepositional phrases respectively.

Semantic features build on information from the SALDO lexicon (Borin et al., 2013). We use the
average number of senses per token and the average number of noun senses per nouns.

5 Experimental Setup

For all experiments, we use SVMs as implemented in WEKA (Hall et al., 2009) and the feature set
presented in detail in section 4. Results are obtained using 10-fold cross-validation. We report the
F1 score, i.e. the harmonic mean of precision and recall, as well as quadratic weighted kappa (κ2), a
distance-based scoring function taking into consideration also the degree of misclassifications.
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Experimental setup Data used # Training inst. # Informing inst.

MAJORITY DT 288 320
IN-DOMAIN DT 288 320

SOURCE-ONLY DS 818 818
EASYADAPT DS with augmented features 818 1138
+FEATURE DT with DS prediction as feature 288 1138
COMBINED DS + 60% of DT 1010 1010
WEIGHTED DS (w = 1) + 60% of DT (w = 10) 1010 1010
WEIGHTED-INSTSEL Correctly classified DS (w = 1) + 60% of DT (w = 10) 505 1138

Table 3: Domain adaptation experimental setups.

5.1 Domain Adaptation

In a domain adaptation scenario, data from a source domain (DS) is used to predict labels in a different,
target domain (DT ). To overcome data sparsity, especially relevant for our learner essay data, we exper-
iment with improving CEFR level classification by transferring information from our DS consisting of
L2 coursebook texts to DT consisting of Swedish L2 learners’ essays.

As baselines, we employ both assigning the most frequent label in the dataset (MAJORITY) and an IN-
DOMAIN setup using only the learner essays in a cross-validation setup. We compare these to different
domain adaptation scenarios inspired mostly by Daumé III and Marcu (2006) and Pan and Yang (2010)
which differ in the type and the amount of data used as detailed in Table 3. We report the number of
instances employed at the moment of training as well as the amount of instances from which information
has been incorporated in some form in the final models.

In the SOURCE-ONLY setup, a model trained on all available source domain instances, i.e. coursebook
texts, was applied directly to the target domain instances consisting of learner essays. EASYADAPT
(Daumé III, 2007) is a feature augmentation approach which consists of triplicating the feature space
by including three versions of each feature in the augmented equivalent: a general, a source-specific
and a target-specific version. In more formal terms, to each feature vector x, the mapping function
φS(x) = 〈x, x, 0〉 is applied in the source domain and φT (x) = 〈x, 0, x〉 in the target domain, 0 being
a zero vector of length |x|. In +FEATURE we first train a model trained on the L2 input texts. Then,
the CEFR label predicted by this system is incorporated as an additional feature for each essay instance
and a new model is trained on the essays with this extra dimension. For COMBINED and WEIGHTED
the training data includes not only DS instances, but also 60% of DT . In the WEIGHTED setup, an
increased importance is given to DT instances during training through the assignment of a higher weight
(w). Finally, to obtain WEIGHTED-INSTSEL, we first train a model on the available DT data and use
that to classify DS instances. Then those DS instances that the essay-only model correctly classified are
combined with 60% DT , the latter ones receiving a weight of 10. Compared to WEIGHTED, in this setup
we discard DS instances that might be misleading when making predictions on DT , due to differences
in the underlying distributions in the two domains. A similar approach is presented in Jiang and Zhai
(2007).

5.2 Error Normalization

Besides using learners’ output texts in their original form, we investigate also the effects of error normal-
ization on the domain-adapted strategies. By correcting errors we aim at bringing learners’ texts closer
to the standard language present in the coursebooks. Making the texts belonging to these two different
domains more similar to each other may improve the domain-adapted classification performance. More-
over, since the annotation tools used were originally designed for dealing with standard Swedish, error
normalization leads to a more reliable tagging and parsing, and hence to more precise feature values in
the corrected learner output texts.

Previous error-normalization approaches include, among others, finite state transducers (Antonsen,
2012) and a number of, mostly hybrid, systems created within the CoNLL Shared Task on grammatical
error correction for L2 English (Ng et al., 2014).
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ORIGINAL
ERROR-

NORMALIZED

F1 κ2 F1 κ2

MAJORITY .120 .000 .120 .000
IN-DOMAIN .721 .886 .720 .872

SOURCE-ONLY .438 .713 .620 .807
EASYADAPT .503 .681 .533 .741
+FEATURE .709 .879 .802 .864
COMBINED .733 .863 .726 .885
WEIGHTED .747 .890 .779 .915
WEIGHTED-INSTSEL .733 .873 .795 .914

Table 4: Domain adaptation results with and without error normalization.

We use LanguageTool1 (Naber, 2003), an open-source rule-based proof-reading program available for
multiple languages which detects not only spelling, but also some grammatical errors (e.g. inconsistent
gender use in inflected forms). We propose a two-step algorithm consisting of first obtaining correction
candidates from LanguageTool and then ranking these candidates based on a word co-occurrence mea-
sure. As a first step, we identify errors in the learner essays and a list of one or more LanguageTool
correction suggestions, as well as the context, i.e. the surrounding tokens for the error within the same
sentence. When more than one correction candidate is available, as an additional step, we make a se-
lection based on Lexicographers’ Mutual Information (LMI) scores (Kilgarriff et al., 2004). Here we
assume a positive correlation between a correction candidate co-occurring with a context word and being
the correct version of the word intended by the learner. We check LMI scores for each LanguageTool
correction candidate paired with the lemma of each available noun, verb, and adjective in the context
based on a pre-compiled list of LMI scores. We create this list using a Korp API (Borin et al., 2012)
providing LMI scores computed based on a customizable set of corpora. We use a variety of modern
Swedish corpora totaling to more than 209 million tokens for our list of LMI scores. Only scores for
noun-verb and noun-adjective combinations have been included with a threshold of LMI ≥ 50. When
available, we select the correction candidate maximizing the sum of all LMI scores for the context words.
In the absence of LMI scores for the pairs of correction candidates and context words, the most frequent
word form in Swedish Wikipedia texts is chosen as a fallback.

Once correction candidates are ranked, each erroneous token identified by LanguageTool is replaced
in the essays by the top ranked correction candidate. The normalized texts are then annotated again and
feature values are re-computed.

6 Results and Discussion

Table 4 presents the results of our domain adaptation experiments first without error normalization (orig-
inal) and then with corrected errors (error-normalized). In the case of the non-normalized essays, the
in-domain baseline obtained using only the small amount of learner output texts in a cross-validation
setup is .721 F1 and .886 κ2. Compared to this, transferring a model based on coursebook texts directly
(SOURCE-ONLY) results in a considerable performance drop (-.283 F1 and -.173 κ2). When using the
essays in their original, noisy form, the best performing domain adaptation setup is the weighted combi-
nation of L2 input and output texts, which outperforms even the in-domain baseline both in terms of F1

and κ2.
The obtained domain-adaptation results are comparable to state-of-the-art in-domain systems for other

languages, like the system for Estonian described in Vajjala and Lõo (2014) with an F1 of .78, or the one
for German (Hancke, 2013) with .71 F1 for a feature selected model distinguishing 5 classes. It is worth

1www.languagetool.org
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IN-DOMAIN
SOURCE-ONLY

(Original)
SOURCE-ONLY
(Error-norm.)

Feature Group F1 κ2 F1 κ2 F1 κ2

All .721 .886 .438 .713 .620 .807

Count .499 .740 .106 -.003 .335 .708
Lexical .625 .826 .318 .507 .378 .626
Syntactic .511 .665 .118 .066 .106 .030
Morphological .538 .743 .297 .403 .291 .419
Semantic .299 .198 .087 .000 .087 .000

Table 5: Performance of individual feature groups.

noting, however, that both of these systems required a considerably (about three times) larger annotated
in-domain corpus. This shows that additional coursebook data can benefit the classification of language
proficiency levels in learner output texts, especially if only a small amount of annotated in-domain data
is available.

Error Normalization Our error-normalization method corrects in total 5,080 errors in the essays
which amounts to 3.6% of all tokens in the data. In absence of error-annotated Swedish resources,
we manually evaluate the method by inspecting 120 normalized items out of which we find 83 correct,
corresponding to 69% accuracy. Out of the normalized tokens, about 87% are categorized as spelling
errors by LanguageTool. Moreover, the choice of correction candidate is based on LMI scores in 24% of
all cases.

Since our feature set does not target learner errors specifically (to be able to maintain comparability
when applied to coursebook text), we do not expect error normalization to influence classification results
with IN-DOMAIN. Our experiment results in Table 4 show, in fact, that correcting learner errors does
not have any statistically significant effect in the IN-DOMAIN setup, but it does improve performance to
a great extent for most domain-adapted cases. This latter would support the hypothesis that correcting
spelling and grammatical errors increases the similarity between the target and the source domain. The
gain is especially large (+.182 F1) in the case of the SOURCEONLY setup, which does not rely on anno-
tated essays. EASYADAPT, which has been successfully used in an AES task previously (Phandi et al.,
2015), is outperformed by most other domain adaptation methods in our case, independently from error
normalization.

In terms of F1, +FEATURE using the predictions of a classifier trained on the L2 input texts performs
best (.802 F1), however, the degree of misclassifications indicated by κ2 is smallest with WEIGHTED

(.915), as in the case of the essays without error normalization. After error correction, WEIGHTED-
INSTSEL achieves approximately the same quality of performance for all measures as the aforemen-
tioned two best performing models WEIGHTED and +FEATURE. These all improve over the IN-DOMAIN

baseline by about .07 F1 and .03 κ2.
These results show that the knowledge transfer from L2 input texts can be substantially boosted by

normalizing errors in the learner-produced texts.

Contribution of Feature Groups In the next step, we investigate the contribution of individual feature
groups to the classification performance both in- and cross-domain with the SOURCE-ONLY setup which
does not presuppose the availability of annotated in-domain data. Results for our ablation test are shown
in Table 5.

The most predictive features in- and cross-domain on both the original and on the normalized essays
are lexical features measuring the proportion of tokens per CEFR level in the texts. Morphological
features also preserve their strong predictive power when transferred between L2 input and output texts.
The informativeness of syntactic and count features is very low in the cross-domain setting with the
original essays, but the latter category transfers much better after error-normalizing L2 output texts. A
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potential explanation could be that error normalization includes also corrections of capitalization and
whitespaces which might contribute to an improved detection of sentence boundaries, a central element
in most of these features. Lexical features also benefit from error correction, presumably due to a more
precise estimation of the CEFR-level distribution of tokens.

Direction of Misclassifications Finally, to investigate whether the transferred coursebook model pre-
dicts learner-written texts to be of higher or lower proficiency levels compared to the available annota-
tions, we perform regression using SMO and the SOURCEONLY setup, transforming CEFR levels into
numeric values. We use the normalized essays for this purpose since the automatic annotation is presum-
ably more precise in these texts compared to their original version. Predictions within a distance of 0.5
from the numeric value representing the actual CEFR level are considered sufficiently close for being
considered correct, thus the amount of errors is computed based only on cases exceeding this margin.
The regression model produces .800 correlation and 1.120 RMSE (root mean squared error). We find that
64% of the erroneous predictions consider essays to be of a lower level than they actually are. This could
be a data-driven confirmation of the pedagogical observation that learners’ output texts are typically of a
lower linguistic complexity compared to the L2 input texts written for them within the same CEFR level.

7 Conclusions

In this work we investigated the benefits of using texts from language learning coursebooks to classify
proficiency levels in learner-written texts, since the latter type of data is especially costly to collect.
Moreover, our experiments provide useful insights into how some simple domain adaptation techniques
compare to each other for this task. Training only on source domain data did not yield a successfully
transferable model between the L2 input and output texts if errors were not normalized in the learner-
produced essays. With such a normalization, however, using only coursebook texts as training data
produced a result rather close to what learning only from a small amount of essays did. Joining domains
was useful, especially when weighted target domain instances were added to all, or a subset of the
coursebook data, and learner errors were normalized. We showed that, with these two steps, it is possible
to outperform a model based only on a limited amount of in-domain data. Furthermore, our results are
competitive even compared to systems for other languages that make use of a considerably larger amount
of in-domain data.

In the future, it would be informative to repeat the experiments for other languages, where we ex-
pect similar results. Additional domain adaptation techniques could also be explored for this task, for
example, the identification of shared priors and kernel transformations. Alternatives to the current er-
ror normalization could be investigated in order to identify a broader range of incorrect tokens more
precisely. More reliable error correction methods may yield further improvement to transferring classifi-
cation models between these domains.

References
Lene Antonsen. 2012. Improving feedback on L2 misspellings-an FST approach. In Proceedings of the SLTC

2012 workshop on NLP for CALL; Lund; 25th October; 2012, number 080, pages 1–10. Linköping University
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Förlag, Lund.

Thomas François and Cédrick Fairon. 2012. An ’AI readability’ formula for French as a foreign language. In
Proceedings of the EMNLP and CoNLL 2012.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. 2009. The
WEKA data mining software: An update. In The SIGKDD Explorations, volume 11, pages 10–18.

Julia Hancke and Detmar Meurers. 2013. Exploring CEFR classification for German based on rich linguistic
modeling. In Proceedings of the Learner Corpus Research (LCR) conference.

Julia Hancke. 2013. Automatic prediction of CEFR proficiency levels based on linguistic features of learner
language. Master’s thesis, University of Tübingen.

Tor G Hultman and Margareta Westman. 1977. Gymnasistsvenska. Liber.

Jing Jiang and ChengXiang Zhai. 2007. Instance Weighting for Domain Adaptation in NLP. In Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics, pages 264–271, Prague, Czech Republic.
Association for Computational Linguistics.

Adam Kilgarriff, Pavel Rychly, Pavel Smrz, and David Tugwell. 2004. Itri-04-08 the sketch engine. Information
Technology, 105:116.

Thomas K Landauer, Darrell Laham, and Peter W Foltz. 2003. Automated scoring and annotation of essays with
the Intelligent Essay Assessor. Automated essay scoring: A cross-disciplinary perspective, pages 87–112.

David Little. 2011. The Common European Framework of Reference for Languages: A research agenda. Lan-
guage Teaching, Vol 44.3.
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